901
|
Sánchez-Bernal C, García-Morales OH, Domínguez C, Martin-Gallán P, Calvo JJ, Ferreira L, Pérez-González N. Nitric oxide protects against pancreatic subcellular damage in acute pancreatitis. Pancreas 2004; 28:e9-15. [PMID: 14707743 DOI: 10.1097/00006676-200401000-00021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Oxidative stress involvement in damage to the pancreas in acute pancreatitis (AP) is well documented. However, little is known about oxidative damage occurring in the different subcellular fractions of pancreatic cells. The aim of this study was to ascertain the main targets of oxidative damage inside cells after AP and the role of endogenous nitric oxide (NO) in it. METHODS A model of cerulein-induced AP in rats was used and N-nitro-l-arginine methyl ester (l-NAME) was administered as an NO production inhibitor. After pancreatitis induction, indicative parameters of lipid peroxidation and protein oxidation together with some enzymatic and nonenzymatic endogenous free radical scavengers were assessed in serum and pancreatic subcellular fractions. CONCLUSIONS In pancreatitic rats, malondialdehyde and protein carbonyl group concentrations were significantly increased (P < 0.05) in serum and some fractions. The increases were higher in l-NAME-treated rats (P < 0.05). Superoxide dismutase and catalase activities were also increased (P < 0.05) but were decreased (P < 0.05) with l-NAME. The alpha-tocopherol concentration diminished (P < 0.05) in serum and all the studied subcellular fractions and the decrease was stronger in l-NAME-treated rats. Our data suggest that microsomes followed by lysosomal + mitochondrial are the fractions most susceptible to oxidative damage in AP. Endogenous NO plays a protective role against oxidative damage to subcellular fractions.
Collapse
Affiliation(s)
- Carmen Sánchez-Bernal
- Department of Molecular Biochemistry and Biology, Edificio Departamental, University of Salamanca, Salamanca. Spain
| | | | | | | | | | | | | |
Collapse
|
902
|
Goto S, Takahashi R, Nakamoto H. Aging and Oxidized Proteins: Generation and Degradation. J Clin Biochem Nutr 2004. [DOI: 10.3164/jcbn.35.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sataro Goto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University
| | - Ryoya Takahashi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University
| | - Hideko Nakamoto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University
| |
Collapse
|
903
|
Schneider Oliveira M, Flávia Furian A, Freire Royes LF, Rechia Fighera M, de Carvalho Myskiw J, Gindri Fiorenza N, Mello CF. Ascorbate modulates pentylenetetrazol-induced convulsions biphasically. Neuroscience 2004; 128:721-8. [PMID: 15464280 DOI: 10.1016/j.neuroscience.2004.07.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2004] [Indexed: 10/26/2022]
Abstract
Ascorbate is an antioxidant vitamin that is found in high concentrations in the brain which seems to have neuroprotective properties in some experimental models of excitotoxic neurological disorders, including convulsive behavior and reactive species-related damage. In this study we tested whether ascorbate (30, 100 or 300 mg/kg, i.p.) protects against the convulsions, protein carbonylation and inhibition of Na(+),K(+)-ATPase activity induced by pentylenetetrazol (PTZ; 1.8 micromol/striatum), a classical convulsant agent that has been fairly used for the study of epilepsy and screening of new compounds with antiepileptic activity. The intrastriatal injection of PTZ caused convulsive behavior in a dose-dependent manner and an increase in the total protein carbonyl content of the injected striatum. However, duration of PTZ-induced convulsive episodes did not correlate with protein carbonyl content of the injected striatum. Ascorbate, at high doses (300 mg/kg), protected against PTZ-induced convulsions, protein carbonylation and inhibition of Na(+),K(+)-ATPase activity in the rat striatum, further suggesting a anticonvulsant and neuroprotective role for this vitamin. Conversely, intermediate doses of ascorbate (100 mg/kg) potentiated the duration of the convulsive episodes, but had no additive effects on protein carbonylation or Na(+),K(+)-ATPase activity inhibition induced by PTZ. Low doses of ascorbate (30 mg/kg) prevented PTZ-induced increase of total striatal carbonyl protein content, but did not alter PTZ-induced convulsions and Na(+),K(+)-ATPase activity inhibition. Collectively, these data indicate that the anticonvulsant activity of ascorbate is not related to its antioxidant action and support a dual role for this compound as a neuroprotective agent, since while it protects against PTZ-induced cellular oxidative damage, it has a biphasic effect on PTZ-induced convulsions.
Collapse
Affiliation(s)
- M Schneider Oliveira
- Department of Physiology, Center of Health Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
904
|
Vargas F, Rivas C, Díaz Y, Fuentes A. Photodegradation pathways and the in vitro phototoxicity of pyrazinamide, a phototoxic antitubercular drug. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2003; 72:87-94. [PMID: 14644570 DOI: 10.1016/j.jphotobiol.2003.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The phototoxic antitubercular drug pyrazinamide (1) is photolabile under irradiation with UV-A light as well as with a N2 laser (at 337 nm) in aerobic conditions. Irradiation in methanolic and in aqueous solutions of 1 produces four and three photoproducts, respectively. Their formation involves primary alpha-cleavage between the excited carbonyl of the amido group and the aromatic ring followed by hydrogen abstraction and dimerization. Pyrazinamide was able to cause photohemolysis in human erythrocytes and peroxidation of linoleic acid. Inhibition of both processes on addition of reduced glutathione (GSH) or ascorbic acid suggests the involvement of radicals. The absence of inhibition of the photohemolysis and lipid peroxidation processes in the presence of sodium azide (NaN3), or irradiation under argon, and the absence of singlet oxygen during the photolysis confirmed with 2,5-dimethylfuran rules out the possibility of participation of 1O2 in this process. Glutathione depletion was also observed. A radical intermediate was evidenced by thiobarbituric acid that was used as a radical probe, as well as by the dimerization of cysteine. No photohemolysis was detected in presence of the isolated photoproduct. We have also determined the relative efficiencies for the formation of single strand breaks after the irradiation of pBR322 DNA and pyrazinamide, which was also reduced in the presence of GSH.
Collapse
Affiliation(s)
- Franklin Vargas
- Laboratorio de Fotoquímica, Centro de Química, Instituto Venezolano de Investigaciones Científicas I.V.I.C., Apartado 21827, Caracas 1020-A, Venezuela.
| | | | | | | |
Collapse
|
905
|
England K, O'Driscoll C, Cotter TG. Carbonylation of glycolytic proteins is a key response to drug-induced oxidative stress and apoptosis. Cell Death Differ 2003; 11:252-60. [PMID: 14631408 DOI: 10.1038/sj.cdd.4401338] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent work has highlighted the importance of protein post-translational modifications such as phosphorylation (enzymatic) and nitrosylation (nonenzymatic) in the early stages of apoptosis. In this study, we have investigated the levels of protein carbonylation, a nonenzymatic protein modification that occurs in conditions of cellular oxidative stress, during etopside-induced apoptosis of HL60 cells. Within 1 h of VP16 treatment, a number of proteins underwent carbonylation due to oxidative stress. This was inhibited by the antioxidant N-acetyl-L-cysteine. Among the proteins found to be carbonylated were glycolytic enzymes. Subsequently, we found that the rate of glycolysis was significantly reduced, probably due to a carbonylation mediated reduction in enzymatic activity of glycolytic enzymes. Our work demonstrates that protein carbonylation can be rapidly induced through cytotoxic drug treatment and may specifically inhibit the glycolytic pathway. Given the importance of glycolysis as a source of cellular ATP, this has severe implications for cell function.
Collapse
Affiliation(s)
- K England
- Tumour Biology Laboratory, Biosciences Institute, Department of Biochemistry, University College Cork, Cork, Republic of Ireland
| | | | | |
Collapse
|
906
|
Stephanson CJ, Flanagan GP. Antioxidant capacity of silica hydride: a combinational photosensitization and fluorescence detection assay. Free Radic Biol Med 2003; 35:1129-37. [PMID: 14572615 DOI: 10.1016/s0891-5849(03)00495-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Utilizing a novel combinational technique incorporating spectrafluorometry and photosensitization, this analysis determined cell viability and cytotoxicity through the introduction of reactive oxygen species and measurement of plasma membrane integrity. Chinese hamster ovary and mouse hybridoma cells were treated with silica hydride after being photosensitized with singlet oxygen, hydroxyl/superoxide, and hydroxyl reactive oxygen species through the use of rose Bengal diacetate, malachite green, and N,N'-bis(2-hydroperoxy-2-methoxyethyl)-1,4,5,8-naphthaldiimide, respectively. The analysis resulted in an easy and effective method for quantifying reactive oxygen species reduction and characterized the radical reduction efficacy of silica hydride at 97% (+/- 0.68%, sigma = 0.84) against singlet oxygen species and over 87% (+/- 0.56%, sigma = 0.70) for the combination of hydroxyl and superoxide reactive species, and 98% (+/- 0.37%, sigma = 0.47) effective for hydroxyl radical species. Nontreated photosensitized controls showed less than 1% viability under the same conditions.
Collapse
|
907
|
Identification of an endogenous inhibitor of arachidonate metabolism in human epidermoid carcinoma A431 cells. J Biomed Sci 2003. [DOI: 10.1007/bf02256310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
908
|
Kirkham PA, Spooner G, Ffoulkes-Jones C, Calvez R. Cigarette smoke triggers macrophage adhesion and activation: role of lipid peroxidation products and scavenger receptor. Free Radic Biol Med 2003; 35:697-710. [PMID: 14583334 DOI: 10.1016/s0891-5849(03)00390-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pulmonary emphysema in chronic obstructive pulmonary disease (COPD) is characterized by the destruction of the alveolar walls leading to permanent enlargement of distal respiratory air spaces. A major causal factor is cigarette smoking, which produces conditions of chronic oxidative stress within the lungs. At a cellular level, increased macrophage accumulation and retention within the alveolar interstitial spaces is pivotal to the development of emphysema. To date it has been unclear as to the underlying mechanisms relating chronic oxidative stress to macrophage accumulation and retention. Our study was initiated to ascertain the role of modification of extracellular matrix proteins with cigarette smoke and products of lipid peroxidation on macrophage adhesion and activation. Increased numbers of macrophages were seen adhering to cigarette smoke-modified collagen IV as compared to unmodified collagen, where little or no adherent macrophages were observed. Similar observations were made when collagen was modified with either acrolein or 4-hydroxy-2-nonenal. Adhesion could be blocked with either fucoidan or a monoclonal antibody against the Type A macrophage scavenger receptor. Also, modified collagen triggered both oxidative burst and MCP-1 release in macrophages. These results, therefore, highlight a potential mechanism by which oxidative stress through the production of reactive carbonyls promotes macrophage accumulation, retention, and activation, independently of other proinflammatory stimuli. The implications of this for the development of emphysema in COPD are discussed.
Collapse
|
909
|
Ozbey N, Telci A, Cakatay U, Yurci A, Molvalilar S. Determination of oxidative protein and lipid damage in adult hypopituitary patients with GH deficiency. J Endocrinol Invest 2003; 26:1001-7. [PMID: 14759074 DOI: 10.1007/bf03348199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this study is to determine oxidative protein and lipid damage in adult hypopituitary GH-deficient patients. Eighteen hypopituitary GH-deficient--otherwise healthy-adults on conventional replacement therapy other than GH (9 male, 9 female, age 41.8 +/- 16.4 yr) and 18 healthy subjects (6 male, 12 female, age 40.3 +/- 16.2 yr) participated in the study. Plasma products of oxidative protein damage [protein carbonyl (PCO) and nitrotyrozine (NT)], plasma oxidized LDL (oxLDL), plasma product of oxidative lipid damage [lipid hydroperoxide (LHP)] and antioxidant status of the plasma [total thiol (T-SH)] were measured. Body fat percentage, total and LDL-cholesterol concentrations were significantly higher in the hypopituitary group. Plasma PCO, NT, LHP and T-SH concentrations did not differ significantly between patients and controls. OxLDL concentration was significantly higher in the hypopituitary patients (62.4 +/- 17.8 vs 43.1 +/- 11.3 U/l, p = 0.001). In the patients, oxLDL correlated significantly with the duration of hypopituitarism (r = 0.6323, p = 0.01). In the controls, oxLDL correlated significantly with blood pressure, total and VLDL-cholesterol concentrations. Increased oxLDL concentration may indicate increased oxidative stress within the vascular compartment and may contribute to the proatherogenic state in GH-deficient hypopituitary patients independent from conventional risk factors.
Collapse
Affiliation(s)
- N Ozbey
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medicine, Istanbul University, Capa, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
910
|
Ahmed S, Adamidis A, Jan LC, Gibbons N, Mattana J. Dexamethasone attenuates oxidation of extracellular matrix proteins by human monocytes. Exp Mol Pathol 2003; 75:137-43. [PMID: 14516775 DOI: 10.1016/s0014-4800(03)00070-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In response to infection or in immune complex-mediated diseases, inflammatory cells may oxidatively damage extracellular matrix (ECM) proteins. In this study we evaluated whether human monocytes could oxidize ECM and whether this could be modulated by exposure to LPS, IgG complexes, and dexamethasone (DEX). Wells in tissue culture plates were coated with the ECM preparation Matrigel. Porous inserts with or without the human monocyte cell line THP-1 were placed into ECM-containing wells and cells were exposed to control conditions or to LPS (10 ng/ml), IgG complexes (200 and 500 microg/ml), or DEX (10(-7) and 10(-6) M). ECM was then subjected to Western blot analysis using an antibody to oxidized protein. In addition, Western blot analysis was carried out on DEX-treated cells to evaluate expression of the NADPH oxidase components p67-phox and gp91-phox. THP-1 cells enhanced ECM oxidation and this effect was augmented by LPS and by IgG aggregates. Preincubation of cells with DEX attenuated ECM oxidation and was also associated with decreased expression of p67-phox and gp91-phox. These findings suggest that human monocytes can oxidize ECM proteins and that this may be modulated by IgG complexes and LPS. Dexamethasone appears to attenuate ECM oxidation and a better understanding of this mechanism might allow for interventions to minimize oxidative damage to ECM proteins by monocytes in infectious and inflammatory states.
Collapse
Affiliation(s)
- Shahid Ahmed
- Department of Medicine, Long Island Jewish Medical Center, New Hyde Park, NY 11040, USA
| | | | | | | | | |
Collapse
|
911
|
Zergeroglu MA, McKenzie MJ, Shanely RA, Van Gammeren D, DeRuisseau KC, Powers SK. Mechanical ventilation-induced oxidative stress in the diaphragm. J Appl Physiol (1985) 2003; 95:1116-24. [PMID: 12777408 DOI: 10.1152/japplphysiol.00824.2002] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prolonged mechanical ventilation (MV) results in oxidative damage in the diaphragm; however, it is unclear whether this MV-induced oxidative injury occurs rapidly or develops slowly over time. Furthermore, it is unknown whether both soluble (cytosolic) and insoluble (myofibrillar) proteins are equally susceptible to oxidation during MV. These experiments tested two hypotheses: 1). MV-induced oxidative injury in the diaphragm occurs within the first 6 h after the initiation of MV; and 2). MV is associated with oxidative modification of both soluble and insoluble proteins. Adult Sprague-Dawley rats were randomly divided into one of seven experimental groups: 1) control (n = 8); 2) 3-h MV (n = 8); 3). 6-h MV (n = 6); 4). 18-h MV (n = 8); 5). 3-h anesthesia-spontaneous breathing (n = 8); 6). 6-h anesthesia-spontaneous breathing (n = 6); and 7). 18-h anesthesia-spontaneous breathing (n = 8). Markers of oxidative injury in the diaphragm included the measurement of reactive (protein) carbonyl derivatives (RCD) and total lipid hydroperoxides. Three hours of MV did not result in oxidative injury in the diaphragm. In contrast, both 6 and 18 h of MV promoted oxidative injury in the diaphragm, as indicated by increases in both protein RCD and lipid hydroperoxides. Electrophoretic separation of soluble and insoluble proteins indicated that the MV-induced accumulation of RCD was limited to insoluble proteins with molecular masses of approximately 200, 120, 80, and 40 kDa. We conclude that MV results in a rapid onset of oxidative injury in the diaphragm and that insoluble proteins are primary targets of MV-induced protein oxidation.
Collapse
Affiliation(s)
- Murat A Zergeroglu
- Department of Execise and Sport Sciences, Center for Exercise Science, University of Florida, Gainesville, FL 32601, USA
| | | | | | | | | | | |
Collapse
|
912
|
van der Vlies D, Woudenberg J, Post JA. Protein oxidation in aging: endoplasmic reticulum as a target. Amino Acids 2003; 25:397-407. [PMID: 14661099 DOI: 10.1007/s00726-003-0025-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2002] [Revised: 01/01/2003] [Accepted: 05/08/2003] [Indexed: 10/26/2022]
Abstract
Oxidatively modified proteins have been shown to correlate with the age of an organism or its tissues. An increase in tissue-susceptibility to experimentally induced protein oxidation not only depends on tissue type and age, but also on the maximum lifespan potential of the species. A general, although tissue dependent, decline in anti-oxidative defenses during aging may very well be responsible for this difference in vulnerability. In addition, the level of protein modifications also depends on the nature and the subcellular localization of the proteins involved. Damage to the endoplasmic reticulum (ER), and its subsequent impaired functionality may be involved in the process of aging. This is suggested by; (1) an upregulation of ER stress-response chaperones, (2) a preferential oxidation of ER-resident proteins and, (3) a disturbance of calcium homeostasis. Therefore, this review will focus on the putative involvement of the oxidized endoplasmic reticulum in the process of aging.
Collapse
Affiliation(s)
- D van der Vlies
- Erasmus MC, Department of Internal Oncology - Josephina Nefkens Instituut, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
913
|
Abstract
Metabolic processes and environmental conditions cause the constant formation of oxidizing species over the lifetime of cells and organisms. This leads to a continuous oxidation of intracellular components, including lipids, DNA and proteins. During the extensively studied process of lipid peroxidation, several reactive low-molecular weight products are formed, including reactive aldehydes as 4-hydroxynonenal (HNE). These aldehydic lipid peroxidation products in turn are able to modify proteins. The degradation of oxidized and oxidatively modified proteins is an essential part of the oxidant defenses of cells. The major proteolytic system responsible for the removal of oxidized cytosolic and nuclear proteins is the proteasomal system. The proteasomal system by itself is a multicomponent system responsible for the degradation of the majority of intracellular proteins. It has been shown that some, mildly cross-linked, HNE-modified proteins are preferentially degraded by the proteasome, but extensive modification with this cross-linking aldehyde leads to the formation of protein aggregates, that can actually inhibit the proteasome. This review summarizes our knowledge of the interactions between lipid peroxidation products, proteins, and the proteasomal system.
Collapse
Affiliation(s)
- Tilman Grune
- Neuroscience Research Center, Medical Faculty (Charité), Humboldt University, Schumannstrasse 20/21, 10117 Berlin, Germany.
| | | |
Collapse
|
914
|
Niwa Y, Sumi H, Kawahira K, Terashima T, Nakamura T, Akamatsu H. Protein oxidative damage in the stratum corneum: Evidence for a link between environmental oxidants and the changing prevalence and nature of atopic dermatitis in Japan. Br J Dermatol 2003; 149:248-54. [PMID: 12932228 DOI: 10.1046/j.1365-2133.2003.05417.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The incidence of atopic dermatitis (AD) has increased in Japan, along with the number of patients with severe and treatment-resistant AD in urban and industrial areas. We hypothesize that these changes could be due to increased reactive oxygen species (ROS) generated from environmental pollution and solar radiation. OBJECTIVES To demonstrate whether direct oxidative protein damage of the stratum corneum of the biopsied skin from AD patients is increased when compared with controls. PATIENTS AND METHODS Carbonyl moieties in skin biopsies from 75 patients with AD were assessed using both spectrophotometric and immunohistochemical detection of the formation of dinitrophenylhydrazone (DNP) from dinitrophenylhydrazine (DNPH). These were compared with diseased and normal controls. Lipid peroxidation was also assessed by staining with antibody to 4-hydroxy-2-nonenal (4-HNE), an aldehyde product of oxidized omega-6-fatty acids. In addition, the activity of superoxide dismutase (SOD), an effective scavenger of ROS, was assessed and compared with controls. RESULTS The level of protein carbonyl moieties in patients' skin was elevated and correlated directly with the severity of the disease. In contrast, DNP formation was not significantly increased in diseased controls, when compared with healthy volunteers, and no statistical significance was found between the two control groups. SOD activity was increased except for those with extra-severe disease. Positive staining with anti-DNP antibody and anti-4-HNE antibody were found in the most superficial layers of the stratum corneum. CONCLUSIONS This study has found an association between AD severity and markers of ROS-associated damage, adding weight to the hypothesis that environmentally generated ROS may induce oxidative protein damage in the stratum corneum, leading to the disruption of barrier function and exacerbation of AD.
Collapse
Affiliation(s)
- Y Niwa
- Niwa Institute for Immunology and Tosashimizu Hospital, 4-4 Asahimachi, Tosashimizu, Kochi 787-0303, Japan.
| | | | | | | | | | | |
Collapse
|
915
|
Shibata E, Nanri H, Ejima K, Araki M, Fukuda J, Yoshimura K, Toki N, Ikeda M, Kashimura M. Enhancement of mitochondrial oxidative stress and up-regulation of antioxidant protein peroxiredoxin III/SP-22 in the mitochondria of human pre-eclamptic placentae. Placenta 2003; 24:698-705. [PMID: 12828928 DOI: 10.1016/s0143-4004(03)00083-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A growing body of evidence indicates that the pathogenesis of pre-eclampsia is closely associated with oxidative stress occurring in mitochondria. In the present study, we evaluated the degree of mitochondrial lipid peroxidation by assessing the accumulation of 4-hydroxy-2-nonenal (HNE)-modified proteins and examined the expression of mitochondrial antioxidant protein peroxiredoxin III/SP-22 in normal and pre-eclamptic human placentae. The accumulation of HNE-modified proteins increased to a greater extent in both the mitochondria and cytosol of pre-eclamptic placentae than in those of normal placentae. Moreover, the accumulation of HNE-modified proteins was much more evident in the mitochondria than in the cytosol, indicating that lipid peroxidation occurred mainly in the mitochondria of pre-eclamptic placentae. The mRNA expression of peroxiredoxin III/SP-22 was increased about 2-fold in pre-eclamptic placentae compared to normal placentae. The protein levels of peroxiredoxin III/SP-22 were approximately 4-fold higher in pre-eclamptic placentae than in normal placentae. Immunohistochemistry of placental tissues showed that the levels of peroxiredoxin III/SP-22 protein were increased in the trophoblasts of floating villi, stromal cells of stem villi, and decidual cells in pre-eclamptic placentae. These results indicate that peroxiredoxin III/SP-22 plays a crucial role in the protection of placental function from oxidative stress occurring in mitochondria of pre-eclamptic placentae.
Collapse
Affiliation(s)
- E Shibata
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, 807-8555, Kitakyushu, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
916
|
Winterbourn CC, Kettle AJ. Radical-radical reactions of superoxide: a potential route to toxicity. Biochem Biophys Res Commun 2003; 305:729-36. [PMID: 12763053 DOI: 10.1016/s0006-291x(03)00810-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Superoxide reacts with many radicals, such as phenoxyl radicals, at near diffusion-controlled rates. These reactions are usually considered to be repair processes and have received little biological attention. However, addition of superoxide to give hydroperoxides and secondary oxidation products can also occur. The relative contributions of addition and repair vary depending on the properties of the phenol. With tyrosine, addition to give tyrosine hydroperoxide predominates, but in peptides the efficiency of hydroperoxide formation depends on the proximity of free amine groups. Radicals from other phenolic compounds, such as alpha-tocopherol and serotonin, also undergo addition reactions with superoxide. Physiologically, these reactions are likely to be more significant than dimerization when both radicals are generated together. They warrant attention as potential contributors to superoxide toxicity.
Collapse
Affiliation(s)
- Christine C Winterbourn
- Free Radical Research, Department of Pathology, Christchurch School of Medicine and Health Sciences, P.O. Box 4345, Christchurch, New Zealand.
| | | |
Collapse
|
917
|
Grune T, Merker K, Sandig G, Davies KJA. Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 2003; 305:709-18. [PMID: 12763051 DOI: 10.1016/s0006-291x(03)00809-x] [Citation(s) in RCA: 339] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oxidative stress in mammalian cells is an inevitable consequence of their aerobic metabolism. Oxidants produce modifications to proteins leading to loss of function (or gain of undesirable function) and very often to an enhanced degradation of the oxidized proteins. For several years it has been known that the proteasome is involved in the degradation of oxidized proteins. This review summarizes our knowledge about the recognition of oxidized protein substrates by the proteasome in in vitro systems and its applicability to living cells. The majority of studies in the field agree that the degradation of mildly oxidized proteins is an important function of the proteasomal system. The major recognition motif of the substrates seems to be hydrophobic surface patches that are recognized by the 20S 'core' proteasome. Such hydrophobic surface patches are formed by partial unfolding and exposure of hydrophobic amino acid residues during oxidation. Oxidized proteins appear to be relatively poor substrates for ubiquitination, and the ubiquitination system does not seem to be involved in the recognition or targeting of oxidized proteins. Heavily oxidized proteins appear to first aggregate (new hydrophobic and ionic bonds) and then to form covalent cross-links that make them highly resistant to proteolysis. The inability to degrade extensively oxidized proteins may contribute to the accumulation of protein aggregates during diseases and the aging process.
Collapse
Affiliation(s)
- Tilman Grune
- Neuroscience Research Center, Medical Faculty (Charité) Humboldt University Berlin, Schumannstr. 20/21, 10117 Berlin, Germany
| | | | | | | |
Collapse
|
918
|
Khan FH, Sen T, Chakrabarti S. Dopamine oxidation products inhibit Na+, K+-ATPase activity in crude synaptosomal-mitochondrial fraction from rat brain. Free Radic Res 2003; 37:597-601. [PMID: 12868486 DOI: 10.1080/1071576031000115651] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The diverse damaging effects of dopamine (DA) oxidation products on brain subcellular components including mitochondrial electron transport chain have been implicated in dopaminergic neuronal death in Parkinson's disease. It has been shown in this study that DA (50-200 microM) causes dose-dependent inhibition of Na+, K+-ATPase activity of rat brain crude synaptosomal-mitochondrial fraction during in vitro incubation up to 2 h. The enzyme inactivation is prevented by catalase and the metal-chelator (diethylenetriamine penta-acetic acid) but not by superoxide dismutase or hydroxyl-radical scavengers like mannitol and dimethylsulphoxide (DMSO). Further, reduced glutathione and cysteine, markedly prevent DA-mediated inactivation of Na+, K+-ATPase. Under similar conditions of incubation, DA (200 microM) leads to the formation of quinoprotein adducts (protein-cysteinyl catechol) with synaptosomal-mitochondrial proteins and the phenomenon is also prevented by glutathione (5 mM) or cysteine (5 mM). The available data imply that the inactivation of Na+, K+-ATPase in this system involves both H2O2 and metal ions. The reactive quinones by forming adducts with protein thiols also probably contribute to the process, since reduced glutathione and cysteine which scavenge quinones from the system protect Na+, K+-ATPase from DA-mediated damage. The inactivation of neuronal Na+, K+-ATPase by DA may give rise to various toxic sequelae with potential implications for dopaminergic cell death in Parkinson's disease.
Collapse
Affiliation(s)
- Firoj Hossain Khan
- Department of Biochemistry, University College of Medicine, Calcutta University, 244B, A.J.C. Bose Road, Calcutta 020, India
| | | | | |
Collapse
|
919
|
Abstract
Protein aggregation is a shared feature of many human neurodegenerative diseases and appears to be an inevitable consequence of excessive accumulation of misfolded proteins. Recent studies suggest that accumulation of fibrillar alpha-synuclein aggregates is associated with Parkinson's disease and other Lewy body diseases. Furthermore, the missense mutations in alpha-synuclein that are responsible for some early-onset familial types of the disease promote the aggregation process of this protein. Therefore, the mechanism underlying the cellular alpha-synuclein aggregation is of great importance in understanding the pathogenic process of these diseases. This review summarizes recent advances in our understanding of the mechanisms underlying alpha-synuclein aggregation and how the mitochondrial dysfunction plays a role in this process. Protein misfolding and aggregation in vivo can be suppressed and promoted by several factors, such as molecular chaperones, protein degradation systems, and free radicals. Many of these factors are under the control of normal mitochondrial function, prompting the speculation that mitochondrial dysfunction might cause the accumulation of protein aggregates. Recent studies indeed show that mitochondrial defects can lead to the aggregation of alpha-synuclein. In addition, potentially toxic effects of alpha-synuclein have been linked to the aggregated forms rather than the monomers, both in vitro and in cultured cells. Therefore, it is postulated that aggregation of alpha-synuclein might be one of many possible links that connect mitochondrial dysfunction to neurodegeneration.
Collapse
|
920
|
Culard F, Gervais A, de Vuyst G, Spotheim-Maurizot M, Charlier M. Response of a DNA-binding protein to radiation-induced oxidative stress. J Mol Biol 2003; 328:1185-95. [PMID: 12729751 DOI: 10.1016/s0022-2836(03)00361-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The DNA-binding protein MC1 is a chromosomal protein extracted from the archaebacterium Methanosarcina sp. CHTI55. It binds any DNA, and exhibits an enhanced affinity for some short sequences and structures (circles, cruciform DNA). Moreover, the protein bends DNA strongly at the binding site. MC1 was submitted to oxidative stress through gamma-ray irradiation. In our experimental conditions, damage is essentially due to hydroxyl radicals issued from water radiolysis. Upon irradiation, the regular complex between MC1 and DNA disappears, while a new complex appears. In the new complex, the protein loses its ability to recognise preferential sequences and DNA circles, and bends DNA less strongly than in the regular one. The new complex disappears and the protein becomes totally inactivated by high doses.A model has been proposed to explain these experimental results. Two targets, R(1) and R(2), are concomitantly destroyed in the protein, with different kinetics. R(2) oxidation has no effect on the regular binding, whereas R(1) oxidation modifies the functioning of MC1: loss of preferential site and structure recognition, weaker bending. The destruction of both R(1) and R(2) targets leads to a total inactivation of the protein. This model accounts for the data obtained by titrations of DNA with irradiated proteins. When the protein is irradiated in the complex with DNA, bound DNA protects its binding site on the protein very efficiently. The highly oxidisable tryptophan and methionine could be the amino acid residues implicated in the inactivation process.
Collapse
Affiliation(s)
- Françoise Culard
- Centre de biophysique moléculaire, CNRS, rue Charles-Sadron, F-45071 Orléans Cedex 2, France.
| | | | | | | | | |
Collapse
|
921
|
Domingues MRM, Domingues P, Reis A, Fonseca C, Amado FML, Ferrer-Correia AJV. Identification of oxidation products and free radicals of tryptophan by mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:406-416. [PMID: 12686488 DOI: 10.1016/s1044-0305(03)00127-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
New oxidation products and free radicals derived from tryptophan (Trp) oxidation under Fenton reaction conditions were identified using mass spectrometry. After the oxidation of tryptophan using hydrogen peroxide and iron (II) system (Fenton reaction), mono- and dihydoxy tryptophans and N-formylkynurenine were identified using electrospray mass spectrometry (ES-MS) and ES-MS/MS. Besides these products, new products resulting from the reaction of tryptophan and oxidized tryptophan and 3-methyl indole derivatives were also identified. The 3-methyl indole derivatives resulted, most probably, from the oxidation process and not from in-source processes. A dimer formed by cross-linking between two Trp radicals (Trp-Trp), similar to the previously described tyrosine dimer was observed, as well as the corresponding monohydroxy-dimer (Trp-Trp-OH). Tandem mass spectrometry was used to identify the structures of these new oxidation products. Free radicals derived from tryptophan oxidation under Fenton reaction were detected using as spin trap the DMPO. The free radical species originated during the oxidation reaction formed stable adducts with the spin trap, and these adducts were identified by ES-MS. New adducts of oxidized tryptophan radicals, namely monohydroxy-tryptophan and dihydroxy-Trp dimer radicals, with one and two DMPO spin trap molecules where identified. Tandem mass spectrometry was used to confirm the proposed structure of the observed adducts.
Collapse
|
922
|
Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 2003; 329:23-38. [PMID: 12589963 DOI: 10.1016/s0009-8981(03)00003-2] [Citation(s) in RCA: 1629] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress, an imbalance toward the pro-oxidant side of the pro-oxidant/antioxidant homeostasis, occurs in several human diseases. Among these diseases are those in which high levels of protein carbonyl (CO) groups have been observed, including Alzheimer's disease (AD), rheumatoid arthritis, diabetes, sepsis, chronic renal failure, and respiratory distress syndrome. What relationships might be among high level of protein CO groups, oxidative stress, and diseases remain uncertain.The usage of protein CO groups as biomarkers of oxidative stress has some advantages in comparison with the measurement of other oxidation products because of the relative early formation and the relative stability of carbonylated proteins. Most of the assays for detection of protein CO groups involve derivatisation of the carbonyl group with 2,4-dinitrophenylhydrazine (DNPH), which leads to formation of a stable dinitrophenyl (DNP) hydrazone product. This then can be detected by various means, such as spectrophotometric assay, enzyme-linked immunosorbent assay (ELISA), and one-dimensional or two-dimensional electrophoresis followed by Western blot immunoassay. At present, the measurement of protein CO groups after their derivatisation with DNPH is the most widely utilized measure of protein oxidation.
Collapse
|
923
|
Marnett LJ, Riggins JN, West JD. Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J Clin Invest 2003; 111:583-93. [PMID: 12618510 PMCID: PMC151910 DOI: 10.1172/jci18022] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Lawrence J Marnett
- Department of Biochemistry, Vanderbilt University School of Medicine, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Nashville, Tennessee, USA.
| | | | | |
Collapse
|
924
|
Marnett LJ, Riggins JN, West JD. Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J Clin Invest 2003. [DOI: 10.1172/jci200318022] [Citation(s) in RCA: 320] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
925
|
Sánchez GM, Rodríguez H MA, Giuliani A, Núñez Sellés AJ, Rodríguez NP, León Fernández OS, Re L. Protective effect of Mangifera indica L. extract (Vimang) on the injury associated with hepatic ischaemia reperfusion. Phytother Res 2003; 17:197-201. [PMID: 12672145 DOI: 10.1002/ptr.921] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The effect of Mangifera indica L. extract (Vimang) on treatment of injury associated with hepatic ischaemia/reperfusion was tested. Vimang protects from the oxidative damage induced by oxygen-based free radicals as shown in several in vitro test systems conducted. The ability of Vimang to reduce liver damage was investigated in rats undergoing right-lobe blood fl ow occlusion for 45 min followed by 45 min of reperfusion. The ischaemia/reperfusion model leads to an increase of transaminase (ALT and AST), membrane lipid peroxidation, tissue neutrophil in filtration, DNA fragmentation, loss of protein -SH groups, cytosolic Ca2+ overload and a decrease of catalase activity. Oral administration of Vimang (50, 110 and 250 mg/kg, b.w.) 7 days before reperfusion, reduced transaminase levels and DNA fragmentation in a dose dependent manner (p < 0.05). Vimang also restored the cytosolic Ca2+ levels and inhibited polymorphonuclear migration at a dose of 250 mg/kg b.w., improved the oxidation of total and non protein sulfhydryl groups and prevented modification in catalase activity, uric acid and lipid peroxidation markers (p < 0.05). These data suggest that Vimang could be a useful new natural drug for preventing oxidative damage during hepatic injury associated with free radical generation.
Collapse
Affiliation(s)
- Gregorio Martínez Sánchez
- Centre for Research and Biological Evaluation, Pharmacy Institute, Havana University, San Lazaro y L, Havana 4, Cuba
| | | | | | | | | | | | | |
Collapse
|
926
|
Woods AA, Linton SM, Davies MJ. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques. Biochem J 2003; 370:729-35. [PMID: 12456264 PMCID: PMC1223198 DOI: 10.1042/bj20021710] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2002] [Accepted: 11/28/2002] [Indexed: 12/23/2022]
Abstract
Oxidation is believed to play a role in atherosclerosis. Oxidized lipids, sterols and proteins have been detected in early, intermediate and advanced human lesions at elevated levels. The spectrum of oxidized side-chain products detected on proteins from homogenates of advanced human lesions has been interpreted in terms of the occurrence of two oxidative mechanisms, one involving oxygen-derived radicals catalysed by trace transition metal ions, and a second involving chlorinating species (HOCl or Cl2), generated by the haem enzyme myeloperoxidase (MPO). As MPO is released extracellularly by activated monocytes (and possibly macrophages) and is a highly basic protein, it would be expected to associate with polyanions such as the glycosaminoglycans of the extracellular matrix, and might result in damage being localized at such sites. In this study proteins extracted from extracellular matrix material obtained from advanced human atherosclerotic lesions are shown to contain elevated levels of oxidized amino acids [3,4-dihydroxyphenylalanine (DOPA), di-tyrosine, 2-hydroxyphenylalanine ( o-Tyr)] when compared with healthy (human and pig) arterial tissue. These matrix-derived materials account for 83-96% of the total oxidized protein side-chain products detected in these plaques. Oxidation of matrix components extracted from healthy artery tissue, and model proteins, with reagent HOCl is shown to give rise to a similar pattern of products to those detected in advanced human lesions. The detection of elevated levels of DOPA and o-Tyr, which have been previously attributed to the occurrence of oxygen-radical-mediated reactions, by HOCl treatment, suggests an alternative route to the formation of these materials in plaques. This is believed to involve the formation and subsequent decomposition of protein chloramines.
Collapse
Affiliation(s)
- Alan A Woods
- The Heart Research Institute, 145 Missenden Road, Camperdown, Sydney, New South Wales 2050, Australia
| | | | | |
Collapse
|
927
|
Wyszko E, Barciszewska MZ, Markiewicz M, Szymański M, Markiewicz WT, Clark BFC, Barciszewski J. "Action-at-a distance" of a new DNA oxidative damage product 6-furfuryl-adenine (kinetin) on template properties of modified DNA. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1625:239-45. [PMID: 12591610 DOI: 10.1016/s0167-4781(02)00622-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
N(6)-furfuryladenine (kinetin, K) was shown to have cytokinin activity and antiageing effects. It also appears to protect DNA against oxidative damage mediated by the Fenton reaction. Kinetin was identified as a natural component of DNA in plant extract, calf thymus DNA, fresh DNA preparations from human cell culture, as well as in human urine. A proposed mechanism of kinetin synthesis includes furfural, the oxidative damage product of a 2-deoxyribose moiety of DNA, which reacts with an adenine residue to form N(6)-furfuryladenine at DNA level. The identification of kinetin in plant cell extracts, as well as human urine, suggests its excision from DNA by repair mechanisms. Since such a bulky modification as kinetin induces conformational changes of DNA, this could lead to mutations. Therefore, it was interesting to analyze an effect of kinetin on coding properties of DNA. Chemically synthesized oligodeoxynucleotide (20-mer) containing kinetin AAAACTGCCGTCCTGAKGAT was used as a primer. It was elongated in a polymerase chain reaction (PCR) on a template plasmid pEW1 harboring a 210-bp fragment of DNA derived from the 5' end of HIV mRNA. The PCR product of that length containing kinetin in position 17 from the 5' end was isolated and sequenced. Interestingly, DNA polymerase correctly incorporates thymine opposite of kinetin (an adenine derivative) on the complementary strand, but the misincorporations occur in a vicinity of the modified base.
Collapse
Affiliation(s)
- Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | | | | | | | | | | | | |
Collapse
|
928
|
Klotz LO, Kröncke KD, Sies H. Singlet oxygen-induced signaling effects in mammalian cells. Photochem Photobiol Sci 2003; 2:88-94. [PMID: 12664966 DOI: 10.1039/b210750c] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Singlet oxygen, an electronically excited form of molecular oxygen, may be generated photochemically or in dark reactions in vivo. Singlet oxygen is not only toxic to cells and impairs signaling events but is also capable of eliciting a cellular stress response. The signaling processes initiated in this response include the activation of mitogen-activated protein kinases. Two possible activation mechanisms of signaling pathways by singlet oxygen are the generation of positive regulators as well as the inactivation of negative regulators.
Collapse
Affiliation(s)
- Lars-Oliver Klotz
- Institut für Physiologische Chemie I, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
929
|
Cakatay U, Telci A, Kayali R, Tekeli F, Akçay T, Sivas A. Relation of aging with oxidative protein damage parameters in the rat skeletal muscle. Clin Biochem 2003; 36:51-5. [PMID: 12554060 DOI: 10.1016/s0009-9120(02)00407-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES An increase in oxidative stress may contribute to the development of oxidative protein damage in the aging rat skeletal muscle. Our aim was to reveal protein carbonyl (PCO), advanced oxidation protein products (AOPP), a novel marker of oxidative stress, and protein thiol (P-SH) levels as markers of protein oxidation, as well as lipid hydroperoxide (LHP) levels as a marker of lipid peroxidation, and relation of nitrotyrosine (NT) levels with these markers in skeletal muscle tissue of young, adult, and old male Wistar rats. DESIGN AND METHODS In the present study, we investigated the relation between aging and oxidative protein damage parameters such as PCO, NT, AOPP, and P-SH, as well as oxidative stress parameters such as total thiol, nonprotein thiol, and LHP in the skeletal muscle tissue of young, adult, and old Wistar rats. RESULTS PCO and NT levels of old rats were significantly increased compared with those of young and adult rats. Skeletal muscle AOPP levels were significantly increased in old rats compared with those of adult rats. P-SH levels were significantly decreased in old rats compared with those of young rats. CONCLUSIONS The finding that the increase in PCO levels of young vs. old group was more significant than that of adult vs. old group may suggest that PCO formation is an early specific marker of aging process in skeletal muscle. In addition, increased levels of nitrotyrosine in the skeletal muscle of the old rat group may be a novel specific marker of oxidative protein damage in the aging muscle. The absence of correlation between oxidative protein damage markers mentioned above and LHP levels may indicate that protein oxidation and lipid peroxidation in the aging rat skeletal tissue are two distinct mechanisms.
Collapse
Affiliation(s)
- Ufuk Cakatay
- Istanbul University, Istanbul Faculty of Medicine, Central Laboratory of Biochemistry, Capa 34390, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
930
|
Stephanson CJ, Stephanson AM, Flanagan GP. Antioxidant capability and efficacy of Mega-H silica hydride, an antioxidant dietary supplement, by in vitro cellular analysis using photosensitization and fluorescence detection. J Med Food 2003; 5:9-16. [PMID: 12511108 DOI: 10.1089/109662002753723179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Treatment of Chinese hamster ovary and mouse hybridoma cells with Mega-H brand silica hydride, a marketed antioxidant, after photosensitization with singlet oxygen and hydroxyl/superoxide reactive oxygen species through the use of rose bengal diacetate and malachite green resulted in an effective method of reducing free radical activity by more than 96% against singlet oxygen species and more than 86% for hydroxyl and superoxide free radicals with the dosage recommended by the manufacturer. The analysis used a combinational spectrafluorometric technique to determine cell viability and cytotoxicity through the mechanism of intracellular esterase activity and plasma membrane integrity. Photosensitized controls not treated with silica hydride showed less than 1% viability under the same conditions. The reduction of the introduced free radicals and singlet oxygen species and the consequent high levels of cell viability may be the result of effective and efficient antioxidant and radical scavenging properties of silica hydride.
Collapse
Affiliation(s)
- Cory J Stephanson
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | | | |
Collapse
|
931
|
Saarinen MA, Murhammer DW. The response of virally infected insect cells to dissolved oxygen concentration: recombinant protein production and oxidative damage. Biotechnol Bioeng 2003; 81:106-14. [PMID: 12432586 DOI: 10.1002/bit.10460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of dissolved oxygen (DO) concentration on virally infected insect cells were investigated in 3-L bioreactor culture. Specifically, cultures of Spodoptera frugiperda Sf-9 (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5B1-4) were infected with Autographa californica multiple nucleopolyhedrovirus expressing secreted alkaline phosphatase (SEAP). Following infection at a DO concentration of 50% air saturation, the DO concentration was adjusted to a final value of either 190%, 50%, or 10% air saturation. Recombinant SEAP production, cell viability, protein carbonyl content, and thiobarbituric acid reactive substances (TBARS) content were monitored. The increases in protein carbonyl and TBARS contents are taken to be indicators of protein oxidation and lipid oxidation, respectively. DO concentration was found to have no noticeable effect on SEAP production or cell viability decline in the Sf-9 cell line. In the Tn-5B1-4 cell line, cells displayed an increased peak SEAP production rate for 190% air saturation and displayed an increased rate of viability decline at increased DO concentration. Protein carbonyl content showed no significant increase in the Sf-9 cell line by 72 h postinfection (pi) at any DO concentration but showed a twofold increase at 10% and 50% DO concentration and a threefold increase at 190% DO concentration by 72 h pi in Tn-5B1-4 cells. TBARS content was found to increase by approximately 50% in Sf-9 cells and by approximately twofold in Tn-5B1-4 cells by 72 h pi with no clear relationship to DO concentration. It is hypothesized that oxygen uptake changes due to the viral infection process may bear a relation to the observed increases in protein and lipid oxidation and that lipid oxidation may play an important role in the death of virally infected insect cells.
Collapse
Affiliation(s)
- Mark A Saarinen
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
932
|
Abstract
Radical attack on proteins in the presence of O(2) gives protein hydroperoxides in high yields. These peroxides are decomposed by transition metal ions, reducing agents, UV light and heat, with the formation of a range of reactive radicals that are capable of initiating further damage. Evidence has been presented for the formation of alcohols as stable products of peroxide decomposition, and these have been employed as markers of oxidative damage in vivo. The mechanism of formation of these alcohols is unclear, with both radical and nonradical pathways capable of generating these products. In this study we have investigated the reduction of peptide and protein hydroperoxides by THP-1 (human monocyte-like) cells and it is shown that this process is accompanied by radical formation as detected by EPR spin trapping. The radicals detected, which are similar to those detected from metal-ion catalyzed reduction, are generated externally to the cell. In the absence of cells, or with cell-conditioned media or cell lysates, lower concentrations of radicals were detected, indicating that intact cells are required for rapid hydroperoxide decomposition. The rate of radical generation was enhanced by preloading the cells with ascorbate, and this was accompanied by intracellular formation of the ascorbate radical. It is proposed that decomposition of some amino acid and peptide hydroperoxides occurs extracellularly via the involvement of a cell-surface reducing system, such as a trans-plasma membrane electron transport system (TPMET) either directly, or indirectly via redox cycling of trace transition metal ions.
Collapse
|
933
|
|
934
|
Abstract
BACKGROUND Neutrophil oxygen radical production is increased in end-stage renal disease (ESRD) patients and it is further enhanced during dialysis with low-flux cellulosic membranes. This increased oxygen radical production may contribute to the protein and lipid oxidation observed in ESRD patients. We tested the hypothesis that high-flux hemodialysis does not increase oxygen radical production and that it is not associated with protein oxidation. METHODS Neutrophil oxygen radical production was measured during dialysis with high-flux dialyzers containing polysulfone and cellulose triacetate membranes. Free sulfhydryl and carbonyl groups and advanced oxidation protein products were measured to assess plasma protein oxidation. RESULTS Pre-dialysis, neutrophil oxygen radical production was significantly greater than normal and increased significantly as blood passed through the dialyzer in the first 30 minutes of dialysis. Post-dialysis, however, neutrophil oxygen radical production had decreased and was not different from normal. Pre-dialysis, significant plasma protein oxidation was evident from reduced free sulfhydryl groups, increased carbonyl groups, and increased advanced oxidation protein products. Post-dialysis, plasma protein free sulfhydryl groups had increased to normal levels, while plasma protein carbonyl groups increased slightly, and advanced oxidation protein products remained unchanged. CONCLUSIONS The results of this study show that neutrophil oxygen radical production normalizes during high-flux dialysis, despite a transient increase early in dialysis. This decrease in oxygen radical production is associated with an improvement in some, but not all, measures of protein oxidation.
Collapse
Affiliation(s)
- Richard A Ward
- Department of Medicine University of Louisville and Veterans' Affairs Medical Center, Louisville, Kentucky 40202-1718, USA.
| | | | | |
Collapse
|
935
|
Balamurugan K, Rajaram R, Ramasami T, Narayanan S. Chromium(III)-induced apoptosis of lymphocytes: death decision by ROS and Src-family tyrosine kinases. Free Radic Biol Med 2002; 33:1622-40. [PMID: 12488131 DOI: 10.1016/s0891-5849(02)01115-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Apoptosis is an active process induced by a variety of physiological and external stimuli, in which elimination of damaged cells are effected through a genetically controlled process. In this study, we have examined the mechanism of chromium(III) [Cr(III)]-induced cytotoxicity with respect to its relationship to oxidative stress. Morphology, flow cytometry, and DNA fragmentation studies show that tris-(1,10-phenanthroline)chromium(III) [Cr(III)-phen], tris-(2,2'-bipyridyl)chromium(III) [Cr(III)-bpy], trans-diaqua[1,2-bis(salicylideneamino)ethanechromium(III)] [Cr(III)-salen], and trans-diaqua[1,3-bis(salicylideneamino)propanechromium(III)] [Cr(III)-salprn] induced apoptosis of lymphocytes. Pentaammineaquachromium(III) [Cr(III)-hpa] does not induce apoptosis. Apoptosis induced by these complexes involves the generation of reactive oxygen species (ROS) as seen by increased fluorescence of dichloroflourescein (DCF) observed through flow cytometry. Pretreatment of lymphocytes with antioxidants completely abrogate apoptosis. Cr(III) treatment also increased the expression and activation of Src-family tyrosine kinases viz. p56lck, p59fyn, and p53/56lyn, as seen by immunoblotting and immune complex kinase assay. PP2, a selective Src-family tyrosine kinase inhibitor, abolishes apoptosis, indicating that Src-family tyrosine kinases are directly involved in eliciting apoptosis. Interestingly, a one-to-one correlation between the expression of Src-family tyrosine kinases and ROS is observed, since antioxidants pretreatment inhibits the expression and the activation of these kinases. These results further indicate that Cr(III)-induced apoptosis is mediated through production of ROS, which in turn activates the Src-family tyrosine kinases. The increased activation of Src-family tyrosine kinases may be a mechanism involved in apoptosis of lymphocytes elicited by various other physiological stimuli that exploit ROS as a second messenger.
Collapse
|
936
|
Davis IC, Zhu S, Sampson JB, Crow JP, Matalon S. Inhibition of human surfactant protein A function by oxidation intermediates of nitrite. Free Radic Biol Med 2002; 33:1703-13. [PMID: 12488138 DOI: 10.1016/s0891-5849(02)01170-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
NitraNitration of protein tyrosine residues by peroxynitrite (ONOO - ) has been implicated in a variety of inflammatory diseases such as acute respiratory distress syndrome (ARDS). Pulmonary surfactant protein A (SP-A) has multiple functions including host defense. We report here that a mixture of hypochlorous acid (HOCl) and nitrite (NO 2 - ) induces nitration, oxidation, and chlorination of tyrosine residues in human SP-A and inhibits SP-A's ability to aggregate lipids and bind mannose. Nitration and oxidation of SP-A was not altered by the presence of lipids, suggesting that proteins are preferred targets in lipid-rich mixtures such as pulmonary surfactant. Moreover, both horseradish peroxidase and myeloperoxidase (MPO) can utilize NO 2 - and hydrogen peroxide (H 2 O 2 ) as substrates to catalyze tyrosine nitration in SP-A and inhibit its lipid aggregation function. SP-A nitration and oxidation by MPO is markedly enhanced in the presence of physiological concentrations of Cl - and the lipid aggregation function of SP-A is completely abolished. Collectively, our results suggest that MPO released by activated neutrophils during inflammation utilizes physiological or pathological levels of NO 2 - to nitrate proteins, and may provide an additional mechanism in addition to ONOO - formation, for tissue injury in ARDS and other inflammatory diseases associated with upregulated *NO and oxidant production.
Collapse
Affiliation(s)
- Ian C Davis
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35205-3703, USA.
| | | | | | | | | |
Collapse
|
937
|
Yamaguchi Y, Kunitomo M, Haginaka J. Assay methods of modified lipoproteins in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 781:313-30. [PMID: 12450666 DOI: 10.1016/s1570-0232(02)00433-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Modified lipoproteins, especially oxidatively modified low-density lipoprotein (Ox-LDL), are present in the plasma of patients with atherosclerosis and related diseases. The modification of LDL is believed to play an important role in the development of atherosclerosis. Thus, measurement of plasma Ox-LDL is essential not only for investigating its relevance to atherosclerotic diseases, but also for diagnosis. Chromatographic methods are effective for indirectly measuring the oxidatively modified state of LDL or directly measuring the modified LDL. Indirect determination can be done by estimating the LDL subfraction, LDL particle size, oxidized amino acids in apolipoprotein B, lipid hydroperoxide or F(2)-isoprostane in LDL. Direct determination of the modified LDL in plasma can be done with chromatographic methods such as anion-exchange chromatography and size-exclusion chromatography. Other methods for estimating the modified state of LDL include electromigration methods such as agarose gel, polyacrylamide gradient gel and capillary electrophoresis. Recently, enzyme-linked immunosorbent assay methods of malondialdehyde (MDA)-LDL and autoantibodies against Ox-LDL have been developed to assess Ox-LDL in plasma. This review article summarizes the detection and assay methods of modified lipoproteins in plasma.
Collapse
Affiliation(s)
- Yu Yamaguchi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Japan.
| | | | | |
Collapse
|
938
|
Argirova M, Breipohl W. Comparison between modifications of lens proteins resulted from glycation with methylglyoxal, glyoxal, ascorbic acid, and fructose. J Biochem Mol Toxicol 2002; 16:140-5. [PMID: 12112714 DOI: 10.1002/jbt.10031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cataract is generally associated with the breakdown of the lens microarchitecture. Age-dependent chemical modifications and cross-linking of proteins are the major pathways for development of lens opacity. The specific alterations in lens proteins caused by glycation with four carbonyl metabolites, fructose, methylglyoxal, glyoxal, and ascorbic acid, were investigated. Decrease in intensity of tryptophan related fluorescence and level of reduced protein sulfhydryl groups, parameters that are indicative for changes in protein conformation, were observed after reaction with all studied carbonyl compounds. Protein carbonyl content, an index for oxidative damage to proteins, was strongly enhanced in methylglyoxal-treated proteins. Cross-linking of glycated proteins was confirmed by polyacrylamide electrophoresis. alpha-Oxoaldehydes were the most reactive in protein aggregation. They also formed specific chromophores absorbing UV light above 300 nm. Significant loss in lactate dehydrogenase activity resulted from incubation with methylglyoxal, followed by glyoxal and ascorbic acid. The results obtained showed that alterations in lens proteins do not follow the specific reactivity of studied carbonyl compounds. Despite the similarity in chemical structures of alpha-oxoaldehydes and ascorbic acid degradation products, they cause specific alterations in lens protein structure with different biological consequences.
Collapse
Affiliation(s)
- Mariana Argirova
- Institute for Experimental Ophthalmology, University of Bonn, Abbéstr. 2, 53105 Bonn, Germany.
| | | |
Collapse
|
939
|
Kruidenier L, Verspaget HW. Review article: oxidative stress as a pathogenic factor in inflammatory bowel disease--radicals or ridiculous? Aliment Pharmacol Ther 2002; 16:1997-2015. [PMID: 12452933 DOI: 10.1046/j.1365-2036.2002.01378.x] [Citation(s) in RCA: 285] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Virtually all inflammatory mediators investigated to date seem to be dysregulated in the inflamed intestinal mucosa of patients with inflammatory bowel disease. However, which of these are actually involved in the initiation and perpetuation of intestinal tissue damage is still not fully understood. Amongst these mediators are the reactive oxygen metabolites, produced in large amounts by the massively infiltrating leucocytes. These reactive oxygen metabolites are believed to constitute a major tissue-destructive force and may contribute significantly to the pathogenesis of inflammatory bowel disease. This paper provides a concise overview of reactive oxygen metabolite biochemistry, the types of cell and tissue damage potentially inflicted by them, and the endogenous antioxidants which should prevent these harmful effects. An up-to-date summary of the available human experimental data suggests that reactive oxygen metabolite-mediated injury is important in both the primary and downstream secondary pathophysiological mechanisms underlying intestinal inflammation. Nonetheless, how the individual components of the mucosal antioxidant enzymatic cascade respond to inflammatory conditions is a neglected area of research. This particular aspect of intestinal mucosal oxidative stress therefore merits further study, in order to provide a sound, scientific basis for the design of antioxidant-directed treatment strategies for inflammatory bowel disease patients.
Collapse
Affiliation(s)
- L Kruidenier
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands.
| | | |
Collapse
|
940
|
Kochlatyi S, Gibbons N, Mattana J. Extracellular matrix oxidation modulates survival, NF-kappaB translocation, and MAPK activity in mesangial cells. Exp Mol Pathol 2002; 73:191-7. [PMID: 12565794 DOI: 10.1006/exmp.2002.2455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammatory injury to the kidney may oxidize extracellular matrix proteins. These changes appear to impair adhesion of glomerular mesangial cells and might impact signaling mechanisms in these cells. In this study we evaluated how extracellular matrix oxidation could modulate the development of apoptosis as well as the activity of the transcription factor NF-kappaB and that of the MAPK family members ERK-1,2 and JNK. Exposure of mesangial cells to oxidized matrix enhanced the percentage of apoptotic cells. Western blot analysis revealed diminished levels of the phosphorylated form of ERK-1,2 in cells on oxidized matrix, while levels of phosphorylated JNK were increased. Cells on unmodified matrix were found to have rapid translocation of the p65 subunit of NF-kappaB, which was attenuated in cells on oxidized matrix. These findings suggest that extracellular matrix oxidation may impair survival of mesangial cells in association with decreased levels of pERK-1,2, increased levels of pJNK, and diminished nuclear translocation of the transcription factor NF-kappaB.
Collapse
Affiliation(s)
- Sergei Kochlatyi
- Department of Medicine, Long Island Jewish Medical Center, New Hyde Park, New York 11040, USA
| | | | | |
Collapse
|
941
|
Shanely RA, Zergeroglu MA, Lennon SL, Sugiura T, Yimlamai T, Enns D, Belcastro A, Powers SK. Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity. Am J Respir Crit Care Med 2002; 166:1369-74. [PMID: 12421745 DOI: 10.1164/rccm.200202-088oc] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Prolonged mechanical ventilation (MV) results in reduced diaphragmatic maximal force production and diaphragmatic atrophy. To investigate the mechanisms responsible for MV-induced diaphragmatic atrophy, we tested the hypothesis that controlled MV results in oxidation of diaphragmatic proteins and increased diaphragmatic proteolysis due to elevated protease activity. Further, we postulated that MV would result in atrophy of all diaphragmatic muscle fiber types. Mechanically ventilated animals were anesthetized, tracheostomized, and ventilated with 21% O2 for 18 hours. MV resulted in a decrease (p < 0.05) in diaphragmatic myofibrillar protein and the cross-sectional area of all muscle fiber types (i.e., I, IIa, IId/x, and IIb). Further, MV promoted an increase (p < 0.05) in diaphragmatic protein degradation along with elevated (p < 0.05) calpain and 20S proteasome activity. Finally, MV was also associated with a rise (p < 0.05) in both protein oxidation and lipid peroxidation. These data support the hypothesis that MV is associated with atrophy of all diaphragmatic fiber types, increased diaphragmatic protease activity, and augmented diaphragmatic oxidative stress.
Collapse
Affiliation(s)
- R Andrew Shanely
- Department of Exercise and Sport Sciences, Center for Exercise Science, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | | | |
Collapse
|
942
|
van Amsterdam IMC, Ubbink M, van den Bosch M, Rotsaert F, Sanders-Loehr J, Canters GW. A new type 2 copper cysteinate azurin. Involvement of an engineered exposed cysteine in copper binding through internal rearrangement. J Biol Chem 2002; 277:44121-30. [PMID: 12186859 DOI: 10.1074/jbc.m202977200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The double mutant H117G/N42C azurin exhibits tetragonal type 2 copper site characteristics with Cys(42) as one of the copper ligands as concluded from spectroscopic evidence (UV-visible, EPR, and resonance Raman). Analysis of the kinetics of copper uptake by the apoprotein by means of stopped flow spectroscopy suggests that the solvent-exposed Cys(42) assists in binding the metal ion and carrying it over to the active site where it becomes coordinated by, among others, a second cysteine, Cys(112). A structure is proposed in which the loop from residue 36 to 47 has rearranged to form a tetragonal type 2 copper site with Cys(42) as one of the ligands. The process of copper uptake as observed for the double mutant may be relevant for a better understanding of the way copper chaperones accept and transfer metal ions in the living cell.
Collapse
Affiliation(s)
- Irene M C van Amsterdam
- Leiden Institute of Chemistry, Gorlaeus Laboratories, University of Leiden, Einsteinweg 55, P. O. Box 9502, The Netherlands
| | | | | | | | | | | |
Collapse
|
943
|
Arnold J, Grune T. PARP-mediated proteasome activation: a co-ordination of DNA repair and protein degradation? Bioessays 2002; 24:1060-5. [PMID: 12386937 DOI: 10.1002/bies.10179] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During the evolution of aerobic life, antioxidant defence systems developed that either directly prevent oxidative modifications of the cellular constituents or remove the modified components. An example of the latter is the proteasome, which removes cytosolic oxidised proteins. Recently, a novel mechanism of activation of the nuclear 20S proteasome was discovered: automodified poly-(ADP-ribose) polymerase-1 (PARP-1) activates the proteasome to facilitate selective degradation of oxidatively damaged histones. Since activation of the PARP-1 itself is induced by DNA damage and is supposed to play a role in DNA repair, these new results suggest a joint role of PARP-1 in the removal of oxidised nucleoproteins and in DNA repair. We hypothesise that PARP-1 could provide a co-ordinative link between two nuclear antioxidant defence systems, whose concerted activation would produce a fast and efficient restoration of the native chromatin structure following oxidative stress.
Collapse
Affiliation(s)
- Jenny Arnold
- Neuroscience Research Center, Medical Faculty (Charité), Humboldt University Berlin, Germany
| | | |
Collapse
|
944
|
Hashimoto R, Matsukawa N, Nariyama Y, Ogiri Y, Hamagawa E, Tanaka K, Usui Y, Nakano S, Maruyama T, Kyotani S, Tsushima M, Kojo S. Evaluation of apolipoprotein B-100 fragmentation and cross-linkage in serum as an index of atherosclerosis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1584:123-8. [PMID: 12385895 DOI: 10.1016/s1388-1981(02)00299-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is well established that radical reaction of low density lipoprotein (LDL) causes fragmentation and cross-linkage of apolipoprotein B-100 (apoB). Our previous studies demonstrated that fragmented and cross-linked apoB proteins are present in normal human serum and tended to increase with age based on immunoblot analysis. These observations suggest that the fragmentation and cross-linkage pattern of apoB reflects the oxidative stress in an individual and that this pattern is a good atherosclerotic index. In this study, a method was developed to evaluate the fragmentation and conjugation pattern of apoB. A parameter named B-ox was introduced for each serum sample to quantitate the staining bands of the immunoblotting analysis. B-ox represents the relative abundance of radical reaction products (a sum of fragmented and conjugated apoB proteins) based on one control subject. If this value increases, it indicates that radical reaction products have increased, i.e., the oxidative stress has increased in the subject. Based on measurements of subjects in a rural area of Japan, B-ox showed significant positive correlation with intima-media thickness (IMT) of the carotid artery, LDL cholesterol, and age, while it showed significant negative correlation with high density lipoprotein (HDL) cholesterol and vitamin C. These results suggest that B-ox is a reliable indicator of atherosclerosis.
Collapse
Affiliation(s)
- Ryoko Hashimoto
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
945
|
Land W. Allograft injury mediated by reactive oxygen species: From conserved proteins of Drosophila to acute and chronic rejection of human transplants. Part I: Demonstration of reactive oxygen species in reperfused allografts and their role in the initiation of innate immunity. Transplant Rev (Orlando) 2002. [DOI: 10.1053/trte.2002.129630] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
946
|
Fabisiak JP, Sedlov A, Kagan VE. Quantification of oxidative/nitrosative modification of CYS(34) in human serum albumin using a fluorescence-based SDS-PAGE assay. Antioxid Redox Signal 2002; 4:855-65. [PMID: 12470514 DOI: 10.1089/152308602760599016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The SH group represented by cysteine in proteins is fundamental to the redox regulation of protein structure and function. Albumin is the most abundant serum protein whose redox modification modulates its physiologic function, as well as serves as a biomarker of oxidative stress. Measurement of selective Cys modification (S-oxidation/nitrosation, electrophilic substitution) on specific proteins, however, is problematic within complex biological mixtures such as plasma. We have utilized a maleimide fluorogenic SH reagent, ThioGlo-1, to develop a fluorescence-based quantitative assay of SH modification of human serum albumin (hSA) using SDS-PAGE. Fully reduced native albumin containing one free SH (Cys(34)) per molecule was utilized as a model protein to characterize the kinetics of ThioGlo-1 reaction using a solution-based spectrofluorometric assay. Optimum labeling of hSA Cys(34) was achieved within 10 min at 60 degrees C using a threefold molar excess of ThioGlo-1 relative to hSA and required SDS. Comparison of the solution spectrofluorometric assay to fluorescent image analysis of hSA bands localized by SDS-PAGE revealed that SH groups in hSA could be quantified after gel electrophoresis. The solution- and gel-based methods were in excellent concordance in their ability to quantify SH modification of hSA following exposure to phenoxyl radicals and nitric oxide. The application of ThioGlo-1 staining and SDS-PAGE quantified the degree of hSA modification in complex human plasma exposed to oxidative or nitrosative stress and revealed that hSA is more sensitive to S modification than other SH-containing plasma proteins.
Collapse
Affiliation(s)
- James P Fabisiak
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, 3343 Forbes Avenue, Pittsburgh, PA 15238, USA.
| | | | | |
Collapse
|
947
|
Abstract
The accumulation of oxidized proteins in cells and tissues is a feature of a number of age-related diseases and may also occur as a result of the aging process itself. In this article we review recent advances in our understanding of the cellular degradation of oxidized proteins directing our attention primarily to information which directly bears on the behavior of intact eukaryotic cells. We summarize new work on the key intracellular degradative machineries, proteasomes and lysosomes and examine evidence implicating an increase in protein hydrophobicity as the primary signal to the proteasome to initiate degradation. The data identifying the proteasome as the main route of degradation of oxidized proteins is examined, as well as recent data investigating changes in proteasome function after exposure of cells to oxidants and the altered catabolism of oxidized proteins in aging cells. Evidence for the cooperation between the lysosomal and proteasomal systems in the degradation of oxidized proteins is discussed. We conclude that the cellular catabolism of oxidized proteins may be a more complex process than it first appeared and suggest key issues that need to be resolved to improve our understanding of this important process.
Collapse
Affiliation(s)
- Rachael A Dunlop
- Cell Biology Unit, The Heart Research Institute, 145 Missenden Road, Camperdown, Sydney, NSW, 2050 Australia
| | | | | |
Collapse
|
948
|
Cockell KA, Belonje B. The carbonyl content of specific plasma proteins is decreased by dietary copper deficiency in rats. J Nutr 2002; 132:2514-8. [PMID: 12221202 DOI: 10.1093/jn/132.9.2514] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Copper (Cu) deficiency is associated with increased susceptibility of tissue homogenates or lipoproteins to oxidation in vitro. Plasma is easily sampled and contains both lipid and protein components that may be susceptible to oxidation, making it appropriate to investigate plasma oxidation variables as biomarkers of in vivo oxidative stress. Oxidation of plasma proteins may be discernible as an increased content of carbonyl (aldehyde or ketone) groups on the proteins. Weanling male Long-Evans rats were fed sucrose-based modified AIN-93G diets with (+Cu, 6.2 mg Cu/kg diet) or without (-Cu, 0.4 mg/kg) added Cu for 4 wk before killing. Plasma and RBC Cu,Zn-superoxide dismutase activities and liver Cu concentration were significantly decreased and relative heart weight was significantly increased, confirming the Cu-deficient status of the -Cu rats. Dinitrophenylhydrazine (DNP) derivatization followed by SDS-PAGE and Western blotting using commercial anti-DNP antibody demonstrated that several plasma proteins in +Cu control rats showed evidence of carbonyl groups. The carbonyl content of these bands was lower in -Cu rats, not greater as would have been expected with oxidative damage to these proteins. Although dietary Cu deficiency may increase susceptibility to oxidative stress, it does not lead to accumulation of oxidized plasma proteins in this animal model.
Collapse
Affiliation(s)
- Kevin A Cockell
- Nutrition Research Division, Bureau of Nutritional Sciences, Food Directorate, Health Canada, Ottawa, ON, Canada K1A 0L2.
| | | |
Collapse
|
949
|
Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem 2002; 82:1524-32. [PMID: 12354300 DOI: 10.1046/j.1471-4159.2002.01103.x] [Citation(s) in RCA: 444] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder in which oxidative stress has been implicated as an important event in the progression of the pathology. In particular, it has been shown that protein modification by reactive oxygen species (ROS) occurs to a greater extent in AD than in control brain, suggesting a possible role for oxidation-related decrease in protein function in the process of neurodegeneration. Oxidative damage to proteins, assessed by measuring the protein carbonyl content, is involved in several events such as loss in specific protein function, abnormal protein clearance, depletion of the cellular redox-balance and interference with the cell cycle, and, ultimately, neuronal death. The present investigation represents a further step in understanding the relationship between oxidative modification of protein and neuronal death in AD. Previously, we used our proteomics approach, which successfully substitutes for labor-intensive immunochemical analysis, to detect proteins and identified creatine kinase, glutamine synthase and ubiquitin carboxy-terminal hydrolase L-1 as specifically oxidized proteins in AD brain. In this report we again applied our proteomics approach to identify new targets of protein oxidation in AD inferior parietal lobe (IPL). The dihydropyrimidinase related protein 2 (DRP-2), which is involved in the axonal growth and guidance, showed significantly increased level in protein carbonyls in AD brain, suggesting a role for impaired mechanism of neural network formation in AD. Additionally, the cytosolic enzyme alpha-enolase was identified as a target of protein oxidation and is involved the glycolytic pathway in the pathological events of AD. Finally, the heat shock cognate 71 (HSC-71) revealed increased, but not significant, oxidation in AD brain. These results are discussed with reference to potential involvement of these oxidatively modified proteins in neurodegeneration in AD brain.
Collapse
Affiliation(s)
- Alessandra Castegna
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky 40506, USA
| | | | | | | | | | | | | | | |
Collapse
|
950
|
Abstract
Tight linkage between aging and oxidative stress is indicated by the observations that reactive oxygen species generated under various conditions of oxidative stress are able to oxidize nucleic acids, proteins, and lipids and that aging is associated with the accumulation of oxidized forms of cellular constituents, and also by the fact that there is an inverse relationship between the maximum life span of organisms and the age-related accumulation of oxidative damage. Nevertheless, validity of the oxidative stress hypothesis of aging is questioned by (i) the failure to establish a causal relationship between aging and oxidative damage and (ii) lack of a consistent correlation between the accumulation of oxidative damage and aging. The present discussion is focused on the complexity of the aging process and suggests that discrepancies between various studies in this area are likely due to the fact that aging is not a single process and that the lack of consistent experimental results is partly explained by individual variations. Even so, there is overwhelming support for a dominant role of oxidative stress in the aging of some individuals.
Collapse
Affiliation(s)
- Earl R Stadtman
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012, USA.
| |
Collapse
|