901
|
Smith NM, Maloney NG, Shaw S, Horgan GW, Fyfe C, Martin JC, Suter A, Scott KP, Johnstone AM. Daily Fermented Whey Consumption Alters the Fecal Short-Chain Fatty Acid Profile in Healthy Adults. Front Nutr 2020; 7:165. [PMID: 33102510 PMCID: PMC7556162 DOI: 10.3389/fnut.2020.00165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Gut microbiota influences many aspects of host health including immune, metabolic, and gut health. We examined the effect of a fermented whey concentrate (FWC) drink rich in L-(+)-Lactic acid, consumed daily, in 18 healthy men (n = 5) and women (n = 13) in free-living conditions. Objective: The aims of this 6-weeks pilot trial were to (i) identify changes in the gut microbiota composition and fecal short chain fatty acid (SCFA) profile, and (ii) to monitor changes in glucose homeostasis. Results: Total fecal SCFA (mM) concentration remained constant throughout the intervention. Proportionally, there was a significant change in the composition of different SCFAs compared to baseline. Acetate levels were significantly reduced (−6.5%; p < 0.01), coupled to a significant increase in the relative amounts of propionate (+2.2%; p < 0.01) and butyrate (+4.2%; p < 0.01), respectively. No changes in the relative abundance of any specific bacteria were detected. No significant changes were observed in glucose homeostasis in response to an oral glucose tolerance test. Conclusion: Daily consumption of a fermented whey product led to significant changes in fecal SCFA metabolite profile, indicating some potential prebiotic activity. These changes did not result in any detectable differences in microbiota composition. Post-hoc analysis indicated that baseline microbiota composition might be indicative of participants likely to see changes in SCFA levels. However, due to the lack of a control group these findings would need to be verified in a rigorously controlled trial. Future work is also required to identify the biological mechanisms underlying the observed changes in microbiota activity and to explore if these processes can be harnessed to favorably impact host health. Clinical Trial Registration: www.clinicaltrials.gov, identifier NCT03615339; retrospectively registered on 03/08/2018.
Collapse
Affiliation(s)
- Nicola M Smith
- School of Medicine, Medical Sciences and Nutrition, The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Niamh G Maloney
- School of Medicine, Medical Sciences and Nutrition, The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Sophie Shaw
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Graham W Horgan
- Biomathematics & Statistics Scotland, University of Aberdeen, Aberdeen, United Kingdom
| | - Claire Fyfe
- School of Medicine, Medical Sciences and Nutrition, The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Jennifer C Martin
- School of Medicine, Medical Sciences and Nutrition, The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Karen P Scott
- School of Medicine, Medical Sciences and Nutrition, The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Alexandra M Johnstone
- School of Medicine, Medical Sciences and Nutrition, The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
902
|
Zhao D, Liu X, Zhao S, Li Z, Qin X. 1H NMR-Based Fecal Metabolomics Reveals Changes in Gastrointestinal Function of Aging Rats Induced by d-Galactose. Rejuvenation Res 2020; 24:86-96. [PMID: 32847490 DOI: 10.1089/rej.2020.2352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
d-galactose (d-gal) is widely used to induce aging. However, it is still unclear whether long-term injection of d-gal affects the gastrointestinal functions of aging rats, and how. In this study, we investigated the effects of d-gal on the gastrointestinal functions of aging rats, especially from the perspective of fecal metabolomics. Biochemical and behavioral analyses were performed. Besides, a 1H NMR-based metabolomics approach was built and applied in combination with multivariate data analysis including principal components analysis (PCA) and orthogonal partial least squares-discriminate analysis (OPLS-DA). Regarding gastrointestinal functions, d-gal significantly decreased the small intestine propulsion rates and prolonged gastrointestinal transit time. In addition, d-gal significantly increased the oxidative damages. PCA results showed that d-gal interrupted the metabolic profiles of endogenous small molecules in aging rats. Furthermore, OPLS-DA showed that 40 metabolites were screened and identified to be involved in the disruption of gastrointestinal functions in aging rats. Accordingly, seven metabolic pathways were recognized as the most influenced pathways associated with gastrointestinal functions of aging rats induced by d-gal, including amino acid metabolism, energy metabolism, intestinal flora metabolism, and metabolism of short chain fatty acids. It is the first report to investigate the effects and underlying mechanisms of d-gal on gastrointestinal functions of aging rats from the perspective of fecal metabolomics. The current results are conducive to further comprehensively understand d-gal-induced aging and will expand the applications of d-gal in pharmacological researches.
Collapse
Affiliation(s)
- Di Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
| | - Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
| | - Sijun Zhao
- Department of Pharmacology, Shanxi Institute for Food and Drug Control, Taiyuan, P.R. China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
| |
Collapse
|
903
|
Liu R, Wei P, Keller C, Orefice NS, Shi Y, Li Z, Huang J, Cui Y, Frost DC, Han S, Cross TWL, Rey FE, Li L. Integrated Label-Free and 10-Plex DiLeu Isobaric Tag Quantitative Methods for Profiling Changes in the Mouse Hypothalamic Neuropeptidome and Proteome: Assessment of the Impact of the Gut Microbiome. Anal Chem 2020; 92:14021-14030. [PMID: 32926775 DOI: 10.1021/acs.analchem.0c02939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Gut microbiota can regulate host physiological and pathological status through gut-brain communications or pathways. However, the impact of the gut microbiome on neuropeptides and proteins involved in regulating brain functions and behaviors is still not clearly understood. To address the problem, integrated label-free and 10-plex DiLeu isobaric tag-based quantitative methods were implemented to compare the profiling of neuropeptides and proteins in the hypothalamus of germ-free (GF)- vs conventionally raised (ConvR)-mice. A total of 2943 endogenous peptides from 63 neuropeptide precursors and 3971 proteins in the mouse hypothalamus were identified. Among these 368 significantly changed peptides (fold changes over 1.5 and a p-value of <0.05), 73.6% of the peptides showed higher levels in GF-mice than in ConvR-mice, and 26.4% of the peptides had higher levels in ConvR-mice than in GF-mice. These peptides were mainly from secretogranin-2, phosphatidylethanolamine-binding protein-1, ProSAAS, and proenkephalin-A. A quantitative proteomic analysis employing DiLeu isobaric tags revealed that 282 proteins were significantly up- or down-regulated (fold changes over 1.2 and a p-value of <0.05) among the 3277 quantified proteins. These neuropeptides and proteins were mainly involved in regulating behaviors, transmitter release, signaling pathways, and synapses. Interestingly, pathways including long-term potentiation, long-term depression, and circadian entrainment were involved. In the present study, a combined label-free and 10-plex DiLeu-based quantitative method enabled a comprehensive profiling of gut microbiome-induced dynamic changes of neuropeptides and proteins in the hypothalamus, suggesting that the gut microbiome might mediate a range of behavioral changes, brain development, and learning and memory through these neuropeptides and proteins.
Collapse
Affiliation(s)
- Rui Liu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, P. R. China.,Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Pingli Wei
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nicola Salvatore Orefice
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yatao Shi
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Zihui Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yusi Cui
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Dustin C Frost
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Shuying Han
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, P. R. China
| | - Tzu-Wen L Cross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Cardiovascular Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
904
|
Schwartz DJ, Langdon AE, Dantas G. Understanding the impact of antibiotic perturbation on the human microbiome. Genome Med 2020; 12:82. [PMID: 32988391 PMCID: PMC7523053 DOI: 10.1186/s13073-020-00782-x] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
The human gut microbiome is a dynamic collection of bacteria, archaea, fungi, and viruses that performs essential functions for immune development, pathogen colonization resistance, and food metabolism. Perturbation of the gut microbiome's ecological balance, commonly by antibiotics, can cause and exacerbate diseases. To predict and successfully rescue such perturbations, first, we must understand the underlying taxonomic and functional dynamics of the microbiome as it changes throughout infancy, childhood, and adulthood. We offer an overview of the healthy gut bacterial architecture over these life stages and comment on vulnerability to short and long courses of antibiotics. Second, the resilience of the microbiome after antibiotic perturbation depends on key characteristics, such as the nature, timing, duration, and spectrum of a course of antibiotics, as well as microbiome modulatory factors such as age, travel, underlying illness, antibiotic resistance pattern, and diet. In this review, we discuss acute and chronic antibiotic perturbations to the microbiome and resistome in the context of microbiome stability and dynamics. We specifically discuss key taxonomic and resistance gene changes that accompany antibiotic treatment of neonates, children, and adults. Restoration of a healthy gut microbial ecosystem after routine antibiotics will require rationally managed exposure to specific antibiotics and microbes. To that end, we review the use of fecal microbiota transplantation and probiotics to direct recolonization of the gut ecosystem. We conclude with our perspectives on how best to assess, predict, and aid recovery of the microbiome after antibiotic perturbation.
Collapse
Affiliation(s)
- D. J. Schwartz
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
| | - A. E. Langdon
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
| | - G. Dantas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110 USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
| |
Collapse
|
905
|
Shi Y, Zhong L, Liu Y, Zhang J, Lv Z, Li Y, Hu Y. Effects of Dietary Andrographolide Levels on Growth Performance, Antioxidant Capacity, Intestinal Immune Function and Microbioma of Rice Field Eel ( Monopterus Albus). Animals (Basel) 2020; 10:E1744. [PMID: 32992929 PMCID: PMC7599621 DOI: 10.3390/ani10101744] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022] Open
Abstract
An eight-week feeding trial was conducted to investigate the effects of dietary andrographolide on the growth performance, antioxidant capacity in the liver, intestinal inflammatory response and microbiota of Monopterus albus. A total of 900 health fish (25.00 ± 0.15 g) were randomly divided into five groups: AD1 (the basal diet) as the control, and AD2, AD3, AD4 and AD5 groups, which were fed the basal diet supplemented with 75, 150, 225 and 300 mg/kg andrographolide, respectively. The results showed that compared with the control group, dietary andrographolide supplementation (1) significantly increased trypsin and lipase activities in the intestine, and increased the weight gain rate but not significantly; (2) significantly increased the levels of glutathione reductase (GR), glutathione (GSH) and glutathione peroxidase (GPx) and the content of in the liver; significantly decreased the contents of reactive oxygen species (ROS) and malondialdehyde (MDA); remarkably upregulated the Nrf2, SOD1, GSTK and GSTO mRNA levels in the liver; downregulated the Keap1 mRNA level; (3) significantly increased the villi length and goblet cell numbers in the intestine, remarkably upregulated the Occludin mRNA level in the intestine, downregulated the Claudin-15 mRNA level; (4) remarkably upregulated the IL-10, TGF-β1 and TGF-β3 mRNA levels in the intestine; downregulated the IL-12β and TLR-3 mRNA levels; (5) significantly decreased the richness and diversity of the intestinal microbioma, increased the percentages of Fusobacteria and Firmicutes and significantly decreased the percentages of Cyanobacteria and Proteobacteria. In conclusion, these results showed that dietary low-dose andrographolide (75 and 150 mg/kg) promoted growth and antioxidant capacity, regulated the intestinal microbioma, enhanced intestinal physical and immune barrier function in rice field eel.
Collapse
Affiliation(s)
- Yong Shi
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
| | - Lei Zhong
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yanli Liu
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
| | - Junzhi Zhang
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
| | - Zhao Lv
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
| | - Yao Li
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
| | - Yi Hu
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
906
|
Marttinen M, Ala-Jaakkola R, Laitila A, Lehtinen MJ. Gut Microbiota, Probiotics and Physical Performance in Athletes and Physically Active Individuals. Nutrients 2020; 12:nu12102936. [PMID: 32992765 PMCID: PMC7599951 DOI: 10.3390/nu12102936] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Among athletes, nutrition plays a key role, supporting training, performance, and post-exercise recovery. Research has primarily focused on the effects of diet in support of an athletic physique; however, the role played by intestinal microbiota has been much neglected. Emerging evidence has shown an association between the intestinal microbiota composition and physical activity, suggesting that modifications in the gut microbiota composition may contribute to physical performance of the host. Probiotics represent a potential means for beneficially influencing the gut microbiota composition/function but can also impact the overall health of the host. In this review, we provide an overview of the existing studies that have examined the reciprocal interactions between physical activity and gut microbiota. We further evaluate the clinical evidence that supports the effects of probiotics on physical performance, post-exercise recovery, and cognitive outcomes among athletes. In addition, we discuss the mechanisms of action through which probiotics affect exercise outcomes. In summary, beneficial microbes, including probiotics, may promote health in athletes and enhance physical performance and exercise capacity. Furthermore, high-quality clinical studies, with adequate power, remain necessary to uncover the roles that are played by gut microbiota populations and probiotics in physical performance and the modes of action behind their potential benefits.
Collapse
|
907
|
Shastry RP, Rekha PD. Bacterial cross talk with gut microbiome and its implications: a short review. Folia Microbiol (Praha) 2020; 66:15-24. [PMID: 32949007 DOI: 10.1007/s12223-020-00821-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Human gut microbiota exists in a complicated symbiotic relationship which postulates to impact health and disease conditions on the host. Interestingly, the gut microbiome shows different mechanisms to regulate host physiology and metabolism including cell-to-cell communications. But microbiota imbalance is characterized to change in the host normal functioning and lead to the development and progression of major human diseases. Therefore, the direct cross talk through the microbial metabolites or peptides suggests the evidence of host health and disease. Recent reports highlight the adaptation signals/small molecules promoting microbial colonization which allows modulating immunity of host and leads to pathogen colonization. Moreover, quorum sensing peptides are also evident in the involvement of host disease conditions. Here, we review the current understanding of the gut microbiota cross talk with mammalian cells through metabolites and peptides. These studies are providing insight into the prediction of signature molecules which significantly provide information for the understanding of the interaction for precision medicine applications.
Collapse
Affiliation(s)
- Rajesh P Shastry
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| |
Collapse
|
908
|
Ayton A, Ibrahim A, Dugan J, Galvin E, Wright OW. Ultra-processed foods and binge eating: A retrospective observational study. Nutrition 2020; 84:111023. [PMID: 33153827 DOI: 10.1016/j.nut.2020.111023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES There is increasing evidence of the impact of ultra-processed foods on multiple metabolic and neurobiological pathways, including those involved in eating behaviors, both in animals and in humans. In this study we aimed to explore ultra-processed foods and their link with disordered eating in a clinical sample. METHODS This was a single site, retrospective observational study in a specialist eating disorder service using self-report on the electronic health records. Patients with a Diagnostic and Statistical Manual of Mental Disorders (fifth edition) diagnosis of anorexia nervosa (AN), bulimia nervosa (BN), or binge eating disorder (BED) were randomly selected from the service database in Oxford from 2017 to 2019. The recently introduced NOVA classification was used to determine the degree of industrial food processing in each patient's diet. Frequencies of ultra-processed foods were analyzed for each diagnosis at each mealtime and during episodes of binging. RESULTS A total of 70 female and 3 male patients were included in the study; 22 had AN, 25 BN, and 26 BED. Patients with AN reported consuming 55% NOVA-4 foods, as opposed to approximately 70% in BN and BED patients. Foods that were consumed in a binge pattern were 100% ultra-processed. CONCLUSION Further research into the metabolic and neurobiological effects of ultra-processed food intake on disordered eating, particularly on binging, is needed.
Collapse
Affiliation(s)
- Agnes Ayton
- University of Oxford, Cotswold House Oxford, Warneford Hospital, Oxford Health Foundation Trust, Oxford, UK.
| | - Ali Ibrahim
- South London and Maudsley NHS Foundation Trust, Bethlem Adolescent Psychiatric Intensive Care Unit, Maudsley Hospital, London, UK
| | - James Dugan
- Department of Cardiology, Northern General Hospital, Sheffield, UK
| | - Eimear Galvin
- Oxford Health Foundation Trust, Cotswold House Oxford, Oxford, UK
| | | |
Collapse
|
909
|
Heianza Y, Ma W, DiDonato JA, Sun Q, Rimm EB, Hu FB, Rexrode KM, Manson JE, Qi L. Long-Term Changes in Gut Microbial Metabolite Trimethylamine N-Oxide and Coronary Heart Disease Risk. J Am Coll Cardiol 2020; 75:763-772. [PMID: 32081286 DOI: 10.1016/j.jacc.2019.11.060] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND A gut-microbial metabolite, trimethylamine N-oxide (TMAO), has been associated with coronary atherosclerotic burden. No previous prospective study has addressed associations of long-term changes in TMAO with coronary heart disease (CHD) incidence. OBJECTIVES The purpose of this study was to investigate whether 10-year changes in plasma TMAO levels were significantly associated with CHD incidence. METHODS This prospective nested case-control study included 760 healthy women at baseline. Plasma TMAO levels were measured both at the first (1989 to 1990) and the second (2000 to 2002) blood collections; 10-year changes (Δ) in TMAO were calculated. Incident cases of CHD (n = 380) were identified after the second blood collection through 2016 and were matched to controls (n = 380). RESULTS Regardless of the initial TMAO levels, 10-year increases in TMAO from the first to second blood collection were significantly associated with an increased risk of CHD (relative risk [RR] in the top tertile: 1.58 [95% confidence interval (CI): 1.05 to 2.38]; RR per 1-SD increment: 1.33 [95% CI: 1.06 to 1.67]). Participants with elevated TMAO levels (the top tertile) at both time points showed the highest RR of 1.79 (95% CI: 1.08 to 2.96) for CHD as compared with those with consistently low TMAO levels. Further, we found that the ΔTMAO-CHD relationship was strengthened by unhealthy dietary patterns (assessed by the Alternate Healthy Eating Index) and was attenuated by healthy dietary patterns (p interaction = 0.008). CONCLUSIONS Long-term increases in TMAO were associated with higher CHD risk, and repeated assessment of TMAO over 10 years improved the identification of people with a higher risk of CHD. Diet may modify the associations of ΔTMAO with CHD risk.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Wenjie Ma
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eric B Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kathryn M Rexrode
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - JoAnn E Manson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
910
|
Hu X, Xu Y, Liu G, Hu D, Wang Y, Zhang W, Zheng Y. The impact of anthelmintic treatment on gut bacterial and fungal communities in diagnosed parasite-free sika deer Cervus nippon. Appl Microbiol Biotechnol 2020; 104:9239-9250. [PMID: 32930840 DOI: 10.1007/s00253-020-10838-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/24/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022]
Abstract
The gut microbiota, including both bacterial and fungal communities, plays vital roles in the gut homeostasis of animals, and antibiotics can lead to disorders of these microbial communities. The use of anthelmintic treatment to control parasitic infection has long been a standard practice, although its impact on the gut microbiota of healthy sika deer is relatively unknown. This study used next-generation sequencing based on 16S/18S/ITS rRNA genes to investigate the shifts in fecal bacterial and fungal communities in parasite-free sika deer after treatment with fenbendazole and ivermectin tablets. The α-diversity of both bacterial and fungal communities was significantly decreased (P < 0.05) after treatment, as were the bacterial genus Bacteroides and fungal genus Candida (P < 0.05). The results of β-diversity, LEfSe analysis, core community's analysis, taxonomic composition, and functional prediction of fungal and bacterial communities confirmed the substantial impacts of anthelmintic treatment on the function and structure of the intestinal microbiota of sika deer. Nevertheless, many lines of evidence, including β-diversity, LEfSe analysis and functional prediction analysis, suggested that the anthelmintics exerted more significant influences on fungal communities than on bacterial communities, suggesting that more attention should be paid to the changes in fungal communities of sika deer under anthelmintic treatment. The present study provides evidence to support the assumption that anthelmintic drugs modify the gut microbiota of deer and serves as the first trial to test the potential effects of anthelmintics on mycobiota in ruminants using high-throughput sequencing techniques. Key Points • Anthelmintic treatment showed significant effects on the gut microbiota of sika deer. • Fungi were more strongly affected by anthelmintic treatment than bacteria. • The profile of mycobiota provides essential data that were previously absent.
Collapse
Affiliation(s)
- Xiaolong Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yongtao Xu
- College of forestry, Jiangxi Agricultural University, Nanchang, China
| | - Gang Liu
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yihua Wang
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Weiwei Zhang
- College of forestry, Jiangxi Agricultural University, Nanchang, China.
| | - Yunlin Zheng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
911
|
Ayton A, Ibrahim A. The Western diet: a blind spot of eating disorder research?-a narrative review and recommendations for treatment and research. Nutr Rev 2020; 78:579-596. [PMID: 31846028 PMCID: PMC7682725 DOI: 10.1093/nutrit/nuz089] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the last 50 years, in parallel with the obesity epidemic, the prevalence of eating disorders has increased and presentations have changed. In this narrative review, we consider recent research exploring the implications of changing patterns of food consumption on metabolic and neurobiological pathways, a hitherto neglected area in eating disorder research. One of the major changes over this time has been the introduction of ultra-processed (NOVA-4) foods, which are gradually replacing unprocessed and minimally processed foods. This has resulted in the increased intake of various sugars and food additives worldwide, which has important metabolic consequences: triggering insulin and glucose response, stimulating appetite, and affecting multiple endocrine and neurobiological pathways, as well as the microbiome. A paradigm shift is needed in the conceptual framework by which the vulnerability to, and maintenance of, different eating disorders may be understood, by integrating recent knowledge of the individual metabolic responses to modern highly processed foods into existing psychological models. This could stimulate research and improve treatment outcomes.
Collapse
Affiliation(s)
- Agnes Ayton
- University of Oxford, Oxford, United Kingdom
| | - Ali Ibrahim
- South London and Maudsley NHS Foundation Trust, Snowsfields Adolescent Unit, Mapother House, Maudsley Hospital, London
| |
Collapse
|
912
|
Groot HE, van de Vegte YJ, Verweij N, Lipsic E, Karper JC, van der Harst P. Human genetic determinants of the gut microbiome and their associations with health and disease: a phenome-wide association study. Sci Rep 2020; 10:14771. [PMID: 32901066 PMCID: PMC7479141 DOI: 10.1038/s41598-020-70724-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
Small-scale studies have suggested a link between the human gut microbiome and highly prevalent diseases. However, the extent to which the human gut microbiome can be considered a determinant of disease and healthy aging remains unknown. We aimed to determine the spectrum of diseases that are linked to the human gut microbiome through the utilization of its genetic determinants as a proxy for its composition. 180 single nucleotide polymorphisms (SNPs) known to influence the human gut microbiome were used to assess the association with health and disease outcomes in 422,417 UK Biobank participants. Potential causal estimates were obtained using a Mendelian randomization (MR) approach. From the total sample analysed (mean age was 57 ± 8 years), 194,567 (46%) subjects were male. Median exposure was 66-person years (interquartile range 59-72). Eleven SNPs were significantly associated with 28 outcomes (Bonferroni corrected P value < 4.63·10-6) including food intake, hypertension, atopy, COPD, BMI, and lipids. Multiple SNP MR pointed to a possible causal link between Ruminococcus flavefaciens and hypertension, and Clostridium and platelet count. Microbiota and their metabolites might be of importance in the interplay between overlapping pathophysiological processes, although challenges remain in establishing causal relationships.
Collapse
Affiliation(s)
- Hilde E Groot
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Yordi J van de Vegte
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Erik Lipsic
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Jacco C Karper
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
913
|
Djekic D, Shi L, Brolin H, Carlsson F, Särnqvist C, Savolainen O, Cao Y, Bäckhed F, Tremaroli V, Landberg R, Frøbert O. Effects of a Vegetarian Diet on Cardiometabolic Risk Factors, Gut Microbiota, and Plasma Metabolome in Subjects With Ischemic Heart Disease: A Randomized, Crossover Study. J Am Heart Assoc 2020; 9:e016518. [PMID: 32893710 PMCID: PMC7726986 DOI: 10.1161/jaha.120.016518] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background A vegetarian diet (VD) may reduce future cardiovascular risk in patients with ischemic heart disease. Methods and Results A randomized crossover study was conducted in subjects with ischemic heart disease, assigned to 4-week intervention periods of isocaloric VD and meat diet (MD) with individually designed diet plans, separated by a 4-week washout period. The primary outcome was difference in oxidized low-density lipoprotein cholesterol (LDL-C) between diets. Secondary outcomes were differences in cardiometabolic risk factors, quality of life, gut microbiota, fecal short-chain and branched-chain fatty acids, and plasma metabolome. Of 150 eligible patients, 31 (21%) agreed to participate, and 27 (87%) participants completed the study. Mean oxidized LDL-C (-2.73 U/L), total cholesterol (-5.03 mg/dL), LDL-C (-3.87 mg/dL), and body weight (-0.67 kg) were significantly lower with the VD than with the MD. Differences between VD and MD were observed in the relative abundance of several microbe genera within the families Ruminococcaceae, Lachnospiraceae, and Akkermansiaceae. Plasma metabolites, including l-carnitine, acylcarnitine metabolites, and phospholipids, differed in subjects consuming VD and MD. The effect on oxidized LDL-C in response to the VD was associated with a baseline gut microbiota composition dominated by several genera of Ruminococcaceae. Conclusions The VD in conjunction with optimal medical therapy reduced levels of oxidized LDL-C, improved cardiometabolic risk factors, and altered the relative abundance of gut microbes and plasma metabolites in patients with ischemic heart disease. Our results suggest that composition of the gut microbiota at baseline may be related to the reduction of oxidized LDL-C observed with the VD. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02942628.
Collapse
Affiliation(s)
- Demir Djekic
- Department of Cardiology, Faculty of HealthÖrebro University HospitalÖrebroSweden
| | - Lin Shi
- Engineering and Nutritional ScienceShaanxi Normal UniversityXi’anChina
- Chalmers University of TechnologyGothenburgSweden
| | - Harald Brolin
- The Wallenberg Laboratory, Department of Molecular and Clinical MedicineUniversity of GothenburgSweden
| | | | - Charlotte Särnqvist
- Department of Cardiology, Faculty of HealthÖrebro University HospitalÖrebroSweden
| | | | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical SciencesÖrebro UniversityÖrebroSweden
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical MedicineUniversity of GothenburgSweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
- Department of Clinical Physiology, Region Västra GötalandSahlgrenska University HospitalGothenburgSweden
| | - Valentina Tremaroli
- The Wallenberg Laboratory, Department of Molecular and Clinical MedicineUniversity of GothenburgSweden
| | - Rikard Landberg
- Chalmers University of TechnologyGothenburgSweden
- Department of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
| | - Ole Frøbert
- Department of Cardiology, Faculty of HealthÖrebro University HospitalÖrebroSweden
| |
Collapse
|
914
|
Labba ICM, Andlid T, Lindgren Å, Sandberg AS, Sjöberg F. Isolation, identification, and selection of strains as candidate probiotics and starters for fermentation of Swedish legumes. Food Nutr Res 2020; 64:4410. [PMID: 33061883 PMCID: PMC7534948 DOI: 10.29219/fnr.v64.4410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The non-dairy sector is growing, fermented alternatives to dairy are sparse. Adapted starter cultures to substituting raw materials needs to be developed. OBJECTIVE Aims of this study were to isolate, identify, and phenotypically characterize lactic acid bacteria (LAB) that inhabit Swedish legumes, and assess properties necessary for selecting strains with the ability to ferment a bean beverage and with potential health beneficial properties. DESIGN Isolates of presumed LAB were obtained from legumes collected at Öland, Sweden. Strain diversity was assessed by repetitive polymerase chain reaction (rep-PCR). The strains were identified using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Species belonging to Enterococcus were predominant along with Pediococcus and closely related Bacillus. Strains were tested for tolerance to low pH, phenol, and bile as well as their bile salt hydrolase (BSH) activity. In addition, Enterococcus strains were tested for antibiotic resistance, and Pediococcus strains for their ability to ferment a bean beverage. RESULTS From the 25 strains characterized, five were found resistant to low pH, bile, and phenol, suggesting that they can survive a passage through the gastrointestinal tract (GIT) and hence potentially exert beneficial effects in the host. These are suggested for further investigation on specific host-beneficial properties. Two of these, belonging to Pediococcus pentosaceus, were able to ferment a bean beverage without any added nutrients, indicating that the Pediococcus strains are well adapted to the bean substrate. One of the P. pentosaceus strains were also able to markedly improve the reduction of phytate by the phytase-producing yeast strain Pichia kudriavzevii TY1322 during co-fermentation as well as increase the final cell count of the yeast strain. CONCLUSION Strain isolation and characterization performed in this study aids in selecting starter cultures for legume fermentation. Nutritional properties can be improved by co-fermentation with yeast indicating that novel nutritious fermented non-dairy products could be developed.
Collapse
Affiliation(s)
- Inger-Cecilia Mayer Labba
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Thomas Andlid
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Åsa Lindgren
- Department of Clinical Bacteriology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann-Sofie Sandberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Fei Sjöberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
915
|
Koslovsky MD, Hoffman KL, Daniel CR, Vannucci M. A Bayesian model of microbiome data for simultaneous identification of covariate associations and prediction of phenotypic outcomes. Ann Appl Stat 2020. [DOI: 10.1214/20-aoas1354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
916
|
Fleischhacker SE, Woteki CE, Coates PM, Hubbard VS, Flaherty GE, Glickman DR, Harkin TR, Kessler D, Li WW, Loscalzo J, Parekh A, Rowe S, Stover PJ, Tagtow A, Yun AJ, Mozaffarian D. Strengthening national nutrition research: rationale and options for a new coordinated federal research effort and authority. Am J Clin Nutr 2020; 112:721-769. [PMID: 32687145 PMCID: PMC7454258 DOI: 10.1093/ajcn/nqaa179] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The US faces remarkable food and nutrition challenges. A new federal effort to strengthen and coordinate nutrition research could rapidly generate the evidence base needed to address these multiple national challenges. However, the relevant characteristics of such an effort have been uncertain. OBJECTIVES Our aim was to provide an objective, informative summary of 1) the mounting diet-related health burdens facing our nation and corresponding economic, health equity, national security, and sustainability implications; 2) the current federal nutrition research landscape and existing mechanisms for its coordination; 3) the opportunities for and potential impact of new fundamental, clinical, public health, food and agricultural, and translational scientific discoveries; and 4) the various options for further strengthening and coordinating federal nutrition research, including corresponding advantages, disadvantages, and potential executive and legislative considerations. METHODS We reviewed government and other published documents on federal nutrition research; held various discussions with expert groups, advocacy organizations, and scientific societies; and held in-person or phone meetings with >50 federal staff in executive and legislative roles, as well as with a variety of other stakeholders in academic, industry, and nongovernment organizations. RESULTS Stark national nutrition challenges were identified. More Americans are sick than are healthy, largely from rising diet-related illnesses. These conditions create tremendous strains on productivity, health care costs, health disparities, government budgets, US economic competitiveness, and military readiness. The coronavirus disease 2019 (COVID-19) outbreak has further laid bare these strains, including food insecurity, major diet-related comorbidities for poor outcomes from COVID-19 such as diabetes, hypertension, and obesity, and insufficient surveillance on and coordination of our food system. More than 10 federal departments and agencies currently invest in critical nutrition research, yet with relatively flat investments over several decades. Coordination also remains suboptimal, documented by multiple governmental reports over 50 years. Greater harmonization and expansion of federal investment in nutrition science, not a silo-ing or rearrangement of existing investments, has tremendous potential to generate new discoveries to improve and sustain the health of all Americans. Two identified key strategies to achieve this were as follows: 1) a new authority for robust cross-governmental coordination of nutrition research and other nutrition-related policy and 2) strengthened authority, investment, and coordination for nutrition research within the NIH. These strategies were found to be complementary, together catalyzing important new science, partnerships, coordination, and returns on investment. Additional complementary actions to accelerate federal nutrition research were identified at the USDA. CONCLUSIONS The need and opportunities for strengthened federal nutrition research are clear, with specific identified options to help create the new leadership, strategic planning, coordination, and investment the nation requires to address the multiple nutrition-related challenges and grasp the opportunities before us.
Collapse
Affiliation(s)
| | - Catherine E Woteki
- University of Virginia Biocomplexity Institute and Initiative, Arlington, VA, USA
| | - Paul M Coates
- Retired, National Institutes of Health, Bethesda, MD, USA
| | - Van S Hubbard
- Retired, National Institutes of Health, Bethesda, MD, USA
| | - Grace E Flaherty
- Gerald J and Dorothy R Friedman School of Nutrition Science and Policy at Tufts University, Boston, MA, USA
| | | | | | - David Kessler
- Former Food and Drug Administration Commissioner, College Park, MD, USA
| | | | - Joseph Loscalzo
- Department of Medicine at Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Patrick J Stover
- Texas A&M AgriLife, Texas A&M College of Agriculture and Life Sciences, and Texas A&M AgriLife Research, College Station, TX, USA
| | | | | | - Dariush Mozaffarian
- Gerald J and Dorothy R Friedman School of Nutrition Science and Policy at Tufts University, Boston, MA, USA
| |
Collapse
|
917
|
Kim SH, Song JH, Kim J, Kang DK. Characterisation of a lysophospholipase from Lactobacillus mucosae. Biotechnol Lett 2020; 42:1735-1741. [PMID: 32342437 DOI: 10.1007/s10529-020-02895-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE In this study, we characterised a novel lysophospholipase (LysoPL) from the L. mucosae LM1 strain. The gene, LM-lysoPL, encoding LysoPL from L. mucosae LM1 was cloned, analyzed, and expressed. RESULTS LM-lysoPL contained a conserved region and catalytic triad motif responsible for lysophospholipase activity. After purification, UHPLC-MS analysis showed that recombinant LM-LysoPL hydrolyzed phosphatidic acid, generating lysophosphatidic acid. The enzyme had greater hydrolytic activity against C16 and C18 fatty acids, indicating a preference for long-chain fatty acids. Enzymatic assays showed that the optimal pH and temperature of recombinant LM-LysoPL were 7 and 30 °C, respectively, and it was enzymatically active within a narrow pH range. CONCLUSIONS To the best of our knowledge, this is the first study to identify and characterize a lysophospholipase from lactic acid bacteria. Our findings provide a basis for understanding the probiotic role of L. mucosae LM1 in the gut.
Collapse
Affiliation(s)
- Sang Hoon Kim
- Department of Animal Resource Science, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea
| | - Ji Hoon Song
- Department of Animal Resource Science, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea
| | - Jinyoung Kim
- Department of Animal Resource Science, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resource Science, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
918
|
Tian Y, Ma Y, Fu Y, Zheng JS. Application of n-of-1 Clinical Trials in Personalized Nutrition Research: A Trial Protocol for Westlake N-of-1 Trials for Macronutrient Intake (WE-MACNUTR). Curr Dev Nutr 2020; 4:nzaa143. [PMID: 32968703 PMCID: PMC7494402 DOI: 10.1093/cdn/nzaa143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/24/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Personalized dietary recommendations can help with more effective disease prevention. This study aims to investigate the individual postprandial glucose response to diets with diverse macronutrient proportions at both the individual level and population level, and explore the potential of the novel single-patient (n-of-1) trial for personalization of diet. Secondary outcomes include individual phenotypic responses and the effects of dietary ingredients on the composition of gut microbiota. Westlake N-of-1 Trials for Macronutrient Intake is a multiple crossover feeding trial consisting of 3 successive 12-d dietary intervention pairs including a 6-d washout period before each 6-d isocaloric dietary intervention: a 6-d high-fat, low-carbohydrate diet, and a 6-d low-fat, high-carbohydrate diet. The results will help provide personalized dietary recommendations for macronutrients in terms of postprandial blood glucose responses. The proposed n-of-1 trial methods could help in optimizing individual health and advancing health care. This trial was registered with clinicaltrials.gov (NCT04125602).
Collapse
Affiliation(s)
- Yunyi Tian
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Ma
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuanqing Fu
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Ju-Sheng Zheng
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
919
|
The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metab 2020; 32:379-390.e3. [PMID: 32652044 DOI: 10.1016/j.cmet.2020.06.011] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/17/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
The link between the gut microbiota and type 2 diabetes (T2D) warrants further investigation because of known confounding effects from antidiabetic treatment. Here, we profiled the gut microbiota in a discovery (n = 1,011) and validation (n = 484) cohort comprising Swedish subjects naive for diabetes treatment and grouped by glycemic status. We observed that overall gut microbiota composition was altered in groups with impaired glucose tolerance, combined glucose intolerance and T2D, but not in those with impaired fasting glucose. In addition, the abundance of several butyrate producers and functional potential for butyrate production were decreased both in prediabetes and T2D groups. Multivariate analyses and machine learning microbiome models indicated that insulin resistance was strongly associated with microbial variations. Therefore, our study indicates that the gut microbiota represents an important modifiable factor to consider when developing precision medicine approaches for the prevention and/or delay of T2D.
Collapse
|
920
|
Fart F, Rajan SK, Wall R, Rangel I, Ganda-Mall JP, Tingö L, Brummer RJ, Repsilber D, Schoultz I, Lindqvist CM. Differences in Gut Microbiome Composition between Senior Orienteering Athletes and Community-Dwelling Older Adults. Nutrients 2020; 12:nu12092610. [PMID: 32867153 PMCID: PMC7551621 DOI: 10.3390/nu12092610] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Gastrointestinal (GI) health is an important aspect of general health. Gastrointestinal symptoms are of specific importance for the elderly, an increasing group globally. Hence, promoting the elderly’s health and especially gastrointestinal health is important. Gut microbiota can influence gastrointestinal health by modulation of the immune system and the gut–brain axis. Diverse gut microbiota have been shown to be beneficial; however, for the elderly, the gut microbiota is often less diverse. Nutrition and physical activity, in particular, are two components that have been suggested to influence composition or diversity. Materials and Methods: In this study, we compared gut microbiota between two groups of elderly individuals: community-dwelling older adults and physically active senior orienteering athletes, where the latter group has less gastrointestinal symptoms and a reported better well-being. With this approach, we explored if certain gut microbiota were related to healthy ageing. The participant data and faecal samples were collected from these two groups and the microbiota was whole-genome sequenced and taxonomically classified with MetaPhlAn. Results: The physically active senior orienteers had a more homogeneous microbiota within the group and a higher abundance of Faecalibacterium prausnitzii compared to the community-dwelling older adults. Faecalibacterium prausnitzii has previously shown to have beneficial properties. Senior orienteers also had a lower abundance of Parasutterella excrementihominis and Bilophila unclassified, which have been associated with impaired GI health. We could not observe any difference between the groups in terms of Shannon diversity index. Interestingly, a subgroup of community-dwelling older adults showed an atypical microbiota profile as well as the parameters for gastrointestinal symptoms and well-being closer to senior orienteers. Conclusions: Our results suggest specific composition characteristics of healthy microbiota in the elderly, and show that certain components of nutrition as well as psychological distress are not as tightly connected with composition or diversity variation in faecal microbiota samples.
Collapse
Affiliation(s)
- Frida Fart
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 702 81 Örebro, Sweden; (F.F.); (S.K.R.); (R.W.); (I.R.); (J.P.G.-M.); (L.T.); (R.J.B.); (D.R.); (I.S.)
| | - Sukithar Kochappi Rajan
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 702 81 Örebro, Sweden; (F.F.); (S.K.R.); (R.W.); (I.R.); (J.P.G.-M.); (L.T.); (R.J.B.); (D.R.); (I.S.)
| | - Rebecca Wall
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 702 81 Örebro, Sweden; (F.F.); (S.K.R.); (R.W.); (I.R.); (J.P.G.-M.); (L.T.); (R.J.B.); (D.R.); (I.S.)
| | - Ignacio Rangel
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 702 81 Örebro, Sweden; (F.F.); (S.K.R.); (R.W.); (I.R.); (J.P.G.-M.); (L.T.); (R.J.B.); (D.R.); (I.S.)
| | - John Peter Ganda-Mall
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 702 81 Örebro, Sweden; (F.F.); (S.K.R.); (R.W.); (I.R.); (J.P.G.-M.); (L.T.); (R.J.B.); (D.R.); (I.S.)
- Laboratory of Translational Mucosal Immunology, Digestive Diseases Research Unit, Vall d’Hebron Institut de Recerca, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
| | - Lina Tingö
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 702 81 Örebro, Sweden; (F.F.); (S.K.R.); (R.W.); (I.R.); (J.P.G.-M.); (L.T.); (R.J.B.); (D.R.); (I.S.)
| | - Robert J. Brummer
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 702 81 Örebro, Sweden; (F.F.); (S.K.R.); (R.W.); (I.R.); (J.P.G.-M.); (L.T.); (R.J.B.); (D.R.); (I.S.)
| | - Dirk Repsilber
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 702 81 Örebro, Sweden; (F.F.); (S.K.R.); (R.W.); (I.R.); (J.P.G.-M.); (L.T.); (R.J.B.); (D.R.); (I.S.)
| | - Ida Schoultz
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 702 81 Örebro, Sweden; (F.F.); (S.K.R.); (R.W.); (I.R.); (J.P.G.-M.); (L.T.); (R.J.B.); (D.R.); (I.S.)
| | - Carl Mårten Lindqvist
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 702 81 Örebro, Sweden; (F.F.); (S.K.R.); (R.W.); (I.R.); (J.P.G.-M.); (L.T.); (R.J.B.); (D.R.); (I.S.)
- Correspondence:
| |
Collapse
|
921
|
Liu S, Gao J, Zhu M, Liu K, Zhang HL. Gut Microbiota and Dysbiosis in Alzheimer's Disease: Implications for Pathogenesis and Treatment. Mol Neurobiol 2020; 57:5026-5043. [PMID: 32829453 PMCID: PMC7541367 DOI: 10.1007/s12035-020-02073-3] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Understanding how gut flora influences gut-brain communications has been the subject of significant research over the past decade. The broadening of the term “microbiota-gut-brain axis” from “gut-brain axis” underscores a bidirectional communication system between the gut and the brain. The microbiota-gut-brain axis involves metabolic, endocrine, neural, and immune pathways which are crucial for the maintenance of brain homeostasis. Alterations in the composition of gut microbiota are associated with multiple neuropsychiatric disorders. Although a causal relationship between gut dysbiosis and neural dysfunction remains elusive, emerging evidence indicates that gut dysbiosis may promote amyloid-beta aggregation, neuroinflammation, oxidative stress, and insulin resistance in the pathogenesis of Alzheimer’s disease (AD). Illustration of the mechanisms underlying the regulation by gut microbiota may pave the way for developing novel therapeutic strategies for AD. In this narrative review, we provide an overview of gut microbiota and their dysregulation in the pathogenesis of AD. Novel insights into the modification of gut microbiota composition as a preventive or therapeutic approach for AD are highlighted.
Collapse
Affiliation(s)
- Shan Liu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China
| | - Jiguo Gao
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China
| | - Mingqin Zhu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China.,Departments of Laboratory Medicine and Pathology, Neurology and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Kangding Liu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China.
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Shuangqing Road 83, Beijing, 100085, China.
| |
Collapse
|
922
|
Scazzocchio B, Minghetti L, D’Archivio M. Interaction between Gut Microbiota and Curcumin: A New Key of Understanding for the Health Effects of Curcumin. Nutrients 2020; 12:E2499. [PMID: 32824993 PMCID: PMC7551052 DOI: 10.3390/nu12092499] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Curcumin, a lipophilic polyphenol contained in the rhizome of Curcuma longa (turmeric), has been used for centuries in traditional Asian medicine, and nowadays it is widely used in food as dietary spice worldwide. It has received considerable attention for its pharmacological activities, which appear to act primarily through anti-inflammatory and antioxidant mechanisms. For this reason, it has been proposed as a tool for the management of many diseases, among which are gastrointestinal and neurological diseases, diabetes, and several types of cancer. However, the pharmacology of curcumin remains to be elucidated; indeed, a discrepancy exists between the well-documented in vitro and in vivo activities of curcumin and its poor bioavailability and chemical instability that should limit any therapeutic effect. Recently, it has been hypothesized that curcumin could exert direct regulative effects primarily in the gastrointestinal tract, where high concentrations of this polyphenol have been detected after oral administration. Consequently, it might be hypothesized that curcumin directly exerts its regulatory effects on the gut microbiota, thus explaining the paradox between its low systemic bioavailability and its wide pharmacological activities. It is well known that the microbiota has several important roles in human physiology, and its composition can be influenced by a multitude of environmental and lifestyle factors. Accordingly, any perturbations in gut microbiome profile or dysbiosis can have a key role in human disease progression. Interestingly, curcumin and its metabolites have been shown to influence the microbiota. It is worth noting that from the interaction between curcumin and microbiota two different phenomena arise: the regulation of intestinal microflora by curcumin and the biotransformation of curcumin by gut microbiota, both of them potentially crucial for curcumin activity. This review summarizes the most recent studies on this topic, highlighting the strong connection between curcumin and gut microbiota, with the final aim of adding new insight into the potential mechanisms by which curcumin exerts its effects.
Collapse
Affiliation(s)
- Beatrice Scazzocchio
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Luisa Minghetti
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Massimo D’Archivio
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| |
Collapse
|
923
|
Menden A, Hall D, Broedlow CA, Darcey T, Crawford F, Klatt N, Crynen S, Mullan M, Ait-Ghezala G. Candida rugosa lipase alters the gastrointestinal environment in wild-type mice. Biomed Pharmacother 2020; 130:110579. [PMID: 32771891 DOI: 10.1016/j.biopha.2020.110579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022] Open
Abstract
Diet and commercially available supplements can significantly impact the gut microbial composition; however, the effects of supplements often lack scientific data demonstrating the effects on healthy and diseased individuals. Hence, it was investigated, whether a frequently used supplement in humans, Candida rugosa lipase (CRL), gets delivered active beyond the stomach in the intestinal tract of C57BL/6 J mice and its impact on the gut microbial community and environment. We showed for the first time the movement of CRL in an active state through the mouse digestive tract by determination of intestinal CRL activity and free fatty acids concentrations. The short- and long-term administration of CRL resulted in significant alterations of the gut microbiome, favoring the growth of, for instance, Verrucomicrobia but also other species associated with normal body mass index (BMI) or butyrate expression, both considered beneficial. In addition, we showed that these changes persisted after supplementation and that gut barrier integrity was unaffected by the treatment. In conclusion, CRL can be delivered in an active state beyond the stomach and supplementation altered the murine gut microbiome favoring beneficial bacterial species, which may be of relevance in humans in healthy but also potentially in disease states.
Collapse
Affiliation(s)
- Ariane Menden
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, United States; Open University, Walton Hall, Kents Hill, Milton-Keynes, MK7 6AA, UK.
| | - Davane Hall
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, United States
| | - Courtney Ann Broedlow
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, United States
| | - Teresa Darcey
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, United States
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, United States; Open University, Walton Hall, Kents Hill, Milton-Keynes, MK7 6AA, UK; James A. Haley Veterans' Hospital, 13000 Bruce B. Downs Boulevard, Tampa, FL, 33612, United States
| | - Nichole Klatt
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, United States
| | - Stefan Crynen
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, United States; Open University, Walton Hall, Kents Hill, Milton-Keynes, MK7 6AA, UK
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, United States; Open University, Walton Hall, Kents Hill, Milton-Keynes, MK7 6AA, UK
| | - Ghania Ait-Ghezala
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, United States; Open University, Walton Hall, Kents Hill, Milton-Keynes, MK7 6AA, UK
| |
Collapse
|
924
|
Chomicki G, Werner GDA, West SA, Kiers ET. Compartmentalization drives the evolution of symbiotic cooperation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190602. [PMID: 32772665 DOI: 10.1098/rstb.2019.0602] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Across the tree of life, hosts have evolved mechanisms to control and mediate interactions with symbiotic partners. We suggest that the evolution of physical structures that allow hosts to spatially separate symbionts, termed compartmentalization, is a common mechanism used by hosts. Such compartmentalization allows hosts to: (i) isolate symbionts and control their reproduction; (ii) reward cooperative symbionts and punish or stop interactions with non-cooperative symbionts; and (iii) reduce direct conflict among different symbionts strains in a single host. Compartmentalization has allowed hosts to increase the benefits that they obtain from symbiotic partners across a diversity of interactions, including legumes and rhizobia, plants and fungi, squid and Vibrio, insects and nutrient provisioning bacteria, plants and insects, and the human microbiome. In cases where compartmentalization has not evolved, we ask why not. We argue that when partners interact in a competitive hierarchy, or when hosts engage in partnerships which are less costly, compartmentalization is less likely to evolve. We conclude that compartmentalization is key to understanding the evolution of symbiotic cooperation. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Gijsbert D A Werner
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, UK.,Netherlands Scientific Council for Government Policy, Buitenhof 34, 2513 AH Den Haag, The Netherlands
| | - Stuart A West
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - E Toby Kiers
- Department of Ecological Science, VU University, Amsterdam, The Netherlands
| |
Collapse
|
925
|
Perry IE, Sonu I, Scarpignato C, Akiyama J, Hongo M, Vega KJ. Potential proton pump inhibitor-related adverse effects. Ann N Y Acad Sci 2020; 1481:43-58. [PMID: 32761834 DOI: 10.1111/nyas.14428] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/31/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
Proton pump inhibitors (PPIs) are one of the most common medications taken by patients worldwide. PPIs are used to treat acid-related disorders, including gastroesophageal reflux disease, peptic ulcer disease, Helicobacter pylori infection, and nonsteroidal anti-inflammatory drug/stress ulceration. For some of these diseases, long-term treatment is necessary. With such prolonged use, concern and investigation into potential adverse effects has increased. In addition, data are available regarding potential anticancer effects of PPIs, especially regarding solid tumors. The aim of this review is to assess the literature on PPIs with regard to common concerns, such as drug-drug interactions, the intestinal microbiome, dementia and central nervous system disease, and osteoporosis, as well as to highlight potential negative and positive impacts of the drug in cancer.
Collapse
Affiliation(s)
- Issac E Perry
- Division of Gastroenterology and Hepatology, Augusta University-Medical College of Georgia, Augusta, Georgia
| | - Irene Sonu
- Division of Gastroenterology and Hepatology, Stanford University, Redwood City, California
| | - Carmelo Scarpignato
- Department of Health Sciences, United Campus of Malta, Msida, Malta.,Faculty of Medicine, Chinese University of Hong Kong, ShaTin, Hong Kong
| | - Junichi Akiyama
- Division of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Michio Hongo
- Department of Comprehensive Medicine, Tohoku University School of Medicine, Sendai, Miyagi, Japan.,Department of Medicine, Kurokawa General Hospital, Kurokawa, Miyagi, Japan
| | - Kenneth J Vega
- Division of Gastroenterology and Hepatology, Augusta University-Medical College of Georgia, Augusta, Georgia
| |
Collapse
|
926
|
Evolving Technologies in Gastrointestinal Microbiome Era and Their Potential Clinical Applications. J Clin Med 2020; 9:jcm9082565. [PMID: 32784731 PMCID: PMC7464388 DOI: 10.3390/jcm9082565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal microbiota (GIM) is a complex and diverse ecosystem that consists of community of fungi, viruses, protists and majorly bacteria. The association of several human illnesses, such as inflammatory bowel disease, allergy, metabolic syndrome and cancers, have been linked directly or indirectly to compromise in the integrity of the GIM, for which some medical interventions have been proposed or attempted. This review highlights and gives update on various technologies, including microfluidics, high-through-put sequencing, metabolomics, metatranscriptomics and culture in GIM research and their applications in gastrointestinal microbiota therapy, with a view to raise interest in the evaluation, validation and eventual use of these technologies in diagnosis and the incorporation of therapies in routine clinical practice.
Collapse
|
927
|
Lactobacillus plantarum PS128 Improves Physiological Adaptation and Performance in Triathletes through Gut Microbiota Modulation. Nutrients 2020; 12:nu12082315. [PMID: 32752178 PMCID: PMC7468698 DOI: 10.3390/nu12082315] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
A triathlon is an extremely high-intensity exercise and a challenge for physiological adaptation. A triathlete's microbiome might be modulated by diet, age, medical treatments, lifestyle, and exercise, thereby maintaining aerobiosis and optimum health and performance. Probiotics, prebiotics, and synbiotics have been reported to have health-promoting activities (e.g., immunoregulation and cancer prevention). However, few studies have addressed how probiotics affect the microbiota of athletes and how this translates into functional activities. In our previous study, we found that Lactobacillus plantarum PS128 could ameliorate inflammation and oxidative stress, with improved exercise performance. Thus, here we investigate how the microbiota of triathletes are altered by L. plantarum PS128 supplementation, not only for exercise performance but also for possible physiological adaptation. The triathletes were assigned to two groups: an L. plantarum 128 supplement group (LG, 3 × 1010 colony-forming units (CFU)/day) and a placebo group (PG). Both groups continued with their regular exercise training for the next 4 weeks. The endurance performance, body composition, biochemistries, blood cells, microbiota, and associated metabolites were further investigated. PS128 significantly increased the athletes' endurance, by about 130% as compared to the PG group, but there was no significant difference in maximal oxygen consumption (VO2max) and composition between groups. The PS128 supplementation (LG) modulated the athlete's microbiota with both significant decreases (Anaerotruncus, Caproiciproducens, Coprobacillus, Desulfovibrio, Dielma, Family_XIII, Holdemania, and Oxalobacter) and increases (Akkermansia, Bifidobacterium, Butyricimonas, and Lactobacillus), and the LG showed lower diversity when compared to the PG. Also, the short-chain fatty acids (SCFAs; acetate, propionate, and butyrate) of the LG were significantly higher than the PG, which might be a result of a modulation of the associated microbiota. In conclusion, PS128 supplementation was associated with an improvement on endurance running performance through microbiota modulation and related metabolites, but not in maximal oxygen uptake.
Collapse
|
928
|
Levy EI, Hoang DM, Vandenplas Y. The effects of proton pump inhibitors on the microbiome in young children. Acta Paediatr 2020; 109:1531-1538. [PMID: 32027402 DOI: 10.1111/apa.15213] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
AIM The use of proton pump inhibitor (PPI) treatments are increasing among paediatric patients worldwide. We aimed to review the effects of PPIs on the microbiome and its associated effect on the gastrointestinal, respiratory and metabolic systems. The role of probiotics is discussed. METHODS We searched for relevant articles published in English language in PubMed and Google Scholar. Articles were extracted using subject heading and key words of interest to the topic. RESULTS There is evidence that PPIs modify the microbiome of the mouth, gut and lungs. The specific adverse effects associated with PPIs were necrotising enterocolitis, late onset sepsis in premature infants, Clostridium difficile infection, asthma, obesity and small intestine bacterial overgrowth in young children. Studies on the use of probiotics to counteract adverse effects of PPIs were limited. CONCLUSION PPIs create dysbiosis of the microbiome in the mouth, gut and lungs in the paediatric population. Probiotics could restore dysbiosis but it has very poorly been studied if probiotics can counteract or prevent PPI induced adverse effects.
Collapse
Affiliation(s)
- Elvira I. Levy
- KidZ Health Castle Universitair Ziekenhuis Brussel Vrije Universiteit Brussel Brussels Belgium
| | - Delphine M. Hoang
- KidZ Health Castle Universitair Ziekenhuis Brussel Vrije Universiteit Brussel Brussels Belgium
| | - Yvan Vandenplas
- KidZ Health Castle Universitair Ziekenhuis Brussel Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
929
|
Khanal P, Maltecca C, Schwab C, Fix J, Bergamaschi M, Tiezzi F. Modeling host-microbiome interactions for the prediction of meat quality and carcass composition traits in swine. Genet Sel Evol 2020; 52:41. [PMID: 32727371 PMCID: PMC7388461 DOI: 10.1186/s12711-020-00561-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/17/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The objectives of this study were to evaluate genomic and microbial predictions of phenotypes for meat quality and carcass traits in swine, and to evaluate the contribution of host-microbiome interactions to the prediction. Data were collected from Duroc-sired three-way crossbred individuals (n = 1123) that were genotyped with a 60 k SNP chip. Phenotypic information and fecal 16S rRNA microbial sequences at three stages of growth (Wean, Mid-test, and Off-test) were available for all these individuals. We used fourfold cross-validation with animals grouped based on sire relatedness. Five models with three sets of predictors (full, informatively reduced, and randomly reduced) were evaluated. 'Full' included information from all genetic markers and all operational taxonomic units (OTU), while 'informatively reduced' and 'randomly reduced' represented a reduced number of markers and OTU based on significance preselection and random sampling, respectively. The baseline model included the fixed effects of dam line, sex and contemporary group and the random effect of pen. The other four models were constructed by including only genomic information, only microbiome information, both genomic and microbiome information, and microbiome and genomic information and their interaction. RESULTS Inclusion of microbiome information increased predictive ability of phenotype for most traits, in particular when microbiome information collected at a later growth stage was used. Inclusion of microbiome information resulted in higher accuracies and lower mean squared errors for fat-related traits (fat depth, belly weight, intramuscular fat and subjective marbling), objective color measures (Minolta a*, Minolta b* and Minolta L*) and carcass daily gain. Informative selection of markers increased predictive ability but decreasing the number of informatively reduced OTU did not improve model performance. The proportion of variation explained by the host-genome-by-microbiome interaction was highest for fat depth (~ 20% at Mid-test and Off-test) and shearing force (~ 20% consistently at Wean, Mid-test and Off-test), although the inclusion of the interaction term did not increase the accuracy of predictions significantly. CONCLUSIONS This study provides novel insight on the use of microbiome information for the phenotypic prediction of meat quality and carcass traits in swine. Inclusion of microbiome information in the model improved predictive ability of phenotypes for fat deposition and color traits whereas including a genome-by-microbiome term did not improve prediction accuracy significantly.
Collapse
Affiliation(s)
- Piush Khanal
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| | | | - Justin Fix
- The Maschhoffs LLC, Carlyle, IL 62231 USA
| | - Matteo Bergamaschi
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| | - Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
930
|
Williams L, Alshehri A, Robichaud B, Cudmore A, Gagnon J. The Role of the Bacterial Muramyl Dipeptide in the Regulation of GLP-1 and Glycemia. Int J Mol Sci 2020; 21:E5252. [PMID: 32722085 PMCID: PMC7432949 DOI: 10.3390/ijms21155252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
The host's intestinal microbiota contributes to endocrine and metabolic responses, but a dysbiosis in this environment can lead to obesity and insulin resistance. Recent work has demonstrated a role for microbial metabolites in the regulation of gut hormones, including the metabolic hormone, glucagon-like peptide-1 (GLP-1). Muramyl dipeptide (MDP) is a bacterial cell wall component which has been shown to improve insulin sensitivity and glucose tolerance in diet-induced obese mice by acting through the nucleotide oligomerization domain 2 (NOD2) receptor. The purpose of this study was to understand the effects of MDP on GLP-1 secretion and glucose regulation. We hypothesized that MDP enhances glucose tolerance by inducing intestinal GLP-1 secretion through NOD2 activation. First, we observed a significant increase in GLP-1 secretion when murine and human L-cells were treated with a fatty acid MDP derivative (L18-MDP). Importantly, we demonstrated the expression of the NOD2 receptor in mouse intestine and in L-cells. In mice, two intraperitoneal injections of MDP (5 mg/kg body weight) caused a significant increase in fasting total GLP-1 in chow-fed mice, however this did not lead to an improvement in oral glucose tolerance. When mice were exposed to a high-fat diet, they eventually lost this MDP-induced GLP-1 release. Finally, we demonstrated in L-cells that hyperglycemic conditions reduce the mRNA expression of NOD2 and GLP-1. Together these findings suggest MDP may play a role in enhancing GLP-1 during normal glycemic conditions but loses its ability to do so in hyperglycemia.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey Gagnon
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; (L.W.); (A.A.); (B.R.); (A.C.)
| |
Collapse
|
931
|
Chadha J, Nandi D, Atri Y, Nag A. Significance of human microbiome in breast cancer: Tale of an invisible and an invincible. Semin Cancer Biol 2020; 70:112-127. [PMID: 32717337 DOI: 10.1016/j.semcancer.2020.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023]
Abstract
The human microbiome is a mysterious treasure of the body playing endless important roles in the well-being of the host metabolism, digestion, and immunity. On the other hand, it actively participates in the development of a variety of pathological conditions including cancer. With the Human Microbiome Project initiative, metagenomics, and next-generation sequencing technologies in place, the last decade has witnessed immense explorations and investigations on the enigmatic association of breast cancer with the human microbiome. However, the connection between the human microbiome and breast cancer remains to be explored in greater detail. In fact, there are several emerging questions such as whether the host microbiota contributes to disease initiation, or is it a consequence of the disease is an irrevocably important question that demands a valid answer. Since the microbiome is an extremely complex community, gaps still remain on how this vital microbial organ plays a role in orchestrating breast cancer development. Nevertheless, undeniable evidence from studies has pinpointed the presence of specific microbial elements of the breast and gut to play a role in governing breast cancer. It is still unclear if an alteration in microbiome/dysbiosis leads to breast cancer or is it vice versa. Though specific microbial signatures have been detected to be associated with various breast cancer subtypes, the structure and composition of a core "healthy" microbiome is yet to be established. Probiotics seem to be a promising antidote for targeted prevention and treatment of breast cancer. Interestingly, these microbial communities can serve as potential biomarkers for prognosis, diagnosis, and treatment of breast cancer, thereby leading to the rise of a completely new era of personalized medicine. This review is a humble attempt to summarize the research findings on the human microbiome and its relation to breast cancer.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Deeptashree Nandi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Yama Atri
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
932
|
Cho J, Scragg R, Pandol SJ, Petrov MS. Exocrine Pancreatic Dysfunction Increases the Risk of New-Onset Diabetes Mellitus: Results of a Nationwide Cohort Study. Clin Transl Sci 2020; 14:170-178. [PMID: 32692901 PMCID: PMC7877819 DOI: 10.1111/cts.12837] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
It is well established that individuals with diabetes mellitus (DM) may develop exocrine pancreatic dysfunction (EPD) requiring pancreatic enzyme replacement therapy, whereas the converse relationship has been poorly studied. Pancreatitis is a disease that is well suited to investigate the latter as it is often characterized by the development of EPD and/or new‐onset DM. The aim was to investigate the association between EPD and the risk of new‐onset DM in individuals after the first attack of pancreatitis. Using nationwide pharmaceutical dispensing data and hospital discharge data, this cohort study included a total of 9,124 post‐pancreatitis individuals. EPD was defined as having two or more dispensing records of pancreatic enzymes. Considering EPD as a time‐dependent variable, multivariable Cox regression analysis was conducted. A 1‐year lag period between EPD and DM was introduced to minimize reverse causality. Age, sex, ethnicity, alcohol consumption, tobacco smoking, social deprivation index, Charlson comorbidity index, and use of proton pump inhibitors were adjusted for. In the overall cohort, EPD was associated with a significantly higher risk for new‐onset DM (adjusted hazard ratio, 3.83; 95% confidence interval, 2.37–6.18). The association remained statistically significant when a 1‐year lag period was applied (adjusted hazard ratio, 2.51; 95% confidence interval, 1.38–4.58), as well as when the analysis was constrained to mild acute pancreatitis (4.65; 2.18–9.93). The findings suggest that individuals with EPD, even those without extensive mechanistic destruction of the pancreas, are at an increased risk for new‐onset DM. Purposely designed studies are warranted to investigate mechanisms behind the association and if the mechanisms could be targeted therapeutically.
Collapse
Affiliation(s)
- Jaelim Cho
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Robert Scragg
- School of Population Health, University of Auckland, Auckland, New Zealand
| | - Stephen J Pandol
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
933
|
Togao M, Kawakami K, Otsuka J, Wagai G, Ohta-Takada Y, Kado S. Effects of gut microbiota on in vivo metabolism and tissue accumulation of cytochrome P450 3A metabolized drug: Midazolam. Biopharm Drug Dispos 2020; 41:275-282. [PMID: 32562497 PMCID: PMC7497050 DOI: 10.1002/bdd.2244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 12/04/2022]
Abstract
The link between drug‐metabolizing enzymes and gut microbiota is well established. In particular, hepatic cytochrome P450 (CYP) 3A activities are presumed to be affected by gut microbiota. However, there is no direct evidence that the gut microbiota affects CYP3A metabolism or the clearance of clinically relevant drugs in vivo. Our purpose was to evaluate the effects of gut microbiota on in vitro and in vivo drug metabolism and on the clearance of midazolam, which is a standard CYP3A metabolized drug. Hepatic Cyp3a activity and in vitro midazolam hydroxylase activity were compared using specific pathogen‐free (SPF) and germ‐free (GF) mice. In a pharmacokinetics (PK) study, SPF and GF mice were intraperitoneally injected with 60 mg/kg of midazolam, and plasma and tissue concentrations were measured. Hepatic Cyp3a activity and midazolam hydroxylase activity were significantly lower in GF mice than in SPF mice. Notably, in the PK study, the area under the plasma concentration–time curve from time zero to infinity and the elimination half‐life were approximately four‐fold higher in GF mice compared with SPF mice. Furthermore, the concentration of midazolam in the brain 180 min after administration was about 14‐fold higher in GF mice compared with SPF mice. Together, our results demonstrated that the gut microbiota altered the metabolic ability of Cyp3a and the tissue accumulation of midazolam.
Collapse
Affiliation(s)
- Masao Togao
- Safety Research Department, Yakult Central Institute, Kunitachi-shi, Tokyo, Japan
| | - Koji Kawakami
- Safety Research Department, Yakult Central Institute, Kunitachi-shi, Tokyo, Japan
| | - Jun Otsuka
- Safety Research Department, Yakult Central Institute, Kunitachi-shi, Tokyo, Japan
| | - Gaku Wagai
- Safety Research Department, Yakult Central Institute, Kunitachi-shi, Tokyo, Japan
| | - Yuki Ohta-Takada
- Safety Research Department, Yakult Central Institute, Kunitachi-shi, Tokyo, Japan
| | - Shoichi Kado
- Safety Research Department, Yakult Central Institute, Kunitachi-shi, Tokyo, Japan
| |
Collapse
|
934
|
Yang G, Yan Y, Zhang L, Ruan Z, Hu X, Zhang S, Li X. Porcine circovirus type 2 (PCV2) and Campylobacter infection induce diarrhea in piglets: Microbial dysbiosis and intestinal disorder. ACTA ACUST UNITED AC 2020; 6:362-371. [PMID: 33005770 PMCID: PMC7503086 DOI: 10.1016/j.aninu.2020.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Diarrhea is considered to be associated with microbial dysbiosis caused by infection of pathogens but poorly understood. We herein characterized the colonic microbiota of diarrheal early-weaning piglets infected with porcine circovirus type 2 (PCV2) and Campylobacter. Campylobacter infection significantly decreased species richness and Shannon diversity index of colonic microbiota together with a significant increase in the proportion of Campylobacter and Enterobacteriaceae, whereas no significant difference on the above indexes was observed in piglets infected with PCV2 compared with healthy piglets. PCV2 and Campylobacter infection could disturb the homeostasis of colonic microbiota through deterioration of ecological network within microbial community, and specially Campylobacter performed as a module hub in ecological networks. The microbial dysbiosis caused metabolic dysfunction and led to a remarkable reduction in production of short chain fatty acids, following by a higher pH level in colon cavity. Campylobacter infection disturbed the function of colonic tract barrier observed in terms of significant lower relative expression of claudin-1, occluding, and zonula occludens protein-1 genes, and PCV2 infection induced intestinal inflammation together with a higher permeability of colon. Generally, these results suggested that PCV2 and Campylobacter infection could induce microbial dysbiosis and metabolic dysfunction, and cause intestinal disorder, all of which finally were associated to contribute to the diarrhea of early-weaning piglets.
Collapse
Affiliation(s)
- Gang Yang
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yali Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Shuo Zhang
- Yunnan Xinan Tianyou Animal Husbandry Technology Co., Ltd., Kunming, 650032, China
| | - Xiaozhen Li
- Yunnan Xinan Tianyou Animal Husbandry Technology Co., Ltd., Kunming, 650032, China
| |
Collapse
|
935
|
Sex-Specific Differences in the Gut Microbiome in Response to Dietary Fiber Supplementation in IL-10-Deficient Mice. Nutrients 2020; 12:nu12072088. [PMID: 32679670 PMCID: PMC7400915 DOI: 10.3390/nu12072088] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
There is growing interest in studying dietary fiber to stimulate microbiome changes that might prevent or alleviate inflammatory bowel disease (IBD). However, dietary fiber effects have shown varying degrees of efficacy, for reasons that are unclear. This study examined whether the effects of isomaltodextrin on gut microbiota and IBD were dependent on dose or host sex, using an Interleukin (IL)-10 deficient murine colitis model. After 12 weeks, colonic IL-12p70 was depressed in male mice receiving high-dose isomaltodextrin supplementation compared to the control group (p = 0.04). Male mice receiving high-dose isomaltodextrin exhibited changes in microbial alpha-diversity, including enhanced richness and evenness (p = 0.01) and limited reduction in the relative abundance of Coprococcus (q = 0.08), compared to the control group. These microbial compositional changes were negatively associated with IL-12p70 levels in the male group (rs ≤ −0.51, q ≤ 0.08). In contrast, female mice receiving isomaltodextrin displayed a reduction in alpha-diversity and Coprococcus abundance and a high level of IL-12p70, as did the control group. Together, these results indicate that isomaltodextrin altered the gut microbial composition linking specific immune-regulatory cytokine responses, while the interactions among fiber, microbiota and immune response were dose dependent and largely sex specific. The results further indicate that interactions between environmental and host factors can affect microbiome manipulation in the host.
Collapse
|
936
|
Khoury R, Grossberg GT. Deciphering Alzheimer's disease: predicting new therapeutic strategies via improved understanding of biology and pathogenesis. Expert Opin Ther Targets 2020; 24:859-868. [PMID: 32603232 DOI: 10.1080/14728222.2020.1790530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION There is no cure for Alzheimer's disease (AD). One explanation may pertain to the need to intervene as early as possible upstream from the accumulation of β-amyloid plaques and tau tangles. AREAS COVERED A PUBMED literature search was completed to review the biological or pathological changes at the basis of disease initiation; this includes neuroinflammation, oxidative stress, microbiome changes and glymphatic system dysfunction. Innovative therapeutic strategies based on these mechanisms are also discussed. EXPERT OPINION Improved understanding of the pathophysiological mechanisms that underly AD would assist in the identification of drug targets for clinical trials. Furthermore, pharmacokinetic and pharmacodynamic studies are key for the characterization of the properties of disease-modifying drugs and the improvement of their penetration of the blood-brain barrier. Drug targets can be examined at different stages of the disease, hence the importance of selecting and recruiting the appropriate participants, preferably at the earliest stage of AD. New trial designs should be established which primarily involve combination therapies that can work synergistically on common pathways. Going forward, innovative treatment strategies involving nanotechnology, young blood products transfusion and photobiomodulation also offer promise for the future.
Collapse
Affiliation(s)
- Rita Khoury
- Saint George Hospital University Medical Center-SGHUMC, University of Balamand School of Medicine , Beirut, Lebanon
| | - George T Grossberg
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine , Saint Louis, Missouri, USA
| |
Collapse
|
937
|
Crouwel F, Buiter HJC, de Boer NK. Gut microbiota-driven drug metabolism in inflammatory bowel disease. J Crohns Colitis 2020; 15:jjaa143. [PMID: 32652007 PMCID: PMC7904070 DOI: 10.1093/ecco-jcc/jjaa143] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS The gut microbiota plays an important role in the metabolization and modulation of several types of drugs. With this study we aimed to review the literature about microbial drug metabolism of medication prescribed in inflammatory bowel disease practice. METHODS A systematic literature search was performed in Embase and PubMed from inception to October 2019. The search was conducted with predefined MeSH/Emtree and text terms. All studies about drug metabolism by microbiota of medication prescribed in inflammatory bowel disease practice were eligible. A total of 1018 records were encountered and 89 articles were selected for full text reading. RESULTS Intestinal bacterial metabolism or modulation is of influence in four specific drugs used in inflammatory bowel disease (mesalazines, methotrexate, glucocorticoids and thioguanine). The gut microbiota cleaves the azo-bond of sulfasalazine, balsalazide and olsalazine and releases the active moiety 5-aminosalicylic acid. It has an impact on the metabolization and potentially on the response of methotrexate therapy. Especially thioguanine can be converted by intestinal bacteria into the pharmacological active 6-thioguanine nucleotides without the requirement of host metabolism. Glucocorticoid compounds can be prone to bacterial degradation. CONCLUSION The human intestinal microbiota can have a major impact on drug metabolism and efficacy of medication prescribed in inflammatory bowel disease practice. A better understanding of these interactions between microbiota and drugs is needed and should be an integral part of the drug development pathway of new inflammatory bowel disease medication.
Collapse
Affiliation(s)
- Femke Crouwel
- Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hans J C Buiter
- Department of Clinical Pharmacology and Pharmacy, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Nanne K de Boer
- Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
938
|
Wu L, Kang A, Lin Y, Shan C, Zhou Z, Shi X, Yu B. LC-MS/MS Method Development and Validation for the Determination of Ilexsaponin A1 and Its Application in Intestinal Bacterial Metabolic Study. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190304141416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background:
Ilexsaponin A1, one of the most representative triterpene saponin components
in the roots of I. pubescens, showed its effects in anticoagulation and antithrombosis, attenuating
ischemia-reperfusion-induced myocardial, angiogenesis and inhibiting phosphodiesterase.
Objective:
Reveal the key intestinal bacterial strains responsible for ilexsaponin A1 metabolism, and
clarify their metabolic behavior.
Methods:
An accurate and sensitive LC-MS/MS method for the determination of “ilexsaponin A1 in
General Anaerobic Medium (GAM) broth” was established and systematically validated. Then it was
applied to screen and study the metabolic potential of the intestinal bacterial strains in an anaerobic
incubation system.
Results:
Quantitation of ilexsaponin A1 could be performed within an analytical run time of 14.5 min,
in the linear range of 2 - 2000 ng/ml. Enterobacter sakazakii, Bifidobacterium breve, Bifidobacterium
adolescentis, Bifidobacterium catenulatum, and Bifidobacterium angulatum were identified to have a
potential effect to metabolize ilexsaponin A1 to different extents; and further bacterial metabolic studies
were performed to clarify their metabolic capacity and behavior.
Conclusion:
This paper contributes to a better understanding of the intestinal bacterial metabolism of
ilexsaponin A1 and provides scientific evidence for its clinical application. Additionally, the importance
of intestinal bacterial strains in the disposition of natural products was also highlighted.
Collapse
Affiliation(s)
- Liang Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - An Kang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yujie Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenxiao Shan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhu Zhou
- Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211, United States
| | - Xuqin Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bin Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
939
|
Fecal Gram stain morphotype and their distribution patterns in a Cameroonian cohort with and without HIV infection. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
940
|
Aoun A, Darwish F, Hamod N. The Influence of the Gut Microbiome on Obesity in Adults and the Role of Probiotics, Prebiotics, and Synbiotics for Weight Loss. Prev Nutr Food Sci 2020; 25:113-123. [PMID: 32676461 PMCID: PMC7333005 DOI: 10.3746/pnf.2020.25.2.113] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
The link between the gut microbiome and obesity is not well defined. Understanding of the role of the gut microbiome in weight and health management may lead to future revolutionary changes for treating obesity. This review examined the relationship between obesity and the gut microbiome, and the role of probiotics, prebiotics, and synbiotics for preventing and treating obesity. We used PubMed and Google Scholar to collect appropriate articles for the review. We showed that the gut microbiome has an impact on nutrient metabolism and energy expenditure. Moreover, different modalities of obesity treatment have been shown to change the diversity and composition of the gut microbiome; this raises questions about the role these changes may play in weight loss. In addition, studies have shown that supplementation with probiotics, prebiotics, and synbiotics may alter the secretion of hormones, neurotransmitters, and inflammatory factors, thus preventing food intake triggers that lead to weight gain. Further clinical studies are needed to better understand how different species of bacteria in the gut microbiome may affect weight gain, and to determine the most appropriate doses, compositions, and regimens of probiotics, prebiotics, and synbiotics supplementation for long-term weight control.
Collapse
Affiliation(s)
- Antoine Aoun
- Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh 72, Lebanon
| | - Fatima Darwish
- Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh 72, Lebanon
| | - Natacha Hamod
- Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh 72, Lebanon
| |
Collapse
|
941
|
Parbie PK, Mizutani T, Ishizaka A, Kawana-Tachikawa A, Runtuwene LR, Seki S, Abana CZY, Kushitor D, Bonney EY, Ofori SB, Uematsu S, Imoto S, Kimura Y, Kiyono H, Ishikawa K, Ampofo WK, Matano T. Fecal Microbiome Composition in Healthy Adults in Ghana. Jpn J Infect Dis 2020; 74:42-47. [PMID: 32611986 DOI: 10.7883/yoken.jjid.2020.469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies have indicated an association between gut microbiome composition and various disorders, including infectious diseases. The composition of the microbiome differs among ethnicities and countries, possibly resulting in diversified interactions between host immunity and the gut microbiome. Characterization of baseline microbiome composition in healthy people is an essential step for better understanding of the biological interactions associated with individual populations. However, data on the gut/fecal microbiome have not been accumulated for individuals in West Africa. In the present study, we examined the fecal microbiome composition in healthy adults in Ghana. Toward this, 16S rRNA gene libraries were prepared using bacterial fractions derived from 55 Ghanaian adults, which were then subjected to next-generation sequencing. The fecal microbiome of the Ghanaian adults was dominated by Firmicutes (Faecalibacterium, Subdoligranulum, and Ruminococcaceae UCG-014), Proteobacteria (Escherichia-Shigella and Klebsiella), and Bacteroidetes (Prevotella 9 and Bacteroides), consistent with previous observations in African cohorts. Further, our analysis revealed differences in microbiome composition and a lower diversity of the fecal microbiome in the Ghanaian cohort compared with those reported in non-African countries. This is the first study to describe substantial fecal microbiome data obtained using high-throughput metagenomic tools on samples derived from a cohort in Ghana. The data may provide a valuable basis for determining the association between the fecal microbiome and progression of various diseases in West African populations.
Collapse
Affiliation(s)
- Prince Kofi Parbie
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Japan.,Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| | | | - Aya Ishizaka
- The Institute of Medical Science, The University of Tokyo, Japan
| | - Ai Kawana-Tachikawa
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Japan.,The Institute of Medical Science, The University of Tokyo, Japan
| | | | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, Japan
| | | | - Dennis Kushitor
- Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| | | | | | - Satoshi Uematsu
- The Institute of Medical Science, The University of Tokyo, Japan.,Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| | - Seiya Imoto
- The Institute of Medical Science, The University of Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| | - Yasumasa Kimura
- The Institute of Medical Science, The University of Tokyo, Japan
| | - Hiroshi Kiyono
- The Institute of Medical Science, The University of Tokyo, Japan.,Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Japan.,CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Department of Medicine, University of California San Diego, USA
| | - Koichi Ishikawa
- AIDS Research Center, National Institute of Infectious Diseases, Japan
| | | | - Tetsuro Matano
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Japan.,The Institute of Medical Science, The University of Tokyo, Japan
| |
Collapse
|
942
|
Peng C, Ouyang Y, Lu N, Li N. The NF-κB Signaling Pathway, the Microbiota, and Gastrointestinal Tumorigenesis: Recent Advances. Front Immunol 2020; 11:1387. [PMID: 32695120 PMCID: PMC7338561 DOI: 10.3389/fimmu.2020.01387] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) cancers, especially gastric cancer and colorectal cancer (CRC), represent a major global health burden. A large population of microorganisms residing in the GI tract regulate physiological processes, such as the immune response, metabolic balance, and homeostasis. Accumulating evidence has revealed the alteration of microbial communities in GI tumorigenesis. Experimental studies in cell lines and animal models showed the functional roles and molecular mechanisms of several bacteria in GI cancers, including Helicobacter pylori in gastric cancer as well as Fusobacterium nucleatum, Escherichia coli, Peptostreptococcus anaerobius, and Bacteroides fragilis in CRC. The transcriptional factor NF-κB plays a crucial role in the host response to microbial infection through orchestrating innate and adaptive immune functions. Moreover, NF-κB activity is linked to GI cancer initiation and development through its induction of chronic inflammation, cellular transformation and proliferation. Here, we provide an overview and discussion of modulation of the NF-κB signaling pathway by microbiota, especially infectious bacteria, in GI tumorigenesis, with a major focus on gastric cancer and CRC.
Collapse
Affiliation(s)
- Chao Peng
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yaobin Ouyang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
943
|
Akimbekov NS, Digel I, Sherelkhan DK, Lutfor AB, Razzaque MS. Vitamin D and the Host-Gut Microbiome: A Brief Overview. Acta Histochem Cytochem 2020; 53:33-42. [PMID: 32624628 PMCID: PMC7322162 DOI: 10.1267/ahc.20011] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
There is a growing body of evidence for the effects of vitamin D on intestinal host-microbiome interactions related to gut dysbiosis and bowel inflammation. This brief review highlights the potential links between vitamin D and gut health, emphasizing the role of vitamin D in microbiological and immunological mechanisms of inflammatory bowel diseases. A comprehensive literature search was carried out in PubMed and Google Scholar using combinations of keywords "vitamin D," "intestines," "gut microflora," "bowel inflammation". Only articles published in English and related to the study topic are included in the review. We discuss how vitamin D (a) modulates intestinal microbiome function, (b) controls antimicrobial peptide expression, and (c) has a protective effect on epithelial barriers in the gut mucosa. Vitamin D and its nuclear receptor (VDR) regulate intestinal barrier integrity, and control innate and adaptive immunity in the gut. Metabolites from the gut microbiota may also regulate expression of VDR, while vitamin D may influence the gut microbiota and exert anti-inflammatory and immune-modulating effects. The underlying mechanism of vitamin D in the pathogenesis of bowel diseases is not fully understood, but maintaining an optimal vitamin D status appears to be beneficial for gut health. Future studies will shed light on the molecular mechanisms through which vitamin D and VDR interactions affect intestinal mucosal immunity, pathogen invasion, symbiont colonization, and antimicrobial peptide expression.
Collapse
Affiliation(s)
- Nuraly S. Akimbekov
- Department of Biotechnology, al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ilya Digel
- Institute for Bioengineering FH Aachen University of Applied Sciences, Jülich, Germany
| | - Dinara K. Sherelkhan
- Department of Biotechnology, al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | | - Mohammed S. Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| |
Collapse
|
944
|
Affiliation(s)
- Amy Jennings
- Nutrition and Preventive Medicine Group, Norwich Medical School, University of East Anglia, Norwich NR4 7UK, UK
| | - Stephen C Cunnane
- Research Center on Aging and Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anne Marie Minihane
- Nutrition and Preventive Medicine Group, Norwich Medical School, University of East Anglia, Norwich NR4 7UK, UK,
| |
Collapse
|
945
|
Spector TD, Gardner CD. Challenges and opportunities for better nutrition science-an essay by Tim Spector and Christopher Gardner. BMJ 2020; 369:m2470. [PMID: 32591334 PMCID: PMC7318878 DOI: 10.1136/bmj.m2470] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The path to conducting better nutrition science entails recognising previous and inherent limitations and challenges and building on recent developments and opportunities, say Tim Spector and Christopher Gardner
Collapse
|
946
|
Abstract
Abstract
Purpose of Review
We examine recent developments in the treatment of cirrhosis by gut microbiome manipulation specifically focusing on the phase 1 safety and feasibility trials of faecal microbiota transplantation (FMT). We interrogate the published data so far on its feasibility, safety and efficacy.
Recent Findings
A large number of trials have demonstrated the efficacy of FMT in treating recurrent Clostridium difficile infection which is now considered standard of care. In cirrhosis, FMT is still being evaluated and there are a number of clinical trials underway. There are two phase 1 pilot safety studies that have been published with promising findings. However, the importance of rigorously testing donor stool for the presence of multi-drug resistant species has been highlighted and lessons have been learned.
Summary
For those patients with cirrhosis, replacing an unhealthy gut microbiome with a healthy one offers a promising antibiotic-free treatment that may reduce bacterial translocation and endotoxemia.
Collapse
|
947
|
Effect of Gluten-Free Diet on Gut Microbiota Composition in Patients with Celiac Disease and Non-Celiac Gluten/Wheat Sensitivity. Nutrients 2020; 12:nu12061832. [PMID: 32575561 PMCID: PMC7353361 DOI: 10.3390/nu12061832] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Celiac disease (CD) and non-celiac gluten/wheat sensitivity (NCG/WS) are the two most frequent conditions belonging to gluten-related disorders (GRDs). Both these diseases are triggered and worsened by gluten proteins ingestion, although other components, such as amylase/trypsin inhibitors (ATI) and fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs), seem to be involved in the NCG/WS onset. Therefore, the only effective treatment to date is the long-life adherence to a strictly gluten-free diet. Recently, increasing attention has been paid to the intestinal barrier, a dynamic system comprising various components, which regulate the delicate crosstalk between metabolic, motor, neuroendocrine and immunological functions. Among the elements characterizing the intestinal barrier, the microbiota plays a key role, modulating the gut integrity maintenance, the immune response and the inflammation process, linked to the CD and NCG/WS outbreak. This narrative review addresses the most recent findings on the gut microbiota modulation induced by the gluten-free diet (GFD) in healthy, CD and NCG/WS patients.
Collapse
|
948
|
Davis JS, Ferreira D, Paige E, Gedye C, Boyle M. Infectious Complications of Biological and Small Molecule Targeted Immunomodulatory Therapies. Clin Microbiol Rev 2020; 33:e00035-19. [PMID: 32522746 PMCID: PMC7289788 DOI: 10.1128/cmr.00035-19] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The past 2 decades have seen a revolution in our approach to therapeutic immunosuppression. We have moved from relying on broadly active traditional medications, such as prednisolone or methotrexate, toward more specific agents that often target a single receptor, cytokine, or cell type, using monoclonal antibodies, fusion proteins, or targeted small molecules. This change has transformed the treatment of many conditions, including rheumatoid arthritis, cancers, asthma, and inflammatory bowel disease, but along with the benefits have come risks. Contrary to the hope that these more specific agents would have minimal and predictable infectious sequelae, infectious complications have emerged as a major stumbling block for many of these agents. Furthermore, the growing number and complexity of available biologic agents makes it difficult for clinicians to maintain current knowledge, and most review articles focus on a particular target disease or class of agent. In this article, we review the current state of knowledge about infectious complications of biologic and small molecule immunomodulatory agents, aiming to create a single resource relevant to a broad range of clinicians and researchers. For each of 19 classes of agent, we discuss the mechanism of action, the risk and types of infectious complications, and recommendations for prevention of infection.
Collapse
Affiliation(s)
- Joshua S Davis
- Department of Infectious Diseases and Immunology, John Hunter Hospital, Newcastle, NSW, Australia
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - David Ferreira
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Emma Paige
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
| | - Craig Gedye
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Oncology, Calvary Mater Hospital, Newcastle, NSW, Australia
| | - Michael Boyle
- Department of Infectious Diseases and Immunology, John Hunter Hospital, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
949
|
McQuade JL, Daniel CR, Helmink BA, Wargo JA. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol 2020; 20:e77-e91. [PMID: 30712808 DOI: 10.1016/s1470-2045(18)30952-5] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023]
Abstract
Although novel therapies, including immunotherapy, have dramatically improved outcomes for many patients with cancer, overall outcomes are heterogeneous and existing biomarkers do not reliably predict response. To date, predictors of response to cancer therapy have largely focused on tumour-intrinsic features; however, there is growing evidence that other host factors (eg, host genomics and the microbiome) can substantially affect therapeutic response. The microbiome, which refers to microbiota within a host and their collective genomes, is becoming increasingly recognised for its influence on host immunity, as well as therapeutic responses to cancer treatment. Importantly, microbiota can be modified via several different strategies, affording new angles in cancer treatment to improve outcomes. In this Review, we examine the evidence on the role of the microbiome in cancer and therapeutic response, factors that influence and shape host microbiota, strategies to modulate the microbiome, and present key unanswered questions to be addressed in ongoing and future research.
Collapse
Affiliation(s)
- Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carrie R Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beth A Helmink
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
950
|
Machate DJ, Figueiredo PS, Marcelino G, Guimarães RDCA, Hiane PA, Bogo D, Pinheiro VAZ, de Oliveira LCS, Pott A. Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis. Int J Mol Sci 2020; 21:E4093. [PMID: 32521778 PMCID: PMC7312778 DOI: 10.3390/ijms21114093] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis. The abundance of the Bacteroidetes/Firmicutes ratio, as Actinobacteria and Proteobacteria species are associated with increased SCFA production, reported high-fat diet rich in medium-chain fatty acids (MCFAs), monounsaturated fatty acids (MUFAs), and n-3 polyunsaturated fatty acids (PUFAs) as well as low-fat diets rich in long-chain fatty acids (LCFAs). SCFAs play a key role in health promotion and prevention and, reduction and reversion of metabolic syndromes in the host. Furthermore, in this review, we discussed the type of fatty acids and their amount, including the administration time and their interplay with gut microbiota and its results about health or several metabolic dysbioses undergone by hosts.
Collapse
Affiliation(s)
- David Johane Machate
- Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (D.J.M.); (A.P.)
| | - Priscila Silva Figueiredo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (P.S.F.); (G.M.); (P.A.H.); (D.B.); (V.A.Z.P.)
| | - Gabriela Marcelino
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (P.S.F.); (G.M.); (P.A.H.); (D.B.); (V.A.Z.P.)
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (P.S.F.); (G.M.); (P.A.H.); (D.B.); (V.A.Z.P.)
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (P.S.F.); (G.M.); (P.A.H.); (D.B.); (V.A.Z.P.)
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (P.S.F.); (G.M.); (P.A.H.); (D.B.); (V.A.Z.P.)
| | - Verônica Assalin Zorgetto Pinheiro
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (P.S.F.); (G.M.); (P.A.H.); (D.B.); (V.A.Z.P.)
| | | | - Arnildo Pott
- Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (D.J.M.); (A.P.)
| |
Collapse
|