99901
|
Remission of obesity and insulin resistance is not sufficient to restore mitochondrial homeostasis in visceral adipose tissue. Redox Biol 2022; 54:102353. [PMID: 35777200 PMCID: PMC9287736 DOI: 10.1016/j.redox.2022.102353] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolic plasticity is the ability of a biological system to adapt its metabolic phenotype to different environmental stressors. We used a whole-body and tissue-specific phenotypic, functional, proteomic, metabolomic and transcriptomic approach to systematically assess metabolic plasticity in diet-induced obese mice after a combined nutritional and exercise intervention. Although most obesity and overnutrition-related pathological features were successfully reverted, we observed a high degree of metabolic dysfunction in visceral white adipose tissue, characterized by abnormal mitochondrial morphology and functionality. Despite two sequential therapeutic interventions and an apparent global healthy phenotype, obesity triggered a cascade of events in visceral adipose tissue progressing from mitochondrial metabolic and proteostatic alterations to widespread cellular stress, which compromises its biosynthetic and recycling capacity. In humans, weight loss after bariatric surgery showed a transcriptional signature in visceral adipose tissue similar to our mouse model of obesity reversion. Overall, our data indicate that obesity prompts a lasting metabolic fingerprint that leads to a progressive breakdown of metabolic plasticity in visceral adipose tissue.
Collapse
|
99902
|
Mellinger AL, Muddiman DC, Gamcsik MP. Highlighting Functional Mass Spectrometry Imaging Methods in Bioanalysis. J Proteome Res 2022; 21:1800-1807. [PMID: 35749637 DOI: 10.1021/acs.jproteome.2c00220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most mass spectrometry imaging (MSI) methods provide a molecular map of tissue content but little information on tissue function. Mapping tissue function is possible using several well-known examples of "functional imaging" such as positron emission tomography and functional magnetic resonance imaging that can provide the spatial distribution of time-dependent biological processes. These functional imaging methods represent the net output of molecular networks influenced by local tissue environments that are difficult to predict from molecular/cellular content alone. However, for decades, MSI methods have also been demonstrated to provide functional imaging data on a variety of biological processes. In fact, MSI exceeds some of the classic functional imaging methods, demonstrating the ability to provide functional data from the nanoscale (subcellular) to whole tissue or organ level. This Perspective highlights several examples of how different MSI ionization and detection technologies can provide unprecedented detailed spatial maps of time-dependent biological processes, namely, nucleic acid synthesis, lipid metabolism, bioenergetics, and protein metabolism. By classifying various MSI methods under the umbrella of "functional MSI", we hope to draw attention to both the unique capabilities and accessibility with the aim of expanding this underappreciated field to include new approaches and applications.
Collapse
Affiliation(s)
- Allyson L Mellinger
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.,Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Michael P Gamcsik
- UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, North Carolina 27695, United States
| |
Collapse
|
99903
|
Osorio-Conles Ó, Olbeyra R, Moizé V, Ibarzabal A, Giró O, Viaplana J, Jiménez A, Vidal J, de Hollanda A. Positive Effects of a Mediterranean Diet Supplemented with Almonds on Female Adipose Tissue Biology in Severe Obesity. Nutrients 2022; 14:nu14132617. [PMID: 35807797 PMCID: PMC9267991 DOI: 10.3390/nu14132617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
It has been suggested that weight-loss-independent Mediterranean diet benefits on cardiometabolic health and diabetes prevention may be mediated, at least in part, through the modulation of white adipose tissue (WAT) biology. This study aimed to evaluate the short-term effects of a dietary intervention based on the Mediterranean diet supplemented with almonds (MDSA) on the main features of obesity-associated WAT dysfunction. A total of 38 women with obesity were randomly assigned to a 3-month intervention with MDSA versus continuation of their usual dietary pattern. Subcutaneous (SAT) and visceral adipose tissue (VAT) biopsies were obtained before and after the dietary intervention, and at the end of the study period, respectively. MDSA favored the abundance of small adipocytes in WAT. In SAT, the expression of angiogenesis genes increased after MDSA intervention. In VAT, the expression of genes implicated in adipogenesis, angiogenesis, autophagy and fatty acid usage was upregulated. In addition, a higher immunofluorescence staining for PPARG, CD31+ cells and M2-like macrophages and increased ADRB1 and UCP2 protein contents were found compared to controls. Changes in WAT correlated with a significant reduction in circulating inflammatory markers and LDL-cholesterol levels. These results support a protective effect of a Mediterranean diet supplemented with almonds on obesity-related WAT dysfunction.
Collapse
Affiliation(s)
- Óscar Osorio-Conles
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (Ó.O.-C.); (V.M.); (J.V.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
| | - Romina Olbeyra
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
| | - Violeta Moizé
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (Ó.O.-C.); (V.M.); (J.V.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Ainitze Ibarzabal
- Gastrointestinal Surgery Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain;
| | - Oriol Giró
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
| | - Judith Viaplana
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (Ó.O.-C.); (V.M.); (J.V.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
| | - Amanda Jiménez
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Josep Vidal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (Ó.O.-C.); (V.M.); (J.V.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Correspondence: (J.V.); (A.d.H.); Tel.: +34-93-227-20-12 (J.V.); +34-93-227-98-46 (A.d.H.); Fax: +34-93-227-55-89 (J.V. & A.d.H.)
| | - Ana de Hollanda
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (J.V.); (A.d.H.); Tel.: +34-93-227-20-12 (J.V.); +34-93-227-98-46 (A.d.H.); Fax: +34-93-227-55-89 (J.V. & A.d.H.)
| |
Collapse
|
99904
|
The Role of Insulin Resistance in Fueling NAFLD Pathogenesis: From Molecular Mechanisms to Clinical Implications. J Clin Med 2022; 11:jcm11133649. [PMID: 35806934 PMCID: PMC9267803 DOI: 10.3390/jcm11133649] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a predominant hepatopathy that is rapidly becoming the most common cause of hepatocellular carcinoma worldwide. The close association with metabolic syndrome’s extrahepatic components has suggested the nature of the systemic metabolic-related disorder based on the interplay between genetic, nutritional, and environmental factors, creating a complex network of yet-unclarified pathogenetic mechanisms in which the role of insulin resistance (IR) could be crucial. This review detailed the clinical and pathogenetic evidence involved in the NAFLD–IR relationship, presenting both the classic and more innovative models. In particular, we focused on the reciprocal effects of IR, oxidative stress, and systemic inflammation on insulin-sensitivity disruption in critical regions such as the hepatic and the adipose tissue, while considering the impact of genetics/epigenetics on the regulation of IR mechanisms as well as nutrients on specific insulin-related gene expression (nutrigenetics and nutrigenomics). In addition, we discussed the emerging capability of the gut microbiota to interfere with physiological signaling of the hormonal pathways responsible for maintaining metabolic homeostasis and by inducing an abnormal activation of the immune system. The translation of these novel findings into clinical practice could promote the expansion of accurate diagnostic/prognostic stratification tools and tailored pharmacological approaches.
Collapse
|
99905
|
Nývltová E, Dietz JV, Seravalli J, Khalimonchuk O, Barrientos A. Coordination of metal center biogenesis in human cytochrome c oxidase. Nat Commun 2022; 13:3615. [PMID: 35750769 PMCID: PMC9232578 DOI: 10.1038/s41467-022-31413-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/16/2022] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial cytochrome c oxidase (CcO) or respiratory chain complex IV is a heme aa3-copper oxygen reductase containing metal centers essential for holo-complex biogenesis and enzymatic function that are assembled by subunit-specific metallochaperones. The enzyme has two copper sites located in the catalytic core subunits. The COX1 subunit harbors the CuB site that tightly associates with heme a3 while the COX2 subunit contains the binuclear CuA site. Here, we report that in human cells the CcO copper chaperones form macromolecular assemblies and cooperate with several twin CX9C proteins to control heme a biosynthesis and coordinate copper transfer sequentially to the CuA and CuB sites. These data on CcO illustrate a mechanism that regulates the biogenesis of macromolecular enzymatic assemblies with several catalytic metal redox centers and prevents the accumulation of cytotoxic reactive assembly intermediates.
Collapse
Affiliation(s)
- Eva Nývltová
- Department of Neurology, University of Miami Miller School of Medicine, 1420NW 9th Ave, Miami, FL, 33136, USA
| | - Jonathan V Dietz
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St. Beadle Center, Lincoln, NE, 68588, USA
| | - Javier Seravalli
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, 1901 Vine St. Beadle Center, Lincoln, NE, 68588, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St. Beadle Center, Lincoln, NE, 68588, USA
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, 1901 Vine St. Beadle Center, Lincoln, NE, 68588, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1420NW 9th Ave, Miami, FL, 33136, USA.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1420NW 9th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
99906
|
Anderson B, Ordaz A, Zlomislic V, Allen RT, Garfin SR, Schuepbach R, Farshad M, Schenk S, Ward SR, Shahidi B. Paraspinal Muscle Health is Related to Fibrogenic, Adipogenic, and Myogenic Gene Expression in Patients with Lumbar Spine Pathology. BMC Musculoskelet Disord 2022; 23:608. [PMID: 35739523 PMCID: PMC9229083 DOI: 10.1186/s12891-022-05572-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lumbar spine pathology is a common feature of lower back and/or lower extremity pain and is associated with observable degenerative changes in the lumbar paraspinal muscles that are associated with poor clinical prognosis. Despite the commonly observed phenotype of muscle degeneration in this patient population, its underlying molecular mechanisms are not well understood. The aim of this study was to investigate the relationships between groups of genes within the atrophic, myogenic, fibrogenic, adipogenic, and inflammatory pathways and multifidus muscle health in individuals undergoing surgery for lumbar spine pathology. METHODS Multifidus muscle biopsies were obtained from patients (n = 59) undergoing surgery for lumbar spine pathology to analyze 42 genes from relevant adipogenic/metabolic, atrophic, fibrogenic, inflammatory, and myogenic gene pathways using quantitative polymerase chain reaction. Multifidus muscle morphology was examined preoperatively in these patients at the level and side of biopsy using T2-weighted magnetic resonance imaging to determine whole muscle compartment area, lean muscle area, fat cross-sectional areas, and proportion of fat within the muscle compartment. These measures were used to investigate the relationships between gene expression patterns and muscle size and quality. RESULTS Relationships between gene expression and imaging revealed significant associations between decreased expression of adipogenic/metabolic gene (PPARD), increased expression of fibrogenic gene (COL3A1), and lower fat fraction on MRI (r = -0.346, p = 0.018, and r = 0.386, p = 0.047 respectively). Decreased expression of myogenic gene (mTOR) was related to greater lean muscle cross-sectional area (r = 0.388, p = 0.045). CONCLUSION Fibrogenic and adipogenic/metabolic genes were related to pre-operative muscle quality, and myogenic genes were related to pre-operative muscle size. These findings provide insight into molecular pathways associated with muscle health in the presence of lumbar spine pathology, establishing a foundation for future research that addresses how these changes impact outcomes in this patient population.
Collapse
Affiliation(s)
- Brad Anderson
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| | - Angel Ordaz
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA.
| | - Vinko Zlomislic
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| | - R Todd Allen
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| | - Steven R Garfin
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| | - Regula Schuepbach
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Mazda Farshad
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| | - Samuel R Ward
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| | - Bahar Shahidi
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| |
Collapse
|
99907
|
Bai N, Lu X, Jin L, Alimujiang M, Ma J, Hu F, Xu Y, Sun J, Xu J, Zhang R, Han J, Hu C, Yang Y. CLSTN3 gene variant associates with obesity risk and contributes to dysfunction in white adipose tissue. Mol Metab 2022; 63:101531. [PMID: 35753632 PMCID: PMC9254126 DOI: 10.1016/j.molmet.2022.101531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Objective White adipose tissue (WAT) possesses the remarkable remodeling capacity, and maladaptation of this ability contributes to the development of obesity and associated comorbidities. Calsyntenin-3 (CLSTN3) is a transmembrane protein that promotes synapse development in brain. Even though this gene has been reported to be associated with adipose tissue, its role in the regulation of WAT function is unknown yet. We aim to further assess the expression pattern of CLSTN3 gene in human adipose tissue, and investigate its regulatory impact on WAT function. Methods In our study, we observed the expression pattern of Clstn3/CLSTN3 gene in mouse and human WAT. Genetic association study and expression quantitative trait loci analysis were combined to identify the phenotypic effect of CLSTN3 gene variant in humans. This was followed by mouse experiments using adeno-associated virus-mediated human CLSTN3 overexpression in inguinal WAT. We investigated the effect of CLSTN3 on WAT function and overall metabolic homeostasis, as well as the possible underlying molecular mechanism. Results We observed that CLSTN3 gene was routinely expressed in human WAT and predominantly enriched in adipocyte fraction. Furthermore, we identified that the variant rs7296261 in the CLSTN3 locus was associated with a high risk of obesity, and its risk allele was linked to an increase in CLSTN3 expression in human WAT. Overexpression of CLSTN3 in inguinal WAT of mice resulted in diet-induced local dysfunctional expansion, liver steatosis, and systemic metabolic deficiency. In vivo and ex vivo lipolysis assays demonstrated that CLSTN3 overexpression attenuated catecholamine-stimulated lipolysis. Mechanistically, CLSTN3 could interact with amyloid precursor protein (APP) in WAT and increase APP accumulation in mitochondria, which in turn impaired adipose mitochondrial function and promoted obesity. Conclusion Taken together, we provide the evidence for a novel role of CLSTN3 in modulating WAT function, thereby reinforcing the fact that targeting CLSTN3 may be a potential approach for the treatment of obesity and associated metabolic diseases. CLSTN3 is expressed in the adipocyte fraction of human adipose tissue and mainly localizes to the plasma membrane. SNP rs7296261 in human CLSTN3 locus is associated with obesity risk. Overexpression of CLSTN3 leads to adipose tissue dysfunction in mice. CLSTN3 can attenuate catecholamine-stimulated lipolysis. CLSTN3 overexpression increases mitochondrial APP localization of mouse adipose tissue.
Collapse
Affiliation(s)
- Ningning Bai
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Xuhong Lu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Li Jin
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Miriayi Alimujiang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Jingyuan Ma
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Fan Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Yuejie Xu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Jingjing Sun
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Jun Xu
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rong Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China.
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China.
| | - Ying Yang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China.
| |
Collapse
|
99908
|
Effect of Siberian Ginseng Water Extract as a Dietary Additive on Growth Performance, Blood Biochemical Indexes, Lipid Metabolism, and Expression of PPARs Pathway-Related Genes in Genetically Improved Farmed Tilapia (Oreochromis niloticus). FISHES 2022. [DOI: 10.3390/fishes7040149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Overnutrition in high-density aquaculture can negatively affect the health of farmed fish. The Chinese herbal medicine Siberian ginseng (Acanthopanax senticosus, AS) can promote animal growth and immunity, and regulate lipid metabolism. Therefore, we conducted an 8-week experiment, in which Oreochromis niloticus was fed with a diet supplemented with different concentrations of AS water extract (ASW) (0‰, 0.1‰, 0.2‰, 0.4‰, 0.8‰, and 1.6‰). The ASW improved the growth performance and increased the specific growth rate (SGR). Linear regression analysis based on the SGR estimated that the optimal ASW amount was 0.74‰. Dietary supplementation with 0.4–0.8‰ ASW reduced the triglyceride and total cholesterol levels in the serum and liver, and regulated lipid transport by increasing the high-density lipoprotein cholesterol concentration and lowering the low-density lipoprotein cholesterol concentration. Dietary supplementation with ASW increased the activities of superoxide dismutase and catalase in the liver, thereby improving the antioxidant capacity. Moreover, ASW modulated the transcription of genes in the peroxisome proliferator-activated receptor signaling pathway in the liver (upregulation of PPARα, APOA1b, and FABP10a and downregulation of PPARγ), thereby regulating fatty acid synthesis and metabolism and slowing fat deposition. These results showed that 0.4–0.8‰ ASW can slow fat deposition and protected the liver from cell damage and abnormal lipid metabolism.
Collapse
|
99909
|
Yang Y, Wang Y, Lv Y, Ding H. Dissecting the Roles of Lipids in Preeclampsia. Metabolites 2022; 12:metabo12070590. [PMID: 35888713 PMCID: PMC9323219 DOI: 10.3390/metabo12070590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Preeclampsia is a multisystem pregnancy disorder that is characterized by different degrees of placental malperfusion, with release of antiangiogenic factors into the circulation, leading to maternal vascular endothelial injury and high blood pressure. As a major cause of maternal and perinatal mortality and morbidity worldwide, once preeclampsia has been diagnosed, there are no curative treatments except for delivery. Lipids serve as ubiquitous and multifunctional metabolites that are integral and essential to many diverse functions on both a cellular and organismal level. Lipid metabolic abnormalities have emerged as potential risk factors for the development and progression of preeclampsia. This review comprehensively examines decades of discovery to illuminate the roles of lipids and dysregulation in the levels of various lipid classes in preeclampsia. In addition, the roles of lipids are summarized to further understand the pathogenic mechanisms of preeclampsia. Overall, the review highlights the promising potential of pathophysiology and lipid-targeting therapeutic strategies in preeclampsia.
Collapse
Affiliation(s)
| | | | - Yan Lv
- Correspondence: (Y.L.); (H.D.)
| | | |
Collapse
|
99910
|
Yue S, Li G, He S, Li T. The central role of mTORC1 in amino acid sensing. Cancer Res 2022; 82:2964-2974. [PMID: 35749594 DOI: 10.1158/0008-5472.can-21-4403] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth that controls cell homeostasis in response to nutrients, growth factors, and other environmental cues. Recent studies have emphasized the importance of lysosomes as a hub for nutrient sensing, especially amino acid sensing by mTORC1. This review highlights recent advances in understanding the amino acid-mTORC1 signaling axis and the role of mTORC1 in cancer.
Collapse
|
99911
|
Xiang L, Niu K, Peng Y, Zhang X, Li X, Ye R, Yu G, Ye G, Xiang H, Song Q, Feng Q. DNA G-quadruplex structure participates in regulation of lipid metabolism through acyl-CoA binding protein. Nucleic Acids Res 2022; 50:6953-6967. [PMID: 35748856 PMCID: PMC9262599 DOI: 10.1093/nar/gkac527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
G-quadruplex structure (G4) is a type of DNA secondary structure that widely exists in the genomes of many organisms. G4s are believed to participate in multiple biological processes. Acyl-CoA binding protein (ACBP), a ubiquitously expressed and highly conserved protein in eukaryotic cells, plays important roles in lipid metabolism by transporting and protecting acyl-CoA esters. Here, we report the functional identification of a G4 in the promoter of the ACBP gene in silkworm and human cancer cells. We found that G4 exists as a conserved element in the promoters of ACBP genes in invertebrates and vertebrates. The BmACBP G4 bound with G4-binding protein LARK regulated BmACBP transcription, which was blocked by the G4 stabilizer pyridostatin (PDS) and G4 antisense oligonucleotides. PDS treatment with fifth instar silkworm larvae decreased the BmACBP expression and triacylglycerides (TAG) level, resulting in reductions in fat body mass, body size and weight and growth and metamorphic rates. PDS treatment and knocking out of the HsACBP G4 in human hepatic adenocarcinoma HepG2 cells inhibited the expression of HsACBP and decreased the TAG level and cell proliferation. Altogether, our findings suggest that G4 of the ACBP genes is involved in regulation of lipid metabolism processes in invertebrates and vertebrates.
Collapse
Affiliation(s)
- Lijun Xiang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kangkang Niu
- Correspondence may also be addressed to Kangkang Niu. Tel: +86 20 85215291; Fax: +86 20 85215291;
| | - Yuling Peng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaojuan Zhang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoyu Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruoqi Ye
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Guoxing Yu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Guojun Ye
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hui Xiang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qisheng Song
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Qili Feng
- To whom correspondence should be addressed. Tel: +86 20 85215291; Fax: +86 20 85215291;
| |
Collapse
|
99912
|
Ganly I, Liu EM, Kuo F, Makarov V, Dong Y, Park J, Gong Y, Gorelick AN, Knauf JA, Benedetti E, Tait-Mulder J, Morris LG, Fagin JA, Intlekofer AM, Krumsiek J, Gammage PA, Ghossein R, Xu B, Chan TA, Reznik E. Mitonuclear genotype remodels the metabolic and microenvironmental landscape of Hürthle cell carcinoma. SCIENCE ADVANCES 2022; 8:eabn9699. [PMID: 35731870 PMCID: PMC9216518 DOI: 10.1126/sciadv.abn9699] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Hürthle cell carcinomas (HCCs) display two exceptional genotypes: near-homoplasmic mutation of mitochondrial DNA (mtDNA) and genome-wide loss of heterozygosity (gLOH). To understand the phenotypic consequences of these genetic alterations, we analyzed genomic, metabolomic, and immunophenotypic data of HCC and other thyroid cancers. Both mtDNA mutations and profound depletion of citrate pools are common in HCC and other thyroid malignancies, suggesting that thyroid cancers are broadly equipped to survive tricarboxylic acid cycle impairment, whereas metabolites in the reduced form of NADH-dependent lysine degradation pathway were elevated exclusively in HCC. The presence of gLOH was not associated with metabolic phenotypes but rather with reduced immune infiltration, indicating that gLOH confers a selective advantage partially through immunosuppression. Unsupervised multimodal clustering revealed four clusters of HCC with distinct clinical, metabolomic, and microenvironmental phenotypes but overlapping genotypes. These findings chart the metabolic and microenvironmental landscape of HCC and shed light on the interaction between genotype, metabolism, and the microenvironment in cancer.
Collapse
Affiliation(s)
- Ian Ganly
- Human Oncology and Pathology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Minwei Liu
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fengshen Kuo
- Human Oncology and Pathology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Yiyu Dong
- Human Oncology and Pathology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinsung Park
- Human Oncology and Pathology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yongxing Gong
- Human Oncology and Pathology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander N. Gorelick
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey A Knauf
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Elisa Benedetti
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Luc G.T. Morris
- Human Oncology and Pathology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James A. Fagin
- Human Oncology and Pathology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew M Intlekofer
- Human Oncology and Pathology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Payam A. Gammage
- CRUK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ronald Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy A. Chan
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ed Reznik
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
99913
|
Bauzá-Thorbrügge M, Banke E, Chanclón B, Peris E, Wu Y, Musovic S, Jönsson C, Strålfors P, Rorsman P, Olofsson CS, Asterholm IW. Adipocyte-specific ablation of the Ca 2+ pump SERCA2 impairs whole-body metabolic function and reveals the diverse metabolic flexibility of white and brown adipose tissue. Mol Metab 2022; 63:101535. [PMID: 35760318 PMCID: PMC9287368 DOI: 10.1016/j.molmet.2022.101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) transports Ca2+ from the cytosol into the ER and is essential for appropriate regulation of intracellular Ca2+ homeostasis. The objective of this study was to test the hypothesis that SERCA pumps are involved in the regulation of white adipocyte hormone secretion and other aspects of adipose tissue function and that this control is disturbed in obesity-induced type-2 diabetes. METHODS SERCA expression was measured in isolated human and mouse adipocytes as well as in whole mouse adipose tissue by Western blot and RT-qPCR. To test the significance of SERCA2 in adipocyte functionality and whole-body metabolism, we generated adipocyte-specific SERCA2 knockout mice. The mice were metabolically phenotyped by glucose tolerance and tracer studies, histological analyses, measurements of glucose-stimulated insulin release in isolated islets, and gene/protein expression analyses. We also tested the effect of pharmacological SERCA inhibition and genetic SERCA2 ablation in cultured adipocytes. Intracellular and mitochondrial Ca2+ levels were recorded with dual-wavelength ratio imaging and mitochondrial function was assessed by Seahorse technology. RESULTS We demonstrate that SERCA2 is downregulated in white adipocytes from patients with obesity and type-2 diabetes as well as in adipocytes from diet-induced obese mice. SERCA2-ablated adipocytes display disturbed Ca2+ homeostasis associated with upregulated ER stress markers and impaired hormone release. These adipocyte alterations are linked to mild lipodystrophy, reduced adiponectin levels, and impaired glucose tolerance. Interestingly, adipocyte-specific SERCA2 ablation leads to increased glucose uptake in white adipose tissue while glucose uptake is reduced in brown adipose tissue. This dichotomous effect on glucose uptake is due to differently regulated mitochondrial function. In white adipocytes, SERCA2 deficiency triggers an adaptive increase in FGF21, increased mitochondrial UCP1 levels, and increased oxygen consumption rate (OCR). In contrast, brown SERCA2 null adipocytes display reduced OCR despite increased mitochondrial content and UCP1 levels compared to wild type controls. CONCLUSIONS Our data suggest causal links between reduced white adipocyte SERCA2 levels, deranged adipocyte Ca2+ homeostasis, adipose tissue dysfunction and type-2 diabetes.
Collapse
Affiliation(s)
- Marco Bauzá-Thorbrügge
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Elin Banke
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Belén Chanclón
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Eduard Peris
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Yanling Wu
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Saliha Musovic
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Cecilia Jönsson
- Department of Biomedical and Clinical Sciences, Linköping University, SE-58185 Linköping, Sweden.
| | - Peter Strålfors
- Department of Biomedical and Clinical Sciences, Linköping University, SE-58185 Linköping, Sweden.
| | - Patrik Rorsman
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX4 7LE, UK.
| | - Charlotta S Olofsson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg, Sweden.
| |
Collapse
|
99914
|
Lacerda JT, Gomes PRL, Zanetti G, Mezzalira N, Lima OG, de Assis LVM, Guler A, Castrucci AM, Moraes MN. Lack of TRPV1 Channel Modulates Mouse Gene Expression and Liver Proteome with Glucose Metabolism Changes. Int J Mol Sci 2022; 23:ijms23137014. [PMID: 35806020 PMCID: PMC9266899 DOI: 10.3390/ijms23137014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
To investigate the role of the transient receptor potential channel vanilloid type 1 (TRPV1) in hepatic glucose metabolism, we analyzed genes related to the clock system and glucose/lipid metabolism and performed glycogen measurements at ZT8 and ZT20 in the liver of C57Bl/6J (WT) and Trpv1 KO mice. To identify molecular clues associated with metabolic changes, we performed proteomics analysis at ZT8. Liver from Trpv1 KO mice exhibited reduced Per1 expression and increased Pparα, Pparγ, Glut2, G6pc1 (G6pase), Pck1 (Pepck), Akt, and Gsk3b expression at ZT8. Liver from Trpv1 KO mice also showed reduced glycogen storage at ZT8 but not at ZT20 and significant proteomics changes consistent with enhanced glycogenolysis, as well as increased gluconeogenesis and inflammatory features. The network propagation approach evidenced that the TRPV1 channel is an intrinsic component of the glucagon signaling pathway, and its loss seems to be associated with increased gluconeogenesis through PKA signaling. In this sense, the differentially identified kinases and phosphatases in WT and Trpv1 KO liver proteomes show that the PP2A phosphatase complex and PKA may be major players in glycogenolysis in Trpv1 KO mice.
Collapse
Affiliation(s)
- José Thalles Lacerda
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
| | - Patrícia R. L. Gomes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Giovanna Zanetti
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
| | - Nathana Mezzalira
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
| | - Otoniel G. Lima
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
| | - Leonardo V. M. de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany
| | - Ali Guler
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA;
| | - Ana Maria Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA;
| | - Maria Nathália Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
- Correspondence:
| |
Collapse
|
99915
|
Li L, Gao P, Tang X, Liu Z, Cao M, Luo R, Li X, Wang J, Lin X, Peng C, Li Z, Zhang J, Zhang X, Cao Z, Zou Y, Jin L. CB1R-stabilized NLRP3 inflammasome drives antipsychotics cardiotoxicity. Signal Transduct Target Ther 2022; 7:190. [PMID: 35739093 PMCID: PMC9225989 DOI: 10.1038/s41392-022-01018-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 12/21/2022] Open
Abstract
Long-term use of antipsychotics is a common cause of myocardial injury and even sudden cardiac deaths that often lead to drug withdrawn or discontinuation. Mechanisms underlying antipsychotics cardiotoxicity remain largely unknown. Herein we performed RNA sequencing and found that NLRP3 inflammasome-mediated pyroptosis contributed predominantly to multiple antipsychotics cardiotoxicity. Pyroptosis-based small-molecule compound screen identified cannabinoid receptor 1 (CB1R) as an upstream regulator of the NLRP3 inflammasome. Mechanistically, antipsychotics competitively bond to the CB1R and led to CB1R translocation to the cytoplasm, where CB1R directly interacted with NLRP3 inflammasome via amino acid residues 177-209, rendering stabilization of the inflammasome. Knockout of Cb1r significantly alleviated antipsychotic-induced cardiomyocyte pyroptosis and cardiotoxicity. Multi-organ-based investigation revealed no additional toxicity of newer CB1R antagonists. In authentic human cases, the expression of CB1R and NLRP3 inflammasome positively correlated with antipsychotics-induced cardiotoxicity. These results suggest that CB1R is a potent regulator of the NLRP3 inflammsome-mediated pyroptosis and small-molecule inhibitors targeting the CB1R/NLRP3 signaling represent attractive approaches to rescue cardiac side effects of antipsychotics.
Collapse
Affiliation(s)
- Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China.
| | - Pan Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinru Tang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zheng Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Mengying Cao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ruoyu Luo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Xiaoqing Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jing Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyi Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Zhihong Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Jianhua Zhang
- Academy of Forensic Science, Ministry of Justice, and Shanghai Key Laboratory of Forensic Medicine, Shanghai, 200063, China
| | - Xian Zhang
- Department of Cardiology, Kunshan Hospital of Integrated Traditional Chinese and Western Medicine, Kunshan, Jiangsu, 215301, China
| | - Zhonglian Cao
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200438, China.
- Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
99916
|
Wiltbank AT, Steinson ER, Criswell SJ, Piller M, Kucenas S. Cd59 and inflammation regulate Schwann cell development. eLife 2022; 11:e76640. [PMID: 35748863 PMCID: PMC9232220 DOI: 10.7554/elife.76640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Efficient neurotransmission is essential for organism survival and is enhanced by myelination. However, the genes that regulate myelin and myelinating glial cell development have not been fully characterized. Data from our lab and others demonstrates that cd59, which encodes for a small GPI-anchored glycoprotein, is highly expressed in developing zebrafish, rodent, and human oligodendrocytes (OLs) and Schwann cells (SCs), and that patients with CD59 dysfunction develop neurological dysfunction during early childhood. Yet, the function of Cd59 in the developing nervous system is currently undefined. In this study, we demonstrate that cd59 is expressed in a subset of developing SCs. Using cd59 mutant zebrafish, we show that developing SCs proliferate excessively and nerves may have reduced myelin volume, altered myelin ultrastructure, and perturbed node of Ranvier assembly. Finally, we demonstrate that complement activity is elevated in cd59 mutants and that inhibiting inflammation restores SC proliferation, myelin volume, and nodes of Ranvier to wildtype levels. Together, this work identifies Cd59 and developmental inflammation as key players in myelinating glial cell development, highlighting the collaboration between glia and the innate immune system to ensure normal neural development.
Collapse
Affiliation(s)
- Ashtyn T Wiltbank
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
- Program in Fundamental Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Emma R Steinson
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Stacey J Criswell
- Department of Cell Biology, University of VirginiaCharlottesvilleUnited States
| | - Melanie Piller
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
- Program in Fundamental Neuroscience, University of VirginiaCharlottesvilleUnited States
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
99917
|
Kühnen P, Biebermann H, Wiegand S. Pharmacotherapy in Childhood Obesity. Horm Res Paediatr 2022; 95:177-192. [PMID: 34351307 DOI: 10.1159/000518432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The increasing number of obese children and adolescence is a major problem in health-care systems. Currently, the gold standard for the treatment of these patients with obesity is a multicomponent lifestyle intervention. Unfortunately, this strategy is not leading to a substantial and long-lasting weight loss in the majority of patients. This is the reason why there is an urgent need to establish new treatment strategies for children and adolescents with obesity to reduce the risk for the development of any comorbidities like cardiovascular diseases or diabetes mellitus type 2. SUMMARY In this review, we outline available pharmacological therapeutic options for children and compare the available study data with the outcome of conservative treatment approaches. KEY MESSAGES We discussed, in detail, how knowledge about underlying molecular mechanisms might support the identification of effective antiobesity drugs in the future and in which way this might modulate current treatment strategies to support children and adolescence with obesity to lose body weight.
Collapse
Affiliation(s)
- Peter Kühnen
- Institute for Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Heike Biebermann
- Institute for Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Susanna Wiegand
- Center for Social-Pediatric Care/Pediatric Endocrinology and Diabetology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
99918
|
Takizawa S, Matsuzaki J, Ochiya T. Circulating microRNAs: Challenges with their use as liquid biopsy biomarkers. Cancer Biomark 2022; 35:1-9. [PMID: 35786647 DOI: 10.3233/cbm-210223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Circulating microRNA (miRNA) is a major focus in liquid biopsy studies. The circulating levels of certain miRNAs have been suggested to reflect specific physiological conditions, and several studies have reported their potential use as biomarkers for the detection and prognosis of cancer, as well as for predicting responses to chemotherapy or radiotherapy. Alongside these biomarker studies, research into the effects of specific background factors on circulating miRNA levels is progressing. Indeed, several studies have shown that a number of factors, including blood sample collection and processing methods, as well as subject-specific factors such as age, sex, and other physiological conditions, can affect the normal levels of circulating miRNAs. Unfortunately, the evidence supporting these effects is not yet strong enough to support a definite conclusion and further research is warranted. Here, we summarize the findings of several studies that have addressed these concerns and identify important topics that should be considered when analyzing circulating miRNA levels in liquid biopsy studies.
Collapse
Affiliation(s)
- Satoko Takizawa
- New Projects Development Division, Toray Industries, Inc., Kanagawa, Japan
| | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
99919
|
Saul N, Dhondt I, Kuokkanen M, Perola M, Verschuuren C, Wouters B, von Chrzanowski H, De Vos WH, Temmerman L, Luyten W, Zečić A, Loier T, Schmitz-Linneweber C, Braeckman BP. Identification of healthspan-promoting genes in Caenorhabditis elegans based on a human GWAS study. Biogerontology 2022; 23:431-452. [PMID: 35748965 PMCID: PMC9388463 DOI: 10.1007/s10522-022-09969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022]
Abstract
To find drivers of healthy ageing, a genome-wide association study (GWAS) was performed in healthy and unhealthy older individuals. Healthy individuals were defined as free from cardiovascular disease, stroke, heart failure, major adverse cardiovascular event, diabetes, dementia, cancer, chronic obstructive pulmonary disease (COPD), asthma, rheumatism, Crohn’s disease, malabsorption or kidney disease. Six single nucleotide polymorphisms (SNPs) with unknown function associated with ten human genes were identified as candidate healthspan markers. Thirteen homologous or closely related genes were selected in the model organism C. elegans for evaluating healthspan after targeted RNAi-mediated knockdown using pathogen resistance, muscle integrity, chemotaxis index and the activity of known longevity and stress response pathways as healthspan reporters. In addition, lifespan was monitored in the RNAi-treated nematodes. RNAi knockdown of yap-1, wwp-1, paxt-1 and several acdh genes resulted in heterogeneous phenotypes regarding muscle integrity, pathogen resistance, chemotactic behaviour, and lifespan. Based on these observations, we hypothesize that their human homologues WWC2, CDKN2AIP and ACADS may play a role in health maintenance in the elderly.
Collapse
Affiliation(s)
- Nadine Saul
- Molecular Genetics Group, Institute of Biology, Humboldt University of Berlin, Berlin, Germany.
| | - Ineke Dhondt
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | - Mikko Kuokkanen
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Markus Perola
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Clara Verschuuren
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | | | - Henrik von Chrzanowski
- Molecular Genetics Group, Institute of Biology, Humboldt University of Berlin, Berlin, Germany.,The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | - Aleksandra Zečić
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | - Tim Loier
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | | | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| |
Collapse
|
99920
|
Li X, Cheng Y, Cheng Y, Shi H. Transcriptome Analysis Reveals the Immune Infiltration Profiles in Cervical Cancer and Identifies KRT23 as an Immunotherapeutic Target. Front Oncol 2022; 12:779356. [PMID: 35814465 PMCID: PMC9263098 DOI: 10.3389/fonc.2022.779356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cervical cancer (CC) is one of the most common malignancies in women worldwide. Dismal prognosis rates have been associated with conventional therapeutic approaches, emphasizing the need for new strategies. Recently, immunotherapy has been used to treat various types of solid tumors, and different subtypes of the tumor microenvironment (TME) are associated with diverse responses to immunotherapy. Accordingly, understanding the complexity of the TME is pivotal for immunotherapy. Herein, we used two methods, “ssGSEA” and “xCell,” to identify the immune profiles in CC and comprehensively assess the relationship between immune cell infiltration and genomic alterations. We found that more adaptive immune cells were found infiltrated in tumor tissues than in normal tissues, whereas the opposite was true for innate cells. Consensus clustering of CC samples based on the number of immune cells identified four clusters with different survival and immune statuses. Then, we subdivided the above four clusters into “hot” and “cold” tumors, where hot tumors exhibited higher immune infiltration and longer survival time. Enrichment analyses of differentially expressed genes (DEGs) revealed that the number of activated immune signaling pathways was higher in hot tumors than that in cold tumors. Keratin, type I cytoskeletal 23 (KRT23), was upregulated in cold tumors and negatively correlated with immune cell infiltration. In vitro experiments, real-time reverse transcription-quantitative polymerase chain reaction, cytometric bead arrays, and ELISA revealed that knockdown of KRT23 expression could promote the secretion of C-C motif chemokine ligand-5 and promote the recruitment of CD8+ T cells. We also constructed a model based on DEGs that exhibited a high predictive power for the survival of CC patients. Overall, our study provides deep insights into the immune cell infiltration patterns of CC. Moreover, KRT23 has huge prospects for application as an immunotherapeutic target. Finally, our model demonstrated a good predictive power for the prognosis of CC patients and may guide clinicians during immunotherapy.
Collapse
Affiliation(s)
- Xia Li
- Gynecological Oncology Radiotherapy Ward, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xia Li,
| | - Yan Cheng
- Gynecological Oncology Radiotherapy Ward, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanmei Cheng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huirong Shi
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
99921
|
Joshi A, Ito T, Picard D, Neckers L. The Mitochondrial HSP90 Paralog TRAP1: Structural Dynamics, Interactome, Role in Metabolic Regulation, and Inhibitors. Biomolecules 2022; 12:biom12070880. [PMID: 35883436 PMCID: PMC9312948 DOI: 10.3390/biom12070880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
The HSP90 paralog TRAP1 was discovered more than 20 years ago; yet, a detailed understanding of the function of this mitochondrial molecular chaperone remains elusive. The dispensable nature of TRAP1 in vitro and in vivo further complicates an understanding of its role in mitochondrial biology. TRAP1 is more homologous to the bacterial HSP90, HtpG, than to eukaryotic HSP90. Lacking co-chaperones, the unique structural features of TRAP1 likely regulate its temperature-sensitive ATPase activity and shed light on the alternative mechanisms driving the chaperone’s nucleotide-dependent cycle in a defined environment whose physiological temperature approaches 50 °C. TRAP1 appears to be an important bioregulator of mitochondrial respiration, mediating the balance between oxidative phosphorylation and glycolysis, while at the same time promoting mitochondrial homeostasis and displaying cytoprotective activity. Inactivation/loss of TRAP1 has been observed in several neurodegenerative diseases while TRAP1 expression is reported to be elevated in multiple cancers and, as with HSP90, evidence of addiction to TRAP1 has been observed. In this review, we summarize what is currently known about this unique HSP90 paralog and why a better understanding of TRAP1 structure, function, and regulation is likely to enhance our understanding of the mechanistic basis of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Abhinav Joshi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA; (A.J.); (T.I.)
| | - Takeshi Ito
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA; (A.J.); (T.I.)
| | - Didier Picard
- Department of Molecular and Cellular Biology, Université de Genève, Sciences III, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland;
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA; (A.J.); (T.I.)
- Correspondence: ; Tel.: +1-240-858-3918
| |
Collapse
|
99922
|
Kiernan R, Persand D, Maddie N, Cai W, Carrillo-Sepulveda MA. Obesity-related vascular dysfunction persists after weight loss and is associated with decreased vascular glucagon-like peptide (GLP-1) receptor in female rats. Am J Physiol Heart Circ Physiol 2022; 323:H301-H311. [PMID: 35749717 PMCID: PMC9291415 DOI: 10.1152/ajpheart.00031.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity-related cardiovascular complications are a major health problem worldwide. Overconsumption of the Western diet is a well-known culprit for the development of obesity. While short-term weight loss through switching from a Western diet to a normal diet is known to promote metabolic improvement, its short-term effects on vascular parameters are not well-characterized. Glucagon-like peptide 1 (GLP-1), an incretin with vasculo-protective properties, is decreased in plasma from obese patients. We hypothesize that obesity causes persistent vascular dysfunction in association with downregulation of vascular GLP-1R. Female Wistar rats were randomized into three groups: lean received a chow diet for 28 weeks, obese received a Western diet for 28 weeks, and reverse obese received a Western diet for 18 weeks followed by 12 weeks of standard chow diet. The obese group exhibited increased body weight and body mass index, while the reverse obese group lost weight. Weight loss failed to reverse impaired vasodilation and high systolic blood pressure in obese rats. Strikingly, our results show that obese rats exhibit decreased serum levels of GLP-1 accompanied by decreased vascular GLP-1R expression. Weight loss recovered GLP-1 serum levels, however GLP-1R expression remained downregulated. Decreased Akt phosphorylation was observed in the obese and reverse obese group, suggesting that GLP-1/Akt signaling is persistently downregulated. Our results support that GLP-1 signaling is associated with obesity-related vascular dysfunction in females and short-term weight loss does not guarantee recovery of vascular function. This study suggests that GLP-1R may be a potential target for therapeutic intervention in obesity-related hypertension in females.
Collapse
Affiliation(s)
- Risa Kiernan
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, United States
| | - Dhandevi Persand
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, United States
| | - Nicole Maddie
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, United States
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, United States
| | | |
Collapse
|
99923
|
Khine HEE, Sungthong R, Sritularak B, Prompetchara E, Chaotham C. Untapped Pharmaceutical Potential of 4,5,4'-Trihydroxy-3,3'-dimethoxybibenzyl for Regulating Obesity: A Cell-Based Study with a Focus on Terminal Differentiation in Adipogenesis. JOURNAL OF NATURAL PRODUCTS 2022; 85:1591-1602. [PMID: 35679136 DOI: 10.1021/acs.jnatprod.2c00213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Obesity and its global prevalence has become a threat to human health, while its pharmacotherapy via the application of natural products is still underdeveloped. Here, we probed how 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl (TDB) derived from an orchid (Dendrobium ellipsophyllum) could exert its roles on the differentiation and function of murine (3T3-L1) and human (PCS-210-010) pre-adipocytes and offer some implications to modulate obesity. Cytotoxic effects of TDB on adipocytes were 2-fold lower than those detected with pre-adipocytes, and no significant difference was detected in cytotoxic profiles between both cell lineages. TDB in a dose-dependent manner decreased cellular lipid accumulation and enhanced lipolysis of both cell lines assessed at early differentiation and during maturation. Underlining molecular mechanisms proved that TBD paused the cell cycle progression by regulating inducers and inhibitors in mitotic clonal expansion, leading to growth arrest of pre-adipocytes at the G0/G1 phase. The compound also governed adipocyte differentiation by repressing expressions of crucial adipogenic regulators and effectors through deactivating the AKT/GSK-3β signaling pathway and activating the AMPK-ACC pathway. To this end, TDB has shown its pharmaceutical potential for modulating adipocyte development and function, and it would be a promising candidate for further assessments as a therapeutic agent to defeat obesity.
Collapse
Affiliation(s)
- Hnin Ei Ei Khine
- Pharmaceutical Sciences and Technology Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rungroch Sungthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, U.K
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eakachai Prompetchara
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Chaotham
- Pharmaceutical Sciences and Technology Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
99924
|
Giannopoulou EZ, Zorn S, Schirmer M, Herrmann G, Heger S, Reinehr T, Denzer C, Rabenstein H, Hillmer M, Sowada N, Siebert R, von Schnurbein J, Wabitsch M. Genetic Obesity in Children: Overview of Possible Diagnoses with a Focus on SH2B1 Deletion. Horm Res Paediatr 2022; 95:137-148. [PMID: 34689140 DOI: 10.1159/000520402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Genetic obesity is rare and quite challenging for pediatricians in terms of early identification. Src-homology-2 (SH2) B adapter protein 1 (SH2B1) is an important component in the leptin-melanocortin pathway and is found to play an important role in leptin and insulin signaling and therefore in the pathogenesis of obesity and diabetes. Microdeletions in chromosome 16p11.2, encompassing the SH2B1 gene, are known to be associated with obesity, insulin resistance, hyperphagia, and developmental delay. The aim of our study is to report on a case series of young individuals with 16p11.2 microdeletions, including the SH2B1 gene, and provide detailed information on body mass index (BMI) development and obesity-associated comorbidities. In this way, we want to raise awareness of this syndromic form of obesity as a differential diagnosis of genetic obesity. METHODS We describe the phenotype of 7 children (3 male; age range: 2.8-18.0 years) with 16p11.2 microdeletions, encompassing the SH2B1 gene, and present their BMI trajectories from birth onward. Screening for obesity-associated comorbidities was performed at the time of genetic diagnosis. RESULTS All children presented with severe, early-onset obesity already at the age of 5 years combined with variable developmental delay. Five patients presented with elevated fasting insulin levels, 1 patient developed diabetes mellitus type 2, 4 patients had dyslipidemia, and 4 developed nonalcoholic fatty-liver disease. DISCUSSION/CONCLUSION Chromosomal microdeletions in 16p11.2, including the SH2B1 gene, in children are associated with severe, early-onset obesity and comorbidities associated with insulin resistance. Early genetic testing in suspicious patients and early screening for comorbidities are recommended.
Collapse
Affiliation(s)
- Eleni Z Giannopoulou
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Stefanie Zorn
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Melanie Schirmer
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Gloria Herrmann
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Sabine Heger
- Department of Pediatric Endocrinology, Children's Hospital Auf der Bult, Hannover, Germany
| | - Thomas Reinehr
- Department of Pediatric Endocrinology, Diabetes and Nutrition Medicine, Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Datteln, Germany
| | - Christian Denzer
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hannah Rabenstein
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Morten Hillmer
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Nadine Sowada
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Julia von Schnurbein
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
99925
|
Pitzer A, Kleyman TR, Kirabo A. Kidney Tubular IL-1β ENaCtivation in Diabetes and Salt-Sensitive Hypertension. Circ Res 2022; 131:74-76. [PMID: 35737755 DOI: 10.1161/circresaha.122.321335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ashley Pitzer
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN (A.P., A.K.)
| | - Thomas R Kleyman
- Departments of Medicine, Cell Biology, Pharmacology and Chemical Biology, University of Pittsburgh, PA (T.R.K.)
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN (A.P., A.K.)
| |
Collapse
|
99926
|
Zhang X, Rotllan N, Canfrán-Duque A, Sun J, Toczek J, Moshnikova A, Malik S, Price NL, Araldi E, Zhong W, Sadeghi MM, Andreev OA, Bahal R, Reshetnyak YK, Suárez Y, Fernández-Hernando C. Targeted Suppression of miRNA-33 Using pHLIP Improves Atherosclerosis Regression. Circ Res 2022; 131:77-90. [PMID: 35534923 PMCID: PMC9640270 DOI: 10.1161/circresaha.121.320296] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/03/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND miRNA therapeutics have gained attention during the past decade. These oligonucleotide treatments can modulate the expression of miRNAs in vivo and could be used to correct the imbalance of gene expression found in human diseases such as obesity, metabolic syndrome, and atherosclerosis. The in vivo efficacy of current anti-miRNA technologies hindered by physiological and cellular barriers to delivery into targeted cells and the nature of miRNAs that allows one to target an entire pathway that may lead to deleterious off-target effects. For these reasons, novel targeted delivery systems to inhibit miRNAs in specific tissues will be important for developing effective therapeutic strategies for numerous diseases including atherosclerosis. METHODS We used pH low-insertion peptide (pHLIP) constructs as vehicles to deliver microRNA-33-5p (miR-33) antisense oligonucleotides to atherosclerotic plaques. Immunohistochemistry and histology analysis was performed to assess the efficacy of miR-33 silencing in atherosclerotic lesions. We also assessed how miR-33 inhibition affects gene expression in monocytes/macrophages by single-cell RNA transcriptomics. RESULTS The anti-miR-33 conjugated pHLIP constructs are preferentially delivered to atherosclerotic plaque macrophages. The inhibition of miR-33 using pHLIP-directed macrophage targeting improves atherosclerosis regression by increasing collagen content and decreased lipid accumulation within vascular lesions. Single-cell RNA sequencing analysis revealed higher expression of fibrotic genes (Col2a1, Col3a1, Col1a2, Fn1, etc) and tissue inhibitor of metalloproteinase 3 (Timp3) and downregulation of Mmp12 in macrophages from atherosclerotic lesions targeted by pHLIP-anti-miR-33. CONCLUSIONS This study provides proof of principle for the application of pHLIP for treating advanced atherosclerosis via pharmacological inhibition of miR-33 in macrophages that avoid the deleterious effects in other metabolic tissues. This may open new therapeutic opportunities for atherosclerosis-associated cardiovascular diseases via selective delivery of other protective miRNAs.
Collapse
Affiliation(s)
- Xinbo Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jonathan Sun
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jakub Toczek
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Section of Cardiology, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Anna Moshnikova
- Department Physics, University of Rhode Island, Kingston, Rhode Island, USA
| | - Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Nathan L. Price
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Elisa Araldi
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Wen Zhong
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mehran M. Sadeghi
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Section of Cardiology, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Oleg A. Andreev
- Department Physics, University of Rhode Island, Kingston, Rhode Island, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Yana K. Reshetnyak
- Department Physics, University of Rhode Island, Kingston, Rhode Island, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
99927
|
Stasi A, Cosola C, Caggiano G, Cimmarusti MT, Palieri R, Acquaviva PM, Rana G, Gesualdo L. Obesity-Related Chronic Kidney Disease: Principal Mechanisms and New Approaches in Nutritional Management. Front Nutr 2022; 9:925619. [PMID: 35811945 PMCID: PMC9263700 DOI: 10.3389/fnut.2022.925619] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is the epidemic of our era and its incidence is supposed to increase by more than 30% by 2030. It is commonly defined as a chronic and metabolic disease with an excessive accumulation of body fat in relation to fat-free mass, both in terms of quantity and distribution at specific points on the body. The effects of obesity have an important impact on different clinical areas, particularly endocrinology, cardiology, and nephrology. Indeed, increased rates of obesity have been associated with increased risk of cardiovascular disease (CVD), cancer, type 2 diabetes (T2D), dyslipidemia, hypertension, renal diseases, and neurocognitive impairment. Obesity-related chronic kidney disease (CKD) has been ascribed to intrarenal fat accumulation along the proximal tubule, glomeruli, renal sinus, and around the kidney capsule, and to hemodynamic changes with hyperfiltration, albuminuria, and impaired glomerular filtration rate. In addition, hypertension, dyslipidemia, and diabetes, which arise as a consequence of overweight, contribute to amplifying renal dysfunction in both the native and transplanted kidney. Overall, several mechanisms are closely related to the onset and progression of CKD in the general population, including changes in renal hemodynamics, neurohumoral pathways, renal adiposity, local and systemic inflammation, dysbiosis of microbiota, insulin resistance, and fibrotic process. Unfortunately, there are no clinical practice guidelines for the management of patients with obesity-related CKD. Therefore, dietary management is based on the clinical practice guidelines for the nutritional care of adults with CKD, developed and published by the National Kidney Foundation, Kidney Disease Outcome Quality Initiative and common recommendations for the healthy population. Optimal nutritional management of these patients should follow the guidelines of the Mediterranean diet, which is known to be associated with a lower incidence of CVD and beneficial effects on chronic diseases such as diabetes, obesity, and cognitive health. Mediterranean-style diets are often unsuccessful in promoting efficient weight loss, especially in patients with altered glucose metabolism. For this purpose, this review also discusses the use of non-classical weight loss approaches in CKD, including intermittent fasting and ketogenic diet to contrast the onset and progression of obesity-related CKD.
Collapse
|
99928
|
Olaechea S, Gannavarapu BS, Alvarez C, Gilmore A, Sarver B, Xie D, Infante R, Iyengar P. Primary Tumor Fluorine‐18 Fluorodeoxydglucose (18F‐FDG) Is Associated With Cancer-Associated Weight Loss in Non-Small Cell Lung Cancer (NSCLC) and Portends Worse Survival. Front Oncol 2022; 12:900712. [PMID: 35814438 PMCID: PMC9263563 DOI: 10.3389/fonc.2022.900712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Aim To investigate the diagnostic potential of and associations between tumor 18F‐FDG uptake on PET imaging and cancer-associated weight loss. Methods 774 non-small cell lung cancer (NSCLC) patients with pre-treatment PET evaluated between 2006 and 2014 were identified. Using the international validated definition of cachexia, the presence of clinically significant pretreatment cancer-associated weight loss (WL) was retrospectively determined. Maximum Standardized Uptake Value (SUVMax) of 18F‐FDG was recorded and dichotomized based on 3 experimental cutpoints for survival analyses. Each SUVMax cutpoint prioritized either survival differences, total cohort comparison sample sizes, or sample size by stage. Patient outcomes and associations between SUVMax and cancer-associated weight loss were assessed by multivariate, categorical, and survival analyses. Results Patients were found to have an increased likelihood of having WL at diagnosis associated with increasing primary tumor SUVMax after controlling for potentially confounding patient and tumor characteristics on multivariate logistic regression (OR 1.038; 95% CI: 1.012, 1.064; P=0.0037). After stratifying the cohort by WL and dichotomized SUVMax, both factors were found to be relevant in predicting survival outcomes when the alternative variable was constant. Of note, the most striking survival differences contributed by WL status occurred in high SUVMax groups, where the presence of WL predicted a median survival time detriment of up to 10 months, significant regardless of cutpoint determination method applied to categorize high SUVMax patients. SUVMax classification was found to be most consistently relevant in both WL and no WL groups. Conclusions The significant positive association between significant pretreatment cancer-associated weight loss and primary tumor SUVMax underscores increased glucose uptake as a component of catabolic tumor phenotypes. This substantiates 18F‐FDG PET analysis as a prospective tool for assessment of cancer-associated weight loss and corresponding survival outcomes. Furthermore, the survival differences observed between WL groups across multiple SUVMax classifications supports the importance of weight loss monitoring in oncologic workups. Weight loss in the setting of NSCLCs with higher metabolic activity as determined by 18F‐FDG PET signal should encourage more aggressive and earlier palliative care interventions.
Collapse
Affiliation(s)
- Santiago Olaechea
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Bhavani S. Gannavarapu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Christian Alvarez
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Anne Gilmore
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Brandon Sarver
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Donglu Xie
- Academic Information Systems, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Rodney Infante
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Rodney Infante, ; Puneeth Iyengar,
| | - Puneeth Iyengar
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Rodney Infante, ; Puneeth Iyengar,
| |
Collapse
|
99929
|
Li J, Zhu Y, Yang L, Wang Z. Effect of gut microbiota in the colorectal cancer and potential target therapy. Discov Oncol 2022; 13:51. [PMID: 35749000 PMCID: PMC9232688 DOI: 10.1007/s12672-022-00517-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
The symbiotic interaction between gut microbiota and the digestive tract is an important factor in maintaining the intestinal environment balance. Colorectal cancer (CRC) is a complex disease involving the interaction between tumour cells and a large number of microorganisms. The microbiota is involved in the occurrence, development and prognosis of colorectal cancer. Several microbiota species have been studied, such as Fusobacterium nucleatum (F. nucleatum), Enterotoxigenic Bacteroides fragilis (ETBF), Streptococcus bovis (S. bovis), Lactobacillus, and Bifidobacterium. Studies about the interaction between microbiota and CRC were retrieved from Embase, PubMed, Ovid and Web of Science up to 21 Oct 2021. This review expounded on the effect of microbiota on CRC, especially the dysregulation of bacteria and carcinogenicity. The methods of gut microbiota modifications representing novel prognostic markers and innovative therapeutic strategies were also described.
Collapse
Affiliation(s)
- Junchuan Li
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yuzhou Zhu
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Lie Yang
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Ziqiang Wang
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
99930
|
Namba S, Iwata M, Yamanishi Y. From drug repositioning to target repositioning: prediction of therapeutic targets using genetically perturbed transcriptomic signatures. Bioinformatics 2022; 38:i68-i76. [PMID: 35758779 PMCID: PMC9235496 DOI: 10.1093/bioinformatics/btac240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Motivation A critical element of drug development is the identification of therapeutic targets for diseases. However, the depletion of therapeutic targets is a serious problem. Results In this study, we propose the novel concept of target repositioning, an extension of the concept of drug repositioning, to predict new therapeutic targets for various diseases. Predictions were performed by a trans-disease analysis which integrated genetically perturbed transcriptomic signatures (knockdown of 4345 genes and overexpression of 3114 genes) and disease-specific gene transcriptomic signatures of 79 diseases. The trans-disease method, which takes into account similarities among diseases, enabled us to distinguish the inhibitory from activatory targets and to predict the therapeutic targetability of not only proteins with known target–disease associations but also orphan proteins without known associations. Our proposed method is expected to be useful for understanding the commonality of mechanisms among diseases and for therapeutic target identification in drug discovery. Availability and implementation Supplemental information and software are available at the following website [http://labo.bio.kyutech.ac.jp/~yamani/target_repositioning/]. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Satoko Namba
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Michio Iwata
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| |
Collapse
|
99931
|
Wang X, Zhang G, Dasgupta S, Niewold EL, Li C, Li Q, Luo X, Tan L, Ferdous A, Lorenzi PL, Rothermel BA, Gillette TG, Adams CM, Scherer PE, Hill JA, Wang ZV. ATF4 Protects the Heart From Failure by Antagonizing Oxidative Stress. Circ Res 2022; 131:91-105. [PMID: 35574856 PMCID: PMC9351829 DOI: 10.1161/circresaha.122.321050] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cellular redox control is maintained by generation of reactive oxygen/nitrogen species balanced by activation of antioxidative pathways. Disruption of redox balance leads to oxidative stress, a central causative event in numerous diseases including heart failure. Redox control in the heart exposed to hemodynamic stress, however, remains to be fully elucidated. METHODS Pressure overload was triggered by transverse aortic constriction in mice. Transcriptomic and metabolomic regulations were evaluated by RNA-sequencing and metabolomics, respectively. Stable isotope tracer labeling experiments were conducted to determine metabolic flux in vitro. Neonatal rat ventricular myocytes and H9c2 cells were used to examine molecular mechanisms. RESULTS We show that production of cardiomyocyte NADPH, a key factor in redox regulation, is decreased in pressure overload-induced heart failure. As a consequence, the level of reduced glutathione is downregulated, a change associated with fibrosis and cardiomyopathy. We report that the pentose phosphate pathway and mitochondrial serine/glycine/folate metabolic signaling, 2 NADPH-generating pathways in the cytosol and mitochondria, respectively, are induced by transverse aortic constriction. We identify ATF4 (activating transcription factor 4) as an upstream transcription factor controlling the expression of multiple enzymes in these 2 pathways. Consistently, joint pathway analysis of transcriptomic and metabolomic data reveal that ATF4 preferably controls oxidative stress and redox-related pathways. Overexpression of ATF4 in neonatal rat ventricular myocytes increases NADPH-producing enzymes' whereas silencing of ATF4 decreases their expression. Further, stable isotope tracer experiments reveal that ATF4 overexpression augments metabolic flux within these 2 pathways. In vivo, cardiomyocyte-specific deletion of ATF4 exacerbates cardiomyopathy in the setting of transverse aortic constriction and accelerates heart failure development, attributable, at least in part, to an inability to increase the expression of NADPH-generating enzymes. CONCLUSIONS Our findings reveal that ATF4 plays a critical role in the heart under conditions of hemodynamic stress by governing both cytosolic and mitochondrial production of NADPH.
Collapse
Affiliation(s)
- Xiaoding Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Subhajit Dasgupta
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Erica L. Niewold
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Li
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qinfeng Li
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiang Luo
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anwarul Ferdous
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Philip L. Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Beverly A. Rothermel
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas G. Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher M. Adams
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph A. Hill
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhao V. Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
99932
|
Li Y, Yang Y, Yang Y. Multifaceted Roles of Ferroptosis in Lung Diseases. Front Mol Biosci 2022; 9:919187. [PMID: 35813823 PMCID: PMC9263225 DOI: 10.3389/fmolb.2022.919187] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 01/08/2023] Open
Abstract
Ferroptosis is a distinct type of programmed cell death (PCD) that depends on iron and is characterized by the accumulation of intracellular iron, exhaustion of glutathione, deactivation of glutathione peroxidase, and promotion of lipid peroxidation. Recently, accumulated investigations have demonstrated that ferroptosis is strongly correlated with the initiation and development of many lung diseases. In this review, we summarized the contribution of ferroptosis to the pathologic process of lung diseases, namely, obstructive lung diseases (chronic obstructive pulmonary disease, asthma, and cystic fibrosis), interstitial lung diseases (pulmonary fibrosis of different causes), pulmonary diseases of vascular origin (ischemia-reperfusion injury and pulmonary hypertension), pulmonary infections (bacteria, viruses, and fungi), acute lung injury, acute respiratory distress syndrome, obstructive sleep apnea, pulmonary alveolar proteinosis, and lung cancer. We also discussed the therapeutic potential of targeting ferroptosis for these lung diseases.
Collapse
Affiliation(s)
- Yi Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Yang
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Yongfeng Yang
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yongfeng Yang,
| |
Collapse
|
99933
|
Xiao N, Wang J, Wang T, Xiong X, Zhou J, Su X, Peng J, Yang C, Li X, Lin G, Lu G, Gong F, Cheng L. Metformin abrogates pathological TNF-α-producing B cells through mTOR-dependent metabolic reprogramming in polycystic ovary syndrome. eLife 2022; 11:74713. [PMID: 35748536 PMCID: PMC9270024 DOI: 10.7554/elife.74713] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
B cells contribute to the pathogenesis of polycystic ovary syndrome (PCOS). Clinically, metformin is used to treat PCOS, but it is unclear whether metformin exerts its therapeutic effect by regulating B cells. Here, we showed that the expression level of tumor necrosis factor-alpha (TNF-α) in peripheral blood B cells from PCOS patients was increased. Metformin used in vitro and in vivo was able to reduce the production of TNF-α in B cells from PCOS patients. Administration of metformin improved mouse PCOS phenotypes induced by dehydroepiandrosterone (DHEA) and also inhibited TNF-α expression in splenic B cells. Furthermore, metformin induced metabolic reprogramming of B cells in PCOS patients, including the alteration in mitochondrial morphology, the decrease in mitochondrial membrane potential, Reactive Oxygen Species (ROS) production and glucose uptake. In DHEA-induced mouse PCOS model, metformin altered metabolic intermediates in splenic B cells. Moreover, the inhibition of TNF-α expression and metabolic reprogramming in B cells of PCOS patients and mouse model by metformin were associated with decreased mTOR phosphorylation. Together, TNF-α-producing B cells are involved in the pathogenesis of PCOS, and metformin inhibits mTOR phosphorylation and affects metabolic reprogramming, thereby inhibiting TNF-α expression in B cells, which may be a new mechanism of metformin in the treatment of PCOS.
Collapse
Affiliation(s)
- Na Xiao
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Jie Wang
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Ting Wang
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Xingliang Xiong
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Junyi Zhou
- Hunan Normal University, Changsha, China
| | - Xian Su
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Jing Peng
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Chao Yang
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Xiaofeng Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Guangxiu Lu
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Lamei Cheng
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| |
Collapse
|
99934
|
Wang F, Ding P, Liang X, Ding X, Brandt CB, Sjöstedt E, Zhu J, Bolund S, Zhang L, de Rooij LPMH, Luo L, Wei Y, Zhao W, Lv Z, Haskó J, Li R, Qin Q, Jia Y, Wu W, Yuan Y, Pu M, Wang H, Wu A, Xie L, Liu P, Chen F, Herold J, Kalucka J, Karlsson M, Zhang X, Helmig RB, Fagerberg L, Lindskog C, Pontén F, Uhlen M, Bolund L, Jessen N, Jiang H, Xu X, Yang H, Carmeliet P, Mulder J, Chen D, Lin L, Luo Y. Endothelial cell heterogeneity and microglia regulons revealed by a pig cell landscape at single-cell level. Nat Commun 2022; 13:3620. [PMID: 35750885 PMCID: PMC9232580 DOI: 10.1038/s41467-022-31388-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Pigs are valuable large animal models for biomedical and genetic research, but insights into the tissue- and cell-type-specific transcriptome and heterogeneity remain limited. By leveraging single-cell RNA sequencing, we generate a multiple-organ single-cell transcriptomic map containing over 200,000 pig cells from 20 tissues/organs. We comprehensively characterize the heterogeneity of cells in tissues and identify 234 cell clusters, representing 58 major cell types. In-depth integrative analysis of endothelial cells reveals a high degree of heterogeneity. We identify several functionally distinct endothelial cell phenotypes, including an endothelial to mesenchymal transition subtype in adipose tissues. Intercellular communication analysis predicts tissue- and cell type-specific crosstalk between endothelial cells and other cell types through the VEGF, PDGF, TGF-β, and BMP pathways. Regulon analysis of single-cell transcriptome of microglia in pig and 12 other species further identifies MEF2C as an evolutionally conserved regulon in the microglia. Our work describes the landscape of single-cell transcriptomes within diverse pig organs and identifies the heterogeneity of endothelial cells and evolutionally conserved regulon in microglia.
Collapse
Affiliation(s)
- Fei Wang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- BGI-Shenzhen, Shenzhen, China
| | - Peiwen Ding
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Liang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xiangning Ding
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Camilla Blunk Brandt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Evelina Sjöstedt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jiacheng Zhu
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Saga Bolund
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lijing Zhang
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Laura P M H de Rooij
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Lihua Luo
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Wei
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Wandong Zhao
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhiyuan Lv
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - János Haskó
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Runchu Li
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Qiuyu Qin
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Yi Jia
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Wendi Wu
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Yuting Yuan
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Mingyi Pu
- BGI-Shenzhen, Shenzhen, China
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Haoyu Wang
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Aiping Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Lin Xie
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Ping Liu
- MGI, BGI-Shenzhen, Shenzhen, China
| | | | | | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Aarhus University of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Max Karlsson
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Xiuqing Zhang
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rikke Bek Helmig
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| | - Linn Fagerberg
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mathias Uhlen
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | | | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Peter Carmeliet
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Dongsheng Chen
- BGI-Shenzhen, Shenzhen, China.
- Institute of Systems Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
- Suzhou Institute of Systems Medicine, Suzhou, China.
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- BGI-Shenzhen, Shenzhen, China.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
- IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
99935
|
LAM Cells as Potential Drivers of Senescence in Lymphangioleiomyomatosis Microenvironment. Int J Mol Sci 2022; 23:ijms23137040. [PMID: 35806041 PMCID: PMC9266844 DOI: 10.3390/ijms23137040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/10/2023] Open
Abstract
Senescence is a stress-response process characterized by the irreversible inhibition of cell proliferation, associated to the acquisition of a senescence-associated secretory phenotype (SASP), that may drive pathological conditions. Lymphangioleiomyomatosis (LAM) is a rare disease in which LAM cells, featuring the hyperactivation of the mammalian Target of Rapamycin Complex 1 (mTORC1) for the absence of tuberin expression, cause the disruption of the lung parenchyma. Considering that LAM cells secrete SASP factors and that mTOR is also a driver of senescence, we deepened the contribution of senescence in LAM cell phenotype. We firstly demonstrated that human primary tuberin-deficient LAM cells (LAM/TSC cells) have senescent features depending on mTOR hyperactivation, since their high positivity to SA-β galactosidase and to phospho-histone H2A.X are reduced by inducing tuberin expression and by inhibiting mTOR with rapamycin. Then, we demonstrated the capability of LAM/TSC cells to induce senescence. Indeed, primary lung fibroblasts (PLFs) grown in LAM/TSC conditioned medium increased the positivity to SA-β galactosidase and to phospho-histone H2A.X, as well as p21WAF1/CIP1 expression, and enhanced the mRNA expression and the secretion of the SASP component IL-8. Taken together, these data make senescence a novel field of study to understand LAM development and progression.
Collapse
|
99936
|
Nguyen ST, Fujita N, Oshima T, Nishihira M, Ohno H, Yoneda M, Urakawa S. Effects of long-term childhood exercise and detraining on lipid accumulation in metabolic-related organs. PLoS One 2022; 17:e0270330. [PMID: 35749411 PMCID: PMC9231767 DOI: 10.1371/journal.pone.0270330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
The preventive effects of regular exercise on obesity-related health problems are carried over to the non-exercise detraining period, even when physical activity decreases with aging. However, it remains unknown whether regular childhood exercises can be carried over to adulthood. Therefore, this study aimed to investigate the effects of long-term childhood exercise and detraining on lipid accumulation in organs to prevent obesity in adulthood. Four-week-old male Otsuka Long-Evans Tokushima Fatty (OLETF) rats were used as obese animals. OLETF rats were allocated into sedentary and exercise groups: exercise from 4- to 12-week-old and detraining from 12- to 20-week-old. At 12-week-old immediately after the exercise period, regular exercise completely inhibited hyperphagia, obesity, enlarged pancreatic islets, lipid accumulation and lobular inflammation in the liver, hypertrophied adipocytes in the white adipose tissue (WAT), and brown adipose tissue (BAT) whitening in OLETF rats. Additionally, exercise attenuated the decrease in the ratio of muscle wet weight to body weight associated with obesity. Decreased food consumption was maintained during the detraining period, which inhibited obesity and diabetes at 20-week-old after the detraining period. Histologically, childhood exercise inhibited the enlargement of pancreatic islets after the detraining period. In addition, inhibition of lipid accumulation was completely maintained in the WAT and BAT after the detraining period. However, the effectiveness was only partially successful in lipid accumulation and inflammation in the liver. The ratio of muscle wet weight to body weight was maintained after detraining. In conclusion, early long-term regular exercise effectively prevents obesity and diabetes in childhood, and its effectiveness can be tracked later in life. The present study suggests the importance of exercise during childhood and adolescence to inhibit hyperphagia-induced lipid accumulation in metabolic-related organs in adulthood despite exercise cessation.
Collapse
Affiliation(s)
- Son Tien Nguyen
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedicine and Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Naoto Fujita
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedicine and Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
- * E-mail:
| | - Takaya Oshima
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedicine and Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Misuzu Nishihira
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedicine and Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Haruya Ohno
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Masayasu Yoneda
- Department of Preventive Medicine for Diabetes and Lifestyle-Related Diseases, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Susumu Urakawa
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedicine and Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| |
Collapse
|
99937
|
Zurek G, Danek N, Żurek A, Nowak-Kornicka J, Żelaźniewicz A, Orzechowski S, Stefaniak T, Nawrat M, Kowal M. Effects of Dominance and Sprint Interval Exercise on Testosterone and Cortisol Levels in Strength-, Endurance-, and Non-Training Men. BIOLOGY 2022; 11:biology11070961. [PMID: 36101342 PMCID: PMC9312330 DOI: 10.3390/biology11070961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022]
Abstract
The aim of the study was to investigate the response of testosterone and cortisol to sprint interval exercises (SIEs) and to determine the role of dominance. The experiment was conducted in a group of 96 men, divided into endurance-training, strength-training, and non-training groups. Participants performed SIEs consisting of 5 × 10-s all-out bouts with a 50-s active recovery. Using the passive drool method, testosterone and cortisol concentrations were measured in saliva samples at rest at 10 min pre and 12 min post exercise. Participants’ heart rate (HR) was measured during the whole exercise. Dominance was assessed by the participants before the study; the rating of perceived exertion (RPE) was measured immediately after each bout. The study showed that those who trained in endurance and strength sports had significantly lower mean HRs after five acute 10-s interval bouts than those in the non-training group (p = 0.006 and p = 0.041, respectively). Dominance has an inverse relation to changes in HR; however, it has no relation to hormone response. No significant differences were observed in testosterone and cortisol changes in the endurance-training, strength-training, and non-training groups after SIE (p > 0.05), which may indicate that the exercise volume was too low.
Collapse
Affiliation(s)
- Grzegorz Zurek
- Department of Biostructure, Faculty of Physical Education and Sport, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland;
| | - Natalia Danek
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
- Correspondence:
| | - Alina Żurek
- Institute of Psychology, University of Wroclaw, 50-529 Wroclaw, Poland; (A.Ż.); (S.O.); (M.N.); (M.K.)
| | - Judyta Nowak-Kornicka
- Department of Human Biology, Faculty of Biological Sciences, University of Wroclaw, 50-137 Wroclaw, Poland; (J.N.-K.); (A.Ż.)
| | - Agnieszka Żelaźniewicz
- Department of Human Biology, Faculty of Biological Sciences, University of Wroclaw, 50-137 Wroclaw, Poland; (J.N.-K.); (A.Ż.)
| | - Sylwester Orzechowski
- Institute of Psychology, University of Wroclaw, 50-529 Wroclaw, Poland; (A.Ż.); (S.O.); (M.N.); (M.K.)
| | - Tadeusz Stefaniak
- Department of Sport Didactics, Faculty of Physical Education and Sport, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland;
| | - Magdalena Nawrat
- Institute of Psychology, University of Wroclaw, 50-529 Wroclaw, Poland; (A.Ż.); (S.O.); (M.N.); (M.K.)
| | - Marta Kowal
- Institute of Psychology, University of Wroclaw, 50-529 Wroclaw, Poland; (A.Ż.); (S.O.); (M.N.); (M.K.)
| |
Collapse
|
99938
|
Mitochondrial Ribosome Dysfunction in Human Alveolar Type II Cells in Emphysema. Biomedicines 2022; 10:biomedicines10071497. [PMID: 35884802 PMCID: PMC9313339 DOI: 10.3390/biomedicines10071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary emphysema is characterized by airspace enlargement and the destruction of alveoli. Alveolar type II (ATII) cells are very abundant in mitochondria. OXPHOS complexes are composed of proteins encoded by the mitochondrial and nuclear genomes. Mitochondrial 12S and 16S rRNAs are required to assemble the small and large subunits of the mitoribosome, respectively. We aimed to determine the mechanism of mitoribosome dysfunction in ATII cells in emphysema. ATII cells were isolated from control nonsmokers and smokers, and emphysema patients. Mitochondrial transcription and translation were analyzed. We also determined the miRNA expression. Decreases in ND1 and UQCRC2 expression levels were found in ATII cells in emphysema. Moreover, nuclear NDUFS1 and SDHB levels increased, and mitochondrial transcribed ND1 protein expression decreased. These results suggest an impairment of the nuclear and mitochondrial stoichiometry in this disease. We also detected low levels of the mitoribosome structural protein MRPL48 in ATII cells in emphysema. Decreased 16S rRNA expression and increased 12S rRNA levels were observed. Moreover, we analyzed miR4485-3p levels in this disease. Our results suggest a negative feedback loop between miR-4485-3p and 16S rRNA. The obtained results provide molecular mechanisms of mitoribosome dysfunction in ATII cells in emphysema.
Collapse
|
99939
|
Bai K, Jiang L, Wang T. Dimethylglycine Sodium Salt Alleviates Intrauterine Growth Restriction-Induced Low Growth Performance, Redox Status Imbalance, and Hepatic Mitochondrial Dysfunction in Suckling Piglets. Front Vet Sci 2022; 9:905488. [PMID: 35812869 PMCID: PMC9263627 DOI: 10.3389/fvets.2022.905488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
This study aimed to investigate the mechanism of redox status imbalance and hepatic mitochondrial dysfunction induced by intrauterine growth restriction (IUGR) and relieve this condition through dimethylglycine sodium salt (DMG-Na) supplementation during the suckling period. Thirty normal birth weight (NBW) and 30 IUGR newborns were selected from 20 sows. Briefly, 1 NBW and 1 IUGR newborn were obtained from each litter of 10 sows, and 10 NBW and 10 IUGR newborns were obtained. Additionally, 2 NBW and 2 IUGR newborns were obtained from each litter of another 10 sows, and 20 NBW newborns were allocated to the N [basic milk diets (BMDs)] and ND (BMDs+0.1% DMG-Na) groups. Furthermore, 20 IUGR newborns were assigned to the I (BMDs) and ID (BMDs+0.1% DMG-Na) groups. The results revealed that the growth performance, serum and hepatic redox status, and hepatic gene and protein expression levels were lower (P < 0.05) in the I group compared to the N group. Additionally, supplementation with DMG-Na (ND and ID groups) improved (P < 0.05) these parameters compared to the non-supplemented groups (N and I groups). In conclusion, the activity of Nrf2/SIRT1/PGC1α was inhibited in IUGR newborns, and this led to their hepatic dysfunctions. Supplementation with DMG-Na activated Nrf2/SIRT1/PGC1α in IUGR newborns, thereby improving their performance.
Collapse
Affiliation(s)
- Kaiwen Bai
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, China
| | - Luyi Jiang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Tian Wang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Tian Wang
| |
Collapse
|
99940
|
Veiras LC, Bernstein EA, Cao D, Okwan-Duodu D, Khan Z, Gibb DR, Roach A, Skelton R, Williams RM, Bernstein KE, Giani JF. Tubular IL-1β Induces Salt Sensitivity in Diabetes by Activating Renal Macrophages. Circ Res 2022; 131:59-73. [PMID: 35574842 PMCID: PMC9233055 DOI: 10.1161/circresaha.121.320239] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chronic renal inflammation has been widely recognized as a major promoter of several forms of high blood pressure including salt-sensitive hypertension. In diabetes, IL (interleukin)-6 induces salt sensitivity through a dysregulation of the epithelial sodium channel. However, the origin of this inflammatory process and the molecular events that culminates with an abnormal regulation of epithelial sodium channel and salt sensitivity in diabetes are largely unknown. METHODS Both in vitro and in vivo approaches were used to investigate the molecular and cellular contributors to the renal inflammation associated with diabetic kidney disease and how these inflammatory components interact to develop salt sensitivity in db/db mice. RESULTS Thirty-four-week-old db/db mice display significantly higher levels of IL-1β in renal tubules compared with nondiabetic db/+ mice. Specific suppression of IL-1β in renal tubules prevented salt sensitivity in db/db mice. A primary culture of renal tubular epithelial cells from wild-type mice releases significant levels of IL-1β when exposed to a high glucose environment. Coculture of tubular epithelial cells and bone marrow-derived macrophages revealed that tubular epithelial cell-derived IL-1β promotes the polarization of macrophages towards a proinflammatory phenotype resulting in IL-6 secretion. To evaluate whether macrophages are the cellular target of IL-1β in vivo, diabetic db/db mice were transplanted with the bone marrow of IL-1R1 (IL-1 receptor type 1) knockout mice. db/db mice harboring an IL-1 receptor type 1 knockout bone marrow remained salt resistant, display lower renal inflammation and lower expression and activity of epithelial sodium channel compared with db/db transplanted with a wild-type bone marrow. CONCLUSIONS Renal tubular epithelial cell-derived IL-1β polarizes renal macrophages towards a proinflammatory phenotype that promotes salt sensitivity through the accumulation of renal IL-6. When tubular IL-1β synthesis is suppressed or in db/db mice in which immune cells lack the IL-1R1, macrophage polarization is blunted resulting in no salt-sensitive hypertension.
Collapse
Affiliation(s)
- Luciana C Veiras
- Department of Biomedical Sciences (L.C.V., E.A.B., D.C., Z.K., K.E.B., J.F.G.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ellen A Bernstein
- Department of Biomedical Sciences (L.C.V., E.A.B., D.C., Z.K., K.E.B., J.F.G.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - DuoYao Cao
- Department of Biomedical Sciences (L.C.V., E.A.B., D.C., Z.K., K.E.B., J.F.G.), Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Zakir Khan
- Department of Biomedical Sciences (L.C.V., E.A.B., D.C., Z.K., K.E.B., J.F.G.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Pathology and Laboratory Medicine (Z.K., D.R.G., K.E.B., J.F.G.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - David R Gibb
- Department of Pathology and Laboratory Medicine (Z.K., D.R.G., K.E.B., J.F.G.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Arantxa Roach
- Department of Biomedical Engineering, The City College of New York' New York' NY (A.R., R.S., R.M.W.)
| | - Rachel Skelton
- Department of Biomedical Engineering, The City College of New York' New York' NY (A.R., R.S., R.M.W.)
| | - Ryan M Williams
- Department of Biomedical Engineering, The City College of New York' New York' NY (A.R., R.S., R.M.W.)
| | - Kenneth E Bernstein
- Department of Biomedical Sciences (L.C.V., E.A.B., D.C., Z.K., K.E.B., J.F.G.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Pathology and Laboratory Medicine (Z.K., D.R.G., K.E.B., J.F.G.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jorge F Giani
- Department of Biomedical Sciences (L.C.V., E.A.B., D.C., Z.K., K.E.B., J.F.G.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Pathology and Laboratory Medicine (Z.K., D.R.G., K.E.B., J.F.G.), Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
99941
|
Ghazi AR, Sucipto K, Rahnavard A, Franzosa EA, McIver LJ, Lloyd-Price J, Schwager E, Weingart G, Moon YS, Morgan XC, Waldron L, Huttenhower C. High-sensitivity pattern discovery in large, paired multiomic datasets. Bioinformatics 2022; 38:i378-i385. [PMID: 35758795 PMCID: PMC9235493 DOI: 10.1093/bioinformatics/btac232] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Modern biological screens yield enormous numbers of measurements, and identifying and interpreting statistically significant associations among features are essential. In experiments featuring multiple high-dimensional datasets collected from the same set of samples, it is useful to identify groups of associated features between the datasets in a way that provides high statistical power and false discovery rate (FDR) control. RESULTS Here, we present a novel hierarchical framework, HAllA (Hierarchical All-against-All association testing), for structured association discovery between paired high-dimensional datasets. HAllA efficiently integrates hierarchical hypothesis testing with FDR correction to reveal significant linear and non-linear block-wise relationships among continuous and/or categorical data. We optimized and evaluated HAllA using heterogeneous synthetic datasets of known association structure, where HAllA outperformed all-against-all and other block-testing approaches across a range of common similarity measures. We then applied HAllA to a series of real-world multiomics datasets, revealing new associations between gene expression and host immune activity, the microbiome and host transcriptome, metabolomic profiling and human health phenotypes. AVAILABILITY AND IMPLEMENTATION An open-source implementation of HAllA is freely available at http://huttenhower.sph.harvard.edu/halla along with documentation, demo datasets and a user group. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrew R Ghazi
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kathleen Sucipto
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ali Rahnavard
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric A Franzosa
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lauren J McIver
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jason Lloyd-Price
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Emma Schwager
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - George Weingart
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yo Sup Moon
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xochitl C Morgan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Levi Waldron
- Department of Epidemiology and Biostatistics, City University of New York Graduate School of Public Health and Health Policy, New York City, NY 10035, USA
| | - Curtis Huttenhower
- Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
99942
|
Tews D, Wabitsch M. Brown Adipose Tissue in Children and Its Metabolic Function. Horm Res Paediatr 2022; 95:104-111. [PMID: 34348306 DOI: 10.1159/000518353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To regulate body temperature, mammals possess brown adipose tissue (BAT), which converts significant amounts of chemical energy into heat. Due to its remarkable energy demand, BAT is currently discussed as a target organ to treat obesity and obesity-related disorders. SUMMARY Although BAT is predominantly present in infants and its relative mass declines with age, new findings suggest that BAT has a relevant role in the regulation of energy homeostasis as well as in the regulation of the energy substrates glucose and lipids in older children, adolescents, and adults. In this overview, we will outline basic mechanisms of BAT thermogenesis and the recently described physiological relevance of BAT in metabolism in children and adolescents. KEY MESSAGE The connection of BAT activity with glucose metabolism and insulin sensitivity seems to be evident from recent studies, implicating BAT as an important influencing factor in the context of metabolic syndrome.
Collapse
Affiliation(s)
- Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
99943
|
Meinnel T. Comment on “Binding Affinity Determines Substrate Specificity and Enables Discovery of Substrates for N-Myristoyltransferases”. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Thierry Meinnel
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
99944
|
Becatti M, Abbate A, Fiorillo C, Carnevale R, Kumar S. Editorial: New Insights Into Oxidative Stress and Inflammation in the Pathophysiology and Treatment of Cardiovascular Diseases. Front Mol Biosci 2022; 9:940465. [PMID: 35813826 PMCID: PMC9263691 DOI: 10.3389/fmolb.2022.940465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
- *Correspondence: Matteo Becatti,
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, Firenze, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Santosh Kumar
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
99945
|
Ouyang W, Wang S, Hu J, Liu Z. Can the cGAS-STING Pathway Play a Role in the Dry Eye? Front Immunol 2022; 13:929230. [PMID: 35812407 PMCID: PMC9263829 DOI: 10.3389/fimmu.2022.929230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022] Open
Abstract
Dry eye is one of the most common ocular surface diseases in the world and seriously affects the quality of life of patients. As an immune-related disease, the mechanism of dry eye has still not been fully elucidated. The cGAS-STING pathway is a recently discovered pathway that plays an important role in autoimmune and inflammatory diseases by recognizing dsDNA. As an important signal to initiate inflammation, the release of dsDNA is associated with dry eye. Herein, we focused on the pathophysiology of the immune-inflammatory response in the pathogenesis of dry eye, attempted to gain insight into the involvement of dsDNA in the dry eye immune response, and investigated the mechanism of the cGAS-STING pathway involved in the immune-inflammatory response. We further proposed that the cGAS-STING pathway may participate in dry eye as a new mechanism linking dry eye and the immune-inflammatory response, thus providing a new direction for the mechanistic exploration of dry eye.
Collapse
Affiliation(s)
- Weijie Ouyang
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Shoubi Wang
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Xiamen University, Xiamen, China
- Xiamen Clinical Medical Center for Endocrine and Metabolic Diseases, Xiamen University, Xiamen, China
- Xiamen Diabetes Prevention and Treatment Center, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Diabetes Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiaoyue Hu
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
- *Correspondence: Zuguo Liu, ; Jiaoyue Hu,
| | - Zuguo Liu
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, China
- *Correspondence: Zuguo Liu, ; Jiaoyue Hu,
| |
Collapse
|
99946
|
Yang N, Yang Y, Huang Z, Chen HW. Deregulation of Cholesterol Homeostasis by a Nuclear Hormone Receptor Crosstalk in Advanced Prostate Cancer. Cancers (Basel) 2022; 14:3110. [PMID: 35804882 PMCID: PMC9265016 DOI: 10.3390/cancers14133110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/26/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) features high intratumoral cholesterol levels, due to aberrant regulation of cholesterol homeostasis. However, the underlying mechanisms are still poorly understood. The retinoid acid receptor-related orphan receptor gamma (RORγ), an attractive therapeutic target for cancer and autoimmune diseases, is strongly implicated in prostate cancer progression. We demonstrate in this study that in mCRPC cells and tumors, RORγ plays a crucial role in deregulation of cholesterol homeostasis. First, we found that RORγ activates the expression of key cholesterol biosynthesis proteins, including HMGCS1, HMGCR, and SQLE. Interestingly, we also found that RORγ inhibition induces cholesterol efflux gene program including ABCA1, ABCG1 and ApoA1. Our further studies revealed that liver X receptors (LXRα and LXRβ), the master regulators of cholesterol efflux pathway, mediate the function of RORγ in repression of cholesterol efflux. Finally, we demonstrated that RORγ antagonist in combination with statins has synergistic effect in killing mCRPC cells through blocking statin-induced feedback induction of cholesterol biosynthesis program and that the combination treatment also elicits stronger anti-tumor effects than either alone. Altogether, our work revealed that in mCRPC, RORγ contributes to aberrant cholesterol homeostasis by induction of cholesterol biosynthesis program and suppression of cholesterol efflux genes. Our findings support a therapeutic strategy of targeting RORγ alone or in combination with statin for effective treatment of mCRPC.
Collapse
Affiliation(s)
- Nianxin Yang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; (N.Y.); (Y.Y.); (Z.H.)
| | - Yatian Yang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; (N.Y.); (Y.Y.); (Z.H.)
| | - Zenghong Huang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; (N.Y.); (Y.Y.); (Z.H.)
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; (N.Y.); (Y.Y.); (Z.H.)
- National Cancer Institute Designated Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
- Veterans Affairs Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
99947
|
Macnair W, Gupta R, Claassen M. psupertime: supervised pseudotime analysis for time-series single-cell RNA-seq data. Bioinformatics 2022; 38:i290-i298. [PMID: 35758781 PMCID: PMC9235474 DOI: 10.1093/bioinformatics/btac227] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Motivation Improvements in single-cell RNA-seq technologies mean that studies measuring multiple experimental conditions, such as time series, have become more common. At present, few computational methods exist to infer time series-specific transcriptome changes, and such studies have therefore typically used unsupervised pseudotime methods. While these methods identify cell subpopulations and the transitions between them, they are not appropriate for identifying the genes that vary coherently along the time series. In addition, the orderings they estimate are based only on the major sources of variation in the data, which may not correspond to the processes related to the time labels. Results We introduce psupertime, a supervised pseudotime approach based on a regression model, which explicitly uses time-series labels as input. It identifies genes that vary coherently along a time series, in addition to pseudotime values for individual cells, and a classifier that can be used to estimate labels for new data with unknown or differing labels. We show that psupertime outperforms benchmark classifiers in terms of identifying time-varying genes and provides better individual cell orderings than popular unsupervised pseudotime techniques. psupertime is applicable to any single-cell RNA-seq dataset with sequential labels (e.g. principally time series but also drug dosage and disease progression), derived from either experimental design and provides a fast, interpretable tool for targeted identification of genes varying along with specific biological processes. Availability and implementation R package available at github.com/wmacnair/psupertime and code for results reproduction at github.com/wmacnair/psupplementary. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Will Macnair
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Revant Gupta
- Inner Medicine I, Faculty of Medicine, University of Tübingen, University Hospital Tübingen, 72074, Germany
| | - Manfred Claassen
- Inner Medicine I, Faculty of Medicine, University of Tübingen, University Hospital Tübingen, 72074, Germany.,Department of Computer Science, University of Tübingen, Tübingen 72074, Germany
| |
Collapse
|
99948
|
Humphreys SC, Davis JA, Iqbal S, Kamel A, Kulmatycki K, Lao Y, Liu X, Rodgers J, Snoeys J, Vigil A, Weng Y, Wiethoff C, Wittwer M. Considerations and recommendations for assessment of plasma protein binding and drug-drug interactions for siRNA therapeutics. Nucleic Acids Res 2022; 50:6020-6037. [PMID: 35687098 PMCID: PMC9226521 DOI: 10.1093/nar/gkac456] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/25/2022] [Accepted: 06/06/2022] [Indexed: 11/12/2022] Open
Abstract
At the time of writing, although siRNA therapeutics are approved for human use, no official regulatory guidance specific to this modality is available. In the absence of guidance, preclinical development for siRNA followed a hybrid of the small molecule and biologics guidance documents. However, siRNA differs significantly from small molecules and protein-based biologics in its physicochemical, absorption, distribution, metabolism and excretion properties, and its mechanism of action. Consequently, certain reports typically included in filing packages for small molecule or biologics may benefit from adaption, or even omission, from an siRNA filing. In this white paper, members of the 'siRNA working group' in the IQ Consortium compile a list of reports included in approved siRNA filing packages and discuss the relevance of two in vitro reports-the plasma protein binding evaluation and the drug-drug interaction risk assessment-to support siRNA regulatory filings. Publicly available siRNA approval packages and the literature were systematically reviewed to examine the role of siRNA plasma protein binding and drug-drug interactions in understanding pharmacokinetic/pharmacodynamic relationships, safety and translation. The findings are summarized into two decision trees to help guide industry decide when in vitro siRNA plasma protein binding and drug-drug interaction studies are warranted.
Collapse
Affiliation(s)
| | - John A Davis
- PKS Department, Novartis, Cambridge, MA 02139, USA
| | | | - Amin Kamel
- Global DMPK, Takeda, San Diego, CA 92121, USA
| | | | - Yanbin Lao
- DMPK, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ 08648, USA
| | - Xiumin Liu
- Early Development, Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - John Rodgers
- PKDM Department, Amgen Inc., South San Francisco, CA 94080, USA
| | - Jan Snoeys
- DMPK Department, Janssen R&D, Beerse 2340, Belgium
| | - Adam Vigil
- DMPK, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT 06877, USA
| | - Yan Weng
- Early Clinical Development Clinical Pharmacology Department, Pfizer, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
99949
|
Münzker J, Haase N, Till A, Sucher R, Haange SB, Nemetschke L, Gnad T, Jäger E, Chen J, Riede SJ, Chakaroun R, Massier L, Kovacs P, Ost M, Rolle-Kampczyk U, Jehmlich N, Weiner J, Heiker JT, Klöting N, Seeger G, Morawski M, Keitel V, Pfeifer A, von Bergen M, Heeren J, Krügel U, Fenske WK. Functional changes of the gastric bypass microbiota reactivate thermogenic adipose tissue and systemic glucose control via intestinal FXR-TGR5 crosstalk in diet-induced obesity. MICROBIOME 2022; 10:96. [PMID: 35739571 PMCID: PMC9229785 DOI: 10.1186/s40168-022-01264-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/25/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bariatric surgery remains the most effective therapy for adiposity reduction and remission of type 2 diabetes. Although different bariatric procedures associate with pronounced shifts in the gut microbiota, their functional role in the regulation of energetic and metabolic benefits achieved with the surgery are not clear. METHODS To evaluate the causal as well as the inherent therapeutic character of the surgery-altered gut microbiome in improved energy and metabolic control in diet-induced obesity, an antibiotic cocktail was used to eliminate the gut microbiota in diet-induced obese rats after gastric bypass surgery, and gastric bypass-shaped gut microbiota was transplanted into obese littermates. Thorough metabolic profiling was combined with omics technologies on samples collected from cecum and plasma to identify adaptions in gut microbiota-host signaling, which control improved energy balance and metabolic profile after surgery. RESULTS In this study, we first demonstrate that depletion of the gut microbiota largely reversed the beneficial effects of gastric bypass surgery on negative energy balance and improved glucolipid metabolism. Further, we show that the gastric bypass-shaped gut microbiota reduces adiposity in diet-induced obese recipients by re-activating energy expenditure from metabolic active brown adipose tissue. These beneficial effects were linked to improved glucose homeostasis, lipid control, and improved fatty liver disease. Mechanistically, these effects were triggered by modulation of taurine metabolism by the gastric bypass gut microbiota, fostering an increased abundance of intestinal and circulating taurine-conjugated bile acid species. In turn, these bile acids activated gut-restricted FXR and systemic TGR5 signaling to stimulate adaptive thermogenesis. CONCLUSION Our results establish the role of the gut microbiome in the weight loss and metabolic success of gastric bypass surgery. We here identify a signaling cascade that entails altered bile acid receptor signaling resulting from a collective, hitherto undescribed change in the metabolic activity of a cluster of bacteria, thereby readjusting energy imbalance and metabolic disease in the obese host. These findings strengthen the rationale for microbiota-targeted strategies to improve and refine current therapies of obesity and metabolic syndrome. Video Abstract Bariatric Surgery (i.e. RYGB) or the repeated fecal microbiota transfer (FMT) from RYGB donors into DIO (diet-induced obesity) animals induces shifts in the intestinal microbiome, an effect that can be impaired by oral application of antibiotics (ABx). Our current study shows that RYGB-dependent alterations in the intestinal microbiome result in an increase in the luminal and systemic pool of Taurine-conjugated Bile acids (TCBAs) by various cellular mechanisms acting in the intestine and the liver. TCBAs induce signaling via two different receptors, farnesoid X receptor (FXR, specifically in the intestines) and the G-protein-coupled bile acid receptor TGR5 (systemically), finally resulting in metabolic improvement and advanced weight management. BSH, bile salt hydrolase; BAT brown adipose tissue.
Collapse
Affiliation(s)
- Julia Münzker
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Nadine Haase
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Andreas Till
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, University Medical Center Bonn, Bonn, Germany
| | - Robert Sucher
- Department of Visceral-, Transplant-, Thoracic- and Vascular Surgery, University of Leipzig, Leipzig, Germany
| | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research Leipzig-UFZ, Leipzig, Germany
| | - Linda Nemetschke
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Elisabeth Jäger
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
- Department for Pathology, Cedars-Sinai Medical Center Los Angeles, Los Angeles, USA
| | - Jiesi Chen
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Sjaak J Riede
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Rima Chakaroun
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Lucas Massier
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - Mario Ost
- Department of Neuropathology, University of Leipzig, Leipzig, Germany
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research Leipzig-UFZ, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research Leipzig-UFZ, Leipzig, Germany
| | - Juliane Weiner
- Medical Department III, Endocrinology, Nephrology, Rheumatology, University Hospital of Leipzig, Leipzig, Germany
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Gudrun Seeger
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research Leipzig-UFZ, Leipzig, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Wiebke K Fenske
- Department of Internal Medicine I, Division of Endocrinology, Diabetes and Metabolism, University Medical Center Bonn, Bonn, Germany.
| |
Collapse
|
99950
|
Jing Y, Yang R, Chen W, Ye Q. Anti-Arrhythmic Effects of Sodium-Glucose Co-Transporter 2 Inhibitors. Front Pharmacol 2022; 13:898718. [PMID: 35814223 PMCID: PMC9263384 DOI: 10.3389/fphar.2022.898718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
Arrhythmias are clinically prevalent with a high mortality rate. They impose a huge economic burden, thereby substantially affecting the quality of life. Sodium-glucose co-transporter 2 inhibitor (SGLT2i) is a new type of hypoglycemic drug, which can regulate blood glucose level safely and effectively. Additionally, it reduces the occurrence and progression of heart failure and cardiovascular events significantly. Recently, studies have found that SGLT2i can alleviate the occurrence and progression of cardiac arrhythmias; however, the exact mechanism remains unclear. In this review, we aimed to discuss and summarize new literature on different modes in which SGLT2i ameliorates the occurrence and development of cardiac arrhythmias.
Collapse
|