99901
|
Bots ST, Kemp V, Cramer SJ, van den Wollenberg DJ, Hornsveld M, Lamfers ML, van der Pluijm G, Hoeben RC. Nonhuman Primate Adenoviruses of the Human Adenovirus B Species Are Potent and Broadly Acting Oncolytic Vector Candidates. Hum Gene Ther 2022; 33:275-289. [PMID: 34861769 PMCID: PMC8972008 DOI: 10.1089/hum.2021.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
The use of human adenoviruses (hAds) as oncolytic agents has demonstrated considerable potential. However, their efficacy in clinical studies is generally moderate and often varies between patients. This may, in part, be attributable to variable pre-existing neutralizing immunity in patients, which can impact the antitumor efficacy and lead to response heterogeneity. Our aim was to isolate new Ads for the development of oncolytic vectors with low prevalence of neutralizing immunity in the human population. To this end, we isolated a collection of new nonhuman primate (nhp) Ads from stool samples of four great ape species held captive. We elected 12 isolates comprising the broadest genetic variability for further characterization. For three new nhpAds, all classified as the human adenovirus B (HAdV-B) species, no neutralizing activity could be detected when exposed to a preparation of immunoglobulins isolated from a pool of >1,000 donors as a surrogate of population immunity. In addition, the nhpAds of the HAdV-B species showed enhanced oncolytic potency compared to nhpAds of the HAdV-C species as well as to human adenovirus type 5 (HAdV-C5) in vitro when tested in a panel of 29 human cancer cell lines. Next-generation sequencing of the viral genomes revealed higher sequence similarity between hAds and nhpAds of HAdV-B compared to HAdV-C, which might underlie the differences in oncolytic ability. As a proof-of-concept, the Rb-binding domain of the E1A protein of the gorilla-derived HAdV-B nhpAd-lumc007 was deleted, thereby creating a new oncolytic derivative, which demonstrated increased oncolytic potential compared to HAdV-C5. Collectively, our data demonstrate that nhpAds of the HAdV-B species can serve as an alternative for the development of potent oncolytic Ad vectors with limited pre-existing neutralizing immunity in humans.
Collapse
Affiliation(s)
- Selas T.F. Bots
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vera Kemp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Steve J. Cramer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marten Hornsveld
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martine L.M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
99902
|
Chen Z, Wu J, Li S, Liu C, Ren Y. Inhibition of Myocardial Cell Apoptosis Is Important Mechanism for Ginsenoside in the Limitation of Myocardial Ischemia/Reperfusion Injury. Front Pharmacol 2022; 13:806216. [PMID: 35300297 PMCID: PMC8921549 DOI: 10.3389/fphar.2022.806216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/09/2022] [Indexed: 12/25/2022] Open
Abstract
Ischemic heart disease has a high mortality, and the recommended therapy is reperfusion. Nevertheless, the restoration of blood flow to ischemic tissue leads to further damage, namely, myocardial ischemia/reperfusion injury (MIRI). Apoptosis is an essential pathogenic factor in MIRI, and ginsenosides are effective in inhibiting apoptosis and alleviating MIRI. Here, we reviewed published studies on the anti-apoptotic effects of ginsenosides and their mechanisms of action in improving MIRI. Each ginsenoside can regulate multiple pathways to protect the myocardium. Overall, the involved apoptotic pathways include the death receptor signaling pathway, mitochondria signaling pathway, PI3K/Akt signaling pathway, NF-κB signaling pathway, and MAPK signaling pathway. Ginsenosides, with diverse chemical structures, regulate different apoptotic pathways to relieve MIRI. Summarizing the effects and mechanisms of ginsenosides contributes to further mechanism research studies and structure-function relationship research studies, which can help the development of new drugs. Therefore, we expect that this review will highlight the importance of ginsenosides in improving MIRI via anti-apoptosis and provide references and suggestions for further research in this field.
Collapse
Affiliation(s)
- Zhihan Chen
- School of Acupuncture Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingping Wu
- Department of Medical Cosmetology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sijing Li
- School of Acupuncture Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caijiao Liu
- School of Acupuncture Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulan Ren
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
99903
|
Yuan C, Zhao X, Wangmo D, Alshareef D, Gates TJ, Subramanian S. Tumor models to assess immune response and tumor-microbiome interactions in colorectal cancer. Pharmacol Ther 2022; 231:107981. [PMID: 34480964 PMCID: PMC8844062 DOI: 10.1016/j.pharmthera.2021.107981] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Despite significant advances over the past 2 decades in preventive screening and therapy aimed at improving patient survival, colorectal cancer (CRC) remains the second most common cause of cancer death in the United States. The average 5-year survival rate of CRC patients with positive regional lymph nodes is only 40%, while less than 5% of patients with distant metastases survive beyond 5 years. There is a critical need to develop novel therapies that can improve overall survival in patients with poor prognoses, particularly since 60% of them are diagnosed at an advanced stage. Pertinently, immune checkpoint blockade therapy has dramatically changed how we treat CRC patients with microsatellite-instable high tumors. Furthermore, accumulating evidence shows that changes in gut microbiota are associated with the regulation of host antitumor immune response and cancer progression. Appropriate animal models are essential to deciphering the complex mechanisms of host antitumor immune response and tumor-gut microbiome metabolic interactions. Here, we discuss various mouse models of colorectal cancer that are developed to address key questions on tumor immune response and tumor-microbiota interactions. These CRC models will also serve as resourceful tools for effective preclinical studies.
Collapse
Affiliation(s)
- Ce Yuan
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Xianda Zhao
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Dechen Wangmo
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Duha Alshareef
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Travis J Gates
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, United States of America; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
99904
|
Hanly A, Gibson F, Nocco S, Rogers S, Wu M, Alani RM. Drugging the Epigenome: Overcoming Resistance to Targeted and Immunotherapies in Melanoma. JID INNOVATIONS 2022; 2:100090. [PMID: 35199090 PMCID: PMC8844701 DOI: 10.1016/j.xjidi.2021.100090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022] Open
Abstract
This past decade has seen tremendous advances in understanding the molecular pathogenesis of melanoma and the development of novel effective therapies for melanoma. Targeted therapies and immunotherapies that extend survival of patients with advanced disease have been developed; however, the vast majority of patients experience relapse and therapeutic resistance over time. Moreover, cellular plasticity has been demonstrated to be a driver of therapeutic resistance mechanisms in melanoma and other cancers, largely functioning through epigenetic mechanisms, suggesting that targeting of the cancer epigenetic landscape may prove a worthwhile endeavor to ensure durable treatment responses and cures. Here, we review the epigenetic alterations that characterize melanoma development, progression, and resistance to targeted therapies as well as epigenetic therapies currently in use and under development for melanoma and other cancers. We further assess the landscape of epigenetic therapies in clinical trials for melanoma and provide a framework for future advances in epigenetic therapies to circumvent the development of therapeutic resistance in melanoma.
Collapse
Key Words
- BRAFi, BRAF inhibitor
- DNMT, DNA methyltransferase
- DNMTi, DNA methyltransferase inhibitor
- EZH2, enhancer of zeste homolog 2
- EZH2i, enhancer of zeste homolog 2 inhibitor
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- HDACi, histone deacetylase inhibitor
- MEKi, MAPK/extracellular signal‒regulated kinase inhibitor
- PTM, post-translational modification
- SIRT, sirtuin
- TMZ, temozolomide
- dsRNA, double-stranded RNA
Collapse
Affiliation(s)
- Ailish Hanly
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Frederick Gibson
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Sarah Nocco
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Samantha Rogers
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Muzhou Wu
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Rhoda M. Alani
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
99905
|
Dard L, Hubert C, Esteves P, Blanchard W, Bou About G, Baldasseroni L, Dumon E, Angelini C, Delourme M, Guyonnet-Duperat V, Claverol S, Bonneu M, Fontenille L, Kissa K, Séguéla PE, Thambo JB, Levy N, Herault Y, Bellance N, Dias Amoedo N, Magdinier F, Sorg T, Lacombe D, Rossignol R. HRAS germline mutations impair LKB1/AMPK signaling and mitochondrial homeostasis in Costello syndrome models. J Clin Invest 2022; 132:131053. [PMID: 35230976 PMCID: PMC9012293 DOI: 10.1172/jci131053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Germline mutations that activate genes in the canonical RAS/MAPK signaling pathway are responsible for rare human developmental disorders known as RASopathies. Here, we analyzed the molecular determinants of Costello syndrome (CS) using a mouse model expressing HRAS p.G12S, patient skin fibroblasts, hiPSC-derived human cardiomyocytes, a HRAS p.G12V zebrafish model and human fibroblasts expressing lentiviral constructs carrying HRAS p.G12S or HRAS p.G12A mutations. The findings revealed alteration of mitochondrial proteostasis and defective oxidative phosphorylation in the heart and skeletal muscle of Costello mice that were also found in the cell models of the disease. The underpinning mechanisms involved the inhibition of the AMPK signaling pathway by mutant forms of HRAS, leading to alteration of mitochondrial proteostasis and bioenergetics. Pharmacological activation of mitochondrial bioenergetics and quality control restored organelle function in HRAS p.G12A and p.G12S cell models, reduced left ventricle hypertrophy in the CS mice and diminished the occurrence of developmental defects in the CS zebrafish model. Collectively, these findings highlight the importance of mitochondrial proteostasis in the pathophysiology of RASopathies and suggest that patients with Costello syndrome may benefit from treatment with mitochondrial modulators.
Collapse
Affiliation(s)
| | | | | | | | - Ghina Bou About
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch, France
| | | | - Elodie Dumon
- INSERM U688, University of Bordeaux, Bordeaux, France
| | | | | | | | | | - Marc Bonneu
- Plateforme Proteome, University of Bordeaux, Bordeaux, France
| | | | | | | | | | - Nicolas Levy
- Marseille Medical Genetics, INSERM, Marseille, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch, France
| | | | | | | | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch, France
| | - Didier Lacombe
- Medical Genetics Department, Bordeaux University Hospital CHU Bordeaux, INSERM U121, Bordeaux, France
| | | |
Collapse
|
99906
|
Conroy JN, Coulson EJ. High-affinity TrkA and p75 neurotrophin receptor complexes: A twisted affair. J Biol Chem 2022; 298:101568. [PMID: 35051416 PMCID: PMC8889134 DOI: 10.1016/j.jbc.2022.101568] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 10/27/2022] Open
Abstract
Neurotrophin signaling is essential for normal nervous system development and adult function. Neurotrophins are secreted proteins that signal via interacting with two neurotrophin receptor types: the multifaceted p75 neurotrophin receptor and the tropomyosin receptor kinase receptors. In vivo, neurons compete for the limited quantities of neurotrophins, a process that underpins neural plasticity, axonal targeting, and ultimately survival of the neuron. Thirty years ago, it was discovered that p75 neurotrophin receptor and tropomyosin receptor kinase A form a complex and mediate high-affinity ligand binding and survival signaling; however, despite decades of functional and structural research, the mechanism of modulation that yields this high-affinity complex remains unclear. Understanding the structure and mechanism of high-affinity receptor generation will allow development of pharmaceuticals to modulate this function for treatment of the many nervous system disorders in which altered neurotrophin expression or signaling plays a causative or contributory role. Here we re-examine the key older literature and integrate it with more recent studies on the topic of how these two receptors interact. We also identify key outstanding questions and propose a model of inside-out allosteric modulation to assist in resolving the elusive high-affinity mechanism and complex.
Collapse
Affiliation(s)
- Jacinta N Conroy
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth J Coulson
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Clem Jones Centre for Ageing and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
99907
|
Fanale D, Corsini LR, Brando C, Dimino A, Filorizzo C, Magrin L, Sciacchitano R, Fiorino A, Bazan Russo TD, Calò V, Iovanna JL, Francini E, Russo A, Bazan V. Impact of Different Selection Approaches for Identifying Lynch Syndrome-Related Colorectal Cancer Patients: Unity Is Strength. Front Oncol 2022; 12:827822. [PMID: 35223509 PMCID: PMC8864140 DOI: 10.3389/fonc.2022.827822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
Lynch syndrome (LS) is an inherited genetic condition associated with increased predisposition to colorectal cancer (CRC) and other tumors and is caused by germline mutations in Mismatch Repair (MMR) or EPCAM genes. The identification of LS carriers is currently based on germline testing of subjects with MMR-deficient (dMMR) tumors or fulfilling clinical criteria, but the most efficient strategies to select patients who should be offered genetic testing are yet not well defined. In order to assess the most suitable selection mode to identify LS-related CRC patients, we retrospectively collected and analyzed all clinical and molecular information of 854 CRC patients, recruited from 2013 to 2021 at the University Hospital Policlinico "P. Giaccone" of Palermo (Italy), 100 of which were selected based on revised Bethesda guidelines, Amsterdam criteria II, or tissue MMR deficiency, and genetically tested for germline variants in LS-susceptibility genes. Our study showed that 32 out of 100 CRC patients harbored germline likely pathogenic/pathogenic variants in MMR genes. The analysis of tissue microsatellite instability (MSI) status according to the revised Bethesda guidelines has been to be the best selection approach. However, using different selection approaches as complementary strategies is useful to identify LS carriers, reducing underdiagnosis of this syndrome.
Collapse
Affiliation(s)
- Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Lidia Rita Corsini
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Chiara Brando
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessandra Dimino
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Clarissa Filorizzo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Luigi Magrin
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Roberta Sciacchitano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessia Fiorino
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Valentina Calò
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Juan Lucio Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Edoardo Francini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| |
Collapse
|
99908
|
Patel JH, Schattinger PA, Takayoshi EE, Wills AE. Hif1α and Wnt are required for posterior gene expression during Xenopus tropicalis tail regeneration. Dev Biol 2022; 483:157-168. [PMID: 35065905 PMCID: PMC8881967 DOI: 10.1016/j.ydbio.2022.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/16/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Abstract
Regeneration of complex tissues is initiated by an injury-induced stress response, eventually leading to activation of developmental signaling pathways such as Wnt signaling. How early injury cues are interpreted and coupled to activation of these developmental signals and their targets is not well understood. Here, we show that Hif1α, a stress induced transcription factor, is required for tail regeneration in Xenopus tropicalis. We find that Hif1α is required for regeneration of differentiated axial tissues, including axons and muscle. Using RNA-sequencing, we find that Hif1α and Wnt converge on a broad set of genes required for posterior specification and differentiation, including the posterior hox genes. We further show that Hif1α is required for transcription via a Wnt-responsive element, a function that is conserved in both regeneration and early neural patterning. Our findings indicate that Hif1α has regulatory roles in Wnt target gene expression across multiple tissue contexts.
Collapse
Affiliation(s)
- Jeet H. Patel
- Department of Biochemistry, University of Washington, Seattle WA,Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle WA
| | | | | | - Andrea E. Wills
- Department of Biochemistry, University of Washington, Seattle WA,Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle WA,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle WA,To whom correspondence should be addressed:
| |
Collapse
|
99909
|
Molkentine DP, Molkentine JM, Bridges KA, Valdecanas DR, Dhawan A, Bahri R, Hefner AJ, Kumar M, Yang L, Abdelhakiem M, Pifer PM, Sandulache V, Sheth A, Beadle BM, Thames HD, Mason KA, Pickering CR, Meyn RE, Skinner HD. p16 Represses DNA Damage Repair via a Novel Ubiquitin-Dependent Signaling Cascade. Cancer Res 2022; 82:916-928. [PMID: 34965932 PMCID: PMC9136619 DOI: 10.1158/0008-5472.can-21-2101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/07/2021] [Accepted: 12/27/2021] [Indexed: 01/07/2023]
Abstract
Squamous cell carcinoma driven by human papillomavirus (HPV) is more sensitive to DNA-damaging therapies than its HPV-negative counterpart. Here, we show that p16, the clinically used surrogate for HPV positivity, renders cells more sensitive to radiotherapy via a ubiquitin-dependent signaling pathway, linking high levels of this protein to increased activity of the transcription factor SP1, increased HUWE1 transcription, and degradation of ubiquitin-specific protease 7 (USP7) and TRIP12. Activation of this pathway in HPV-positive disease led to decreased homologous recombination and improved response to radiotherapy, a phenomenon that can be recapitulated in HPV-negative disease using USP7 inhibitors in clinical development. This p16-driven axis induced sensitivity to PARP inhibition and potentially leads to "BRCAness" in head and neck squamous cell carcinoma (HNSCC) cells. Thus, these findings support a functional role for p16 in HPV-positive tumors in driving response to DNA damage, which can be exploited to improve outcomes in both patients with HPV-positive and HPV-negative HNSCC. SIGNIFICANCE In HPV-positive tumors, a previously undiscovered pathway directly links p16 to DNA damage repair and sensitivity to radiotherapy via a clinically relevant and pharmacologically targetable ubiquitin-mediated degradation pathway.
Collapse
Affiliation(s)
- David P. Molkentine
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Jessica M. Molkentine
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Kathleen A. Bridges
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David R. Valdecanas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Annika Dhawan
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Reshub Bahri
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Andrew J. Hefner
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Manish Kumar
- Department of Biochemistry, AIMS, Bilaspur, Himachal Pradesh, India
| | - Liangpeng Yang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mohamed Abdelhakiem
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Phillip M. Pifer
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Vlad Sandulache
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston Texas
| | - Aakash Sheth
- Department of Internal Medicine, Baylor College of Medicine, Houston Texas
| | - Beth M. Beadle
- Department of Radiation Oncology, Stanford University, Stanford California
| | - Howard D. Thames
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kathryn A. Mason
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Curtis R. Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raymond E. Meyn
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heath D. Skinner
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
99910
|
Knudsen ES, Kumarasamy V, Nambiar R, Pearson JD, Vail P, Rosenheck H, Wang J, Eng K, Bremner R, Schramek D, Rubin SM, Welm AL, Witkiewicz AK. CDK/cyclin dependencies define extreme cancer cell-cycle heterogeneity and collateral vulnerabilities. Cell Rep 2022; 38:110448. [PMID: 35235778 PMCID: PMC9022184 DOI: 10.1016/j.celrep.2022.110448] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/11/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
Progression through G1/S phase of the cell cycle is coordinated by cyclin-dependent kinase (CDK) activities. Here, we find that the requirement for different CDK activities and cyclins in driving cancer cell cycles is highly heterogeneous. The differential gene requirements associate with tumor origin and genetic alterations. We define multiple mechanisms for G1/S progression in RB-proficient models, which are CDK4/6 independent and elicit resistance to FDA-approved inhibitors. Conversely, RB-deficient models are intrinsically CDK4/6 independent, but exhibit differential requirements for cyclin E. These dependencies for CDK and cyclins associate with gene expression programs that denote intrinsically different cell-cycle states. Mining therapeutic sensitivities shows that there are reciprocal vulnerabilities associated with RB1 or CCND1 expression versus CCNE1 or CDKN2A. Together, these findings illustrate the complex nature of cancer cell cycles and the relevance for precision therapeutic intervention. Knudsen et al. find that there is extensive heterogeneity in the requirement for CDK and cyclins across cancer models. Multiple biochemically distinct mechanisms drive cell division. Divergent cell-cycle states harbor distinct genetic and pharmacological vulnerabilities, suggesting that cell-cycle diversity could be exploited for a precision approach to cancer therapy.
Collapse
Affiliation(s)
- Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Cancer Center, Buffalo, NY 14203, USA.
| | - Vishnu Kumarasamy
- Department of Molecular and Cellular Biology, Roswell Park Cancer Center, Buffalo, NY 14203, USA; Department of Cancer Genetics and Genomics, Roswell Park Cancer Center, Buffalo, NY 14203, USA
| | - Ram Nambiar
- Department of Molecular and Cellular Biology, Roswell Park Cancer Center, Buffalo, NY 14203, USA; Department of Cancer Genetics and Genomics, Roswell Park Cancer Center, Buffalo, NY 14203, USA
| | - Joel D Pearson
- Lunenfeld Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada
| | - Paris Vail
- Department of Molecular and Cellular Biology, Roswell Park Cancer Center, Buffalo, NY 14203, USA; Department of Cancer Genetics and Genomics, Roswell Park Cancer Center, Buffalo, NY 14203, USA
| | - Hanna Rosenheck
- Department of Molecular and Cellular Biology, Roswell Park Cancer Center, Buffalo, NY 14203, USA; Department of Cancer Genetics and Genomics, Roswell Park Cancer Center, Buffalo, NY 14203, USA
| | - Jianxin Wang
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Center, Buffalo, NY 14203, USA
| | - Kevin Eng
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Center, Buffalo, NY 14203, USA
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada
| | - Daniel Schramek
- Lunenfeld Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Agnieszka K Witkiewicz
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Center, Buffalo, NY 14203, USA; Department of Pathology, Roswell Park Cancer Center, Buffalo, NY 14203, USA.
| |
Collapse
|
99911
|
Abstract
Small cell lung cancer (SCLC) is a rapidly growing, highly metastatic, and relatively immune-cold lung cancer subtype. Historically viewed in the laboratory and clinic as a single disease, new discoveries suggest that SCLC comprises multiple molecular subsets. Expression of MYC family members and lineage-related transcription factors ASCL1, NEUROD1, and POU2F3 (and, in some studies, YAP1) define unique molecular states that have been associated with distinct responses to a variety of therapies. However, SCLC tumors exhibit a high degree of intratumoral heterogeneity, with recent studies suggesting the existence of tumor cell plasticity and phenotypic switching between subtype states. While SCLC plasticity is correlated with, and likely drives, therapeutic resistance, the mechanisms underlying this plasticity are still largely unknown. Subtype states are also associated with immune-related gene expression, which likely impacts response to immune checkpoint blockade and may reveal novel targets for alternative immunotherapeutic approaches. In this review, we synthesize recent discoveries on the mechanisms of SCLC plasticity and how these processes may impinge on antitumor immunity.
Collapse
Affiliation(s)
- Kate D Sutherland
- Australian Cancer Research Foundation (ACRF) Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
99912
|
The miR-23a/27a/24-2 cluster promotes postoperative progression of early-stage non-small cell lung cancer. Mol Ther Oncolytics 2022; 24:205-217. [PMID: 35071744 PMCID: PMC8760463 DOI: 10.1016/j.omto.2021.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Even with optimal surgery, many early-stage non-small cell lung cancer (NSCLC) patients die of recurrence. Unfortunately, there are no precise predictors for postoperative recurrence in early-stage NSCLC, and the recurrence mechanism is still unclear. In this study, we found that simultaneous overexpression of all miRNAs in the miR-23a/27a/24-2 cluster was closely associated with postoperative recurrence, β-catenin upregulation and promoter methylation of p16 and CDH13 in early-stage NSCLC patients. In addition, in vitro and in vivo experiments show that overexpression or inhibition of all miRNAs in the miR-23a/27a/24-2 cluster significantly stimulated or inhibited NSCLC cell stemness, tumorigenicity and metastasis. Furthermore, we demonstrated that the miR-23a/27a/24-2 cluster miRNAs activated Wnt/β-catenin signaling by targeting their suppressors and stimulated promoter methylation-induced silencing of p16 and CDH13 by affecting DNA methylation-related genes expression. Our findings suggest that simultaneous high expression of all miRNAs in the miR-23a/27a/24-2 cluster represents a new biomarker for predicting postoperative recurrence in early-stage NSCLC. The miR-23a/27a/24-2 cluster miRNAs stimulate early-stage NSCLC progression through simultaneously stimulating Wnt/β-catenin signaling, and promoter methylation-induced tumor suppressor genes silencing. In addition, simultaneous inhibition of all miRNAs in the miR-23a/27a/24-2 cluster may be a useful strategy for treatment of early-stage NSCLC recurrence.
Collapse
|
99913
|
Ajrouche R, Chandab G, Petit A, Strullu M, Nelken B, Plat G, Michel G, Domenech C, Clavel J, Bonaventure A. Allergies, genetic polymorphisms of Th2 interleukins, and childhood acute lymphoblastic leukemia: The ESTELLE study. Pediatr Blood Cancer 2022; 69:e29402. [PMID: 34662484 DOI: 10.1002/pbc.29402] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 08/12/2021] [Accepted: 09/16/2021] [Indexed: 11/07/2022]
Abstract
CONTEXT A negative association between a history of allergy and childhood acute lymphoblastic leukemia (ALL) has been reported in previous studies, but remains debated. This work aimed to investigate this association accounting for genetic polymorphisms of the Th2 pathway cytokines (IL4, IL10, IL13, and IL4R). METHODS Analyses were based on the French case-control study ESTELLE (2010-2011). The complete sample included 629 ALL cases and 1421 population-based controls frequency-matched on age and gender. The child's medical history was collected through standardized maternal interview. Biological samples were collected, and genotyping data were available for 411 cases and 704 controls of European origin. Odds ratios (OR) were estimated using unconditional regression models adjusted for potential confounders. RESULTS In the complete sample, a significant inverse association was observed between ALL and reported history of allergic rhinitis or sinusitis (OR = 0.65 [0.42-0.98]; P = 0.04), but there was no obvious association with allergies overall. There was an interaction between genetic polymorphisms in IL4 and IL4R (Pinteraction = 0.003), as well as a gene-environment interaction between IL4R-rs1801275 and a reported history of asthma (IOR = 0.23; Pint = 0.008) and eczema (IOR = 0.47; Pint = 0.06). We observed no interaction with the candidate polymorphisms in IL4 and IL13. CONCLUSION These results suggest that the association between allergic symptoms and childhood ALL could be modified by IL4R-rs1801275, and that this variant could also interact with a functional variant in IL4 gene. Although they warrant confirmation, these results could help understand the pathological mechanisms under the reported inverse association between allergy and childhood ALL.
Collapse
Affiliation(s)
- Roula Ajrouche
- CRESS, Université de Paris INSERM, UMR 1153, Epidemiology of Childhood and Adolescent Cancers Team, Villejuif, France.,Faculty of Pharmacy, Lebanese University, Hadath, Lebanon
| | - Ghinaj Chandab
- CRESS, Université de Paris INSERM, UMR 1153, Epidemiology of Childhood and Adolescent Cancers Team, Villejuif, France.,Faculty of Pharmacy, Lebanese University, Hadath, Lebanon
| | - Arnaud Petit
- Sorbonne Université, UMRS_938, AP-HP, Hôpital Armand Trousseau, Paris, France
| | | | | | | | | | - Carine Domenech
- Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de Lyon, Université Lyon 1, Lyon, France
| | - Jacqueline Clavel
- CRESS, Université de Paris INSERM, UMR 1153, Epidemiology of Childhood and Adolescent Cancers Team, Villejuif, France.,National Registry of Childhood Cancers, Groupe Hospitalier Universitaire Paris-Sud, Assistance Publique Hôpitaux de Paris (AP-HP) Hôpital Paul Brousse, Villejuif, France and CHU de Nancy, Vandoeuvre-lès-Nancy, Nancy, France
| | - Audrey Bonaventure
- CRESS, Université de Paris INSERM, UMR 1153, Epidemiology of Childhood and Adolescent Cancers Team, Villejuif, France
| |
Collapse
|
99914
|
Abstract
Background: Sex dimorphism strongly impacts tumor biology, with most cancers having a male predominance. Uniquely, thyroid cancer (TC) is the only nonreproductive cancer with striking female predominance with three- to four-fold higher incidence among females, although males generally have more aggressive disease. The molecular basis for this observation is not known, and current approaches in treatment and surveillance are not sex specific. Summary: Although TC has overall good prognosis, 6-20% of patients develop regional or distant metastasis, one third of whom are not responsive to conventional treatment approaches and suffer a 10-year survival rate of only 10%. More efficacious treatment strategies are needed for these aggressive TCs, as tyrosine kinase inhibitors and immunotherapy have major toxicities without demonstrable overall survival benefit. Emerging evidence indicates a role of sex hormones, genetics, and the immune system in modulation of both risk for TC and its progression in a sex-specific manner. Conclusion: Greater understanding of the molecular mechanisms underlying sex differences in TC pathogenesis could provide insights into the development of sex-specific, targeted, and effective strategies for prevention, diagnosis, and management. This review summarizes emerging evidence for the importance of sex in the pathogenesis, progression, and response to treatment in differentiated TC with emphasis on the role of sex hormones, genetics, and the immune system.
Collapse
Affiliation(s)
- Leila Shobab
- MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Kenneth D Burman
- MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Leonard Wartofsky
- Medstar Health Research Institute, Washington, District of Columbia, USA
| |
Collapse
|
99915
|
Gong J, Ji Y, Liu X, Zheng Y, Zhen Y. Mithramycin suppresses tumor growth by regulating CD47 and PD-L1 expression. Biochem Pharmacol 2022; 197:114894. [PMID: 34968486 DOI: 10.1016/j.bcp.2021.114894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 01/20/2023]
Abstract
Mithramycin A (MIT) has reacquired extensive research attention due to its anti-solid tumor activity and improved pharmacological production. Mechanismly, MIT was broadly used as a c-Myc inhibitor, and c-Myc regulated CD47 and PD-L1 expression which has been demonstrated. However, how MIT affects immune check-point molecules remains unknown. In this study, we found CD47 expression was higher in melanoma of pan-tissue array. MIT inhibited CD47 expression both in mRNA and protein level in melanoma cells (SK-MEL-28 and B16). MIT inhibited c-Myc, Sp-1 and CD47 expression in a concentration-dependent way. MIT inhibited the surface CD47 expression and promoted the phagocytosis of SK-MEL-28 cells by THP-1 cells. We found MIT inhibited tumor growth in melanoma allograft mice and CD47 expression in tumor mass. We also found MIT upregulated PD-L1 expression in cancer cells possibly via inhibiting PD-L1 ubiquitination, increasing ROS and IFN-γ. Combination of MIT and anti-PD-1 antibody showed enhanced antitumor activity compared to MIT and anti-PD-1 antibody alone in MC38 allograft mice. Using immune checkpoint array we found MIT inhibited expression of FasL and Galectin3. These results suggest that MIT inhibits CD47 expression, while improves PD-L1 expression. Furthermore, the combination of MIT and anti-PD-1 antibody exerts potent antitumor effect.
Collapse
Affiliation(s)
- Jianhua Gong
- Department of Oncology, Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China; College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, Hebei, China.
| | - Yuying Ji
- Department of Oncology, Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China; College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, Hebei, China
| | - Xiujun Liu
- Department of Oncology, Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China; College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, Hebei, China
| | - Yanbo Zheng
- Department of Oncology, Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China; College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, Hebei, China.
| | - Yongsu Zhen
- Department of Oncology, Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China; College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, Hebei, China
| |
Collapse
|
99916
|
Li M, Liu Z, Song J, Wang T, Wang H, Wang Y, Guo J. Identification of Down-Regulated ADH1C is Associated With Poor Prognosis in Colorectal Cancer Using Bioinformatics Analysis. Front Mol Biosci 2022; 9:791249. [PMID: 35300114 PMCID: PMC8921497 DOI: 10.3389/fmolb.2022.791249] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is the second most deadly cancer in the whole world, with the underlying mechanisms largely indistinct. Therefore, we aimed to identify significant pathways and genes involved in the initiation, formation and poor prognosis of CRC using bioinformatics methods. In this study, we compared gene expression profiles of CRC cases with those from normal colorectal tissues from three chip datasets (GSE33113, GSE23878 and GSE41328) to identify 105 differentially expressed genes (DEGs) that were common to the three datasets. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that the highest proportion of up-regulated DEGs was involved in extracellular region and cytokine-cytokine receptor interaction pathways. Integral components of membrane and bile secretion pathways were identified as containing down-regulated DEGs. 13 hub DEGs were chosen and their expression were further validated by GEPIA. Only four DEGs (ADH1C, CLCA4, CXCL8 and GUCA2A) were associated with a significantly lower overall survival after the prognosis analysis. Lower ADH1C protein level and higher CXCL8 protein level were verified by immunohistochemical staining and western blot in clinical CRC and normal colorectal tissues. In conclusion, our study indicated that the extracellular tumor microenvironment and bile metabolism pathways play critical roles in the formation and progression of CRC. Furthermore, we confirmed ADH1C being down-regulated in CRC and reported ADH1C as a prognostic predictor for the first time.
Collapse
Affiliation(s)
- Ming Li
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Ziming Liu
- College of Clinical Medicine, Hebei University, Baoding, China
| | - Jia Song
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Tian Wang
- College of Clinical Medicine, Hebei University, Baoding, China
| | - Hongjie Wang
- School of Basic Medical Sciences, Hebei University, Baoding, China
- Affiliated Hospital of Hebei University, Baoding, China
| | - Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
- *Correspondence: Yanan Wang, ; Jiguang Guo,
| | - Jiguang Guo
- School of Basic Medical Sciences, Hebei University, Baoding, China
- *Correspondence: Yanan Wang, ; Jiguang Guo,
| |
Collapse
|
99917
|
Tommasi S, Kitapci TH, Blumenfeld H, Besaratinia A. Secondhand smoke affects reproductive functions by altering the mouse testis transcriptome, and leads to select intron retention in Pde1a. ENVIRONMENT INTERNATIONAL 2022; 161:107086. [PMID: 35063792 PMCID: PMC8891074 DOI: 10.1016/j.envint.2022.107086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Human exposure to secondhand smoke (SHS) is known to result in adverse effects in multiple organ systems. However, the impact of SHS on the male reproductive system, particularly on the regulation of genes and molecular pathways that govern sperm production, maturation, and functions remains largely understudied. OBJECTIVE We investigated the effects of SHS on the testis transcriptome in a validated mouse model. METHODS Adult male mice were exposed to SHS (5 h/day, 5 days/week for 4 months) as compared to controls (clean air-exposed). RNA-seq analysis was performed on the testis of SHS-exposed mice and controls. Variant discovery and plink association analyses were also conducted to detect exposure-related transcript variants in SHS-treated mice. RESULTS Exposure of mice to SHS resulted in the aberrant expression of 131 testicular genes. Whilst approximately two thirds of the differentially expressed genes were protein-coding, the remaining (30.5%) comprised noncoding elements, mostly lncRNAs (19.1%). Variant discovery analysis identified a homozygous frameshift variant that is statistically significantly associated with SHS exposure (P = 7.744e-06) and is generated by retention of a short intron within Pde1a, a key regulator of spermatogenesis. Notably, this SHS-associated intron variant harbors an evolutionarily conserved, premature termination codon (PTC) that disrupts the open reading frame of Pde1a, presumably leading to its degradation via nonsense-mediated decay. DISCUSSION SHS alters the expression of genes involved in molecular pathways that are crucial for normal testis development and function. Preferential targeting of lncRNAs in the testis of SHS-exposed mice is especially significant considering their crucial role in the spatial and temporal modulation of spermatogenesis. Equally important is our discovery of a novel homozygous frameshift variant that is exclusively and significantly associated with SHS-exposure and is likely to represent a safeguard mechanism to regulate transcription of Pde1a and preserve normal testis function during harmful exposure to environmental agents.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| | - Tevfik H Kitapci
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Hannah Blumenfeld
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Ahmad Besaratinia
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
99918
|
Sadagopan A, Michelakos T, Boyiadzis G, Ferrone C, Ferrone S. Human Leukocyte Antigen Class I Antigen-Processing Machinery Upregulation by Anticancer Therapies in the Era of Checkpoint Inhibitors: A Review. JAMA Oncol 2022; 8:462-473. [PMID: 34940799 PMCID: PMC8930447 DOI: 10.1001/jamaoncol.2021.5970] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Although typically impressive, objective responses to immune checkpoint inhibitors (ICIs) occur in only 12.5% of patients with advanced cancer. The majority of patients do not respond due to cell-intrinsic resistance mechanisms, including human leukocyte antigen (HLA) class I antigen-processing machinery (APM) defects. The APM defects, which have a negative effect on neoantigen presentation to cytotoxic T lymphocytes (CTLs), are present in the majority of malignant tumors. These defects are caused by gene variations in less than 25% of cases and by dysregulated signaling and/or epigenetic changes in most of the remaining cases, making them frequently correctable. This narrative review summarizes the growing clinical evidence that chemotherapy, targeted therapies, and, to a lesser extent, radiotherapy can correct HLA class I APM defects in cancer cells and improve responses to ICIs. OBSERVATIONS Most chemotherapeutics enhance HLA class I APM component expression and function in cancer cells, tumor CTL infiltration, and responses to ICIs in preclinical and clinical models. Despite preclinical evidence, radiotherapy does not appear to upregulate HLA class I expression in patients and does not enhance the efficacy of ICIs in clinical settings. The latter findings underscore the need to optimize the dose and schedule of radiation and timing of ICI administration to maximize their immunogenic synergy. By increasing DNA and chromatin accessibility, epigenetic agents (histone deacetylase inhibitors, DNA methyltransferase inhibitors, and EZH2 inhibitors) enhance HLA class I APM component expression and function in many cancer types, a crucial contributor to their synergy with ICIs in patients. Furthermore, epidermal growth factor receptor (EGFR) inhibitors and BRAF/mitogen-activated protein kinase kinase inhibitors are effective at upregulating HLA class I expression in EGFR- and BRAF-variant tumors, respectively; these changes may contribute to the clinical responses induced by these inhibitors in combination with ICIs. CONCLUSIONS AND RELEVANCE This narrative review summarizes evidence indicating that chemotherapy and targeted therapies are effective at enhancing HLA class I APM component expression and function in cancer cells. The resulting increased immunogenicity and recognition and elimination of cancer cells by cognate CTLs contributes to the antitumor activity of these therapies as well as to their synergy with ICIs.
Collapse
Affiliation(s)
- Ananthan Sadagopan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Theodoros Michelakos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriella Boyiadzis
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
99919
|
Kal S, Chakraborty S, Karmakar S, Ghosh MK. Wnt/β-catenin signaling and p68 conjointly regulate CHIP in colorectal carcinoma. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119185. [PMID: 34890713 DOI: 10.1016/j.bbamcr.2021.119185] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Emerging evidences suggest abundant expression of Carboxy terminus of Hsc70 Interacting Protein or CHIP (alias STIP1 Homology and U-box Containing Protein 1 or STUB1) in colorectal carcinoma, but the mechanistic detail of this augmented expression pattern is unclear. The signature driver of canonical Wnt pathway, β-catenin, and its co-activator RNA helicase p68, are also overexpressed in colorectal carcinoma. In this study, we describe a novel mechanism of Wnt/β-catenin and p68 mediated transcriptional activation of CHIP gene leading to enhanced proliferation of colorectal carcinoma cells. Bioinformatic analyses reconfirmed an elevated CHIP expression level in colorectal carcinoma datasets. Wnt3A treatment and pharmacological activation of canonical Wnt signaling pathway resulted in increased nuclear translocation of β-catenin, augmenting CHIP expression. Likewise, immunoblotting and Real time PCR following overexpression and knockdown of β-catenin and p68 demonstrated upregulated and downregulated CHIP expression, respectively, at both mRNA and protein levels. p68 along with β-catenin were found to occupy Transcription Factor 4 (TCF4) binding sites on endogenous CHIP promoter and regulate its transcription. After cloning CHIP promoter, the increased and decreased promoter activities of CHIP induced by overexpression and knockdown of either β-catenin or p68 further confirmed transcriptional regulation of CHIP gene by Wnt/β-catenin signaling cascade. Finally, enhanced cellular propagation and migration of colorectal carcinoma cells induced by 'Wnt/β-catenin-p68-CHIP' axis established the significance of this pathway in oncogenesis. To the best of our knowledge, this is the first report elucidating the mechanistic details of transcriptional regulation of CHIP (STUB1) gene expression.
Collapse
Affiliation(s)
- Satadeepa Kal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Shrabastee Chakraborty
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
99920
|
Molecular landscape of c-Myc signaling in prostate cancer: A roadmap to clinical translation. Pathol Res Pract 2022; 233:153851. [DOI: 10.1016/j.prp.2022.153851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
|
99921
|
Baloch ZW, Asa SL, Barletta JA, Ghossein RA, Juhlin CC, Jung CK, LiVolsi VA, Papotti MG, Sobrinho-Simões M, Tallini G, Mete O. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol 2022; 33:27-63. [PMID: 35288841 DOI: 10.1007/s12022-022-09707-3] [Citation(s) in RCA: 399] [Impact Index Per Article: 199.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
This review summarizes the changes in the 5th edition of the WHO Classification of Endocrine and Neuroendocrine Tumors that relate to the thyroid gland. The new classification has divided thyroid tumors into several new categories that allow for a clearer understanding of the cell of origin, pathologic features (cytopathology and histopathology), molecular classification, and biological behavior. Follicular cell-derived tumors constitute the majority of thyroid neoplasms. In this new classification, they are divided into benign, low-risk, and malignant neoplasms. Benign tumors include not only follicular adenoma but also variants of adenoma that are of diagnostic and clinical significance, including the ones with papillary architecture, which are often hyperfunctional and oncocytic adenomas. For the first time, there is a detailed account of the multifocal hyperplastic/neoplastic lesions that commonly occur in the clinical setting of multinodular goiter; the term thyroid follicular nodular disease (FND) achieved consensus as the best to describe this enigmatic entity. Low-risk follicular cell-derived neoplasms include non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP), thyroid tumors of uncertain malignant potential, and hyalinizing trabecular tumor. Malignant follicular cell-derived neoplasms are stratified based on molecular profiles and aggressiveness. Papillary thyroid carcinomas (PTCs), with many morphological subtypes, represent the BRAF-like malignancies, whereas invasive encapsulated follicular variant PTC and follicular thyroid carcinoma represent the RAS-like malignancies. This new classification requires detailed subtyping of papillary microcarcinomas similar to their counterparts that exceed 1.0 cm and recommends not designating them as a subtype of PTC. The criteria of the tall cell subtype of PTC have been revisited. Cribriform-morular thyroid carcinoma is no longer classified as a subtype of PTC. The term "Hürthle cell" is discouraged, since it is a misnomer. Oncocytic carcinoma is discussed as a distinct entity with the clear recognition that it refers to oncocytic follicular cell-derived neoplasms (composed of > 75% oncocytic cells) that lack characteristic nuclear features of PTC (those would be oncocytic PTCs) and high-grade features (necrosis and ≥ 5 mitoses per 2 mm2). High-grade follicular cell-derived malignancies now include both the traditional poorly differentiated carcinoma as well as high-grade differentiated thyroid carcinomas, since both are characterized by increased mitotic activity and tumor necrosis without anaplastic histology and clinically behave in a similar manner. Anaplastic thyroid carcinoma remains the most undifferentiated form; squamous cell carcinoma of the thyroid is now considered as a subtype of anaplastic carcinoma. Medullary thyroid carcinomas derived from thyroid C cells retain their distinct section, and there is a separate section for mixed tumors composed of both C cells and any follicular cell-derived malignancy. A grading system for medullary thyroid carcinomas is also introduced based on mitotic count, tumor necrosis, and Ki67 labeling index. A number of unusual neoplasms that occur in the thyroid have been placed into new sections based on their cytogenesis. Mucoepidermoid carcinoma and secretory carcinoma of the salivary gland type are now included in one section classified as "salivary gland-type carcinomas of the thyroid." Thymomas, thymic carcinomas and spindle epithelial tumor with thymus-like elements are classified as "thymic tumors within the thyroid." There remain several tumors whose cell lineage is unclear, and they are listed as such; these include sclerosing mucoepidermoid carcinoma with eosinophilia and cribriform-morular thyroid carcinoma. Another important addition is thyroblastoma, an unusual embryonal tumor associated with DICER1 mutations. As in all the WHO books in the 5th edition, mesenchymal and stromal tumors, hematolymphoid neoplasms, germ cell tumors, and metastatic malignancies are discussed separately. The current classification also emphasizes the value of biomarkers that may aid diagnosis and provide prognostic information.
Collapse
Affiliation(s)
- Zubair W Baloch
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Justine A Barletta
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ronald A Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Virginia A LiVolsi
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Manuel Sobrinho-Simões
- Department of Pathology, Institute of Molecular Pathology and Immunology, IPATIMUP, University of Porto, Porto, Portugal
| | - Giovanni Tallini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Ozgur Mete
- Department of Pathology, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
99922
|
Chen L, Zhu D, Huang J, Zhang H, Zhou G, Zhong X. Identification of Hub Genes Associated with COPD Through Integrated Bioinformatics Analysis. Int J Chron Obstruct Pulmon Dis 2022; 17:439-456. [PMID: 35273447 PMCID: PMC8901430 DOI: 10.2147/copd.s353765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/20/2022] [Indexed: 12/30/2022] Open
Affiliation(s)
- Lin Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, LiuZhou, Guangxi, People’s Republic of China
| | - Donglan Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jinfu Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Hui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Guang Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Correspondence: Xiaoning Zhong, Tel +86 13607881203, Fax +86 771-5356702, Email
| |
Collapse
|
99923
|
O'Malley DM, Neffa M, Monk BJ, Melkadze T, Huang M, Kryzhanivska A, Bulat I, Meniawy TM, Bagameri A, Wang EW, Doger de Speville Uribe B, Hegg R, Ortuzar Feliu W, Ancukiewicz M, Lugowska I. Dual PD-1 and CTLA-4 Checkpoint Blockade Using Balstilimab and Zalifrelimab Combination as Second-Line Treatment for Advanced Cervical Cancer: An Open-Label Phase II Study. J Clin Oncol 2022; 40:762-771. [PMID: 34932394 PMCID: PMC8887945 DOI: 10.1200/jco.21.02067] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Balstilimab (antiprogrammed death-1) and zalifrelimab (anticytotoxic T-lymphocyte-associated antigen-4) are two new checkpoint inhibitors emerging as promising investigational agents for the treatment of advanced cervical cancer. This phase II trial (ClinicalTrials.gov identifier: NCT03495882) evaluated the combination of balstilimab plus zalifrelimab in patients with recurrent and/or metastatic cervical cancer who relapsed after prior platinum-based therapy. PATIENTS AND METHODS Patients were intravenously dosed with balstilimab 3 mg/kg once every 2 weeks and zalifrelimab 1 mg/kg once every 6 weeks, for up to 24 months. The primary end point was objective response rate (ORR, RECIST version 1.1, assessed by independent central review). Secondary end points included duration of response, safety and tolerability, and survival. RESULTS In total, 155 women (median age, 50 years [range, 24-76 years]) were enrolled and treated with balstilimab plus zalifrelimab; 125 patients had measurable disease at baseline and one prior line of platinum-based therapy in the advanced setting, and these patients constituted the efficacy-evaluable population. The median follow-up was 21 months. The confirmed ORR was 25.6% (95% CI, 18.8 to 33.9), including 10 complete responders and 22 partial responders, with median duration of response not reached (86.5%, 75.5%, and 64.2% at 6, 9, and 12 months, respectively). The ORRs were 32.8% and 9.1% in patients with programmed death ligand-1-positive and programmed death ligand-1-negative tumors, respectively. For patients with squamous cell carcinoma, the ORR was 32.6%. The overall disease control rate was 52% (95% CI, 43.3 to 60.6). Hypothyroidism (14.2%) and hyperthyroidism (7.1%) were the most common immune-mediated adverse events. CONCLUSION Promising and durable clinical activity, with favorable tolerability, was seen in this largest trial to date evaluating dual programmed death-1/cytotoxic T-lymphocyte-associated antigen-4 blockade in patients with recurrent and/or metastatic cervical cancer. Further investigation of the balstilimab and zalifrelimab combination in this setting is continuing.
Collapse
Affiliation(s)
- David M. O'Malley
- Division of Gynecologic Oncology, The Ohio State University/James Comprehensive Cancer Center, Columbus, OH
| | - Maryna Neffa
- CI of Healthcare Regional Clinical Specialized Dispensary of the Radiation Protection, Kharvik, Ukraine
| | - Bradley J. Monk
- Division of Gynecologic Oncology, Arizona Oncology (US Oncology Network), University of Arizona, Creighton University, Phoenix, AZ
| | - Tamar Melkadze
- Research Institute of Clinical Medicine, Tbilisi, Georgia
| | - Marilyn Huang
- Division of Gynecologic Oncology, University of Miami School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | - Anna Kryzhanivska
- Regional Clinical Oncology Center, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Iurie Bulat
- ARENSIA Exploratory Medicine Unit, Institute of Oncology, Chisinau, Moldova
| | | | | | - Edward W. Wang
- Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer Center, Duarte, CA
| | | | - Roberto Hegg
- Clínica de Pesquisa e Centro de Estudos em Oncologia Ginecológica e Mamária, Sao Paulo, Brazil
| | | | | | - Iwona Lugowska
- Maria Sklodowska-Curie National Research Unit of Oncology, Warsaw, Poland
| |
Collapse
|
99924
|
Kooshki L, Mahdavi P, Fakhri S, Akkol EK, Khan H. Targeting lactate metabolism and glycolytic pathways in the tumor microenvironment by natural products: A promising strategy in combating cancer. Biofactors 2022; 48:359-383. [PMID: 34724274 DOI: 10.1002/biof.1799] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Anticancer drugs are not purely effective because of their toxicity, side effects, high cost, inaccessibility, and associated resistance. On the other hand, cancer is a complex public health problem that could intelligently adopt different signaling pathways and alter the body's metabolism to escape from the immune system. One of the cancer strategies to metastasize is modifying pH in the tumor microenvironment, ranging between 6.5 and 6.9. As a powerful determiner, lactate is responsible for this acidosis. It is involved in immune stimulation, including innate and adaptive immunity, apoptotic-related factors (Bax/Bcl-2, caspase), and glycolysis pathways (e.g., GLUT-1, PKM2, PFK, HK2, MCT-1, and LDH). Lactate metabolism, in turn, is interconnected with several dysregulated signaling mediators, including PI3K/Akt/mTOR, AMPK, NF-κB, Nrf2, JAK/STAT, and HIF-1α. Because of lactate's emerging and critical role, targeting lactate production and its transporters is important for preventing and managing tumorigenesis. Hence, exploring and developing novel promising anticancer agents to minimize human cancers is urgent. Based on numerous studies, natural secondary metabolites as multi-target alternative compounds with health-promoting properties possess more high effectiveness and low side effects than conventional agents. Besides, the mechanism of multi-targeted natural sources is related to lactate production and cancer-associated cross-talked factors. This review focuses on targeting the lactate metabolism/transporters, and lactate-associated mediators, including glycolytic pathways. Besides, interconnected mediators to lactate metabolism are also targeted by natural products. Accordingly, plant-derived secondary metabolites are introduced as alternative therapies in combating cancer through modulating lactate metabolism and glycolytic pathways.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mahdavi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
99925
|
Murali M, Kumar AR, Nair B, Pavithran K, Devan AR, Pradeep GK, Nath LR. Antibody-drug conjugate as targeted therapeutics against hepatocellular carcinoma: preclinical studies and clinical relevance. Clin Transl Oncol 2022; 24:407-431. [PMID: 34595736 DOI: 10.1007/s12094-021-02707-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/29/2021] [Indexed: 02/05/2023]
Abstract
An antibody-drug conjugate (ADC) is an advanced chemotherapeutic option with immense promises in treating many tumor. They are designed to selectively attack and kill neoplastic cells with minimal toxicity to normal tissues. ADCs are complex engineered immunoconjugates that comprise a monoclonal antibody for site-directed delivery and cytotoxic payload for targeted destruction of malignant cells. Therefore, it enables the reduction of off-target toxicities and enhances the therapeutic index of the drug. Hepatocellular carcinoma (HCC) is a solid tumor that shows high heterogeneity of molecular phenotypes and is considered the second most common cause of cancer-related death. Studies show enormous potential for ADCs targeting GPC3 and CD24 and other tumor-associated antigens in HCC with their high, selective expression and show potential outputs in preclinical evaluations. The review mainly highlights the preclinical evaluation of different antigen-targeted ADCs such as MetFab-DOX, Anti-c-Met IgG-OXA, Anti CD 24, ANC-HN-01, G7mab-DOX, hYP7-DCand hYP7-PC, Anti-CD147 ILs-DOX and AC133-vcMMAF against hepatocellular carcinoma and its future relevance.
Collapse
Affiliation(s)
- M Murali
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - A R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - B Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - K Pavithran
- Department of Medical Oncology and Hematology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - A R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - G K Pradeep
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - L R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India.
| |
Collapse
|
99926
|
Schützhold V, Gravemeyer J, Bicker A, Hager T, Padberg C, Schäfer J, Wrobeln A, Steinbrink M, Zeynel S, Hankeln T, Becker JC, Fandrey J, Winning S. Knockout of Factor-Inhibiting HIF ( Hif1an) in Colon Epithelium Attenuates Chronic Colitis but Does Not Reduce Colorectal Cancer in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1280-1291. [PMID: 35121641 DOI: 10.4049/jimmunol.2100418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Inflammatory bowel disease such as chronic colitis promotes colorectal cancer, which is a common cause of cancer mortality worldwide. Hypoxia is a characteristic of inflammation as well as of solid tumors and enforces a gene expression response controlled by hypoxia-inducible factors (HIFs). Once established, solid tumors are immunosuppressive to escape their abatement through immune cells. Although HIF activity is known to 1) promote cancer development and 2) drive tumor immune suppression through the secretion of adenosine, both prolyl hydroxylases and an asparaginyl hydroxylase termed factor-inhibiting HIF (FIH) negatively regulate HIF. Thus, FIH may act as a tumor suppressor in colorectal cancer development. In this study, we examined the role of colon epithelial FIH in a mouse model of colitis-induced colorectal cancer. We recapitulated colitis-associated colorectal cancer development in mice using the azoxymethane/dextran sodium sulfate model in Vil1-Cre/FIH+f/+f and wild-type siblings. Colon samples were analyzed regarding RNA and protein expression and histology. Vil1-Cre/FIH+f/+f mice showed a less severe colitis progress compared with FIH+f/+f animals and a lower number of infiltrating macrophages in the inflamed tissue. RNA sequencing analyses of colon tissue revealed a lower expression of genes associated with the immune response in Vil1-Cre/FIH+f/+f mice. However, tumor occurrence did not significantly differ between Vil1-Cre/FIH+f/+f and wild-type mice. Thus, FIH knockout in colon epithelial cells did not modulate colorectal cancer development but reduced the inflammatory response in chronic colitis.
Collapse
Affiliation(s)
- Vera Schützhold
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Jan Gravemeyer
- Translational Skin Cancer Research, Dermatologie, Universitätsmedizin Essen, Essen, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Anne Bicker
- Molekulargenetik und Genomanalyse, Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany; and
| | - Thomas Hager
- Institut für Pathologie, Universität Duisburg-Essen, Essen, Germany
| | - Claudia Padberg
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Jana Schäfer
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Anna Wrobeln
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | | | - Seher Zeynel
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Thomas Hankeln
- Molekulargenetik und Genomanalyse, Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany; and
| | - Jürgen Christian Becker
- Translational Skin Cancer Research, Dermatologie, Universitätsmedizin Essen, Essen, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Joachim Fandrey
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany;
| | - Sandra Winning
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
99927
|
Jia W, Liu R, Wang Y, Hu C, Yu W, Zhou Y, Wang L, Zhang M, Gao H, Gao X. Dual-responsive nanoparticles with transformable shape and reversible charge for amplified chemo-photodynamic therapy of breast cancer. Acta Pharm Sin B 2022; 12:3354-3366. [PMID: 35967278 PMCID: PMC9366228 DOI: 10.1016/j.apsb.2022.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
Herein, we designed a dual-response shape transformation and charge reversal strategy with chemo-photodynamic therapy to improve the blood circulation time, tumor penetration and retention, which finally enhanced the anti-tumor effect. In the system, hydrophobic photosensitizer chlorin e6 (Ce6), hydrophilic chemotherapeutic drug berberrubine (BBR) and matrix metalloproteinase-2 (MMP-2) response peptide (PLGVRKLVFF) were coupled by linkers to form a linear triblock molecule BBR-PLGVRKLVFF-Ce6 (BPC), which can self-assemble into nanoparticles. Then, positively charged BPC and polyethylene glycol-histidine (PEG-His) were mixed to form PEG-His@BPC with negative surface charge and long blood circulation time. Due to the acidic tumor microenvironment, the PEG shell was detached from PEG-His@BPC attributing to protonation of the histidine, which achieved charge reversal, size reduction and enhanced tumor penetration. At the same time, enzyme cutting site was exposed, and the spherical nanoparticles could transform into nanofibers following the enzymolysis by MMP-2, while BBR was released to kill tumors by inducing apoptosis. Compared with original nanoparticles, the nanofibers with photosensitizer Ce6 retained within tumor site for a longer time. Collectively, we provided a good example to fully use the intrinsic properties of different drugs and linkers to construct tumor microenvironment-responsive charge reversal and shape transformable nanoparticles with synergistic antitumor effect.
Collapse
Affiliation(s)
- Wenfeng Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Rui Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Yushan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Chuan Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Wenqi Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Ling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Mengjiao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
- Corresponding authors. Tel./fax: +86 18780288069; +86 19983187916.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 18780288069; +86 19983187916.
| |
Collapse
|
99928
|
He Y, Zheng Z, Liu C, Li W, Zhao L, Nie G, Li H. Inhibiting DNA methylation alleviates cisplatin-induced hearing loss by decreasing oxidative stress-induced mitochondria-dependent apoptosis via the LRP1-PI3K/AKT pathway. Acta Pharm Sin B 2022; 12:1305-1321. [PMID: 35530135 PMCID: PMC9069410 DOI: 10.1016/j.apsb.2021.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Cisplatin-related ototoxicity is a critical side effect of chemotherapy and can lead to irreversible hearing loss. This study aimed to assess the potential effect of the DNA methyltransferase (DNMT) inhibitor RG108 on cisplatin-induced ototoxicity. Immunohistochemistry, apoptosis assay, and auditory brainstem response (ABR) were employed to determine the impacts of RG108 on cisplatin-induced injury in murine hair cells (HCs) and spiral ganglion neurons (SGNs). Rhodamine 123 and TMRM were utilized for mitochondrial membrane potential (MMP) assessment. Reactive oxygen species (ROS) amounts were evaluated by Cellrox green and Mitosox-red probes. Mitochondrial respiratory function evaluation was performed by determining oxygen consumption rates (OCRs). The results showed that RG108 can markedly reduce cisplatin induced damage in HCs and SGNs, and alleviate apoptotic rate by protecting mitochondrial function through preventing ROS accumulation. Furthermore, RG108 upregulated BCL-2 and downregulated APAF1, BAX, and BAD in HEI-OC1 cells, and triggered the PI3K/AKT pathway. Decreased expression of low-density lipoprotein receptor-related protein 1 (LRP1) and high methylation of the LRP1 promoter were observed after cisplatin treatment. RG108 treatment can increase LRP1 expression and decrease LRP1 promoter methylation. In conclusion, RG108 might represent a new potential agent for preventing hearing loss induced by cisplatin via activating the LRP1-PI3K/AKT pathway.
Collapse
Key Words
- 5-mC, 5-methylcytosine
- ABR, auditory brainstem response
- Apoptosis
- Cisplatin
- DNMT
- DNMT, DNA methyltransferase
- EdU, 5-ethynyl-2′-deoxyuridine
- HCs, hair cells
- Hair cell
- IHCs, inner hair cells
- LRP1, low-density lipoprotein receptor-related protein 1
- MMP, mitochondrial membrane potential
- Mitochondrial dysfunction
- OCRs, oxygen consumption rates
- OHCs, outer hair cells
- PI, propidium iodide
- RG108
- ROS
- ROS, reactive oxygen species
- SGNs, spiral ganglion neurons
- Spiral ganglion neurons
- TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling
Collapse
|
99929
|
Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, Netto GJ, Qin ZS, Kumar S, Manne U, Creighton CJ, Varambally S. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia 2022; 25:18-27. [PMID: 35078134 PMCID: PMC8788199 DOI: 10.1016/j.neo.2022.01.001] [Citation(s) in RCA: 900] [Impact Index Per Article: 450.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
Abstract
Cancer genomic, transcriptomic, and proteomic profiling has generated extensive data that necessitate the development of tools for its analysis and dissemination. We developed UALCAN to provide a portal for easy exploring, analyzing, and visualizing these data, allowing users to integrate the data to better understand the gene, proteins, and pathways perturbed in cancer and make discoveries. UALCAN web portal enables analyzing and delivering cancer transcriptome, proteomics, and patient survival data to the cancer research community. With data obtained from The Cancer Genome Atlas (TCGA) project, UALCAN has enabled users to evaluate protein-coding gene expression and its impact on patient survival across 33 types of cancers. The web portal has been used extensively since its release and received immense popularity, underlined by its usage from cancer researchers in more than 100 countries. The present manuscript highlights the task we have undertaken and updates that we have made to UALCAN since its release in 2017. Extensive user feedback motivated us to expand the resource by including data on a) microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and promoter DNA methylation from TCGA and b) mass spectrometry-based proteomics from the Clinical Proteomic Tumor Analysis Consortium (CPTAC). UALCAN provides easy access to pre-computed, tumor subgroup-based gene/protein expression, promoter DNA methylation status, and Kaplan-Meier survival analyses. It also provides new visualization features to comprehend and integrate observations and aids in generating hypotheses for testing. UALCAN is accessible at http://ualcan.path.uab.edu
Collapse
Affiliation(s)
| | | | - Praveen Kumar Korla
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Henalben Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ahmedur Rahman Shovon
- Department of Computer science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Athar
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George J Netto
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Sidharth Kumar
- Department of Computer science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
99930
|
Shah PP, Saurabh K, Kurlawala Z, Vega AA, Siskind LJ, Beverly LJ. Towards a molecular understanding of the overlapping and distinct roles of UBQLN1 and UBQLN2 in lung cancer progression and metastasis. Neoplasia 2022; 25:1-8. [PMID: 35063704 PMCID: PMC8864381 DOI: 10.1016/j.neo.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
The Ubiquilin family of proteins (UBQLN) consists of five related proteins (UBQLN1-4 and UBQLNL). Herein, we showed that loss of UBQLN1 and/or UBQLN2 induces cellular processes involved in tumor progression and metastasis, including proliferation, clonogenic potential and migration in lung adenocarcinoma cells. Molecular, biochemical and RNAseq analyses in multiple cellular systems, identified overlapping and distinct gene sets and pathways that were altered following loss of UBQLN1 and/or UBQLN2. The present study, provide evidence that UBQLN1 and UBQLN2 perform similar, but distinct molecular functions in a variety of cell types.
The Ubiquilin family of proteins (UBQLN) consists of five related proteins (UBQLN1-4 and UBQLNL) that all contain ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains. UBQLN1 and UBQLN2 are the most closely related and have been the most well-studied, however their biochemical, biological and cellular functions are still not well understood. Previous studies from our lab reported that loss of UBQLN1 or UBQLN2 induces epithelial mesenchymal transition (EMT) in lung adenocarcinoma cells. Herein, we showed that loss of UBQLN1 and/or UBQLN2 induces cellular processes involved in tumor progression and metastasis, including proliferation, clonogenic potential and migration in lung adenocarcinoma cells. In fact, following simultaneous loss of both UBQLN1 and UBQLN2 many of these processes were further enhanced. To understand the molecular mechanisms by which UBQLN1 and UBQLN2 loss could be additive, we performed molecular, biochemical and RNAseq analyses in multiple cellular systems. We identified overlapping and distinct gene sets and pathways that were altered following loss of UBQLN1 and/or UBQLN2. We have also begun to define cell type specific gene regulation of UBQLN1 and UBQLN2, as well as understand how loss of either gene can alter differentiation of normal cells. The data presented here demonstrate that UBQLN1 and UBQLN2 perform similar, but distinct molecular functions in a variety of cell types.
Collapse
Affiliation(s)
- Parag P Shah
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA
| | - Kumar Saurabh
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA
| | - Zimple Kurlawala
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA
| | - Alexis A Vega
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
| | - Leah J Siskind
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Levi J Beverly
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, CTRB rm 204, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, Division of Hematology and Oncology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
99931
|
Anders CB, Lawton TM, Smith HL, Garret J, Doucette MM, Ammons MCB. Use of integrated metabolomics, transcriptomics, and signal protein profile to characterize the effector function and associated metabotype of polarized macrophage phenotypes. J Leukoc Biol 2022; 111:667-693. [PMID: 34374126 PMCID: PMC8825884 DOI: 10.1002/jlb.6a1120-744r] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
MΦs display remarkable plasticity and the ability to activate diverse responses to a host of intracellular and external stimuli. Despite extensive characterization of M1 MΦs and a broad set of M2 MΦs, comprehensive characterization of functional phenotype and associated metabotype driving this diverse MΦ activation remains. Herein, an ex vivo model was utilized to produce 6 MΦ functional phenotypes. Isolated CD14+ PBMCs were differentiated into resting M0 MΦs, and then polarized into M1 (IFN-γ/LPS), M2a (IL-4/IL-13), M2b (IC/LPS), M2c (IL-10), and M2d (IL-6/LIF) MΦs. The MΦs were profiled using a bioanalyte matrix of 4 cell surface markers, ∼50 secreted proteins, ∼800 expressed myeloid genes, and ∼450 identified metabolites relative to M0 MΦs. Signal protein and expressed gene profiles grouped the MΦs into inflammatory (M1 and M2b) and wound resolution (M2a, M2c, and M2d) phenotypes; however, each had a unique metabolic profile. While both M1 and M2b MΦs shared metabotype profiles consistent with an inflammatory signature; key differences were observed in the TCA cycle, FAO, and OXPHOS. Additionally, M2a, M2c, and M2d MΦs all profiled as tissue repair MΦs; however, metabotype differences were observed in multiple pathways including hexosamine, polyamine, and fatty acid metabolism. These metabolic and other key functional distinctions suggest phagocytic and proliferative functions for M2a MΦs, and angiogenesis and ECM assembly capabilities for M2b, M2c, and M2d MΦs. By integrating metabolomics into a systems analysis of MΦ phenotypes, we provide the most comprehensive map of MΦ diversity to date, along with the global metabolic shifts that correlate to MΦ functional plasticity in these phenotypes.
Collapse
Affiliation(s)
- Catherine B. Anders
- Idaho Veteran’s Research and Education Foundation (IVREF); Boise VA Medical Center (BVAMC), Boise, ID 83702; USA
| | - Tyler M.W. Lawton
- Idaho Veteran’s Research and Education Foundation (IVREF); Boise VA Medical Center (BVAMC), Boise, ID 83702; USA
| | - Hannah L. Smith
- Idaho Veteran’s Research and Education Foundation (IVREF); Boise VA Medical Center (BVAMC), Boise, ID 83702; USA, Department of Microbiology and Immunology; Montana State University, Bozeman, MT, ZIP 59717; USA
| | - Jamie Garret
- Idaho Veteran’s Research and Education Foundation (IVREF); Boise VA Medical Center (BVAMC), Boise, ID 83702; USA,School of Medicine, University of Washington, Seattle, WA, ZIP 98195; USA
| | - Margaret M. Doucette
- Department of Physical Medicine & Rehabilitation, Boise VA Medical Center (BVAMC), Boise, ID 83702; USA
| | - Mary Cloud B. Ammons
- Idaho Veteran’s Research and Education Foundation (IVREF); Boise VA Medical Center (BVAMC), Boise, ID 83702; USA
| |
Collapse
|
99932
|
Xu H, Jia Y, Sun Z, Su J, Liu QS, Zhou Q, Jiang G. Environmental pollution, a hidden culprit for health issues. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:31-45. [PMID: 38078200 PMCID: PMC10702928 DOI: 10.1016/j.eehl.2022.04.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/26/2022] [Accepted: 04/23/2022] [Indexed: 12/12/2023]
Abstract
The environmental and health impacts from the massive discharge of chemicals and subsequent pollution have been gaining increasing public concern. The unintended exposure to different pollutants, such as heavy metals, air pollutants and organic chemicals, may cause diverse deleterious effects on human bodies, resulting in the incidence and progression of different diseases. The article reviewed the outbreak of environmental pollution-related public health emergencies, the epidemiological evidence on certain pollution-correlated health effects, and the pathological studies on specific pollutant exposure. By recalling the notable historical life-threatening disasters incurred by local chemical pollution, the damning evidence was presented to criminate certain pollutants as the main culprit for the given health issues. The epidemiological data on the prevalence of some common diseases revealed a variety of environmental pollutants to blame, such as endocrine-disrupting chemicals (EDCs), fine particulate matters (PMs) and heavy metals. The retrospection of toxicological studies provided illustrative clues for evaluating ambient pollutant-induced health risks. Overall, environmental pollution, as the hidden culprit, should answer for the increasing public health burden, and more efforts are highly encouraged to strive to explore the cause-and-effect relationships through extensive epidemiological and pathological studies.
Collapse
Affiliation(s)
- Hanqing Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, and Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Yang Jia
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, and Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Jiahui Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian S. Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| |
Collapse
|
99933
|
Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: Still emerging. Cell Metab 2022; 34:355-377. [PMID: 35123658 PMCID: PMC8891094 DOI: 10.1016/j.cmet.2022.01.007] [Citation(s) in RCA: 509] [Impact Index Per Article: 254.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Metabolism of cancer cells is geared toward biomass production and proliferation. Since the metabolic resources within the local tissue are finite, this can lead to nutrient depletion and accumulation of metabolic waste. To maintain growth in these conditions, cancer cells employ a variety of metabolic adaptations, the nature of which is collectively determined by the physiology of their cell of origin, the identity of transforming lesions, and the tissue in which cancer cells reside. Furthermore, select metabolites not only serve as substrates for energy and biomass generation, but can also regulate gene and protein expression and influence the behavior of non-transformed cells in the tumor vicinity. As they grow and metastasize, tumors can also affect and be affected by the nutrient distribution within the body. In this hallmark update, recent advances are incorporated into a conceptual framework that may help guide further research efforts in exploring cancer cell metabolism.
Collapse
Affiliation(s)
- Natalya N Pavlova
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jiajun Zhu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
99934
|
Haussmann PB, Pavani C, Marcolongo-Pereira C, Bellettini-Santos T, da Silva BS, Benedito IF, Freitas ML, Baptista MS, Chiarelli-Neto O. Melanin photosensitization by green light reduces melanoma tumor size. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2021.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
99935
|
Evaluation of the association between centrosome amplification in tumor tissue of breast cancer patients and changes in the expression of CETN1 and CNTROB genes. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
99936
|
O6-[(2″,3″-O-Isopropylidene-5″-O-tbutyldimethylsilyl)pentyl]-5′-O-tbutyldiphenylsilyl-2′,3′-O-isopropylideneinosine. MOLBANK 2022. [DOI: 10.3390/m1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclic adenosine diphosphate ribose (cADPR) is a cyclic nucleotide involved in the Ca2+ homeostasis. In its structure, the northern ribose, bonded to adenosine through an N1 glycosidic bond, is connected to the southern ribose through a pyrophosphate bridge. Due to the chemical instability at the N1 glycosidic bond, new bioactive cADPR derivatives have been synthesized. One of the most interesting analogues is the cyclic inosine diphosphate ribose (cIDPR), in which the hypoxanthine replaced adenosine. The efforts for synthesizing new linear and cyclic northern ribose modified cIDPR analogues led us to study in detail the inosine N1 alkylation reaction. In the last few years, we have produced new flexible cIDPR analogues, where the northern ribose has been replaced by alkyl chains. With the aim to obtain the closest flexible cIDPR analogue, we have attached to the inosine N1 position a 2″,3″-dihydroxypentyl chain, possessing the two OH groups in a ribose-like fashion. The inosine alkylation reaction afforded also the O6-alkylated regioisomer, which could be a useful intermediate for the construction of new kinds of cADPR mimics.
Collapse
|
99937
|
Melis M, Tang XH, Attarwala N, Chen Q, Prishker C, Qin L, Gross SS, Gudas LJ, Trasino SE. A retinoic acid receptor β2 agonist protects against alcohol liver disease and modulates hepatic expression of canonical retinoid metabolism genes. Biofactors 2022; 48:469-480. [PMID: 34687254 PMCID: PMC9344329 DOI: 10.1002/biof.1794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022]
Abstract
Alcohol abuse reduces hepatic vitamin A (retinoids), reductions that are associated with progression of alcohol liver disease (ALD). Restoring hepatic retinoids through diet is contraindicated in ALD due to the negative effects of alcohol on retinoid metabolism. There are currently no drugs that can both mitigate alcohol-driven hepatic retinoid losses and progression of ALD. Using a mouse model of alcohol intake, we examined if an agonist for the retinoic acid (RA) receptor β2 (RARβ2), AC261066 (AC261) could prevent alcohol-driven hepatic retinoid losses and protect against ALD. Our results show that mice co-treated with AC261 and alcohol displayed mitigation of ALD, including reduced macro, and microvesicular steatosis, and liver damage. Alcohol intake led to increases in hepatic centrilobular levels of ALDH1A1, a rate-limiting enzyme in RA synthesis, and co-localization of ALDH1A1 with the alcohol-metabolizing enzyme CYP2E1, and 4-HNE, a marker of oxidative stress; expression of these targets was abrogated in mice co-treated with AC261 and alcohol. By RNA sequencing technology, we found that AC261 treatments opposed alcohol modulation of 68 transcripts involved in canonical retinoid metabolism. Alcohol modulation of these transcripts, including CES1D, CES1G, RBP1, RDH10, and CYP26A1, collectively favor hepatic retinoid hydrolysis and catabolism. However, despite this, co-administration of AC261 with alcohol did not mitigate alcohol-mediated depletions of hepatic retinoids, but did reduce alcohol-driven increases in serum retinol. Our data show that AC261 protected mice against ALD, even though AC261 did not prevent alcohol-mediated reductions in hepatic retinoids. These data warrant further studies of the anti-ALD properties of AC261.
Collapse
Affiliation(s)
- Marta Melis
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Carlos Prishker
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | - Lihui Qin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| | | | - Steven E. Trasino
- Nutrition Program, Hunter College, City University of New York, New York, NY
- Department of Pharmacology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
99938
|
Fu Q, Li Y, Zhang H, Cao M, Zhang L, Gao C, Cai X, Chen D, Yang Z, Li J, Yang N, Li C. Comparative Transcriptome Analysis of Spleen Reveals Potential Regulation of Genes and Immune Pathways Following Administration of Aeromonas salmonicida subsp. masoucida Vaccine in Atlantic Salmon (Salmo salar). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:97-115. [PMID: 35084599 PMCID: PMC8792528 DOI: 10.1007/s10126-021-10089-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Aeromonas salmonicida is a global fish pathogen. Aeromonas salmonicida subsp. masoucida (ASM) is classified as atypical A. salmonicida and caused huge losses to salmonid industry in China. Hence, it is of great significance to develop ASM vaccine and explore its protection mechanism in salmonids. In this regard, we conducted RNA-seq analysis with spleen tissue of Atlantic salmon after ASM vaccination to reveal genes, their expression patterns, and pathways involved in immune protections. In our results, a total of 441.63 million clean reads were obtained, and 389.37 million reads were mapped onto the Atlantic salmon reference genome. In addition, 1125, 2126, 1098, 820, and 1351 genes were significantly up-regulated, and 747, 2626, 818, 254, and 908 genes were significantly down-regulated post-ASM vaccination at 12 h, 24 h, 1 month, 2 months, and 3 months, respectively. Subsequent pathway analysis revealed that many differentially expressed genes (DEGs) following ASM vaccination were involved in cytokine-cytokine receptor interaction (TNFRSF11b, IL-17RA, CCR9, and CXCL11), HTLV-I infection (MR1 and HTLV-1), MAPK signaling pathway (MAPK, IL8, and TNF-α-1), PI3K-Akt signaling pathway (PIK3R3, THBS4, and COL2A1), and TNF signaling pathway (PTGS2, TNFRSF21-l, and CXCL10). Finally, the results of qRT-PCR showed a significant correlation with RNA-seq results, suggesting the reliability of RNA-seq for gene expression analysis. This study provided insights into regulation of gene expression and their involved pathways in Atlantic salmon spleen in responses to vaccine, and set the foundation for further study on the vaccine protective mechanism in Atlantic salmon as well as other teleost species.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hao Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Zhang
- Shandong Sinder Technology Co., Ltd, Zhucheng, 262200, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Defeng Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ziying Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Li
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
99939
|
Dutta N, Deb I, Sarzynska J, Lahiri A. Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:21-52. [PMID: 35065168 DOI: 10.1016/j.pbiomolbio.2022.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 05/21/2023]
Abstract
Inosine is one of the most common post-transcriptional modifications. Since its discovery, it has been noted for its ability to contribute to non-Watson-Crick interactions within RNA. Rapidly accumulating evidence points to the widespread generation of inosine through hydrolytic deamination of adenosine to inosine by different classes of adenosine deaminases. Three naturally occurring methyl derivatives of inosine, i.e., 1-methylinosine, 2'-O-methylinosine and 1,2'-O-dimethylinosine are currently reported in RNA modification databases. These modifications are expected to lead to changes in the structure, folding, dynamics, stability and functions of RNA. The importance of the modifications is indicated by the strong conservation of the modifying enzymes across organisms. The structure, binding and catalytic mechanism of the adenosine deaminases have been well-studied, but the underlying mechanism of the catalytic reaction is not very clear yet. Here we extensively review the existing data on the occurrence, biogenesis and functions of inosine and its methyl derivatives in RNA. We also included the structural and thermodynamic aspects of these modifications in our review to provide a detailed and integrated discussion on the consequences of A-to-I editing in RNA and the contribution of different structural and thermodynamic studies in understanding its role in RNA. We also highlight the importance of further studies for a better understanding of the mechanisms of the different classes of deamination reactions. Further investigation of the structural and thermodynamic consequences and functions of these modifications in RNA should provide more useful information about their role in different diseases.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India.
| |
Collapse
|
99940
|
Chang LL, Li YK, Zhao CX, Zeng CM, Ge FJ, Du JM, Zhang WZ, Lu PH, He QJ, Zhu H, Yang B. AKR1C1 connects autophagy and oxidative stress by interacting with SQSTM1 in a catalytic-independent manner. Acta Pharmacol Sin 2022; 43:703-711. [PMID: 34017066 PMCID: PMC8888619 DOI: 10.1038/s41401-021-00673-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/30/2021] [Indexed: 02/04/2023] Open
Abstract
Targeting autophagy might be a promising anticancer strategy; however, the dual roles of autophagy in cancer development and malignancy remain unclear. NSCLC (non-small cell lung cancer) cells harbour high levels of SQSTM1 (sequestosome 1), the autophagy receptor that is critical for the dual roles of autophagy. Therefore, mechanistic insights into SQSTM1 modulation may point towards better approaches to treat NSCLC. Herein, we used multiple autophagy flux models and autophagy readouts to show that aldo-keto reductase family 1 member C1 (AKR1C1), which is highly expressed in NSCLC, promotes autophagy by directly binding to SQSTM1 in a catalytic-independent manner. This interaction may be strengthened by reactive oxygen species (ROS), important autophagy inducers. Further mechanistic research demonstrated that AKR1C1 interacts with SQSTM1 to augment SQSTM1 oligomerization, contributing to the SQSTM1 affinity for binding cargo. Collectively, our data reveal a catalytic-independent role of AKR1C1 for interacting with SQSTM1 and promoting autophagy. All these findings not only reveal a novel functional role of AKR1C1 in the autophagy process but also indicate that modulation of the AKR1C1-SQSTM1 interaction may be a new strategy for targeting autophagy.
Collapse
Affiliation(s)
- Lin-lin Chang
- grid.13402.340000 0004 1759 700XZhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China ,grid.414008.90000 0004 1799 4638Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450000, China
| | - Yue-kang Li
- grid.13402.340000 0004 1759 700XZhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen-xi Zhao
- grid.13402.340000 0004 1759 700XZhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen-ming Zeng
- grid.13402.340000 0004 1759 700XZhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fu-jing Ge
- grid.13402.340000 0004 1759 700XZhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia-min Du
- grid.13402.340000 0004 1759 700XZhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-zhou Zhang
- grid.414008.90000 0004 1799 4638Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450000, China
| | - Pei-hua Lu
- grid.460176.20000 0004 1775 8598Department of Medical Oncology, Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Qiao-jun He
- grid.13402.340000 0004 1759 700XZhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
99941
|
Robin AM, Pawloski JA, Snyder JM, Walbert T, Rogers L, Mikkelsen T, Noushmehr H, Lee I, Rock J, Kalkanis SN, Rosenblum ML. Neurosurgery's Impact on Neuro-Oncology—“Can We Do Better?”—Lessons Learned Over 50 Years. Neurosurgery 2022; 68:17-26. [DOI: 10.1227/neu.0000000000001879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 11/19/2022] Open
|
99942
|
Identification of dysregulated pathways and key genes in human retinal angiogenesis using microarray metadata. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
99943
|
Critical Considerations in Bioluminescence Imaging of Transplanted Islets: Dynamic Signal Change in Early Posttransplant Phase and Signal Absorption by Tissues. Pancreas 2022; 51:234-242. [PMID: 35584380 DOI: 10.1097/mpa.0000000000002004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES In pancreatic islet transplantation studies, bioluminescence imaging enables quantitative and noninvasive tracking of graft survival. Amid the recent heightened interest in extrahepatic sites for islet and stem cell-derived beta-like cell transplantations, proper understanding the nature of bioluminescence imaging in these sites is important. METHODS Islets isolated from Firefly rats ubiquitously expressing luciferase reporter gene in Lewis rats were transplanted into subcutaneous or kidney capsule sites of wild-type Lewis rats or immunodeficient mice. Posttransplant changes of bioluminescence signal curves and absorption of bioluminescence signal in transplantation sites were examined. RESULTS The bioluminescence signal curve dynamically changed in the early posttransplantation phase; the signal was low within the first 5 days after transplantation. A substantial amount of bioluminescence signal was absorbed by tissues surrounding islet grafts, correlating to the depth of the transplanted site from the skin surface. Grafts in kidney capsules were harder to image than those in the subcutaneous site. Within the kidney capsule, locations that minimized depth from the skin surface improved the graft detectability. CONCLUSIONS Posttransplant phase and graft location/depth critically impact the bioluminescence images captured in islet transplantation studies. Understanding these parameters is critical for reducing experimental biases and proper interpretation of data.
Collapse
|
99944
|
Shan S, Niu J, Yin R, Shi J, Zhang L, Wu C, Li H, Li Z. Peroxidase from foxtail millet bran exerts anti-colorectal cancer activity via targeting cell-surface GRP78 to inactivate STAT3 pathway. Acta Pharm Sin B 2022; 12:1254-1270. [PMID: 35530132 PMCID: PMC9069399 DOI: 10.1016/j.apsb.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
Molecular targeted therapy has become an emerging promising strategy in cancer treatment, and screening the agents targeting at cancer cell specific targets is very desirable for cancer treatment. Our previous study firstly found that a secretory peroxidase of class III derived from foxtail millet bran (FMBP) exhibited excellent targeting anti-colorectal cancer (CRC) activity in vivo and in vitro, whereas its underlying target remains unclear. The highlight of present study focuses on the finding that cell surface glucose-regulated protein 78 (csGRP78) abnormally located on CRC is positively correlated with the anti-CRC effects of FMBP, indicating it serves as a potential target of FMBP against CRC. Further, we demonstrated that the combination of FMBP with the nucleotide binding domain (NBD) of csGRP78 interfered with the downstream activation of signal transducer and activator of transcription 3 (STAT3) in CRC cells, thus promoting the intracellular accumulation of reactive oxygen species (ROS) and cell grown inhibition. These phenomena were further confirmed in nude mice tumor model. Collectively, our study highlights csGRP78 acts as an underlying target of FMBP against CRC, uncovering the clinical potential of FMBP as a targeted agent for CRC in the future.
Collapse
Key Words
- CAC, colitis-associated carcinogenesis
- CDKs, cyclin-dependent kinases
- CETSA, cellular thermal shift assay
- CRC, colorectal cancer
- Co-IP, co-immunoprecipitation
- Colorectal cancer
- DCFH-DA, dichloro-dihydro-fluorescein diacetate
- EGFR, epidermal growth factor receptor
- ER, endoplasmic reticulum
- FDA, U.S. Food and Drug Administration
- FMBP
- FMBP, peroxidase derived from foxtail millet bran
- Foxtail millet bran
- GRP78, glucose-regulated protein 78
- H&E, hematoxylin & eosin
- ISM, isthmin
- MPs, membrane proteins
- NBD, the nucleotide binding domain of csGRP78
- PD-1, programmed death-1
- ROS
- ROS, reactive oxygen species
- SBD, substrate-binding domain of csGRP78
- SPF, specific pathogen free
- STAT3
- STAT3, signal transducer and activator of transcription 3
- TRAIL, tumor necrosis factor-related apoptosis-inducing ligand
- csGRP78
- csGRP78, cell surface glucose-regulated protein 78
- rGRP78, recombinant GRP78
Collapse
|
99945
|
Liu X, Razi Othman A, H. Abu-Hamdeh N, Abusorrah AM, Karimipour A, Li Z, Ghaemi F, Baleanu D. The Molecular Dynamics study of atomic structure behavior of LL-37 peptide as the antimicrobial agent, derived from the human cathelicidin, inside a nano domain filled by the aqueous environment. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
99946
|
Kumar D, Kashyap MK, Yu Z, Spaanderman I, Villa R, Kipps TJ, La Clair JJ, Burkart MD, Castro JE. Modulation of RNA splicing associated with Wnt signaling pathway using FD-895 and pladienolide B. Aging (Albany NY) 2022; 14:2081-2100. [PMID: 35230971 PMCID: PMC8954975 DOI: 10.18632/aging.203924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Alterations in RNA splicing are associated with different malignancies, including leukemia, lymphoma, and solid tumors. The RNA splicing modulators such as FD-895 and pladienolide B have been investigated in different malignancies to target/modulate spliceosome for therapeutic purpose. Different cell lines were screened using an RNA splicing modulator to test in vitro cytotoxicity and the ability to modulate RNA splicing capability via induction of intron retention (using RT-PCR and qPCR). The Cignal Finder Reporter Array evaluated [pathways affected by the splice modulators in HeLa cells. Further, the candidates associated with the pathways were validated at protein level using western blot assay, and gene-gene interaction studies were carried out using GeneMANIA. We show that FD-895 and pladienolide B induces higher apoptosis levels than conventional chemotherapy in different solid tumors. In addition, both agents modulate Wnt signaling pathways and mRNA splicing. Specifically, FD-895 and pladienolide B significantly downregulates Wnt signaling pathway-associated transcripts (GSK3β and LRP5) and both transcript and proteins including LEF1, CCND1, LRP6, and pLRP6 at the transcript, total protein, and protein phosphorylation's levels. These results indicate FD-895 and pladienolide B inhibit Wnt signaling by decreasing LRP6 phosphorylation and modulating mRNA splicing through induction of intron retention in solid tumors.
Collapse
Affiliation(s)
- Deepak Kumar
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- ThermoFisher Scientific, Carlsbad, CA 92008, USA
| | - Manoj K. Kashyap
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Haryana 122413, India
| | - Zhe Yu
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ide Spaanderman
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Reymundo Villa
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas J. Kipps
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- CLL Research Consortium and Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Januario E. Castro
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- CLL Research Consortium and Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Hematology-Oncology Division, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
99947
|
Preliminary evaluation of [11C]MAGL-0519 as a promising PET ligand for the diagnosis of Hepatocellular carcinoma. Bioorg Chem 2022; 120:105620. [DOI: 10.1016/j.bioorg.2022.105620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/22/2022]
|
99948
|
Zhang CD, Takeshima H, Sekine S, Yamashita S, Liu YY, Hattori N, Abe H, Yamashita H, Fukuda M, Imamura Y, Ushiku T, Katai H, Makino H, Watanabe M, Seto Y, Ushijima T. Prediction of tissue origin of adenocarcinomas in the esophagogastric junction by DNA methylation. Gastric Cancer 2022; 25:336-345. [PMID: 34557982 DOI: 10.1007/s10120-021-01252-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prediction of tissue origin of esophagogastric junction (EGJ) adenocarcinomas can be important for therapeutic decision, but no molecular marker is available. Here, we aimed to develop such a marker taking advantage of tissue-specific profiles of DNA methylation. METHODS DNA methylation profiles of gastric adenocarcinomas (GACs) were obtained by an Infinium HumanMethylation450 BeadChip array, and those of esophageal adenocarcinoma (EACs) were obtained from the TCGA database. DNA from formalin-fixed paraffin-embedded (FFPE) samples was analyzed by bisulfite pyrosequencing. RESULTS In the screening set, 51 of 145,841 CpG sites in CpG islands were methylated at significantly higher levels in 30 GACs compared to those in 30 EACs. Among them, SLC46A3 and cg09177106 were unmethylated in all the 30 EACs. Predictive powers of these two markers were successfully confirmed in an independent validation set (18 GACs and 18 EACs) (SLC46A3, sensitivity = 77.8%, specificity = 100%; cg09177106, sensitivity = 83.3%, specificity = 94.4%), and could be applied to FFPE samples (37 GACs and 18 EACs) (SLC46A3, P = 0.0001; cg09177106, P = 0.0028). On the other hand, EAC-specific markers informative in the FFPE samples could not be isolated. Using these GAC-specific markers, nine of 46 (19.6%) TCGA EGJ adenocarcinomas were predicted to be GACs. CONCLUSIONS Two GAC-specific markers, SLC46A3 and cg09177106, had a high specificity for identifying the tissue origin of EGJ adenocarcinoma.
Collapse
Affiliation(s)
- Chun-Dong Zhang
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yu-Yu Liu
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Hiroharu Yamashita
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Masahide Fukuda
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yu Imamura
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Hitoshi Katai
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Hiroshi Makino
- Department of Surgery, Tama-Nagayama Hospital, Nippon Medical School, Tokyo, 206-8512, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
99949
|
Muller C, Yamada A, Ikegami S, Haider H, Komaki Y, Komaki F, Micic D, Sakuraba A. Risk of Colorectal Cancer in Serrated Polyposis Syndrome: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2022; 20:622-630.e7. [PMID: 34089849 DOI: 10.1016/j.cgh.2021.05.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Serrated polyposis syndrome (SPS) is characterized by development of numerous serrated lesions throughout the colorectum and increased risk of colorectal cancer (CRC). However, SPS has been an underrecognized CRC predisposition syndrome, and the true risk of CRC in SPS, both overall and in surveillance, is not known. The aim of this systematic review and meta-analysis is to describe the risk of CRC in patients with SPS. METHODS Electronic databases were searched on March 25, 2021, for studies describing CRC risk in SPS. Random-effects meta-analysis was performed to assess pooled risk of CRC among SPS patients. Primary outcomes were risk of CRC at time of SPS diagnosis and during surveillance following diagnosis of SPS. Secondary outcomes included risk of CRC prior to diagnosis of SPS and effect of World Health Organization subtype on CRC risk. RESULTS Thirty-six studies including 2788 patients with SPS were included in the analysis. Overall risk of CRC in SPS was 19.9% (95% confidence interval [CI], 15.3%-24.5%). CRC risk at the time of diagnosis was 14.7% (95% CI, 11.4%-18.8%), while risk during surveillance was 2.8% (95% CI, 1.8%-4.4%), or 7 cases per 1000 person-years. SPS patients also had a high incidence of history of CRC prior to SPS diagnosis (7.0%; 95% CI, 4.6%-11.7). Subgroup analysis did not reveal any significant differences based on World Health Organization subtype. CONCLUSIONS Our meta-analysis demonstrated that patients with SPS have an elevated risk of CRC, which is highest at the time of diagnosis and suggests the importance of early SPS recognition and screening to modify CRC risk. The persistently elevated CRC risk during surveillance supports current guidelines recommending heightened surveillance protocols.
Collapse
Affiliation(s)
- Charles Muller
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago Medicine, Chicago, Illinois
| | - Akihiro Yamada
- Section of Gastroenterology, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan
| | - Sachie Ikegami
- Department of Pathology, NorthShore University HealthSystem, Evanston, Illinois
| | - Haider Haider
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago Medicine, Chicago, Illinois
| | - Yuga Komaki
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Fukiko Komaki
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Dejan Micic
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago Medicine, Chicago, Illinois
| | - Atsushi Sakuraba
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago Medicine, Chicago, Illinois.
| |
Collapse
|
99950
|
Tumor-stroma TGF-β1-THBS2 feedback circuit drives pancreatic ductal adenocarcinoma progression via integrin αvβ3/CD36-mediated activation of the MAPK pathway. Cancer Lett 2022; 528:59-75. [DOI: 10.1016/j.canlet.2021.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 01/06/2023]
|