51
|
Philip NS, Ramanathan D, Gamboa B, Brennan MC, Kozel FA, Lazzeroni L, Madore MR. Repetitive Transcranial Magnetic Stimulation for Depression and Posttraumatic Stress Disorder in Veterans With Mild Traumatic Brain Injury. Neuromodulation 2023; 26:878-884. [PMID: 36737300 PMCID: PMC10765323 DOI: 10.1016/j.neurom.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Mild traumatic brain injury (mTBI) is a signature injury of military conflicts and is prevalent in veterans with major depressive disorder (MDD) and posttraumatic stress disorder (PTSD). Although therapeutic transcranial magnetic stimulation (TMS) can reduce symptoms of depression and PTSD, whether traumatic brain injury (TBI) affects TMS responsiveness is not yet known. We hypothesized mTBI would be associated with higher pretreatment symptom burden and poorer TMS response. MATERIALS AND METHODS We investigated a registry of veterans (N = 770) who received TMS for depression across the US Veterans Affairs system. Of these, 665 (86.4%) had data on TBI and lifetime number of head injuries while 658 had complete data related to depression outcomes. Depression symptoms were assessed using the nine-item Patient Health Questionnaire and PTSD symptoms using the PTSD Checklist for DSM-5. Linear mixed effects models and t-tests evaluated whether head injuries predicted symptom severity before treatment, and how TBI status affected clinical TMS outcomes. RESULTS Of the 658 veterans included, 337 (50.7%) reported previous mTBI, with a mean of three head injuries (range 1-20). TBI status did not predict depressive symptom severity or TMS-associated changes in depression (all p's > 0.1). TBI status was associated with a modest attenuation of TMS-associated improvement in PTSD (in patients with PTSD Checklist for DSM-5 scores > 33). There was no correlation between the number of head injuries and TMS response (p > 0.1). CONCLUSIONS Contrary to our hypothesis, presence of mTBI did not meaningfully change TMS outcomes. Veterans with mTBI had greater PTSD symptoms, yet neither TBI status nor cumulative head injuries reduced TMS effectiveness. Limitations include those inherent to retrospective registry studies and self-reporting. Although these findings are contrary to our hypotheses, they support the safety and effectiveness of TMS for MDD and PTSD in patients who have comorbid mTBI.
Collapse
Affiliation(s)
- Noah S Philip
- Veterans Affairs Rehabilitation Research & Development Center for Neurorestoration and Neurotechnology, Providence Veterans Affairs Healthcare System, Providence, RI, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Dhakshin Ramanathan
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Bruno Gamboa
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - McKenna C Brennan
- Veterans Affairs Rehabilitation Research & Development Center for Neurorestoration and Neurotechnology, Providence Veterans Affairs Healthcare System, Providence, RI, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Frank Andrew Kozel
- Department of Behavioral Sciences and Social Medicine, Florida State University, Tallahassee, FL, USA
| | - Laura Lazzeroni
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle R Madore
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
52
|
Hicks AJ, Clay FJ, James AC, Hopwood M, Ponsford JL. Effectiveness of Pharmacotherapy for Depression after Adult Traumatic Brain Injury: an Umbrella Review. Neuropsychol Rev 2023; 33:393-431. [PMID: 35699850 PMCID: PMC10148771 DOI: 10.1007/s11065-022-09543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
Symptoms of depression are common following traumatic brain injury (TBI), impacting survivors' ability to return to work, participate in leisure activities, and placing strain on relationships. Depression symptoms post TBI are often managed with pharmacotherapy, however, there is little research evidence to guide clinical practice. There have been a number of recent systematic reviews examining pharmacotherapy for post TBI depression. The aim of this umbrella review was to synthesize systematic reviews and meta-analyses of the effectiveness of pharmacotherapy for the management of post TBI depression in adults. Eligible reviews examined any pharmacotherapy against any comparators, for the treatment of depression in adults who had sustained TBI. Seven databases were searched, with additional searching of online journals, Research Gate, Google Scholar and the TRIP Medical Database to identify published and unpublished systematic reviews and meta-analyses in English up to May 2020. A systematic review of primary studies available between March 2018 and May 2020 was also conducted. Evidence quality was assessed using Joanna Briggs Institute Critical Appraisal Instruments. The results are presented as a narrative synthesis. Twenty-two systematic reviews were identified, of which ten reviews contained a meta-analysis. No new primary studies were identified in the systematic review. There was insufficient high quality and methodologically rigorous evidence to recommend prescribing any specific drug or drug class for post TBI depression. The findings do show, however, that depression post TBI is responsive to pharmacotherapy in at least some individuals. Recommendations for primary studies, systematic reviews and advice for prescribers is provided. Review Registration PROSPERO (CRD42020184915).
Collapse
Affiliation(s)
- Amelia J. Hicks
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Ground Floor, 185-187 Hoddle St, Richmond, Melbourne, VIC 3121 Australia
| | - Fiona J. Clay
- Department of Forensic Medicine, Monash University, Southbank, Australia
| | - Amelia C. James
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Ground Floor, 185-187 Hoddle St, Richmond, Melbourne, VIC 3121 Australia
| | - Malcolm Hopwood
- Department of Psychiatry, University of Melbourne, Melbourne, Australia
- Professorial Psychiatry Unit, Albert Road Clinic, Department of Psychiatry, University of Melbourne, 31 Albert Road, Melbourne, Australia
| | - Jennie L. Ponsford
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Ground Floor, 185-187 Hoddle St, Richmond, Melbourne, VIC 3121 Australia
| |
Collapse
|
53
|
Torregrossa W, Raciti L, Rifici C, Rizzo G, Raciti G, Casella C, Naro A, Calabrò RS. Behavioral and Psychiatric Symptoms in Patients with Severe Traumatic Brain Injury: A Comprehensive Overview. Biomedicines 2023; 11:biomedicines11051449. [PMID: 37239120 DOI: 10.3390/biomedicines11051449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/29/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Traumatic brain injury (TBI) is defined as an altered brain structure or function produced by an external force. Adults surviving moderate and severe TBI often experience long-lasting neuropsychological and neuropsychiatric disorders (NPS). NPS can occur as primary psychiatric complications or could be an exacerbation of pre-existing compensated conditions. It has been shown that changes in behavior following moderate to severe TBI have a prevalence rate of 25-88%, depending on the methodology used by the different studies. Most of current literature has found that cognitive behavioral and emotional deficit following TBI occurs within the first six months whereas after 1-2 years the condition becomes stable. Identifying the risk factors for poor outcome is the first step to reduce the sequelae. Patients with TBI have an adjusted relative risk of developing any NPS several-fold higher than in the general population after six months of moderate-severe TBI. All NPS features of an individual's life, including social, working, and familiar relationships, may be affected by the injury, with negative consequences on quality of life. This overview aims to investigate the most frequent psychiatric, behavioral, and emotional symptoms in patients suffering from TBI as to improve the clinical practice and tailor a more specific rehabilitation training.
Collapse
Affiliation(s)
- William Torregrossa
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Centro Neurolesi Bonino Pulejo, Via Palermo S.S. 113 C.da Casazza, 98124 Messina, Italy
| | - Loredana Raciti
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Centro Neurolesi Bonino Pulejo, Via Palermo S.S. 113 C.da Casazza, 98124 Messina, Italy
| | - Carmela Rifici
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Centro Neurolesi Bonino Pulejo, Via Palermo S.S. 113 C.da Casazza, 98124 Messina, Italy
| | - Giuseppina Rizzo
- Azienda Ospedaliera Universitaria (AOU) Policlinico G. Martino, Via Consolare Valeria, 1, 98124 Messina, Italy
| | - Gianfranco Raciti
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Centro Neurolesi Bonino Pulejo, Via Palermo S.S. 113 C.da Casazza, 98124 Messina, Italy
| | - Carmela Casella
- Azienda Ospedaliera Universitaria (AOU) Policlinico G. Martino, Via Consolare Valeria, 1, 98124 Messina, Italy
| | - Antonino Naro
- Azienda Ospedaliera Universitaria (AOU) Policlinico G. Martino, Via Consolare Valeria, 1, 98124 Messina, Italy
| | - Rocco Salvatore Calabrò
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Centro Neurolesi Bonino Pulejo, Via Palermo S.S. 113 C.da Casazza, 98124 Messina, Italy
| |
Collapse
|
54
|
Szymkowicz SM, Gerlach AR, Homiack D, Taylor WD. Biological factors influencing depression in later life: role of aging processes and treatment implications. Transl Psychiatry 2023; 13:160. [PMID: 37160884 PMCID: PMC10169845 DOI: 10.1038/s41398-023-02464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Late-life depression occurring in older adults is common, recurrent, and malignant. It is characterized by affective symptoms, but also cognitive decline, medical comorbidity, and physical disability. This behavioral and cognitive presentation results from altered function of discrete functional brain networks and circuits. A wide range of factors across the lifespan contributes to fragility and vulnerability of those networks to dysfunction. In many cases, these factors occur earlier in life and contribute to adolescent or earlier adulthood depressive episodes, where the onset was related to adverse childhood events, maladaptive personality traits, reproductive events, or other factors. Other individuals exhibit a later-life onset characterized by medical comorbidity, pro-inflammatory processes, cerebrovascular disease, or developing neurodegenerative processes. These later-life processes may not only lead to vulnerability to the affective symptoms, but also contribute to the comorbid cognitive and physical symptoms. Importantly, repeated depressive episodes themselves may accelerate the aging process by shifting allostatic processes to dysfunctional states and increasing allostatic load through the hypothalamic-pituitary-adrenal axis and inflammatory processes. Over time, this may accelerate the path of biological aging, leading to greater brain atrophy, cognitive decline, and the development of physical decline and frailty. It is unclear whether successful treatment of depression and avoidance of recurrent episodes would shift biological aging processes back towards a more normative trajectory. However, current antidepressant treatments exhibit good efficacy for older adults, including pharmacotherapy, neuromodulation, and psychotherapy, with recent work in these areas providing new guidance on optimal treatment approaches. Moreover, there is a host of nonpharmacological treatment approaches being examined that take advantage of resiliency factors and decrease vulnerability to depression. Thus, while late-life depression is a recurrent yet highly heterogeneous disorder, better phenotypic characterization provides opportunities to better utilize a range of nonspecific and targeted interventions that can promote recovery, resilience, and maintenance of remission.
Collapse
Affiliation(s)
- Sarah M Szymkowicz
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew R Gerlach
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Damek Homiack
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL, USA
| | - Warren D Taylor
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN, USA.
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA.
| |
Collapse
|
55
|
Babb JA, Zuberer A, Heinrichs S, Rumbika KK, Alfiler L, Lakis GA, Leite-Morris KA, Kaplan GB. Disturbances in fear extinction learning after mild traumatic brain injury in mice are accompanied by alterations in dendritic plasticity in the medial prefrontal cortex and basolateral nucleus of the amygdala. Brain Res Bull 2023; 198:15-26. [PMID: 37031792 DOI: 10.1016/j.brainresbull.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) have emerged as the signature injuries of the U.S. veterans who served in Iraq and Afghanistan, and frequently co-occur in both military and civilian and populations. To better understand how fear learning and underlying neural systems might be altered after mTBI we examined the acquisition of cued fear conditioning and its extinction along with brain morphology and dendritic plasticity in a mouse model of mTBI. To induce mTBI in adult male C57BL/6J mice, a lateral fluid percussive injury (LFP 1.7) was produced using a fluid pulse of 1.7 atmosphere force to the right parietal lobe. Behavior in LFP 1.7 mice was compared to behavior in mice from two separate control groups: mice subjected to craniotomy without LFP injury (Sham) and mice that did not undergo surgery (Unoperated). Following behavioral testing, neural endpoints (dendritic structural plasticity and neuronal volume) were assessed in the basolateral nucleus of the amygdala (BLA), which plays a critical sensory role in fear learning, and medial prefrontal cortex (mPFC), responsible for executive functions and inhibition of fear behaviors. No gross motor abnormalities or increased anxiety-like behaviors were observed in LFP or Sham mice after surgery compared to Unoperated mice. We found that all mice acquired fear behavior, assessed as conditioned freezing to auditory cue in a single session of 6 trials, and acquisition was similar across treatment groups. Using a linear mixed effects analysis, we showed that fear behavior decreased overall over 6 days of extinction training with no effect of treatment group across extinction days. However, a significant interaction was demonstrated between the treatment groups during within-session freezing behavior (5 trials per day) during extinction training. Specifically, freezing behavior increased across within-session extinction trials in LFP 1.7 mice, whereas freezing behavior in control groups did not change on extinction test days, reflecting a dissociation between within-trial and between-trial fear extinction. Additionally, LFP mice demonstrated bilateral increases in dendritic spine density in the BLA and decreases in dendritic complexity in the PFC. The translational implications are that individuals with TBI undergoing fear extinction therapy may demonstrate within-session aberrant learning that could be targeted for more effective treatment interventions.
Collapse
Affiliation(s)
- Jessica A Babb
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Mental Health Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Department of Psychiatry, Harvard Medical School, Boston, MA, 02115 USA.
| | - Agnieszka Zuberer
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany; Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany.
| | - Stephen Heinrichs
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA.
| | - Kendra K Rumbika
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA.
| | - Lauren Alfiler
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA.
| | - Gabrielle A Lakis
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02218 USA.
| | - Kimberly A Leite-Morris
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118 USA.
| | - Gary B Kaplan
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Mental Health Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118 USA; Department of Pharmacology & Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118 USA.
| |
Collapse
|
56
|
Umminger LF, Rojczyk P, Seitz-Holland J, Sollmann N, Kaufmann E, Kinzel P, Zhang F, Kochsiek J, Langhein M, Kim CL, Wiegand TLT, Kilts JD, Naylor JC, Grant GA, Rathi Y, Coleman MJ, Bouix S, Tripodis Y, Pasternak O, George MS, McAllister TW, Zafonte R, Stein MB, O'Donnell LJ, Marx CE, Shenton ME, Koerte IK. White Matter Microstructure Is Associated with Serum Neuroactive Steroids and Psychological Functioning. J Neurotrauma 2023; 40:649-664. [PMID: 36324218 PMCID: PMC10061338 DOI: 10.1089/neu.2022.0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Military service members are at increased risk for mental health issues, and comorbidity with mild traumatic brain injury (mTBI) is common. Largely overlapping symptoms between conditions suggest a shared pathophysiology. The present work investigates the associations among white matter microstructure, psychological functioning, and serum neuroactive steroids that are part of the stress-response system. Diffusion-weighted brain imaging was acquired from 163 participants (with and without military affiliation) and free-water-corrected fractional anisotropy (FAT) was extracted. Associations between serum neurosteroid levels of allopregnanolone (ALLO) and pregnenolone (PREGNE), psychological functioning, and whole-brain white matter microstructure were assessed using regression models. Moderation models tested the effect of mTBI and comorbid post-traumatic stress disorder (PTSD) and mTBI on these associations. ALLO is associated with whole-brain white matter FAT (β = 0.24, t = 3.05, p = 0.006). This association is significantly modulated by PTSD+mTBI comorbidity (β = 0.00, t = 2.50, p = 0.027), although an mTBI diagnosis alone did not significantly impact this association (p = 0.088). There was no significant association between PREGNE and FAT (p = 0.380). Importantly, lower FAT is associated with poor psychological functioning (β = -0.19, t = -2.35, p = 0.020). This study provides novel insight into a potential common pathophysiological mechanism of neurosteroid dysregulation underlying the high risk for mental health issues in military service members. Further, comorbidity of PTSD and mTBI may bring the compensatory effects of the brain's stress response to their limit. Future research is needed to investigate whether neurosteroid regulation may be a promising tool for restoring brain health and improving psychological functioning.
Collapse
Affiliation(s)
- Lisa F. Umminger
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Philine Rojczyk
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nico Sollmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Elisabeth Kaufmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Neurology, Epilepsy Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Philipp Kinzel
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Fan Zhang
- Laboratory of Mathematics in Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Janna Kochsiek
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mina Langhein
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Cara L. Kim
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Tim L. T. Wiegand
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jason D. Kilts
- VA Mid-Atlantic Mental Illness Research and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NorthCarolina, USA
- Department of Psychiatry and Behavior Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jennifer C. Naylor
- VA Mid-Atlantic Mental Illness Research and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NorthCarolina, USA
- Department of Psychiatry and Behavior Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gerald A. Grant
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J. Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark S. George
- Psychiatry Department, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Thomas W. McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Murray B. Stein
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- School of Public Health, University of California San Diego, La Jolla, California, USA
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Lauren J. O'Donnell
- Laboratory of Mathematics in Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine E. Marx
- VA Mid-Atlantic Mental Illness Research and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NorthCarolina, USA
- Department of Psychiatry and Behavior Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Inga K. Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
57
|
Rossom RC, Peterson EL, Chawa MS, Prabhakar D, Hu Y, Yeh HH, Owen-Smith AA, Simon GE, Williams LK, Hubley S, Lynch F, Beck A, Daida YG, Lu CY, Ahmedani BK. Understanding TBI as a Risk Factor Versus a Means of Suicide Death Using Electronic Health Record Data. Arch Suicide Res 2023; 27:599-612. [PMID: 35118931 PMCID: PMC9881390 DOI: 10.1080/13811118.2022.2029782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The aim of this research was to examine predictors and characterize causes of suicide death in people with traumatic brain injury (TBI) and conduct sensitivity analyses with and without people whose first diagnosis of TBI occurred within 3 days of their suicide death. METHODS This case-control study examined suicide risk for people with TBI in eight Mental Health Research Network-affiliated healthcare systems. Sample 1 included 61 persons with TBI who died by suicide and their 75 matched controls with TBI who did not die by suicide between January 1, 2000, and December 31, 2013. Sample 2 excluded the 34 persons with TBI whose first TBI diagnosis occurred within 3 days of their suicide death and their 46 matched controls. Descriptive statistics characterized the sample stratified by cases and controls, while conditional logistic regression models estimated the adjusted odds of suicide. RESULTS Over half of suicide deaths occurred within 3 days of a person's first diagnosis of TBI in the larger sample. After excluding these persons, people with TBI were 2.84 (95% confidence interval [CI]: 2.15-2.73) times more likely to die by suicide than were people without TBI. Among those with TBI, men were 16.39 times (95% CI: 1.89-142.15) more likely to die by suicide than were women. CONCLUSIONS Accounting for TBI as a potential consequence of suicide attenuates the association between TBI and suicide, but a robust association persists-especially among men. Ultimately, all people with TBI should be carefully screened and monitored for suicide risk.HIGHLIGHTSPeople with traumatic brain injury (TBI) were at considerably elevated risk for suicide deathMen with TBI had significantly increased risk of suicide death compared to women with TBITBI timing suggests confusion of risk factors for and consequences of suicide.
Collapse
|
58
|
Hu X, Ou Y, Li J, Sun M, Ge Q, Pan Y, Cai Z, Tan R, Wang W, An J, Lu H. Voluntary Exercise to Reduce Anxiety Behaviour in Traumatic Brain Injury Shown to Alleviate Inflammatory Brain Response in Mice. Int J Mol Sci 2023; 24:ijms24076365. [PMID: 37047351 PMCID: PMC10093932 DOI: 10.3390/ijms24076365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Traumatic brain injury is a leading cause of neuroinflammation and anxiety disorders in young adults. Immune-targeted therapies have garnered attention for the amelioration of TBI-induced anxiety. A previous study has indicated that voluntary exercise intervention following TBI could reduce neuroinflammation. It is essential to determine the effects of voluntary exercise after TBI on anxiety via inhibiting neuroinflammatory response. Mice were randomly divided into four groups (sham, TBI, sham + voluntary wheel running (VWR), and TBI + VWR). One-week VWR was carried out on the 2nd day after trauma. The neurofunction of TBI mice was assessed. Following VWR, anxiety behavior was evaluated, and neuroinflammatory responses in the perilesional cortex were investigated. Results showed that after one week of VWR, neurofunctional recovery was enhanced, while the anxiety behavior of TBI mice was significantly alleviated. The level of pro-inflammatory factors decreased, and the level of anti-inflammatory factors elevated. Activation of nucleotide oligomerization domain-like thermal receptor protein domain associated protein 3 (NLRP3) inflammasome was inhibited significantly. All these alterations were consistent with reduced microglial activation at the perilesional site and positively correlated with the amelioration of anxiety behavior. This suggested that timely rehabilitative exercise could be a useful therapeutic strategy for anxiety resulting from TBI by targeting neuroinflammation.
Collapse
Affiliation(s)
- Xiaoxuan Hu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yuhang Ou
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Jiashuo Li
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Meiqi Sun
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Qian Ge
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yongqi Pan
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Zhenlu Cai
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Ruolan Tan
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Wenyu Wang
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Jing An
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Correspondence: (J.A.); (H.L.)
| | - Haixia Lu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Correspondence: (J.A.); (H.L.)
| |
Collapse
|
59
|
Barczak-Scarboro NE, Hernández LM, Taylor MK. Military Exposures Predict Mental Health Symptoms in Explosives Personnel but Not Always as Expected. Mil Med 2023; 188:e646-e652. [PMID: 34520546 DOI: 10.1093/milmed/usab379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine the unique and combined associations of various military stress exposures with positive and negative mental health symptoms in active duty service members. MATERIALS AND METHODS We investigated 87 male U.S. Navy Explosive Ordnance Disposal (EOD) technicians (age M ± SE, range 33.7 ± 0.6, 22-47 years). Those who endorsed a positive traumatic brain injury diagnosis were excluded to eliminate the confounding effects on mental health symptoms. Using a survey platform on a computer tablet, EOD technicians self-reported combat exposure, deployment frequency (total number of deployments), blast exposure (vehicle crash/blast or 50-m blast involvement), depression, anxiety, posttraumatic stress, perceived stress, and life satisfaction during an in-person laboratory session. RESULTS When controlling for other military stressors, EOD technicians with previous involvement in a vehicle crash/blast endorsed worse mental health than their nonexposed counterparts. The interactions of vehicle crash/blast with deployment frequency and combat exposure had moderate effect sizes, and combat and deployment exposures demonstrated protective, rather than catalytic, effects on negative mental health scores. CONCLUSIONS Military stressors may adversely influence self-reported symptoms of negative mental health, but deployment experience and combat exposure may confer stress inoculation.
Collapse
Affiliation(s)
- Nikki E Barczak-Scarboro
- Leidos Inc., San Diego, CA 92121, USA
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, San Diego, CA 92106, USA
| | - Lisa M Hernández
- Leidos Inc., San Diego, CA 92121, USA
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, San Diego, CA 92106, USA
| | - Marcus K Taylor
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, San Diego, CA 92106, USA
| |
Collapse
|
60
|
von Steinbuechel N, Hahm S, Muehlan H, Arango-Lasprilla JC, Bockhop F, Covic A, Schmidt S, Steyerberg EW, Maas AIR, Menon D, Andelic N, Zeldovich M. Impact of Sociodemographic, Premorbid, and Injury-Related Factors on Patient-Reported Outcome Trajectories after Traumatic Brain Injury (TBI). J Clin Med 2023; 12:2246. [PMID: 36983247 PMCID: PMC10052290 DOI: 10.3390/jcm12062246] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death and disability worldwide. To better understand its impact on various outcome domains, this study pursues the following: (1) longitudinal outcome assessments at three, six, and twelve months post-injury; (2) an evaluation of sociodemographic, premorbid, and injury-related factors, and functional recovery contributing to worsening or improving outcomes after TBI. Using patient-reported outcome measures, recuperation trends after TBI were identified by applying Multivariate Latent Class Mixed Models (MLCMM). Instruments were grouped into TBI-specific and generic health-related quality of life (HRQoL; QOLIBRI-OS, SF-12v2), and psychological and post-concussion symptoms (GAD-7, PHQ-9, PCL-5, RPQ). Multinomial logistic regressions were carried out to identify contributing factors. For both outcome sets, the four-class solution provided the best match between goodness of fit indices and meaningful clinical interpretability. Both models revealed similar trajectory classes: stable good health status (HRQoL: n = 1944; symptoms: n = 1963), persistent health impairments (HRQoL: n = 442; symptoms: n = 179), improving health status (HRQoL: n = 83; symptoms: n = 243), and deteriorating health status (HRQoL: n = 86; symptoms: n = 170). Compared to individuals with stable good health status, the other groups were more likely to have a lower functional recovery status at three months after TBI (i.e., the GOSE), psychological problems, and a lower educational attainment. Outcome trajectories after TBI show clearly distinguishable patterns which are reproducible across different measures. Individuals characterized by persistent health impairments and deterioration require special attention and long-term clinical monitoring and therapy.
Collapse
Affiliation(s)
- Nicole von Steinbuechel
- Institute of Medical Psychology and Medical Sociology, University Medical Center Goettingen, Waldweg 37A, 37073 Goettingen, Germany
| | - Stefanie Hahm
- Department Health & Prevention, Institute of Psychology, University of Greifswald, Robert-Blum-Str. 13, 17489 Greifswald, Germany
| | - Holger Muehlan
- Department Health & Prevention, Institute of Psychology, University of Greifswald, Robert-Blum-Str. 13, 17489 Greifswald, Germany
| | - Juan Carlos Arango-Lasprilla
- Departments of Psychology and Physical Medicine and Rehabilitation, Virginia Commonwealth University, 907 Floyd Ave., Richmond, VA 23284, USA
| | - Fabian Bockhop
- Institute of Medical Psychology and Medical Sociology, University Medical Center Goettingen, Waldweg 37A, 37073 Goettingen, Germany
| | - Amra Covic
- Institute of Medical Psychology and Medical Sociology, University Medical Center Goettingen, Waldweg 37A, 37073 Goettingen, Germany
| | - Silke Schmidt
- Department Health & Prevention, Institute of Psychology, University of Greifswald, Robert-Blum-Str. 13, 17489 Greifswald, Germany
| | - Ewout W. Steyerberg
- Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 RC Leiden, The Netherlands
| | - Andrew I. R. Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, 2650 Edegem, Belgium
| | - David Menon
- Division of Anaesthesia, University of Cambridge/Addenbrooke’s Hospital, Box 157, Cambridge CB2 0QQ, UK
| | - Nada Andelic
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, 0450 Oslo, Norway
- Institute of Health and Society, Research Centre for Habilitation and Rehabilitation Models, Faculty of Medicine, Univeristy of Oslo, 0373 Oslo, Norway
| | - Marina Zeldovich
- Institute of Medical Psychology and Medical Sociology, University Medical Center Goettingen, Waldweg 37A, 37073 Goettingen, Germany
| | | |
Collapse
|
61
|
Mulyadi M, Harianto S, Tonapa SI, Lee BO. Early Quality-of-Life Changes in Mild Traumatic Brain Injury: A Prospective Study. J Trauma Nurs 2023; 30:75-82. [PMID: 36881698 DOI: 10.1097/jtn.0000000000000706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
BACKGROUND Postinjury symptoms and decreased quality of life are common after mild traumatic brain injury. However, few studies have examined how soon, after injury, these changes dissipate. OBJECTIVES This study aimed to compare changes in postconcussion symptoms, posttraumatic stress, and illness representations and identify predictors of health-related quality of life before and 1 month after hospital discharge for mild traumatic brain injury. METHODS A prospective, multicenter, correlational design was used to measure postconcussion symptoms, posttraumatic stress, illness representations, and health-related quality of life. The survey was administered to 136 patients with mild traumatic brain injury between June 2020 and July 2021 at three hospitals in Indonesia. Data were collected at discharge and 1 month later. RESULTS Compared with before hospital discharge, data collected 1 month after discharge showed that patients experienced reduced postconcussion symptoms, posttraumatic stress, better illness perceptions, and quality of life. Those with postconcussion symptoms (β =-.35, p < .001), more posttraumatic stress symptoms (β =-.12, p = .044), more identity symptoms (β = .11, p = .008), worsened personal control (β =-.18, p = .002), worsened treatment control (β =-.16, p = .001), and negative emotional representations (β =-.17, p = .007) were significantly related to worsened health-related quality of life. CONCLUSION This study shows that within 1 month of hospital discharge, patients with mild traumatic brain injury had decreased postconcussion symptoms, posttraumatic stress, and improved illness perceptions. Efforts to impact mild brain injury quality of life should focus on inhospital care to optimize the transition to discharge.
Collapse
Affiliation(s)
- Mulyadi Mulyadi
- College of Nursing, Kaohsiung Medical University, Kaohsiung, Taiwan (Dr Mulyadi, Mr Tonapa, and Dr Lee); School of Nursing, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia (Dr Mulyadi); and Faculty of Nursing (Mr Harianto) and Faculty of Vocational Studies (Mr Harianto), Airlangga University, Surabaya, Indonesia
| | | | | | | |
Collapse
|
62
|
Silverberg ND, Mikolić A. Management of Psychological Complications Following Mild Traumatic Brain Injury. Curr Neurol Neurosci Rep 2023; 23:49-58. [PMID: 36763333 DOI: 10.1007/s11910-023-01251-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW It has been clear for decades that psychological factors often contribute to mild traumatic brain injury (mTBI) outcome, but an emerging literature has begun to clarify which specific factors are important, when, for whom, and how they impact recovery. This review aims to summarize the contemporary evidence on psychological determinants of recovery from mTBI and its implications for clinical management. RECENT FINDINGS Comorbid mental health disorders and specific illness beliefs and coping behaviors (e.g., fear avoidance) are associated with worse recovery from mTBI. Proactive assessment and intervention for psychological complications can improve clinical outcomes. Evidence-based treatments for primary mental health disorders are likely also effective for treating mental health disorders after mTBI, and can reduce overall post-concussion symptoms. Broad-spectrum cognitive-behavioral therapy may modestly improve post-concussion symptoms, but tailoring delivery to individual psychological risk factors and/or symptoms may improve its efficacy. Addressing psychological factors in treatments delivered primarily by non-psychologists is a promising and cost-effective approach for enhancing clinical management of mTBI. Recent literature emphasizes a bio-psycho-socio-ecological framework for understanding mTBI recovery and a precision rehabilitation approach to maximize recovery. Integrating psychological principles into rehabilitation and tailoring interventions to specific risk factors may improve clinical management of mTBI.
Collapse
Affiliation(s)
- Noah D Silverberg
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada.
- Rehabilitation Research Program, Vancouver Coastal Health Research Institute, Vancouver, BC, V5Z 1M9, Canada.
| | - Ana Mikolić
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada
- Rehabilitation Research Program, Vancouver Coastal Health Research Institute, Vancouver, BC, V5Z 1M9, Canada
| |
Collapse
|
63
|
Volumetric MRI Findings in Mild Traumatic Brain Injury (mTBI) and Neuropsychological Outcome. Neuropsychol Rev 2023; 33:5-41. [PMID: 33656702 DOI: 10.1007/s11065-020-09474-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Region of interest (ROI) volumetric assessment has become a standard technique in quantitative neuroimaging. ROI volume is thought to represent a coarse proxy for making inferences about the structural integrity of a brain region when compared to normative values representative of a healthy sample, adjusted for age and various demographic factors. This review focuses on structural volumetric analyses that have been performed in the study of neuropathological effects from mild traumatic brain injury (mTBI) in relation to neuropsychological outcome. From a ROI perspective, the probable candidate structures that are most likely affected in mTBI represent the target regions covered in this review. These include the corpus callosum, cingulate, thalamus, pituitary-hypothalamic area, basal ganglia, amygdala, and hippocampus and associated structures including the fornix and mammillary bodies, as well as whole brain and cerebral cortex along with the cerebellum. Ventricular volumetrics are also reviewed as an indirect assessment of parenchymal change in response to injury. This review demonstrates the potential role and limitations of examining structural changes in the ROIs mentioned above in relation to neuropsychological outcome. There is also discussion and review of the role that post-traumatic stress disorder (PTSD) may play in structural outcome in mTBI. As emphasized in the conclusions, structural volumetric findings in mTBI are likely just a single facet of what should be a multimodality approach to image analysis in mTBI, with an emphasis on how the injury damages or disrupts neural network integrity. The review provides an historical context to quantitative neuroimaging in neuropsychology along with commentary about future directions for volumetric neuroimaging research in mTBI.
Collapse
|
64
|
Nelson LD, Temkin NR, Barber J, Brett BL, Okonkwo DO, McCrea MA, Giacino JT, Bodien YG, Robertson C, Corrigan JD, Diaz-Arrastia R, Markowitz AJ, Manley GT. Functional Recovery, Symptoms, and Quality of Life 1 to 5 Years After Traumatic Brain Injury. JAMA Netw Open 2023; 6:e233660. [PMID: 36939699 PMCID: PMC10028488 DOI: 10.1001/jamanetworkopen.2023.3660] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/21/2023] [Indexed: 03/21/2023] Open
Abstract
Importance Many level I trauma center patients experience clinical sequelae at 1 year following traumatic brain injury (TBI). Longer-term outcome data are needed to develop better monitoring and rehabilitation services. Objective To examine functional recovery, TBI-related symptoms, and quality of life from 1 to 5 years postinjury. Design, Setting, and Participants This cohort study enrolled trauma patients across 18 US level I trauma centers between 2014 and 2018. Eligible participants were enrolled within 24 hours of injury and followed up to 5 years postinjury. Data were analyzed January 2023. Exposures Mild TBI (mTBI), moderate-severe TBI (msTBI), or orthopedic traumatic controls (OTC). Main Outcomes and Measures Functional independence (Glasgow Outcome Scale-Extended [GOSE] score 5 or higher), complete functional recovery (GOSE score, 8), better (ie, lower) TBI-related symptom burden (Rivermead Post Concussion Symptoms Questionnaire score of 15 or lower), and better (ie, higher) health-related quality of life (Quality of Life After Brain Injury Scale-Overall Scale score 52 or higher); mortality was analyzed as a secondary outcome. Results A total 1196 patients were included in analysis (mean [SD] age, 40.8 [16.9] years; 781 [65%] male; 158 [13%] Black, 965 [81%] White). mTBI and OTC groups demonstrated stable, high rates of functional independence (98% to 100% across time). While odds of independence were lower among msTBI survivors, the majority were independent at 1 year (72%), and this proportion increased over time (80% at 5 years; group × year, P = .005; independence per year: odds ratio [OR] for msTBI, 1.28; 95% CI, 1.03-1.58; OR for mTBI, 0.81; 95% CI, 0.64-1.03). For other outcomes, group differences at 1 year remained stable over time (group × year, P ≥ .44). Odds of complete functional recovery remained lower for persons with mTBI vs OTC (OR, 0.39; 95% CI, 0.28-0.56) and lower for msTBI vs mTBI (OR, 0.34; 95% CI, 0.24-0.48). Odds of better TBI-related symptom burden and quality of life were similar for both TBI subgroups and lower than OTCs. Mortality between 1 and 5 years was higher for msTBI (5.5%) than mTBI (1.5%) and OTC (0.7%; P = .02). Conclusions and Relevance In this cohort study, patients with previous msTBI displayed increased independence over 5 years; msTBI was also associated with increased mortality. These findings, in combination with the persistently elevated rates of unfavorable outcomes in mTBI vs controls imply that more monitoring and rehabilitation are needed for TBI.
Collapse
Affiliation(s)
| | | | | | | | - David O. Okonkwo
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | - Joseph T. Giacino
- Massachusetts General Hospital and Harvard Medical School, Boston
- Spaulding Rehabilitation Hospital, Charlestown, Massachusetts
| | - Yelena G. Bodien
- Massachusetts General Hospital and Harvard Medical School, Boston
- Spaulding Rehabilitation Hospital, Charlestown, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
65
|
Zhai Y, Ye SY, Wang QS, Xiong RP, Fu SY, Du H, Xu YW, Peng Y, Huang ZZ, Yang N, Zhao Y, Ning YL, Li P, Zhou YG. Overexpressed ski efficiently promotes neurorestoration, increases neuronal regeneration, and reduces astrogliosis after traumatic brain injury. Gene Ther 2023; 30:75-87. [PMID: 35132206 DOI: 10.1038/s41434-022-00320-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 12/31/2021] [Accepted: 01/20/2022] [Indexed: 11/09/2022]
Abstract
Traumatic brain injury (TBI) survivors suffer from long-term disability and neuropsychiatric sequelae due to irreparable brain tissue destruction. However, there are still few efficient therapies to promote neurorestoration in damaged brain tissue. This study aimed to investigate whether the pro-oncogenic gene ski can promote neurorestoration after TBI. We established a ski-overexpressing experimental TBI mouse model using adenovirus-mediated overexpression through immediate injection after injury. Hematoxylin-eosin staining, MRI-based 3D lesion volume reconstruction, neurobehavioral tests, and analyses of neuronal regeneration and astrogliosis were used to assess neurorestorative efficiency. The effects of ski overexpression on the proliferation of cultured immature neurons and astrocytes were evaluated using imaging flow cytometry. The Ski protein level increased in the perilesional region at 3 days post injury. ski overexpression further elevated Ski protein levels up to 14 days post injury. Lesion volume was attenuated by approximately 36-55% after ski overexpression, with better neurobehavioral recovery, more newborn immature and mature neurons, and less astrogliosis in the perilesional region. Imaging flow cytometry results showed that ski overexpression elevated the proliferation rate of immature neurons and reduced the proliferation rate of astrocytes. These results show that ski can be considered a novel neurorestoration-related gene that effectively promotes neurorestoration, facilitates neuronal regeneration, and reduces astrogliosis after TBI.
Collapse
Affiliation(s)
- Yu Zhai
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Shi-Yang Ye
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Qiu-Shi Wang
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China.,Department of Pathology, Research Institute of Surgery and Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Ren-Ping Xiong
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Sheng-Yu Fu
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Hao Du
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Ya-Wei Xu
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Yan Peng
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Zhi-Zhong Huang
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Nan Yang
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Yan Zhao
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Ya-Lei Ning
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Ping Li
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China.
| | - Yuan-Guo Zhou
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China.
| |
Collapse
|
66
|
Stein MB, Jain S, Parodi L, Choi KW, Maihofer AX, Nelson LD, Mukherjee P, Sun X, He F, Okonkwo DO, Giacino JT, Korley FK, Vassar MJ, Robertson CS, McCrea MA, Temkin N, Markowitz AJ, Diaz-Arrastia R, Rosand J, Manley GT, Duhaime AC, Ferguson AR, Gopinath S, Grandhi R, Madden C, Merchant R, Schnyer D, Taylor SR, Yue JK, Zafonte R. Polygenic risk for mental disorders as predictors of posttraumatic stress disorder after mild traumatic brain injury. Transl Psychiatry 2023; 13:24. [PMID: 36693822 PMCID: PMC9873804 DOI: 10.1038/s41398-023-02313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Many patients with mild traumatic brain injury (mTBI) are at risk for mental health problems such as posttraumatic stress disorder (PTSD). The objective of this study was to determine whether the polygenic risk for PTSD (or for related mental health disorders or traits including major depressive disorder [MDD] and neuroticism [NEU]) was associated with an increased likelihood of PTSD in the aftermath of mTBI. We used data from individuals of European ancestry with mTBI enrolled in TRACK-TBI (n = 714), a prospective longitudinal study of level 1 trauma center patients. One hundred and sixteen mTBI patients (16.3%) had probable PTSD (PCL-5 score ≥33) at 6 months post-injury. We used summary statistics from recent GWAS studies of PTSD, MDD, and NEU to generate polygenic risk scores (PRS) for individuals in our sample. A multivariable model that included age, sex, pre-injury history of mental disorder, and cause of injury explained 7% of the variance in the PTSD outcome; the addition of the PTSD-PRS (and five ancestral principal components) significantly increased the variance explained to 11%. The adjusted odds of PTSD in the uppermost PTSD-PRS quintile was nearly four times higher (aOR = 3.71, 95% CI 1.80-7.65) than in the lowest PTSD-PRS quintile. There was no evidence of a statistically significant interaction between PTSD-PRS and prior history of mental disorder, indicating that PTSD-PRS had similar predictive utility among those with and without pre-injury psychiatric illness. When added to the model, neither MDD-PRS nor NEU-PRS were significantly associated with the PTSD outcome. These findings show that the risk for PTSD in the context of mTBI is, in part, genetically influenced. They also raise the possibility that an individual's PRS could be clinically actionable if used-possibly with other non-genetic predictors-to signal the need for enhanced follow-up and early intervention; this precision medicine approach needs to be prospectively studied.
Collapse
Affiliation(s)
- Murray B. Stein
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California, San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242School of Public Health, University of California, San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708VA San Diego Healthcare System, San Diego, CA USA
| | - Sonia Jain
- grid.266100.30000 0001 2107 4242Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA USA
| | - Livia Parodi
- grid.32224.350000 0004 0386 9924Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA USA ,grid.32224.350000 0004 0386 9924McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Karmel W. Choi
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Adam X. Maihofer
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California, San Diego, La Jolla, CA USA
| | - Lindsay D. Nelson
- grid.30760.320000 0001 2111 8460Departments of Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, WI USA
| | - Pratik Mukherjee
- grid.266102.10000 0001 2297 6811Department of Radiology & Biomedical Imaging, UCSF, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA USA
| | - Xiaoying Sun
- grid.266100.30000 0001 2107 4242Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA USA
| | - Feng He
- grid.266100.30000 0001 2107 4242Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA USA
| | - David O. Okonkwo
- grid.412689.00000 0001 0650 7433Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Joseph T. Giacino
- grid.38142.3c000000041936754XDepartment of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA USA ,grid.416228.b0000 0004 0451 8771Spaulding Rehabilitation Hospital, Charlestown, MA USA
| | - Frederick K. Korley
- grid.214458.e0000000086837370Department of Emergency Medicine, University of Michigan, Ann Arbor, MI USA
| | - Mary J. Vassar
- grid.416732.50000 0001 2348 2960Brain and Spinal Cord Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Department of Neurological Surgery, UCSF, San Francisco, CA USA
| | - Claudia S. Robertson
- grid.39382.330000 0001 2160 926XDepartment of Neurosurgery, Baylor College of Medicine, Houston, TX USA
| | - Michael A. McCrea
- grid.30760.320000 0001 2111 8460Departments of Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, WI USA
| | - Nancy Temkin
- grid.34477.330000000122986657Departments of Neurological Surgery and Biostatistics, University of Washington, Seattle, WA USA
| | - Amy J. Markowitz
- grid.416732.50000 0001 2348 2960Brain and Spinal Cord Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA USA
| | - Ramon Diaz-Arrastia
- grid.25879.310000 0004 1936 8972Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
| | - Jonathan Rosand
- grid.32224.350000 0004 0386 9924Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA USA ,grid.32224.350000 0004 0386 9924McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Geoffrey T. Manley
- grid.416732.50000 0001 2348 2960Brain and Spinal Cord Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Department of Neurological Surgery, UCSF, San Francisco, CA USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Feasibility of Risk Factor-Based Screening for Posttraumatic Stress Disorder in Trauma. J Trauma Nurs 2023; 30:27-33. [PMID: 36633342 DOI: 10.1097/jtn.0000000000000696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) following traumatic injury can have severe psychiatric consequences. Current recommendations from the American College of Surgeons Committee on Trauma require implementing PTSD screening but specify neither who should be screened nor how. It is unknown whether narrowed screening selection criteria could identify an acceptable proportion of patients with PTSD. OBJECTIVE This study aimed to determine the feasibility of implementing risk factor-based PTSD screening in trauma patients by evaluating the sensitivity and clinical practicality. METHODS This is a prospective diagnostic study of a consecutive series of general ward patients at an urban Level I trauma center from December 2021 to March 2022. Screening indications included (a) interpersonal injury, (b) surgery, (c) intracranial hemorrhage, (d) less than 30 years of age, or (e) clinical suspicion. The protocol was assessed by measuring the proportion of positive screens captured by only clinical suspicion to estimate sensitivity and by qualitatively evaluating barriers to implementation. RESULTS Among the 200 patients screened, the number of patients who screened positive was 51 (25.5%). Eight patients were screened on clinical suspicion alone, seven (87.5%) of whom had positive screens, compared with 44 of the 192 (22.9%) patients who were screened for indications. Thus, 7 of 51 (13.7%; 95% confidence interval: 6.8%-26.7%) patients with PTSD-level symptoms would not have been screened on the basis of their risk factors. There were also practical difficulties in implementation. CONCLUSION Limiting PTSD screening to only those injured patients with additional risk factors would have reduced overall sensitivity at our center. Consequently, we have implemented universal screening instead.
Collapse
|
68
|
Torabi M, Amiri ZS, Mirzaee M. Blood Glucose Level as a Predictor of Abnormal Brain Computed Tomography Scan Findings in Patients with Mild Traumatic Brain Injury. Bull Emerg Trauma 2023; 11:83-89. [PMID: 37193011 PMCID: PMC10182721 DOI: 10.30476/beat.2023.97582.1408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 05/18/2023] Open
Abstract
Objective This study aimed to investigate blood glucose levels in patients with brain injury caused by mild traumatic brain injury (TBI) as a foundation for determining whether these patients need a brain CT scan or not. Methods This cross-sectional study was conducted on patients with mild TBI, who were referred to the emergency department from March 1, 2022, to September 1, 2022. After the confirmation of mild TBI by an emergency medicine specialist, blood samples were taken from the patients to measure blood glucose levels. Then a brain CT scan was performed, and blood glucose levels were compared between patients with and without CT indications of brain injury. A checklist was used to collect data, and the data were analyzed using SPSS software (version 23). Results In the CT scans of the 157 patients included in the study, 30 patients (19.2%) had a brain injury in the CT scan. The mean blood glucose level was significantly higher in patients with brain injury, especially in the presence of vertigo and ataxia, than patients without brain injury in the CT scan (p<0.0001). There was a significant positive correlation between age and blood glucose level (r=0.315, p<0.0001). Conclusion Patients with mild TBI who had signs of brain injury in the CT scan had significantly higher blood glucose levels than patients with normal CT scan findings. Although indications for performing a brain CT scan are usually based on clinical criteria, blood glucose levels can be helpful in determining the requirement for a brain CT scan in patients with mild TBI.
Collapse
Affiliation(s)
- Mehdi Torabi
- Department of Emergency Medicine, Bahonar Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Corresponding author: Mehdi Torabi Address: Department of Emergency Medicine, Bahonar Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran. Tel: +98-9131992016, +98-03432235011, Fax: +98 343 2474 638 e-mail: , me_torabi@ kmu.ac.ir
| | - Zahra-sadat Amiri
- Department of Emergency Medicine, Bahonar Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Moghaddameh Mirzaee
- Health Research Center, Institute for Future Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
69
|
Xu XJ, Liu BY, Dong JQ, Ge QQ, Lu SH, Yang MS, Zhuang Y, Zhang B, Niu F. Tandem Mass Tag-based proteomics analysis reveals the vital role of inflammation in traumatic brain injury in a mouse model. Neural Regen Res 2023. [PMID: 35799536 PMCID: PMC9241417 DOI: 10.4103/1673-5374.343886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
70
|
Flerlage WJ, Langlois LD, Rusnak M, Simmons SC, Gouty S, Armstrong RC, Cox BM, Symes AJ, Tsuda MC, Nugent FS. Involvement of Lateral Habenula Dysfunction in Repetitive Mild Traumatic Brain Injury-Induced Motivational Deficits. J Neurotrauma 2023; 40:125-140. [PMID: 35972745 PMCID: PMC9917318 DOI: 10.1089/neu.2022.0224] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Affective disorders including depression (characterized by reduced motivation, social withdrawal, and anhedonia), anxiety, and irritability are frequently reported as long-term consequences of mild traumatic brain injury (mTBI) in addition to cognitive deficits, suggesting a possible dysregulation within mood/motivational neural circuits. One of the important brain regions that control motivation and mood is the lateral habenula (LHb), whose hyperactivity is associated with depression. Here, we used a repetitive closed-head injury mTBI model that is associated with social deficits in adult male mice and explored the possible long-term alterations in LHb activity and motivated behavior 10-18 days post-injury. We found that mTBI increased the proportion of spontaneous tonically active LHb neurons yet decreased the proportion of LHb neurons displaying bursting activity. Additionally, mTBI diminished spontaneous glutamatergic and GABAergic synaptic activity onto LHb neurons, while synaptic excitation and inhibition (E/I) balance was shifted toward excitation through a greater suppression of GABAergic transmission. Behaviorally, mTBI increased the latency in grooming behavior in the sucrose splash test suggesting reduced self-care motivated behavior following mTBI. To show whether limiting LHb hyperactivity could restore motivational deficits in grooming behavior, we then tested the effects of Gi (hM4Di)-DREADD-mediated inhibition of LHb activity in the sucrose splash test. We found that chemogenetic inhibition of LHb glutamatergic neurons was sufficient to reverse mTBI-induced delays in grooming behavior. Overall, our study provides the first evidence for persistent LHb neuronal dysfunction due to an altered synaptic integration as causal neural correlates of dysregulated motivational states by mTBI.
Collapse
Affiliation(s)
- William J. Flerlage
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ludovic D. Langlois
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Milan Rusnak
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sarah C. Simmons
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Shawn Gouty
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Regina C. Armstrong
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Brian M. Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Aviva J. Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Mumeko C. Tsuda
- Preclinical Behavior and Modeling Core, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Fereshteh S. Nugent
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Address correspondence to: Fereshteh S. Nugent, PhD, Uniformed Services University of the Health Sciences,, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
71
|
Shi S, Almklov E, Afari N, Pittman JOE. Symptoms of major depressive disorder and post-traumatic stress disorder in veterans with mild traumatic brain injury: A network analysis. PLoS One 2023; 18:e0283101. [PMID: 37141223 PMCID: PMC10159137 DOI: 10.1371/journal.pone.0283101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/01/2023] [Indexed: 05/05/2023] Open
Abstract
Mild Traumatic Brain Injury (mTBI, or concussion) is a debilitating condition that often leads to persistent cognitive and mental health problems post-injury. Post-traumatic Stress Disorder (PTSD) and Major Depressive Disorder (MDD) are two most commonly occurring mental health problems following mTBI and are suggested to be strong contributors to the persistent post-concussion symptoms. Thus, it is important to understand the symptomatology of PTSD and MDD post-mTBI, to better inform targets for behavioral health interventions. Therefore, the current study examined the symptom structure of post-mTBI co-morbid PTSD and MDD through network approaches; we compared the network structure of participants with a positive mTBI screen (N = 753) to the network structure of participants with a negative mTBI screen (N = 2044); lastly, we examined a network of PTSD and MDD symptoms with clinical covariates in a positive mTBI sample. We found that feeling distant/cutoff (P10) and difficulty concentrating (P15) were the most central symptoms in the positive mTBI network and sleep problems were the most prominent bridge nodes across the disorders. No significant difference between the positive and negative mTBI network were found through network comparison tests. Moreover, anxiety and insomnia were strongly associated with sleep symptoms and irritability symptoms, and emotional support and resilience were potential buffers against most of the PTSD and MDD symptoms. The results of this study might be particularly useful for identifying targets (i.e., feeling distant, concentration and sleep problems) for screening, monitoring and treatment after concussion to better inform post-mTBI mental health care and to improve treatment outcomes.
Collapse
Affiliation(s)
- Shuyuan Shi
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Erin Almklov
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, United States of America
- VA San Diego Healthcare System, San Diego, CA, United States of America
| | - Niloofar Afari
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, United States of America
- VA San Diego Healthcare System, San Diego, CA, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - James O E Pittman
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, United States of America
- VA San Diego Healthcare System, San Diego, CA, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
72
|
Andreasen AJ, Johnson MK, Tranel D. Stability of Psychological Well-being Following a Neurological Event and in the Face of a Global Pandemic. REHABILITATION COUNSELING BULLETIN 2022. [PMCID: PMC9780567 DOI: 10.1177/00343552221139878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study examined the stability of psychological well-being in people who have experienced a neurological event resulting in focal brain damage. Evidence suggests that psychological well-being is largely stable in healthy adult populations. However, whether such stability exists in neurological patients with acquired brain lesions is an open question. Given the trait-like characteristics of psychological well-being, we hypothesized that psychological well-being would be stable in neurological patients who are in the chronic epoch of recovery (≥3 months after the neurological event). Eighty participants (women = 40; age: M = 56, standard deviation ( SD) = 13) completed the Ryff Scales of Psychological Well-Being (PWBS) twice between 2016 and 2020 (Time 1 [T1] and Time 2 [T2]). The Ryff Scales measure various facets of well-being, including autonomy, environmental mastery, personal growth, positive relations with others, purpose in life, and self-acceptance. Approximately half of participants completed their T2 assessment during the COVID-19 pandemic, creating an opportunity to investigate the effects of the pandemic on the stability of psychological well-being in a neurological population that may be particularly vulnerable to reduced well-being in this context. Pearson correlations and within-sample t-tests were conducted to examine the stability of self-reported well-being over time. Test–retest correlations ranged from .71 to .87, and no significant differences in well-being emerged across the two time points. Significant correlations between T1 and T2 were also evident in the subsample of participants who completed their second assessment during the COVID-19 pandemic. These findings provide evidence that long-term psychological well-being is remarkably reliable and consistent over time in patients who have experienced a major neurological event, even when an unprecedented global event occurred between measurement epochs. Treatment implications of these findings are discussed.
Collapse
Affiliation(s)
- Allison Julie Andreasen
- University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- University of Iowa, Iowa City, IA, USA
| | - Marcie King Johnson
- University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- University of Iowa, Iowa City, IA, USA
| | - Daniel Tranel
- University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- University of Iowa, Iowa City, IA, USA
| |
Collapse
|
73
|
Cytokine Profiles Differentiate Symptomatic from Asymptomatic PTSD in Service Members and Veterans with Chronic Traumatic Brain Injury. Biomedicines 2022; 10:biomedicines10123289. [PMID: 36552045 PMCID: PMC9775258 DOI: 10.3390/biomedicines10123289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injuries (TBI) and posttraumatic stress disorder (PTSD) are commonly observed comorbid occurrences among military service members and veterans (SMVs). In this cross-sectional study, SMVs with a history of TBI were stratified into symptomatic and asymptomatic PTSD groups based on posttraumatic stress checklist-civilian (PCL-C) total scores. Blood-based biomarkers were assessed, and significant differential markers were associated with scores from multiple neurobehavioral self-report assessments. PCL-C cutoffs were total scores >50 (PTSD symptomatic) and <25 (asymptomatic). Cytokines IL6, IL8, TNFα, and IL10 were significantly elevated (p < 0.05−0.001) in the TBI+/PTSD symptomatic group compared to the TBI+/asymptomatic group. Cytokine levels of IL8, TNFα, and IL10 were strongly associated with PCL-C scores (0.356 < r > 0.624 for all, p < 0.01 for all), while TNFα and IL10 were additionally associated with NSI totals (r = 0.285 and r = 0.270, p < 0.05, respectively). This is the first study focused on PTSD symptom severity to report levels of circulating pro-inflammatory IL8, specifically in SMVs with TBI. These data suggest that within the military TBI population, there are unique cytokine profiles that relate to neurobehavioral outcomes associated with TBI and PTSD.
Collapse
|
74
|
Examining the Relationship Between Mild Traumatic Brain Injuries and Development of Mental Illness Disorders in a Mid-Term Follow-up Period. Am J Phys Med Rehabil 2022; 101:1117-1121. [PMID: 35213394 DOI: 10.1097/phm.0000000000001985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The sequalae of mild concussions continue to emerge with increased awareness in sports-related injuries. This study aimed to quantify the number of patients who are affected by a mental illness within 3 yrs of a concussion and identify whether demographic differences exist that may influence a mental illness diagnosis. DESIGN Using a nationwide database, data were queried for a diagnosis of concussion, capturing patients aged 18-45 yrs with no previous mental illness, and then identified if these patients were diagnosed with a mental illness within 3 yrs of their concussion. The mental illnesses specifically chosen for this study included depression, anxiety, panic disorder, posttraumatic stress disorder, bipolar, and schizophrenia. RESULTS Within 3 yrs after a concussion, 48% of patients were later diagnosed with a mental illness. All of the mental illnesses this study chose to evaluate were present in a higher proportion of patients after a concussion than the general population. CONCLUSIONS The mechanism between concussions and mental illness remains unclear. A large proportion of patients who experience a concussion are later diagnosed with a mental illness within 3 yrs. Patients with a history of a previous concussion may benefit from screening for the development of a mental illness.
Collapse
|
75
|
Drieu A, Lanquetin A, Prunotto P, Gulhan Z, Pédron S, Vegliante G, Tolomeo D, Serrière S, Vercouillie J, Galineau L, Tauber C, Kuhnast B, Rubio M, Zanier ER, Levard D, Chalon S, Vivien D, Ali C. Persistent neuroinflammation and behavioural deficits after single mild traumatic brain injury. J Cereb Blood Flow Metab 2022; 42:2216-2229. [PMID: 35945692 PMCID: PMC9670002 DOI: 10.1177/0271678x221119288] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
Despite an apparently silent imaging, some patients with mild traumatic brain injury (TBI) experience cognitive dysfunctions, which may persist chronically. Brain changes responsible for these dysfunctions are unclear and commonly overlooked. It is thus crucial to increase our understanding of the mechanisms linking the initial event to the functional deficits, and to provide objective evidence of brain tissue alterations underpinning these deficits. We first set up a murine model of closed-head controlled cortical impact, which provoked persistent cognitive and sensorimotor deficits, despite no evidence of brain contusion or bleeding on MRI, thus recapitulating features of mild TBI. Molecular MRI for P-selectin, a key adhesion molecule, detected no sign of cerebrovascular inflammation after mild TBI, as confirmed by immunostainings. By contrast, in vivo PET imaging with the TSPO ligand [18F]DPA-714 demonstrated persisting signs of neuroinflammation in the ipsilateral cortex and hippocampus after mild TBI. Interestingly, immunohistochemical analyses confirmed these spatio-temporal profiles, showing a robust parenchymal astrogliosis and microgliosis, at least up to 3 weeks post-injury in both the cortex and hippocampus. In conclusion, we show that even one single mild TBI induces long-term behavioural deficits, associated with a persistent neuro-inflammatory status that can be detected by PET imaging.
Collapse
Affiliation(s)
- Antoine Drieu
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| | - Anastasia Lanquetin
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| | - Paul Prunotto
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| | - Zuhal Gulhan
- UMR 1253, iBrain, Université de Tours, INSERM, Tours,
France
| | - Swannie Pédron
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| | - Gloria Vegliante
- Department of Neuroscience, Istituto di Ricerche Farmacologiche
Mario Negri, IRCCS, Milan, Italy
| | - Daniele Tolomeo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche
Mario Negri, IRCCS, Milan, Italy
| | - Sophie Serrière
- UMR 1253, iBrain, Université de Tours, INSERM, Tours,
France
| | | | | | - Clovis Tauber
- UMR 1253, iBrain, Université de Tours, INSERM, Tours,
France
| | - Bertrand Kuhnast
- IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm,
Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Marina Rubio
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| | - Elisa R Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche
Mario Negri, IRCCS, Milan, Italy
| | - Damien Levard
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| | - Sylvie Chalon
- UMR 1253, iBrain, Université de Tours, INSERM, Tours,
France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
- Department of Clinical Research, Caen-Normandie Hospital (CHU),
Caen, France
| | - Carine Ali
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| |
Collapse
|
76
|
Remigio-Baker RA, Hungerford LD, Lee-Tauler SY, Bailie JM, Caswell M, Babakhanyan I, Ettenhofer ML. Disparities in mental health symptoms recovery across race/ethnicity and education level following mild traumatic brain injury. DIALOGUES IN HEALTH 2022; 1:100048. [PMID: 38515877 PMCID: PMC10953859 DOI: 10.1016/j.dialog.2022.100048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 03/23/2024]
Abstract
Purpose The purpose of this study was to investigate the relationship between race/ethnicity and post-concussive mental health (i.e., depressive, post-traumatic stress disorder [PTSD]) and neurobehavioral symptoms among service members, and whether this association differed by education level. Methods The study sample consisted of 524 patients from a multidisciplinary US military outpatient treatment facility for post-concussive symptoms. Poisson regression with robust error variance was utilized to investigate outcome (i.e., clinically-elevated depressive [Patient Health Questionnaire-8 ≥15], PTSD [PTSD Checklist, DSM 5 ≥38] and neurobehavioral [Neurobehavioral Symptom Inventory >75th percentile] symptoms at admission and last follow-up in this cohort study. Modification by education level (low [no college degree] vs. high [associate's degree or higher]) was additionally evaluated. Results The relationship between race/ethnicity and mental health/neurobehavioral symptoms varied by education level (p-interaction: depressive symptoms = 0.002, PTSD symptoms = 0.035, neurobehavioral symptoms = 0.040). Specifically, non-Whites were at a significantly higher prevalence for clinically-elevated depressive symptoms post-treatment than Whites, but only among those with higher education level (PR = 2.22, CI = 1.37-3.59). A similar trend was demonstrated for PTSD and neurobehavioral symptoms. Conclusion Military healthcare may need to increase depression-focused treatment options that are acceptable for racial/ethnic minority patients, particularly those with higher education, while they are recovering from comorbid traumatic brain injury.
Collapse
Affiliation(s)
- Rosemay A. Remigio-Baker
- Traumatic Brain Injury Center of Excellence (TBICoE), Silver Spring, MD, USA
- General Dynamics Information Technology, Falls Church, VA, USA
| | - Lars D. Hungerford
- Traumatic Brain Injury Center of Excellence (TBICoE), Silver Spring, MD, USA
- General Dynamics Information Technology, Falls Church, VA, USA
- Naval Medical Center San Diego, San Diego, CA, USA
| | - Su Yeon Lee-Tauler
- Henry M. Jackson Foundation, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jason M. Bailie
- Traumatic Brain Injury Center of Excellence (TBICoE), Silver Spring, MD, USA
- General Dynamics Information Technology, Falls Church, VA, USA
- Naval Hospital Camp Pendleton, Camp Pendleton, CA, USA
| | - Melissa Caswell
- Traumatic Brain Injury Center of Excellence (TBICoE), Silver Spring, MD, USA
- General Dynamics Information Technology, Falls Church, VA, USA
- Naval Hospital Camp Pendleton, Camp Pendleton, CA, USA
| | - Ida Babakhanyan
- Traumatic Brain Injury Center of Excellence (TBICoE), Silver Spring, MD, USA
- General Dynamics Information Technology, Falls Church, VA, USA
- Naval Hospital Camp Pendleton, Camp Pendleton, CA, USA
| | - Mark L. Ettenhofer
- Traumatic Brain Injury Center of Excellence (TBICoE), Silver Spring, MD, USA
- General Dynamics Information Technology, Falls Church, VA, USA
- Naval Medical Center San Diego, San Diego, CA, USA
- University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
77
|
Kulbe JR, Jain S, Nelson LD, Korley FK, Mukherjee P, Sun X, Okonkwo DO, Giacino JT, Vassar MJ, Robertson CS, McCrea MA, Wang KKW, Temkin N, Mac Donald CL, Taylor SR, Ferguson AR, Markowitz AJ, Diaz-Arrastia R, Manley GT, Stein MB. Association of day-of-injury plasma glial fibrillary acidic protein concentration and six-month posttraumatic stress disorder in patients with mild traumatic brain injury. Neuropsychopharmacology 2022; 47:2300-2308. [PMID: 35717463 PMCID: PMC9630517 DOI: 10.1038/s41386-022-01359-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022]
Abstract
Several proteins have proven useful as blood-based biomarkers to assist in evaluation and management of traumatic brain injury (TBI). The objective of this study was to determine whether two day-of-injury blood-based biomarkers are predictive of posttraumatic stress disorder (PTSD). We used data from 1143 individuals with mild TBI (mTBI; defined as admission Glasgow Coma Scale [GCS] score 13-15) enrolled in TRACK-TBI, a prospective longitudinal study of level 1 trauma center patients. Plasma glial fibrillary acidic protein (GFAP) and serum high sensitivity C-reactive protein (hsCRP) were measured from blood collected within 24 h of injury. Two hundred and twenty-seven (19.9% of) patients had probable PTSD (PCL-5 score ≥ 33) at 6 months post-injury. GFAP levels were positively associated (Spearman's rho = 0.35, p < 0.001) with duration of posttraumatic amnesia (PTA). There was an inverse association between PTSD and (log)GFAP (adjusted OR = 0.85, 95% CI 0.77-0.95 per log unit increase) levels, but no significant association with (log)hsCRP (adjusted OR = 1.11, 95% CI 0.98-1.25 per log unit increase) levels. Elevated day-of-injury plasma GFAP, a biomarker of glial reactivity, is associated with reduced risk of PTSD after mTBI. This finding merits replication and additional studies to determine a possible neurocognitive basis for this relationship.
Collapse
Affiliation(s)
- Jacqueline R. Kulbe
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California, San Diego, La Jolla, CA USA
| | - Sonia Jain
- grid.266100.30000 0001 2107 4242Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA USA
| | - Lindsay D. Nelson
- grid.30760.320000 0001 2111 8460Departments of Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, WI USA
| | - Frederick K. Korley
- grid.214458.e0000000086837370Department of Emergency Medicine, University of Michigan, Ann Arbor, MI USA
| | - Pratik Mukherjee
- grid.266102.10000 0001 2297 6811Department of Radiology & Biomedical Imaging, UCSF, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA USA
| | - Xiaoying Sun
- grid.266100.30000 0001 2107 4242Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA USA
| | - David O. Okonkwo
- grid.412689.00000 0001 0650 7433Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Joseph T. Giacino
- grid.38142.3c000000041936754XDepartment of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA USA ,grid.416228.b0000 0004 0451 8771Spaulding Rehabilitation Hospital, Charlestown, MA USA
| | - Mary J. Vassar
- grid.416732.50000 0001 2348 2960Brain and Spinal Cord Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Department of Neurological Surgery, UCSF, San Francisco, CA USA
| | - Claudia S. Robertson
- grid.39382.330000 0001 2160 926XDepartment of Neurosurgery, Baylor College of Medicine, Houston, TX USA
| | - Michael A. McCrea
- grid.30760.320000 0001 2111 8460Departments of Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, WI USA
| | - Kevin K. W. Wang
- grid.15276.370000 0004 1936 8091Department of Emergency Medicine, University of Florida, Gainesville, FL USA
| | - Nancy Temkin
- grid.34477.330000000122986657Department of Neurological Surgery, University of Washington, Seattle, WA USA
| | - Christine L. Mac Donald
- grid.34477.330000000122986657Department of Neurological Surgery, University of Washington, Seattle, WA USA
| | - Sabrina R. Taylor
- grid.416732.50000 0001 2348 2960Brain and Spinal Cord Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Department of Neurological Surgery, UCSF, San Francisco, CA USA
| | - Adam R. Ferguson
- grid.416732.50000 0001 2348 2960Brain and Spinal Cord Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA USA
| | - Amy J. Markowitz
- grid.416732.50000 0001 2348 2960Brain and Spinal Cord Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA USA
| | - Ramon Diaz-Arrastia
- grid.25879.310000 0004 1936 8972Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
| | - Geoffrey T. Manley
- grid.416732.50000 0001 2348 2960Brain and Spinal Cord Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Department of Neurological Surgery, UCSF, San Francisco, CA USA
| | - Murray B. Stein
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California, San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242School of Public Health, University of California, San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708VA San Diego Healthcare System, San Diego, CA USA
| | | |
Collapse
|
78
|
Amplified Gliosis and Interferon-Associated Inflammation in the Aging Brain following Diffuse Traumatic Brain Injury. J Neurosci 2022; 42:9082-9096. [PMID: 36257689 PMCID: PMC9732830 DOI: 10.1523/jneurosci.1377-22.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 02/08/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with chronic psychiatric complications and increased risk for development of neurodegenerative pathology. Aged individuals account for most TBI-related hospitalizations and deaths. Nonetheless, neurobiological mechanisms that underlie worsened functional outcomes after TBI in the elderly remain unclear. Therefore, this study aimed to identify pathways that govern differential responses to TBI with age. Here, adult (2 months of age) and aged (16-18 months of age) male C57BL/6 mice were subjected to diffuse brain injury (midline fluid percussion), and cognition, gliosis, and neuroinflammation were determined 7 or 30 d postinjury (dpi). Cognitive impairment was evident 7 dpi, independent of age. There was enhanced morphologic restructuring of microglia and astrocytes 7 dpi in the cortex and hippocampus of aged mice compared with adults. Transcriptional analysis revealed robust age-dependent amplification of cytokine/chemokine, complement, innate immune, and interferon-associated inflammatory gene expression in the cortex 7 dpi. Ingenuity pathway analysis of the transcriptional data showed that type I interferon (IFN) signaling was significantly enhanced in the aged brain after TBI compared with adults. Age prolonged inflammatory signaling and microgliosis 30 dpi with an increased presence of rod microglia. Based on these results, a STING (stimulator of interferon genes) agonist, DMXAA, was used to determine whether augmenting IFN signaling worsened cortical inflammation and gliosis after TBI. DMXAA-treated Adult-TBI mice showed comparable expression of myriad genes that were overexpressed in the cortex of Aged-TBI mice, including Irf7, Clec7a, Cxcl10, and Ccl5 Overall, diffuse TBI promoted amplified IFN signaling in aged mice, resulting in extended inflammation and gliosis.SIGNIFICANCE STATEMENT Elderly individuals are at higher risk of complications following traumatic brain injury (TBI). Individuals >70 years old have the highest rates of TBI-related hospitalization, neurodegenerative pathology, and death. Although inflammation has been linked with poor outcomes in aging, the specific biological pathways driving worsened outcomes after TBI in aging remain undefined. In this study, we identify amplified interferon-associated inflammation and gliosis in aged mice following TBI that was associated with persistent inflammatory gene expression and microglial morphologic diversity 30 dpi. STING (stimulator of interferon genes) agonist DMXAA was used to demonstrate a causal link between augmented interferon signaling and worsened neuroinflammation after TBI. Therefore, interferon signaling may represent a therapeutic target to reduce inflammation-associated complications following TBI.
Collapse
|
79
|
Maas AIR, Menon DK, Manley GT, Abrams M, Åkerlund C, Andelic N, Aries M, Bashford T, Bell MJ, Bodien YG, Brett BL, Büki A, Chesnut RM, Citerio G, Clark D, Clasby B, Cooper DJ, Czeiter E, Czosnyka M, Dams-O’Connor K, De Keyser V, Diaz-Arrastia R, Ercole A, van Essen TA, Falvey É, Ferguson AR, Figaji A, Fitzgerald M, Foreman B, Gantner D, Gao G, Giacino J, Gravesteijn B, Guiza F, Gupta D, Gurnell M, Haagsma JA, Hammond FM, Hawryluk G, Hutchinson P, van der Jagt M, Jain S, Jain S, Jiang JY, Kent H, Kolias A, Kompanje EJO, Lecky F, Lingsma HF, Maegele M, Majdan M, Markowitz A, McCrea M, Meyfroidt G, Mikolić A, Mondello S, Mukherjee P, Nelson D, Nelson LD, Newcombe V, Okonkwo D, Orešič M, Peul W, Pisică D, Polinder S, Ponsford J, Puybasset L, Raj R, Robba C, Røe C, Rosand J, Schueler P, Sharp DJ, Smielewski P, Stein MB, von Steinbüchel N, Stewart W, Steyerberg EW, Stocchetti N, Temkin N, Tenovuo O, Theadom A, Thomas I, Espin AT, Turgeon AF, Unterberg A, Van Praag D, van Veen E, Verheyden J, Vyvere TV, Wang KKW, Wiegers EJA, Williams WH, Wilson L, Wisniewski SR, Younsi A, Yue JK, Yuh EL, Zeiler FA, Zeldovich M, Zemek R. Traumatic brain injury: progress and challenges in prevention, clinical care, and research. Lancet Neurol 2022; 21:1004-1060. [PMID: 36183712 PMCID: PMC10427240 DOI: 10.1016/s1474-4422(22)00309-x] [Citation(s) in RCA: 289] [Impact Index Per Article: 144.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) has the highest incidence of all common neurological disorders, and poses a substantial public health burden. TBI is increasingly documented not only as an acute condition but also as a chronic disease with long-term consequences, including an increased risk of late-onset neurodegeneration. The first Lancet Neurology Commission on TBI, published in 2017, called for a concerted effort to tackle the global health problem posed by TBI. Since then, funding agencies have supported research both in high-income countries (HICs) and in low-income and middle-income countries (LMICs). In November 2020, the World Health Assembly, the decision-making body of WHO, passed resolution WHA73.10 for global actions on epilepsy and other neurological disorders, and WHO launched the Decade for Action on Road Safety plan in 2021. New knowledge has been generated by large observational studies, including those conducted under the umbrella of the International Traumatic Brain Injury Research (InTBIR) initiative, established as a collaboration of funding agencies in 2011. InTBIR has also provided a huge stimulus to collaborative research in TBI and has facilitated participation of global partners. The return on investment has been high, but many needs of patients with TBI remain unaddressed. This update to the 2017 Commission presents advances and discusses persisting and new challenges in prevention, clinical care, and research. In LMICs, the occurrence of TBI is driven by road traffic incidents, often involving vulnerable road users such as motorcyclists and pedestrians. In HICs, most TBI is caused by falls, particularly in older people (aged ≥65 years), who often have comorbidities. Risk factors such as frailty and alcohol misuse provide opportunities for targeted prevention actions. Little evidence exists to inform treatment of older patients, who have been commonly excluded from past clinical trials—consequently, appropriate evidence is urgently required. Although increasing age is associated with worse outcomes from TBI, age should not dictate limitations in therapy. However, patients injured by low-energy falls (who are mostly older people) are about 50% less likely to receive critical care or emergency interventions, compared with those injured by high-energy mechanisms, such as road traffic incidents. Mild TBI, defined as a Glasgow Coma sum score of 13–15, comprises most of the TBI cases (over 90%) presenting to hospital. Around 50% of adult patients with mild TBI presenting to hospital do not recover to pre-TBI levels of health by 6 months after their injury. Fewer than 10% of patients discharged after presenting to an emergency department for TBI in Europe currently receive follow-up. Structured follow-up after mild TBI should be considered good practice, and urgent research is needed to identify which patients with mild TBI are at risk for incomplete recovery. The selection of patients for CT is an important triage decision in mild TBI since it allows early identification of lesions that can trigger hospital admission or life-saving surgery. Current decision making for deciding on CT is inefficient, with 90–95% of scanned patients showing no intracranial injury but being subjected to radiation risks. InTBIR studies have shown that measurement of blood-based biomarkers adds value to previously proposed clinical decision rules, holding the potential to improve efficiency while reducing radiation exposure. Increased concentrations of biomarkers in the blood of patients with a normal presentation CT scan suggest structural brain damage, which is seen on MR scanning in up to 30% of patients with mild TBI. Advanced MRI, including diffusion tensor imaging and volumetric analyses, can identify additional injuries not detectable by visual inspection of standard clinical MR images. Thus, the absence of CT abnormalities does not exclude structural damage—an observation relevant to litigation procedures, to management of mild TBI, and when CT scans are insufficient to explain the severity of the clinical condition. Although blood-based protein biomarkers have been shown to have important roles in the evaluation of TBI, most available assays are for research use only. To date, there is only one vendor of such assays with regulatory clearance in Europe and the USA with an indication to rule out the need for CT imaging for patients with suspected TBI. Regulatory clearance is provided for a combination of biomarkers, although evidence is accumulating that a single biomarker can perform as well as a combination. Additional biomarkers and more clinical-use platforms are on the horizon, but cross-platform harmonisation of results is needed. Health-care efficiency would benefit from diversity in providers. In the intensive care setting, automated analysis of blood pressure and intracranial pressure with calculation of derived parameters can help individualise management of TBI. Interest in the identification of subgroups of patients who might benefit more from some specific therapeutic approaches than others represents a welcome shift towards precision medicine. Comparative-effectiveness research to identify best practice has delivered on expectations for providing evidence in support of best practices, both in adult and paediatric patients with TBI. Progress has also been made in improving outcome assessment after TBI. Key instruments have been translated into up to 20 languages and linguistically validated, and are now internationally available for clinical and research use. TBI affects multiple domains of functioning, and outcomes are affected by personal characteristics and life-course events, consistent with a multifactorial bio-psycho-socio-ecological model of TBI, as presented in the US National Academies of Sciences, Engineering, and Medicine (NASEM) 2022 report. Multidimensional assessment is desirable and might be best based on measurement of global functional impairment. More work is required to develop and implement recommendations for multidimensional assessment. Prediction of outcome is relevant to patients and their families, and can facilitate the benchmarking of quality of care. InTBIR studies have identified new building blocks (eg, blood biomarkers and quantitative CT analysis) to refine existing prognostic models. Further improvement in prognostication could come from MRI, genetics, and the integration of dynamic changes in patient status after presentation. Neurotrauma researchers traditionally seek translation of their research findings through publications, clinical guidelines, and industry collaborations. However, to effectively impact clinical care and outcome, interactions are also needed with research funders, regulators, and policy makers, and partnership with patient organisations. Such interactions are increasingly taking place, with exemplars including interactions with the All Party Parliamentary Group on Acquired Brain Injury in the UK, the production of the NASEM report in the USA, and interactions with the US Food and Drug Administration. More interactions should be encouraged, and future discussions with regulators should include debates around consent from patients with acute mental incapacity and data sharing. Data sharing is strongly advocated by funding agencies. From January 2023, the US National Institutes of Health will require upload of research data into public repositories, but the EU requires data controllers to safeguard data security and privacy regulation. The tension between open data-sharing and adherence to privacy regulation could be resolved by cross-dataset analyses on federated platforms, with the data remaining at their original safe location. Tools already exist for conventional statistical analyses on federated platforms, however federated machine learning requires further development. Support for further development of federated platforms, and neuroinformatics more generally, should be a priority. This update to the 2017 Commission presents new insights and challenges across a range of topics around TBI: epidemiology and prevention (section 1 ); system of care (section 2 ); clinical management (section 3 ); characterisation of TBI (section 4 ); outcome assessment (section 5 ); prognosis (Section 6 ); and new directions for acquiring and implementing evidence (section 7 ). Table 1 summarises key messages from this Commission and proposes recommendations for the way forward to advance research and clinical management of TBI.
Collapse
Affiliation(s)
- Andrew I R Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Mathew Abrams
- International Neuroinformatics Coordinating Facility, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Åkerlund
- Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Nada Andelic
- Division of Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marcel Aries
- Department of Intensive Care, Maastricht UMC, Maastricht, Netherlands
| | - Tom Bashford
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Michael J Bell
- Critical Care Medicine, Neurological Surgery and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yelena G Bodien
- Department of Neurology and Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - András Büki
- Department of Neurosurgery, Faculty of Medicine and Health Örebro University, Örebro, Sweden
- Department of Neurosurgery, Medical School; ELKH-PTE Clinical Neuroscience MR Research Group; and Neurotrauma Research Group, Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Randall M Chesnut
- Department of Neurological Surgery and Department of Orthopaedics and Sports Medicine, University of Washington, Harborview Medical Center, Seattle, WA, USA
| | - Giuseppe Citerio
- School of Medicine and Surgery, Universita Milano Bicocca, Milan, Italy
- NeuroIntensive Care, San Gerardo Hospital, Azienda Socio Sanitaria Territoriale (ASST) Monza, Monza, Italy
| | - David Clark
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Betony Clasby
- Department of Sociological Studies, University of Sheffield, Sheffield, UK
| | - D Jamie Cooper
- School of Public Health and Preventive Medicine, Monash University and The Alfred Hospital, Melbourne, VIC, Australia
| | - Endre Czeiter
- Department of Neurosurgery, Medical School; ELKH-PTE Clinical Neuroscience MR Research Group; and Neurotrauma Research Group, Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Marek Czosnyka
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance and Department of Neurology, Brain Injury Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Véronique De Keyser
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Ramon Diaz-Arrastia
- Department of Neurology and Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Thomas A van Essen
- Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
- Department of Neurosurgery, Medical Center Haaglanden, The Hague, Netherlands
| | - Éanna Falvey
- College of Medicine and Health, University College Cork, Cork, Ireland
| | - Adam R Ferguson
- Brain and Spinal Injury Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco and San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
| | - Anthony Figaji
- Division of Neurosurgery and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA, Australia
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Dashiell Gantner
- School of Public Health and Preventive Medicine, Monash University and The Alfred Hospital, Melbourne, VIC, Australia
| | - Guoyi Gao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine
| | - Joseph Giacino
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Benjamin Gravesteijn
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fabian Guiza
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Deepak Gupta
- Department of Neurosurgery, Neurosciences Centre and JPN Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Mark Gurnell
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Juanita A Haagsma
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Flora M Hammond
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Rehabilitation Hospital of Indiana, Indianapolis, IN, USA
| | - Gregory Hawryluk
- Section of Neurosurgery, GB1, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Peter Hutchinson
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Mathieu van der Jagt
- Department of Intensive Care, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health, University of California, San Diego, CA, USA
| | - Swati Jain
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Ji-yao Jiang
- Department of Neurosurgery, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hope Kent
- Department of Psychology, University of Exeter, Exeter, UK
| | - Angelos Kolias
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Erwin J O Kompanje
- Department of Intensive Care, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fiona Lecky
- Centre for Urgent and Emergency Care Research, Health Services Research Section, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Hester F Lingsma
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marc Maegele
- Cologne-Merheim Medical Center, Department of Trauma and Orthopedic Surgery, Witten/Herdecke University, Cologne, Germany
| | - Marek Majdan
- Institute for Global Health and Epidemiology, Department of Public Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia
| | - Amy Markowitz
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Michael McCrea
- Department of Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Geert Meyfroidt
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Ana Mikolić
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - David Nelson
- Section for Anesthesiology and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lindsay D Nelson
- Department of Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Virginia Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - David Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Wilco Peul
- Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
| | - Dana Pisică
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Suzanne Polinder
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Louis Puybasset
- Department of Anesthesiology and Intensive Care, APHP, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Rahul Raj
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Chiara Robba
- Department of Anaesthesia and Intensive Care, Policlinico San Martino IRCCS for Oncology and Neuroscience, Genova, Italy, and Dipartimento di Scienze Chirurgiche e Diagnostiche, University of Genoa, Italy
| | - Cecilie Røe
- Division of Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jonathan Rosand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - David J Sharp
- Department of Brain Sciences, Imperial College London, London, UK
| | - Peter Smielewski
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Murray B Stein
- Department of Psychiatry and Department of Family Medicine and Public Health, UCSD School of Medicine, La Jolla, CA, USA
| | - Nicole von Steinbüchel
- Institute of Medical Psychology and Medical Sociology, University Medical Center Goettingen, Goettingen, Germany
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital and University of Glasgow, Glasgow, UK
| | - Ewout W Steyerberg
- Department of Biomedical Data Sciences Leiden University Medical Center, Leiden, Netherlands
| | - Nino Stocchetti
- Department of Pathophysiology and Transplantation, Milan University, and Neuroscience ICU, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nancy Temkin
- Departments of Neurological Surgery, and Biostatistics, University of Washington, Seattle, WA, USA
| | - Olli Tenovuo
- Department of Rehabilitation and Brain Trauma, Turku University Hospital, and Department of Neurology, University of Turku, Turku, Finland
| | - Alice Theadom
- National Institute for Stroke and Applied Neurosciences, Faculty of Health and Environmental Studies, Auckland University of Technology, Auckland, New Zealand
| | - Ilias Thomas
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Abel Torres Espin
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Alexis F Turgeon
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Université Laval, CHU de Québec-Université Laval Research Center, Québec City, QC, Canada
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominique Van Praag
- Departments of Clinical Psychology and Neurosurgery, Antwerp University Hospital, and University of Antwerp, Edegem, Belgium
| | - Ernest van Veen
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Thijs Vande Vyvere
- Department of Radiology, Faculty of Medicine and Health Sciences, Department of Rehabilitation Sciences (MOVANT), Antwerp University Hospital, and University of Antwerp, Edegem, Belgium
| | - Kevin K W Wang
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Eveline J A Wiegers
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - W Huw Williams
- Centre for Clinical Neuropsychology Research, Department of Psychology, University of Exeter, Exeter, UK
| | - Lindsay Wilson
- Division of Psychology, University of Stirling, Stirling, UK
| | - Stephen R Wisniewski
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - John K Yue
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Esther L Yuh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Frederick A Zeiler
- Departments of Surgery, Human Anatomy and Cell Science, and Biomedical Engineering, Rady Faculty of Health Sciences and Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Marina Zeldovich
- Institute of Medical Psychology and Medical Sociology, University Medical Center Goettingen, Goettingen, Germany
| | - Roger Zemek
- Departments of Pediatrics and Emergency Medicine, University of Ottawa, Children’s Hospital of Eastern Ontario, ON, Canada
| | | |
Collapse
|
80
|
Temkin N, Machamer J, Dikmen S, Nelson LD, Barber J, Hwang PH, Boase K, Stein MB, Sun X, Giacino J, McCrea MA, Taylor SR, Jain S, Manley G. Risk Factors for High Symptom Burden Three Months after Traumatic Brain Injury and Implications for Clinical Trial Design: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study. J Neurotrauma 2022; 39:1524-1532. [PMID: 35754333 PMCID: PMC9689769 DOI: 10.1089/neu.2022.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
More than 75% of patients presenting to level I trauma centers in the United States with suspicion of TBI sufficient to require a clinical computed tomography scan report injury-related symptoms 3 months later. There are currently no approved treatments, and few clinical trials have evaluated possible treatments. Efficient trials will require subject inclusion and exclusion criteria that balance cost-effective recruitment with enrolling individuals with a higher chance of benefiting from the interventions. Using data from the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study, we examined the relationship of 3-month symptoms to pre-injury, demographic, and acute characteristics as well as 2-week symptoms and blood-based biomarkers to identify and evaluate factors that may be used for sample enrichment for clinical trials. Many of the risk factors for TBI symptoms reported in the literature were supported, but the effect sizes of each were small or moderate (< 0.5). The only factors with large effect sizes when predicting 3-month symptom burden were TBI-related (i.e., post-concussive) and post-traumatic stress symptom levels at 2 weeks (respective effect sizes 1.13 and 1.34). TBI severity was not significantly associated with 3-month symptom burden (p = 0.37). Using simulated data to evaluate the effect of enrichment, we showed that including only people with high symptom burden at 2 weeks would permit trials to reduce the sample size by half, with minimal increase in screening, as compared with enrolling an unenriched sample. Clinical trials aimed at reducing symptoms after TBI can be efficiently conducted by enriching the included sample with people reporting a high early symptom burden.
Collapse
Affiliation(s)
- Nancy Temkin
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Joan Machamer
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Sureyya Dikmen
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Lindsay D. Nelson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jason Barber
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Phillip H. Hwang
- Department of Anatomy and Neurobiology, Boston University, Boston Massachusetts, USA
| | - Kim Boase
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Murray B. Stein
- Department of Psychiatry and Herbert Wertheim School of Public Health, University of California, San Diego, California, USA
| | - Xiaoying Sun
- Biostatistics Research Center Herbert Wertheim School of Public Health, University of California, San Diego, California, USA
| | - Joseph Giacino
- Department of Rehabilitation Medicine, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Michael A. McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sabrina R. Taylor
- Brain and Spinal Injury Center, San Francisco California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Sonia Jain
- Biostatistics Research Center Herbert Wertheim School of Public Health, University of California, San Diego, California, USA
| | - Geoff Manley
- Brain and Spinal Injury Center, San Francisco California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| |
Collapse
|
81
|
A Systematic Review of Treatments of Post-Concussion Symptoms. J Clin Med 2022; 11:jcm11206224. [PMID: 36294545 PMCID: PMC9604759 DOI: 10.3390/jcm11206224] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Approximately 10−20% of patients who have sustained a mild Traumatic Brain Injury (mTBI) show persistent post-concussion symptoms (PCS). This review aims to summarize the level of evidence concerning interventions for PCS. Following the PRISMA guidelines, we conducted a systematic review regarding interventions for PCS post-mTBI until August 2021 using the Medline, Cochrane, and Embase databases. Inclusion criteria were the following: (1) intervention focusing on PCS after mTBI, (2) presence of a control group, and (3) adult patients (≥18 y.o). Quality assessment was determined using the Incog recommendation level, and the risk of bias was assessed using the revised Cochrane risk-of-bias tool. We first selected 104 full-text articles. Finally, 55 studies were retained, including 35 that obtained the highest level of evidence. The risk of bias was high in 22 out of 55 studies. Cognitive training, psycho-education, cognitive behavioral therapy, and graded return to physical activity demonstrated some effectiveness on persistent PCS. However, there is limited evidence of the beneficial effect of Methylphenidate. Oculomotor rehabilitation, light therapy, and headache management using repetitive transcranial magnetic stimulation seem effective regarding somatic complaints and sleep disorders. The preventive effect of early (<3 months) interventions remains up for debate. Despite its limitations, the results of the present review should encourage clinicians to propose a tailored treatment to patients according to the type and severity of PCS and could encourage further research with larger groups.
Collapse
|
82
|
Roy D, Ghosh A, Yan H, Leoutsakos JM, Rao V, Peters ME, Van Meter TE, Sair H, Falk H, Korley FK, Bechtold KT. Prevalence and Correlates of Depressive Symptoms Within 6 Months After First-Time Mild Traumatic Brain Injury. J Neuropsychiatry Clin Neurosci 2022; 34:367-377. [PMID: 35306831 DOI: 10.1176/appi.neuropsych.21080207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Depressive symptoms are among the most common neuropsychiatric sequelae of mild traumatic brain injury (mTBI). Very few studies have compared correlates of depressive symptoms within the first 6 months of injury in cohorts experiencing their first TBI. The authors investigated whether the correlates of depressive symptoms (being female, older, lower education, having brain lesions, experiencing worse postconcussive symptoms, and incomplete functional recovery) that have been established in populations with moderate to severe TBI were the same for individuals with first-time mTBI within the first 6 months of recovery. METHODS Two hundred seventeen individuals with first-time mTBI were divided into subgroups-new-onset depressive symptoms, recurrent depressive symptoms, prior depression history only, and never depressed-and compared on clinical and demographic variables and the presence of postconcussive symptoms and functional recovery at 3 and 6 months. RESULTS New-onset depressive symptoms developed in 12% of the cohort, whereas 11% of the cohort had recurrent depressive symptoms. Both depressive symptoms groups were more likely to comprise women and persons of color and were at higher risk for clinically significant postconcussive symptoms and incomplete functional recovery for the first 6 months postinjury. CONCLUSIONS Presence of depressive symptoms after first-time mTBI was associated with persistent postconcussive symptoms and incomplete functional recovery in the first 6 months. Adding to the existing literature, these findings identified correlates of depressive symptom development and poor outcomes after mTBI, thus providing further evidence that mTBI may produce persistent symptoms and functional limitations that warrant clinical attention.
Collapse
Affiliation(s)
- Durga Roy
- Departments of Psychiatry and Behavioral Sciences (Roy, Yan, Leoutsakos, Rao, Peters) and Physical Medicine and Rehabilitation (Bechtold), Johns Hopkins University, Baltimore; Department of Pharmacology and Physiology, Georgetown University, Washington, DC (Ghosh); ImmunArray, Inc., Richmond, Virginia (Van Meter); University of Michigan Medical School, Ann Arbor (Falk, Korley)
| | - Anjik Ghosh
- Departments of Psychiatry and Behavioral Sciences (Roy, Yan, Leoutsakos, Rao, Peters) and Physical Medicine and Rehabilitation (Bechtold), Johns Hopkins University, Baltimore; Department of Pharmacology and Physiology, Georgetown University, Washington, DC (Ghosh); ImmunArray, Inc., Richmond, Virginia (Van Meter); University of Michigan Medical School, Ann Arbor (Falk, Korley)
| | - Haijuan Yan
- Departments of Psychiatry and Behavioral Sciences (Roy, Yan, Leoutsakos, Rao, Peters) and Physical Medicine and Rehabilitation (Bechtold), Johns Hopkins University, Baltimore; Department of Pharmacology and Physiology, Georgetown University, Washington, DC (Ghosh); ImmunArray, Inc., Richmond, Virginia (Van Meter); University of Michigan Medical School, Ann Arbor (Falk, Korley)
| | - Jeannie-Marie Leoutsakos
- Departments of Psychiatry and Behavioral Sciences (Roy, Yan, Leoutsakos, Rao, Peters) and Physical Medicine and Rehabilitation (Bechtold), Johns Hopkins University, Baltimore; Department of Pharmacology and Physiology, Georgetown University, Washington, DC (Ghosh); ImmunArray, Inc., Richmond, Virginia (Van Meter); University of Michigan Medical School, Ann Arbor (Falk, Korley)
| | - Vani Rao
- Departments of Psychiatry and Behavioral Sciences (Roy, Yan, Leoutsakos, Rao, Peters) and Physical Medicine and Rehabilitation (Bechtold), Johns Hopkins University, Baltimore; Department of Pharmacology and Physiology, Georgetown University, Washington, DC (Ghosh); ImmunArray, Inc., Richmond, Virginia (Van Meter); University of Michigan Medical School, Ann Arbor (Falk, Korley)
| | - Matthew E Peters
- Departments of Psychiatry and Behavioral Sciences (Roy, Yan, Leoutsakos, Rao, Peters) and Physical Medicine and Rehabilitation (Bechtold), Johns Hopkins University, Baltimore; Department of Pharmacology and Physiology, Georgetown University, Washington, DC (Ghosh); ImmunArray, Inc., Richmond, Virginia (Van Meter); University of Michigan Medical School, Ann Arbor (Falk, Korley)
| | - Timothy E Van Meter
- Departments of Psychiatry and Behavioral Sciences (Roy, Yan, Leoutsakos, Rao, Peters) and Physical Medicine and Rehabilitation (Bechtold), Johns Hopkins University, Baltimore; Department of Pharmacology and Physiology, Georgetown University, Washington, DC (Ghosh); ImmunArray, Inc., Richmond, Virginia (Van Meter); University of Michigan Medical School, Ann Arbor (Falk, Korley)
| | - Haris Sair
- Departments of Psychiatry and Behavioral Sciences (Roy, Yan, Leoutsakos, Rao, Peters) and Physical Medicine and Rehabilitation (Bechtold), Johns Hopkins University, Baltimore; Department of Pharmacology and Physiology, Georgetown University, Washington, DC (Ghosh); ImmunArray, Inc., Richmond, Virginia (Van Meter); University of Michigan Medical School, Ann Arbor (Falk, Korley)
| | - Hayley Falk
- Departments of Psychiatry and Behavioral Sciences (Roy, Yan, Leoutsakos, Rao, Peters) and Physical Medicine and Rehabilitation (Bechtold), Johns Hopkins University, Baltimore; Department of Pharmacology and Physiology, Georgetown University, Washington, DC (Ghosh); ImmunArray, Inc., Richmond, Virginia (Van Meter); University of Michigan Medical School, Ann Arbor (Falk, Korley)
| | - Frederick K Korley
- Departments of Psychiatry and Behavioral Sciences (Roy, Yan, Leoutsakos, Rao, Peters) and Physical Medicine and Rehabilitation (Bechtold), Johns Hopkins University, Baltimore; Department of Pharmacology and Physiology, Georgetown University, Washington, DC (Ghosh); ImmunArray, Inc., Richmond, Virginia (Van Meter); University of Michigan Medical School, Ann Arbor (Falk, Korley)
| | - Kathleen T Bechtold
- Departments of Psychiatry and Behavioral Sciences (Roy, Yan, Leoutsakos, Rao, Peters) and Physical Medicine and Rehabilitation (Bechtold), Johns Hopkins University, Baltimore; Department of Pharmacology and Physiology, Georgetown University, Washington, DC (Ghosh); ImmunArray, Inc., Richmond, Virginia (Van Meter); University of Michigan Medical School, Ann Arbor (Falk, Korley)
| |
Collapse
|
83
|
Al Hariri M, Zgheib H, Abi Chebl K, Azar M, Hitti E, Bizri M, Rizk J, Kobeissy F, Mufarrij A. Assessing the psychological impact of Beirut Port blast: A cross-sectional study. Medicine (Baltimore) 2022; 101:e31117. [PMID: 36253992 PMCID: PMC9575829 DOI: 10.1097/md.0000000000031117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Beirut Port blast's magnitude is considered the third after Hiroshima and Nagasaki atomic bombings. This blast occurred in the densely populated section of Beirut, leaving more than six thousand injured patients. The psychological disturbances were assessed in the blast survivors who presented to the Emergency Department (ED) at the American University of Beirut Medical Center (AUBMC). This was a cross-sectional study at the ED of AUBMC. Identified patients were contacted and consented to participate in the study. Post-Traumatic Stress Disorder (PTSD) was selected as an outcome. Depression, PTSD, and concussion were assessed using patient health questionnaire (PHQ)-9, PTSD checklist for DSM-5 (PCL5), and brain injury symptoms (BISx) tools, respectively. The association of patients and injury characteristics with the study outcome was assessed using logistic regression. 145 participants completed the study procedures. The participants' average age was 39.8 ± 15.4 years, and 60% were males. Almost half of the participants showed depression on PHQ, and 2-thirds had PTSD. The participant's age was negatively associated with PTSD, whereas being a female, having depression, and having a concussion were positively associated with PTSD. The results of this study were in line with the previous literature report except for the association between younger age and PTSD, which warrants further investigations to delineate the reasons.
Collapse
Affiliation(s)
- Moustafa Al Hariri
- Vice President for Medical and Health Science Office, QU Health, Qatar University, Doha, Qatar
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hady Zgheib
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Karen Abi Chebl
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maria Azar
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Eveline Hitti
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maya Bizri
- Department of Psychiatry, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jennifer Rizk
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Afif Mufarrij
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- *Correspondence: Afif Mufarrij, Department of Emergency Medicine, American University of Beirut Medical Center, P.O. Box: 11-0236/ Riad El-Solh/ Beirut 1107 2020, Lebanon (e-mail: )
| |
Collapse
|
84
|
Khan NA, Asim M, El-Menyar A, Biswas KH, Rizoli S, Al-Thani H. The evolving role of extracellular vesicles (exosomes) as biomarkers in traumatic brain injury: Clinical perspectives and therapeutic implications. Front Aging Neurosci 2022; 14:933434. [PMID: 36275010 PMCID: PMC9584168 DOI: 10.3389/fnagi.2022.933434] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Developing effective disease-modifying therapies for neurodegenerative diseases (NDs) requires reliable diagnostic, disease activity, and progression indicators. While desirable, identifying biomarkers for NDs can be difficult because of the complex cytoarchitecture of the brain and the distinct cell subsets seen in different parts of the central nervous system (CNS). Extracellular vesicles (EVs) are heterogeneous, cell-derived, membrane-bound vesicles involved in the intercellular communication and transport of cell-specific cargos, such as proteins, Ribonucleic acid (RNA), and lipids. The types of EVs include exosomes, microvesicles, and apoptotic bodies based on their size and origin of biogenesis. A growing body of evidence suggests that intercellular communication mediated through EVs is responsible for disseminating important proteins implicated in the progression of traumatic brain injury (TBI) and other NDs. Some studies showed that TBI is a risk factor for different NDs. In terms of therapeutic potential, EVs outperform the alternative synthetic drug delivery methods because they can transverse the blood–brain barrier (BBB) without inducing immunogenicity, impacting neuroinflammation, immunological responses, and prolonged bio-distribution. Furthermore, EV production varies across different cell types and represents intracellular processes. Moreover, proteomic markers, which can represent a variety of pathological processes, such as cellular damage or neuroinflammation, have been frequently studied in neurotrauma research. However, proteomic blood-based biomarkers have short half-lives as they are easily susceptible to degradation. EV-based biomarkers for TBI may represent the complex genetic and neurometabolic abnormalities that occur post-TBI. These biomarkers are not caught by proteomics, less susceptible to degradation and hence more reflective of these modifications (cellular damage and neuroinflammation). In the current narrative and comprehensive review, we sought to discuss the contemporary knowledge and better understanding the EV-based research in TBI, and thus its applications in modern medicine. These applications include the utilization of circulating EVs as biomarkers for diagnosis, developments of EV-based therapies, and managing their associated challenges and opportunities.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Mohammad Asim
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Ayman El-Menyar
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
- Department of Clinical Medicine, Weill Cornell Medical College, Doha, Qatar
- *Correspondence: Ayman El-Menyar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sandro Rizoli
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Hassan Al-Thani
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| |
Collapse
|
85
|
Measurement invariance of six language versions of the post-traumatic stress disorder checklist for DSM-5 in civilians after traumatic brain injury. Sci Rep 2022; 12:16571. [PMID: 36195725 PMCID: PMC9532419 DOI: 10.1038/s41598-022-20170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022] Open
Abstract
Traumatic brain injury (TBI) is frequently associated with neuropsychiatric impairments such as symptoms of post-traumatic stress disorder (PTSD), which can be screened using self-report instruments such as the Post-Traumatic Stress Disorder Checklist for DSM-5 (PCL-5). The current study aims to inspect the factorial validity and cross-linguistic equivalence of the PCL-5 in individuals after TBI with differential severity. Data for six language groups (n ≥ 200; Dutch, English, Finnish, Italian, Norwegian, Spanish) were extracted from the CENTER-TBI study database. Factorial validity of PTSD was evaluated using confirmatory factor analyses (CFA), and compared between four concurrent structural models. A multi-group CFA approach was utilized to investigate the measurement invariance (MI) of the PCL-5 across languages. All structural models showed satisfactory goodness-of-fit with small between-model variation. The original DSM-5 model for PTSD provided solid evidence of MI across the language groups. The current study underlines the validity of the clinical DSM-5 conceptualization of PTSD and demonstrates the comparability of PCL-5 symptom scores between language versions in individuals after TBI. Future studies should apply MI methods to other sociodemographic (e.g., age, gender) and injury-related (e.g., TBI severity) characteristics to improve the monitoring and clinical care of individuals suffering from PTSD symptoms after TBI.
Collapse
|
86
|
Kosaraju S, Galatzer-Levy I, Schultebraucks K, Winters S, Hinrichs R, Reddi PJ, Maples-Keller JL, Hudak L, Michopoulos V, Jovanovic T, Ressler KJ, Allen JW, Stevens JS. Associations among civilian mild traumatic brain injury with loss of consciousness, posttraumatic stress disorder symptom trajectories, and structural brain volumetric data. J Trauma Stress 2022; 35:1521-1534. [PMID: 35776892 DOI: 10.1002/jts.22858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022]
Abstract
Posttraumatic stress disorder (PTSD) is prevalent and associated with significant morbidity. Mild traumatic brain injury (mTBI) concurrent with psychiatric trauma may be associated with PTSD. Prior studies of PTSD-related structural brain alterations have focused on military populations. The current study examined correlations between PTSD, acute mTBI, and structural brain alterations longitudinally in civilian patients (N = 504) who experienced a recent Criterion A traumatic event. Participants who reported loss of consciousness (LOC) were characterized as having mTBI; all others were included in the control group. PTSD symptoms were assessed at enrollment and over the following year; a subset of participants (n = 89) underwent volumetric brain MRI (M = 53 days posttrauma). Classes of PTSD symptom trajectories were modeled using latent growth mixture modeling. Associations between PTSD symptom trajectories and cortical thicknesses or subcortical volumes were assessed using a moderator-based regression. mTBI with LOC during trauma was positively correlated with the likelihood of developing a chronic PTSD symptom trajectory. mTBI showed significant interactions with cortical thickness in the rostral anterior cingulate cortex (rACC) in predicting PTSD symptoms, r = .461-.463. Bilateral rACC thickness positively predicted PTSD symptoms but only among participants who endorsed LOC, p < .001. The results demonstrate positive correlations between mTBI with LOC and PTSD symptom trajectories, and findings related to mTBI with LOC and rACC thickness interactions in predicting subsequent chronic PTSD symptoms suggest the importance of further understanding the role of mTBI in the context of PTSD to inform intervention and risk stratification.
Collapse
Affiliation(s)
- Siddhartha Kosaraju
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Isaac Galatzer-Levy
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| | - Katharina Schultebraucks
- Department of Emergency Medicine, Vagelos School of Physicians and Surgeons, Columbia University Medical Center, New York, New York, USA
| | - Sterling Winters
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Rebecca Hinrichs
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Preethi J Reddi
- Department of Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Lauren Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tanja Jovanovic
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason W Allen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer S Stevens
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
87
|
Chan V, Marcus L, Burlie D, Mann RE, Toccalino D, Cusimano MD, Ilie G, Colantonio A. Social determinants of health associated with psychological distress stratified by lifetime traumatic brain injury status and sex: Cross-sectional evidence from a population sample of adults in Ontario, Canada. PLoS One 2022; 17:e0273072. [PMID: 36044420 PMCID: PMC9432736 DOI: 10.1371/journal.pone.0273072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
This study identified the social determinants of health (SDoH) associated with psychological distress in adults with and without a self-reported history of traumatic brain injury (TBI), stratified by sex. Data from the 2014-2017 cycles of the Centre for Addiction and Mental Health Monitor Survey, a representative survey of adults ≥18 years in Ontario, Canada, were analyzed (N = 7,214). The six-item version of the Kessler Psychological Distress Scale was used to determine moderate to severe psychological distress. Self-reported lifetime TBI was defined as a head injury resulting in a loss of consciousness for ≥5 minutes or at least one-night stay in the hospital (16.4%). Among individuals reporting a history of TBI, 30.2% of males and 40.1% of females reported psychological distress (p = 0.0109). Among individuals who did not report a history of TBI, 17.9% of males and 23.5% of females reported psychological distress (p<0.0001). Multivariable logistic regression analyses showed that the SDoH significantly associated with elevated psychological distress were similar between individuals with and without a history of TBI. This included unemployment, student, or 'other' employment status among both males and females; income below the provincial median and age 65+ among males; and rural residence among females. This study highlighted opportunities for targeted population-level interventions, namely accessible and affordable mental health supports for individuals with lower income. Notably, this study presented evidence suggesting adaptations to existing services to accommodate challenges associated with TBI should be explored, given the finite and competing demands for mental health care and resources.
Collapse
Affiliation(s)
- Vincy Chan
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Marcus
- Temerty Faculty of Medicine, Department of Occupational Science & Occupational Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Danielle Burlie
- Temerty Faculty of Medicine, Department of Occupational Science & Occupational Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Robert E. Mann
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Danielle Toccalino
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Michael D. Cusimano
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Gabriela Ilie
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia
| | - Angela Colantonio
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, Department of Occupational Science & Occupational Therapy, University of Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
88
|
Robayo LE, Govind V, Vastano R, Felix ER, Fleming L, Cherup NP, Widerström-Noga E. Multidimensional pain phenotypes after Traumatic Brain Injury. FRONTIERS IN PAIN RESEARCH 2022; 3:947562. [PMID: 36061413 PMCID: PMC9437424 DOI: 10.3389/fpain.2022.947562] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
More than 50% of individuals develop chronic pain following traumatic brain injury (TBI). Research suggests that a significant portion of post-TBI chronic pain conditions is neuropathic in nature, yet the relationship between neuropathic pain, psychological distress, and somatosensory function following TBI is not fully understood. This study evaluated neuropathic pain symptoms, psychological and somatosensory function, and psychosocial factors in individuals with TBI (TBI, N = 38). A two-step cluster analysis was used to identify phenotypes based on the Neuropathic Pain Symptom Inventory and Beck's Anxiety Inventory scores. Phenotypes were then compared on pain characteristics, psychological and somatosensory function, and psychosocial factors. Our analyses resulted in two different neuropathic pain phenotypes: (1) Moderate neuropathic pain severity and anxiety scores (MNP-AS, N = 11); and (2) mild or no neuropathic pain symptoms and anxiety scores (LNP-AS, N = 27). Furthermore, the MNP-AS group exhibited greater depression, PTSD, pain severity, and affective distress scores than the LNP-AS group. In addition, thermal somatosensory function (difference between thermal pain and perception thresholds) was significantly lower in the MNP-AS compared to the LNP-AS group. Our findings suggest that neuropathic pain symptoms are relatively common after TBI and are not only associated with greater psychosocial distress but also with abnormal function of central pain processing pathways.
Collapse
Affiliation(s)
- Linda E. Robayo
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- Christine E. Lynn Rehabilitation Center, Miami Project to Cure Paralysis at UHealth/Jackson Memorial, Miami, FL, United States
| | - Varan Govind
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Roberta Vastano
- Christine E. Lynn Rehabilitation Center, Miami Project to Cure Paralysis at UHealth/Jackson Memorial, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Elizabeth R. Felix
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Loriann Fleming
- Christine E. Lynn Rehabilitation Center, Miami Project to Cure Paralysis at UHealth/Jackson Memorial, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nicholas P. Cherup
- Christine E. Lynn Rehabilitation Center, Miami Project to Cure Paralysis at UHealth/Jackson Memorial, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eva Widerström-Noga
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- Christine E. Lynn Rehabilitation Center, Miami Project to Cure Paralysis at UHealth/Jackson Memorial, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Eva Widerström-Noga
| |
Collapse
|
89
|
van der Vlegel M, Mikolić A, Lee Hee Q, Kaplan ZLR, Retel Helmrich IRA, van Veen E, Andelic N, Steinbuechel NV, Plass AM, Zeldovich M, Wilson L, Maas AIR, Haagsma JA, Polinder S. Health care utilization and outcomes in older adults after Traumatic Brain Injury: A CENTER-TBI study. Injury 2022; 53:2774-2782. [PMID: 35725508 DOI: 10.1016/j.injury.2022.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/11/2022] [Accepted: 05/08/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The incidence of Traumatic Brain Injury (TBI) is increasingly common in older adults aged ≥65 years, forming a growing public health problem. However, older adults are underrepresented in TBI research. Therefore, we aimed to provide an overview of health-care utilization, and of six-month outcomes after TBI and their determinants in older adults who sustained a TBI. METHODS We used data from the prospective multi-center Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. In-hospital and post-hospital health care utilization and outcomes were described for patients aged ≥65 years. Ordinal and linear regression analyses were performed to identify determinants of the Glasgow Outcome Scale Extended (GOSE), health-related quality of life (HRQoL), and mental health symptoms six-months post-injury. RESULTS Of 1254 older patients, 45% were admitted to an ICU with a mean length of stay of 9 days. Nearly 30% of the patients received inpatient rehabilitation. In total, 554/1254 older patients completed the six-month follow-up questionnaires. The mortality rate was 9% after mild and 60% after moderate/severe TBI, and full recovery based on GOSE was reported for 44% of patients after mild and 6% after moderate/severe TBI. Higher age and increased injury severity were primarily associated with functional impairment, while pre-injury systemic disease, psychiatric conditions and lower educational level were associated with functional impairment, lower generic and disease-specific HRQoL and mental health symptoms. CONCLUSION The rate of impairment and disability following TBI in older adults is substantial, and poorer outcomes across domains are associated with worse preinjury health. Nonetheless, a considerable number of patients fully or partially returns to their preinjury functioning. There should not be pessimism about outcomes in older adults who survive.
Collapse
Affiliation(s)
- Marjolein van der Vlegel
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, Rotterdam, CA 3000, The Netherlands.
| | - Ana Mikolić
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, Rotterdam, CA 3000, The Netherlands
| | - Quentin Lee Hee
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, Rotterdam, CA 3000, The Netherlands
| | - Z L Rana Kaplan
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, Rotterdam, CA 3000, The Netherlands
| | - Isabel R A Retel Helmrich
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, Rotterdam, CA 3000, The Netherlands
| | - Ernest van Veen
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, Rotterdam, CA 3000, The Netherlands; Department of Intensive Care Adults, Rotterdam, the Netherlands
| | - Nada Andelic
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway
| | - Nicole V Steinbuechel
- Institute of Medical Psychology and Medical Sociology, University Medical Center Göttingen (UMG)/ Georg-August-University, Göttingen, Germany
| | - Anne Marie Plass
- Institute of Medical Psychology and Medical Sociology, University Medical Center Göttingen (UMG)/ Georg-August-University, Göttingen, Germany
| | - Marina Zeldovich
- Institute of Medical Psychology and Medical Sociology, University Medical Center Göttingen (UMG)/ Georg-August-University, Göttingen, Germany
| | - Lindsay Wilson
- Division of Psychology, University of Stirling, Stirling, UK
| | - Andrew I R Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Juanita A Haagsma
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, Rotterdam, CA 3000, The Netherlands
| | - Suzanne Polinder
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, Rotterdam, CA 3000, The Netherlands
| |
Collapse
|
90
|
Hung Y, Vandewouw M, Emami Z, Bells S, Rudberg N, da Costa L, Dunkley BT. Memory retrieval brain-behavior disconnection in mild traumatic brain injury: A magnetoencephalography and diffusion tensor imaging study. Hum Brain Mapp 2022; 43:5296-5309. [PMID: 35796166 PMCID: PMC9812251 DOI: 10.1002/hbm.26003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 01/15/2023] Open
Abstract
Mild traumatic brain (mTBI) injury is often associated with long-term cognitive and behavioral complications, including an increased risk of memory impairment. Current research challenges include a lack of cross-modal convergence regarding the underlying neural-behavioral mechanisms of mTBI, which hinders therapeutics and outcome management for this frequently under-treated and vulnerable population. We used multi-modality imaging methods including magnetoencephalography (MEG) and diffusion tensor imaging (DTI) to investigate brain-behavior impairment in mTBI related to working memory. A total of 41 participants were recruited, including 23 patients with a first-time mTBI imaged within 3 months of injury (all male, age = 29.9, SD = 6.9), and 18 control participants (all male, age = 27.3, SD = 5.3). Whole-brain statistics revealed spatially concomitant functional-structural disruptions in brain-behavior interactions in working memory in the mTBI group compared with the control group. These disruptions are located in the hippocampal-prefrontal region and, additionally, in the amygdala (measured by MEG neural activation and DTI measures of fractional anisotropy in relation to working memory performance; p < .05, two-way ANCOVA, nonparametric permutations, corrected). Impaired brain-behavior connections found in the hippocampal-prefrontal and amygdala circuits indicate brain dysregulation of memory, which may leave mTBI patients vulnerable to increased environmental demands exerting memory resources, leading to related cognitive and emotional psychopathologies. The findings yield clinical implications and highlight a need for early rehabilitation after mTBI, including attention- and sensory-based behavioral exercises.
Collapse
Affiliation(s)
- Yuwen Hung
- Martinos Imaging Center at McGovern Institute for Brain Research, Harvard‐MITCambridgeMassachusettsUSA,Program in Neurosciences & Mental HealthHospital for Sick Children Research InstituteTorontoOntarioCanada
| | - Marlee Vandewouw
- Program in Neurosciences & Mental HealthHospital for Sick Children Research InstituteTorontoOntarioCanada,Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Zahra Emami
- Program in Neurosciences & Mental HealthHospital for Sick Children Research InstituteTorontoOntarioCanada
| | - Sonya Bells
- Program in Neurosciences & Mental HealthHospital for Sick Children Research InstituteTorontoOntarioCanada
| | | | - Leodante da Costa
- Department of Surgery, Division of NeurosurgerySunnybrook HospitalTorontoOntarioCanada
| | - Benjamin T. Dunkley
- Program in Neurosciences & Mental HealthHospital for Sick Children Research InstituteTorontoOntarioCanada,Department of Diagnostic ImagingHospital for Sick ChildrenTorontoOntarioCanada,Department of Medical ImagingUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
91
|
Young M, Peterson AH. Neuroethics across the Disorders of Consciousness Care Continuum. Semin Neurol 2022; 42:375-392. [PMID: 35738293 DOI: 10.1055/a-1883-0701] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
92
|
Silverberg ND, Otamendi T, Brasher PM, Brubacher JR, Li LC, Lizotte PP, Panenka WJ, Scheuermeyer FX, Archambault P. Effectiveness of a guideline implementation tool for supporting management of mental health complications after mild traumatic brain injury in primary care: protocol for a randomised controlled trial. BMJ Open 2022; 12:e062527. [PMID: 35728892 PMCID: PMC9214410 DOI: 10.1136/bmjopen-2022-062527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Mental health problems frequently interfere with recovery from mild traumatic brain injury (mTBI) but are under-recognised and undertreated. Consistent implementation of clinical practice guidelines for proactive detection and treatment of mental health complications after mTBI will require evidence-based knowledge translation strategies. This study aims to determine if a guideline implementation tool can reduce the risk of mental health complications following mTBI. If effective, our guideline implementation tool could be readily scaled up and/or adapted to other healthcare settings. METHODS AND ANALYSIS We will conduct a triple-blind cluster randomised trial to evaluate a clinical practice guideline implementation tool designed to support proactive management of mental health complications after mTBI in primary care. We will recruit 535 adults (aged 18-69 years) with mTBI from six emergency departments and two urgent care centres in the Greater Vancouver Area, Canada. Upon enrolment at 2 weeks post-injury, they will complete mental health symptom screening tools and designate a general practitioner (GP) or primary care clinic where they plan to seek follow-up care. Primary care clinics will be randomised into one of two arms. In the guideline implementation tool arm, GPs will receive actionable mental health screening test results tailored to their patient and their patients will receive written education about mental health problems after mTBI and treatment options. In the usual care control arm, GPs and their patients will receive generic information about mTBI. Patient participants will complete outcome measures remotely at 2, 12 and 26 weeks post-injury. The primary outcome is rate of new or worsened mood, anxiety or trauma-related disorder on the Mini International Neuropsychiatric Interview at 26 weeks. ETHICS AND DISSEMINATION Study procedures were approved by the University of British Columbia's research ethics board (H20-00562). The primary report for the trial results will be published in a peer-reviewed journal. Our knowledge user team members (patients, GPs, policymakers) will co-create a plan for public dissemination. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (NCT04704037).
Collapse
Affiliation(s)
- Noah D Silverberg
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Rehabilitation Research Program, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Thalia Otamendi
- Rehabilitation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Penelope Ma Brasher
- Centre for Clinical Epidemiology & Evaluation, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Jeffrey R Brubacher
- Department of Emergency Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Linda C Li
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pierre-Paul Lizotte
- Department of Family Practice, University of British Columbia, Vancouver, British Columbia, Canada
| | - William J Panenka
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank X Scheuermeyer
- Department of Emergency Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Emergency Medicine, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Patrick Archambault
- Department of Family and Emergency Medicine, Université Laval, Québec, Québec, Canada
| |
Collapse
|
93
|
Kim S, Currao A, Bernstein J, Fonda JR, Fortier CB. Contributory Etiologies to Cognitive Performance in Multimorbid Post-9/11 Veterans: The Deployment Trauma Phenotype. Arch Clin Neuropsychol 2022; 37:1699-1709. [PMID: 35718759 DOI: 10.1093/arclin/acac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study examined cognitive functioning in post-9/11 Veterans with the deployment trauma phenotype (DTP), comprised of co-occurring diagnoses of depressive disorder (major depressive disorder and or persistent depressive disorder/dysthymia), posttraumatic stress disorder (PTSD), and mild traumatic brain injury (mTBI), using objective neuropsychological measures. METHOD Participants included a cross-sectional sample of 399 post-9/11 Veterans who completed clinical interviews and neuropsychological tests as part of a larger study at VA Boston Healthcare System. Confirmatory factor analysis identified four cognitive domains: attention, cognitive control/processing speed, episodic memory, and cognitive flexibility. Veterans with DTP and its constituent diagnoses in isolation, two-way diagnostic combinations, and no constituent diagnoses were compared. RESULTS Veterans with DTP had a twofold increased prevalence for below average performance in cognitive control/processing speed compared with those with no constituent diagnoses (prevalence ratios [PRs] = 2.04; 95% confidence interval [CI]: 1.03-4.05). The PTSD + depressive disorder group also had a twofold increased prevalence for below average performance in episodic memory (PR = 2.16; 95% CI: 1.05-4.43). CONCLUSIONS The deployment trauma phenotype is associated with clinically significant decrease in cognitive control/processing speed in post-9/11 Veterans. Comorbid PTSD and depressive disorder negatively impacted performances in episodic memory. Mild TBI alone showed no cognitive deficits. Clinical interventions should target psychiatric symptoms with a transdiagnostic approach to address this multimorbid population.
Collapse
Affiliation(s)
- Sahra Kim
- Translational Research Center for TBI and Stress Disorders and Geriatric Research Education and Clinical Center, VA Boston Healthcare System, Boston, MA, USA
| | - Alyssa Currao
- Translational Research Center for TBI and Stress Disorders and Geriatric Research Education and Clinical Center, VA Boston Healthcare System, Boston, MA, USA
| | - John Bernstein
- Translational Research Center for TBI and Stress Disorders and Geriatric Research Education and Clinical Center, VA Boston Healthcare System, Boston, MA, USA
| | - Jennifer R Fonda
- Translational Research Center for TBI and Stress Disorders and Geriatric Research Education and Clinical Center, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Catherine B Fortier
- Translational Research Center for TBI and Stress Disorders and Geriatric Research Education and Clinical Center, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
94
|
Bouchard HC, Sun D, Dennis EL, Newsome MR, Disner SG, Elman J, Silva A, Velez C, Irimia A, Davenport ND, Sponheim SR, Franz CE, Kremen WS, Coleman MJ, Williams MW, Geuze E, Koerte IK, Shenton ME, Adamson MM, Coimbra R, Grant G, Shutter L, George MS, Zafonte RD, McAllister TW, Stein MB, Thompson PM, Wilde EA, Tate DF, Sotiras A, Morey RA. Age-dependent white matter disruptions after military traumatic brain injury: Multivariate analysis results from ENIGMA brain injury. Hum Brain Mapp 2022; 43:2653-2667. [PMID: 35289463 PMCID: PMC9057089 DOI: 10.1002/hbm.25811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/18/2021] [Accepted: 02/10/2022] [Indexed: 01/27/2023] Open
Abstract
Mild Traumatic brain injury (mTBI) is a signature wound in military personnel, and repetitive mTBI has been linked to age-related neurogenerative disorders that affect white matter (WM) in the brain. However, findings of injury to specific WM tracts have been variable and inconsistent. This may be due to the heterogeneity of mechanisms, etiology, and comorbid disorders related to mTBI. Non-negative matrix factorization (NMF) is a data-driven approach that detects covarying patterns (components) within high-dimensional data. We applied NMF to diffusion imaging data from military Veterans with and without a self-reported TBI history. NMF identified 12 independent components derived from fractional anisotropy (FA) in a large dataset (n = 1,475) gathered through the ENIGMA (Enhancing Neuroimaging Genetics through Meta-Analysis) Military Brain Injury working group. Regressions were used to examine TBI- and mTBI-related associations in NMF-derived components while adjusting for age, sex, post-traumatic stress disorder, depression, and data acquisition site/scanner. We found significantly stronger age-dependent effects of lower FA in Veterans with TBI than Veterans without in four components (q < 0.05), which are spatially unconstrained by traditionally defined WM tracts. One component, occupying the most peripheral location, exhibited significantly stronger age-dependent differences in Veterans with mTBI. We found NMF to be powerful and effective in detecting covarying patterns of FA associated with mTBI by applying standard parametric regression modeling. Our results highlight patterns of WM alteration that are differentially affected by TBI and mTBI in younger compared to older military Veterans.
Collapse
Affiliation(s)
- Heather C. Bouchard
- Duke‐UNC Brain Imaging and Analysis CenterDuke UniversityDurhamNorth CarolinaUSA
- Mid‐Atlantic Mental Illness Research Education and Clinical CenterDurham VA Medical CenterDurhamNorth CarolinaUSA
- Center for Brain, Biology & BehaviorUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Delin Sun
- Duke‐UNC Brain Imaging and Analysis CenterDuke UniversityDurhamNorth CarolinaUSA
- Mid‐Atlantic Mental Illness Research Education and Clinical CenterDurham VA Medical CenterDurhamNorth CarolinaUSA
| | - Emily L. Dennis
- Department of NeurologyUniversity of UtahSalt Lake CityUtahUSA
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Mary R. Newsome
- Michael E. DeBakey VA Medical CenterHoustonTexasUSA
- H. Ben Taub Department of Physical Medicine and RehabilitationBaylor College of MedicineHoustonTexasUSA
| | - Seth G. Disner
- Minneapolis VA Health Care SystemMinneapolisMinnesotaUSA
- Department of PsychiatryUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Jeremy Elman
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoSan DiegoCaliforniaUSA
| | - Annelise Silva
- Psychiatry Neuroimaging LaboratoryBrigham & Women's HospitalBostonMassachusettsUSA
| | - Carmen Velez
- Department of NeurologyUniversity of UtahSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Medical CenterSalt Lake CityUtahUSA
| | - Andrei Irimia
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Biomedical Engineering, Viterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Nicholas D. Davenport
- Minneapolis VA Health Care SystemMinneapolisMinnesotaUSA
- Department of PsychiatryUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Scott R. Sponheim
- Minneapolis VA Health Care SystemMinneapolisMinnesotaUSA
- Department of PsychiatryUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Carol E. Franz
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoSan DiegoCaliforniaUSA
| | - William S. Kremen
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoSan DiegoCaliforniaUSA
- Center of Excellence for Stress and Mental HealthVA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Michael J. Coleman
- Psychiatry Neuroimaging LaboratoryBrigham & Women's HospitalBostonMassachusettsUSA
| | - M. Wright Williams
- Michael E. DeBakey VA Medical CenterHoustonTexasUSA
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexasUSA
| | - Elbert Geuze
- Department of PsychiatryUniversity Medical CenterUtrechtNetherlands
- Brain Research & Innovation CentreMinistry of DefenceUtrechtNetherlands
| | - Inga K. Koerte
- Psychiatry Neuroimaging LaboratoryBrigham & Women's HospitalBostonMassachusettsUSA
| | - Martha E. Shenton
- Psychiatry Neuroimaging LaboratoryBrigham & Women's HospitalBostonMassachusettsUSA
| | - Maheen M. Adamson
- Rehabilitation ServiceVA Palo AltoPalo AltoCaliforniaUSA
- NeurosurgeryStanford School of MedicineStanfordCaliforniaUSA
| | - Raul Coimbra
- Department of SurgeryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Gerald Grant
- Department of NeurosurgeryStanford University Medical CenterPalo AltoCaliforniaUSA
| | - Lori Shutter
- Department of Critical Care MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Mark S. George
- Department of PsychiatryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Ross D. Zafonte
- Spaulding Rehabilitation HospitalMassachusetts General Hospital, Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Murray B. Stein
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
- Herbert Wertheim School of Public Health and Human Longevity ScienceUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics InstituteKeck School of Medicine of USCMarina del ReyCaliforniaUSA
- Department of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and OphthalmologyUniversity of Southern California (USC), Los AngelesCaliforniaUSA
- Department of PediatricsUSCLos AngelesCaliforniaUSA
- Department of PsychiatryUSCLos AngelesCaliforniaUSA
- Department of RadiologyUSCLos AngelesCaliforniaUSA
- Department of EngineeringUSCLos AngelesCaliforniaUSA
- Department of OphthalmologyUSCLos AngelesCaliforniaUSA
- Department of Radiology and Institute for Informatics, School of MedicineWashington University St. LouisSt. LouisMissouriUSA
| | - Elisabeth A. Wilde
- Department of NeurologyUniversity of UtahSalt Lake CityUtahUSA
- Michael E. DeBakey VA Medical CenterHoustonTexasUSA
- George E. Wahlen Veterans Affairs Medical CenterSalt Lake CityUtahUSA
| | - David F. Tate
- Department of NeurologyUniversity of UtahSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Medical CenterSalt Lake CityUtahUSA
| | - Aristeidis Sotiras
- Department of Radiology and Institute for Informatics, School of MedicineWashington University St. LouisSt. LouisMissouriUSA
| | - Rajendra A. Morey
- Duke‐UNC Brain Imaging and Analysis CenterDuke UniversityDurhamNorth CarolinaUSA
- Mid‐Atlantic Mental Illness Research Education and Clinical CenterDurham VA Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
95
|
Nanwa N, Wong V, Thompson AMS. Impact of Timing of Mental Health Interventions for Mild Traumatic Brain Injury Patients: A 10-year Matched Cohort Study of Workers' Compensation Claims. J Occup Environ Med 2022; 64:458-464. [PMID: 35761423 DOI: 10.1097/jom.0000000000002512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To examine the impact of timing of mental health interventions in workers' compensation claims for mild traumatic brain injury (MTBI). METHODS A 10-year matched retrospective cohort study of MTBI claims. Cases who started treatment within 3 months of the date of injury were hard matched to cases who started treatment more than 3 months after the date of injury. Outcomes were incremental cost difference and loss of earnings benefit duration 1 year after first intervention. RESULTS Seventeen percent (17%) of patients received mental health interventions. The early mental health intervention group had lower mean costs (incremental difference$1580 [95% CI: $5718 to $2085]) and shorter durations of disability (off loss of earnings) (59.2% versus 46.6%, NS). Sensitivity and stratified analyses demonstrated the same trend. CONCLUSIONS Early mental health interventions for MTBI patients may lead to reduced health care costs and shorter durations of disability.
Collapse
Affiliation(s)
- Natasha Nanwa
- From the Workplace Safety and Insurance Board, Ontario, Canada (Dr Nanwa, Dr Wong, Dr Thompson), Faculty of Medicine, University of Toronto, Ontario Canada (Dr Thompson), Dalla Lana School of Public Health, University of Toronto, Ontario, Canada (Dr Thompson)
| | | | | |
Collapse
|
96
|
Wilson L, Horton L, Polinder S, Newcombe V, von Steinbuechel N, Maas A, Menon D. Tailoring multidimensional outcomes to level of functional recovery after traumatic brain injury. J Neurotrauma 2022; 39:1363-1381. [PMID: 35607855 DOI: 10.1089/neu.2022.0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is increasing emphasis on multi-dimensional outcomes in traumatic brain injury (TBI), but achieving this aim is hampered by a plethora of overlapping assessment tools. There is a clear need for advice on the choice of outcomes and we examine level of functional recovery as a framework to guide selection of assessments. In this cohort study we analysed cross-sectional data from 2604 patients enrolled in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) project. Patients were followed up 6 months after injury and assessed on the Glasgow Outcome Scale-Extended (GOSE), cognitive tests, and patient-reported outcomes. We describe assessment completeness and prevalence of impairment. Relationships between outcomes were visualized using UpSet plots and hierarchical cluster analysis. GOSE categories varied markedly for both completion rates, 34-91% for patient reported outcomes and 9-81% for cognitive tests, and prevalence of impairment, 3-82% for patient reported outcomes and 9-59% for cognitive tests. In complete case samples, the GOSE identified impairment in 59-61%, while the most impaired patient reported outcome was the Short-Form 12 Physical Component Summary (28% overall), and the most impaired cognitive test was Trail Making Test Part A (19% overall). The findings show that degree of disability is a key context of use for cognitive tests and patient reported outcomes. Level of functional recovery provides a guide to the feasibility of different types of assessment and the likelihood of impairment, and can help tailor suitable assessment approaches to individuals and groups.
Collapse
Affiliation(s)
- Lindsay Wilson
- University of Stirling, Psychology, University of Stirling, Stirling, United Kingdom of Great Britain and Northern Ireland, FK9 4LA;
| | - Lindsay Horton
- University of Stirling, Psychology, Stirling, United Kingdom of Great Britain and Northern Ireland;
| | - Suzanne Polinder
- Erasmus MC, University Medical Center Rotterdam, Public Health, PO box 1738, Rotterdam, Netherlands, 3000 DR;
| | - Virginia Newcombe
- University of Cambridge, Division of Anaesthesia, Addenbrookes Hospital, Cambridge, Cambs, United Kingdom of Great Britain and Northern Ireland, cb2 0qq;
| | - Nicole von Steinbuechel
- University Medical Center Goettingen, Department of Medical Psychology and Medical Sociology, Waldweg 37, Goettingen, Germany, 37073;
| | - Andrew Maas
- University Hospital Antwerp, Neurosurgery, Wilrijkstraat 10, Edegem, Belgium, 2650.,Netherlands;
| | - David Menon
- University of Cambridge, Head, Division of Anaesthesia, Box 93, Addenbrooke's Hospital, Hills Road, Cambridge, Cambs, United Kingdom of Great Britain and Northern Ireland, CB2 2QQ;
| |
Collapse
|
97
|
Retel Helmrich IRA, van Klaveren D, Andelic N, Lingsma H, Maas A, Menon D, Polinder S, Røe C, Steyerberg EW, Van Veen E, Wilson L. Discrepancy between disability and reported well-being after traumatic brain injury. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-326615. [PMID: 35537823 PMCID: PMC9279746 DOI: 10.1136/jnnp-2021-326615] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 02/15/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Following traumatic brain injury (TBI), the clinical focus is often on disability. However, patients' perceptions of well-being can be discordant with their disability level, referred to as the 'disability paradox'. We aimed to examine the relationship between disability and health-related quality of life (HRQoL) following TBI, while taking variation in personal, injury-related and environment factors into account. METHODS We used data from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury study. Disability was assessed 6 months post-injury by the Glasgow Outcome Scale-Extended (GOSE). HRQoL was assessed by the SF-12v2 physical and mental component summary scores and the Quality of Life after Traumatic Brain Injury overall scale. We examined mean total and domain HRQoL scores by GOSE. We quantified variance in HRQoL explained by GOSE, personal, injury-related and environment factors with multivariable regression. RESULTS Six-month outcome assessments were completed in 2075 patients, of whom 78% had mild TBI (Glasgow Coma Scale 13-15). Patients with severe disability had higher HRQoL than expected on the basis of GOSE alone, particularly after mild TBI. Up to 50% of patients with severe disability reported HRQoL scores within the normative range. GOSE, personal, injury-related and environment factors explained a limited amount of variance in HRQoL (up to 29%). CONCLUSION Contrary to the idea that discrepancies are unusual, many patients with poor functional outcomes reported well-being that was at or above the boundary considered satisfactory for the normative sample. These findings challenge the idea that satisfactory HRQoL in patients with disability should be described as 'paradoxical' and question common views of what constitutes 'unfavourable' outcome.
Collapse
Affiliation(s)
| | - David van Klaveren
- Department of Public Health, Center for Medical Decision Making, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
- Predictive Analytics and Comparative Effectiveness Center, Institute for Clinical Research and Health Policy Studies/Tufts Medical Center, Boston, Massachusetts, USA
| | - Nada Andelic
- Research Centre for Habilitation and Rehabilitation Models and Services (CHARM), Department of Health and Society, University of Oslo, Oslo, Norway
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Hester Lingsma
- Department of Public Health, Center for Medical Decision Making, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Andrew Maas
- Department of Neurosurgery, University Hospital Antwerp, Edegem, Antwerp, Belgium
| | - David Menon
- Division of Anaesthesia, Cambridge University, Cambridge, Cambridgeshire, UK
| | - Suzanne Polinder
- Department of Public Health, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Cecilie Røe
- Research Centre for Habilitation and Rehabilitation Models and Services (CHARM), Department of Health and Society, University of Oslo, Oslo, Norway
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Ewout W Steyerberg
- Department of Public Health, Center for Medical Decision Making, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Ernest Van Veen
- Department of Public Health, Center for Medical Decision Making, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
- Department of Intensive Care, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Lindsay Wilson
- Division of Psychology, University of Stirling, Stirling, UK
| |
Collapse
|
98
|
Traumatic Stress and Depression Risk Screening at an ACS Verified Trauma Center. J Trauma Nurs 2022; 29:142-151. [PMID: 35536343 DOI: 10.1097/jtn.0000000000000640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Physiological trauma that requires admission to an emergency department may result in psychological distress. As many as 20%-40% of civilians who experience trauma develop traumatic stress disorders and depression postinjury. Yet, less than 10% of trauma centers implement screening for traumatic stress and depression risk. OBJECTIVE This project aimed to develop, implement, and evaluate a traumatic stress and depression risk screening policy. METHODS Twelve trauma advanced practice providers implemented the newly developed traumatic stress and depression risk screening policy at an American College of Surgeons verified Level II trauma center. Trauma patients admitted for greater than 24 hr, 14 years of age or older, with a Glasgow Coma Scale score greater than 13 were eligible for screening using the Injured Trauma Survivor Screen. RESULTS During the 6-week data collection period, 114 trauma patients presented to the emergency department. Of those, 82 (72%) met inclusion criteria, 77 (94%) eligible trauma patients were screened, and seven (9%) patients screened positive. Patients not eligible for screening were discharged within 24 hr or were too confused to answer questions. An evaluation survey revealed that the advanced practice providers thought that the screening policy was easy to use, feasible, not very time-consuming, and should be continued in the future. CONCLUSION This project demonstrated the ease and effectiveness of implementing a traumatic stress and depression risk screening policy and that only minor changes are needed to make it sustainable.
Collapse
|
99
|
Izzy S, Chen PM, Tahir Z, Grashow R, Radmanesh F, Cote DJ, Yahya T, Dhand A, Taylor H, Shih SL, Albastaki O, Rovito C, Snider SB, Whalen M, Nathan DM, Miller KK, Speizer FE, Baggish A, Weisskopf MG, Zafonte R. Association of Traumatic Brain Injury With the Risk of Developing Chronic Cardiovascular, Endocrine, Neurological, and Psychiatric Disorders. JAMA Netw Open 2022; 5:e229478. [PMID: 35482306 PMCID: PMC9051987 DOI: 10.1001/jamanetworkopen.2022.9478] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPORTANCE Increased risk of neurological and psychiatric conditions after traumatic brain injury (TBI) is well-defined. However, cardiovascular and endocrine comorbidity risk after TBI in individuals without these comorbidities and associations with post-TBI mortality have received little attention. OBJECTIVE To assess the incidence of cardiovascular, endocrine, neurological, and psychiatric comorbidities in patients with mild TBI (mTBI) or moderate to severe TBI (msTBI) and analyze associations between post-TBI comorbidities and mortality. DESIGN, SETTING, AND PARTICIPANTS This prospective longitudinal cohort study used hospital-based patient registry data from a tertiary academic medical center to select patients without any prior clinical comorbidities who experienced TBI from 2000 to 2015. Using the same data registry, individuals without head injuries, the unexposed group, and without target comorbidities were selected and age-, sex-, and race-frequency-matched to TBI subgroups. Patients were followed-up for up to 10 years. Data were analyzed in 2021. EXPOSURES Mild or moderate to severe head trauma. MAIN OUTCOMES AND MEASURES Cardiovascular, endocrine, neurologic, and psychiatric conditions were defined based on International Classification of Diseases, Ninth Revision (ICD-9) or International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10). Associations between TBI and comorbidities, as well as associations between the comorbidities and mortality, were analyzed. RESULTS A total of 4351 patients with mTBI (median [IQR] age, 45 [29-57] years), 4351 patients with msTBI (median [IQR] age, 47 [30-58] years), and 4351 unexposed individuals (median [IQR] age, 46 [30-58] years) were included in analyses. In each group, 45% of participants were women. mTBI and msTBI were significantly associated with higher risks of cardiovascular, endocrine, neurologic, and psychiatric disorders compared with unexposed individuals. In particular, hypertension risk was increased in both mTBI (HR, 2.5; 95% CI, 2.1-2.9) and msTBI (HR, 2.4; 95% CI, 2.0-2.9) groups. Diabetes risk was increased in both mTBI (HR, 1.9; 95% CI, 1.4-2.7) and msTBI (HR, 1.9; 95% CI, 1.4-2.6) groups, and risk of ischemic stroke or transient ischemic attack was also increased in mTBI (HR, 2.2; 95% CI, 1.4-3.3) and msTBI (HR, 3.6; 95% CI, 2.4-5.3) groups. All comorbidities in the TBI subgroups emerged within a median (IQR) of 3.49 (1.76-5.96) years after injury. Risks for post-TBI comorbidities were also higher in patients aged 18 to 40 years compared with age-matched unexposed individuals: hypertension risk was increased in the mTBI (HR, 5.9; 95% CI, 3.9-9.1) and msTBI (HR, 3.9; 95% CI, 2.5-6.1) groups, while hyperlipidemia (HR, 2.3; 95% CI, 1.5-3.4) and diabetes (HR, 4.6; 95% CI, 2.1-9.9) were increased in the mTBI group. Individuals with msTBI, compared with unexposed patients, had higher risk of mortality (432 deaths [9.9%] vs 250 deaths [5.7%]; P < .001); postinjury hypertension (HR, 1.3; 95% CI, 1.1-1.7), coronary artery disease (HR, 2.2; 95% CI, 1.6-3.0), and adrenal insufficiency (HR, 6.2; 95% CI, 2.8-13.0) were also associated with higher mortality. CONCLUSIONS AND RELEVANCE These findings suggest that TBI of any severity was associated with a higher risk of chronic cardiovascular, endocrine, and neurological comorbidities in patients without baseline diagnoses. Medical comorbidities were observed in relatively young patients with TBI. Comorbidities occurring after TBI were associated with higher mortality. These findings suggest the need for a targeted screening program for multisystem diseases after TBI, particularly chronic cardiometabolic diseases.
Collapse
Affiliation(s)
- Saef Izzy
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Patrick M Chen
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Zabreen Tahir
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Rachel Grashow
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- The Football Players Health Study at Harvard University, Boston, Massachusetts
| | - Farid Radmanesh
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - David J Cote
- Harvard Medical School, Boston, Massachusetts
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles
| | - Taha Yahya
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Amar Dhand
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Network Science Institute, Northeastern University, Boston, Massachusetts
| | - Herman Taylor
- The Football Players Health Study at Harvard University, Boston, Massachusetts
- Morehouse School of Medicine, Atlanta, Georgia
| | - Shirley L Shih
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Brigham and Women's Hospital, Boston
| | - Omar Albastaki
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Craig Rovito
- Spaulding Rehabilitation Hospital, Charlestown, Massachusetts
| | - Samuel B Snider
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Michael Whalen
- Department of Pediatrics, Massachusetts General Hospital, Boston
| | - David M Nathan
- Harvard Medical School, Boston, Massachusetts
- The Football Players Health Study at Harvard University, Boston, Massachusetts
- Diabetes Center, Massachusetts General Hospital, Boston
| | - Karen K Miller
- Harvard Medical School, Boston, Massachusetts
- The Football Players Health Study at Harvard University, Boston, Massachusetts
- Neuroendocrine Unit, Massachusetts General Hospital, Boston
| | - Frank E Speizer
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- The Football Players Health Study at Harvard University, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Aaron Baggish
- Harvard Medical School, Boston, Massachusetts
- The Football Players Health Study at Harvard University, Boston, Massachusetts
- Department of Internal Medicine, Cardiovascular Performance Center, Massachusetts General Hospital, Boston
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- The Football Players Health Study at Harvard University, Boston, Massachusetts
| | - Ross Zafonte
- Harvard Medical School, Boston, Massachusetts
- The Football Players Health Study at Harvard University, Boston, Massachusetts
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Brigham and Women's Hospital, Boston
- Spaulding Rehabilitation Hospital, Charlestown, Massachusetts
| |
Collapse
|
100
|
Agrawal S, Leurgans SE, James BD, Barnes LL, Mehta RI, Dams-O’Connor K, Mez J, Bennett DA, Schneider JA. Association of Traumatic Brain Injury With and Without Loss of Consciousness With Neuropathologic Outcomes in Community-Dwelling Older Persons. JAMA Netw Open 2022; 5:e229311. [PMID: 35476062 PMCID: PMC9047640 DOI: 10.1001/jamanetworkopen.2022.9311] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Importance A history of traumatic brain injury (TBI) has been considered a risk factor for Alzheimer dementia. However, the specific association of TBI, even without loss of consciousness (LOC), with pathologic findings that underlie Alzheimer dementia, including Alzheimer disease (AD), non-AD neurodegenerative, and vascular pathologic findings, remains unclear. Objective To examine the association between TBI with and without LOC and neuropathologic findings in community-based cohorts. Design, Setting, and Participants This cross-sectional analysis used neuropathologic data from 1689 participants from the Religious Orders Study, the Rush Memory and Aging Project, and the Minority Aging Research Study. These studies began enrollment in 1994, 1997, and 2004, respectively. The current study's data set was frozen on April 3, 2021, when the mean (SD) length of follow-up for the participants was 8.7 (5.5) years. Exposure Traumatic brain injury exposure was assessed using a standardized, self-reported questionnaire at baseline and annual follow-up visits. Participants were categorized into those (1) without TBI exposure (n = 1024), (2) with TBI with LOC (n = 161), or (3) with TBI without LOC (n = 504). Main Outcomes and Measures Neuropathologic measures of amyloid-β, paired helical filament tangles, neocortical Lewy bodies, transactive response DNA-binding protein 43, hippocampal sclerosis, gross infarcts, and microinfarcts were assessed. Multiple linear regression and logistic regression models were used to determine whether TBI with or without LOC (compared with no TBI exposure as the reference group) was associated with neuropathologic outcomes after adjusting for age at death, sex, and educational level. Whether the apolipoprotein E (APOE) ε4 allele and sex differences modified associations was also examined. Results A total of 1689 participants (1138 [67%] women and 551 [33%] men; mean [SD] age at death, 89.2 [6.7] years; 80 [5%] Black, 46 [3%] Latino, 1639 [97%] non-Latino, and 1601 [95%] White) participated in the study. Compared with participants without TBI, participants with TBI with LOC had a greater amyloid-β load (estimate, 0.25; 95% CI, 0.06-0.43; P = .008) and higher odds of having 1 or more gross infarcts (odds ratio [OR], 1.45; 95% CI, 1.04-2.02; P = .02) and 1 or more microinfarcts (OR, 1.70; 95% CI, 1.21-2.38; P = .002), particularly subcortical microinfarcts (OR, 1.85; 95% CI, 1.23-2.79; P = .002). Those with TBI without LOC had higher odds of neocortical Lewy bodies (OR, 1.37; 95% CI, 1.01-1.87; P = .04) and 1 or more cortical microinfarcts (OR, 1.43; 95% CI, 1.09-1.87; P = .008). The association of TBI with and without LOC with vascular pathologic outcomes persisted after controlling for vascular risk factors and vascular disease burden. Traumatic brain injury with or without LOC was not associated with paired helical filament tangles, transactive response DNA-binding protein 43, or hippocampal sclerosis. No interactions occurred with APOE ε4 or sex. Conclusions and Relevance This cross-sectional analysis suggests that a history of TBI, even without LOC, is associated with age-related neuropathologic outcomes, both neurodegenerative and vascular. The variation in the neuropathologic outcomes in individuals with and without LOC may provide clues to potential mechanisms, diagnoses, and management in persons with TBI.
Collapse
Affiliation(s)
- Sonal Agrawal
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Pathology, Rush University Medical Center, Chicago, Illinois
| | - Sue E. Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Bryan D. James
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Lisa L. Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Rupal I. Mehta
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Pathology, Rush University Medical Center, Chicago, Illinois
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance, Mt Sinai School of Medicine, New York, New York
- Department of Neurology, Mt Sinai School of Medicine, New York, New York
| | - Jesse Mez
- Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, Massachusetts
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Pathology, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|