51
|
Taghizadeh M, Maghsoudi N, Manaheji H, Akparov V, Baniasadi M, Mohammadi M, Danyali S, Ghasemi R, Zaringhalam J. Noopept; a nootropic dipeptide, modulates persistent inflammation by effecting spinal microglia dependent Brain Derived Neurotropic Factor (BDNF) and pro-BDNF expression throughout apoptotic process. Heliyon 2021; 7:e06219. [PMID: 33644478 PMCID: PMC7895721 DOI: 10.1016/j.heliyon.2021.e06219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/08/2020] [Accepted: 02/04/2021] [Indexed: 11/21/2022] Open
Abstract
There are largely unknown associations between changes in pain behavior responses during persistent peripheral inflammation and spinal cell alteration such as apoptosis. Some evidence suggests that microglia and microglia related mediators play notable roles in induction and maintenance of central nervous system pathologies and inflammatory pain. By considering those relationships and microglia related nootrophic factors, such as the Brain Derived Neurotrophic Factor (BDNF) in CNS, we attempted to assess the relationship between microglia dependent BDNF and its precursor with pain behavior through spinal cell apoptosis as well as the effect of Noopept on this relationship. Persistent peripheral inflammation was induced by a single subcutaneous injection of Complete Freund's Adjuvant (CFA) on day 0. Thermal hyperalgesia, paw edema, microglial activity, microglia dependent BDNF, pro-BDNF expression, and apoptosis were assessed in different experimental groups by confirmed behavioral and molecular methods on days 0, 7, and 21 of the study. Our findings revealed hyperalgesia and spinal cell apoptosis significantly increased during the acute phase of CFA-induced inflammation but was then followed by a decrement in the chronic phase of the study. Aligned with these variations in spinal microglial activity, microglia dependent BDNF significantly increased during the acute phase of CFA-induced inflammation. Our results also indicated that daily administration of Noopept (during 21 days of the study) not only caused a significant decrease in hyperalgesia and microglia dependent BDNF expression but also changed the apoptosis process in relation to microglia activity alteration. It appears that the administration of Noopept can decrease spinal cell apoptosis and hyperalgesia during CFA-induced inflammation due to its direct effects on microglial activity and microglia dependent BDNF and pro-BDNF expression.
Collapse
Affiliation(s)
- Mona Taghizadeh
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Maghsoudi
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA.,Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Manaheji
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Valery Akparov
- State Research Institute for Genetics and Selection of Industrial Microorganisms, 117545, Moscow, Russia
| | - Mansoureh Baniasadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mola Mohammadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Danyali
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Zaringhalam
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
52
|
Djuretić J, Dimitrijević M, Stojanović M, Stevuljević JK, Hamblin MR, Micov A, Stepanović-Petrović R, Leposavić G. Infrared radiation from cage bedding moderates rat inflammatory and autoimmune responses in collagen-induced arthritis. Sci Rep 2021; 11:2882. [PMID: 33536461 PMCID: PMC7858598 DOI: 10.1038/s41598-021-81999-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022] Open
Abstract
The development of collagen type II (CII)-induced arthritis (CIA), a model of rheumatoid arthritis, in rats housed in cages with bedding composed of Celliant fibres containing ceramic particles, which absorb body heat and re-emit the energy back to the body in the form of infrared radiation (+IRF rats), and those housed in cages with standard wooden shaving bedding (-IRF control rats) was examined. The appearance of the first signs of CIA was postponed, while the disease was milder (judging by the arthritic score, paw volume, and burrowing behaviour) in +IRF compared with -IRF rats. This correlated with a lower magnitude of serum anti-CII IgG antibody levels in +IRF rats, and lower production level of IL-17, the Th17 signature cytokine, in cultures of their paws. This could be partly ascribed to impaired migration of antigen-loaded CD11b + dendritic cells and their positioning within lymph nodes in +IRF rats reflecting diminished lymph node expression of CCL19 /CCL21. Additionally, as confirmed in rats with carrageenan-induced paw inflammation (CIPI), the infrared radiation from Celliant fibres, independently from immunomodulatory effects, exerted anti-inflammatory effects (judging by a shift in pro-inflammatory mediator to anti-inflammatory/immunoregulatory mediator ratio towards the latter in paw cultures) and ameliorated burrowing behaviour in CIA rats.
Collapse
Affiliation(s)
- Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marija Stojanović
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Jelena Kotur Stevuljević
- Department of Biochemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Ana Micov
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Radica Stepanović-Petrović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia.
| |
Collapse
|
53
|
Gyöngyösi A, Verner V, Bereczki I, Kiss-Szikszai A, Zilinyi R, Tósaki Á, Bak I, Borbás A, Herczegh P, Lekli I. Basic Pharmacological Characterization of EV-34, a New H 2S-Releasing Ibuprofen Derivative. Molecules 2021; 26:599. [PMID: 33498831 PMCID: PMC7865354 DOI: 10.3390/molecules26030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cardioprotective effects of H2S are being suggested by numerous studies. Furthermore, H2S plays a role in relaxation of vascular smooth muscle, protects against oxidative stress, and modulates inflammation. Long-term high-dose use of NSAIDs, such as ibuprofen, have been associated with enhanced cardiovascular risk. The goal of the present work is the synthesis and basic pharmacological characterization of a newly designed H2S-releasing ibuprofen derivative. METHODS Following the synthesis of EV-34, a new H2S-releasing derivative of ibuprofen, oxidative stability assays were performed (Fenton and porphyrin assays). Furthermore, stability of the molecule was studied in rat serum and liver lysates. H2S-releasing ability of the EC-34 was studied with a hydrogen sulfide sensor. MTT (3-(4,5-dimethylthiazol 2-yl)-2,5-(diphenyltetrazolium bromide)) assay was carried out to monitor the possible cytotoxic effect of the compound. Cyclooxygenase (COX) inhibitory property of EV-34 was also evaluated. Carrageenan assay was carried out to compare the anti-inflammatory effect of EV-34 to ibuprofen in rat paws. RESULTS The results revealed that the molecule is stable under oxidative condition of Fenton reaction. However, EV-34 undergoes biodegradation in rat serum and liver lysates. In cell culture medium H2S is being released from EV-34. No cytotoxic effect was observed at concentrations of 10, 100, 500 µM. The COX-1 and COX-2 inhibitory effects of the molecule are comparable to those of ibuprofen. Furthermore, based on the carrageenan assay, EV-34 exhibits the same anti-inflammatory effect to that of equimolar amount of ibuprofen (100 mg/bwkg). CONCLUSION The results indicate that EV-34 is a safe H2S releasing ibuprofen derivative bearing anti-inflammatory properties.
Collapse
Affiliation(s)
- Alexandra Gyöngyösi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (A.G.); (V.V.); (R.Z.); (Á.T.)
| | - Vivien Verner
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (A.G.); (V.V.); (R.Z.); (Á.T.)
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (I.B.); (A.B.); (P.H.)
| | - Attila Kiss-Szikszai
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Rita Zilinyi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (A.G.); (V.V.); (R.Z.); (Á.T.)
| | - Árpád Tósaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (A.G.); (V.V.); (R.Z.); (Á.T.)
| | - István Bak
- Department of Bioanalytical Chemistry, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (I.B.); (A.B.); (P.H.)
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (I.B.); (A.B.); (P.H.)
| | - István Lekli
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (A.G.); (V.V.); (R.Z.); (Á.T.)
| |
Collapse
|
54
|
Lacasta A, Mody KT, De Goeyse I, Yu C, Zhang J, Nyagwange J, Mwalimu S, Awino E, Saya R, Njoroge T, Muriuki R, Ndiwa N, Poole EJ, Zhang B, Cavallaro A, Mahony TJ, Steinaa L, Mitter N, Nene V. Synergistic Effect of Two Nanotechnologies Enhances the Protective Capacity of the Theileria parva Sporozoite p67C Antigen in Cattle. THE JOURNAL OF IMMUNOLOGY 2021; 206:686-699. [PMID: 33419770 PMCID: PMC7851744 DOI: 10.4049/jimmunol.2000442] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/03/2020] [Indexed: 11/19/2022]
Abstract
East Coast fever (ECF), caused by Theileria parva, is the most important tick-borne disease of cattle in sub-Saharan Africa. Practical disadvantages associated with the currently used live-parasite vaccine could be overcome by subunit vaccines. An 80-aa polypeptide derived from the C-terminal portion of p67, a sporozoite surface Ag and target of neutralizing Abs, was the focus of the efforts on subunit vaccines against ECF and subjected to several vaccine trials with very promising results. However, the vaccination regimen was far from optimized, involving three inoculations of 450 μg of soluble p67C (s-p67C) Ag formulated in the Seppic adjuvant Montanide ISA 206 VG. Hence, an improved formulation of this polypeptide Ag is needed. In this study, we report on two nanotechnologies that enhance the bovine immune responses to p67C. Individually, HBcAg-p67C (chimeric hepatitis B core Ag virus-like particles displaying p67C) and silica vesicle (SV)-p67C (s-p67C adsorbed to SV-140-C18, octadecyl-modified SVs) adjuvanted with ISA 206 VG primed strong Ab and T cell responses to p67C in cattle, respectively. Coimmunization of cattle (Bos taurus) with HBcAg-p67C and SV-p67C resulted in stimulation of both high Ab titers and CD4 T cell response to p67C, leading to the highest subunit vaccine efficacy we have achieved to date with the p67C immunogen. These results offer the much-needed research depth on the innovative platforms for developing effective novel protein-based bovine vaccines to further the advancement.
Collapse
Affiliation(s)
- Anna Lacasta
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya;
| | - Karishma T Mody
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ine De Goeyse
- Enzootic, Vector-borne and Bee Diseases, Sciensano, 1180 Brussels, Belgium.,Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - James Nyagwange
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Stephen Mwalimu
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Elias Awino
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Rosemary Saya
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Thomas Njoroge
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Robert Muriuki
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Nicholas Ndiwa
- Research Methods Group, International Livestock Research Institute, Nairobi 00100, Kenya; and
| | - Elisabeth Jane Poole
- Research Methods Group, International Livestock Research Institute, Nairobi 00100, Kenya; and
| | - Bing Zhang
- Department of Agriculture and Fisheries, Brisbane, Queensland 4102, Australia
| | - Antonino Cavallaro
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy J Mahony
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lucilla Steinaa
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vishvanath Nene
- Animal and Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya
| |
Collapse
|
55
|
Optimization and Pharmacokinetic Study of Boswellic Acid–Loaded Chitosan-Guggul Gum Nanoparticles Using Box-Behnken Experimental Design. J Pharm Innov 2021. [DOI: 10.1007/s12247-020-09527-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
56
|
Leiguarda C, Potilinski C, Rubione J, Tate P, Villar MJ, Montaner A, Bisagno V, Constandil L, Brumovsky PR. IMT504 Provides Analgesia by Modulating Cell Infiltrate and Inflammatory Milieu in a Chronic Pain Model. J Neuroimmune Pharmacol 2020; 16:651-666. [PMID: 33221983 DOI: 10.1007/s11481-020-09971-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022]
Abstract
IMT504 is a non-CPG, non-coding synthetic oligodeoxinucleotide (ODN) with immunomodulatory properties and a novel inhibitory role in pain transmission, exerting long-lasting analgesic effects upon multiple systemic administrations. However, its mechanisms of anti-nociceptive action are still poorly understood. In the present study in male adult rats undergoing complete Freund's adjuvant-induced hindpaw inflammation, we focused in the analysis of the immunomodulatory role of IMT504 over the cellular infiltrate, the impact on the inflammatory milieu, and the correlation with its anti-allodynic role. By means of behavioral analysis, we determined that a single subcutaneous administration of 6 mg/kg of IMT504 is sufficient to exert a 6-week-long full reversal of mechanical and cold allodynia, compromising neither acute pain perception nor locomotor activity. Importantly, we found that the anti-nociceptive effects of systemic IMT504, plus quick reductions in hindpaw edema, were associated with a modulatory action upon cellular infiltrate of B-cells, macrophages and CD8+ T-cells populations. Accordingly, we observed a profound downregulation of several inflammatory leukocyte adhesion proteins, chemokines and cytokines, as well as of β-endorphin and an increase in the anti-inflammatory cytokine, interleukin-10. Altogether, we demonstrate that at least part of the anti-nociceptive actions of IMT504 relate to the modulation of the peripheral immune system at the site of injury, favoring a switch from pro- to anti-inflammatory conditions, and provide further support to its use against chronic inflammatory pain. Graphical abstract GA short description - IMT504 systemic Administration. Systemic administration of the non-CpG ODN IMT504 results in a 6-week long blockade of pain-like behavior in association with anti-inflammatory responses at the site of injury. These include modulation of lymphoid and myeloid populations plus downregulated expression levels of multiple pro-inflammatory cytokines and β-endorphin. Nocifensive responses and locomotion remain unaltered.
Collapse
Affiliation(s)
- Candelaria Leiguarda
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500 B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Constanza Potilinski
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500 B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Julia Rubione
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500 B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Pablo Tate
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500 B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Marcelo J Villar
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500 B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Alejandro Montaner
- Instituto de Ciencia y Tecnología "Dr. César Milstein", CONICET-Fundación Pablo Cassará, Buenos Aires, Argentina
| | - Verónica Bisagno
- Instituto de Investigaciones Farmacológicas, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis Constandil
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Pablo R Brumovsky
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Juan D. Perón 1500 B1629AHJ, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
57
|
Abboud C, Duveau A, Bouali-Benazzouz R, Massé K, Mattar J, Brochoire L, Fossat P, Boué-Grabot E, Hleihel W, Landry M. Animal models of pain: Diversity and benefits. J Neurosci Methods 2020; 348:108997. [PMID: 33188801 DOI: 10.1016/j.jneumeth.2020.108997] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022]
Abstract
Chronic pain is a maladaptive neurological disease that remains a major health problem. A deepening of our knowledge on mechanisms that cause pain is a prerequisite to developing novel treatments. A large variety of animal models of pain has been developed that recapitulate the diverse symptoms of different pain pathologies. These models reproduce different pain phenotypes and remain necessary to examine the multidimensional aspects of pain and understand the cellular and molecular basis underlying pain conditions. In this review, we propose an overview of animal models, from simple organisms to rodents and non-human primates and the specific traits of pain pathologies they model. We present the main behavioral tests for assessing pain and investing the underpinning mechanisms of chronic pathological pain. The validity of animal models is analysed based on their ability to mimic human clinical diseases and to predict treatment outcomes. Refine characterization of pathological phenotypes also requires to consider pain globally using specific procedures dedicated to study emotional comorbidities of pain. We discuss the limitations of pain models when research findings fail to be translated from animal models to human clinics. But we also point to some recent successes in analgesic drug development that highlight strategies for improving the predictive validity of animal models of pain. Finally, we emphasize the importance of using assortments of preclinical pain models to identify pain subtype mechanisms, and to foster the development of better analgesics.
Collapse
Affiliation(s)
- Cynthia Abboud
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France; Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France; Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Alexia Duveau
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Karine Massé
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Joseph Mattar
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Louison Brochoire
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Pascal Fossat
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Eric Boué-Grabot
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Walid Hleihel
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Lebanon; Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Marc Landry
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
58
|
Basal WT, Issa AM, Mohammed SES, Mazen SAE. In vivo evaluation of the toxicity, genotoxicity, histopathological, and anti-inflammatory effects of the purified bioglycerol byproduct in biodiesel industry. J Genet Eng Biotechnol 2020; 18:61. [PMID: 33057939 PMCID: PMC7561648 DOI: 10.1186/s43141-020-00079-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Biodiesel has gained an increased popularity as a good alternative for fossil fuel because of its unusual qualities as a biodegradable, nontoxic, and renewable diesel fuel. Hence, the economic utilization of the accumulated bioglycerol byproduct became critically important for the sustainability of biodiesel industry. The purified bioglycerol might be used as a valuable industrial stock in cosmetic, medical, and food industries. However, if the purified product is going to be used in food, drug, or any industry that involves its ingestion or skin contact by human or animals, the product should be thoroughly tested on animal models. RESULTS The present study investigated the acute toxicity, anti-inflammatory, histopathological, and genotoxic effects of zeolite-purified biogylcerol on different animal models. All the previous tests proved the ability of the purification process to improve the qualities of the crude bioglycerol to a degree comparable to the pharmaceutical grade glycerol. CONCLUSION In other words, it could be concluded that zeolite-purified bioglycerol can be used in different industries that involves products consumed by human or animals.
Collapse
Affiliation(s)
- Wesam Taha Basal
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Aliaa Mahmoud Issa
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | | | | |
Collapse
|
59
|
Molecular Pathways Linking Oxylipins to Nociception in Rats. THE JOURNAL OF PAIN 2020; 22:275-299. [PMID: 33031942 DOI: 10.1016/j.jpain.2020.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Oxylipins are lipid peroxidation products that participate in nociceptive, inflammatory, and vascular responses to injury. Effects of oxylipins depend on tissue-specific differences in accumulation of precursor polyunsaturated fatty acids and the expression of specific enzymes to transform the precursors. The study of oxylipins in nociception has presented technical challenges leading to critical knowledge gaps in the way these molecules operate in nociception. We applied a systems-based approach to characterize oxylipin precursor fatty acids, and expression of genes coding for proteins involved in biosynthesis, transport, signaling and inactivation of pro- and antinociceptive oxylipins in pain circuit tissues. We further linked these pathways to nociception by demonstrating intraplantar carrageenan injection induced gene expression changes in oxylipin biosynthetic pathways. We determined functional-biochemical relevance of the proposed pathways in rat hind paw and dorsal spinal cord by measuring basal and stimulated levels of oxylipins throughout the time-course of carrageenan-induced inflammation. Finally, when oxylipins were administered by intradermal injection we observed modulation of nociceptive thermal hypersensitivity, providing a functional-behavioral link between oxylipins, their molecular biosynthetic pathways, and involvement in pain and nociception. Together, these findings advance our understanding of molecular lipidomic systems linking oxylipins and their precursors to nociceptive and inflammatory signaling pathways in rats. PERSPECTIVE: We applied a systems approach to characterize molecular pathways linking precursor lipids and oxylipins to nociceptive signaling. This systematic, quantitative evaluation of the molecular pathways linking oxylipins to nociception provides a framework for future basic and clinical research investigating the role of oxylipins in pain.
Collapse
|
60
|
Anti-inflammatory and antinociceptive activity profile of a new lead compound - LQFM219. Int Immunopharmacol 2020; 88:106893. [PMID: 32892073 DOI: 10.1016/j.intimp.2020.106893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022]
Abstract
LQFM219 is a molecule designed from celecoxibe (COX-2 inhibitor) and darbufelone (inhibitor of COX-2 and 5-LOX) lead compounds through a molecular hybridisation strategy. Therefore, this work aimed to investigate the antinociceptive and anti-inflammatory activities of this new hybrid compound. The acute oral systemic toxicity of LQFM219 was evaluated via the neutral red uptake assay. Acetic acid-induced abdominal writhing and CFA-induced mechanical hyperalgesia were performed to evaluate the antinociceptive activity, and the anti-oedematogenic activity was studied by CFA-induced paw oedema and croton oil-induced ear oedema. Moreover, the acute anti-inflammatory activity was determined by carrageenan-induced pleurisy. In addition, cell migration, myeloperoxidase enzyme activity, and TNF-α and IL-1β levels were determined in pleural exudate. Moreover, a redox assay was conducted using electroanalytical and DPPH methods. The results demonstrated that LQFM219 was classified as GHS category 4, and it showed better free radical scavenger activity compared to BHT. Besides, LQFM219 decreased the number of writhings induced by acetic acid and the response to the mechanical stimulus in the CFA-induced mechanical hyperalgesia test. Furthermore, LQFM219 reduced oedema formation, cell migration, and IL-1β and TNF-α levels in the pleural cavity and inhibited myeloperoxidase enzyme activity. Thus, our study provides that the new pyrazole derivative, LQFM219, demonstrated low toxicity, antinociceptive and anti-inflammatory potential in vitro and in vivo.
Collapse
|
61
|
Laborc KF, Spekker E, Bohár Z, Szűcs M, Nagy-Grócz G, Fejes-Szabó A, Vécsei L, Párdutz Á. Trigeminal activation patterns evoked by chemical stimulation of the dura mater in rats. J Headache Pain 2020; 21:101. [PMID: 32799798 PMCID: PMC7429748 DOI: 10.1186/s10194-020-01169-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Although migraine is one of the most common primary headaches, its therapy is still limited in many cases. The use of animal models is crucial in the development of novel therapeutic strategies, but unfortunately, none of them show all aspects of the disease, therefore, there is a constant need for further improvement in this field. The application of inflammatory agents on the dura mater is a widely accepted method to mimic neurogenic inflammation in rodents, which plays a key role in the pathomechanism of migraine. Complete Freund's Adjuvant (CFA), and a mixture of inflammatory mediators, called inflammatory soup (IS) are often used for this purpose. METHODS To examine the activation pattern that is caused by chemical stimulation of dura mater, we applied CFA or IS over the right parietal lobe. After 2 h and 4 h (CFA groups), or 2.5 h and 4 h (IS groups), animals were perfused, and c-Fos immunoreactive cells were counted in the caudal trigeminal nucleus. To explore every pitfall, we examined whether our surgical procedure (anesthetic drug, stereotaxic apparatus, local lidocaine) can alter the results under the same experimental settings. c-Fos labeled cells were counted in the second-order neuron area based on the somatotopic organization of the trigeminal nerve branches. RESULTS We could not find any difference between the CFA and physiological saline group neither 2 h, nor 4 h after dural stimulation. IS caused significant difference after both time points between IS treated and control group, and between treated (right) and control (left) side. Stereotaxic frame usage had a substantial effect on the obtained results. CONCLUSIONS Counting c-Fos immunoreactive cells based on somatotopic organization of the trigeminal nerve helped to examine the effect of chemical stimulation of dura in a more specific way. As a result, the use of IS over the parietal lobe caused activation in the area of the ophthalmic nerve. To see this effect, the use of lidocaine anesthesia is indispensable. In conclusion, application of IS on the dura mater induces short-term, more robust c-Fos activation than CFA, therefore it might offer a better approach to model acute migraine headache in rodents.
Collapse
Affiliation(s)
- Klaudia Flóra Laborc
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Eleonóra Spekker
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Mónika Szűcs
- Department of Medical Physics and Informatics, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Gábor Nagy-Grócz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Annamária Fejes-Szabó
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary.
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary.
- Interdisciplinary Excellence Center, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Árpád Párdutz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| |
Collapse
|
62
|
Capsaicin-Cyclodextrin Complex Enhances Mepivacaine Targeting and Improves Local Anesthesia in Inflamed Tissues. Int J Mol Sci 2020; 21:ijms21165741. [PMID: 32785200 PMCID: PMC7460887 DOI: 10.3390/ijms21165741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 02/02/2023] Open
Abstract
Acidic environments, such as in inflamed tissues, favor the charged form of local anesthetics (LA). Hence, these drugs show less cell permeation and diminished potency. Since the analgesic capsaicin (CAP) triggers opening of the TRPV1 receptor pore, its combination with LAs could result in better uptake and improved anesthesia. We tested the above hypothesis and report here for the first time the analgesia effect of a two-drug combination (LA and CAP) on an inflamed tissue. First, CAP solubility increased up to 20 times with hydroxypropyl-beta-cyclodextrin (HP-β-CD), as shown by the phase solubility study. The resulting complex (HP-β-CD-CAP) showed 1:1 stoichiometry and high association constant, according to phase-solubility diagrams and isothermal titration calorimetry data. The inclusion complex formation was also confirmed and characterized by differential scanning calorimetry (DSC), X-ray diffraction, and 1H-NMR. The freeze-dried complex showed physicochemical stability for at least 12 months. To test in vivo performance, we used a pain model based on mouse paw edema. Results showed that 2% mepivacaine injection failed to anesthetize mice inflamed paw, but its combination with complexed CAP resulted in pain control up to 45 min. These promising results encourages deeper research of CAP as an adjuvant for anesthesia in inflamed tissues and cyclodextrin as a solubilizing agent for targeting molecules in drug delivery.
Collapse
|
63
|
Palmano KP, MacGibbon AKH, Gunn CA, Schollum LM. In Vitro and In Vivo Anti-inflammatory Activity of Bovine Milkfat Globule (MFGM)-derived Complex Lipid Fractions. Nutrients 2020; 12:E2089. [PMID: 32679677 PMCID: PMC7400859 DOI: 10.3390/nu12072089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022] Open
Abstract
Numerous health related properties have been reported for bovine milk fat globule membrane (MFGM) and its components. Here we present novel data on the in vitro and in vivo anti-inflammatory activity of various MFGM preparations which confirm and extend the concept of MFGM as a dietary anti-inflammatory agent. Cell-based assays were used to test the ability of MFGM preparations to modulate levels of the inflammatory mediators IL-1β, nitric oxide, superoxide anion, cyclo-oxygenase-2, and neutrophil elastase. In rat models of arthritis, using MFGM fractions as dietary interventions, the phospholipid-enriched MFGM isolates were effective in reducing adjuvant-induced paw swelling while there was a tendency for the ganglioside-enriched isolate to reduce carrageenan-induced rat paw oedema. These results indicate that the anti-inflammatory activity of MFGM, rather than residing in a single component, is contributed to by an array of components acting in concert against various inflammatory targets. This confirms the potential of MFGM as a nutritional intervention for the mitigation of chronic and acute inflammatory conditions.
Collapse
Affiliation(s)
- Kate P. Palmano
- Retired from Fonterra Research & Development Centre, Palmerston North 4442, New Zealand;
| | | | - Caroline A. Gunn
- Fonterra Research & Development Centre, Palmerston North 4442, New Zealand; (C.A.G.); (L.M.S.)
| | - Linda M. Schollum
- Fonterra Research & Development Centre, Palmerston North 4442, New Zealand; (C.A.G.); (L.M.S.)
| |
Collapse
|
64
|
Duarte Y, Cáceres J, Sepúlveda RV, Arriagada D, Olivares P, Díaz-Franulic I, Stehberg J, González-Nilo F. Novel TRPV1 Channel Agonists With Faster and More Potent Analgesic Properties Than Capsaicin. Front Pharmacol 2020; 11:1040. [PMID: 32760273 PMCID: PMC7372189 DOI: 10.3389/fphar.2020.01040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/26/2020] [Indexed: 01/12/2023] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) ion channel is a member of the family of Transient Receptor Potential (TRP) channels that acts as a molecular detector of noxious signals in primary sensory neurons. Activated by capsaicin, heat, voltage and protons, it is also well known for its desensitization, which led to the medical use of topically applied TRPV1 agonist capsaicin for its long-lasting analgesic effects. Here we report three novel small molecules, which were identified using a Structure-Based Virtual Screening for TRPV1 from the ZINC database. The three compounds were tested using electrophysiological assays, which confirmed their capsaicin-like agonist activity. von Frey filaments were used to measure the analgesic effects of the compounds applied topically on tactile allodynia induced by intra-plantar carrageenan. All compounds had anti-nociceptive activity, but two of them showed faster and longer lasting analgesic effects than capsaicin. The present results suggest that TRPV1 agonists different from capsaicin could be used to develop topical analgesics with faster onset and more potent effects.
Collapse
Affiliation(s)
- Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Javier Cáceres
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Romina V Sepúlveda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Diego Arriagada
- Laboratorio de Neurobiologia, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pedro Olivares
- Laboratorio de Neurobiologia, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Ignacio Díaz-Franulic
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiologia, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Fernando González-Nilo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
65
|
Petryk N, Shevchenko O. Mesenchymal Stem Cells Anti-Inflammatory Activity in Rats: Proinflammatory Cytokines. J Inflamm Res 2020; 13:293-301. [PMID: 32753930 PMCID: PMC7354011 DOI: 10.2147/jir.s256932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/27/2020] [Indexed: 01/08/2023] Open
Abstract
Introduction Many widespread intractable diseases are caused or supported by chronic inflammation. Such conditions include the 2nd type of diabetes mellitus, atherosclerosis, neurodegenerative diseases, chronic inflammatory diseases of the connective tissue - ankylosing spondylitis, rheumatoid arthritis, autoimmune myositis, etc. Therefore, the search for targeted treatment of these illnesses is extremely in high demand. Immunomodulatory activity of mesenchymal stem cells is one of their remarkable properties. Several biomarkers (cytokines and nonspecific proteins) are known to be associated with chronic inflammation. Methods Our study aimed to investigate the serum levels of tumor necrosis factor-alpha, interleukin 6 and C-reactive protein in carrageenan myositis in rats, because there is more and more evidence of the significance of these markers in the course and resolution of the diseases mentioned above. For the first time in our experiment, it was shown and evaluated using analysis of variance, how MSCs influence the indicators of proinflammatory cytokines on the model of carrageenan myositis. The levels of α-TNF, IL-6 and CRP in the plasma of rats were studied in groups with chronic carrageenan inflammation and chronic inflammation with local injection of MSCs into the affected area. Results Our study proved the effectiveness of MSCs by showing a significant decrease in the levels of inflammatory mediators in the plasma of the studied animals. Discussion and Conclusions Thus, the administration of MSCs is a promising tool in the pathogenic treatment of chronic inflammation and concomitant conditions. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/pgtl5EA7NJk
Collapse
Affiliation(s)
- Nataliia Petryk
- Department of Pathology, Kharkiv National Medical University, Kharkiv, Ukraine
| | | |
Collapse
|
66
|
Stavytskyi V, Antypenko O, Nosulenko I, Berest G, Voskoboinik O, Kovalenko S. Substituted 3-R-2,8-Dioxo-7,8-dihydro-2H-pyrrolo[1,2-a][1,2,4] triazino [2,3-c]quinazoline-5a(6H)carboxylic Acids and their Salts - a Promising Class of Anti-inflammatory Agents. Antiinflamm Antiallergy Agents Med Chem 2020; 20:75-88. [PMID: 32368980 DOI: 10.2174/1871523019666200505073232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Computer-aided drug design is among the most effective methods of medicinal chemistry. The above mentioned approach is used for the purposeful search of antiinflammatory agents among quinazoline condensed derivatives. OBJECTIVE The study aimed to conduct a purposeful synthesis of novel 3-R-2,8-dioxo-7,8-dihydro- 2H-pyrrolo[1,2-a][1,2,4]triazino[2,3-c]quinazoline-5a(6H)carboxylic acids and their salts as promising anti-inflammatory agents, evaluate their structure by physicochemical methods and establish their anti-inflammatory activity. METHODS The structures of target compounds were proposed due to their structure similarity to existing drugs and experimental agents with anti-inflammatory activities. The features of the synthesized compounds structures were evaluated by IR-, NMR spectroscopy and chromatography-mass spectrometry and discussed in detail. Probable molecular mechanisms of activity were predicted by molecular docking. The anti-inflammatory activity was determined by their ability to reduce the formalin- and carrageenan-induced paw edema in rats. RESULTS It was found that the condensation of 3-(2-aminophenyl)-6-R-1,2,4-triazin-5(2H)ones with 2-oxoglutaric acid yielded 3-R-2,8-dioxo-7,8-dihydro-2H-pyrrolo[1,2-a][1,2,4]triazino[2,3-c]quinazoline- 5a(6H)carboxylic acids which may be considered as a promising anti-inflammatory agent. An in silico study showed that the obtained compounds revealed affinity to the molecular targets and corresponded to the drug-like criteria. Additionally docking study allowed to estimate the nature of interactions between synthesized compounds and molecular targets. The in vivo experiments showed that the obtained compounds demonstrated significant anti-inflammatory activity comparable or higher than the activity of the reference drug Diclofenac. CONCLUSION The developed and implemented search strategy of the anti-inflammatory agents was justified. 3-R-2,8-dioxo-7,8-dihydro-2H-pyrrolo[1,2-a][1,2,4]triazino[2,3-c]quinazoline5a(6H)carboxylic acids possessed the anti-inflammatory activity and additional introduction of fluorine atoms in position 11 or 12 of the heterocyclic system led to amplification of this activity.
Collapse
Affiliation(s)
- Viktor Stavytskyi
- Department of Organic and Bioorganic Chemistry, Pharmaceutical Faculty No. 2, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Oleksii Antypenko
- Department of Organic and Bioorganic Chemistry, Pharmaceutical Faculty No. 2, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Inna Nosulenko
- Department of Pharmacognosy with the Course of Botany, Pharmaceutical Faculty No. 2, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Galyna Berest
- Department of Pharmacognosy, Pharmaceutical Chemistry and Medicinal Preparations Technology, Faculty of Post-graduate Education, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Oleksii Voskoboinik
- Department of Organic and Bioorganic Chemistry, Pharmaceutical Faculty No. 2, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Sergiy Kovalenko
- Department of Organic and Bioorganic Chemistry, Pharmaceutical Faculty No. 2, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| |
Collapse
|
67
|
The Anti-Inflammatory and Antioxidant Effects of Sodium Propionate. Int J Mol Sci 2020; 21:ijms21083026. [PMID: 32344758 PMCID: PMC7215993 DOI: 10.3390/ijms21083026] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 01/06/2023] Open
Abstract
The major end-products of dietary fiber fermentation by gut microbiota are the short-chain fatty acids (SCFAs) acetate, propionate, and butyrate, which have been shown to modulate host metabolism via effects on metabolic pathways at different tissue sites. Several studies showed the inhibitory effects of sodium propionate (SP) on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. We carried out an in vitro model of inflammation on the J774-A1 cell line, by stimulation with lipopolysaccharide (LPS) and H2O2, followed by the pre-treatment with SP at 0.1, 1 mM and 10 mM. To evaluate the effect on acute inflammation and superoxide anion-induced pain, we performed a model of carrageenan (CAR)-induced rat paw inflammation and intraplantar injection of KO2 where rats received SP orally (10, 30, and 100 mg/kg). SP decreased in concentration-dependent-manner the expression of cicloxigenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) following LPS stimulation. SP was able to enhance anti-oxidant enzyme production such as manganese superoxide dismutase (MnSOD) and heme oxygenase-1 (HO-1) following H2O2 stimulation. In in vivo models, SP (30 and 100 mg/kg) reduced paw inflammation and tissue damage after CAR and KO2 injection. Our results demonstrated the anti-inflammatory and anti-oxidant properties of SP; therefore, we propose that SP may be an effective strategy for the treatment of inflammatory diseases.
Collapse
|
68
|
Kremer M, Becker LJ, Barrot M, Yalcin I. How to study anxiety and depression in rodent models of chronic pain? Eur J Neurosci 2020; 53:236-270. [DOI: 10.1111/ejn.14686] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Mélanie Kremer
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Léa J. Becker
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Michel Barrot
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| |
Collapse
|
69
|
Williams MD, Lascelles BDX. Early Neonatal Pain-A Review of Clinical and Experimental Implications on Painful Conditions Later in Life. Front Pediatr 2020; 8:30. [PMID: 32117835 PMCID: PMC7020755 DOI: 10.3389/fped.2020.00030] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Modern health care has brought our society innumerable benefits but has also introduced the experience of pain very early in life. For example, it is now routine care for newborns to receive various injections or have blood drawn within 24 h of life. For infants who are sick or premature, the pain experiences inherent in the required medical care are frequent and often severe, with neonates requiring intensive care admission encountering approximately fourteen painful procedures daily in the hospital. Given that much of the world has seen a steady increase in preterm births for the last several decades, an ever-growing number of babies experience multiple painful events before even leaving the hospital. These noxious events occur during a critical period of neurodevelopment when the nervous system is very vulnerable due to immaturity and neuroplasticity. Here, we provide a narrative review of the literature pertaining to the idea that early life pain has significant long-term effects on neurosensory, cognition, behavior, pain processing, and health outcomes that persist into childhood and even adulthood. We refer to clinical and pre-clinical studies investigating how early life pain impacts acute pain later in life, focusing on animal model correlates that have been used to better understand this relationship. Current knowledge around the proposed underlying mechanisms responsible for the long-lasting consequences of neonatal pain, its neurobiological and behavioral effects, and its influence on later pain states are discussed. We conclude by highlighting that another important consequence of early life pain may be the impact it has on later chronic pain states-an area of research that has received little attention.
Collapse
Affiliation(s)
- Morika D. Williams
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Translational Research in Pain Program, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - B. Duncan X. Lascelles
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Translational Research in Pain Program, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Translational Pain Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
70
|
Araujo PCO, Sari MHM, Jardim NS, Jung JTK, Brüning CA. Effect of m-trifluoromethyl-diphenyl diselenide on acute and subchronic animal models of inflammatory pain: Behavioral, biochemical and molecular insights. Chem Biol Interact 2020; 317:108941. [PMID: 31926916 DOI: 10.1016/j.cbi.2020.108941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/11/2019] [Accepted: 01/08/2020] [Indexed: 01/06/2023]
Abstract
m-Trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] is an organoselenium molecule that displays multiple pharmacological actions, including the antinociceptive effect. The current study investigated the (m-CF3-PhSe)2 restorative properties in models of acute and chronic inflammatory pain induced by complete Freund's adjuvant (CFA). Male adult Swiss mice received an intraplantar injection of CFA in the hindpaw and 24 h (acute) or 14 days (subchronic) later they were treated with a single or repeated (m-CF3-PhSe)2 schedule via intragastric route, respectively. The mechanical and thermal hypernociceptive behaviors were assessed by von Frey hair and hot plate tests. Samples of injected paw were collected to evaluate the tissue edema and myeloperoxidase (MPO) activity while cerebral contralateral cortex samples were used to determine the inflammatory proteins content (subchronic protocol). The acute (m-CF3-PhSe)2 administration (1 and 10 mg/kg) reduced the hypernociceptive behavior and both paw thickness and MPO activity induced by CFA injection. In the subchronic protocol, the repeated administration with a low effective dosage of (m-CF3-PhSe)2 reduced the mechanical and thermal hypernociception as well as restored the edema and MPO activity in paw samples. In addition, the repeated treatment schedule mitigated the increase in TNF-α, IL-1β and COX-2 content in cerebral contralateral cortex induced by CFA injection. Collectively, these data showed that (m-CF3-PhSe)2 presents anti-inflammatory properties, which could be mediated by an interplay between peripheral and central mechanisms of action, reinforcing the potential biological properties of the compound.
Collapse
Affiliation(s)
- Paulo Cesar Oliveira Araujo
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil; Laboratório de Bioquímica e Neurofarmacologia Molecular, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, CEP 96010-900, RS, Brazil
| | - Marcel Henrique Marcondes Sari
- Laboratório de Tecnologia Farmacêutica, Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Natália Silva Jardim
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Juliano Ten Kathen Jung
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - César Augusto Brüning
- Laboratório de Bioquímica e Neurofarmacologia Molecular, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, CEP 96010-900, RS, Brazil.
| |
Collapse
|
71
|
Liu L, Karagoz H, Herneisey M, Zor F, Komatsu T, Loftus S, Janjic BM, Gorantla VS, Janjic JM. Sex Differences Revealed in a Mouse CFA Inflammation Model with Macrophage Targeted Nanotheranostics. Theranostics 2020; 10:1694-1707. [PMID: 32042330 PMCID: PMC6993234 DOI: 10.7150/thno.41309] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Monocyte derived macrophages (MDMs) infiltrate sites of infection or injury and upregulate cyclooxygenase-2 (COX-2), an enzyme that stimulates prostaglandin-E2 (PgE2). Nanotheranostics combine therapeutic and diagnostic agents into a single nanosystem. In previous studies, we demonstrated that a nanotheranostic strategy, based on theranostic nanoemulsions (NE) loaded with a COX-2 inhibitor (celecoxib, CXB) and equipped with near-infrared fluorescent (NIRF) reporters, can specifically target circulating monocytes and MDMs. The anti-inflammatory and anti-nociceptive effects of such cell-specific COX-2 inhibition lasted several days following Complete Freund's Adjuvant (CFA) or nerve injury in male mice. The overall goal of this study was to investigate the extended (up to 40 days) impact of MDM-targeted COX-2 inhibition and any sex-based differences in treatment response; both of which remain unknown. Our study also evaluates the feasibility and efficacy of a preclinical nanotheranostic strategy for mechanistic investigation of the impact of such sex differences on clinical outcomes. Methods: CFA was administered into the right hind paws of male and female mice. All mice received a single intravenous dose of NIRF labeled CXB loaded NE twelve hours prior to CFA injection. In vivo whole body NIRF imaging and mechanical hypersensitivity assays were performed sequentially and ex vivo NIRF imaging and immunohistopathology of foot pad tissues were performed at the end point of 40 days. Results: Targeted COX-2 inhibition of MDMs in male and female mice successfully improved mechanical hypersensitivity after CFA injury. However, we observed distinct sex-specific differences in the intensity or longevity of the nociceptive responses. In males, a single dose of CXB-NE administered via tail vein injection produced significant improved mechanical hypersensitivity for 32 days as compared to the drug free NE (DF-NE) (untreated) control group. In females, CXB-NE produced similar, though less prominent and shorter-lived effects, lasting up to 11 days. NIRF imaging confirmed that CXB-NE can be detected up to day 40 in the CFA injected foot pad tissues of both sexes. There were distinct signal distribution trends between males and females, suggesting differences in macrophage infiltration dynamics between the sexes. This may also relate to differences in macrophage turnover rate between the sexes, a possibility that requires further investigation in this model. Conclusions: For the first time, this study provides unique insight into MDM dynamics and the early as well as longer-term targeted effects and efficacy of a clinically translatable nanotheranostic agent on MDM mediated inflammation. Our data supports the potential of nanotheranostics as presented in elucidating the kinetics, dynamics and sex-based differences in the adaptive or innate immune responses to inflammatory triggers. Taken together, our study findings lead us closer to true personalized, sex-specific pain nanomedicine for a wide range of inflammatory diseases.
Collapse
|
72
|
do Espírito Santo RF, Lima MDS, Juiz PJL, Opretzka LCF, Nogueira RC, Ribeiro IM, Tomassini TCB, Soares MBP, Villarreal CF. Physalis angulata concentrated ethanolic extract suppresses nociception and inflammation by modulating cytokines and prostanoids pathways. Nat Prod Res 2019; 35:4675-4679. [DOI: 10.1080/14786419.2019.1705812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | | | - Paulo José Lima Juiz
- Centro de Ciência e Tecnologia em Energia e Sustentabilidade, Universidade Federal do Recôncavo da Bahia, Feira de Santana, Brazil
| | | | | | | | | | | | - Cristiane Flora Villarreal
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| |
Collapse
|
73
|
Clindamycin inhibits nociceptive response by reducing tumor necrosis factor-α and CXCL-1 production and activating opioidergic mechanisms. Inflammopharmacology 2019; 28:551-561. [PMID: 31768707 DOI: 10.1007/s10787-019-00670-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/15/2019] [Indexed: 12/29/2022]
Abstract
Clindamycin, a bacteriostatic semisynthetic lincosamide, is useful in the management of infections caused by aerobic and anaerobic Gram-positive cocci, including bacteremic pneumonia, streptococcal toxic shock syndrome and sepsis. It has been recently demonstrated that clindamycin inhibits in vitro and in vivo inflammatory cytokine production. In the present study, we investigated the effects of clindamycin in acute and chronic models of pain and inflammation in mice and the underlying mechanisms. Intraperitoneal (i.p.) administration of clindamycin (400 mg/kg) increased the animal's latency to exhibit the nociceptive behavior induced by noxious heat (hot plate model). Intrathecal injection of clindamycin (2, 10 and 50 µg) also increased the animals' latency to exhibit the nociceptive behavior. Tactile hypersensitivity and paw edema induced by intraplantar (i.pl.) injection of carrageenan were attenuated by previous administration of clindamycin (200 and 400 mg/kg, i.p.). Clindamycin (100, 200 and 400 mg/kg, i.p.) also attenuated ongoing tactile hypersensitivity and paw edema induced by i.pl. injection of complete Freund's adjuvant (CFA). The antinociceptive activity of clindamycin (400 mg/kg, i.p.) in the hot plate model was attenuated by previous administration of naltrexone (5 and 10 mg/kg, i.p.), but not glibenclamide or AM251. CFA-induced production of TNF-α and CXCL-1 was reduced by clindamycin (400 mg/kg, i.p.). Concluding, clindamycin exhibits activities in acute and chronic models of pain and inflammation. These effects are associated with reduced production of TNF-α and CXCL-1 and activation of opioidergic mechanisms. Altogether, these results indicate that the clindamycin's immunomodulatory effects may contribute to a pharmacological potential beyond its antibiotic property.
Collapse
|
74
|
Pitake S, Middleton LJ, Abdus-Saboor I, Mishra SK. Inflammation Induced Sensory Nerve Growth and Pain Hypersensitivity Requires the N-Type Calcium Channel Cav2.2. Front Neurosci 2019; 13:1009. [PMID: 31607850 PMCID: PMC6761232 DOI: 10.3389/fnins.2019.01009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/05/2019] [Indexed: 12/26/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) are important mediators of pain hypersensitivity during inflammatory states, but their role in sensory nerve growth remains underexplored. Here, we assess the role of the N-type calcium channel Cav2.2 in the complete Freund’s adjuvant (CFA) model of inflammatory pain. We demonstrate with in situ hybridization and immunoblotting, an increase in Cav2.2 expression after hind paw CFA injection in sensory neurons that respond to thermal stimuli, but not in two different mechanosensitive neuronal populations. Further, Cav2.2 upregulation post-CFA correlates with thermal but not mechanical hyperalgesia in behaving mice, and this hypersensitivity is blocked with a specific Cav2.2 inhibitor. Voltage clamp recordings reveal a significant increase in Cav2.2 currents post-CFA, while current clamp analyses demonstrate a significant increase in action potential frequency. Moreover, CFA-induced sensory nerve growth, which involves the extracellular signal-related kinase (ERK1/2) signaling pathway and likely contributes to inflammation-induced hyperalgesia, was blocked with the Cav2.2 inhibitor. Together, this work uncovers a role for Cav2.2 during inflammation, demonstrating that VGCC activity can promote thermal hyperalgesia through both changes in firing rates of sensory neurons as well as promotion of new neurite outgrowth.
Collapse
Affiliation(s)
- Saumitra Pitake
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Leah J Middleton
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ishmail Abdus-Saboor
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,The W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States.,Program in Genetics, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
75
|
Afridi R, Khan AU, Khalid S, Shal B, Rasheed H, Ullah MZ, Shehzad O, Kim YS, Khan S. Anti-hyperalgesic properties of a flavanone derivative Poncirin in acute and chronic inflammatory pain models in mice. BMC Pharmacol Toxicol 2019; 20:57. [PMID: 31511086 PMCID: PMC6737657 DOI: 10.1186/s40360-019-0335-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/30/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Poncirin is flavanone derivative (isolated from Poncirus trifoliata) with known pharmacological activities such as anti-tumor, anti-osteoporotic, anti-inflammatory and anti-colitic. The present study aimed to explore the anti-allodynic and anti-hyperalgesic potentials of poncirin in murine models of inflammatory pain. METHODS The analgesic potential of poncirin was evaluated in formalin-, acetic acid-, carrageenan- and Complete Freund's Adjuvant (CFA)-induced inflammatory pain models in mice. Anti-allodynic and anti-hyperalgesic activities were measured using Von Frey filaments, Randall Selitto, hotplate and cold acetone tests. The serum nitrite levels were determined using Griess reagent. The Quantitative Real-time PCR (qRT-PCR) was performed to assess the effect of poncirin on mRNA expression levels of inflammatory cytokines and anti-oxidant enzymes. RESULTS Intraperitoneal administration of poncirin (30 mg/kg) markedly reduced the pain behavior in both acetic acid-induced visceral pain and formalin-induced tonic pain models used as preliminary screening tools. The poncirin (30 mg/kg) treatment considerably inhibited the mechanical hyperalgesia and allodynia as well as thermal hyperalgesia and cold allodynia. The qRT-PCR analysis showed noticeable inhibition of pro-inflammatory cytokines (mRNA expression levels of TNF-α, IL-1β and IL-6) (p < 0.05) in poncirin treated group. Similarly, poncirin treatment also enhanced the mRNA expressions levels of anti-oxidant enzymes such as transcription factor such as nuclear factor (erythroid-derived 2)-like 2 (Nrf2) (p < 0.05), heme oxygenase (HO-1) (p < 0.05) and superoxide dismutase (SOD2) (p < 0.05). Chronic treatment of poncirin for 6 days did not confer any significant hepatic and renal toxicity. Furthermore, poncirin treatment did not altered the motor coordination and muscle strength in CFA-induced chronic inflammatory pain model. CONCLUSION The present study demonstrated that poncirin treatment significantly reduced pain behaviors in all experimental models of inflammatory pain, suggesting the promising analgesic potential of poncirin in inflammatory pain conditions.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ashraf Ullah Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sidra Khalid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Shal
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hina Rasheed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Zia Ullah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Omer Shehzad
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Yeong Shik Kim
- College of Pharmacy, Seoul National University, Seoul, 151-742 South Korea
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- College of Pharmacy, Seoul National University, Seoul, 151-742 South Korea
| |
Collapse
|
76
|
Dos Santos RS, Sorgi CA, Peti APF, Veras FP, Faccioli LH, Galdino G. Involvement of Spinal Cannabinoid CB 2 Receptors in Exercise-Induced Antinociception. Neuroscience 2019; 418:177-188. [PMID: 31473278 DOI: 10.1016/j.neuroscience.2019.08.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 11/29/2022]
Abstract
Muscle pain affects approximately 11-24% of the global population. Several studies have shown that exercise is a non-pharmacological therapy to pain control. It has been suggested that the endocannabinoid system is involved in this antinociceptive effect. However, the participation of this pathway is unclear. The present study aimed to investigate whether spinal cannabinoid CB2 receptors participate in the exercise-induced antinociception. The inflammatory muscle pain model was induced by the intramuscular injection of carrageenan. Tactile allodynia and thermal hyperalgesia were determined with the von Frey filaments and hot-plate tests. C57BL/6J female mice underwent a swimming training protocol that lasted 3 weeks. This protocol of exercise reduced carrageenan-induced tactile allodynia and thermal hyperalgesia and this effect was prevented by the cannabinoid CB2 receptors inverse agonist AM630 and potentiated by MAFP (inhibitor of the enzyme that metabolizes endocannabinoids) and minocycline (microglia inhibitor). In addition, exercise increased the endocannabinoid anandamide levels and cannabinoid CB2 receptors expression whereas it reduced Iba1 (microglial marker) protein expression as well as pro-inflammatory cytokines (TNF-α and IL-1β) in the spinal cord of mice with inflammatory muscle pain. Swimming training also reduced muscle temperature of carrageen-treated animals. The present study suggests that activation of spinal cannabinoid CB2 receptors and reduction of activated microglia are involved in exercise-induced antinociception.
Collapse
Affiliation(s)
- Rafaela Silva Dos Santos
- Institute of Motricity Sciences, Federal University of Alfenas, Minas Gerais, Av. Jovino Fernandes Sales, 2600, 37133-840, Alfenas, Brazil
| | - Carlos Arterio Sorgi
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ana Paula Ferranti Peti
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Flávio Protasio Veras
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lúcia Helena Faccioli
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Giovane Galdino
- Institute of Motricity Sciences, Federal University of Alfenas, Minas Gerais, Av. Jovino Fernandes Sales, 2600, 37133-840, Alfenas, Brazil.
| |
Collapse
|
77
|
Williams MD, Sommer SL, Meyers RC, Valdivia J, Nolan MW, Lascelles BDX. A novel device to measure static hindlimb weight-bearing forces in pronograde rodents. J Neurosci Methods 2019; 328:108405. [PMID: 31465781 DOI: 10.1016/j.jneumeth.2019.108405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Joint pain is composed of both spontaneous and movement-induced pain. In animal models, static bodyweight distribution is a surrogate for spontaneous joint pain. However, there are no commercially-available instruments that measure static bodyweight distribution in normal, pronograde rodents. NEW METHOD We designed a Static Horizontal Incapacitance Meter (SHIM) to measure bodyweight distribution in pronograde standing rodents. We assessed the device for feasibility, repeatability, and sensitivity to quantify hindlimb bodyweight distribution. Mice and rats with unilateral inflammatory pain induced by subcutaneous injections of capsaicin or Complete Freund's Adjuvant (CFA) into the plantar surface of the left hind paw were used to measure static weight-bearing. The ability to attenuate inflammatory pain-associated weight-bearing asymmetry was tested by administering a non-steroidal anti-inflammatory drug, meloxicam. RESULTS The SHIM's ability to detect significant reductions in limb loading on the injected hindlimb in mice and rats was validated using both acute and sub-chronic pain models. Treatment with meloxicam partially reversed CFA-induced effects. COMPARISON WITH EXISTING METHODS In contrast with assays that measure kinetic or static weight-bearing forces (e.g., walking, or standing at a 45 ° incline), the SHIM allows evaluation of weight-bearing in rodents that are standing at rest in their normal pronograde position. CONCLUSIONS The SHIM successfully detected: (a) asymmetric weight-bearing in acute and sub-chronic pain models; and (b) the analgesic effects of meloxicam. This study provides a novel tool to objectively evaluate limb use dysfunction in rodents.
Collapse
Affiliation(s)
- Morika D Williams
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States; Translational Research in Pain Program, North Carolina State University, Raleigh, NC, United States; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Samantha L Sommer
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Rachel C Meyers
- Translational Research in Pain Program, North Carolina State University, Raleigh, NC, United States
| | | | - Michael W Nolan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.
| | - B Duncan X Lascelles
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States; Translational Research in Pain Program, North Carolina State University, Raleigh, NC, United States; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States; Thurston Arthritis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Center for Translational Pain Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
78
|
Zhao YL, Yang XW, Wu BF, Shang JH, Liu YP, Luo XD. Anti-inflammatory Effect of Pomelo Peel and Its Bioactive Coumarins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8810-8818. [PMID: 31318199 DOI: 10.1021/acs.jafc.9b02511] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Citrus grandis (L.) Osbeck is a popular fruit cultivated around the world, and its peels are sometimes used for the treatment of cough, abdominal pain, and indigestion in China. However, the peel is discarded after fruit consumption in most cases, and its chemical constituents and biological activities have not been validated before. The present study focused on evaluation of the chemical and pharmacological profile of coumarins from peels of C. grandis against inflammation. The extracts and phytochemicals from peels of C. grandis were prepared, and anti-inflammatory activities were carried out in vivo and in vitro, including inhibiting xylene-induced ear edema and carrageenan-induced paw edema in mice and the production of inflammatory cytokines (interleukin 1β, prostaglandin 2, and tumor-necrosis factor α) in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Results indicated that methanolic extract, ethyl acetate fraction, and four major coumarins (compounds 7, 8, 13, and 16) inhibited swelling induced by xylene and carrageenan, separately, in vivo. Furthermore, 18 coumarins inhibited inflammatory factor secretion in macrophages primed by LPS, in which compounds 4, 6, 7, 10, 17 showed the most pronounced change, which were comparable to dexamethasone. In summary, peel of C. grandis showed an anti-inflammatory effect and coumarin compounds were responsible for regulating inflammatory mediators and cytokines, which might provide a novel nutritional strategy for inflammatory diseases.
Collapse
Affiliation(s)
- Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology , Yunnan University , Kunming , Yunnan 650091 , People's Republic of China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
| | - Xiong-Wu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
| | - Bai-Fen Wu
- Yunnan University of Chinese Medicine , Kunming , Yunnan 650500 , People's Republic of China
| | - Jian-Hua Shang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
| | - Ya-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology , Yunnan University , Kunming , Yunnan 650091 , People's Republic of China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
| |
Collapse
|
79
|
Dey P. Gut microbiota in phytopharmacology: A comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Pharmacol Res 2019; 147:104367. [PMID: 31344423 DOI: 10.1016/j.phrs.2019.104367] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
The dynamic and delicate interactions amongst intestinal microbiota, metabolome and metabolism dictates human health and disease. In recent years, our understanding of gut microbial regulation of intestinal immunometabolic and redox homeostasis have evolved mainly out of in vivo studies associated with high-fat feeding induced metabolic diseases. Techniques utilizing fecal transplantation and germ-free mice have been instrumental in reproducibly demonstrating how the gut microbiota affects disease pathogenesis. However, the pillars of modern drug discovery i.e. evidence-based pharmacological studies critically lack focus on intestinal microflora. This is primarily due to targeted in vitro molecular-approaches at cellular-level that largely overlook the etiology of disease pathogenesis from the physiological perspective. Thus, this review aims to provide a comprehensive understanding of the key notions of intestinal microbiota and dysbiosis, and highlight the microbiota-phytochemical bidirectional interactions that affects bioavailability and bioactivity of parent phytochemicals and their metabolites. Potentially by focusing on the three major aspects of gut microbiota i.e. microbial abundance, diversity, and functions, I will discuss phytochemical-microbiota reciprocal interactions, biotransformation of phytochemicals and plant-derived drugs, and pre-clinical and clinical efficacies of herbal medicine on dysbiosis. Additionally, in relation to phytochemical pharmacology, I will briefly discuss the role of dietary-patterns associated with changes in microbial profiles and review pharmacological study models considering possible microbial effects. This review therefore, emphasize on the timely and critically needed evidence-based phytochemical studies focusing on gut microbiota and will provide newer insights for future pre-clinical and clinical phytopharmacological interventions.
Collapse
Affiliation(s)
- Priyankar Dey
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
80
|
Medicinal impact of microalgae collected from high rate algal ponds; phytochemical and pharmacological studies of microalgae and its application in medicated bandages. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101237] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
81
|
Wang C, Keliher E, Zeller MWG, Wojtkiewicz GR, Aguirre AD, Buckbinder L, Kim HY, Chen J, Maresca K, Ahmed MS, Motlagh NJ, Nahrendorf M, Chen JW. An activatable PET imaging radioprobe is a dynamic reporter of myeloperoxidase activity in vivo. Proc Natl Acad Sci U S A 2019; 116:11966-11971. [PMID: 31123149 PMCID: PMC6575581 DOI: 10.1073/pnas.1818434116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Myeloperoxidase (MPO) is a critical proinflammatory enzyme implicated in cardiovascular, neurological, and rheumatological diseases. Emerging therapies targeting inflammation have raised interest in tracking MPO activity in patients. We describe 18F-MAPP, an activatable MPO activity radioprobe for positron emission tomography (PET) imaging. The activated radioprobe binds to proteins and accumulates at sites of MPO activity. The radioprobe 18F-MAPP has a short blood half-life, remains stable in plasma, does not demonstrate cytotoxicity, and crosses the intact blood-brain barrier. The 18F-MAPP imaging detected sites of elevated MPO activity in living mice embedded with human MPO and in mice induced with chemical inflammation or myocardial infarction. The 18F-MAPP PET imaging noninvasively differentiated varying amounts of MPO activity, competitive inhibition, and MPO deficiency in living animals, confirming specificity and showing that the radioprobe can quantify changes in in vivo MPO activity. The radiosynthesis has been optimized and automated, an important step in translation. These data indicate that 18F-MAPP is a promising translational candidate to noninvasively monitor MPO activity and inflammation in patients.
Collapse
Affiliation(s)
- Cuihua Wang
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Edmund Keliher
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Matthias W G Zeller
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Aaron D Aguirre
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | | | - Hye-Yeong Kim
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Jianqing Chen
- Pfizer World Wide Research and Development, Cambridge, MA 02139
| | - Kevin Maresca
- Pfizer World Wide Research and Development, Cambridge, MA 02139
| | - Maaz S Ahmed
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Negin Jalali Motlagh
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - John W Chen
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
82
|
Micheli L, Ghelardini C, Lucarini E, Parisio C, Trallori E, Cinci L, Di Cesare Mannelli L. Intra-articular mucilages: behavioural and histological evaluations for a new model of articular pain. ACTA ACUST UNITED AC 2019; 71:971-981. [PMID: 30784067 DOI: 10.1111/jphp.13078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/19/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVES The creation of a new valid preclinical model of articular pain by the intra-articular (i.a.) injection of mucilages for the screening of new treatments against arthritis. METHODS A single intra-articular injection (20 μl) of mucilages (from Althaea officinalis roots and Linum usitatissimun seeds) or vegetal components (Amorphophallus konjac gum powder and β-glucan, used as reference standard) were assessed in the rat. The pathology progression was monitored by behavioural measurements (paw pressure test, von Frey test, incapacitance test and beam balance test) and compared to that induced by the i.a. injections of monoiodioacetate (MIA) and Complete Freund's Adjuvant (CFA), well-recognized models of osteoarthritis and rheumatoid arthritis, respectively. KEY FINDINGS Among all, the mucilage of L. usitatissimun showed the best pro-algic profile inducing a painful long-lasting condition. Hypersensitivity was characterized as a mixed form of inflammatory and neuropathic pain by the responsiveness to ibuprofen (100 mg/kg, p.o.) and pregabalin (30 mg/kg, p.o.). The histological evaluation of joint showed a damage that represents both MIA and CFA features. CONCLUSIONS In conclusion, a single i.a. injection of L. usitatissimun mucilage can represent a valid model to assess articular pain in the rat for the screening of new treatments against arthritis.
Collapse
Affiliation(s)
- Laura Micheli
- NEUROFARBA - Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Carla Ghelardini
- NEUROFARBA - Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Elena Lucarini
- NEUROFARBA - Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Carmen Parisio
- NEUROFARBA - Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Elena Trallori
- NEUROFARBA - Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Lorenzo Cinci
- NEUROFARBA - Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- NEUROFARBA - Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
83
|
Repeated neonatal needle-prick stimulation increases inflammatory mechanical hypersensitivity in adult rats. Int J Dev Neurosci 2019; 78:191-197. [PMID: 30742972 DOI: 10.1016/j.ijdevneu.2019.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIMS Newborn infants are vulnerable to procedural stress and pain exposure on the first weeks of life that represents a critical period for the development of nociceptive, sensory, emotional, and social functions. We evaluated the nociceptive behavior of adult male and female rats that were submitted to nociceptive experience in the neonatal period and the maternal behavior in the postnatal period. METHODS The animals were submitted to repetitive needle pricking from the second to the fifteenth postnatal day (PND 2-15). Maternal behavior and litter weight were evaluated during this period. Mechanical sensitivity to pain was assessed in offsprings during the adulthood by exposing them to inflammatory stimuli, including formalin test or the Freund's complete adjuvant (CFA) injection followed by the electronic von Frey test at 0, 3, 6 and 24 h later. RESULTS Maternal behavior and litter weight were not altered by pinprick stimuli during PND 2-15. Additionally, pinprick stimulation reduced the paw withdrawal threshold in CFA-injected animals compared to control. In the formalin test, there was a difference between the genders. Female rats are statically more sensitive to formalin stimulation and showed an increased licking time in both the first and second phases and increased number of flinches in second phase. CONCLUSIONS Experiencing early life repetitive pain exposure increased inflammatory pain sensitivity in adult offspring rats and female rats are more sensitive to chemical stimulation. IMPLICATIONS Future investigations of the mechanisms involved in this effect may contribute to the improvement of the understanding of inflammatory pain sensitivity differences.
Collapse
|
84
|
Activation of peripheral group III metabotropic glutamate receptors inhibits pain transmission by decreasing neuronal excitability in the CFA-inflamed knee joint. Neurosci Lett 2019; 694:111-115. [DOI: 10.1016/j.neulet.2018.11.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/20/2022]
|
85
|
Brudek T. Inflammatory Bowel Diseases and Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2019; 9:S331-S344. [PMID: 31609699 PMCID: PMC6839501 DOI: 10.3233/jpd-191729] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 09/20/2019] [Indexed: 12/19/2022]
Abstract
The etiology of Parkinson's disease (PD) is multifactorial, with genetics, aging, and environmental agents all a part of the PD pathogenesis. Widespread aggregation of the α-synuclein protein in the form of Lewy bodies and Lewy neurites, and degeneration of substantia nigra dopamine neurons are the pathological hallmarks of PD. Inflammatory responses manifested by glial reactions, T cell infiltration, and increased expression of inflammatory cytokines, as well as other toxic mediators derived from activated glial cells, are currently recognized as prominent features of PD. Experimental, clinical and epidemiological data suggest that intestinal inflammation contributes to the pathogenesis of PD, and the increasing number of studies suggests that the condition may start in the gastrointestinal system years before any motor symptoms develop. Patients with inflammatory bowel disease (IBD) have a higher risk of developing PD compared with non-IBD individuals. Gene association study has found a genetic link between IBD and PD, and an evidence from animal studies suggests that gut inflammation, similar to that observed in IBD, may induce loss of dopaminergic neurons. Based on preclinical models of PD, it is suggested that the enteric microbiome changes early in PD, and gut infections trigger α-synuclein release and aggregation. In this paper, the possible link between IBD and PD is reviewed based on the available literature. Given the potentially critical role of gastrointestinal pathology in PD pathogenesis, there is reason to suspect that IBD or its treatments may impact PD risk. Thus, clinicians should be aware of PD symptoms in IBD patients.
Collapse
Affiliation(s)
- Tomasz Brudek
- Research Laboratory for Stereology and Neuroscience, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| |
Collapse
|
86
|
Biswas S, Ghosh G, Dubey V. Modulation of sodium arsenite-induced Toxicity in mice by ethanolic seed extract of Trigonella foenum graecum. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_518_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
87
|
Momtazi-Borojeni AA, Ayati SH, Jaafari MR, Sahebkar A. A simple and rapid-acting approach for the reduction of C-reactive protein. Biomed Pharmacother 2019; 109:2305-2308. [DOI: 10.1016/j.biopha.2018.11.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/07/2018] [Accepted: 11/25/2018] [Indexed: 12/12/2022] Open
|
88
|
Ashraf S, Mapp PI, Shahtaheri SM, Walsh DA. Effects of carrageenan induced synovitis on joint damage and pain in a rat model of knee osteoarthritis. Osteoarthritis Cartilage 2018; 26:1369-1378. [PMID: 30031926 DOI: 10.1016/j.joca.2018.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Knee osteoarthritis (OA) is associated with ongoing pain and joint damage that can be punctuated by acute flares of pain and inflammation. Synovitis in normal knees might resolve without long-term detriment to joint function. We hypothesised that osteoarthritis is associated with impaired resilience to inflammatory flares. DESIGN We induced synovitis by injecting carrageenan into rat knees with or without meniscal transection (MNX)-induced OA, and measured synovitis, weightbearing asymmetry (pain behaviour), and joint damage up to 35 days after OA induction (23 days after carrageenan-injection). RESULTS Carrageenan injection induced weightbearing asymmetry for 1 week, transient increase in knee diameter for 2 days, and a sustained increase in synovial macrophages, endothelial cell proliferation and vascular density compared with naive vehicle-injected controls. MNX surgery induced weightbearing asymmetry and histological evidence of OA. Carrageenan-injection in MNX-operated knees was followed for 2 days by increased weightbearing asymmetry compared either to MNX+vehicle or to sham+carrageenan groups. OA structural damage and synovitis at day 35 were greater in MNX+carrageenan compared to MNX+vehicle and sham+carrageenan groups. Carrageenan injection did not induce OA in Sham-operated knees. CONCLUSION Intra-articular injection of the pro-inflammatory compound carrageenan in OA and sham-operated control knees induced a short term increase in joint pain. Even though pain flares resolved in both groups and damage was not induced in sham-operated knees, carrageen injection exacerbated long-term joint damage in OA knees. OA knees display less resilience to inflammatory episodes. Preventing inflammatory flares may be particularly important in preventing symptoms and long term joint damage in OA.
Collapse
Affiliation(s)
- S Ashraf
- School of Pharmacy, University of Nottingham, Nottingham, UK; Arthritis Research UK Pain Centre and NIHR Nottingham BRC, University of Nottingham, Nottingham, UK.
| | - P I Mapp
- Arthritis Research UK Pain Centre and NIHR Nottingham BRC, University of Nottingham, Nottingham, UK.
| | - S M Shahtaheri
- Arthritis Research UK Pain Centre and NIHR Nottingham BRC, University of Nottingham, Nottingham, UK.
| | - D A Walsh
- Arthritis Research UK Pain Centre and NIHR Nottingham BRC, University of Nottingham, Nottingham, UK.
| |
Collapse
|
89
|
Local Skin Inflammation in Cutaneous Leishmaniasis as a Source of Variable Pharmacokinetics and Therapeutic Efficacy of Liposomal Amphotericin B. Antimicrob Agents Chemother 2018; 62:AAC.00631-18. [PMID: 30082295 PMCID: PMC6153808 DOI: 10.1128/aac.00631-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/03/2018] [Indexed: 11/21/2022] Open
Abstract
Disfiguring skin lesions caused by several species of the Leishmania parasite characterize cutaneous leishmaniasis (CL). Successful treatment of CL with intravenous (i.v.) liposomal amphotericin B (LAmB) relies on the presence of adequate antibiotic concentrations at the dermal site of infection within the inflamed skin. Disfiguring skin lesions caused by several species of the Leishmania parasite characterize cutaneous leishmaniasis (CL). Successful treatment of CL with intravenous (i.v.) liposomal amphotericin B (LAmB) relies on the presence of adequate antibiotic concentrations at the dermal site of infection within the inflamed skin. Here, we have investigated the impact of the local skin inflammation on the pharmacokinetics (PK) and efficacy of LAmB in two murine models of localized CL (Leishmania major and Leishmania mexicana) at three different stages of disease (papule, initial nodule, and established nodule). Twenty-four hours after the administration of one 25 mg/kg of body weight LAmB (i.v.) dose to infected BALB/c mice (n = 5), drug accumulation in the skin was found to be dependent on the causative parasite species (L. major > L. mexicana) and the disease stage (papule > initial nodule > established nodule > healthy skin). Elevated tissue drug levels were associated with increased vascular permeability (Evans blue assay) and macrophage infiltration (histomorphometry) in the infected skin, two pathophysiological parameters linked to tissue inflammation. After identical treatment of CL in the two models with 5 × 25 mg/kg LAmB (i.v.), intralesional drug concentrations and reductions in lesion size and parasite load (quantitative PCR [qPCR]) were all ≥2-fold higher for L. major than for L. mexicana. In conclusion, drug penetration of LAmB into CL skin lesions could depend on the disease stage and the causative Leishmania species due to the influence of local tissue inflammation.
Collapse
|
90
|
A CFA-Induced Model of Inflammatory Skin Disease in Miniature Swine. Int J Inflam 2018; 2018:6916920. [PMID: 30034774 PMCID: PMC6035809 DOI: 10.1155/2018/6916920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022] Open
Abstract
Similarities between porcine and human skin make the pig an ideal model for preclinical studies of cutaneous inflammation and wound healing. Complete Freund's adjuvant (CFA) has been used to induce inflammation and to study inflammatory pain in several animal models. Here, we evaluated the inflammation caused by CFA injected in different layers of skin and subcutaneous (SC) tissue in a large-animal model. The degree of inflammation was evaluated at early and late time points by visual inspection and histopathologic analysis. In addition, the side effects of CFA injections were evaluated based on clinical findings, behavioral changes, physiologic state, and (histo)pathologic lesions. Pigs were injected with CFA at the back of the neck's skin at different depths. All animals showed histologic signs of inflammation at the injection site. Animals injected SC did not show any signs of pain or distress (loss of appetite, abnormal behavior) and did not require pain medication. Inflammation was followed by measuring the area of induration beneath the skin. Animals injected into the dermis and/or epidermis demonstrated a severe inflammatory response on the skin surface with massive swelling, redness within 12hrs of CFA injection, and severe skin necrosis within a week, preventing accurate induration measurements. In contrast to animals injected SC, animals receiving intradermal and/or intraepidermal injection of CFA showed signs of distress requiring pain medication. Conclusion. SC injection of CFA in swine induces an inflammatory response that can be measured accurately by induration without causing unnecessary discomfort, providing a useful preclinical large-animal model of inflammatory skin disease.
Collapse
|
91
|
Kerui G, Jasmin L. Dual effects of brain sparing opioid in newborn rats: Analgesia and hyperalgesia. NEUROBIOLOGY OF PAIN 2018; 3:1-7. [PMID: 31194154 PMCID: PMC6550121 DOI: 10.1016/j.ynpai.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 01/16/2023]
Abstract
The peripherally acting opioid loperamide produces sustained antinociception in the newborn rat. Loperamide minimally crosses the blood brain barrier in the newborn rat. Daily systemic administration of loperamide produces opioid induced hyperalgesia in the newborn rat.
Effective pain management in neonates without the unwanted central nervous system (CNS) side effects remains an unmet need. To circumvent these central effects we tested the peripherally acting (brain sparing) opioid agonist loperamide in neonate rats. Our results show that: 1) loperamide (1 mg/kg, s.c.) does not affect the thermal withdrawal latency in the normal hind paw while producing antinociception in all pups with an inflamed hind paw. 2) A dose of loperamide 5 times higher resulted in only 6.9 ng/mL of loperamide in the cerebrospinal fluid (CSF), confirming that loperamide minimally crosses the blood–brain barrier (BBB). 3) Unexpectedly, sustained administration of loperamide for 5 days resulted in a hyperalgesic behavior, as well as increased excitability (sensitization) of dorsal root ganglia (DRGs) and spinal nociceptive neurons. This indicates that opioid induced hyperalgesia (OIH) can be induced through the peripheral nervous system. Unless prevented, OIH could in itself be a limiting factor in the use of brain sparing opioids in the neonate.
Collapse
Affiliation(s)
- Gong Kerui
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Luc Jasmin
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
92
|
Singh S, Chauhan P, Gupta YK, Kumar U. Evaluation of toxicity studies and anti-inflammatory activity of Terminalia Bellerica in carrageenan-induced paw edema in experimental rats. J Nat Sci Biol Med 2018. [DOI: 10.4103/jnsbm.jnsbm_159_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
93
|
Khan A, Naz S, Farooq U, Shahid M, Ullah I, Ali I, Rauf A, Mabkhot YN. Bioactive chromone constituents from Vitex negundo alleviate pain and inflammation. J Pain Res 2017; 11:95-102. [PMID: 29343985 PMCID: PMC5749391 DOI: 10.2147/jpr.s145551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Vitex negundo L. has been widely studied for its beneficial effect in inflammatory and pain conditions. The present study describes the isolation of two new bioactive chromone constituents from V. negundo and their in vivo evaluation for anti-inflammatory and antinociceptive activities. Methods Two new chromone derivatives, namely, methyl 3-(2-(5-hydroxy-6-methoxy-4-oxo-4H-chromen-2-yl)ethyl)benzoate (1) and 3-(1-hydroxy-2-(5-hydroxy-6-methoxy-4-oxo-4H-chromen-2-yl)ethyl)benzoic acid (2) were isolated from V. negundo and their structures were determined through various spectroscopic techniques including mass spectrometry, UV, IR, 1H NMR, 13C NMR, and two-dimensional-NMR like correlation spectroscopy and heteronuclear multiple bond correlation techniques. The isolated compounds (1–2) were tested for their prospective antinociceptive activity in acetic acid-induced abdominal constriction assay and anti-inflammatory activity in the carrageenan-induced paw edema assay in mice. Results Significant attenuation (P<0.001) of tonic visceral nociception was demonstrated by compound 1 and 2 at doses of 50 and 100 mg/kg. At similar doses, these compounds (1–2) also showed potent amelioration (P<0.001) of carrageenan-induced paw swelling. Conclusion The isolated chromone derivatives (1–2) from V. negundo are able to alleviate nociception and inflammation and the findings corroborated that V. negundo may be used as a potential source of antinociceptive and anti-inflammatory candidates.
Collapse
Affiliation(s)
- Ajmal Khan
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan.,University of Nizwa Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, Nizwa, Oman
| | - Sadia Naz
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Umar Farooq
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology
| | - Irfan Ullah
- Department of Pharmacy, University of Peshawar, Peshawar
| | - Iftikhar Ali
- Department of Chemistry, Karakoram International University, Gilgit-Baltistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Yahia Nasser Mabkhot
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
94
|
Kavoli S, Mirzaie M, Feizi F, Rakhshan V, Arash V, Bijani A. Local injection of carrageenan accelerates orthodontic tooth movement: A preliminary experimental animal study. Int Orthod 2017; 15:588-599. [PMID: 29128199 DOI: 10.1016/j.ortho.2017.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Orthodontic tooth movement (OTM) can be accelerated by increasing bone turnover. Carrageenan is a common food additive, which can induce inflammation. Hence, it might accelerate OTM. However, it has not been investigated to date. METHODS This 2-phase preliminary animal experimental study was conducted on 28 Wistar rats. A pilot study on 5 mice was done to estimate the experimental dose of carrageenan. The first phase evaluated the effect of a 40μL carrageenan 1% injection on inflammation status in 7 rats versus 7 control rats, 6hours after the injection. The second phase examined the effect of the same dose of carrageenan on OTM speed during 21 days of incisor retraction in rat, in two groups: control (normal saline) and carrageenan (n=7×2). This sample size was pre-determined based on a priori power calculations. In phase II, osteoclastic activity was also evaluated, 21 days after the injection. The groups were compared statistically (α=0.05). RESULTS Six hours after carrageenan injection, 1, 3, and 3 rats had inflammation scores of 3 to 1, respectively. Six hours after saline injection, 1 rat had a score of 1 and the remainder had no inflammation (P=0.0023, Mann-Whitney). Twenty-one days after saline and carrageenan injection, OTMs were 0.7±0.3 and 1.1±0.4mm, respectively, (P=0.053, Mann-Whitney). Twenty-one days after saline and carrageenan injection, mean osteoclast counts were, respectively, 4.87±1.849 and 7.143±1.727 per field (P=0.025, Mann-Whitney). CONCLUSION Local injection of carrageenan can induce inflammation after 6hours. It can increase approximately 1.6-fold the speed of OTM, and increase the osteoclast count 1.5-fold after 21 days of space closure.
Collapse
Affiliation(s)
- Samira Kavoli
- Department of Orthodontics, School of Dentistry, Babol University of Medical Sciences, Babol, Iran
| | - Maysam Mirzaie
- Dental Material Research Center, Department of Orthodontics, Babol University of Medical Sciences, Babol, Iran
| | - Farideh Feizi
- Cellular and Molecular Biology Research Center, Anatomical Sciences Department, Babol University of Medical Sciences, Babol, Iran
| | - Vahid Rakhshan
- Department of Anatomy, Dental School, Azad University, Tehran, Iran
| | - Valiollah Arash
- Dental Material Research Center, Department of Orthodontics, Babol University of Medical Sciences, Babol, Iran.
| | - Ali Bijani
- Social Determinants of Health Research Center, Health research institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
95
|
Accélération du mouvement dentaire orthodontique par injection locale de carraghénane : étude expérimentale préliminaire sur animaux. Int Orthod 2017; 15:588-599. [PMID: 29128198 DOI: 10.1016/j.ortho.2017.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
96
|
Li Z, Navarro-Alvarez N, Keeley EJ, Nowell NH, Goncalves BMM, Huang CA, Evans CL. Non-invasive monitoring of skin inflammation using an oxygen-sensing paint-on bandage. BIOMEDICAL OPTICS EXPRESS 2017; 8:4640-4651. [PMID: 29082091 PMCID: PMC5654806 DOI: 10.1364/boe.8.004640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 05/19/2023]
Abstract
Inflammation involves a cascade of cellular and molecular mediators that ultimately lead to the infiltration of immune cells into the affected area. This inflammatory process in skin is common to many diseases including acne, infection, and psoriasis, with the presence or absence of immune cells a potential diagnostic marker. Here we show that skin inflammation can be non-invasively measured and mapped using a paint-on oxygen sensing bandage in an in vivo porcine inflammation model. After injection of a known inflammatory agent, the bandage could track the increase, plateau, and decrease in oxygen consumption at the injury site over 7 weeks, as well as discern inflammation resultant from injection at various depths beneath the surface of the skin. Both the initial rate of pO2 change and the change in bandage pO2 at equilibration (CBP20) were found to be directly related to the metabolic oxygen consumption rate of the tissue in contact. Healthy skin demonstrated an initial pO2 decrease rate of 6.5 [Formula: see text], and CBP20 of 84 [Formula: see text]. Inflamed skin had a significantly higher initial consumption rate of 55 [Formula: see text], and a larger CBP20 of 140 [Formula: see text]. The change in the bandage pO2 before and after equilibration with tissue was found to correlate well with histological evidence of skin inflammation in the animals.
Collapse
Affiliation(s)
- Zongxi Li
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA
| | - Nalu Navarro-Alvarez
- Center for Transplantation Sciences, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA
| | - Emily J. Keeley
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Nicholas H. Nowell
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA
| | - Beatriz M. M. Goncalves
- Center for Transplantation Sciences, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA
| | - Christene A. Huang
- Center for Transplantation Sciences, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA
| | - Conor L. Evans
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
97
|
The anti-inflammatory and immunomodulatory potential of braylin: Pharmacological properties and mechanisms by in silico, in vitro and in vivo approaches. PLoS One 2017; 12:e0179174. [PMID: 28594906 PMCID: PMC5464642 DOI: 10.1371/journal.pone.0179174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/24/2017] [Indexed: 01/19/2023] Open
Abstract
Braylin belongs to the group of natural coumarins, a group of compounds with a wide range of pharmacological properties. Here we characterized the pharmacological properties of braylin in vitro, in silico and in vivo in models of inflammatory/immune responses. In in vitro assays, braylin exhibited concentration-dependent suppressive activity on activated macrophages. Braylin (10–40 μM) reduced the production of nitrite, IL-1β, TNF-α and IL-6 by J774 cells or peritoneal exudate macrophages stimulated with LPS and IFN-γ. Molecular docking calculations suggested that braylin present an interaction pose to act as a glucocorticoid receptor ligand. Corroborating this idea, the inhibitory effect of braylin on macrophages was prevented by RU486, a glucocorticoid receptor antagonist. Furthermore, treatment with braylin strongly reduced the NF-κB-dependent transcriptional activity on RAW 264.7 cells. Using the complete Freund’s adjuvant (CFA)-induced paw inflammation model in mice, the pharmacological properties of braylin were demonstrated in vivo. Braylin (12.5–100 mg/kg) produced dose-related antinociceptive and antiedematogenic effects on CFA model. Braylin did not produce antinociception on the tail flick and hot plate tests in mice, suggesting that braylin-induced antinociception is not a centrally-mediated action. Braylin exhibited immunomodulatory properties on the CFA model, inhibiting the production of pro-inflammatory cytokines IL-1β, TNF-α and IL-6, while increased the anti-inflammatory cytokine TGF-β. Our results show, for the first time, anti-inflammatory, antinociceptive and immunomodulatory effects of braylin, which possibly act through the glucocorticoid receptor activation and by inhibition of the transcriptional activity of NF-κB. Because braylin is a phosphodiesterase-4 inhibitor, this coumarin could represent an ideal prototype of glucocorticoid receptor ligand, able to induce synergic immunomodulatory effects.
Collapse
|
98
|
Nagarkar B, Jagtap S. Effect of new polyherbal formulations DF1911, DF2112 and DF2813 on CFA induced inflammation in rat model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:194. [PMID: 28376870 PMCID: PMC5379771 DOI: 10.1186/s12906-017-1711-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/29/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Aim of the present study was to evaluate anti-inflammatory activity of newly developed polyherbal formulations DF1911, DF2112 and DF2813. These newly developed formulations are modifications of Dashamoola, a well known Ayurvedic formulation, along with addition of new plants. METHODS Complete Freund's adjuvant (CFA) induced inflammation in rat was used as an experimental model. Effects of the treatment in rats were monitored by physiological and biochemical parameters, histopathology and through gene expression studies. RESULTS Diclofenac sodium showed maximum percentage inhibition (56.8 ± 3.5%) of paw edema followed by Dashamoola Kwatha (19.9 ± 1.8%). Among test formulations treated groups, DF1911 at 250 mg/kg bw (48.2 ± 5.4%, p < 0.001) and DF2112 at 250 mg/kg bw (49.9 ± 3.5%, p < 0.001) showed significant and maximum increase in percentage inhibition of paw edema as compared to Dashamoola Kwatha. Hematological alterations in CFA rats were normalized after treatment with test formulations. Results of serum markers and histopathological observations also supported the activity of formulations. Increased MDA levels in liver tissue of CFA injected animals significantly (p < 0.05) decreased by Diclofenac sodium and test formulation treated groups. DF1911, DF2112 and DF2813 showed down-regulation of IL1-β (~6.4-fold, ~5.2-fold and ~7.6-fold), IL-6 (~1.1-fold, ~1.6-fold and ~1.9-fold), TNF-α (~2.0-fold, ~4.6-fold and ~3.5-fold), and iNOS (~1.2-fold, ~1.8-fold and ~1.1-fold) in inflamed paw tissue compared to negative control group, respectively. CONCLUSIONS The anti-inflammatory effects of DF1911 and DF2112 in rats were significantly higher than the Dashamoola Kwatha and are comparable to Diclofenac sodium.
Collapse
|
99
|
Pharmacological Properties of Riparin IV in Models of Pain and Inflammation. Molecules 2016; 21:molecules21121757. [PMID: 28009853 PMCID: PMC6274570 DOI: 10.3390/molecules21121757] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/07/2016] [Accepted: 12/17/2016] [Indexed: 01/22/2023] Open
Abstract
Riparins, natural alkaloids of the alkamide group, can be synthesized by simple methods, enhancing their potential application in pharmaceutical development. Here, the pharmacological properties of riparins were investigated in in vitro and in vivo assays of pain and inflammation in Swiss mice. Inflammatory mediators were measured by radioimmunoassay and Real-Time PCR. Riparins I, II, III and IV (1.56-100 mg/kg; ip) produced dose-related antinociceptive effects in the formalin test, exhibiting ED50 values of 22.93, 114.2, 31.05 and 6.63 mg/kg, respectively. Taking the greater potency as steering parameter, riparin IV was further investigated. Riparin IV did not produce antinociceptive effect on the tail flick, suggesting that its antinociception is not a centrally-mediated action. In fact, riparin IV (1.56-25 mg/kg) produced dose-related antinociceptive and antiedematogenic effects on the complete Freund's adjuvant (CFA)-induced paw inflammation in mice. During CFA-induced inflammation, riparin IV did not modulate either the production of cytokines, TNF-α and IL-10, or COX-2 mRNA expression. On the other hand, riparin IV decreased the PGE₂ levels in the inflamed paw. In in vitro assays, riparin IV did not exhibit suppressive activities in activated macrophages. These results indicate, for the first time, that riparin IV induces antinociceptive and anti-inflammatory effects, possibly through the inhibition of prostanoid production.
Collapse
|
100
|
Amirmohseni S, Segelcke D, Reichl S, Wachsmuth L, Görlich D, Faber C, Pogatzki-Zahn E. Characterization of incisional and inflammatory pain in rats using functional tools of MRI. Neuroimage 2016; 127:110-122. [DOI: 10.1016/j.neuroimage.2015.11.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/04/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023] Open
|