51
|
Huang J, Zhang X, Yang J, Yu J, Chen Q, Peng L. Recent Progress on Copper-Based Bimetallic Heterojunction Catalysts for CO 2 Electrocatalysis: Unlocking the Mystery of Product Selectivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309865. [PMID: 38634577 PMCID: PMC11199994 DOI: 10.1002/advs.202309865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Copper-based bimetallic heterojunction catalysts facilitate the deep electrochemical reduction of CO2 (eCO2RR) to produce high-value-added organic compounds, which hold significant promise. Understanding the influence of copper interactions with other metals on the adsorption strength of various intermediates is crucial as it directly impacts the reaction selectivity. In this review, an overview of the formation mechanism of various catalytic products in eCO2RR is provided and highlight the uniqueness of copper-based catalysts. By considering the different metals' adsorption tendencies toward various reaction intermediates, metals are classified, including copper, into four categories. The significance and advantages of constructing bimetallic heterojunction catalysts are then discussed and delve into the research findings and current development status of different types of copper-based bimetallic heterojunction catalysts. Finally, insights are offered into the design strategies for future high-performance electrocatalysts, aiming to contribute to the development of eCO2RR to multi-carbon fuels with high selectivity.
Collapse
Affiliation(s)
- Jiabao Huang
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Xinping Zhang
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Jiao Yang
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
| | - Jianmin Yu
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
| | - Qingjun Chen
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Lishan Peng
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
52
|
Feng C, Duan R, Chi H, Liu F, Song R, Li M, Yu W, Ding C, Li C. Promoting C-C coupling for CO 2 reduction on Cu 2O electrocatalysts with atomically dispersed Rh atoms. Chem Commun (Camb) 2024; 60:5550-5553. [PMID: 38700243 DOI: 10.1039/d4cc01254b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Cu2O doped with atomically dispersed Rh (Rh:Cu2O) is synthesized with a wet chemical method. It shows higher activity and faradaic efficiency at lower overpotential for reduction of CO2 to C2+ products, especially C2H4, than pristine Cu2O. We found that introducing Rh promotes CO2 adsorption, *CO hydrogenation to *CHO and their coupling to O*CCHO intermediates, which contributes to enhanced catalytic performance.
Collapse
Affiliation(s)
- Chengcheng Feng
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| | - Ruizhi Duan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haibo Chi
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| | - Fengyuan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Rui Song
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| | - Wenguang Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| | - Chunmei Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| | - Can Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| |
Collapse
|
53
|
Wang J, Wa Q, Diao Q, Liu F, Hao F, Xiong Y, Wang Y, Zhou J, Meng X, Guo L, Fan Z. Atomic Design of Copper Active Sites in Pristine Metal-Organic Coordination Compounds for Electrocatalytic Carbon Dioxide Reduction. SMALL METHODS 2024:e2400432. [PMID: 38767183 DOI: 10.1002/smtd.202400432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/16/2024] [Indexed: 05/22/2024]
Abstract
Electrocatalytic carbon dioxide reduction reaction (CO2RR) has emerged as a promising and sustainable approach to cut carbon emissions by converting greenhouse gas CO2 to value-added chemicals and fuels. Metal-organic coordination compounds, especially the copper (Cu)-based coordination compounds, which feature well-defined crystalline structures and designable metal active sites, have attracted much research attention in electrocatalytic CO2RR. Herein, the recent advances of electrochemical CO2RR on pristine Cu-based coordination compounds with different types of Cu active sites are reviewed. First, the general reaction pathways of electrocatalytic CO2RR on Cu-based coordination compounds are briefly introduced. Then the highly efficient conversion of CO2 on various kinds of Cu active sites (e.g., single-Cu site, dimeric-Cu site, multi-Cu site, and heterometallic site) is systematically discussed, along with the corresponding catalytic reaction mechanisms. Finally, some existing challenges and potential opportunities for this research direction are provided to guide the rational design of metal-organic coordination compounds for their practical application in electrochemical CO2RR.
Collapse
Affiliation(s)
- Juan Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Qi Diao
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Liang Guo
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
54
|
Wu W, Xu L, Lu Q, Sun J, Xu Z, Song C, Yu JC, Wang Y. Addressing the Carbonate Issue: Electrocatalysts for Acidic CO 2 Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312894. [PMID: 38722084 DOI: 10.1002/adma.202312894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) powered by renewable energy provides a promising route to CO2 conversion and utilization. However, the widely used neutral/alkaline electrolyte consumes a large amount of CO2 to produce (bi)carbonate byproducts, leading to significant challenges at the device level, thereby impeding the further deployment of this reaction. Conducting CO2RR in acidic electrolytes offers a promising solution to address the "carbonate issue"; however, it presents inherent difficulties due to the competitive hydrogen evolution reaction, necessitating concerted efforts toward advanced catalyst and electrode designs to achieve high selectivity and activity. This review encompasses recent developments of acidic CO2RR, from mechanism elucidation to catalyst design and device engineering. This review begins by discussing the mechanistic understanding of the reaction pathway, laying the foundation for catalyst design in acidic CO2RR. Subsequently, an in-depth analysis of recent advancements in acidic CO2RR catalysts is provided, highlighting heterogeneous catalysts, surface immobilized molecular catalysts, and catalyst surface enhancement. Furthermore, the progress made in device-level applications is summarized, aiming to develop high-performance acidic CO2RR systems. Finally, the existing challenges and future directions in the design of acidic CO2RR catalysts are outlined, emphasizing the need for improved selectivity, activity, stability, and scalability.
Collapse
Affiliation(s)
- Weixing Wu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong S. A. R., China
| | - Liangpang Xu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong S. A. R., China
| | - Qian Lu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong S. A. R., China
| | - Jiping Sun
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong S. A. R., China
| | - Zhanyou Xu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong S. A. R., China
| | - Chunshan Song
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong S. A. R., China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong S. A. R., China
| | - Ying Wang
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong S. A. R., China
| |
Collapse
|
55
|
Li Q, Wu J, Lv L, Zheng L, Zheng Q, Li S, Yang C, Long C, Chen S, Tang Z. Efficient CO 2 Electroreduction to Multicarbon Products at CuSiO 3/CuO Derived Interfaces in Ordered Pores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305508. [PMID: 37725694 DOI: 10.1002/adma.202305508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Electrochemical CO2 conversion to value-added multicarbon (C2+) chemicals holds promise for reducing CO2 emissions and advancing carbon neutrality. However, achieving both high conversion rate and selectivity remains challenging due to the limited active sites on catalysts for carbon-carbon (C─C) coupling. Herein, porous CuO is coated with amorphous CuSiO3 (p-CuSiO3/CuO) to maximize the active interface sites, enabling efficient CO2 reduction to C2+ products. Significantly, the p-CuSiO3/CuO catalyst exhibits impressive C2+ Faradaic efficiency (FE) of 77.8% in an H-cell at -1.2 V versus reversible hydrogen electrode in 0.1 M KHCO3 and remarkable C2H4 and C2+ FEs of 82% and 91.7% in a flow cell at a current density of 400 mA cm-2 in 1 M KOH. In situ characterizations and theoretical calculations reveal that the active interfaces facilitate CO2 activation and lower the formation energy of the key intermediate *OCCOH, thus promoting CO2 conversion to C2+. This work provides a rational design for steering the active sites toward C2+ products.
Collapse
Affiliation(s)
- Qun Li
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jiabin Wu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Lv
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Siyang Li
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chang Long
- Lab of Molecular Electrochemistry Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Sheng Chen
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
56
|
Liao L, Jia C, Wu S, Yu S, Wen Z, Ci S. Three-dimensional N-doped carbon nanosheets loaded with heterostructured Ni/Ni 3ZnC 0.7 nanoparticles for selective and efficient CO 2 reduction. NANOSCALE 2024; 16:8119-8131. [PMID: 38567547 DOI: 10.1039/d3nr05771b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Electrocatalytic CO2 reduction (CO2RR) has emerged as a promising approach for converting CO2 into valuable chemicals and fuels to achieve a sustainable carbon cycle. However, the development of efficient electrocatalysts with high current densities and superior product selectivity remains a significant challenge. In this study, we present the synthesis of a porous nitrogen-doped carbon nanosheet loaded with heterostructured Ni/Ni3ZnC0.7 nanoparticles through a facile hydrothermal-calcination method (Ni/Ni3ZnC0.7-NC). Remarkably, the Ni/Ni3ZnC0.7-NC catalyst exhibits outstanding performance towards CO2RR in an H-cell, demonstrating a high CO faradaic efficiency of 92.47% and a current density (jCO) of 15.77 mA cm-2 at 0.87 V vs. RHE. To further explore its potential industrial applications, we constructed a flow cell and a rechargeable Zn-CO2 flow cell utilizing the Ni/Ni3ZnC0.7-NC catalyst as the cathode. Impressively, not only does the Ni/Ni3ZnC0.7-NC catalyst achieve an industrial high current density of 254 mA cm-2 at a voltage of -1.19 V vs. RHE in the flow cell, but it also exhibits a maximum power density of 4.2 mW cm-2 at 22 mA cm-2 in the Zn-CO2 flow cell, while maintaining excellent rechargeability. Density functional theory (DFT) calculations indicate that Ni/Ni3ZnC0.7-NC possesses more spontaneous reaction pathways for CO2 reduction to CO, owing to its heterogeneous structure in contrast to Ni3ZnC0.7-NC and Ni-NC. Consequently, Ni/Ni3ZnC0.7-NC demonstrates accelerated CO2RR reaction kinetics, resulting in improved catalytic activity and selectivity for CO2RR.
Collapse
Affiliation(s)
- Li Liao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, Jiangxi, China.
| | - Chunguang Jia
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, Jiangxi, China.
| | - Songjiang Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, Jiangxi, China.
| | - Shenjie Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, Jiangxi, China.
| | - Zhenhai Wen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, Jiangxi, China.
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Suqin Ci
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, Jiangxi, China.
| |
Collapse
|
57
|
Ko YJ, Lim C, Jin J, Kim MG, Lee JY, Seong TY, Lee KY, Min BK, Choi JY, Noh T, Hwang GW, Lee WH, Oh HS. Extrinsic hydrophobicity-controlled silver nanoparticles as efficient and stable catalysts for CO 2 electrolysis. Nat Commun 2024; 15:3356. [PMID: 38637502 PMCID: PMC11026478 DOI: 10.1038/s41467-024-47490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
To realize economically feasible electrochemical CO2 conversion, achieving a high partial current density for value-added products is particularly vital. However, acceleration of the hydrogen evolution reaction due to cathode flooding in a high-current-density region makes this challenging. Herein, we find that partially ligand-derived Ag nanoparticles (Ag-NPs) could prevent electrolyte flooding while maintaining catalytic activity for CO2 electroreduction. This results in a high Faradaic efficiency for CO (>90%) and high partial current density (298.39 mA cm‒2), even under harsh stability test conditions (3.4 V). The suppressed splitting/detachment of Ag particles, due to the lipid ligand, enhance the uniform hydrophobicity retention of the Ag-NP electrode at high cathodic overpotentials and prevent flooding and current fluctuations. The mass transfer of gaseous CO2 is maintained in the catalytic region of several hundred nanometers, with the smooth formation of a triple phase boundary, which facilitate the occurrence of CO2RR instead of HER. We analyze catalyst degradation and cathode flooding during CO2 electrolysis through identical-location transmission electron microscopy and operando synchrotron-based X-ray computed tomography. This study develops an efficient strategy for designing active and durable electrocatalysts for CO2 electrolysis.
Collapse
Affiliation(s)
- Young-Jin Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Chulwan Lim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Junyoung Jin
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 37673, Republic of Korea
| | - Ji Yeong Lee
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Tae-Yeon Seong
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kwan-Young Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Byoung Koun Min
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jae-Young Choi
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Taegeun Noh
- Platform Technology Research Center, LG Chem Ltd., 30, Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea
| | - Gyu Weon Hwang
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Woong Hee Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Hyung-Suk Oh
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| |
Collapse
|
58
|
Penot C, Maniam KK, Paul S. Electrochemical Characterization of Electrodeposited Copper in Amine CO 2 Capture Media. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1825. [PMID: 38673182 PMCID: PMC11051279 DOI: 10.3390/ma17081825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
This study explores the stability of electrodeposited copper catalysts utilized in electrochemical CO2 reduction (ECR) across various amine media. The focus is on understanding the influence of different amine types, corrosion ramifications, and the efficacy of pulse ECR methodologies. Employing a suite of electrochemical techniques including potentiodynamic polarization, linear resistance polarization, cyclic voltammetry, and chronopotentiometry, the investigation reveals useful insights. The findings show that among the tested amines, CO2-rich monoethanolamine (MEA) exhibits the highest corrosion rate. However, in most cases, the rates remain within tolerable limits for ECR operations. Primary amines, notably monoethanolamine (MEA), show enhanced compatibility with ECR processes, attributable to their resistance against carbonate salt precipitation and sustained stability over extended durations. Conversely, tertiary amines such as methyldiethanolamine (MDEA) present challenges due to the formation of carbonate salts during ECR, impeding their effective utilization. This study highlights the effectiveness of pulse ECR strategies in stabilizing ECR. A noticeable shift in cathodic potential and reduced deposit formation on the catalyst surface through periodic oxidation underscores the efficacy of such strategies. These findings offer insights for optimizing ECR in amine media, thereby providing promising pathways for advancements in CO2 emission reduction technologies.
Collapse
Affiliation(s)
- Corentin Penot
- Materials Innovation Centre, School of Engineering, University of Leicester, Leicester LE1 7RH, UK; (C.P.); (K.K.M.)
| | - Kranthi Kumar Maniam
- Materials Innovation Centre, School of Engineering, University of Leicester, Leicester LE1 7RH, UK; (C.P.); (K.K.M.)
| | - Shiladitya Paul
- Materials Innovation Centre, School of Engineering, University of Leicester, Leicester LE1 7RH, UK; (C.P.); (K.K.M.)
- Materials Performance and Integrity Technology Group, TWI, Cambridge CB21 6AL, UK
| |
Collapse
|
59
|
Wang Y, Liu Y, Cao P, Chen S, Su Y, Quan X. Promoting CO 2 Electroreduction to Ethane by Iodide-Derived Copper with the Hydrophobic Surface. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38604119 DOI: 10.1021/acsami.4c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Electrochemical reduction of CO2 to value-added products provides a feasible pathway for mitigating net carbon emissions and storing renewable energy. However, the low dimerization efficiency of the absorbed CO intermediate (*CO) and the competitive hydrogen evolution reaction hinder the selective electroreduction of CO2 to ethane (C2H6) with a high energy density. Here, we designed hydrophobic iodide-derived copper electrodes (I-Cu/Nafion) for reducing CO2 to C2H6. The Faradaic efficiency of C2H6 reached 23.37% at -0.7 V vs RHE over the I-Cu/Nafion electrode in an H-type cell, which was about 1.7 times higher than that of the I-Cu electrode. The hydrophobic properties of the I-Cu/Nafion electrodes led to an increase in the local CO2 concentration and stabilized the Cu+ species. In situ Raman characterizations and density functional theory calculations indicate that the enhanced performances could be ascribed to the strong *CO adsorption and decreased the formation energy of *COOH and *COCOH intermediates. This study highlights the effect of the hydrophobic surface on Cu-based catalysts in the electroreduction of CO2 and provides a promising way to adjust the selectivity of C2 products.
Collapse
Affiliation(s)
- Yaqi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Peike Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
60
|
Yamaguchi S, Ebe H, Minegishi T, Sugiyama M. Introduction of a Conductive Layer into Flood-Resistant Gas Diffusion Electrodes with Polymer Substrate for an Efficient Electrochemical CO 2 Reduction with Copper Oxide. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17371-17376. [PMID: 38533998 DOI: 10.1021/acsami.3c14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Conversion of atmospheric carbon dioxide (CO2) into valuable feedstocks is a crucial technology, and electrochemical reduction of CO2 is a promising approach that can provide a useful source of ethylene (C2H4). Gas diffusion electrodes (GDEs) placed at the interface of the CO2 gas and electrolyte can achieve high current density through a sufficient supply of dissolved CO2 to the reaction site, making them indispensable in industrial applications. However, conventional GDEs with carbon substrate have suffered from electrolyte flooding and consequent loss of efficiency, posing an obstacle for practical application. While flood-resistant GDEs with hydrophobic polymer substrate have been proposed recently, only conductive materials can be employed as electrocatalysts because of their insulative properties, despite the high activities of oxide materials such as copper oxide. Here, we introduce an aluminum conductive layer in GDE with polymer substrate to enable the use of electrically resistive catalysts. Cuprous oxide (Cu2O) with silver particles was tested as a model material and has shown prolonged stability (>17 h) with high C2H4 Faraday efficiency (>50%) while suppressing flooding. A thorough characterization revealed that the conductive layer makes Cu2O an efficient electrocatalyst, even on the polymer substrate, by providing sufficient electrons through its conduction path. This research significantly expands the scope of electrode design by enabling the incorporation of a wide range of nonelectrically conductive materials on GDEs with polymer substrate.
Collapse
Affiliation(s)
- Shingi Yamaguchi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroji Ebe
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Tsutomu Minegishi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Masakazu Sugiyama
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
61
|
O'Brien CP, Miao RK, Shayesteh Zeraati A, Lee G, Sargent EH, Sinton D. CO 2 Electrolyzers. Chem Rev 2024; 124:3648-3693. [PMID: 38518224 DOI: 10.1021/acs.chemrev.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
CO2 electrolyzers have progressed rapidly in energy efficiency and catalyst selectivity toward valuable chemical feedstocks and fuels, such as syngas, ethylene, ethanol, and methane. However, each component within these complex systems influences the overall performance, and the further advances needed to realize commercialization will require an approach that considers the whole process, with the electrochemical cell at the center. Beyond the cell boundaries, the electrolyzer must integrate with upstream CO2 feeds and downstream separation processes in a way that minimizes overall product energy intensity and presents viable use cases. Here we begin by describing upstream CO2 sources, their energy intensities, and impurities. We then focus on the cell, the most common CO2 electrolyzer system architectures, and each component within these systems. We evaluate the energy savings and the feasibility of alternative approaches including integration with CO2 capture, direct conversion of flue gas and two-step conversion via carbon monoxide. We evaluate pathways that minimize downstream separations and produce concentrated streams compatible with existing sectors. Applying this comprehensive upstream-to-downstream approach, we highlight the most promising routes, and outlook, for electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Colin P O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Ali Shayesteh Zeraati
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Geonhui Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
62
|
Xu F, Feng B, Shen Z, Chen Y, Jiao L, Zhang Y, Tian J, Zhang J, Wang X, Yang L, Wu Q, Hu Z. Oxygen-Bridged Cu Binuclear Sites for Efficient Electrocatalytic CO 2 Reduction to Ethanol at Ultralow Overpotential. J Am Chem Soc 2024; 146:9365-9374. [PMID: 38511947 DOI: 10.1021/jacs.4c01610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Electrocatalytic CO2 reduction (CO2RR) to alcohols offers a promising strategy for converting waste CO2 into valuable fuels/chemicals but usually requires large overpotentials. Herein, we report a catalyst comprising unique oxygen-bridged Cu binuclear sites (CuOCu-N4) with a Cu···Cu distance of 3.0-3.1 Å and concomitant conventional Cu-N4 mononuclear sites on hierarchical nitrogen-doped carbon nanocages (hNCNCs). The catalyst exhibits a state-of-the-art low overpotential of 0.19 V (versus reversible hydrogen electrode) for ethanol and an outstanding ethanol Faradaic efficiency of 56.3% at an ultralow potential of -0.30 V, with high-stable Cu active-site structures during the CO2RR as confirmed by operando X-ray adsorption fine structure characterization. Theoretical simulations reveal that CuOCu-N4 binuclear sites greatly enhance the C-C coupling at low potentials, while Cu-N4 mononuclear sites and the hNCNC support increase the local CO concentration and ethanol production on CuOCu-N4. This study provides a convenient approach to advanced Cu binuclear site catalysts for CO2RR to ethanol with a deep understanding of the mechanism.
Collapse
Affiliation(s)
- Fengfei Xu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Biao Feng
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Shen
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiqun Chen
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Liu Jiao
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingyi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junru Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
63
|
Zhang QM, Wang ZY, Zhang H, Liu XH, Zhang W, Zhao LB. Micro-kinetic modelling of the CO reduction reaction on single atom catalysts accelerated by machine learning. Phys Chem Chem Phys 2024; 26:11037-11047. [PMID: 38526740 DOI: 10.1039/d4cp00325j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Electrochemical CO2 transformation to fuels and chemicals is an effective strategy for conversion of renewable electric energy into storable chemical energy in combination with reducing green-house gas emission. Metal-nitrogen-carbon (M-N-C) single atom catalysts (SAC) have shown great potential in the electrochemical CO2 reduction reaction (CO2RR). However, exploring advanced SACs with simultaneously high catalytic activity and high product selectivity remains a great challenge. In this study, density functional theory (DFT) calculations are combined with machine learning (ML) for rapid and high-throughput screening of high performance CO reduction catalysts. Firstly, the electrochemical properties of 99 M-N-C SACs were calculated by DFT and used as a database. By using different machine learning models with simple features, the investigated SACs were expanded from 99 to 297. Through several effective indicators of catalyst stability, inhibition of the hydrogen evolution reaction, and CO adsorption strength, 33 SACs were finally selected. The catalytic activity and selectivity of the remaining 33 SACs were explored by micro-kinetic simulation based on Marcus theory. Among all the studied SACs, Mn-NC2, Pt-NC2, and Au-NC2 deliver the best catalytic performance and can be used as potential catalysts for CO2/CO conversion to hydrocarbons with high energy density. This effective screening method using a machine learning algorithm can promote the exploration of CO2RR catalysts and significantly reduce the simulation cost.
Collapse
Affiliation(s)
- Qing-Meng Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Zhao-Yu Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Hao Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Xiao-Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- National University of Singapore (Chongqing) Research Institute, Chongqing 401123, China.
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Liu-Bin Zhao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
64
|
Gao Y, Xiao D, Wang Z, Zheng Z, Wang P, Cheng H, Liu Y, Dai Y, Huang B. Revealing the Lattice Carbonate Mediated Mechanism in Cu 2(OH) 2CO 3 for Electrocatalytic Reduction of CO 2 to C 2H 4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308949. [PMID: 38311576 PMCID: PMC11005744 DOI: 10.1002/advs.202308949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Indexed: 02/06/2024]
Abstract
Understanding the CO2 transformation mechanism on materials is essential for the design of efficient electrocatalysts for CO2 reduction. In aconventional adsorbate evolution mechanism (AEM), the catalysts encounter multiple high-energy barrier steps, especially CO2 activation, limiting the activity and selectivity. Here, lattice carbonate from Cu2(OH)2CO3 is revealed to be a mediator between CO2 molecules and catalyst during CO2 electroreduction by a 13C isotope labeling method, which can bypass the high energy barrier of CO2 activation and strongly enhance the performance. With the lattice carbonate mediated mechanism (LCMM), the Cu2(OH)2CO3 electrode exhibited ten-fold faradaic efficiency and 15-fold current density for ethylene production than the Cu2O electrode with AEM at a low overpotential. Theoretical calculations and in situ Raman spectroscopy results show that symmetric vibration of carbonate is precisely enhanced on the catalyst surface with LCMM, leading to faster electron transfer, and lower energy barriers of CO2 activation and carbon-carbon coupling. This work provides a route to develop efficient electrocatalysts for CO2 reduction based on lattice-mediated mechanism.
Collapse
Affiliation(s)
- Yugang Gao
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Difei Xiao
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Zeyan Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Peng Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Hefeng Cheng
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Ying Dai
- School of PhysicsShandong UniversityJinan250100China
| | - Baibiao Huang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| |
Collapse
|
65
|
Jiao L, Mao C, Xu F, Cheng X, Cui P, Wang X, Yang L, Wu Q, Hu Z. Constructing Gold Single-Atom Catalysts on Hierarchical Nitrogen-Doped Carbon Nanocages for Carbon Dioxide Electroreduction to Syngas. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305513. [PMID: 38032150 DOI: 10.1002/smll.202305513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/12/2023] [Indexed: 12/01/2023]
Abstract
Precious-metal single-atom catalysts (SACs), featured by high metal utilization and unique coordination structure for catalysis, demonstrate distinctive performances in the fields of heterogeneous and electrochemical catalysis. Herein, gold SACs are constructed on hierarchical nitrogen-doped carbon nanocages (hNCNC) via a simple impregnation-drying process and first exploited for electrocatalytic carbon dioxide reduction reaction (CO2RR) to produce syngas. The as-constructed Au SAC exhibits the high mass activity of 3319 A g-1 Au at -1.0 V (vs reversible hydrogen electrode, RHE), much superior to the Au nanoparticles supported on hNCNC. The ratio of H2/CO can be conveniently regulated in the range of 0.4-2.2 by changing the applied potential. Theoretical study indicates such a potential-dependent H2/CO ratio is attributed to the different responses of HER and CO2RR on Au single-atom sites coordinating with one N atom at the edges of micropores across the nanocage shells. The catalytic mechanism of the Au active sites is associated with the smooth switch between twofold and fourfold coordination during CO2RR, which much decreases the free energy changes of the rate-determining steps and promotes the reaction activity.
Collapse
Affiliation(s)
- Liu Jiao
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chenghui Mao
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fengfei Xu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xueyi Cheng
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
66
|
Huang JE, Chen Y, Ou P, Ding X, Yan Y, Dorakhan R, Lum Y, Li XY, Bai Y, Wu C, Fan M, Lee MG, Miao RK, Liu Y, O'Brien C, Zhang J, Tian C, Liang Y, Xu Y, Luo M, Sinton D, Sargent EH. Selective Electrified Propylene-to-Propylene Glycol Oxidation on Activated Rh-Doped Pd. J Am Chem Soc 2024; 146:8641-8649. [PMID: 38470826 DOI: 10.1021/jacs.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Renewable-energy-powered electrosynthesis has the potential to contribute to decarbonizing the production of propylene glycol, a chemical that is used currently in the manufacture of polyesters and antifreeze and has a high carbon intensity. Unfortunately, to date, the electrooxidation of propylene under ambient conditions has suffered from a wide product distribution, leading to a low faradic efficiency toward the desired propylene glycol. We undertook mechanistic investigations and found that the reconstruction of Pd to PdO occurs, followed by hydroxide formation under anodic bias. The formation of this metastable hydroxide layer arrests the progressive dissolution of Pd in a locally acidic environment, increases the activity, and steers the reaction pathway toward propylene glycol. Rh-doped Pd further improves propylene glycol selectivity. Density functional theory (DFT) suggests that the Rh dopant lowers the energy associated with the production of the final intermediate in propylene glycol formation and renders the desorption step spontaneous, a concept consistent with experimental studies. We report a 75% faradic efficiency toward propylene glycol maintained over 100 h of operation.
Collapse
Affiliation(s)
- Jianan Erick Huang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Yiqing Chen
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Pengfei Ou
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Xueda Ding
- School of Material Science and Engineering, Peking University, Beijing 100871, China
| | - Yu Yan
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Roham Dorakhan
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Yanwei Lum
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Xiao-Yan Li
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Yang Bai
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Chengqian Wu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Mengyang Fan
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Mi Gyoung Lee
- Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Yanjiang Liu
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Colin O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Jinqiang Zhang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Cong Tian
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Yongxiang Liang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Yi Xu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Mingchuan Luo
- School of Material Science and Engineering, Peking University, Beijing 100871, China
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| |
Collapse
|
67
|
Pu Y, Wu G, Wang Y, Wu X, Chu N, Zeng RJ, Jiang Y. Surface coating combined with in situ cyclic voltammetry to enhance the stability of gas diffusion electrodes for electrochemical CO 2 reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170758. [PMID: 38331286 DOI: 10.1016/j.scitotenv.2024.170758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/30/2023] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Electrochemical CO2 reduction (CO2RR), fueled by clean and renewable energy, presents a promising method for utilizing CO2 effectively. The electrocatalytic reduction of CO2 to CO using a gas diffusion electrode (GDE) has shown great potential for industrial applications due to its high reaction rate and selectivity. However, guaranteeing its long-term stability still poses a significant challenge. In this study, we conducted a comprehensive investigation into various strategies to enhance the stability of the GDE. These strategies involved modifying the structure of the substrate, such as the gas diffusion layer (GDL) and the back side of the GDL (macroporous layer side). Additionally, we explored modifications to the catalyst layer (CL) and the front of the CL. To address these stability concerns, we proposed a practical approach that involved surface coating using carbon black in combination with in situ cyclic voltammetry (CV) cycles on Ag/Ag300/polytetrafluoroethylene (PTFE). The partial Faradaic efficiency exceeded 80 % within a span of 70 h. Electron microscopy and electrochemical characterization revealed that the implementation of in situ CV led to a reduction in catalyst particle size and the formation of a porous surface structure. By enhancing the stability of the GDE, this research opens up possibilities for the advancement of hybrid systems that focus on the production and utilization of syngas.
Collapse
Affiliation(s)
- Ying Pu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gaoying Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaobing Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
68
|
Chen JM, Xie WJ, Yang ZW, He LN. Molecular Engineering of Copper Phthalocyanine for CO 2 Electroreduction to Methane. CHEMSUSCHEM 2024; 17:e202301634. [PMID: 37994392 DOI: 10.1002/cssc.202301634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Efficient electrochemical CO2 reduction reaction (ECO2RR) to multi-electron reductive products remains a great challenge. Herein, molecular engineering of copper phthalocyanines (CuPc) was explored by modifying electron-withdrawing groups (EWGs) (cyano, sulfonate anion) and electron-donating groups (EDGs) (methoxy, amino) to CuPc, then supporting onto carbon paper or carbon cloth by means of droplet coating, loading with carbon nanotubes and coating in polypyrrole (PPy). The results showed that the PPy-coated CuPc effectively catalysed ECO2RR to CH4. Interestingly, experimental results and DFT calculations indicated EWGs markedly improved the selectivity of methane for the reason that the introduction of EWGs reduces electron density of catalytic active center, resulting in a positive move to initial reduction potential. Otherwise, the modification of EDGs significantly reduces the selectivity towards methane. This electronic effect and heterogenization of CuPc are facile and effective molecular engineering, benefitting the preparation of electrocatalysts for further reduction of CO2.
Collapse
Affiliation(s)
- Jin-Mei Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Wen-Jun Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi-Wen Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
69
|
Czaikowski ME, Anferov SW, Anderson JS. Metal-ligand cooperativity in chemical electrosynthesis. CHEM CATALYSIS 2024; 4:100922. [PMID: 38799408 PMCID: PMC11115383 DOI: 10.1016/j.checat.2024.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Electrochemistry has been an increasingly useful tool for organic synthesis, as it can selectively generate reactive intermediates under mild conditions using an applied potential. Concurrently, synergistic activity of a metal and a ligand has been used in thermal catalysis and electrocatalytic renewable fuel generation for substrate selectivity and improved catalyst activity. Combining these synthetic strategies is an attractive approach for mild, selective, and sustainable electrosynthesis. This perspective discusses examples of metal-ligand synergistic catalysis in electrochemical applications in organic and organometallic synthesis. The range of reactions and ligand design principles illustrates many opportunities for further discovery in this area and the potential for far-reaching synthetic benefits.
Collapse
Affiliation(s)
- Maia E. Czaikowski
- Department of Chemistry, The University of Chicago, Chicago, IL 60627, USA
- These authors contributed equally
| | - Sophie W. Anferov
- Department of Chemistry, The University of Chicago, Chicago, IL 60627, USA
- These authors contributed equally
| | - John S. Anderson
- Department of Chemistry, The University of Chicago, Chicago, IL 60627, USA
| |
Collapse
|
70
|
Wang Y, Wang Y, Tang M, Wang Y, Zhang F, Zhao R, Zhao Y, Liu Z. Polyarene Oxides with Tunable Quinone Units for Photocatalytic CO 2 Reduction: A Simple Strategy toward Effective and Selective Catalysts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6026-6034. [PMID: 38451161 DOI: 10.1021/acs.langmuir.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The photocatalytic transformation of carbon dioxide (CO2) into valuable chemicals is a challenging process that requires effective and selective catalysts. However, most polymer-based photocatalysts with electron donor-acceptor (D-A) structures are synthesized with a fixed D-A ratio by using expensive monomers. Herein, we report a simple strategy to prepare polyarene oxides (PAOs) with quinone structural units via oxidation treatment of polyarene (PA). The resultant PAOs show tunable D-A structures and electronic band positions depending on the degree of oxidation, which can catalyze the photoreduction of CO2 with water under visible light irradiation, generating CO as the sole carbonaceous product without H2 generation. Especially, the PAO with an oxygen content of 17.6% afforded the highest CO production rate of 161.9 μmol g-1 h-1. It is verified that the redox transformation between quinone and phenolic hydroxyl in PAOs achieves CO2 photoreduction coupled with water oxidation. This study provides a facile way to access conjugated polymers with a tunable D-A structure and demonstrates that the resultant PAOs are promising photocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Yuepeng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Chinese Academy of Sciences (CAS), Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, CAS, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiding Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Chinese Academy of Sciences (CAS), Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, CAS, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Minhao Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Chinese Academy of Sciences (CAS), Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, CAS, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yusi Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Chinese Academy of Sciences (CAS), Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, CAS, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fengtao Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Chinese Academy of Sciences (CAS), Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, CAS, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Runyao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Chinese Academy of Sciences (CAS), Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, CAS, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanfei Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Chinese Academy of Sciences (CAS), Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, CAS, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Chinese Academy of Sciences (CAS), Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, CAS, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
71
|
Agarwal VG, Haussener S. Quantifying mass transport limitations in a microfluidic CO 2 electrolyzer with a gas diffusion cathode. Commun Chem 2024; 7:47. [PMID: 38443453 PMCID: PMC10914812 DOI: 10.1038/s42004-024-01122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
A gas diffusion electrode (GDE) based CO2 electrolyzer shows enhanced CO2 transport to the catalyst surface, significantly increasing current density compared to traditional planar immersed electrodes. A two-dimensional model for the cathode side of a microfluidic CO2 to CO electrolysis device with a GDE is developed. The model, validated against experimental data, examines key operational parameters and electrode materials. It predicts an initial rise in CO partial current density (PCD), peaking at 75 mA cm-2 at -1.3 V vs RHE for a fully flooded catalyst layer, then declining due to continuous decrease in CO2 availability near the catalyst surface. Factors like electrolyte flow rate and CO2 gas mass flow rate influence PCD, with a trade-off between high CO PCD and CO2 conversion efficiency observed with increased CO2 gas flow. We observe that a significant portion of the catalyst layer remains underutilized, and suggest improvements like varying electrode porosity and anisotropic layers to enhance mass transport and CO PCD. This research offers insights into optimizing CO2 electrolysis device performance.
Collapse
Affiliation(s)
- Venu Gopal Agarwal
- Laboratory of Renewable Energy Science and Engineering, EPFL, Station 9, Lausanne, 1015, Switzerland
| | - Sophia Haussener
- Laboratory of Renewable Energy Science and Engineering, EPFL, Station 9, Lausanne, 1015, Switzerland.
| |
Collapse
|
72
|
Fan J, Pan B, Wu J, Shao C, Wen Z, Yan Y, Wang Y, Li Y. Immobilized Tetraalkylammonium Cations Enable Metal-free CO 2 Electroreduction in Acid and Pure Water. Angew Chem Int Ed Engl 2024; 63:e202317828. [PMID: 38165224 DOI: 10.1002/anie.202317828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Carbon dioxide reduction reaction (CO2 RR) provides an efficient pathway to convert CO2 into desirable products, yet its commercialization is greatly hindered by the huge energy cost due to CO2 loss and regeneration. Performing CO2 RR under acidic conditions containing alkali cations can potentially address the issue, but still causes (bi)carbonate deposition at high current densities, compromising product Faradaic efficiencies (FEs) in present-day acid-fed membrane electrode assemblies. Herein, we present a strategy using a positively charged polyelectrolyte-poly(diallyldimethylammonium) immobilized on graphene oxide via electrostatic interactions to displace alkali cations. This enables a FE of 85 %, a carbon efficiency of 93 %, and an energy efficiency (EE) of 35 % for CO at 100 mA cm-2 on modified Ag catalysts in acid. In a pure-water-fed reactor, we obtained a 78 % CO FE with a 30 % EE at 100 mA cm-2 at 40 °C. All the performance metrics are comparable to or even exceed those attained in the presence of alkali metal cations.
Collapse
Affiliation(s)
- Jia Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Binbin Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Jialing Wu
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China
| | - Chaochen Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Zhaoyu Wen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yuchen Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yuhang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China
| |
Collapse
|
73
|
Chen C, Jin H, Wang P, Sun X, Jaroniec M, Zheng Y, Qiao SZ. Local reaction environment in electrocatalysis. Chem Soc Rev 2024; 53:2022-2055. [PMID: 38204405 DOI: 10.1039/d3cs00669g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Beyond conventional electrocatalyst engineering, recent studies have unveiled the effectiveness of manipulating the local reaction environment in enhancing the performance of electrocatalytic reactions. The general principles and strategies of local environmental engineering for different electrocatalytic processes have been extensively investigated. This review provides a critical appraisal of the recent advancements in local reaction environment engineering, aiming to comprehensively assess this emerging field. It presents the interactions among surface structure, ions distribution and local electric field in relation to the local reaction environment. Useful protocols such as the interfacial reactant concentration, mass transport rate, adsorption/desorption behaviors, and binding energy are in-depth discussed toward modifying the local reaction environment. Meanwhile, electrode physical structures and reaction cell configurations are viable optimization methods in engineering local reaction environments. In combination with operando investigation techniques, we conclude that rational modifications of the local reaction environment can significantly enhance various electrocatalytic processes by optimizing the thermodynamic and kinetic properties of the reaction interface. We also outline future research directions to attain a comprehensive understanding and effective modulation of the local reaction environment.
Collapse
Affiliation(s)
- Chaojie Chen
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huanyu Jin
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Pengtang Wang
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaogang Sun
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| | - Yao Zheng
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shi-Zhang Qiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
74
|
Chen Q, Wang X, Zhou Y, Tan Y, Li H, Fu J, Liu M. Electrocatalytic CO 2 Reduction to C 2+ Products in Flow Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303902. [PMID: 37651690 DOI: 10.1002/adma.202303902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Electrocatalytic CO2 reduction into value-added fuels and chemicals by renewable electric energy is one of the important strategies to address global energy shortage and carbon emission. Though the classical H-type electrolytic cell can quickly screen high-efficiency catalysts, the low current density and limited CO2 mass transfer process essentially impede its industrial applications. The electrolytic cells based on electrolyte flow system (flow cells) have shown great potential for industrial devices, due to higher current density, improved local CO2 concentration, and better mass transfer efficiency. The design and optimization of flow cells are of great significance to further accelerate the industrialization of electrocatalytic CO2 reduction reaction (CO2 RR). In this review, the progress of flow cells for CO2 RR to C2+ products is concerned. Firstly, the main events in the development of the flow cells for CO2 RR are outlined. Second, the main design principles of CO2 RR to C2+ products, the architectures, and types of flow cells are summarized. Third, the main strategies for optimizing flow cells to generate C2+ products are reviewed in detail, including cathode, anode, ion exchange membrane, and electrolyte. Finally, the preliminary attempts, challenges, and the research prospects of flow cells for industrial CO2 RR toward C2+ products are discussed.
Collapse
Affiliation(s)
- Qin Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Xiqing Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yajiao Zhou
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yao Tan
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450002, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
75
|
Liu N, Bartling S, Springer A, Kubis C, Bokareva OS, Salaya E, Sun J, Zhang Z, Wohlrab S, Abdel-Mageed AM, Liang HQ, Francke R. Heterogenized Molecular Electrocatalyst Based on a Hydroxo-Bridged Binuclear Copper(II) Phenanthroline Compound for Selective Reduction of CO 2 to Ethylene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309526. [PMID: 37983740 DOI: 10.1002/adma.202309526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Molecular copper catalysts have emerged as promising candidates for the electrochemical reduction of CO2 . Notable features of such systems include the ability of Cu to generate C2+ products and the well-defined active sites that allow for targeted structural tuning. However, the frequently observed in situ formation of Cu nanoclusters has undermined the advantages of the molecular frameworks. It is therefore desirable to develop Cu-based catalysts that retain their molecular structures during electrolysis. In this context, a heterogenized binuclear hydroxo-bridged phenanthroline Cu(II) compound with a short Cu···Cu distance is reported as a simple yet efficient catalyst for electrogeneration of ethylene and other C2 products. In an aqueous electrolyte, the catalyst demonstrates remarkable performance, with excellent Faradaic efficiency for C2 products (62%) and minimal H2 evolution (8%). Furthermore, it exhibits high stability, manifested by no observable degradation during 15 h of continuous electrolysis. The preservation of the atomic distribution of the active sites throughout electrolysis is substantiated through comprehensive characterizations, including X-ray photoelectron and absorption spectroscopy, scanning and transmission electron microscopy, UV-vis spectroscopy, as well as control experiments. These findings establish a solid foundation for further investigations into targeted structural tuning, opening new avenues for enhancing the catalytic performance of Cu-based molecular electrocatalysts.
Collapse
Affiliation(s)
- Na Liu
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Stephan Bartling
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Armin Springer
- Electron Microscopy Center, University Medicine Rostock, Strempelstr. 14, 18057, Rostock, Germany
| | - Christoph Kubis
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Olga S Bokareva
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Evaristo Salaya
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Jiameng Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Rd. 17923, Jinan, 250061, P. R. China
| | - Zhonghua Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Rd. 17923, Jinan, 250061, P. R. China
| | - Sebastian Wohlrab
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Ali M Abdel-Mageed
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Hong-Qing Liang
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Rd. 866, Hangzhou, 310058, P. R. China
| | - Robert Francke
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| |
Collapse
|
76
|
Xu XY, Guo JY, Zhang W, Jie Y, Song HT, Lu H, Zhang YF, Zhao J, Hu CX, Yan H. Theoretical study on electrocatalytic carbon dioxide reduction over copper with copper-based layered double hydroxides. Phys Chem Chem Phys 2024; 26:4480-4491. [PMID: 38240307 DOI: 10.1039/d3cp03249c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The conversion of CO2 into valuable fuels and multi-carbon chemical substances by electrical energy is an effective strategy to solve environmental problems by using renewable energy sources. In this work, the density functional theory (DFT) method is used to reveal the electrocatalytic mechanism of CO2 reduction reaction (CO2RR) over the surface of CuAl-Cl-layered double hydroxides (LDHs) with Cu monoatoms (Cu@CuAl-Cl-LDH), Cu2 diatoms (Cu2@CuAl-Cl-LDH), orthotetrahedral Cu4 clusters (Td-Cu4@CuAl-Cl-LDH) and planar Cu4 clusters (Pl-Cu4@CuAl-Cl-LDH). The active sites, density of states, adsorption energy, charge density difference and free energy are calculated. The results show that CO2RR over all the above five catalysts can generate C2 products. Pl-Cu4@CuAl-Cl-LDH tends to generate C2H5OH, while the remaining four structures all tend to produce C2H4. Cuδ+ favors CO2RR, and Td-Cu4@CuAl-Cl-LDH with a larger positively charged area at the active site has the better electrocatalytic performance among the calculated systems with a maximum step height of 0.78 eV. The selectivity of the products C2H4 and C2H5OH depends on the dehydration of the intermediate *C2H2O to *C2H3O or *CCH; if the dehydration produces *CCH intermediate, the final product is C2H4, and if no dehydration occurs, C2H5OH is produced. This work provides theoretical information and guidance for further rational design of efficient CO2RR catalysts for energy saving and emission reduction.
Collapse
Affiliation(s)
- Xin-Yu Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jing-Yi Guo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Wei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yao Jie
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hui-Ting Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hao Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yi-Fan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jia Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chen-Xu Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
77
|
Sun YW, Liu L, Liu JY. Enhancing CO 2 electroreduction performance through transition metal atom doping and strain engineering in γ-GeSe: a first-principles study. Phys Chem Chem Phys 2024; 26:3560-3568. [PMID: 38214164 DOI: 10.1039/d3cp05276a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The development of electrocatalysts that exhibit stability, high activity, and selectivity for CO2 reduction reactions (CO2RR) remains a significant challenge. Single-atom catalysts (SACs) hold promise in addressing this challenge due to their high atomic utilization efficiency. In this study, we explore the potential of monolayer γ-GeSe doped with transition metals, referred to as TM@γ-GeSe, for facilitating electrocatalytic CO2RR. Among the 26 TM@γ-GeSe SACs systematically designed, we have identified four stable transition metal catalysts (TM = Rh, Pd, Pt, and Au). Mechanistic investigations into the CO2RR pathways reveal exceptional electrocatalytic activity for Rh@γ-GeSe and Pd@γ-GeSe, with limiting potentials of -0.26 and -0.35 V, respectively. Particularly, Pd@γ-GeSe exhibits outstanding product selectivity toward formic acid. The introduction of strain engineering induces modifications in the catalytic activity and selectivity of Rh@γ-GeSe. Notably, a 1% tensile strain promotes formic acid as the preferred product, thereby improving the specific product selectivity of Rh@γ-GeSe. Conversely, compressive strain reduces CO2RR activity while enhancing the hydrogen evolution reaction, leading to a decrease in CO2RR selectivity. Furthermore, we use the work function as a descriptor to elucidate the underlying mechanism of strain tunability. We hope that our theoretical study will offer valuable insights for the design of catalysts based on γ-GeSe for electrocatalytic CO2RR.
Collapse
Affiliation(s)
- Yu-Wang Sun
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China.
| | - Lei Liu
- College of Chemistry, Jilin University, Changchun 130023, China
| | - Jing-Yao Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China.
| |
Collapse
|
78
|
Jian H, Lu M, Zheng H, Yan S, Wang M. Electrochemical Water Oxidation and CO 2 Reduction with a Nickel Molecular Catalyst. Molecules 2024; 29:578. [PMID: 38338323 PMCID: PMC10856054 DOI: 10.3390/molecules29030578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Mimicking the photosynthesis of green plants to combine water oxidation with CO2 reduction is of great significance for solving energy and environmental crises. In this context, a trinuclear nickel complex, [NiII3(paoH)6(PhPO3)2]·2ClO4 (1), with a novel structure has been constructed with PhPO32- (phenylphosphonate) and paoH (2-pyridine formaldehyde oxime) ligands and possesses a reflection symmetry with a mirror plane revealed by single-crystal X-ray diffraction. Bulk electrocatalysis demonstrates that complex 1 can homogeneously catalyze water oxidation and CO2 reduction simultaneously. It can catalyze water oxidation at a near-neutral condition of pH = 7.45 with a high TOF of 12.2 s-1, and the Faraday efficiency is as high as 95%. Meanwhile, it also exhibits high electrocatalytic activity for CO2 reduction towards CO with a TOF of 7.84 s-1 in DMF solution. The excellent electrocatalytic performance of the water oxidation and CO2 reduction of complex 1 could be attributed to the two unique µ3-PhPO32- bridges as the crucial factor for stabilizing the trinuclear molecule as well as the proton transformation during the catalytic process, while the oxime groups modulate the electronic structure of the metal centers via π back-bonding. Therefore, apart from the cooperation effect of the three Ni centers for catalysis, simultaneously, the two kinds of ligands in complex 1 can also synergistically coordinate the central metal, thereby significantly promoting its catalytic performance. Complex 1 represents the first nickel molecular electrocatalyst for both water oxidation and CO2 reduction. The findings in this work open an avenue for designing efficient molecular electrocatalysts with peculiar ligands.
Collapse
Affiliation(s)
| | | | | | | | - Mei Wang
- School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China; (H.J.); (M.L.); (H.Z.); (S.Y.)
| |
Collapse
|
79
|
Li K, Kuwahara Y, Yamashita H. Hollow carbon-based materials for electrocatalytic and thermocatalytic CO 2 conversion. Chem Sci 2024; 15:854-878. [PMID: 38239694 PMCID: PMC10793651 DOI: 10.1039/d3sc05026b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
Electrocatalytic and thermocatalytic CO2 conversions provide promising routes to realize global carbon neutrality, and the development of corresponding advanced catalysts is important but challenging. Hollow-structured carbon (HSC) materials with striking features, including unique cavity structure, good permeability, large surface area, and readily functionalizable surface, are flexible platforms for designing high-performance catalysts. In this review, the topics range from the accurate design of HSC materials to specific electrocatalytic and thermocatalytic CO2 conversion applications, aiming to address the drawbacks of conventional catalysts, such as sluggish reaction kinetics, inadequate selectivity, and poor stability. Firstly, the synthetic methods of HSC, including the hard template route, soft template approach, and self-template strategy are summarized, with an evaluation of their characteristics and applicability. Subsequently, the functionalization strategies (nonmetal doping, metal single-atom anchoring, and metal nanoparticle modification) for HSC are comprehensively discussed. Lastly, the recent achievements of intriguing HSC-based materials in electrocatalytic and thermocatalytic CO2 conversion applications are presented, with a particular focus on revealing the relationship between catalyst structure and activity. We anticipate that the review can provide some ideas for designing highly active and durable catalytic systems for CO2 valorization and beyond.
Collapse
Affiliation(s)
- Kaining Li
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Osaka 565-0871 Japan
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
| |
Collapse
|
80
|
Sun M, Cheng J, Yamauchi M. Gas diffusion enhanced electrode with ultrathin superhydrophobic macropore structure for acidic CO 2 electroreduction. Nat Commun 2024; 15:491. [PMID: 38225248 PMCID: PMC10789815 DOI: 10.1038/s41467-024-44722-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024] Open
Abstract
Carbon dioxide (CO2) electroreduction reaction (CO2RR) offers a promising strategy for the conversion of CO2 into valuable chemicals and fuels. CO2RR in acidic electrolytes would have various advantages due to the suppression of carbonate formation. However, its reaction rate is severely limited by the slow CO2 diffusion due to the absence of hydroxide that facilitates the CO2 diffusion in an acidic environment. Here, we design an optimal architecture of a gas diffusion electrode (GDE) employing a copper-based ultrathin superhydrophobic macroporous layer, in which the CO2 diffusion is highly enhanced. This GDE retains its applicability even under mechanical deformation conditions. The CO2RR in acidic electrolytes exhibits a Faradaic efficiency of 87% with a partial current density [Formula: see text] of -1.6 A cm-2 for multicarbon products (C2+), and [Formula: see text] of -0.34 A cm-2 when applying dilute 25% CO2. In a highly acidic environment, C2+ formation occurs via a second order reaction which is controlled by both the catalyst and its hydroxide.
Collapse
Affiliation(s)
- Mingxu Sun
- Department of Chemistry, Graduate School of Science, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Jiamin Cheng
- Research Center for Negative Emissions Technologies (K-NETs), Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Miho Yamauchi
- Department of Chemistry, Graduate School of Science, Kyushu University, Nishi-ku, Fukuoka, Japan.
- Research Center for Negative Emissions Technologies (K-NETs), Kyushu University, Nishi-ku, Fukuoka, Japan.
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, Nishi-ku, Fukuoka, Japan.
- International Institute for Carbon-Neutral Energy Research (WPI-I²CNER), Kyushu University, Nishi-ku, Fukuoka, Japan.
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Aoba-ku, Sendai, Japan.
| |
Collapse
|
81
|
Zhao X, Xie H, Deng B, Wang L, Li Y, Dong F. Enhanced CO 2 reduction with hydrophobic cationic-ionomer layer-modified zero-gap MEA in acidic electrolyte. Chem Commun (Camb) 2024; 60:542-545. [PMID: 38093711 DOI: 10.1039/d3cc05277j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A hydrophobic cationic-ionomer layer of quaternary ammonium poly(N-methyl-piperidine-co-p-terphenyl) and PTFE is presented to enhance the CO2 electroreduction in a zero-gap membrane electrode assembly (MEA) electrolyzer under acidic and low alkali ion concentration conditions. The modified MEA achieved a maximum CO faradaic efficiency of 95.6% at 100 mA cm-2.
Collapse
Affiliation(s)
- Xueyang Zhao
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hongtao Xie
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Bangwei Deng
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Lili Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Yizhao Li
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
82
|
Zhang K, Wang J, Zhang W, Xiao D, Yin H, Lu Z, Fan M, Fan W, Zhang Y, Zhang P. Adjusted Preferential Adsorption of Intermediates via Regulation of the Electronic Structure during the Electrocatalytic CO 2 Reduction Process. J Phys Chem Lett 2024; 15:34-42. [PMID: 38127717 DOI: 10.1021/acs.jpclett.3c02883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The surface electronic structures of catalysts play a crucial role in CO2 adsorption and activation. Here, sulfur vacancies are introduced into CuInS2 nanosheets (Vs-CuInS2) to evaluate the effect of electronic structures at the surface-active sites on the electrochemical CO2 reduction reaction (CO2RR). Vs-CuInS2 exhibits a significant disparity in the highest FEformate/FECO (6.50) compared to that of CuInS2 (1.86). Specifically, the maximum current density (Jmax) of carbon products on Vs-CuInS2 is 78.78 mA cm-2, and a Faraday efficiency of carbon products (FEcarbon products) of ≥80% is achieved in 600 mV wide potential windows. In situ Raman measurements and density functional theory calculations elucidate the origin of the apparent alterations in the carbon product selectivity. The introduction of sulfur vacancies realizes the controllable regulation of the local electronic density around the metal active sites, inducing the transformation of *COOH and *OCHO from competitive adsorption on CuInS2 to specific adsorption on Vs-CuInS2. In addition, the regulation of electronic structures on Vs-CuInS2 inhibits *H adsorption. This work reveals the transfer of adsorption of CO2RR intermediates via regulation of the electronic structure, complementing the understanding of the mechanism for the enhanced CO2RR.
Collapse
Affiliation(s)
- Kaiyue Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Weining Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - Dongdong Xiao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongfei Yin
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhen Lu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Weiliu Fan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yongzheng Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ping Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
83
|
Islam J, Shareef M, Anwar R, Akter S, Ullah MH, Osman H, Rahman IM, Khandaker MU, Chowdhury FI. A brief insight on electrochemical energy storage toward the production of value-added chemicals and electricity generation. JOURNAL OF ENERGY STORAGE 2024; 77:109944. [DOI: 10.1016/j.est.2023.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
|
84
|
Jeong Y, Kim Y, Kim YJ, Park JY. In Situ Probing of CO 2 Reduction on Cu-Phthalocyanine-Derived Cu x O Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304735. [PMID: 38030415 PMCID: PMC10811478 DOI: 10.1002/advs.202304735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Indexed: 12/01/2023]
Abstract
An in situ measurement of a CO2 reduction reaction (CO2 RR) in Cu-phthalocyanine (CuPC) molecules adsorbed on an Au(111) surface is performed using electrochemical scanning tunneling microscopy. One intriguing phenomenon monitored in situ during CO2 RR is that a well-ordered CuPC adlayer is formed into an unsuspected nanocluster via molecular restructuring. At an electrode potential of -0.7 V versus Ag/AgCl, the Au surface is covered mainly with the clusters, showing restructuring-induced CO2 RR catalytic activity. Using a measurement of X-ray photoelectron spectroscopy, it is revealed that the nanocluster represents a Cu complex with its formation mechanism. This work provides an in situ observation of the restructuring of the electrocatalyst to understand the surface-reactive correlations and suggests the CO2 RR catalyst works at a relatively low potential using the CuPC-derived Cu nanoclusters as active species.
Collapse
Affiliation(s)
- Yongchan Jeong
- Center for Nanomaterials and Chemical ReactionsInstitute for Basic Science (IBS)55, Expo‐ro, Yuseong‐guDaejeon34126Republic of Korea
| | - Yongman Kim
- Center for Nanomaterials and Chemical ReactionsInstitute for Basic Science (IBS)55, Expo‐ro, Yuseong‐guDaejeon34126Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Young Jae Kim
- Center for Nanomaterials and Chemical ReactionsInstitute for Basic Science (IBS)55, Expo‐ro, Yuseong‐guDaejeon34126Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jeong Young Park
- Center for Nanomaterials and Chemical ReactionsInstitute for Basic Science (IBS)55, Expo‐ro, Yuseong‐guDaejeon34126Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
85
|
Noh S, Cho YJ, Zhang G, Schreier M. Insight into the Role of Entropy in Promoting Electrochemical CO 2 Reduction by Imidazolium Cations. J Am Chem Soc 2023; 145:27657-27663. [PMID: 38019965 DOI: 10.1021/jacs.3c09687] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The electroreduction of CO2 plays an important role in achieving a net-zero carbon economy. Imidazolium cations can be used to enhance the rate of CO2 reduction reactions, but the origin of this promotion remains poorly understood. In this work, we show that in the presence of 1-ethyl-3-methylimidazolium (EMIM+), CO2 reduction on Ag electrodes occurs with an apparent activation energy near zero, while the applied potential influences the rate through the pre-exponential factor. Our findings suggest that the CO2 reduction rate is controlled by the initial state entropy, which depends on the applied potential through the organization of cations at the electrochemical interface. Further characterization shows that the C2-proton of EMIM+ is consumed during the reaction, leading to the collapse of the cation organization and a decrease in the catalytic performance. Our results have important implications for understanding the effect of potential on reaction rates, as they indicate that the common picture based on vibrational activation of electron transfer reactions is insufficient for describing the impact of potential in complex systems, such as CO2 reduction in the presence of imidazolium cations.
Collapse
Affiliation(s)
- Seonmyeong Noh
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yoon Jin Cho
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Gong Zhang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Marcel Schreier
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
86
|
Pimlott DJD, Jewlal A, Kim Y, Berlinguette CP. Oxygen-Resistant CO 2 Reduction Enabled by Electrolysis of Liquid Feedstocks. J Am Chem Soc 2023; 145:25933-25937. [PMID: 37983190 DOI: 10.1021/jacs.3c08930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Electrolytic CO2 reduction fails in the presence of O2. This failure occurs because the reduction of O2 is thermodynamically favored over the reduction of CO2. Consequently, O2 must be removed from the CO2 feed prior to entering an electrolyzer, which is expensive. Here, we show that the use of liquid bicarbonate feedstocks (e.g., aqueous 3.0 M KHCO3), rather than gaseous CO2 feedstocks, enables efficient and selective CO2 reduction without additional procedures for removing O2. This effect is made possible because liquid bicarbonate solutions, which serve as a liquid CO2 carrier, deliver high concentrations of captured CO2 to the cathode, while the low solubility of O2 in aqueous media maintains a low O2 concentration at the same cathode surface. Consequently, electrolyzers fed with liquid bicarbonate feedstocks create an environment at the cathode that favors the reduction of CO2 over O2. We validate this claim by electrochemically converting CO2 into CO with reaction selectivities of 65% at 100 mA cm-2 using a 3.0 M KHCO3 solution bubbled with 100% CO2 or 100% O2. Similar experiments performed with a gaseous CO2 feedstock showed that merely 0.5% of O2 in the feedstock reduced CO selectivity by >90% after 1 h of electrolysis. Our findings demonstrate that a liquid bicarbonate feedstock enables efficient CO2 reduction without the need for expensive O2 removal steps.
Collapse
Affiliation(s)
- Douglas J D Pimlott
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Andrew Jewlal
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yongwook Kim
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Curtis P Berlinguette
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Canadian Institute for Advanced Research (CIFAR), 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
87
|
Wang Z, Zhou Y, Qiu P, Xia C, Fang W, Jin J, Huang L, Deng P, Su Y, Crespo-Otero R, Tian X, You B, Guo W, Di Tommaso D, Pang Y, Ding S, Xia BY. Advanced Catalyst Design and Reactor Configuration Upgrade in Electrochemical Carbon Dioxide Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303052. [PMID: 37589167 DOI: 10.1002/adma.202303052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2 RR) driven by renewable energy shows great promise in mitigating and potentially reversing the devastating effects of anthropogenic climate change and environmental degradation. The simultaneous synthesis of energy-dense chemicals can meet global energy demand while decoupling emissions from economic growth. However, the development of CO2 RR technology faces challenges in catalyst discovery and device optimization that hinder their industrial implementation. In this contribution, a comprehensive overview of the current state of CO2 RR research is provided, starting with the background and motivation for this technology, followed by the fundamentals and evaluated metrics. Then the underlying design principles of electrocatalysts are discussed, emphasizing their structure-performance correlations and advanced electrochemical assembly cells that can increase CO2 RR selectivity and throughput. Finally, the review looks to the future and identifies opportunities for innovation in mechanism discovery, material screening strategies, and device assemblies to move toward a carbon-neutral society.
Collapse
Affiliation(s)
- Zhitong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yansong Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Peng Qiu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Wensheng Fang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Jian Jin
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Lei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Peilin Deng
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yaqiong Su
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an, 710049, China
| | - Rachel Crespo-Otero
- Department of Chemistry, University of College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xinlong Tian
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Wei Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Devis Di Tommaso
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Shujiang Ding
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an, 710049, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| |
Collapse
|
88
|
Lai W, Qiao Y, Wang Y, Huang H. Stability Issues in Electrochemical CO 2 Reduction: Recent Advances in Fundamental Understanding and Design Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306288. [PMID: 37562821 DOI: 10.1002/adma.202306288] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Indexed: 08/12/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) offers a promising approach to close the anthropogenic carbon cycle and store intermittent renewable energy in fuels or chemicals. On the path to commercializing this technology, achieving the long-term operation stability is a central requirement but still confronts challenges. This motivates to organize the present review to systematically discuss the stability issue of CO2 RR. This review starts from the fundamental understanding on the destabilization mechanisms of CO2 RR, with focus on the degradation of electrocatalyst and change of reaction microenvironment during continuous electrolysis. Subsequently, recent efforts on catalyst design to stabilize the active sites are summarized, where increasing atomic binding strength to resist surface reconstruction is highlighted. Next, the optimization of electrolysis system to enhance the operation stability by maintaining reaction microenvironment especially mitigating flooding and carbonate problems is demonstrated. The manipulation on operation conditions also enables to prolong CO2 RR lifespan through recovering catalytically active sites and mass transport process. This review finally ends up by indicating the challenges and future opportunities.
Collapse
Affiliation(s)
- Wenchuan Lai
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Yan Qiao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yanan Wang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
89
|
Segets D, Andronescu C, Apfel UP. Accelerating CO 2 electrochemical conversion towards industrial implementation. Nat Commun 2023; 14:7950. [PMID: 38040758 PMCID: PMC10692087 DOI: 10.1038/s41467-023-43762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023] Open
Abstract
Despite significant progress in CO2 conversion field, there remains a significant gap between fundamental research and the industrial demands. This Comment discusses key performance parameters for industrial applications and outlines current limitations in the field.
Collapse
Affiliation(s)
- Doris Segets
- Institute for Energy and Materials Processes-Particle Science and Technology, University of Duisburg-Essen, Carl-Benz-Str. 199, 47057, Duisburg, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), Carl-Benz-Str. 199, 47057, Duisburg, Germany
| | - Corina Andronescu
- Center for Nanointegration Duisburg-Essen (CENIDE), Carl-Benz-Str. 199, 47057, Duisburg, Germany
- Chemical Technology III, Faculty of Chemistry University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Ulf-Peter Apfel
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelderstraße 3, 46047, Oberhausen, Germany.
- Inorganic Chemistry I-Technical Electrochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
90
|
He C, Xu C, Zhang W. Instructive Synergistic Effect of Coordinating Phosphorus in Transition-Metal-Doped β-Phosphorus Carbide Guiding the Design of High-Performance CO 2RR Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38035402 DOI: 10.1021/acsami.3c12767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Developing efficient electrocatalysts for the CO2 reduction reaction (CO2RR) is the key and difficult point to alleviate energy and climate issues. The synergistic catalytic effects between metal and nonmetal elements have gained attention for the design of the CO2RR electrocatalysts. The realization of this effect requires a suitable combination of metal and nonmetal elements, as well as the support of suitable substrates. Based on this, the transition-metal-doped β-phosphorus carbide (TM-PC) (TM = 4d and 5d transition metals except Tc) catalysts are designed, and their structures, electronic properties, and CO2RR catalytic performances are studied in depth via first-principle calculations. The strong bonding ability and high reactivity brought by the moderate electronegativity and abundant electrons and orbitals of phosphorus are the key to the excellent catalytic performance of TM-PCs. Coordinating phosphorus atoms improve the catalyst activity in two ways: (1) regulating the electron transfer of the TM active site, and (2) acting as the active site and changing the reaction mechanism. With the participation of coordinating P atoms, the "relay" of active sites reduces the limiting potential values for the reduction from CO2 to CH4 catalyzed by Cr-PC and Mo-PC by 0.27 and 0.23 V, respectively, compared with pathways where only the TM atom is the active site, reaching -0.55 and -0.63 V, respectively. Regarding the coordinating P atom as the second active site, Cr-PC and Mo-PC can catalyze the production of CH3CH2OH at limiting potential values of -0.54 and -0.67 V, respectively. This study demonstrates the dramatic enhancement of catalytic activity caused by suitable nonmetal coordinating atoms such as P and provides a reference for the design of high-performance CO2RR electrocatalysts based on metal-nonmetal coordinating active centers.
Collapse
Affiliation(s)
- Cheng He
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chang Xu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenxue Zhang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| |
Collapse
|
91
|
Ren JT, Chen L, Wang HY, Yuan ZY. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem Soc Rev 2023; 52:8319-8373. [PMID: 37920962 DOI: 10.1039/d3cs00557g] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
High-entropy alloys (HEAs) comprising five or more elements in near-equiatomic proportions have attracted ever increasing attention for their distinctive properties, such as exceptional strength, corrosion resistance, high hardness, and excellent ductility. The presence of multiple adjacent elements in HEAs provides unique opportunities for novel and adaptable active sites. By carefully selecting the element configuration and composition, these active sites can be optimized for specific purposes. Recently, HEAs have been shown to exhibit remarkable performance in electrocatalytic reactions. Further activity improvement of HEAs is necessary to determine their active sites, investigate the interactions between constituent elements, and understand the reaction mechanisms. Accordingly, a comprehensive review is imperative to capture the advancements in this burgeoning field. In this review, we provide a detailed account of the recent advances in synthetic methods, design principles, and characterization technologies for HEA-based electrocatalysts. Moreover, we discuss the diverse applications of HEAs in electrocatalytic energy conversion reactions, including the hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and alcohol oxidation reaction. By comprehensively covering these topics, we aim to elucidate the intricacies of active sites, constituent element interactions, and reaction mechanisms associated with HEAs. Finally, we underscore the imminent challenges and emphasize the significance of both experimental and theoretical perspectives, as well as the potential applications of HEAs in catalysis. We anticipate that this review will encourage further exploration and development of HEAs in electrochemistry-related applications.
Collapse
Affiliation(s)
- Jin-Tao Ren
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Chen
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
92
|
Chen Y, Xia M, Zhou C, Zhang Y, Zhou C, Xu F, Feng B, Wang X, Yang L, Hu Z, Wu Q. Hierarchical Dual Single-Atom Catalysts with Coupled CoN 4 and NiN 4 Moieties for Industrial-Level CO 2 Electroreduction to Syngas. ACS NANO 2023; 17:22095-22105. [PMID: 37916602 DOI: 10.1021/acsnano.3c09102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Renewable-driven electrochemical CO2 reduction reaction (CO2RR) to syngas is an encouraging alternative strategy to traditional fossil fuel-based syngas production, and the development of industrial-level electrocatalysts is vital. Herein, based on theoretical optimization of metal species, hierarchical CoxNi1-x-N-C dual single-atom catalyst (DSAC) with individual NiN4 (CO preferential) and CoN4 (H2 preferential) moieties was constructed by a two-step pyrolysis route. The Co0.5Ni0.5-N-C exhibits a stable CO Faradaic efficiency of 50 ± 5% and an industrial-level current density of 101-365 mA cm-2 in an ultrawide potential window of -0.5 to -1.1 V. The CO/H2 ratio of syngas can be conveniently tuned by regulating the Co/Ni ratio. The coupled effect of NiN4 and CoN4 moieties under a local high-pH microenvironment is responsible for the regulation of the CO/H2 selectivity and yield for the CoxNi1-x-N-C catalyst, which is not present in the mixed Co-N-C and Ni-N-C catalyst. This study provides a promising DSAC strategy for achieving industrial-level syngas production via CO2RR.
Collapse
Affiliation(s)
- Yiqun Chen
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Minqi Xia
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cao Zhou
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Changkai Zhou
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fengfei Xu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Biao Feng
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
93
|
Lu S, Mazur M, Guo K, Stoian DC, Gu M, Tucho WM, Yu Z. Breaking Scaling Relations for Highly Efficient Electroreduction of CO 2 to CO on Atomically Dispersed Heteronuclear Dual-Atom Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2309251. [PMID: 37948352 DOI: 10.1002/smll.202309251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Conversion of CO2 into value-added products by electrocatalysis provides a promising way to mitigate energy and environmental problems. However, it is greatly limited by the scaling relationship between the adsorption strength of intermediates. Herein, Mn and Ni single-atom catalysts, homonuclear dual-atom catalysts (DACs), and heteronuclear DACs are synthesized. Aberration-corrected annular dark-field scanning transmission electron microscopy (ADF-STEM) and X-ray absorption spectroscopy characterization uncovered the existence of the Mn─Ni pair in Mn─Ni DAC. X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy reveal that Mn donated electrons to Ni atoms in Mn─Ni DAC. Consequently, Mn─Ni DAC displays the highest CO Faradaic efficiency of 98.7% at -0.7 V versus reversible hydrogen electrode (vs RHE) with CO partial current density of 16.8 mA cm-2 . Density functional theory calculations disclose that the scaling relationship between the binding strength of intermediates is broken, resulting in superior performance for ECR to CO over Mn─Ni─NC catalyst.
Collapse
Affiliation(s)
- Song Lu
- Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger, 4036, Norway
| | - Michal Mazur
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2, 12843, Czech Republic
| | - Kun Guo
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dragos Constantin Stoian
- Swiss-Norwegian Beamlines, European Synchrotron Radiation Facility, Cedex 9, Grenoble, 38043, France
| | - Minfen Gu
- Center for Analysis and Testing, Nanjing Normal University, Nanjing, 210023, China
| | - Wakshum Mekonnen Tucho
- Department of Mechanical and Structural Engineering and Material Science, University of Stavanger, Stavanger, 4036, Norway
| | - Zhixin Yu
- Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger, 4036, Norway
| |
Collapse
|
94
|
Baumgartner LM, Goryachev A, Koopman CI, Franzen D, Ellendorff B, Turek T, Vermaas DA. Electrowetting limits electrochemical CO 2 reduction in carbon-free gas diffusion electrodes. ENERGY ADVANCES 2023; 2:1893-1904. [PMID: 38013932 PMCID: PMC10634457 DOI: 10.1039/d3ya00285c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/27/2023] [Indexed: 11/29/2023]
Abstract
CO2 electrolysis might be a key process to utilize intermittent renewable electricity for the sustainable production of hydrocarbon chemicals without relying on fossil fuels. Commonly used carbon-based gas diffusion electrodes (GDEs) enable high Faradaic efficiencies for the desired carbon products at high current densities, but have limited stability. In this study, we explore the adaption of a carbon-free GDE from a Chlor-alkali electrolysis process as a cathode for gas-fed CO2 electrolysis. We determine the impact of electrowetting on the electrochemical performance by analyzing the Faradaic efficiency for CO at industrially relevant current density. The characterization of used GDEs with X-ray photoelectron spectroscopy (XPS) and X-Ray diffraction (XRD) reveals a potential-dependent degradation, which can be explained through chemical polytetrafluorethylene (PTFE) degradation and/or physical erosion of PTFE through the restructuring of the silver surface. Our results further suggest that electrowetting-induced flooding lets the Faradaic efficiency for CO drop below 40% after only 30 min of electrolysis. We conclude that the effect of electrowetting has to be managed more carefully before the investigated carbon-free GDEs can compete with carbon-based GDEs as cathodes for CO2 electrolysis. Further, not only the conductive phase (such as carbon), but also the binder (such as PTFE), should be carefully selected for stable CO2 reduction.
Collapse
Affiliation(s)
| | - Andrey Goryachev
- Department of Chemical Engineering, Delft University of Technology Netherlands
| | - Christel I Koopman
- Department of Chemical Engineering, Delft University of Technology Netherlands
| | - David Franzen
- Institute for Chemical and Electrochemical Process Engineering, Technical University Clausthal Germany
| | - Barbara Ellendorff
- Institute for Chemical and Electrochemical Process Engineering, Technical University Clausthal Germany
| | - Thomas Turek
- Institute for Chemical and Electrochemical Process Engineering, Technical University Clausthal Germany
| | - David A Vermaas
- Department of Chemical Engineering, Delft University of Technology Netherlands
| |
Collapse
|
95
|
Wu ZZ, Zhang XL, Yang PP, Niu ZZ, Gao FY, Zhang YC, Chi LP, Sun SP, DuanMu JW, Lu PG, Li YC, Gao MR. Gerhardtite as a Precursor to an Efficient CO-to-Acetate Electroreduction Catalyst. J Am Chem Soc 2023; 145:24338-24348. [PMID: 37880928 DOI: 10.1021/jacs.3c09255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Carbon-carbon coupling electrochemistry on a conventional copper (Cu) catalyst still undergoes low selectivity among many different multicarbon (C2+) chemicals, posing a grand challenge to achieve a single C2+ product. Here, we demonstrate a laser irradiation synthesis of a gerhardtite mineral, Cu2(OH)3NO3, as a catalyst precursor to make a Cu catalyst with abundant stacking faults under reducing conditions. Such structural perturbation modulates electronic microenvironments of Cu, leading to improved d-electron back-donation to the antibonding orbital of *CO intermediates and thus strengthening *CO adsorption. With increased *CO coverage on the defect-rich Cu, we report an acetate selectivity of 56 ± 2% (compared to 31 ± 1% for conventional Cu) and a partial current density of 222 ± 7 mA per square centimeter in CO electroreduction. When run at 400 mA per square centimeter for 40 h in a flow reactor, this catalyst produces 68.3 mmol of acetate throughout. This work highlights the value of a Cu-containing mineral phase in accessing suitable structures for improved selectivity to a single desired C2+ product.
Collapse
Affiliation(s)
- Zhi-Zheng Wu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Peng-Peng Yang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zhuang-Zhuang Niu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fei-Yue Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Cai Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Li-Ping Chi
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Ping Sun
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Wen DuanMu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Gan Lu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Ye-Cheng Li
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
96
|
Kleinhaus JT, Wolf J, Pellumbi K, Wickert L, Viswanathan SC, Junge Puring K, Siegmund D, Apfel UP. Developing electrochemical hydrogenation towards industrial application. Chem Soc Rev 2023; 52:7305-7332. [PMID: 37814786 DOI: 10.1039/d3cs00419h] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Electrochemical hydrogenation reactions gained significant attention as a sustainable and efficient alternative to conventional thermocatalytic hydrogenations. This tutorial review provides a comprehensive overview of the basic principles, the practical application, and recent advances of electrochemical hydrogenation reactions, with a particular emphasis on the translation of these reactions from lab-scale to industrial applications. Giving an overview on the vast amount of conceivable organic substrates and tested catalysts, we highlight the challenges associated with upscaling electrochemical hydrogenations, such as mass transfer limitations and reactor design. Strategies and techniques for addressing these challenges are discussed, including the development of novel catalysts and the implementation of scalable and innovative cell concepts. We furthermore present an outlook on current challenges, future prospects, and research directions for achieving widespread industrial implementation of electrochemical hydrogenation reactions. This work aims to provide beginners as well as experienced electrochemists with a starting point into the potential future transformation of electrochemical hydrogenations from a laboratory curiosity to a viable technology for sustainable chemical synthesis on an industrial scale.
Collapse
Affiliation(s)
- Julian T Kleinhaus
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| | - Jonas Wolf
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Kevinjeorjios Pellumbi
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Leon Wickert
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Sangita C Viswanathan
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Kai Junge Puring
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Daniel Siegmund
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| |
Collapse
|
97
|
Liu Z, Lv X, Kong S, Liu M, Liu K, Zhang J, Wu B, Zhang Q, Tang Y, Qian L, Zhang L, Zheng G. Interfacial Water Tuning by Intermolecular Spacing for Stable CO 2 Electroreduction to C 2+ Products. Angew Chem Int Ed Engl 2023; 62:e202309319. [PMID: 37673793 DOI: 10.1002/anie.202309319] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/19/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
Electroreduction of CO2 to multi-carbon (C2+ ) products is a promising approach for utilization of renewable energy, in which the interfacial water quantity is critical for both the C2+ product selectivity and the stability of Cu-based electrocatalytic sites. Functionalization of long-chain alkyl molecules on a catalyst surface can help to increase its stability, while it also tends to block the transport of water, thus inhibiting the C2+ product formation. Herein, we demonstrate the fine tuning of interfacial water by surface assembly of toluene on Cu nanosheets, allowing for sustained and enriched CO2 supply but retarded water transfer to catalytic surface. Compared to bare Cu with fast cathodic corrosion and long-chain alkyl-modified Cu with main CO product, the toluene assembly on Cu nanosheet surface enabled a high Faradaic efficiency of 78 % for C2+ and a partial current density of 1.81 A cm-2 . The toluene-modified Cu catalyst further exhibited highly stable CO2 -to-C2 H4 conversion of 400 h in a membrane-electrode-assembly electrolyzer, suggesting the attractive feature for both efficient C2+ selectivity and excellent stability.
Collapse
Affiliation(s)
- Zhengzheng Liu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Shuyi Kong
- State Key Laboratory of High Performance Ceramics and Superfine, Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Mingtai Liu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Kunhao Liu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Junbo Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Bowen Wu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Quan Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yi Tang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Linping Qian
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Lijuan Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
98
|
Zhang MD, Huang JR, Shi W, Liao PQ, Chen XM. Self-Accelerating Effect in a Covalent-Organic Framework with Imidazole Groups Boosts Electroreduction of CO 2 to CO. Angew Chem Int Ed Engl 2023; 62:e202308195. [PMID: 37656139 DOI: 10.1002/anie.202308195] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
Solvent effect plays an important role in catalytic reaction, but there is little research and attention on it in electrochemical CO2 reduction reaction (eCO2 RR). Herein, we report a stable covalent-organic framework (denoted as PcNi-im) with imidazole groups as a new electrocatalyst for eCO2 RR to CO. Interestingly, compared with neutral conditions, PcNi-im not only showed high Faraday efficiency of CO product (≈100 %) under acidic conditions (pH ≈ 1), but also the partial current density was increased from 258 to 320 mA cm-2 . No obvious degradation was observed over 10 hours of continuous operation at the current density of 250 mA cm-2 . The mechanism study shows that the imidazole group on the framework can be protonated to form an imidazole cation in acidic media, hence reducing the surface work function and charge density of the active metal center. As a result, CO poisoning effect is weakened and the key intermediate *COOH is also stabilized, thus accelerating the catalytic reaction rate.
Collapse
Affiliation(s)
- Meng-Di Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wen Shi
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
99
|
Tandava VSRK, Spadaro MC, Arbiol J, Murcia-López S, Morante JR. Hydrothermal Fabrication of Carbon-Supported Oxide-Derived Copper Heterostructures: A Robust Catalyst System for Enhanced Electro-Reduction of CO 2 to C 2 H 4. CHEMSUSCHEM 2023; 16:e202300344. [PMID: 37306621 DOI: 10.1002/cssc.202300344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/13/2023]
Abstract
Anthropogenic CO2 can be converted to alternative fuels and value-added products by electrocatalytic routes. Copper-based catalysts are found to be the star materials for obtaining longer-chain carbon compounds beyond 2e- products. Herein, we report a facile hydrothermal fabrication of a highly robust electrocatalyst: in-situ grown heterostructures of plate-like CuO-Cu2 O on carbon black. Simultaneous synthesis of copper-carbon catalysts with varied amounts of copper was conducted to determine the optimum blend. It is observed that the optimum ratio and structure have aided in achieving the state of art faradaic efficiency for ethylene >45 % at -1.6 V vs. RHE at industrially relevant high current densities over 160 to 200 mA ⋅ cm-2 . It is understood that the in-situ modification of CuO to Cu2 O during the electrolysis is the driving force for the highly selective conversion of CO2 to ethylene through the *CO intermediates at the onset potentials followed by C-C coupling. The excellent distribution of Cu-based platelets on the carbon structure enables rapid electron transfer and enhanced catalytic efficiency. It is inferred that choosing the right composition of the catalyst by tuning the catalyst layer over the gas diffusion electrode can substantially affect the product selectivity and promote reaching the potential industrial scale.
Collapse
Affiliation(s)
- Venkata S R K Tandava
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930, Sant Adrià de Besòs, Spain
- Universitat Autonoma de Barcelona (UAB), Bellaterra, 08193, Spain
| | - Maria Chiara Spadaro
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB Bellaterra, Barcelona, Catalonia, 08193, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB Bellaterra, Barcelona, Catalonia, 08193, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Catalonia, Spain
| | - Sebastián Murcia-López
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930, Sant Adrià de Besòs, Spain
| | - Joan Ramón Morante
- Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930, Sant Adrià de Besòs, Spain
- Faculty of Physics, Universitat de Barcelona, Barcelona, 08028, Catalonia, Spain
| |
Collapse
|
100
|
Zhang S, Yue P, Zhou Y, Li J, Zhu X, Fu Q, Liao Q. Ni Single Atoms Embedded in Graphene Nanoribbon Sieves for High-Performance CO 2 Reduction to CO. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303016. [PMID: 37376828 DOI: 10.1002/smll.202303016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Ni single-atom catalysts (SACs) are appealing for electrochemical reduction CO2 reduction (CO2 RR). However, regulating the balance between the activity and conductivity remains a challenge to Ni SACs due to the limitation of substrates structure. Herein, the intrinsic performance enhancement of Ni SACs anchored on quasi-one-dimensional graphene nanoribbons (GNRs) synthesized is demonstrated by longitudinal unzipping carbon nanotubes (CNTs). The abundant functional groups on GNRs can absorb Ni atoms to form rich Ni-N4 -C sites during the anchoring process, providing a high intrinsic activity. In addition, the GNRs, which maintain a quasi-one-dimensional structure and possess a high conductivity, interconnect with each other and form a conductive porous framework. The catalyst yields a 44 mA cm-2 CO partial current density and 96% faradaic efficiency of CO (FECO ) at -1.1 V vs RHE in an H-cell. By adopting a membrane electrode assembly (MEA) flow cell, a 95% FECO and 2.4 V cell voltage are achieved at 200 mA cm-2 current density. This work provides a rational way to synthesize Ni SACs with a high Ni atom loading, porous morphology, and high conductivity with potential industrial applications.
Collapse
Affiliation(s)
- Shilei Zhang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Pengtao Yue
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Yue Zhou
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Jun Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|