51
|
Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design. Nat Commun 2021; 12:5264. [PMID: 34489439 PMCID: PMC8421507 DOI: 10.1038/s41467-021-25638-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022] Open
Abstract
All-polymer solar cells (all-PSCs) based on polymerized small molecular acceptors (PSMAs) have made significant progress recently. Here, we synthesize two A-DA’D-A small molecule acceptor based PSMAs of PS-Se with benzo[c][1,2,5]thiadiazole A’-core and PN-Se with benzotriazole A’-core, for the studies of the effect of molecular structure on the photovoltaic performance of the PSMAs. The two PSMAs possess broad absorption with PN-Se showing more red-shifted absorption than PS-Se and suitable electronic energy levels for the application as polymer acceptors in the all-PSCs with PBDB-T as polymer donor. Cryogenic transmission electron microscopy visualizes the aggregation behavior of the PBDB-T donor and the PSMA in their solutions. In addition, a bicontinuous-interpenetrating network in the PBDB-T:PN-Se blend film with aggregation size of 10~20 nm is clearly observed by the photoinduced force microscopy. The desirable morphology of the PBDB-T:PN-Se active layer leads its all-PSC showing higher power conversion efficiency of 16.16%. Through development of non-fullerene acceptors, OPVs have reached efficiencies of 18%, yet the inadequate operational lifetime still poses a challenge for the commercialisation. Here, the authors investigate the origin of instability of NFA solar cells, and propose some strategies to mitigate this issue.
Collapse
|
52
|
Zhang X, Cai J, Guo C, Li D, Du B, Zhuang Y, Cheng S, Wang L, Liu D, Wang T. Simultaneously Enhanced Efficiency and Operational Stability of Nonfullerene Organic Solar Cells via Solid-Additive-Mediated Aggregation Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102558. [PMID: 34293248 DOI: 10.1002/smll.202102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Indexed: 06/13/2023]
Abstract
The additive strategy is widely used in optimizing the morphology of organic solar cells (OSCs). The majority of additives are liquid with high boiling points, which will be trapped within device and consequently deteriorate performance during operation. In this work, solid but volatile additives 2-(4-fluorobenzylidene)-1H-indene-1,3(2H)-dione (INB-F) and 2-(4-chlorobenzylidene)-1H-indene-1,3(2H)-dione (INB-Cl) are designed to replace the common 1,8-diiodooctane (DIO) in nonfullerene OSCs. These additives present during solution casting but evaporate after moderate heating. Molecular dynamics simulations show that they can reduce the adsorption energy to improve π-π stacking among nonfullerene acceptor (NFA) molecules, an effect that enhances light absorption and electron mobility. Both INB-F and INB-Cl enhance efficiency, with INB-F achieving a maximum efficiency of 16.7% from 15.1% of the reference PBDB-T-2F (PM6):BTP-BO-4F (Y6-BO) cell, and outperforming DIO. Remarkably, they can simultaneously enhance the operational stability, with the INB-F-treated OSC maintaining over 60% of the initial efficiency after 1000 h operation, demonstrating a T80 lifetime of 523 h, which is a significant improvement over T80 values of 66.2 h for the reference and 6.6 h for DIO-treated OSC. The simultaneously enhanced efficiency and operational lifetime are also effective in PM6:BTP-BO-4Cl (Y7-BO) OSCs, demonstrating a universal strategy to improve the performance of OSCs.
Collapse
Affiliation(s)
- Xue Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinlong Cai
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chuanhang Guo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Donghui Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Baocai Du
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuan Zhuang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Shili Cheng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Liang Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Dan Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
53
|
Wang C, Jing Y, Zhou X, Li YF. Sb 2TeSe 2 Monolayers: Promising 2D Semiconductors for Highly Efficient Excitonic Solar Cells. ACS OMEGA 2021; 6:20590-20597. [PMID: 34396004 PMCID: PMC8359126 DOI: 10.1021/acsomega.1c02746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
On the basis of density functional theory computations, we demonstrated that two-dimensional (2D) α- and β-Sb2TeSe2 monolayers are promising candidates for constructing high-efficiency heterojunction excitonic solar cells. These two 2D materials possess moderate band gaps (∼1.1 eV), which can be flexibly tuned by applying external strains. They possess high carrier mobility (∼3000 cm2 V-1 s-1) and can absorb sunlight over the whole range of the solar spectrum. Remarkably, the α- and β-Sb2TeSe2 monolayers can form desirable type II heterostructures with HfSe2 and BiOI monolayers, respectively. The power conversion efficiencies of α-Sb2TeSe2/HfSe2 and β-Sb2TeSe2/BiOI heterojunction excitonic solar cells can reach 22.5 and 20.3%, respectively. Since α-Sb2TeSe2 and β-Sb2TeSe2 monolayers have good stability and high synthesis feasibility, they have important applications in photovoltaic solar cell devices.
Collapse
Affiliation(s)
- Chun Wang
- Jiangsu
Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation
Centre of Biomedical Functional Materials, School of Chemistry and
Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yu Jing
- Jiangsu
Co-Innovation Centre of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaocheng Zhou
- Jiangsu
Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation
Centre of Biomedical Functional Materials, School of Chemistry and
Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ya-fei Li
- Jiangsu
Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation
Centre of Biomedical Functional Materials, School of Chemistry and
Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
54
|
Application of deep eutectic solvents modified oxidized Hydrogen-substituted graphyne in adsorption and electrochemistry. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
55
|
Cai Y, Li Y, Wang R, Wu H, Chen Z, Zhang J, Ma Z, Hao X, Zhao Y, Zhang C, Huang F, Sun Y. A Well-Mixed Phase Formed by Two Compatible Non-Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101733. [PMID: 34245185 DOI: 10.1002/adma.202101733] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Indexed: 06/13/2023]
Abstract
The ternary strategy, introducing a third component into a binary blend, opens a simple and promising avenue to improve the power conversion efficiency (PCE) of organic solar cells (OSCs). The judicious selection of an appropriate third component, without sacrificing the photocurrent and voltage output of the OSC, is of significant importance in ternary devices. Herein, highly efficient OSCs fabricated using a ternary approach are demonstrated, wherein a novel non-fullerene acceptor L8-BO-F is designed and incorporated into the PM6:BTP-eC9 blend. The three components show complementary absorption spectra and cascade energy alignment. L8-BO-F and BTP-eC9 are found to form a homogeneous mixed phase, which improves the molecular packing of both the donor and acceptor materials, and optimizes the ternary blend morphology. Moreover, the addition of L8-BO-F into the binary blend suppresses the non-radiative recombination, thus leading to a reduced voltage loss. Consequently, concurrent increases in open-circuit voltage, short-circuit current, and fill factor are realized, resulting in an unprecedented PCE of 18.66% (certified value of 18.2%), which represents the highest efficiency values reported for both single-junction and tandem OSCs so far.
Collapse
Affiliation(s)
- Yunhao Cai
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yun Li
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Rui Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Hongbo Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhihao Chen
- School of Physics State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jie Zhang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zaifei Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaotao Hao
- School of Physics State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Yong Zhao
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Fei Huang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yanming Sun
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
56
|
Ma X, Zeng A, Gao J, Hu Z, Xu C, Son JH, Jeong SY, Zhang C, Li M, Wang K, Yan H, Ma Z, Wang Y, Woo HY, Zhang F. Approaching 18% efficiency of ternary organic photovoltaics with wide bandgap polymer donor and well compatible Y6 : Y6-1O as acceptor. Natl Sci Rev 2021; 8:nwaa305. [PMID: 34691710 PMCID: PMC8363335 DOI: 10.1093/nsr/nwaa305] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/15/2020] [Accepted: 12/25/2020] [Indexed: 11/14/2022] Open
Abstract
A series of ternary organic photovoltaics (OPVs) are fabricated with one wide bandgap polymer D18-Cl as donor, and well compatible Y6 and Y6-1O as acceptor. The open-circuit-voltage (VOC ) of ternary OPVs is monotonously increased along with the incorporation of Y6-1O, indicating that the alloy state should be formed between Y6 and Y6-1O due to their excellent compatibility. The energy loss can be minimized by incorporating Y6-1O, leading to the VOC improvement of ternary OPVs. By finely adjusting the Y6-1O content, a power conversion efficiency of 17.91% is achieved in the optimal ternary OPVs with 30 wt% Y6-1O in acceptors, resulting from synchronously improved short-circuit-current density (JSC ) of 25.87 mA cm-2, fill factor (FF) of 76.92% and VOC of 0.900 V in comparison with those of D18-Cl : Y6 binary OPVs. The JSC and FF improvement of ternary OPVs should be ascribed to comprehensively optimal photon harvesting, exciton dissociation and charge transport in ternary active layers. The more efficient charge separation and transport process in ternary active layers can be confirmed by the magneto-photocurrent and impedance spectroscopy experimental results, respectively. This work provides new insight into constructing highly efficient ternary OPVs with well compatible Y6 and its derivative as acceptor.
Collapse
Affiliation(s)
- Xiaoling Ma
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Anping Zeng
- Departmentof Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jinhua Gao
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Zhenghao Hu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Chunyu Xu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Jae Hoon Son
- Organic Optoelectronic Materials Laboratory, Department of Chemistry, College of Science, Korea University, Seoul 02841, South Korea
| | - Sang Young Jeong
- Organic Optoelectronic Materials Laboratory, Department of Chemistry, College of Science, Korea University, Seoul 02841, South Korea
| | - Caixia Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Mengyang Li
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kai Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - He Yan
- Departmentof Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zaifei Ma
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yongsheng Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Han Young Woo
- Organic Optoelectronic Materials Laboratory, Department of Chemistry, College of Science, Korea University, Seoul 02841, South Korea
| | - Fujun Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
57
|
Keshtov ML, Konstantinov IO, Kuklin SA, Khokhlov AR, Ostapov IE, Xie Z, Komarov PV, Alekseev VG, Dahiya H, Sharma GD. High‐Performance Fullerene Free Polymer Solar Cells Based on New Thiazole ‐Functionalized Benzo[1,2‐b:4,5‐b′]dithiophene D‐A Copolymer Donors. ChemistrySelect 2021. [DOI: 10.1002/slct.202101824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mukhamed. L. Keshtov
- A. N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
| | - Igor O. Konstantinov
- A. N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
| | - Sergei A. Kuklin
- A. N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
| | - Aleksei R. Khokhlov
- A. N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
- Department of Physics of Polymers and Crystals Faculty of Physics M.V. Lomonosov Moscow State University Leninskie Gory 1 119991 Moscow Russia
| | - Ilya E. Ostapov
- A. N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
- Department of Physics of Polymers and Crystals Faculty of Physics M.V. Lomonosov Moscow State University Leninskie Gory 1 119991 Moscow Russia
| | - Zhiyuan Xie
- Changchun Institute of Applied Chemistry of Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry Changchun China
| | - Pavel V. Komarov
- A. N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
- Tver State University Sadovyi per. 35 Tver 170002 Russia
| | | | - Hemraj Dahiya
- Department of Physics The LNM Institute for Information Technology, Jamdoli Jaipur (Raj.) 302031 India
| | - Ganesh D. Sharma
- Department of Physics The LNM Institute for Information Technology, Jamdoli Jaipur (Raj.) 302031 India
| |
Collapse
|
58
|
He B, Chen Y, Chen J, Chen S, Xiao M, Chen G, Dai C. Wide-bandgap donor polymers based on a dicyanodivinyl indacenodithiophene unit for non-fullerene polymer solar cells. RSC Adv 2021; 11:21397-21404. [PMID: 35478821 PMCID: PMC9034166 DOI: 10.1039/d1ra03233j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022] Open
Abstract
A wide-bandgap polymer donor with improved efficiency plays an important role in improving the photovoltaic performance of polymer solar cells (PSCs). In this study, two novel wide-bandgap polymer donors, PBDT and PBDT-S, were designed and synthesized based on a dicyanodivinyl indacenodithiophene (IDT-CN) moiety, in which benzo[1,2-b:4,5-b']dithiophene (BDT) building blocks and IDT-CN are used as electron-sufficient and -deficient units, respectively. In our study, the PBDT and PBDT-S polymer donors exhibited similar frontier-molecular-orbital energy levels and optical properties, and both copolymers showed good miscibility with the widely used narrow-bandgap small molecular acceptor Y6. Non-fullerene polymer solar cells (NF-PSCs) based on PBDT:Y6 exhibited an impressive power conversion efficiency of 10.04% with an open circuit voltage of 0.88 V, a short-circuit current density of 22.16 mA cm-2 and a fill factor of 51.31%, where the NF-PSCs based on PBDT-S:Y6 exhibited a moderate power conversion efficiency of 6.90%. The enhanced photovoltaic performance, realized by virtue of the improved short-circuit current density, can be attributed to the slightly enhanced electron mobility, higher exciton dissociation rates, more efficient charge collection and better nanoscale phase separation of the PBDT-based device. The results of this work indicate that the IDT-CN unit is a promising building block for constructing donor polymers for high-performance organic photovoltaic cells.
Collapse
Affiliation(s)
- Baitian He
- School of Chemistry and Environment, Jiaying University, Guangdong Engineering Technology Developing Center of High-Performance CCL Meizhou 514015 P. R. China
| | - Yulin Chen
- School of Chemistry and Environment, Jiaying University, Guangdong Engineering Technology Developing Center of High-Performance CCL Meizhou 514015 P. R. China
| | - Jinglong Chen
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University Xiangtan 411105 P. R. China
| | - Songxi Chen
- School of Chemistry and Environment, Jiaying University, Guangdong Engineering Technology Developing Center of High-Performance CCL Meizhou 514015 P. R. China
| | - Manjun Xiao
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University Xiangtan 411105 P. R. China
| | - Guiting Chen
- School of Chemistry and Environment, Jiaying University, Guangdong Engineering Technology Developing Center of High-Performance CCL Meizhou 514015 P. R. China
| | - Chuanbo Dai
- School of Chemistry and Environment, Jiaying University, Guangdong Engineering Technology Developing Center of High-Performance CCL Meizhou 514015 P. R. China
| |
Collapse
|
59
|
Xu Y, Ji Q, Yin L, Zhang N, Liu T, Li N, He X, Wen G, Zhang W, Yu L, Murto P, Xu X. Synergistic Engineering of Substituents and Backbones on Donor Polymers: Toward Terpolymer Design of High-Performance Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23993-24004. [PMID: 33974390 DOI: 10.1021/acsami.1c03794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Design of terpolymers via copolymerization has emerged as a potential strategy for expanding the family of high-performing donor polymers and boosting the photovoltaic performance of non-fullerene polymer solar cells (PSCs). Herein, double-ester-substituted thiophenes and thienothiophenes are incorporated as third building blocks into the donor polymer PBDB-TF, developing two groups of terpolymers with donor-acceptor 1-donor-acceptor 2 (D-A1-D-A2)-type backbones. An optimum 10% concentration of double-ester-substituted thiophene units in PBDB-TF-T10 downshifts the molecular energy and increases the dielectric constant, and delivers proper miscibility and nanostructure in blends with the high-performing acceptor Y6. These characteristics are designed to synergistically enhance the photovoltage, photocurrent, and efficiency of PSCs. The resulting power conversion efficiency (PCE) of 16.4% surpasses the conventional PBDB-TF/Y6 PSCs, and it is among the best-performing PSCs based on PBDB-TF-derived terpolymers. Gratifyingly, PBDB-TF-T10 does not show significant batch-to-batch variation and it retains high PCEs above 16% in a broad range of molecular weights. This work introduces a facile strategy to easily synthesize terpolymers in combination with Y6 for the attainment of high-performing and reproducible non-fullerene PSCs.
Collapse
Affiliation(s)
- Yunxiang Xu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Qing Ji
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Luqi Yin
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Nan Zhang
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tong Liu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Na Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaochuan He
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Guanzhao Wen
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Liyang Yu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Petri Murto
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Xiaofeng Xu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
60
|
Wang H, Yang L, Lin PC, Chueh CC, Liu X, Qu S, Guang S, Yu J, Tang W. A Simple Dithieno[3,2-b:2',3'-d]pyrrol-Rhodanine Molecular Third Component Enables Over 16.7% Efficiency and Stable Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007746. [PMID: 33738971 DOI: 10.1002/smll.202007746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Organic solar cells (OSCs) can achieve greatly improved power conversion efficiency (PCE) by incorporating suitable additives in active layers. Their structure design often faces the challenge of operation generality for more binary blends. Herein, a simple dithieno[3,2-b:2',3'-d]pyrrole-rhodanine molecule (DR8) featuring high compatibility with polymer donor PM6 is developed as a cost-effective third component. By employing classic ITIC-like ITC6-4Cl and Y6 as model nonfullerene acceptors (NFAs) in PM6-based binary blends, DR8 added PM6:ITC6-4Cl blends exhibit significantly promoted energy transfer and exciton dissociation. The PM6:ITC6-4Cl:DR8 (1:1:0.1, weight ratio) OSCs contribute an exciting PCE of 14.94% in comparison to host binary devices (13.52%), while PM6:Y6:DR8 (1:1.2:0.1) blends enable 16.73% PCE with all simultaneously improved photovoltaic parameters. To the best of the knowledge, this performance is among the best for ternary OSCs with simple small molecular third components in the literature. More importantly, DR8-added ternary OSCs exhibit much improved device stability against thermal aging and light soaking over binary ones. This work provides new insight on the design of efficient third components for OSCs.
Collapse
Affiliation(s)
- Hongtao Wang
- MIIT Key Laboratory of Advanced Solid Laser, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Linqiang Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Po-Chen Lin
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Xin Liu
- MIIT Key Laboratory of Advanced Solid Laser, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Shenya Qu
- MIIT Key Laboratory of Advanced Solid Laser, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Shun Guang
- MIIT Key Laboratory of Advanced Solid Laser, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiangsheng Yu
- MIIT Key Laboratory of Advanced Solid Laser, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Weihua Tang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
61
|
Bin H, Wang J, Li J, Wienk MM, Janssen RAJ. Efficient Electron Transport Layer Free Small-Molecule Organic Solar Cells with Superior Device Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008429. [PMID: 33656220 PMCID: PMC11468755 DOI: 10.1002/adma.202008429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Indexed: 05/27/2023]
Abstract
Electron transport layers (ETLs) placed between the electrodes and a photoactive layer can enhance the performance of organic solar cells but also impose limitations. Most ETLs are ultrathin films, and their deposition can disturb the morphology of the photoactive layers, complicate device fabrication, raise cost, and also affect device stability. To fully overcome such drawbacks, efficient organic solar cells that operate without an ETL are preferred. In this study, a new small-molecule electron donor (H31) based on a thiophene-substituted benzodithiophene core unit with trialkylsilyl side chains is designed and synthesized. Blending H31 with the electron acceptor Y6 gives solar cells with power conversion efficiencies exceeding 13% with and without 2,9-bis[3-(dimethyloxidoamino)propyl]anthra[2,1,9-def:6,5,10-d'e'f ']diisoquinoline-1,3,8,10(2H,9H)-tetrone (PDINO) as the ETL. The ETL-free cells deliver a superior shelf life compared to devices with an ETL. Small-molecule donor-acceptor blends thus provide interesting perspectives for achieving efficient, reproducible, and stable device architectures without electrode interlayers.
Collapse
Affiliation(s)
- Haijun Bin
- Molecular Materials and Nanosystems & Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Junke Wang
- Molecular Materials and Nanosystems & Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Junyu Li
- Molecular Materials and Nanosystems & Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Martijn M. Wienk
- Molecular Materials and Nanosystems & Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
| | - René A. J. Janssen
- Molecular Materials and Nanosystems & Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBThe Netherlands
- Dutch Institute for Fundamental Energy ResearchDe Zaale 20, 5612 AJEindhovenThe Netherlands
| |
Collapse
|
62
|
Liu X, Ma R, Wang Y, Du S, Tong J, Shi X, Li J, Bao X, Xia Y, Liu T, Yan H. Significantly Boosting Efficiency of Polymer Solar Cells by Employing a Nontoxic Halogen-Free Additive. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11117-11124. [PMID: 33635064 DOI: 10.1021/acsami.0c22014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Traditional additives like 1,8-diiodooctane and 1-chloronaphthalene were successfully utilized morphology optimization of various polymer solar cells (PSCs) in an active layer, but their toxicity brought by halogen atoms limits their corresponding large-scale manufacturing. Herein, a new nontoxic halogen-free additive named benzyl benzoate (BB) was introduced into the classic PSCs (PTB7-Th:PC71BM), and an optimal power conversion efficiency (PCE) of 9.43% was realized, while there was a poor PCE for additive free devices (4.83%). It was shown that BB additives could inhibit PC71BM's overaggregation, which increased the interface contact area and formed a better penetration path of an active layer. In addition, BB additives could not only boost the distribution of a PTB7-Th donor at the surface, beneficial to suppressing exciton recombination in inverted devices but also boost the crystallinity of a blend layer, which is conducive to exciton dissociation and charge transport. Our work effectively improved a device performance by using a halogen-free additive, which can be referential for industrialization.
Collapse
Affiliation(s)
- Xingpeng Liu
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ruijie Ma
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yufei Wang
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Sanshan Du
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Junfeng Tong
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaoyan Shi
- College of Science, Henan University of Technology, Zhengzhou 450001, China
| | - Jianfeng Li
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xichang Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yangjun Xia
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tao Liu
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
63
|
Cao FY, Su YC, Hsueh YC, Chou CC, Cheng YJ. Alcohol-Soluble Zwitterionic 4-(Dimethyl(pyridin-2-yl)ammonio)butane-1-sulfonate Small Molecule as a Cathode Modifier for Nonfullerene Acceptor-Based Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10222-10230. [PMID: 33615795 DOI: 10.1021/acsami.0c21449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new zwitterionic small molecule 4-(dimethyl(pyridin-2-yl)ammonio)butane-1-sulfonate (PAS), synthesized from 2-dimethylaminopyrindine (2-DMAP), was developed for the ITO cathode modifier. PAS and 2-DMAP dissolved in methanol can form a thin layer on ITO cathode by a simple spin-coating process. The heteroatom moieties in 2-DMAP (sp2 and sp3 nitrogen) and PAS (sp2 nitrogen and sulfonate ion) can coordinate to the ITO surface and decrease the ITO work function by the induced surface dipoles. The fullerene-based (PBDTT-FTTE:PC71BM) inverted OSCs using PAS and 2-DMAP interlayer can achieve PCEs of 8.95 and 8.26%, respectively, which are superior to the devices without a modifier (PCE = 3.25%) and comparable to the corresponding ZnO-based device (PCE = 8.57%). Nevertheless, 2-DMAP, like other nitrogen-containing polymer interlayer materials, turns out to be not applicable to inverted organic solar cells (I-OSCs) with IT-4F as the n-type electron acceptor because the amino group of 2-DMAP can act as a nucleophile to attack the end-group of IT-4F at the interface. The decomposition of IT-4F by 2-DMAP was carefully proved to be via retro-aldol condensation. As a result, the device (PBDBT-F:IT-4F) modified with 2-DMAP displayed a low PCE of 7.34%. The zwitterionic PAS with reduced nucleophilicity and basicity can modify the ITO surface without decomposing IT-4F. The PBDBT-F:IT-4F-based device modified with PAS maintained a high PCE of 11.41%. Most importantly, the PAS-based device using the well-known Y6 acceptor (PBDBT-F:Y6) can achieve a PCE of 13.82%. This new interfacial material can be universally applied to I-OSCs employing various A-D-A-type acceptors installed with the electrophilic 1,1-dicyanamethylene-5,6-difluoro-3-indanone (FIC) end-group.
Collapse
Affiliation(s)
- Fong-Yi Cao
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Yen-Chen Su
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Yung-Ching Hsueh
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Chia-Cheng Chou
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Yen-Ju Cheng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| |
Collapse
|
64
|
Li Y, Liu H, Wu J, Tang H, Wang H, Yang Q, Fu Y, Xie Z. Additive and High-Temperature Processing Boost the Photovoltaic Performance of Nonfullerene Organic Solar Cells Fabricated with Blade Coating and Nonhalogenated Solvents. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10239-10248. [PMID: 33605134 DOI: 10.1021/acsami.0c23035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Benefitting from narrow band gap nonfullerene acceptors, continually increasing power conversion efficiency (PCE) endows organic solar cells (OSCs) with great potential for commercial application. Fabricating high-performance OSCs with potential for large-scale coating and nonhalogenated solvent processing is a necessity. Herein, we have proposed the use of nonhalogenated solvents combined with high-temperature blade coating to prepare a PM6 (poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)]):Y6 (2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene)))blend active layer. The resultant OSCs deliver a PCE of 15.51% when the PM6:Y6 active layer is blade-coated at 90 °C in nonhalogenated o-xylene (o-XY) host solvent containing 1,2-dimethylnaphthalene (DMN) additive. It is found that high-temperature blade coating and nonhalogenated solvent additive DMN can suppress excessive aggregation of Y6 and enhance the crystallinity of PM6 and Y6 by regulating the dynamic process of active layer formation. Finally, an optimized blend morphology with nanofibrous phase separation and enhanced crystallinity are achieved for the PM6:Y6 active layer prepared with high-temperature blade coating and nonhalogenated o-XY:DMN solvents, which not only shortens the film-drying time but also leads to increased charge generation, transport, and collection efficiency. The 1.00 cm2 OSCs prepared with high-temperature blade coating and nonhalogenated solvents exhibit a high PCE of 13.87%. This approach shows great potential for large-area fabrication of OSCs.
Collapse
Affiliation(s)
- Youzhan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - He Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Jiang Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Hao Tang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Hailong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Qingqing Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Yingying Fu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Zhiyuan Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
65
|
Preparation and Properties of Films of Organic-Inorganic Perovskites MAPbX3 (MA = CH3NH3; X = Cl, Br, I) for Solar Cells: A Review. THEOR EXP CHEM+ 2021. [DOI: 10.1007/s11237-021-09666-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
66
|
Su W, Fan Q, Jalan I, Wang Y, Peng W, Guo T, Zhu W, Yu D, Hou L, Moons E, Wang E. Nonconjugated Terpolymer Acceptors with Two Different Fused-Ring Electron-Deficient Building Blocks for Efficient All-Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6442-6449. [PMID: 33499588 PMCID: PMC7883347 DOI: 10.1021/acsami.0c17722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The ternary polymerization strategy of incorporating different donor and acceptor units forming terpolymers as photovoltaic materials has been proven advantageous in improving power conversion efficiencies (PCEs) of polymer solar cells (PSCs). Herein, a series of low band gap nonconjugated terpolymer acceptors based on two different fused-ring electron-deficient building blocks (IDIC16 and ITIC) with adjustable photoelectric properties were developed. As the third component, ITIC building blocks with a larger π-conjugation structure, shorter solubilizing side chains, and red-shifted absorption spectrum were incorporated into an IDIC16-based nonconjugated copolymer acceptor PF1-TS4, which built up the terpolymers with two conjugated building blocks linked by flexible thioalkyl chain-thiophene segments. With the increasing ITIC content, terpolymers show gradually broadened absorption spectra and slightly down-shifted lowest unoccupied molecular orbital levels. The active layer based on terpolymer PF1-TS4-60 with a 60% ITIC unit presents more balanced hole and electron mobilities, higher photoluminescence quenching efficiency, and improved morphology compared to those based on PF1-TS4. In all-polymer solar cells (all-PSCs), PF1-TS4-60, matched with a wide band gap polymer donor PM6, achieved a similar open-circuit voltage (Voc) of 0.99 V, a dramatically increased short-circuit current density (Jsc) of 15.30 mA cm-2, and fill factor (FF) of 61.4% compared to PF1-TS4 (Voc = 0.99 V, Jsc = 11.21 mA cm-2, and FF = 55.6%). As a result, the PF1-TS4-60-based all-PSCs achieved a PCE of 9.31%, which is ∼50% higher than the PF1-TS4-based ones (6.17%). The results demonstrate a promising approach to develop high-performance nonconjugated terpolymer acceptors for efficient all-PSCs by means of ternary polymerization using two different A-D-A-structured fused-ring electron-deficient building blocks.
Collapse
Affiliation(s)
- Wenyan Su
- Guangdong
Provincial Key Laboratory of Optical Fiber Sensing and Communications,
Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy
Materials, Siyuan Laboratory, Department of Physics, Jinan University, 510632 Guangzhou, China
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden
- Department
of Engineering and Physics, Karlstad University, SE-651 88 Karlstad, Sweden
| | - Qunping Fan
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden
| | - Ishita Jalan
- Department
of Engineering and Chemical Sciences, Karlstad
University, SE-651 88 Karlstad, Sweden
| | - Yufei Wang
- Guangdong
Provincial Key Laboratory of Optical Fiber Sensing and Communications,
Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy
Materials, Siyuan Laboratory, Department of Physics, Jinan University, 510632 Guangzhou, China
| | - Wenhong Peng
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden
- School
of Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally
Friendly Polymeric Materials, Jiangsu Engineering Laboratory of Light-Electricity-Heat
Energy-Converting Materials and Applications, Changzhou University, 213164 Changzhou, China
| | - Tao Guo
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden
- School
of Chemistry and Chemical Engineering, Henan
University of Technology, 450001 Zhengzhou, China
| | - Weiguo Zhu
- School
of Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally
Friendly Polymeric Materials, Jiangsu Engineering Laboratory of Light-Electricity-Heat
Energy-Converting Materials and Applications, Changzhou University, 213164 Changzhou, China
| | - Donghong Yu
- Department
of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark
- Sino-Danish
Center for Education and Research, DK-8000 Aarhus, Denmark
| | - Lintao Hou
- Guangdong
Provincial Key Laboratory of Optical Fiber Sensing and Communications,
Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy
Materials, Siyuan Laboratory, Department of Physics, Jinan University, 510632 Guangzhou, China
| | - Ellen Moons
- Department
of Engineering and Physics, Karlstad University, SE-651 88 Karlstad, Sweden
| | - Ergang Wang
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden
- School
of Materials Science and Engineering, Zhengzhou
University, 450001 Zhengzhou, China
| |
Collapse
|
67
|
Wang T, Brédas JL. Organic Photovoltaics: Understanding the Preaggregation of Polymer Donors in Solution and Its Morphological Impact. J Am Chem Soc 2021; 143:1822-1835. [DOI: 10.1021/jacs.0c09542] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tonghui Wang
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0088, United States
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0088, United States
| |
Collapse
|
68
|
|
69
|
Keshtov ML, Kuklin SA, Khokhlov AR, Peregudov AS, Chen FC, Xie Z, Sharma GD. Efficient ternary polymer solar cell using wide bandgap conjugated polymer donor with two non‐fullerene small molecule acceptors enabled power conversion efficiency of 16% with low energy loss of 0.47 eV. NANO SELECT 2021. [DOI: 10.1002/nano.202000146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mukhamed L. Keshtov
- Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Sergei. A. Kuklin
- Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Alexei R. Khokhlov
- Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Aleksander S. Peregudov
- Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Fang C. Chen
- Department of Photonics College of Electrical and Computer Engineering National Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Chiao Tung University Hsinchu Taiwan
| | - Zhiyuan Xie
- State Key Laboratory of Polymer Physics and Chemistry Chinese Academy of Sciences Changchun Institute of Applied Chemistry Changchun P.R. China
| | - Ganesh D. Sharma
- Department of Physics The LNM Institute of Information Technology Jamdoli Jaipur Rajasthan 302031 India
| |
Collapse
|
70
|
Jia Z, Chen Z, Chen X, Bai L, Zhu H, Yang YM. Understanding of the Nearly Linear Tunable Open-Circuit Voltages in Ternary Organic Solar Cells Based on Two Non-fullerene Acceptors. J Phys Chem Lett 2021; 12:151-156. [PMID: 33320004 DOI: 10.1021/acs.jpclett.0c03177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although the power conversion efficiencies (PCEs) of the state-of-the-art organic solar cells (OSCs) have exceeded 17%, the organic photovoltaic devices still suffer from considerable voltage losses compared with the inorganic or perovskite solar cells. Therefore, the optimization of open-circuit voltage (VOC) is of great significance for the improvement of the photovoltaic performance of OSCs. The origins of VOC have been well-established in the binary system; however, the understanding of VOC in non-fullerene acceptor (NFA)-based ternary OSCs is still lacking. Herein, we have developed a series of ternary organic photovoltaic devices, exhibiting nearly linear increased VOC as the increase of ITIC third content. We found that both the effective charge-transfer (CT) states and the nonradiative recombination losses of the bulk-heterojunction (BHJ) are altered in the ternary blends, and they collectively contribute to the tunable VOC. Our results provide a perspective for understanding the origin of VOC in NFA-based ternary OSCs.
Collapse
Affiliation(s)
- Ziyan Jia
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zeng Chen
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xu Chen
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Lizhong Bai
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haiming Zhu
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yang Michael Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
71
|
Zhang J, Xiang Y, Zheng S. From Y6 to BTPT-4F: a theoretical insight into the influence of the individual change of fused-ring skeleton length or side alkyl chains on molecular arrangements and electron mobility. NEW J CHEM 2021. [DOI: 10.1039/d1nj01515j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic solar cells (OSCs) based on non-fullerene acceptor (NFA) Y6 have drawn tremendous attention due to the great progress in their power conversion efficiencies (PCEs).
Collapse
Affiliation(s)
- Jie Zhang
- School of Materials and Energy
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies
- Southwest University
- Chongqing
- China
| | - Yunjie Xiang
- School of Materials and Energy
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies
- Southwest University
- Chongqing
- China
| | - Shaohui Zheng
- School of Materials and Energy
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies
- Southwest University
- Chongqing
- China
| |
Collapse
|
72
|
Li R, Yuan Y, Liang L, Lu J, Cui CX, Niu H, Wu Z, Liu G, Hu Z, Xie R, Huang F, Zhang Y. Cu( ii)-Porphyrin based near-infrared molecules: synthesis, characterization and photovoltaic application. NEW J CHEM 2021. [DOI: 10.1039/d0nj04800c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Three novel Cu(ii)-porphyrin-based near-infrared non-fullerene acceptors were developed, which show strong intramolecular charge transfer absorption spectra.
Collapse
|
73
|
Miao J, Ding Z, Liu J, Wang L. Research Progress in Organic Solar Cells Based on Small Molecule Donors and Polymer Acceptors. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20120589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
74
|
Lehr J, Mertens A, Liu Q, Martorell J, Paetzold UW, Lemmer U. Numerical study on the angular light trapping of the energy yield of organic solar cells with an optical cavity. OPTICS EXPRESS 2020; 28:37986-37995. [PMID: 33379621 DOI: 10.1364/oe.404969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
A limiting factor in organic solar cells (OSCs) is the incomplete absorption in the thin absorber layer. One concept to enhance absorption is to apply an optical cavity design. In this study, the performance of an OSC with cavity is evaluated. By means of a comprehensive energy yield (EY) model, the improvement is demonstrated by applying realistic sky irradiance, covering a wide range of incidence angles. The relative enhancement in EY for different locations is found to be 11-14% compared to the reference device with an indium tin oxide front electrode. The study highlights the improved angular light absorption as well as the angular robustness of an OSC with cavity.
Collapse
|
75
|
Guo X, Fan Q, Wu J, Li G, Peng Z, Su W, Lin J, Hou L, Qin Y, Ade H, Ye L, Zhang M, Li Y. Optimized Active Layer Morphologies via Ternary Copolymerization of Polymer Donors for 17.6 % Efficiency Organic Solar Cells with Enhanced Fill Factor. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xia Guo
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Qunping Fan
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Jingnan Wu
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Guangwei Li
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Zhongxiang Peng
- School of Materials Science and Engineering Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University Tianjin 300350 China
| | - Wenyan Su
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications Siyuan Laboratory Department of Physics Jinan University Guangzhou 510632 China
| | - Ji Lin
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Lintao Hou
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications Siyuan Laboratory Department of Physics Jinan University Guangzhou 510632 China
| | - Yunpeng Qin
- Department of Physics Organic and Carbon Electronics Lab (ORaCEL) North Carolina State University Raleigh NC 27695 USA
| | - Harald Ade
- Department of Physics Organic and Carbon Electronics Lab (ORaCEL) North Carolina State University Raleigh NC 27695 USA
| | - Long Ye
- School of Materials Science and Engineering Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University Tianjin 300350 China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
76
|
Guo X, Fan Q, Wu J, Li G, Peng Z, Su W, Lin J, Hou L, Qin Y, Ade H, Ye L, Zhang M, Li Y. Optimized Active Layer Morphologies via Ternary Copolymerization of Polymer Donors for 17.6 % Efficiency Organic Solar Cells with Enhanced Fill Factor. Angew Chem Int Ed Engl 2020; 60:2322-2329. [PMID: 33058442 DOI: 10.1002/anie.202010596] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022]
Abstract
Regulating molecular structure to optimize the active layer morphology is of considerable significance for improving the power conversion efficiencies (PCEs) in organic solar cells (OSCs). Herein, we demonstrated a simple ternary copolymerization approach to develop a terpolymer donor PM6-Tz20 by incorporating the 5,5'-dithienyl-2,2'-bithiazole (DTBTz, 20 mol%) unit into the backbone of PM6 (PM6-Tz00). This method can effectively tailor the molecular orientation and aggregation of the polymer, and then optimize the active layer morphology and the corresponding physical processes of devices, ultimately boosting FF and then PCE. Hence, the PM6-Tz20: Y6-based OSCs achieved a PCE of up to 17.1% with a significantly enhanced FF of 0.77. Using Ag (220 nm) instead of Al (100 nm) as cathode, the champion PCE was further improved to 17.6%. This work provides a simple and effective molecular design strategy to optimize the active layer morphology of OSCs for improving photovoltaic performance.
Collapse
Affiliation(s)
- Xia Guo
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qunping Fan
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jingnan Wu
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Guangwei Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhongxiang Peng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Wenyan Su
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Ji Lin
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lintao Hou
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Yunpeng Qin
- Department of Physics, Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Harald Ade
- Department of Physics, Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
77
|
Luo Z, Liu T, Ma R, Xiao Y, Zhan L, Zhang G, Sun H, Ni F, Chai G, Wang J, Zhong C, Zou Y, Guo X, Lu X, Chen H, Yan H, Yang C. Precisely Controlling the Position of Bromine on the End Group Enables Well-Regular Polymer Acceptors for All-Polymer Solar Cells with Efficiencies over 15. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2005942. [PMID: 33118246 DOI: 10.1002/adma.202005942] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Recent advances in the development of polymerized A-D-A-type small-molecule acceptors (SMAs) have promoted the power conversion efficiency (PCE) of all-polymer solar cells (all-PSCs) over 13%. However, the monomer of an SMA typically consists of a mixture of three isomers due to the regio-isomeric brominated end groups (IC-Br(in) and IC-Br(out)). In this work, the two isomeric end groups are successfully separated, the regioisomeric issue is solved, and three polymer acceptors, named PY-IT, PY-OT, and PY-IOT, are developed, where PY-IOT is a random terpolymer with the same ratio of the two acceptors. Interestingly, from PY-OT, PY-IOT to PY-IT, the absorption edge gradually redshifts and electron mobility progressively increases. Theory calculation indicates that the LUMOs are distributed on the entire molecular backbone of PY-IT, contributing to the enhanced electron transport. Consequently, the PM6:PY-IT system achieves an excellent PCE of 15.05%, significantly higher than those for PY-OT (10.04%) and PY-IOT (12.12%). Morphological and device characterization reveals that the highest PCE for the PY-IT-based device is the fruit of enhanced absorption, more balanced charge transport, and favorable morphology. This work demonstrates that the site of polymerization on SMAs strongly affects device performance, offering insights into the development of efficient polymer acceptors for all-PSCs.
Collapse
Affiliation(s)
- Zhenghui Luo
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Tao Liu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Ruijie Ma
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Yiqun Xiao
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Lingling Zhan
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular, Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Guangye Zhang
- eFlexPV Limited (China), Plant B701, Guofu Cultural Creative Industry Plant Area, No. 16, Lanjing Middle Road, Zhukeng Community, Longtian Street, Pingshan District, Shenzhen, 518057, P. R. China
- eFlexPV Limited, Flat/RM B, 12/F, Hang Seng Causeway Bay BLDG, 28 Yee Wo Street, Causeway Bay, Hong Kong, 999077, P. R. China
| | - Huiliang Sun
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, P. R. China
| | - Fan Ni
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaoda Chai
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Junwei Wang
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, P. R. China
| | - Cheng Zhong
- Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yang Zou
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xugang Guo
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, P. R. China
| | - Xinhui Lu
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular, Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
78
|
Lee S, Jeong D, Kim C, Lee C, Kang H, Woo HY, Kim BJ. Eco-Friendly Polymer Solar Cells: Advances in Green-Solvent Processing and Material Design. ACS NANO 2020; 14:14493-14527. [PMID: 33103903 DOI: 10.1021/acsnano.0c07488] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the recent breakthroughs of polymer solar cells (PSCs) exhibiting a power conversion efficiency of over 17%, toxic and hazardous organic solvents such as chloroform and chlorobenzene are still commonly used in their fabrication, which impedes the practical application of PSCs. Thus, the development of eco-friendly processing methods suitable for industrial-scale production is now considered an imperative research focus. This Review provides a roadmap for the design of efficient photoactive materials that are compatible with non-halogenated green solvents (e.g., xylenes, toluene, and tetrahydrofuran). We summarize the recent development of green processing solvents and the processing methods to match with the efficient photoactive materials used in non-fullerene solar cells. We further review progress in the use of more eco-friendly solvents (i.e., water or alcohol) for achieving truly sustainable and eco-friendly PSC fabrication. For example, the concept of water- or alcohol-dispersed nanoparticles made of conjugated materials is introduced. Also, recent important progress and strategies to develop water/alcohol-soluble photoactive materials that completely eliminate the use of conventional toxic solvents are discussed. Finally, we provide our perspectives on the challenges facing the current green processing methods and materials, such as large-area coating techniques and long-term stability. We believe this Review will inform the development of PSCs that are truly clean and renewable energy sources.
Collapse
Affiliation(s)
- Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dahyun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Changkyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Changyeon Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hyunbum Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
79
|
Li Y, Meng H, Huang J, Zhan C. Structural Cutting of Non-fullerene Acceptors by Chlorination: Effects of Substituent Number on Device Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50541-50549. [PMID: 33136385 DOI: 10.1021/acsami.0c16389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Effects of chlorination on photovoltaic performance of organic solar cells are yet largely unclear though it is emerging as a special yet effective strategy to design highly efficient non-fullerene acceptors (NFAs). Herein, a bi-chlorine-substituted NFA with regioregularity, namely, bichlorinated dithienothiophen[3.2-b]- pyrrolobenzothiadiazole (BTP-2Cl-δ), is synthesized and compared to the non-chlorinated BTP and tetra-chlorine-substituted BTP-4Cl to study the effects of Cl number on the photovoltaic performance. From BTP to BTP-2Cl-δ and BTP-4Cl, the three molecules show gradually red-shifted absorption peaks, narrowed band gaps, and lowered highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs). Polymer solar cells are fabricated using PM6 as the donor and the three small molecules as the acceptors. From BTP to BTP-2Cl-δ, efficiencies (8.8 vs 15.4%) are significantly enhanced due to the better film morphology and strong crystallization of the BTP-2Cl-δ-based device, giving rise to boosted fill factors (FFs) and short-circuit current densities (JSC's). From BTP-2Cl-δ to BTP-4Cl, although JSC's (24.3 vs 25.0 mA cm-2) are slightly elevated due to the higher crystallinity of BTP-4Cl, leading to improved exciton dissociation and collection efficiencies, FFs (71.1 vs 68.0%) are obviously decreased owing to the unfavorable film morphology, unbalanced hole-electron mobilities, and higher charge recombination in BTP-4Cl-based devices. As such, the efficiency of the BTP-2Cl-δ-based device (15.4%) is superior to that of the BTP-4Cl-based device (14.5%). This work elucidates a design strategy by cutting the numbers of substituent chlorine to obtain desired energy levels and crystallization with optimal performance.
Collapse
Affiliation(s)
- Yuqing Li
- Key Laboratory of Excitonic Materials Chemistry and Devices (EMC&D), College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot 010022, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huifeng Meng
- Key Laboratory of Excitonic Materials Chemistry and Devices (EMC&D), College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot 010022, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianhua Huang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Chuanlang Zhan
- Key Laboratory of Excitonic Materials Chemistry and Devices (EMC&D), College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot 010022, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
80
|
Li J, Wang C, Zhang B, Wang Z, Yu W, Chen Y, Liu X, Guo Z, Zhang H. Artificial Carbon Graphdiyne: Status and Challenges in Nonlinear Photonic and Optoelectronic Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49281-49296. [PMID: 33100013 DOI: 10.1021/acsami.0c13030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The creative integration of sp-hybridized carbon atoms into artificial carbon graphdiyne has led to graphdiyne with superior properties in terms of uniformly distributed pores, ambipolar carrier transport, natural bandgap, and broadband absorption. Consequently, graphdiyne, regarded as a promising carbon material, has garnered particular attention in light-matter interactions. Light-matter interactions play an important role in optical information technology and meet the increasing demand for various energy sources. Herein, the status and challenges in nonlinear photonic and optoelectronic applications of graphdiyne, which are still in the infancy stage, are summarized. Furthermore, the bottleneck and perspective of graphdiyne in these aspects are discussed. It is therefore anticipated that this review could promote the development of graphdiyne in photonic and optoelectronic fields.
Collapse
Affiliation(s)
- Jiaofu Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Cong Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Bin Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhenhong Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Wenjie Yu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, 865 Chang Ning Road, Shanghai 200050, P. R. China
| | - Yong Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xinke Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhongyi Guo
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Han Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
81
|
Fan Q, Su W, Chen S, Liu T, Zhuang W, Ma R, Wen X, Yin Z, Luo Z, Guo X, Hou L, Moth-Poulsen K, Li Y, Zhang Z, Yang C, Yu D, Yan H, Zhang M, Wang E. A Non-Conjugated Polymer Acceptor for Efficient and Thermally Stable All-Polymer Solar Cells. Angew Chem Int Ed Engl 2020; 59:19835-19840. [PMID: 32666653 PMCID: PMC7692906 DOI: 10.1002/anie.202005662] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/28/2020] [Indexed: 11/06/2022]
Abstract
A non-conjugated polymer acceptor PF1-TS4 was firstly synthesized by embedding a thioalkyl segment in the mainchain, which shows excellent photophysical properties on par with a fully conjugated polymer, with a low optical band gap of 1.58 eV and a high absorption coefficient >105 cm-1 , a high LUMO level of -3.89 eV, and suitable crystallinity. Matched with the polymer donor PM6, the PF1-TS4-based all-PSC achieved a power conversion efficiency (PCE) of 8.63 %, which is ≈45 % higher than that of a device based on the small molecule acceptor counterpart IDIC16. Moreover, the PF1-TS4-based all-PSC has good thermal stability with ≈70 % of its initial PCE retained after being stored at 85 °C for 180 h, while the IDIC16-based device only retained ≈50 % of its initial PCE when stored at 85 °C for only 18 h. Our work provides a new strategy to develop efficient polymer acceptor materials by linkage of conjugated units with non-conjugated thioalkyl segments.
Collapse
Affiliation(s)
- Qunping Fan
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Wenyan Su
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Shanshan Chen
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Tao Liu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, Hong Kong
| | - Wenliu Zhuang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
- Guangdong Research Center for Special Building Materials and Its Green Preparation Technology, Advanced Research Center for Polymer Processing Engineering of Guangdong Province, Guangdong Industry Polytechnic, Guangzhou, 510300, P. R. China
| | - Ruijie Ma
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, Hong Kong
| | - Xin Wen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Zhihong Yin
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenghui Luo
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, Hong Kong
| | - Xia Guo
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lintao Hou
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Yu Li
- Guangdong Research Center for Special Building Materials and Its Green Preparation Technology, Advanced Research Center for Polymer Processing Engineering of Guangdong Province, Guangdong Industry Polytechnic, Guangzhou, 510300, P. R. China
| | - Zhiguo Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg East, Denmark
- Sino-Danish Center for Education and Research, 8000, Aarhus, Denmark
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, Hong Kong
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ergang Wang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
82
|
Su D, Li K, Liu W, Zhang W, Li X, Wu Y, Shen F, Huo S, Fu H, Zhan C. High-Performance Ternary Polymer Solar Cells Enabled by a New Narrow Bandgap Nonfullerene Small Molecule Acceptor with a Higher LUMO Level. Macromol Rapid Commun 2020; 41:e2000393. [PMID: 33089640 DOI: 10.1002/marc.202000393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/04/2020] [Indexed: 11/06/2022]
Abstract
Obtaining a large open-circuit voltage (VOC ) and high short-circuit current density (JSC ) simultaneously is important in improving power conversion efficiency (PCE) of organic photovoltaics. The ternary strategy with using a higher lowest unoccupied molecular orbital (LUMO) level nonfullerene acceptor (NFA) guest can achieve increased VOC , yet JSC is decreased or maintained, so it's still a challenge to offer increased VOC and JSC values concurrently via the newly presented VOC -increased ternary strategy. To overcome this issue, a new narrow bandgap NFA TT-S-4F is reported by introducing 3,6-dimethoxylthieno[3,2-b]thiophene (TT) as π-spacers to connect electron-rich core with terminal groups, so as to upshift the LUMO level and extend π-system. When adding 10% TT-S-4F into binary system based on PTB7-Th:IEICO-4F, the higher-LUMO-level of TT-S-4F, the increased charge mobilities, the reduced trap-assisted combination loss, and a finer nanofiber structure and increased phase separation size are obtained, which simultaneously promotes JSC , VOC , and fill factor (FF), thus obtaining an optimal PCE (12.5% vs 11.5%). This work illustrates that an extending conjugated backbone with large π-spacers and inclusion of alkylthiophenyl side-chains is a concept to synthesize NFA guests for use on the VOC -increased ternary strategy that enables to realize simultaneously increased JSC , VOC , and FF.
Collapse
Affiliation(s)
- Dan Su
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, 071002, China
| | - Kun Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Wanru Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, 071002, China
| | - Weichao Zhang
- Key Laboratory of Excitonic Materials Chemistry and Devices (EMC&D), College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot, 010022, China
| | - Xiaofang Li
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, 071002, China
| | - Yishi Wu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Fugang Shen
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, 071002, China
| | - Shuying Huo
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, 071002, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Chuanlang Zhan
- Key Laboratory of Excitonic Materials Chemistry and Devices (EMC&D), College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot, 010022, China
| |
Collapse
|
83
|
Dong J, Guo J, Wang X, Dong P, Wang Z, Zhou Y, Miao Y, Zhao B, Hao Y, Wang H, Xu B, Yin S. A Low-Temperature Solution-Processed CuSCN/Polymer Hole Transporting Layer Enables High Efficiency for Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46373-46380. [PMID: 32945159 DOI: 10.1021/acsami.0c12845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The hole transporting layers (HTLs) between the electrode and light absorber play a vital role in charge extraction and transport processes in organic solar cells (OSCs). Herein, a bilayer structure HTL of CuSCN/TFB is formed by soluble copper(I) thiocyanate (CuSCN) and poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(4,4'-(N-(4-butylphenyl)))] (TFB). The excellent charge extraction capability is proved in nonfullerene PM6:Y6 and fullerene PTB7-Th:PC71BM blend system-based cells. The introduction of TFB tunes the work function and polishes the interfacial contact between the HTL and light absorber, which favors the hole extraction process in cells. Meanwhile, lower recombination loss, higher exciton dissociation probability, and larger domain size are observed in CuSCN/TFB HTL-based cells compared to those of the reference cell with the pristine CuSCN HTL, which significantly improve the photovoltaic performance. As a result, a champion efficiency of 15.10% is obtained, which is >14% higher than the efficiency of 13.15% obtained in the reference cell. This study suggests that CuSCN/TFB is a promising HTL to achieve high efficiency for OSCs.
Collapse
Affiliation(s)
- Jiale Dong
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jian Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaoliang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Peng Dong
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhongqiang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yingjuan Zhou
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanqin Miao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Bo Zhao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuying Hao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hua Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shougen Yin
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
84
|
Liao Z, Yang K, Hou L, Li J, Lv J, Singh R, Kumar M, Chen Q, Dong X, Xu T, Hu C, Duan T, Kan Z, Lu S, Xiao Z. Thiazole-Functionalized Terpolymer Donors Obtained via Random Ternary Copolymerization for High-Performance Polymer Solar Cells. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhihui Liao
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ke Yang
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems (Ministry of Education), School of Power Engineering, Chongqing University, Chongqing 400044, P.R. China
| | - Licheng Hou
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jun Li
- Library & Information Center, Anhui University of Finance and Economics, Bengbu 233030, P.R. China
| | - Jie Lv
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ranbir Singh
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, South Korea
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Manish Kumar
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, South Korea
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Qianqian Chen
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
| | - Xiyue Dong
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Tongle Xu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chao Hu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
| | - Tainan Duan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
| | - Zhipeng Kan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
| | - Shirong Lu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
| |
Collapse
|
85
|
Sun H, Yu H, Shi Y, Yu J, Peng Z, Zhang X, Liu B, Wang J, Singh R, Lee J, Li Y, Wei Z, Liao Q, Kan Z, Ye L, Yan H, Gao F, Guo X. A Narrow-Bandgap n-Type Polymer with an Acceptor-Acceptor Backbone Enabling Efficient All-Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004183. [PMID: 32954584 DOI: 10.1002/adma.202004183] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Indexed: 05/26/2023]
Abstract
Narrow-bandgap polymer semiconductors are essential for advancing the development of organic solar cells. Here, a new narrow-bandgap polymer acceptor L14, featuring an acceptor-acceptor (A-A) type backbone, is synthesized by copolymerizing a dibrominated fused-ring electron acceptor (FREA) with distannylated bithiophene imide. Combining the advantages of both the FREA and the A-A polymer, L14 not only shows a narrow bandgap and high absorption coefficient, but also low-lying frontier molecular orbital (FMO) levels. Such FMO levels yield improved electron transfer character, but unexpectedly, without sacrificing open-circuit voltage (Voc ), which is attributed to a small nonradiative recombination loss (Eloss,nr ) of 0.22 eV. Benefiting from the improved photocurrent along with the high fill factor and Voc , an excellent efficiency of 14.3% is achieved, which is among the highest values for all-polymer solar cells (all-PSCs). The results demonstrate the superiority of narrow-bandgap A-A type polymers for improving all-PSC performance and pave a way toward developing high-performance polymer acceptors for all-PSCs.
Collapse
Affiliation(s)
- Huiliang Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Han Yu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Yongqiang Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, P. R. China
| | - Jianwei Yu
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Zhongxiang Peng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300350, P. R. China
| | - Xianhe Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, P. R. China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, P. R. China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, P. R. China
| | - Ranbir Singh
- Department of Energy & Materials Engineering, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Jaewon Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, P. R. China
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, P. R. China
| | - Qiaogan Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, P. R. China
| | - Zhipeng Kan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300350, P. R. China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
86
|
Li Y, He J, Shen H. Journey from Small-Molecule Diyne Structures to 2D Graphdiyne: Synthetic Strategies. Chemistry 2020; 26:12310-12321. [PMID: 32496650 DOI: 10.1002/chem.202001898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/03/2020] [Indexed: 11/06/2022]
Abstract
Graphdiyne (GDY) exhibits unique characteristics of a highly conjugated π system, evenly distributed nanopores, and a direct band gap. This has encouraged multidisciplinary research groups to investigate its application in energy conversion and storage, catalysts, electronic devices, sensing, and separation. Herein, the achievements of synthetic strategies for preparing small-molecule diyne structures (GDY substructure), 1D nanoribbons, and 2D GDY are presented. These studies may help future investigations into the basic structure-related properties of GDY and synthetic methodology for the future developments of GDY-related 2D carbon materials.
Collapse
Affiliation(s)
- Yongjun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jingyi He
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Han Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
87
|
Park JJ, Heo YJ, Yun JM, Kim Y, Yoon SC, Lee SH, Kim DY. Orthogonal Printable Reduced Graphene Oxide 2D Materials as Hole Transport Layers for High-Performance Inverted Polymer Solar Cells: Sheet Size Effect on Photovoltaic Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42811-42820. [PMID: 32799529 DOI: 10.1021/acsami.0c11384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Creating an orthogonal printable hole-transporting layer (HTL) without damaging the underlying layer is still a major challenge in fabricating large-area printed inverted polymer solar cells (PSCs). In this study, we prepared orthogonal-processable fluorine-functionalized reduced graphene oxide (FrGO) series with various two-dimensional sheet sizes such as large-sized FrGO (1.1 μm), medium-sized FrGO (0.7 μm), and small-sized FrGO (0.3 μm) and systematically investigated the size effect of FrGOs on the hole transport properties of PSCs. The FrGOs exhibit highly stable dispersion without change over 90 days in 2-propanol solvent, indicating very high dispersion stability. Decreasing the sheet size of FrGOs enhanced hole-transporting properties, resulting in power conversion efficiencies (PCEs) of 9.27 and 9.02% for PTB7-Th:EH-IDTBR- and PTB7-Th:PC71BM-based PSCs, respectively. Compared to devices with solution-processed poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), a 14% enhancement of PCEs was achieved. Interestingly, the PCEs of devices with the smallest FrGO sheet are higher than the PCE of 8.77% of a device with vacuum-deposited MoO3. The enhancement in the performance of PSCs is attributed to the enhanced charge collection efficiency, decreased leakage current, internal resistance, and minimized charge recombination. Finally, small-sized FrGO HTLs were successfully coated on the photoactive layer using the spray coating method, and they also exhibited PCEs of 9.22 and 13.26% for PTB7-Th:EH-IDTBR- and PM6:Y6-based inverted PSCs, respectively.
Collapse
Affiliation(s)
- Jong-Jin Park
- Heeger Center for Advanced Materials (HCAM), School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Youn-Jung Heo
- Heeger Center for Advanced Materials (HCAM), School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Research Institute of Sustainable Manufacturing Systems, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Jin-Mun Yun
- Radiation Utilization and Facilities Management Division, Korea Atomic Energy Research Institute (KAERI), Jeongeup 562121, Republic of Korea
| | - Yunseul Kim
- Heeger Center for Advanced Materials (HCAM), School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sung Cheol Yoon
- Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Seung-Hoon Lee
- Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Dong-Yu Kim
- Heeger Center for Advanced Materials (HCAM), School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
88
|
Wang J, Ding Y, Li C, Zheng N, Xie Z, Ma Z, Lu Y, Wan X, Chen Y. Effect of Nitro-Substituted Ending Groups on the Photovoltaic Properties of Nonfullerene Acceptors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41861-41868. [PMID: 32819097 DOI: 10.1021/acsami.0c11698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chemical modification of end groups has proved to be an effective way to design new acceptor-donor-acceptor (A-D-A)-structured nonfullerene acceptors (NFAs) for high-performance organic solar cells (OSCs). Herein, we designed and synthesized two nitro-substituted end groups, N1 and N2. Using the two end groups as A units, two A-D-A acceptors, F-N1 and F-N2, were obtained. It also has been found that the nitro substitution position on end groups affects not only the absorptions and energy levels of the resultant acceptor materials but also their molecular packing behavior and active layer morphologies. In addition, the devices based on the two acceptors showed different energy losses. Power-conversion efficiencies (PCEs) of 10.66 and 11.86% were achieved for F-N1- and F-N2-based devices, respectively. This work reveals that the nitration of end groups is one of the potential strategies for designing high-performance photovoltaic active layer materials.
Collapse
Affiliation(s)
- Jing Wang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Yunqian Ding
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chenxi Li
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zengqi Xie
- Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zaifei Ma
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Yan Lu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Xiangjian Wan
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongsheng Chen
- College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
89
|
Xiao L, Kolaczkowski MA, Min Y, Liu Y. Substitution Effect on Thiobarbituric Acid End Groups for High Open-Circuit Voltage Non-Fullerene Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41852-41860. [PMID: 32811138 DOI: 10.1021/acsami.0c11828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recent advances in non-fullerene acceptors (NFAs) have resulted in significant improvement in the power conversion efficiencies (PCEs) of organic solar cells (OSCs). In our efforts to boost open-circuit voltage (VOC) for OSCs, the molecular design employing thiobarbituric acid (TBTA) end groups and an indacenodithieno[3,2-b]thiophene (IDTT) core gives rise to NFAs with significantly raised lowest unoccupied molecular orbital (LUMO) energy level, which, when paired with PCE10, can achieve VOC's over 1.0 V and decent PCEs that outperform the equivalent devices based on the benchmark ITIC acceptor. While the use of a TBTA end group is effective in tuning energy levels, very little is known about how the alkyl substitution on the TBTA group impacts the solar cell performance. To this end, TBTA end groups are alkylated with linear, branched, and aromatic sidechains to understand the influence on thin-film morphology and related device performances. Our study has confirmed the dependence of solar cell performance on the end-group substituents. More importantly, we reveal the presence of an ideal window of crystallinity associated with the medium-length hydrocarbon chains such as ethyl and benzyl. Deviation to the shorter methyl group makes the acceptor too crystalline to mix with the polymer donor and form proper domains, whereas longer and branched alkyl chains are too sterically bulky and hinder charge transport due to nonideal packing. Such findings underline the comprehensive nature of thin-film morphology and the subtle end-group effects for the design of non-fullerene acceptors.
Collapse
Affiliation(s)
- Liangang Xiao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Matthew A Kolaczkowski
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yonggang Min
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
90
|
Cui M, Li D, Du X, Li N, Rong Q, Li N, Shui L, Zhou G, Wang X, Brabec CJ, Nian L. A Cost-Effective, Aqueous-Solution-Processed Cathode Interlayer Based on Organosilica Nanodots for Highly Efficient and Stable Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002973. [PMID: 32790202 DOI: 10.1002/adma.202002973] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The performance and industrial viability of organic photovoltaics are strongly influenced by the functionality and stability of interface layers. Many of the interface materials most commonly used in the lab are limited in their operational stability or their materials cost and are frequently not transferred toward large-scale production and industrial applications. In this work, an advanced aqueous-solution-processed cathode interface layer is demonstrated based on cost-effective organosilica nanodots (OSiNDs) synthesized via a simple one-step hydrothermal reaction. Compared to the interface layers optimized for inverted organic solar cells (i-OSCs), the OSiNDs cathode interlayer shows improved charge carrier extraction and excellent operational stability for various model photoactive systems, achieving a remarkably high power conversion efficiency up to 17.15%. More importantly, the OSiNDs' interlayer is extremely stable under thermal stress or photoillumination (UV and AM 1.5G) and undergoes no photochemical reaction with the photoactive materials used. As a result, the operational stability of inverted OSCs under continuous 1 sun illumination (AM 1.5G, 100 mW cm-2 ) is significantly improved by replacing the commonly used ZnO interlayer with OSiND-based interfaces.
Collapse
Affiliation(s)
- Mengqi Cui
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Dan Li
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Xiaoyan Du
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Immerwahrstrasse 2, Erlangen, 91058, Germany
| | - Na Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Qikun Rong
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ning Li
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Immerwahrstrasse 2, Erlangen, 91058, Germany
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Lingling Shui
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xinghua Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Immerwahrstrasse 2, Erlangen, 91058, Germany
| | - Li Nian
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| |
Collapse
|
91
|
Fan Q, Su W, Chen S, Liu T, Zhuang W, Ma R, Wen X, Yin Z, Luo Z, Guo X, Hou L, Moth‐Poulsen K, Li Y, Zhang Z, Yang C, Yu D, Yan H, Zhang M, Wang E. A Non‐Conjugated Polymer Acceptor for Efficient and Thermally Stable All‐Polymer Solar Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Qunping Fan
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 41296 Göteborg Sweden
| | - Wenyan Su
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 41296 Göteborg Sweden
- Laboratory of Advanced Optoelectronic Materials College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials Siyuan Laboratory Department of Physics Jinan University Guangzhou 510632 China
| | - Shanshan Chen
- Department of Energy Engineering School of Energy and Chemical Engineering Low Dimensional Carbon Materials Center Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems CQU-NUS Renewable Energy Materials & Devices Joint Laboratory School of Energy & Power Engineering Chongqing University Chongqing 400044 China
| | - Tao Liu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay, Kowloon 999077 Hong Kong Hong Kong
| | - Wenliu Zhuang
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 41296 Göteborg Sweden
- Guangdong Research Center for Special Building Materials and Its Green Preparation Technology Advanced Research Center for Polymer Processing Engineering of Guangdong Province Guangdong Industry Polytechnic Guangzhou 510300 P. R. China
| | - Ruijie Ma
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay, Kowloon 999077 Hong Kong Hong Kong
| | - Xin Wen
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 41296 Göteborg Sweden
| | - Zhihong Yin
- Laboratory of Advanced Optoelectronic Materials College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Zhenghui Luo
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay, Kowloon 999077 Hong Kong Hong Kong
| | - Xia Guo
- Laboratory of Advanced Optoelectronic Materials College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Lintao Hou
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials Siyuan Laboratory Department of Physics Jinan University Guangzhou 510632 China
| | - Kasper Moth‐Poulsen
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 41296 Göteborg Sweden
| | - Yu Li
- Guangdong Research Center for Special Building Materials and Its Green Preparation Technology Advanced Research Center for Polymer Processing Engineering of Guangdong Province Guangdong Industry Polytechnic Guangzhou 510300 P. R. China
| | - Zhiguo Zhang
- State Key Laboratory of Organic/Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Changduk Yang
- Department of Energy Engineering School of Energy and Chemical Engineering Low Dimensional Carbon Materials Center Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Donghong Yu
- Department of Chemistry and Bioscience Aalborg University 9220 Aalborg East Denmark
- Sino-Danish Center for Education and Research 8000 Aarhus Denmark
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay, Kowloon 999077 Hong Kong Hong Kong
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Ergang Wang
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 41296 Göteborg Sweden
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
92
|
Wang J, Yao N, Zhang D, Zheng Z, Zhou H, Zhang F, Zhang Y. Fast Field-Insensitive Charge Extraction Enables High Fill Factors in Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38460-38469. [PMID: 32805970 DOI: 10.1021/acsami.0c09123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Fill factor (FF) is a determining parameter for the power conversion efficiency (PCE) of organic solar cells (OSC). So far, nonfullerene (NF) OSCs with state-of-the-art PCEs exhibit FFs <0.8, lower than the values of Si or perovskite solar cells. The FFs directly display the dependence of photocurrent on bias, meaning that the competition between charge extraction and recombination is modulated by internal electric potential (Vin). Here, we report a study to understand key parameters/properties affecting the device FF based on seven groups of NF-OSCs consisting of widely used PBDBT-2F or PTB7-Th donors and representative NF-acceptors with FFs ranging from 0.60 to 0.78 and PCEs from 10.27 to 16.09%. We used field-dependent transient photocurrent measurements to reveal that fast and field-insensitive charge extraction at low Vin is an essential prerequisite for obtaining high FFs (0.75-0.8), which is enabled by balanced charge transport in steady and reduced bimolecular charge recombination in high purity phases. With bias-dependent quantum efficiency analysis, we further show that the recombination loss at low Vin in the devices with low FFs tends to be more significant involving excitons generated in the donor phase of blends. Our results provide relevance for how to improve the FF toward the boost of photovoltaic performance in NF-OSCs.
Collapse
Affiliation(s)
- Jianqiu Wang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, P. R. China
- Key Laboratory of Nanosystem and Hierachical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Nannan Yao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Dongyang Zhang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, P. R. China
| | - Zhong Zheng
- Key Laboratory of Nanosystem and Hierachical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Huiqiong Zhou
- Key Laboratory of Nanosystem and Hierachical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Fengling Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Yuan Zhang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, P. R. China
| |
Collapse
|
93
|
Han YW, Jung CH, Lee HS, Jeon SJ, Moon DK. High-Performance Nonfullerene Organic Photovoltaics Applicable for Both Outdoor and Indoor Environments through Directional Photon Energy Transfer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38470-38482. [PMID: 32846491 DOI: 10.1021/acsami.0c09539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the advent of the smart factory and the Internet of Things (IoT) sensors, organic photovoltaics (OPVs) gained attention because of their ability to provide indoor power generation as an off-grid power supply. To satisfy these applications, OPVs must be capable of power generation in both outdoor and indoor at the same time for developing environmentally independent devices. For high performances in indoor irradiation, a strategy that maximizes photon utilization is essential. In this study, graphene quantum dots (GQDs), which have unique emitting properties, are introduced into a ZnO layer for efficient photon utilization of nonfullerene-based OPVs under indoor irradiation. GQDs exhibit high absorption properties in the 350-550 nm region and strong emission properties in the visible region due to down-conversion from lattice vibration. Using these properties, GQDs provide directional photon energy transfer to the bulk-heterojunction (BHJ) layer because the optical properties overlap. Additionally, the GQD-doped ZnO layer enhances shunt resistance (RSh) and forms good interfacial contact with the BHJ layer that results in increased carrier dissociation and transportation. Consequently, the fabricated device based on P(Cl-Cl)(BDD = 0.2) and IT-4F introduces GQDs exhibiting a maximum power conversion efficiency (PCE) of 14.0% with a superior enhanced short circuit current density (JSC) and fill factor (FF). Furthermore, the fabricated device exhibited high PCEs of 19.6 and 17.2% under 1000 and 200 lux indoor irradiation of light emitting diode (LED) lamps, respectively.
Collapse
Affiliation(s)
- Yong Woon Han
- Nano and Information Materials Lab. (NIMs Lab.), Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chang Ho Jung
- Nano and Information Materials Lab. (NIMs Lab.), Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyoung Seok Lee
- Nano and Information Materials Lab. (NIMs Lab.), Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sung Jae Jeon
- Nano and Information Materials Lab. (NIMs Lab.), Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Doo Kyung Moon
- Nano and Information Materials Lab. (NIMs Lab.), Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
94
|
Polyethylenimine-Ethoxylated Interfacial Layer for Efficient Electron Collection in SnO2-Based Inverted Organic Solar Cells. CRYSTALS 2020. [DOI: 10.3390/cryst10090731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this work, we studied inverted organic solar cells based on bulk heterojunction using poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C71-butyric acid methyl ester (P3HT:PCBM) as an active layer and a novel cathode buffer bilayer consisting of tin dioxide (SnO2) combined with polyethylenimine-ethoxylated (PEIE) to overcome the limitations of the single cathode buffer layer. The combination of SnO2 with PEIE is a promising approach that improves the charge carrier collection and reduces the recombination. The efficient device, which is prepared with a cathode buffer bilayer of 20 nm SnO2 combined with 10 nm PEIE, achieved Jsc = 7.86 mA/cm2, Voc = 574 mV and PCE = 2.84%. The obtained results exceed the performances of reference solar cell using only a single cathode layer of either SnO2 or PEIE.
Collapse
|
95
|
Wang CK, Che X, Lo YC, Li YZ, Wang YH, Forrest SR, Liu SW, Wong KT. New D-A-A'-Configured Small Molecule Donors Employing Conjugation to Red-shift the Absorption for Photovoltaics. Chem Asian J 2020; 15:2520-2531. [PMID: 32573105 DOI: 10.1002/asia.202000635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/18/2020] [Indexed: 01/30/2023]
Abstract
Four new donor-acceptor-acceptor' (D-A-A')-configured donors, CPNT, DCPNT, CPNBT, and DCPNBT equipped with naphtho[1,2-c:5,6-c']bis([1,2,5]-thiadiazole) (NT) or naphtho[2,3-c][1,2,5]thiadiazole (NBT) as the central acceptor (A) unit bridging triarylamine donor (D) and cyano or dicyanovinylene acceptor (A'), were synthesized and characterized. All molecules exhibit bathochromic absorption shifts as compared to those of the benzothiadiazole (BT)-based analogues owing to improved electron-withdrawing and quinoidal character of NT and NBT cores that lead to stronger intramolecular charge transfer. Favorable energy level alignments with C70 , together with the good thermal stability and the antiparallel dimeric packing render CPNT and DCPNT suitable donors for vacuum-processed organic photovoltaics (OPV)s. OPVs based on DCPNT : C70 active layers displayed the best power conversion efficiency (PCE)=8.3%, along with an open circuit voltage of 0.92 V, a short circuit current of 14.5 mA cm-2 and a fill factor of 62% under 1 sun intensity, simulated AM1.5G illumination. Importantly, continuous light-soaking with AM 1.5G illumination has verified the durability of the devices based on CPNT:C70 and DCPNT : C70 as the active blends. The devices were examined for their feasibility of indoor light harvesting under 500 lux illumination by a TLD-840 fluorescent lamp, giving PCE=12.8% and 12.6%, respectively. These results indicate that the NT-based D-A-A'-type donors CPNT and DCPNT are potential candidates for high-stability vacuum-processed OPVs suitable for indoor energy harvesting.
Collapse
Affiliation(s)
- Chun-Kai Wang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Xiaozhou Che
- Departments of Electrical Engineering, Material Science and Engineering and Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yuan-Chih Lo
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Ya-Ze Li
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Yung-Hao Wang
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Stephen R Forrest
- Departments of Electrical Engineering, Material Science and Engineering and Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shun-Wei Liu
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.,Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Ken-Tsung Wong
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.,Institute of Atomic and Molecular Science, Academia Sinica, Taipei, 10617, Taiwan
| |
Collapse
|
96
|
Li D, Zhu L, Liu X, Xiao W, Yang J, Ma R, Ding L, Liu F, Duan C, Fahlman M, Bao Q. Enhanced and Balanced Charge Transport Boosting Ternary Solar Cells Over 17% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002344. [PMID: 32686255 DOI: 10.1002/adma.202002344] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Ternary architecture is one of the most effective strategies to boost the power conversion efficiency (PCE) of organic solar cells (OSCs). Here, an OSC with a ternary architecture featuring a highly crystalline molecular donor DRTB-T-C4 as a third component to the host binary system consisting of a polymer donor PM6 and a nonfullerene acceptor Y6 is reported. The third component is used to achieve enhanced and balanced charge transport, contributing to an improved fill factor (FF) of 0.813 and yielding an impressive PCE of 17.13%. The heterojunctions are designed using so-called pinning energies to promote exciton separation and reduce recombination loss. In addition, the preferential location of DRTB-T-C4 at the interface between PM6 and Y6 plays an important role in optimizing the morphology of the active layer.
Collapse
Affiliation(s)
- Danqin Li
- Key Laboratory of Polar Materials and Devices, Department of Electronic Science, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200025, P. R. China
| | - Xianjie Liu
- Laboratory of Organic Electronics, ITN, Linköping University, Norrköping, SE-60174, Sweden
| | - Wei Xiao
- Key Laboratory of Polar Materials and Devices, Department of Electronic Science, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Jianming Yang
- Key Laboratory of Polar Materials and Devices, Department of Electronic Science, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Ruru Ma
- Key Laboratory of Polar Materials and Devices, Department of Electronic Science, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200025, P. R. China
| | - Chungang Duan
- Key Laboratory of Polar Materials and Devices, Department of Electronic Science, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Mats Fahlman
- Laboratory of Organic Electronics, ITN, Linköping University, Norrköping, SE-60174, Sweden
| | - Qinye Bao
- Key Laboratory of Polar Materials and Devices, Department of Electronic Science, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| |
Collapse
|
97
|
Luo Z, Ma R, Xiao Y, Liu T, Sun H, Su M, Guo Q, Li G, Gao W, Chen Y, Zou Y, Guo X, Zhang M, Lu X, Yan H, Yang C. Conformation-Tuning Effect of Asymmetric Small Molecule Acceptors on Molecular Packing, Interaction, and Photovoltaic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001942. [PMID: 32602255 DOI: 10.1002/smll.202001942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/31/2020] [Indexed: 05/20/2023]
Abstract
Understanding the conformation effect on molecular packing, miscibility, and photovoltaic performance is important to open a new avenue for small-molecule acceptor (SMA) design. Herein, two novel acceptor-(donor-acceptor1-donor)-acceptor (A-DA1D-A)-type asymmetric SMAs are developed, namely C-shaped BDTP-4F and S-shaped BTDTP-4F. The BDTP-4F-based polymer solar cells (PSCs) with PM6 as donor, yields a power conversion efficiency (PCE) of 15.24%, significantly higher than that of the BTDTP-4F-based device (13.12%). The better PCE for BDTP-4F-based device is mainly attributed to more balanced charge transport, weaker bimolecular recombination, and more favorable morphology. Additionally, two traditional A-D-A-type SMAs (IDTP-4F and IDTTP-4F) are also synthesized to investigate the conformation effect on morphology and device performance. Different from the device result above, here, IDTP-4F with S-shape conformation outperforms than IDTTP-4F with C-shape conformation. Importantly, it is found that for these two different types of SMA, the better performing binary blend has similar morphological characteristics. Specifically, both PM6:BDTP-4F and PM6:IDTP-4F blend exhibit perfect nanofibril network structure with proper domain size, obvious face-on orientation and enhance donor-acceptor interactions, thereby better device performance. This work indicates tuning molecular conformation plays pivotal role in morphology and device effciciency, shining a light on the molecular design of the SMAs.
Collapse
Affiliation(s)
- Zhenghui Luo
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ruijie Ma
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yiqun Xiao
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Tao Liu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Huiliang Sun
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Mengyao Su
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Qing Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, Soochow University, Suzhou, 215123, China
| | - Guanghao Li
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Wei Gao
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yuzhong Chen
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yang Zou
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xugang Guo
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Maojie Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, Soochow University, Suzhou, 215123, China
| | - Xinhui Lu
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
98
|
Ding Y, Zhang X, Feng H, Ke X, Meng L, Sun Y, Guo Z, Cai Y, Jiao C, Wan X, Li C, Zheng N, Xie Z, Chen Y. Subtle Morphology Control with Binary Additives for High-Efficiency Non-Fullerene Acceptor Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27425-27432. [PMID: 32466636 DOI: 10.1021/acsami.0c05331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Adding an additive is one of the effective strategies to fine-tune active layer morphology and improve performance of organic solar cells. In this work, a binary additive 1,8-diiodooctane (DIO) and 2,6-dimethoxynaphthalene (DMON) to optimize the morphology of PBDB-T:TTC8-O1-4F-based devices is reported. With the binary additive, a power conversion efficiency (PCE) of 13.22% was achieved, which is higher than those of devices using DIO (12.05%) or DMON (11.19%) individually. Comparison studies demonstrate that DIO can induce the acceptor TTC8-O1-4F to form ordered packing, while DMON can inhibit excessive aggregation of the donor and acceptor. With the synergistic effect of these two additives, the PBDB-T:TTC8-O1-4F blend film with DIO and DMON exhibits a suitable phase separation and crystallite size, leading to a high short-circuit current density (Jsc) of 23.04 mA·cm-2 and a fill factor of 0.703 and thus improved PCE.
Collapse
Affiliation(s)
- Yunqian Ding
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Xin Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huanran Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Ke
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lingxian Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanna Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ziqi Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yao Cai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cancan Jiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiangjian Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chenxi Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South, China University of Technology, Guangzhou 510640, China
| | - Zengqi Xie
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South, China University of Technology, Guangzhou 510640, China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
99
|
Yao J, Qiu B, Zhang ZG, Xue L, Wang R, Zhang C, Chen S, Zhou Q, Sun C, Yang C, Xiao M, Meng L, Li Y. Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nat Commun 2020; 11:2726. [PMID: 32483159 PMCID: PMC7264349 DOI: 10.1038/s41467-020-16509-w] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/07/2020] [Indexed: 11/09/2022] Open
Abstract
In organic solar cells (OSCs), cathode interfacial materials are generally designed with highly polar groups to increase the capability of lowering the work function of cathode. However, the strong polar group could result in a high surface energy and poor physical contact at the active layer surface, posing a challenge for interlayer engineering to address the trade-off between device stability and efficiency. Herein, we report a hydrogen-bonding interfacial material, aliphatic amine-functionalized perylene-diimide (PDINN), which simultaneously down-shifts the work function of the air stable cathodes (silver and copper), and maintains good interfacial contact with the active layer. The OSCs based on PDINN engineered silver-cathode demonstrate a high power conversion efficiency of 17.23% (certified value 16.77% by NREL) and high stability. Our results indicate that PDINN is an effective cathode interfacial material and interlayer engineering via suitable intermolecular interactions is a feasible approach to improve device performance of OSCs.
Collapse
Affiliation(s)
- Jia Yao
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Beibei Qiu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Lingwei Xue
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rui Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Shanshan Chen
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiuju Zhou
- Analysis & Testing Center, Xinyang Normal University, Xinyang, Henan, 464000, China
| | - Chenkai Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan, 450001, China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
100
|
Wu H, Bian Q, Zhao B, Zhao H, Wang L, Wang W, Cong Z, Liu J, Ma W, Gao C. Effects of the Isomerized Thiophene-Fused Ending Groups on the Performances of Twisted Non-Fullerene Acceptor-Based Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23904-23913. [PMID: 32362118 DOI: 10.1021/acsami.0c03842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recently, benefiting from the merits of small-molecule acceptors (NFAs), polymer solar cells (PSCs) have achieved tremendous advances. From the perspective of the structural characteristics of the π-conjugated acceptor-donor-acceptor (A-D-A) type of organic molecules, the backbone's planarity and the terminal groups and their substituents have strong influences on the performances of the constructed NFAs. Through enlarging the dihedral angle of the conjugated main chain of NFAs, a certain degree of enhancement of photovoltaic parameters has been achieved. To further probe the influences of ending groups on the performances of nonplanar NFAs, we synthesized two new NFAs i-cc23 and i-cc34 with isomerized thiophene-fused ending groups and a twisted π-conjugated main chain. Compared to i-cc23 containing the 2-(6-oxo-5,6-dihydro-4H-cyclopenta[b]thiophen-4-ylidene)malononitrile ending group, the acceptor i-cc34 containing 2-(6-oxo-5,6-dihydro-4H-cyclopenta[c]thiophen-4-ylidene)malononitrile has a relatively higher molar extinction coefficient, bathochromic-shifted absorption spectrum, and deepened energy levels. When mixed with PBDB-T in solar cells, the i-cc23-based device achieved an excellent open-circuit voltage (VOC) of 1.10 V and a moderate power conversion efficiency of 7.34%. Although the VOC of the i-cc34-related device was decreased to 0.96 V, the short-circuit current density and fill factor were improved, giving rise to an enhanced efficiency of 9.51%. Apart from the distinct photovoltaic performances, the two isomer-based devices exhibit a high radiative efficiency of 8 × 10-4, leading to a very small nonradiative loss of 0.19 V. Our results emphasize the importance of the isomerized thiophene-fused ending groups on the performances of nonplanar NFA-based PSCs.
Collapse
Affiliation(s)
- Haimei Wu
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, No. 168 of East Zhangba Road, Xi'an 710065, China
| | - Qingzhen Bian
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Baofeng Zhao
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, No. 168 of East Zhangba Road, Xi'an 710065, China
| | - Heng Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28 of West Xianning Road, Xi'an 710049, China
| | - Liuchang Wang
- School of Chemical Engineering, Xi'an University, No. 168 of South Taibai Road, Xi'an 710065, China
| | - Weiping Wang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, No. 168 of East Zhangba Road, Xi'an 710065, China
| | - Zhiyuan Cong
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, No. 168 of East Zhangba Road, Xi'an 710065, China
| | - Jianqun Liu
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, No. 168 of East Zhangba Road, Xi'an 710065, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28 of West Xianning Road, Xi'an 710049, China
| | - Chao Gao
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, No. 168 of East Zhangba Road, Xi'an 710065, China
| |
Collapse
|