51
|
Kim SR, Kim SY. Functional Dissection of Glutamatergic and GABAergic Neurons in the Bed Nucleus of the Stria Terminalis. Mol Cells 2021; 44:63-67. [PMID: 33594012 PMCID: PMC7941005 DOI: 10.14348/molcells.2021.0006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST)-a key part of the extended amygdala-has been implicated in the regulation of diverse behavioral states, ranging from anxiety and reward processing to feeding behavior. Among the host of distinct types of neurons within the BNST, recent investigations employing cell type- and projection-specific circuit dissection techniques (such as optogenetics, chemogenetics, deep-brain calcium imaging, and the genetic and viral methods for targeting specific types of cells) have highlighted the key roles of glutamatergic and GABAergic neurons and their axonal projections. As anticipated from their primary roles in excitatory and inhibitory neurotransmission, these studies established that the glutamatergic and GABAergic subpopulations of the BNST oppositely regulate diverse behavioral states. At the same time, these studies have also revealed unexpected functional specificity and heterogeneity within each subpopulation. In this Minireview, we introduce the body of studies that investigated the function of glutamatergic and GABAergic BNST neurons and their circuits. We also discuss unresolved questions and future directions for a more complete understanding of the cellular diversity and functional heterogeneity within the BNST.
Collapse
Affiliation(s)
- Seong-Rae Kim
- Institute of Molecular Biology and Genetics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sung-Yon Kim
- Institute of Molecular Biology and Genetics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
52
|
Giardino WJ, Pomrenze MB. Extended Amygdala Neuropeptide Circuitry of Emotional Arousal: Waking Up on the Wrong Side of the Bed Nuclei of Stria Terminalis. Front Behav Neurosci 2021; 15:613025. [PMID: 33633549 PMCID: PMC7900561 DOI: 10.3389/fnbeh.2021.613025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Sleep is fundamental to life, and poor sleep quality is linked to the suboptimal function of the neural circuits that process and respond to emotional stimuli. Wakefulness ("arousal") is chiefly regulated by circadian and homeostatic forces, but affective mood states also strongly impact the balance between sleep and wake. Considering the bidirectional relationships between sleep/wake changes and emotional dynamics, we use the term "emotional arousal" as a representative characteristic of the profound overlap between brain pathways that: (1) modulate wakefulness; (2) interpret emotional information; and (3) calibrate motivated behaviors. Interestingly, many emotional arousal circuits communicate using specialized signaling molecules called neuropeptides to broadly modify neural network activities. One major neuropeptide-enriched brain region that is critical for emotional processing and has been recently implicated in sleep regulation is the bed nuclei of stria terminalis (BNST), a core component of the extended amygdala (an anatomical term that also includes the central and medial amygdalae, nucleus accumbens shell, and transition zones betwixt). The BNST encompasses an astonishing diversity of cell types that differ across many features including spatial organization, molecular signature, biological sex and hormonal milieu, synaptic input, axonal output, neurophysiological communication mode, and functional role. Given this tremendous complexity, comprehensive elucidation of the BNST neuropeptide circuit mechanisms underlying emotional arousal presents an ambitious set of challenges. In this review, we describe how rigorous investigation of these unresolved questions may reveal key insights to enhancing psychiatric treatments and global psychological wellbeing.
Collapse
|
53
|
Somatostatin Neurons of the Bed Nucleus of Stria Terminalis Enhance Associative Fear Memory Consolidation in Mice. J Neurosci 2021; 41:1982-1995. [PMID: 33468566 DOI: 10.1523/jneurosci.1944-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/26/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Excessive fear learning and generalized, extinction-resistant fear memories are core symptoms of anxiety and trauma-related disorders. Despite significant evidence from clinical studies reporting hyperactivity of the bed nucleus of stria terminalis (BNST) under these conditions, the role of BNST in fear learning and expression is still not clarified. Here, we tested how BNST modulates fear learning in male mice using a chemogenetic approach. Activation of GABAergic neurons of BNST during fear conditioning or memory consolidation resulted in enhanced cue-related fear recall. Importantly, BNST activation had no acute impact on fear expression during conditioning or recalls, but it enhanced cue-related fear recall subsequently, potentially via altered activity of downstream regions. Enhanced fear memory consolidation could be replicated by selectively activating somatostatin (SOM), but not corticotropin-releasing factor (CRF), neurons of the BNST, which was accompanied by increased fear generalization. Our findings suggest the significant modulation of fear memory strength by specific circuits of the BNST.SIGNIFICANCE STATEMENT The bed nucleus of stria terminalis (BNST) mediates different defensive behaviors, and its connections implicate its integrative modulatory role in fear memory formation; however, the involvement of BNST in fear learning has yet to be elucidated in detail. Our data highlight that BNST stimulation enhances fear memory formation without direct effects on fear expression. Our study identified somatostatin (SOM) cells within the extended amygdala as specific neurons promoting fear memory formation. These data underline the importance of anxiety circuits in maladaptive fear memory formation, indicating elevated BNST activity as a potential vulnerability factor to anxiety and trauma-related disorders.
Collapse
|
54
|
Alternatives to Pharmacological and Psychotherapeutic Treatments in Psychiatric Disorders. PSYCHIATRY INTERNATIONAL 2021. [DOI: 10.3390/psychiatryint2010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nowadays, most of the patients affected by psychiatric disorders are successfully treated with psychotherapy and pharmacotherapy. Nevertheless, according to the disease, a variable percentage of patients results resistant to such modalities, and alternative methods can then be considered. The purpose of this review is to summarize the techniques and results of invasive modalities for several treatment-resistant psychiatric diseases. A literature search was performed to provide an up-to-date review of advantages, disadvantages, efficacy, and complications of Deep-Brain Stimulation, Magnetic Resonance-guided Focused-Ultrasound, radiofrequency, and radiotherapy lesioning for depression, obsessive-compulsive disorder, schizophrenia, addiction, anorexia nervosa, and Tourette’s syndrome. The literature search did not strictly follow the criteria for a systematic review: due to the large differences in methodologies and patients’ cohort, we tried to identify the highest quality of available evidence for each technique. We present the data as a comprehensive, narrative review about the role, indication, safety, and results of the contemporary instrumental techniques that opened new therapeutic fields for selected patients unresponsive to psychotherapy and pharmacotherapy.
Collapse
|
55
|
Functional deletion of neuropeptide Y receptors type 2 in local synaptic networks of anteroventral BNST facilitates recall and increases return of fear. Mol Psychiatry 2021; 26:2900-2911. [PMID: 32709995 PMCID: PMC8505243 DOI: 10.1038/s41380-020-0846-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Return of previously extinguished fear memories presents a major hurdle in treatment of fear-related disorders. Neuropeptide Y receptors type 2 (Y2R) in the bed nucleus of stria terminalis (BNST) seem to play a crucial role in modulation of remote fear memories. Here, we targeted Cre-channelrhodopsin-2 to defined subregions of BNST or central amygdala (CeA) in floxed Y2R mice (Y2lox/lox) for functional deletion of Y2R. We combined fear training and behavioral studies in vivo with optogenetic-electrophysiological analysis of BNST synaptic network activity ex vivo, in order to identify regional and cellular specificities of Y2R influence. Deletion of Y2R in the ventral section of anterior BNST (BNSTav) did not affect fear acquisition, but increased conditioned fear during recall and extinction learning, and aggravated remote fear return. By contrast, deletion of Y2R in the dorsal section of anterior BNST (BNSTad) or CeA did not influence acquisition, extinction or return of fear memories. Ex vivo optogenetic-electrophysiological analysis revealed Y2R-expressing local GABAergic inhibitory networks in BNST, both within (intraregional) and in-between (inter-regional) BNST subregions. Stimulation of Y2R resulted in a presynaptically mediated reduction of GABAergic responses, which did not differ between intraregional but predominantly affected inter-regional connections from BNSTav to BNSTad. Moreover, deletion of Y2R decreased the excitation/inhibition balance in BNSTav neurons, suggesting a regulatory influence of endogenous NPY via intraregional GABAergic microcircuits. This study reveals Y2R within local GABAergic networks in BNST as key elements in facilitating extinction and reducing return of remote fear memories, suggesting a potential avenue for translational purposes.
Collapse
|
56
|
Maita I, Bazer A, Blackford JU, Samuels BA. Functional anatomy of the bed nucleus of the stria terminalis-hypothalamus neural circuitry: Implications for valence surveillance, addiction, feeding, and social behaviors. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:403-418. [PMID: 34225978 DOI: 10.1016/b978-0-12-819975-6.00026-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is a medial basal forebrain structure that modulates the hypothalamo-pituitary-adrenal (HPA) axis. The heterogeneous subnuclei of the BNST integrate inputs from mood and reward-related areas and send direct inhibitory projections to the hypothalamus. The connections between the BNST and hypothalamus are conserved across species, promote activation of the HPA axis, and can increase avoidance of aversive environments, which is historically associated with anxiety behaviors. However, BNST-hypothalamus circuitry is also implicated in motivated behaviors, drug seeking, feeding, and sexual behavior. These complex and diverse roles, as well its sexual dimorphism, indicate that the BNST-hypothalamus circuitry is an essential component of the neural circuitry that may underlie various psychiatric diseases, ranging from anorexia to anxiety to addiction. The following review is a cross-species exploration of BNST-hypothalamus circuitry. First, we describe the BNST subnuclei, microcircuitry and complex reciprocal connections with the hypothalamus. We will then discuss the behavioral functions of BNST-hypothalamus circuitry, including valence surveillance, addiction, feeding, and social behavior. Finally, we will address sex differences in morphology and function of the BNST and hypothalamus.
Collapse
Affiliation(s)
- Isabella Maita
- Department of Psychology, Rutgers University, Piscataway, NJ, United States
| | - Allyson Bazer
- Department of Psychology, Rutgers University, Piscataway, NJ, United States
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Research Health Scientist, Tennessee Valley HealthCare System, US Department of Veterans Affairs, Nashville, TN, United States
| | | |
Collapse
|
57
|
Xiao Q, Zhou X, Wei P, Xie L, Han Y, Wang J, Cai A, Xu F, Tu J, Wang L. A new GABAergic somatostatin projection from the BNST onto accumbal parvalbumin neurons controls anxiety. Mol Psychiatry 2021; 26:4719-4741. [PMID: 32555286 PMCID: PMC8589681 DOI: 10.1038/s41380-020-0816-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/31/2020] [Accepted: 06/08/2020] [Indexed: 01/07/2023]
Abstract
The prevailing view is that parvalbumin (PV) interneurons play modulatory roles in emotional response through local medium spiny projection neurons (MSNs). Here, we show that PV activity within the nucleus accumbens shell (sNAc) is required for producing anxiety-like avoidance when mice are under anxiogenic situations. Firing rates of sNAcPV neurons were negatively correlated to exploration time in open arms (threatening environment). In addition, sNAcPV neurons exhibited high excitability in a chronic stress mouse model, which generated excessive maladaptive avoidance behavior in an anxiogenic context. We also discovered a novel GABAergic pathway from the anterior dorsal bed nuclei of stria terminalis (adBNST) to sNAcPV neurons. Optogenetic activation of these afferent terminals in sNAc produced an anxiolytic effect via GABA transmission. Next, we further demonstrated that chronic stressors attenuated the inhibitory synaptic transmission at adBNSTGABA → sNAcPV synapses, which in turn explains the hyperexcitability of sNAc PV neurons on stressed models. Therefore, activation of these GABAergic afferents in sNAc rescued the excessive avoidance behavior related to an anxious state. Finally, we identified that the majority GABAergic input neurons, which innervate sNAcPV cells, were expressing somatostatin (SOM), and also revealed that coordination between SOM- and PV- cells functioning in the BNST → NAc circuit has an inhibitory influence on anxiety-like responses. Our findings provide a potentially neurobiological basis for therapeutic interventions in pathological anxiety.
Collapse
Affiliation(s)
- Qian Xiao
- grid.9227.e0000000119573309Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Xinyi Zhou
- grid.9227.e0000000119573309Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Pengfei Wei
- grid.9227.e0000000119573309Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Li Xie
- grid.9227.e0000000119573309Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China
| | - Yaning Han
- grid.9227.e0000000119573309Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Jie Wang
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China ,grid.9227.e0000000119573309Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, 430071 PR China
| | - Aoling Cai
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China ,grid.9227.e0000000119573309Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, 430071 PR China
| | - Fuqiang Xu
- grid.9227.e0000000119573309Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China ,grid.9227.e0000000119573309Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, 430071 PR China ,grid.33199.310000 0004 0368 7223Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 PR China
| | - Jie Tu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China. .,University of Chinese Academy of Sciences, Beijing, 100049, PR, China.
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China. .,University of Chinese Academy of Sciences, Beijing, 100049, PR, China.
| |
Collapse
|
58
|
Hammack SE, Braas KM, May V. Chemoarchitecture of the bed nucleus of the stria terminalis: Neurophenotypic diversity and function. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:385-402. [PMID: 34225977 DOI: 10.1016/b978-0-12-819975-6.00025-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is a compact but neurophenotypically complex structure in the ventral forebrain that is structurally and functionally linked to other limbic structures, including the amygdala nuclear complex, hypothalamic nuclei, hippocampus, and related midbrain structures, to participate in a wide range of functions, especially emotion, emotional learning, stress-related responses, and sexual behaviors. From a variety of sensory inputs, the BNST acts as a node for signal integration and coordination for information relay to downstream central neuroendocrine and autonomic centers for appropriate homeostatic physiological and behavioral responses. In contrast to the role of the amygdala in fear, the BNST has gained wide interest from work suggesting that it has main roles in mediating sustained responses to diffuse, unpredictable and/or long-duration threats that are typically associated with anxiety-related responses. Further, some BNST subregions are highly sexually dimorphic which appear contributory to the differential stress and social interactive behaviors, including reproductive responses, between males and females. Notably, maladaptive BNST neuroplasticity and function have been implicated in chronic pain, depression, anxiety-related abnormalities, and other psychopathologies including posttraumatic stress disorders. The BNST circuits are predominantly GABAergic-the glutaminergic neurons represent a minor population-but the complexity of the system results from an overlay of diverse neuropeptide coexpression in these neurons. More than a dozen neuropeptides may be differentially coexpressed in BNST neurons, and from variable G protein-coupled receptor signaling, may inhibit or activate downstream circuit activities. The mechanisms and roles of these peptides in modulating intrinsic BNST neurocircuit signaling and BNST long-distance target cell projections are still not well understood. Nevertheless, an understanding of some of the principal players may allow assembly of the circuit interactions.
Collapse
Affiliation(s)
- Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, Burlington, VT, United States
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Victor May
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, United States.
| |
Collapse
|
59
|
Functional networks activated by controllable and uncontrollable stress in male and female rats. Neurobiol Stress 2020; 13:100233. [PMID: 33344689 PMCID: PMC7739038 DOI: 10.1016/j.ynstr.2020.100233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/11/2023] Open
Abstract
The ability of an individual to reduce the intensity, duration or frequency of a stressor is a critical determinant of the consequences of that stressor on physiology and behavior. To expand our understanding of the brain networks engaged during controllable and uncontrollable stress and to identify sex differences, we used functional connectivity analyses of the immediate early gene product Fos in male and female rats exposed to either controllable or uncontrollable tail shocks. Twenty-eight regions of interest (ROI) were selected from the structures previously evinced to be responsible for stress response, action-outcome learning, or sexual dimorphism. We found that connectivity across these structures was strongest in female rats without control while weaker connectivity was evident in male rats with control over stress. Interestingly, this pattern correlates with known behavioral sex differences where stressor controllability leads to resilience in male but not female rats. Graph theoretical analysis identified several structures important to networks under specific conditions. In sum, the findings suggest that control over stress reshapes functional connectivity.
Collapse
|
60
|
Hu P, Maita I, Phan ML, Gu E, Kwok C, Dieterich A, Gergues MM, Yohn CN, Wang Y, Zhou JN, Qi XR, Swaab DF, Pang ZP, Lucassen PJ, Roepke TA, Samuels BA. Early-life stress alters affective behaviors in adult mice through persistent activation of CRH-BDNF signaling in the oval bed nucleus of the stria terminalis. Transl Psychiatry 2020; 10:396. [PMID: 33177511 PMCID: PMC7658214 DOI: 10.1038/s41398-020-01070-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 01/06/2023] Open
Abstract
Early-life stress (ELS) leads to stress-related psychopathology in adulthood. Although dysfunction of corticotropin-releasing hormone (CRH) signaling in the bed nucleus of the stria terminalis (BNST) mediates chronic stress-induced maladaptive affective behaviors that are historically associated with mood disorders such as anxiety and depression, it remains unknown whether ELS affects CRH function in the adult BNST. Here we applied a well-established ELS paradigm (24 h maternal separation (MS) at postnatal day 3) and assessed the effects on CRH signaling and electrophysiology in the oval nucleus of BNST (ovBNST) of adult male mouse offspring. ELS increased maladaptive affective behaviors, and amplified mEPSCs and decreased M-currents (a voltage-gated K+ current critical for stabilizing membrane potential) in ovBNST CRH neurons, suggesting enhanced cellular excitability. Furthermore, ELS increased the numbers of CRH+ and PACAP+ (the pituitary adenylate cyclase-activating polypeptide, an upstream CRH regulator) cells and decreased STEP+ (striatal-enriched protein tyrosine phosphatase, a CRH inhibitor) cells in BNST. Interestingly, ELS also increased BNST brain-derived neurotrophic factor (BDNF) expression, indicating enhanced neuronal plasticity. These electrophysiological and behavioral effects of ELS were reversed by chronic application of the CRHR1-selective antagonist R121919 into ovBNST, but not when BDNF was co-administered. In addition, the neurophysiological effects of BDNF on M-currents and mEPSCs in BNST CRH neurons mimic effects and were abolished by PKC antagonism. Together, our findings indicate that ELS results in a long-lasting activation of CRH signaling in the mouse ovBNST. These data highlight a regulatory role of CRHR1 in the BNST and for BDNF signaling in mediating ELS-induced long-term behavioral changes.
Collapse
Affiliation(s)
- Pu Hu
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Isabella Maita
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Mimi L. Phan
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Edward Gu
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Christopher Kwok
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Andrew Dieterich
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Mark M. Gergues
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA ,grid.266102.10000 0001 2297 6811Present Address: Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Christine N. Yohn
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Yu Wang
- grid.59053.3a0000000121679639CAS Key Laboratory of Brain Function and Diseases, Life Science School, University of Science and Technology of China, Hefei, 230027 China
| | - Jiang-Ning Zhou
- grid.59053.3a0000000121679639CAS Key Laboratory of Brain Function and Diseases, Life Science School, University of Science and Technology of China, Hefei, 230027 China
| | - Xin-Rui Qi
- grid.412538.90000 0004 0527 0050Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Dick F. Swaab
- grid.418101.d0000 0001 2153 6865Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef, Amsterdam 1105 BA The Netherlands
| | - Zhiping P. Pang
- grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901 USA
| | - Paul J. Lucassen
- grid.7177.60000000084992262Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Troy A. Roepke
- grid.430387.b0000 0004 1936 8796Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| | - Benjamin A. Samuels
- grid.430387.b0000 0004 1936 8796Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
61
|
Extrahypothalamic oxytocin neurons drive stress-induced social vigilance and avoidance. Proc Natl Acad Sci U S A 2020; 117:26406-26413. [PMID: 33020267 DOI: 10.1073/pnas.2011890117] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxytocin increases the salience of both positive and negative social contexts and it is thought that these diverse actions on behavior are mediated in part through circuit-specific action. This hypothesis is based primarily on manipulations of oxytocin receptor function, leaving open the question of whether different populations of oxytocin neurons mediate different effects on behavior. Here we inhibited oxytocin synthesis in a stress-sensitive population of oxytocin neurons specifically within the medioventral bed nucleus of the stria terminalis (BNSTmv). Oxytocin knockdown prevented social stress-induced increases in social vigilance and decreases in social approach. Viral tracing of BNSTmv oxytocin neurons revealed fibers in regions controlling defensive behaviors, including lateral hypothalamus, anterior hypothalamus, and anteromedial BNST (BNSTam). Oxytocin infusion into BNSTam in stress naïve mice increased social vigilance and reduced social approach. These results show that a population of extrahypothalamic oxytocin neurons plays a key role in controlling stress-induced social anxiety behaviors.
Collapse
|
62
|
Bowen AJ, Chen JY, Huang YW, Baertsch NA, Park S, Palmiter RD. Dissociable control of unconditioned responses and associative fear learning by parabrachial CGRP neurons. eLife 2020; 9:e59799. [PMID: 32856589 PMCID: PMC7556873 DOI: 10.7554/elife.59799] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Parabrachial CGRP neurons receive diverse threat-related signals and contribute to multiple phases of adaptive threat responses in mice, with their inactivation attenuating both unconditioned behavioral responses to somatic pain and fear-memory formation. Because CGRPPBN neurons respond broadly to multi-modal threats, it remains unknown how these distinct adaptive processes are individually engaged. We show that while three partially separable subsets of CGRPPBN neurons broadly collateralize to their respective downstream partners, individual projections accomplish distinct functions: hypothalamic and extended amygdalar projections elicit assorted unconditioned threat responses including autonomic arousal, anxiety, and freezing behavior, while thalamic and basal forebrain projections generate freezing behavior and, unexpectedly, contribute to associative fear learning. Moreover, the unconditioned responses generated by individual projections are complementary, with simultaneous activation of multiple sites driving profound freezing behavior and bradycardia that are not elicited by any individual projection. This semi-parallel, scalable connectivity schema likely contributes to flexible control of threat responses in unpredictable environments.
Collapse
Affiliation(s)
- Anna J Bowen
- Department of Biochemistry, University of WashingtonSeattleUnited States
- Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
- Graduate Program in Neuroscience, University of WashingtonSeattleUnited States
| | - Jane Y Chen
- Department of Biochemistry, University of WashingtonSeattleUnited States
- Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Y Waterlily Huang
- Department of Biochemistry, University of WashingtonSeattleUnited States
- Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Sekun Park
- Department of Biochemistry, University of WashingtonSeattleUnited States
- Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Richard D Palmiter
- Department of Biochemistry, University of WashingtonSeattleUnited States
- Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| |
Collapse
|
63
|
Rajbhandari AK, Bakshi VP. Repeated norepinephrine receptor stimulation in the BNST induces sensorimotor gating deficits via corticotropin releasing factor. Neuropharmacology 2020; 172:108090. [PMID: 32360378 DOI: 10.1016/j.neuropharm.2020.108090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/15/2020] [Accepted: 04/02/2020] [Indexed: 11/19/2022]
Abstract
Intense stress precipitates symptoms in disorders such as post-traumatic stress (PTSD) and schizophrenia. Patients with these disorders have dysfunctional sensorimotor gating as indexed by disrupted prepulse inhibition of the startle response (PPI), which refers to decreased startle response when a weak pre-stimulus precedes a startling stimulus. Stress promotes release of norepinephrine (NE) and corticotrophin releasing factor (CRF) within the brain, neurotransmitters that also modulate PPI. We have shown that repeated stress causes sensitization of NE receptors within the basolateral amygdala (BLA) via CRF receptors and promotes long-lasting PPI disruptions and startle abnormalities. The bed nucleus of the stria terminalis (BNST) is another crucial brain region that could be involved in stress-induced alterations in NE and CRF functions to promote PPI changes as this anatomical structure is enriched in CRF and NE receptors that have been shown to regulate each other. We hypothesized that repeated infusions of NE into the BNST would cross-sensitize CRF receptors or vice versa to alter PPI. Separate groups of male Sprague Dawley rats received, CRF (200ng/0.5 μl), NE (20μg/0.5 μl), or vehicle into the BNST, once/day for 3 days and PPI was tested after each infusion. Repeated CRF-or vehicle-treated rats were then challenged with a subthreshold dose of NE (0.3μg/0.5 μl) while repeated NE-treated rats were challenged with CRF (200ng/0.5 μl), and PPI was measured. Surprisingly, initial/repeated CRF or vehicle in the BNST had no effects on PPI. In contrast, initial and repeated NE disrupted PPI. Sub-threshold NE challenge in rats that previously received repeated CRF had no effect on PPI. Interestingly though, intra-BNST challenge dose of CRF significantly disrupted PPI in rats that previously had received repeated NE infusions. Taken together, these results indicate that repeated stress-induced NE release could alter the activity of CRF receptors in the BNST to modulate sensorimotor gating as measured through PPI.
Collapse
Affiliation(s)
- Abha Karki Rajbhandari
- Dept. of Psychiatry and Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA; AKR Is Now at Icahn School of Medicine at Mount Sinai, New York, 10029, USA.
| | - Vaishali P Bakshi
- Dept. of Psychiatry and Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA; AKR Is Now at Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| |
Collapse
|
64
|
Wang X, Zhang Y, Wang X, Dai J, Hua R, Zeng S, Li H. Anxiety-related cell-type-specific neural circuits in the anterior-dorsal bed nucleus of the stria terminalis. Sci Bull (Beijing) 2020; 65:1203-1216. [PMID: 36659150 DOI: 10.1016/j.scib.2020.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/15/2020] [Accepted: 02/01/2020] [Indexed: 01/21/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) plays a critical role in regulating anxiety, yet the involved specific cell types and their connections functioning in anxiety-related behaviors remains elusive. Here we identified two cell subpopulations-corticotropin-releasing hormone-positive (CRH+) and protein kinase C-δ-positive (PKC-δ+) neurons-each displayed discrete emotionally valenced behaviors in the anterior-dorsal BNST (adBNST). Using whole-cell patch-clamp recordings and virus-assisted circuit tracing techniques, we delineated the local and long-range connectivity networks in a cell-type-specific manner. The results show that the CRH+ and PKC-δ+ neurons received inputs from similar brain regions and exhibited significant differences in the downstream projection density. In addition, in vivo calcium imaging as well as gain- and loss-of-function studies characterized the physiological response properties and the functional heterogeneities in modulating anxiety, further suggesting the similarity and individuality between the two adBNST cell types. These results provide novel insights into the circuit architecture of adBNST neurons underlying the functionally specific neural pathways that relate to anxiety disorders.
Collapse
Affiliation(s)
- Xinxin Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Ministry of Education Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongsheng Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Ministry of Education Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xu Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Ministry of Education Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Dai
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Ministry of Education Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruifang Hua
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Ministry of Education Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Ministry of Education Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haohong Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Ministry of Education Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
65
|
Beyeler A, Dabrowska J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:63-100. [PMID: 32792868 DOI: 10.1016/b978-0-12-815134-1.00003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, French National Institutes of Health (INSERM) unit 1215, Neurocampus of Bordeaux University, Bordeaux, France
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
66
|
Iftikhar K, Siddiq A, Baig SG, Zehra S. Substance P: A neuropeptide involved in the psychopathology of anxiety disorders. Neuropeptides 2020; 79:101993. [PMID: 31735376 DOI: 10.1016/j.npep.2019.101993] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 11/19/2022]
Abstract
Substance P (SP) is the most widely distributed neuropeptide in central nervous system (CNS) where it participates in numerous physiological and pathophysiological processes including stress and anxiety related behaviors. In line with this notion, brain areas that are thought to be involved in anxiety regulation contains SP and its specific NK1 receptors. SP concentration in different brain regions alters with the exposure of stressful stimulus and affected NK1 receptor binding is observed. SP is released in response to a stressor, which produces anxiogenic effects via activation of hypothalamic-pituitary-adrenal (HPA) axis, resulting in the liberation of cortisol. Moreover, SP is also involved in the activation of the sympathetic nervous system via stimulation of locus coeruleus (LC). This sympathetic surge initiates cortisol discharge by activation of HPA axis, representing the indirect anxiogenic effect of SP. Besides the aforementioned regions, SP also has an impact on other brain regions known to be involved in stress and anxiety mechanisms, including amygdala, lateral septum (LS), periaqueductal gray (PAG), ventromedial nucleus of the hypothalamus (VMH), and bed nucleus of stria terminalis (BNST). Thus, SP acts as an important neuromodulator in various brain regions in stress and anxiety response. Consistent with the above statement, SP makes a robust link in the psychopathology of anxiety disorders. As SP concentration is found elevated in stressed conditions, several studies have reported that the pharmacological antagonism or genetic depletion of NK-1 receptors results in the anxiolytic response making them a suitable therapeutic target for the treatment of stress and anxiety related disorders.
Collapse
Affiliation(s)
- Kanwal Iftikhar
- Hussain Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi 75270, Pakistan.
| | - Afshan Siddiq
- Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi 75270, Pakistan
| | - Sadia Ghousia Baig
- Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi 75270, Pakistan
| | - Sumbul Zehra
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
67
|
Raitiere MN. Does photoperiodism involve a seasonal and non-pathological Warburg effect? Med Hypotheses 2020; 135:109447. [DOI: 10.1016/j.mehy.2019.109447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/20/2019] [Indexed: 12/15/2022]
|
68
|
Smith MA, Choudhury AI, Glegola JA, Viskaitis P, Irvine EE, de Campos Silva PCC, Khadayate S, Zeilhofer HU, Withers DJ. Extrahypothalamic GABAergic nociceptin-expressing neurons regulate AgRP neuron activity to control feeding behavior. J Clin Invest 2020; 130:126-142. [PMID: 31557134 PMCID: PMC6934207 DOI: 10.1172/jci130340] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022] Open
Abstract
Arcuate nucleus agouti-related peptide (AgRP) neurons play a central role in feeding and are under complex regulation by both homeostatic hormonal and nutrient signals and hypothalamic neuronal pathways. Feeding may also be influenced by environmental cues, sensory inputs, and other behaviors, implying the involvement of higher brain regions. However, whether such pathways modulate feeding through direct synaptic control of AgRP neuron activity is unknown. Here, we show that nociceptin-expressing neurons in the anterior bed nuclei of the stria terminalis (aBNST) make direct GABAergic inputs onto AgRP neurons. We found that activation of these neurons inhibited AgRP neurons and feeding. The activity of these neurons increased upon food availability, and their ablation resulted in obesity. Furthermore, these neurons received afferent inputs from a range of upstream brain regions as well as hypothalamic nuclei. Therefore, aBNST GABAergic nociceptin neurons may act as a gateway to feeding behavior by connecting AgRP neurons to both homeostatic and nonhomeostatic neuronal inputs.
Collapse
Affiliation(s)
- Mark A. Smith
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, United Kingdom
| | | | | | | | - Elaine E. Irvine
- MRC London Institute of Medical Sciences, London, United Kingdom
| | | | - Sanjay Khadayate
- MRC London Institute of Medical Sciences, London, United Kingdom
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Dominic J. Withers
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, United Kingdom
- MRC London Institute of Medical Sciences, London, United Kingdom
| |
Collapse
|
69
|
Freudenmacher L, von Twickel A, Walkowiak W. The habenula as an evolutionary conserved link between basal ganglia, limbic, and sensory systems—A phylogenetic comparison based on anuran amphibians. J Comp Neurol 2019; 528:705-728. [PMID: 31566737 DOI: 10.1002/cne.24777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Lars Freudenmacher
- Zoological Institute, University of Cologne, Cologne, Germany
- Institute II for Anatomy, University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
70
|
Bedse G, Centanni SW, Winder DG, Patel S. Endocannabinoid Signaling in the Central Amygdala and Bed Nucleus of the Stria Terminalis: Implications for the Pathophysiology and Treatment of Alcohol Use Disorder. Alcohol Clin Exp Res 2019; 43:2014-2027. [PMID: 31373708 PMCID: PMC6779484 DOI: 10.1111/acer.14159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/18/2019] [Indexed: 12/23/2022]
Abstract
High rates of relapse are a chronic and debilitating obstacle to effective treatment of alcohol use disorder (AUD); however, no effective treatments are available to treat symptoms induced by protracted abstinence. In the first part of this 2-part review series, we examine the literature supporting the effects of alcohol exposure within the extended amygdala (EA) neural circuitry. In Part 2, we focus on a potential way to combat negative affect associated with AUD, by exploring the therapeutic potential of the endogenous cannabinoid (eCB) system. The eCB system is a potent modulator of neural activity in the brain, and its ability to mitigate stress and negative affect has long been an area of interest for developing novel therapeutics. This review details the recent advances in our understanding of eCB signaling in 2 key regions of the EA, the central nucleus of the amygdala and the bed nucleus of the stria terminalis (BNST), and their role in regulating negative affect. Despite an established role for EA eCB signaling in reducing negative affect, few studies have examined the potential for eCB-based therapies to treat AUD-associated negative affect. In this review, we present an overview of studies focusing on eCB signaling in EA and cannabinoid modulation on EA synaptic activity. We further discuss studies suggesting dysregulation of eCB signaling in models of AUD and propose that pharmacological augmentation of eCB could be a novel approach to treat aspects of AUD. Lastly, future directions are proposed to advance our understanding of the relationship between AUD-associated negative affect and the EA eCB system that could yield new pharmacotherapies targeting negative affective symptoms associated with AUD.
Collapse
Affiliation(s)
- Gaurav Bedse
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Samuel W. Centanni
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, the, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, the, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Sachin Patel
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, the, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| |
Collapse
|
71
|
Pati D, Marcinkiewcz CA, DiBerto JF, Cogan ES, McElligott ZA, Kash TL. Chronic intermittent ethanol exposure dysregulates a GABAergic microcircuit in the bed nucleus of the stria terminalis. Neuropharmacology 2019; 168:107759. [PMID: 31494142 DOI: 10.1016/j.neuropharm.2019.107759] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 11/25/2022]
Abstract
Neuroadaptations in brain regions that regulate emotional and reward-seeking behaviors have been suggested to contribute to pathological behaviors associated with alcohol-use disorder. One such region is the bed nucleus of the stria terminalis (BNST), which has been linked to both alcohol consumption and alcohol withdrawal-induced anxiety and depression. Recently, we identified a GABAergic microcircuit in the BNST that regulates anxiety-like behavior. In the present study, we examined how chronic alcohol exposure alters this BNST GABAergic microcircuit in mice. We selectively targeted neurons expressing corticotropin releasing factor (CRF) using a CRF-reporter mouse line and combined retrograde labeling to identify BNST projections to the ventral tegmental area (VTA) and lateral hypothalamus (LH). Following 72 h of withdrawal from four weekly cycles of chronic intermittent ethanol (CIE) vapor exposure, the excitability of a sub-population of putative local CRF neurons that did not project to either VTA or LH (CRFnon-VTA/LH neurons) was increased. Withdrawal from CIE also increased excitability of non-CRF BNST neurons that project to both LH and VTA (BNSTnon-CRF-proj neurons). Furthermore, both populations of neurons had a reduction in spontaneous EPSC amplitude while frequency was unaltered. Withdrawal from chronic alcohol was accompanied by a significant increase in spontaneous IPSC frequency selectively in the BNSTnon-CRF-proj neurons. Together, these data suggest that withdrawal from chronic ethanol dysregulates local CRF-GABAergic microcircuit to inhibit anxiolytic outputs of the BNST which may contribute to enhanced anxiety during alcohol withdrawal and drive alcohol-seeking behavior. This article is part of the special issue on 'Neuropeptides'.
Collapse
Affiliation(s)
- Dipanwita Pati
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Thurston Bowles Building 104 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Catherine A Marcinkiewcz
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Thurston Bowles Building 104 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, 2751, USA
| | - Elizabeth S Cogan
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Thurston Bowles Building 104 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Zoe A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Thurston Bowles Building 104 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Thurston Bowles Building 104 Manning Drive, Chapel Hill, NC, 27599, USA; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, 2751, USA.
| |
Collapse
|
72
|
Witchey SK, Fuchs J, Patisaul HB. Perinatal bisphenol A (BPA) exposure alters brain oxytocin receptor (OTR) expression in a sex- and region- specific manner: A CLARITY-BPA consortium follow-up study. Neurotoxicology 2019; 74:139-148. [PMID: 31251963 PMCID: PMC6750986 DOI: 10.1016/j.neuro.2019.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA) is a well-characterized endocrine disrupting chemical (EDC) used in plastics, epoxy resins and other products. Neurodevelopmental effects of BPA exposure are a major concern with multiple rodent and human studies showing that early life BPA exposure may impact the developing brain and sexually dimorphic behaviors. The CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) program was established to assess multiple endpoints, including neural, across a wide dose range. Studies from our lab as part of (and prior to) CLARITY-BPA have shown that BPA disrupts estrogen receptor expression in the developing brain, and some evidence of oxytocin (OT) and oxytocin receptor (OTR) disruption in the hypothalamus and amygdala. While BPA disruption of steroid hormone function is well documented, less is known about its capacity to alter nonapeptide signals. In this CLARITY-BPA follow up study, we used remaining juvenile rat tissues to test the hypothesis that developmental BPA exposure affects OTR expression across the brain. Perinatal BPA exposure (2.5, 25, or 2500 μg/kg body weight (bw)/day) spanned gestation and lactation with dams gavaged from gestational day 6 until birth and then the offspring gavaged directly through weaning. Ethinyl estradiol (0.5 μg/kg bw/day) was used as a reference estrogen. Animals of both sexes were sacrificed as juveniles and OTR expression assessed by receptor binding. Our results demonstrate prenatal exposure to BPA can eliminate sex differences in OTR expression in three hypothalamic regions, and that male OTR expression may be more susceptible. Our data also identify a sub-region of the BNST with sexually dimorphic OTR expression not previously reported in juvenile rats that is also susceptible to BPA.
Collapse
Affiliation(s)
- Shannah K Witchey
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, United States
| | - Joelle Fuchs
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, United States
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, United States; Center for Human Health and the Environment, NC State University, Raleigh, NC, 27695, United States.
| |
Collapse
|
73
|
Banasikowski TJ, Hawken ER. The Bed Nucleus of the Stria Terminalis, Homeostatic Satiety, and Compulsions: What Can We Learn From Polydipsia? Front Behav Neurosci 2019; 13:170. [PMID: 31417376 PMCID: PMC6686835 DOI: 10.3389/fnbeh.2019.00170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/12/2019] [Indexed: 12/28/2022] Open
Abstract
A compulsive phenotype characterizes several neuropsychiatric illnesses - including but not limited to - schizophrenia and obsessive compulsive disorder. Because of its perceived etiological heterogeneity, it is challenging to disentangle the specific neurophysiology that precipitates compulsive behaving. Using polydipsia (or non-regulatory water drinking), we describe candidate neural substrates of compulsivity. We further postulate that aberrant neuroplasticity within cortically projecting structures [i.e., the bed nucleus of the stria terminalis (BNST)] and circuits that encode homeostatic emotions (thirst, hunger, satiety, etc.) underlie compulsive drinking. By transducing an inaccurate signal that fails to represent true homeostatic state, cortical structures cannot select appropriate and adaptive actions. Additionally, augmented dopamine (DA) reactivity in striatal projections to and from the frontal cortex contribute to aberrant homeostatic signal propagation that ultimately biases cortex-dependent behavioral selection. Responding becomes rigid and corresponds with both erroneous, inflexible encoding in both bottom-up structures and in top-down pathways. How aberrant neuroplasticity in circuits that encode homeostatic emotion result in the genesis and maintenance of compulsive behaviors needs further investigation.
Collapse
Affiliation(s)
- Tomek J Banasikowski
- Department of Psychiatry, Queen's University, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada
| | - Emily R Hawken
- Department of Psychiatry, Queen's University, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada
| |
Collapse
|
74
|
Dopfel D, Perez PD, Verbitsky A, Bravo-Rivera H, Ma Y, Quirk GJ, Zhang N. Individual variability in behavior and functional networks predicts vulnerability using an animal model of PTSD. Nat Commun 2019; 10:2372. [PMID: 31147546 PMCID: PMC6543038 DOI: 10.1038/s41467-019-09926-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/08/2019] [Indexed: 12/31/2022] Open
Abstract
Only a minority of individuals experiencing trauma subsequently develop post-traumatic stress disorder (PTSD). However, whether differences in vulnerability to PTSD result from a predisposition or trauma exposure remains unclear. A major challenge in differentiating these possibilities is that clinical studies focus on individuals already exposed to trauma without pre-trauma conditions. Here, using the predator scent model of PTSD in rats and a longitudinal design, we measure pre-trauma brain-wide neural circuit functional connectivity, behavioral and corticosterone responses to trauma exposure, and post-trauma anxiety. Freezing during predator scent exposure correlates with functional connectivity in a set of neural circuits, indicating pre-existing circuit function can predispose animals to differential fearful responses to threats. Counterintuitively, rats with lower freezing show more avoidance of the predator scent, a prolonged corticosterone response, and higher anxiety long after exposure. This study provides a framework of pre-existing circuit function that determines threat responses, which might directly relate to PTSD-like behaviors.
Collapse
Affiliation(s)
- David Dopfel
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Pablo D Perez
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexander Verbitsky
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Hector Bravo-Rivera
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, 00936, Puerto Rico
| | - Yuncong Ma
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Gregory J Quirk
- Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, 00936, Puerto Rico
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, 00936, Puerto Rico
| | - Nanyin Zhang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
75
|
Rossetti I, Zambusi L, Maccioni P, Sau R, Provini L, Castelli MP, Gonciarz K, Colombo G, Morara S. Predisposition to Alcohol Drinking and Alcohol Consumption Alter Expression of Calcitonin Gene-Related Peptide, Neuropeptide Y, and Microglia in Bed Nucleus of Stria Terminalis in a Subnucleus-Specific Manner. Front Cell Neurosci 2019; 13:158. [PMID: 31114482 PMCID: PMC6502997 DOI: 10.3389/fncel.2019.00158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/08/2019] [Indexed: 01/01/2023] Open
Abstract
Excessive alcohol consumption is often linked to anxiety states and has a major relay center in the anterior part of bed nucleus of stria terminalis (BNST). We analyzed the impact of (i) genetic predisposition to high alcohol preference and consumption, and (ii) alcohol intake on anterior BNST, namely anterolateral (AL), anteromedial (AM), and anteroventral (lateral + medial subdivisions: AVl, AVm) subnuclei. We used two rat lines selectively bred for low- and high-alcohol preference and consumption, named Sardinian alcohol-non preferring (sNP) and -preferring (sP), respectively, the latter showing also inherent anxiety-related behaviors. We analyzed the modulation of calcitonin gene-related peptide (CGRP; exerting anxiogenic effects in BNST), neuropeptide Y (NPY; exerting mainly anxiolytic effects), and microglia activation (neuroinflammation marker, thought to increase anxiety). Calcitonin gene-related peptide-immunofluorescent fibers/terminals did not differ between alcohol-naive sP and sNP rats. Fiber/terminal NPY-immunofluorescent intensity was lower in BNST-AM and BNST-AVm of alcohol-naive sP rats. Activation of microglia (revealed by morphological analysis) was decreased in BNST-AM and increased in BNST-AVm of alcohol-naive sP rats. Prolonged (30 consecutive days), voluntary alcohol intake under the homecage 2-bottle “alcohol vs. water” regimen strongly increased CGRP intensity in BNST of sP rats in a subnucleus-specific manner: in BNST-AL, BNST-AVm, and BNST-AM. CGRP area sum, however, decreased in BNST-AM, without changes in other subnuclei. Alcohol consumption increased NPY expression, in a subnucleus-specific manner, in BNST-AL, BNST-AVl, and BNST-AVm. Alcohol consumption increased many size/shapes parameters in microglial cells, indicative of microglia de-activation. Finally, microglia density was increased in ventral anterior BNST (BNST-AVl, BNST-AVm) by alcohol consumption. In conclusion, genetic predisposition of sP rats to high alcohol intake could be in part mediated by anterior BNST subnuclei showing lower NPY expression and differential microglia activation. Alcohol intake in sP rats produced complex subnucleus-specific changes in BNST, affecting CGRP/NPY expression and microglia and leading to hypothesize that these changes might contribute to the anxiolytic effects of voluntarily consumed alcohol repeatedly observed in sP rats.
Collapse
Affiliation(s)
- Ilaria Rossetti
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Laura Zambusi
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Paola Maccioni
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Roberta Sau
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Luciano Provini
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Krzysztof Gonciarz
- Center for Systems Biology Dresden, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Giancarlo Colombo
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | - Stefano Morara
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy.,Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
76
|
Ch'ng SS, Fu J, Brown RM, Smith CM, Hossain MA, McDougall SJ, Lawrence AJ. Characterization of the relaxin family peptide receptor 3 system in the mouse bed nucleus of the stria terminalis. J Comp Neurol 2019; 527:2615-2633. [PMID: 30947365 DOI: 10.1002/cne.24695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 01/17/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a critical node involved in stress and reward-related behaviors. Relaxin family peptide receptor 3 (RXFP3) signaling in the BNST has been implicated in stress-induced alcohol seeking behavior. However, the neurochemical phenotype and connectivity of BNST RXFP3-expressing (RXFP3+) cells have yet to be elucidated. We interrogated the molecular signature and electrophysiological properties of BNST RXFP3+ neurons using a RXFP3-Cre reporter mouse line. BNST RXFP3+ cells are circumscribed to the dorsal BNST (dBNST) and are neurochemically heterogeneous, comprising a mix of inhibitory and excitatory neurons. Immunohistochemistry revealed that ~48% of BNST RXFP3+ neurons are GABAergic, and a quarter of these co-express the calcium-binding protein, calbindin. A subset of BNST RXFP3+ cells (~41%) co-express CaMKIIα, suggesting this subpopulation of BNST RXFP3+ neurons are excitatory. Corroborating this, RNAscope® revealed that ~35% of BNST RXFP3+ cells express vVGluT2 mRNA, indicating a subpopulation of RXFP3+ neurons are glutamatergic. RXFP3+ neurons show direct hyperpolarization to bath application of a selective RXFP3 agonist, RXFP3-A2, while around 50% of cells were depolarised by exogenous corticotrophin releasing factor. In behaviorally naive mice the majority of RXFP3+ neurons were Type II cells exhibiting Ih and T type calcium mediated currents. However, chronic swim stress caused persistent plasticity, decreasing the proportion of neurons that express these channels. These studies are the first to characterize the BNST RXFP3 system in mouse and lay the foundation for future functional studies appraising the role of the murine BNST RXFP3 system in more complex behaviors.
Collapse
Affiliation(s)
- Sarah S Ch'ng
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Craig M Smith
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | | | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
77
|
Ch'ng S, Fu J, Brown RM, McDougall SJ, Lawrence AJ. The intersection of stress and reward: BNST modulation of aversive and appetitive states. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:108-125. [PMID: 29330137 DOI: 10.1016/j.pnpbp.2018.01.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is widely acknowledged as a brain structure that regulates stress and anxiety states, as well as aversive and appetitive behaviours. The diverse roles of the BNST are afforded by its highly modular organisation, neurochemical heterogeneity, and complex intrinsic and extrinsic circuitry. There has been growing interest in the BNST in relation to psychopathologies such as anxiety and addiction. Although research on the human BNST is still in its infancy, there have been extensive preclinical studies examining the molecular signature and hodology of the BNST and their involvement in stress and reward seeking behaviour. This review examines the neurochemical phenotype and connectivity of the BNST, as well as electrophysiological correlates of plasticity in the BNST mediated by stress and/or drugs of abuse.
Collapse
Affiliation(s)
- Sarah Ch'ng
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
78
|
Dedic N, Chen A, Deussing JM. The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response. Curr Mol Pharmacol 2018; 11:4-31. [PMID: 28260504 PMCID: PMC5930453 DOI: 10.2174/1874467210666170302104053] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 11/26/2015] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
Background: Dysregulated stress neurocircuits, caused by genetic and/or environmental changes, underlie the development of many neuropsychiatric disorders. Corticotropin-releasing factor (CRF) is the major physiological activator of the hypothalamic-pituitary-adrenal (HPA) axis and conse-quently a primary regulator of the mammalian stress response. Together with its three family members, urocortins (UCNs) 1, 2, and 3, CRF integrates the neuroendocrine, autonomic, metabolic and behavioral responses to stress by activating its cognate receptors CRFR1 and CRFR2. Objective: Here we review the past and current state of the CRF/CRFR field, ranging from pharmacologi-cal studies to genetic mouse models and virus-mediated manipulations. Results: Although it is well established that CRF/CRFR1 signaling mediates aversive responses, includ-ing anxiety and depression-like behaviors, a number of recent studies have challenged this viewpoint by revealing anxiolytic and appetitive properties of specific CRF/CRFR1 circuits. In contrast, the UCN/CRFR2 system is less well understood and may possibly also exert divergent functions on physiol-ogy and behavior depending on the brain region, underlying circuit, and/or experienced stress conditions. Conclusion: A plethora of available genetic tools, including conventional and conditional mouse mutants targeting CRF system components, has greatly advanced our understanding about the endogenous mecha-nisms underlying HPA system regulation and CRF/UCN-related neuronal circuits involved in stress-related behaviors. Yet, the detailed pathways and molecular mechanisms by which the CRF/UCN-system translates negative or positive stimuli into the final, integrated biological response are not completely un-derstood. The utilization of future complementary methodologies, such as cell-type specific Cre-driver lines, viral and optogenetic tools will help to further dissect the function of genetically defined CRF/UCN neurocircuits in the context of adaptive and maladaptive stress responses.
Collapse
Affiliation(s)
- Nina Dedic
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| |
Collapse
|
79
|
Yamauchi N, Takahashi D, Sugimura YK, Kato F, Amano T, Minami M. Activation of the neural pathway from the dorsolateral bed nucleus of the stria terminalis to the central amygdala induces anxiety-like behaviors. Eur J Neurosci 2018; 48:3052-3061. [PMID: 30240530 DOI: 10.1111/ejn.14165] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 09/02/2018] [Accepted: 09/17/2018] [Indexed: 12/24/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) and the central amygdala (CeA) comprise a forebrain unit that has been described as the "extended amygdala". These two nuclei send dense projections to each other and have been implicated in the regulation of negative emotional states, including anxiety and fear. The present study employed an optogenetic technique to examine whether stimulation of CeA-projecting dorsolateral BNST (dlBNST) neuron terminals would influence anxiety-like behaviors in male Sprague-Dawley rats. Photostimulation of CeA-projecting dlBNST neuron terminals produced anxiogenic effects in an elevated plus maze test. This finding is inconsistent with previous reports showing that optogenetic stimulation of BNST neurons projecting to the lateral hypothalamus (LH) and ventral tegmental area (VTA) produces anxiolytic rather than anxiogenic effects. To address this issue, electrophysiological analyses were conducted to characterize dlBNST neurons projecting to the CeA, LH, and VTA. dlBNST neurons can be electrophysiologically classified into three distinct cell types (types I-III) according to their responses to depolarizing and hyperpolarizing current injections. Whole-cell patch-clamp recordings revealed that more than 60% of the CeA-projecting dlBNST neurons were type II, whereas approximately 80% of the LH- and VTA-projecting dlBNST neurons were type III. These electrophysiological results will help elucidate the mechanisms underlying the heterogeneity of BNST neurons during the regulation of anxiety-like behaviors.
Collapse
Affiliation(s)
- Naoki Yamauchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Daiki Takahashi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yae K Sugimura
- Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Fusao Kato
- Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Taiju Amano
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
80
|
Epigenetic Programming of Synthesis, Release, and/or Receptor Expression of Common Mediators Participating in the Risk/Resilience for Comorbid Stress-Related Disorders and Coronary Artery Disease. Int J Mol Sci 2018; 19:ijms19041224. [PMID: 29670001 PMCID: PMC5979500 DOI: 10.3390/ijms19041224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Corticotrophin releasing factor, vasopressin, oxytocin, natriuretic hormones, angiotensin, neuregulins, some purinergic substances, and some cytokines contribute to the long-term modulation and restructuring of cardiovascular regulation networks and, at the same time, have relevance in situations of comorbid abnormal stress responses. The synthesis, release, and receptor expression of these mediators seem to be under epigenetic control since early stages of life, possibly underlying the comorbidity to coronary artery disease (CAD) and stress-related disorders (SRD). The exposure to environmental conditions, such as stress, during critical periods in early life may cause epigenetic programming modifying the development of pathways that lead to stable and long-lasting alterations in the functioning of these mediators during adulthood, determining the risk of or resilience to CAD and SRD. However, in contrast to genetic information, epigenetic marks may be dynamically altered throughout the lifespan. Therefore, epigenetics may be reprogrammed if the individual accepts the challenge to undertake changes in their lifestyle. Alternatively, epigenetics may remain fixed and/or even be inherited in the next generation. In this paper, we analyze some of the common neuroendocrine functions of these mediators in CAD and SRD and summarize the evidence indicating that they are under early programming to put forward the theoretical hypothesis that the comorbidity of these diseases might be epigenetically programmed and modified over the lifespan of the individual.
Collapse
|
81
|
Petrovich GD. Lateral Hypothalamus as a Motivation-Cognition Interface in the Control of Feeding Behavior. Front Syst Neurosci 2018; 12:14. [PMID: 29713268 PMCID: PMC5911470 DOI: 10.3389/fnsys.2018.00014] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/28/2018] [Indexed: 01/02/2023] Open
Abstract
Converging evidence for an essential function of the lateral hypothalamus (LHA) in the control of feeding behavior has been accumulating since the classic work conducted almost 80 years ago. The LHA is also important in reward and reinforcement processes and behavioral state control. A unifying function for the LHA across these processes has not been fully established. Nonetheless, it is considered to integrate motivation with behavior. More recent work has demonstrated that the LHA is also required when cognitive processes, such as associative learning and memory control feeding behavior, suggesting it may serve as a motivation-cognition interface. Structurally, the LHA is well positioned within the cerebral hemisphere, with its extensive connectional network across the forebrain-brainstem axis, to link motivational and behavioral systems with cognitive processes. Studies that examined how learned cues control food seeking and consumption have implicated the LHA, but due to methodological limitations could not determine whether it underlies motivation, learning, or the integration of these processes. Furthermore, the identification of specific substrates has been limited by the LHA's extraordinary complexity and heterogeneity. Recent methodological advancements with chemo-and opto-genetic approaches have enabled unprecedented specificity in interrogations of distinct neurons and their pathways in behaving animals, including manipulations during temporally distinct events. These approaches have revealed novel insights about the LHA structure and function. Recent findings that the GABA LHA neurons control feeding and food-reward learning and memory will be reviewed together with past work within the context of the LHA function as an interface between cognition and motivation.
Collapse
Affiliation(s)
- Gorica D Petrovich
- Department of Psychology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
82
|
Williams DL, Lilly NA, Edwards IJ, Yao P, Richards JE, Trapp S. GLP-1 action in the mouse bed nucleus of the stria terminalis. Neuropharmacology 2018; 131:83-95. [PMID: 29221794 PMCID: PMC5840513 DOI: 10.1016/j.neuropharm.2017.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/13/2017] [Accepted: 12/03/2017] [Indexed: 01/07/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) injected into the brain reduces food intake. Similarly, activation of preproglucagon (PPG) cells in the hindbrain which synthesize GLP-1, reduces food intake. However, it is far from clear whether this happens because of satiety, nausea, reduced reward, or even stress. Here we explore the role of the bed nucleus of the stria terminalis (BNST), an area involved in feeding control as well as stress responses, in GLP-1 responses. Using cre-expressing mice we visualized projections of NTS PPG neurons and GLP-1R-expressing BNST cells with AAV-driven Channelrhodopsin-YFP expression. The BNST displayed many varicose YFP+ PPG axons in the ventral and less in the dorsal regions. Mice which express RFP in GLP-1R neurons had RFP+ cells throughout the BNST with the highest density in the dorsal part, suggesting that PPG neuron-derived GLP-1 acts in the BNST. Indeed, injection of GLP-1 into the BNST reduced chow intake during the dark phase, whereas injection of the GLP-1 receptor antagonist Ex9 increased feeding. BNST-specific GLP-1-induced food suppression was less effective in mice on high fat (HF, 60%) diet, and Ex9 had no effect. Restraint stress-induced hypophagia was attenuated by BNST Ex9 treatment, further supporting a role for endogenous brain GLP-1. Finally, whole-cell patch clamp recordings of RFP+ BNST neurons demonstrated that GLP-1 elicited either a depolarizing or hyperpolarizing reversible response that was of opposite polarity to that under dopamine. Our data support a physiological role for BNST GLP-1R in feeding, and suggest complex cellular responses to GLP-1 in this nucleus.
Collapse
Affiliation(s)
- Diana L Williams
- Psychology Department & Program in Neuroscience, Florida State University, USA
| | - Nicole A Lilly
- Psychology Department & Program in Neuroscience, Florida State University, USA
| | - Ian J Edwards
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| | - Pallas Yao
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| | - James E Richards
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
83
|
Oliveira LA, Gomes-de-Souza L, Benini R, Crestani CC. Control of cardiovascular responses to stress by CRF in the bed nucleus of stria terminalis is mediated by local NMDA/nNOS/sGC/PKG signaling. Psychoneuroendocrinology 2018; 89:168-176. [PMID: 29414029 DOI: 10.1016/j.psyneuen.2018.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 11/27/2022]
Abstract
The aims of the present study were to assess an interaction of corticotropin-releasing factor (CRF) neurotransmission within the bed nucleus of the stria terminalis (BNST) with local nitrergic signaling, as well as to investigate an involvement of activation of local NMDA glutamate receptor and nitric oxide (NO) signaling in control of cardiovascular responses to acute restraint stress by BNST CRF neurotransmission in rats. We observed that CRF microinjection into the BNST increased local NO release during restraint stress. Furthermore, bilateral microinjection of CRF into the BNST enhanced both the arterial pressure and heart rate increases evoked by restraint stress, but without affecting the sympathetically-mediated cutaneous vasoconstriction. The facilitation of both pressor and tachycardiac responses to restraint stress evoked by BNST treatment with CRF were completely inhibited by local pretreatment with either the selective NMDA glutamate receptor antagonist LY235959, the selective neuronal nitric oxide synthase (nNOS) inhibitor Nω-Propyl-l-arginine (NPLA), the soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or the protein kinase G (PKG) inhibitor KT5823. Taken together, these results provide evidence that BNST CRF neurotransmission facilitates local NMDA-mediated glutamatergic neurotransmission and activates nitrergic signaling, and this pathway is involved in control of cardiovascular responses to stress.
Collapse
Affiliation(s)
- Leandro A Oliveira
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Lucas Gomes-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Ricardo Benini
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
84
|
Gorka AX, Torrisi S, Shackman AJ, Grillon C, Ernst M. Intrinsic functional connectivity of the central nucleus of the amygdala and bed nucleus of the stria terminalis. Neuroimage 2018; 168:392-402. [PMID: 28392491 PMCID: PMC5630489 DOI: 10.1016/j.neuroimage.2017.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/15/2022] Open
Abstract
The central nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST), two nuclei within the central extended amygdala, function as critical relays within the distributed neural networks that coordinate sensory, emotional, and cognitive responses to threat. These structures have overlapping anatomical projections to downstream targets that initiate defensive responses. Despite these commonalities, researchers have also proposed a functional dissociation between the CeA and BNST, with the CeA promoting responses to discrete stimuli and the BNST promoting responses to diffuse threat. Intrinsic functional connectivity (iFC) provides a means to investigate the functional architecture of the brain, unbiased by task demands. Using ultra-high field neuroimaging (7-Tesla fMRI), which provides increased spatial resolution, this study compared the iFC networks of the CeA and BNST in 27 healthy individuals. Both structures were coupled with areas of the medial prefrontal cortex, hippocampus, thalamus, and periaqueductal gray matter. Compared to the BNST, the bilateral CeA was more strongly coupled with the insula and regions that support sensory processing, including thalamus and fusiform gyrus. In contrast, the bilateral BNST was more strongly coupled with regions involved in cognitive and motivational processes, including the dorsal paracingulate gyrus, posterior cingulate cortex, and striatum. Collectively, these findings suggest that responses to sensory stimulation are preferentially coordinated by the CeA and cognitive and motivational responses are preferentially coordinated by the BNST.
Collapse
Affiliation(s)
- Adam X Gorka
- Section on the Neurobiology of Fear & Anxiety, National Institute of Mental Health, Bethesda, MD 20892 USA.
| | - Salvatore Torrisi
- Section on the Neurobiology of Fear & Anxiety, National Institute of Mental Health, Bethesda, MD 20892 USA
| | - Alexander J Shackman
- Department of Psychology and Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742 USA
| | - Christian Grillon
- Section on the Neurobiology of Fear & Anxiety, National Institute of Mental Health, Bethesda, MD 20892 USA
| | - Monique Ernst
- Section on the Neurobiology of Fear & Anxiety, National Institute of Mental Health, Bethesda, MD 20892 USA
| |
Collapse
|
85
|
Lin X, Itoga CA, Taha S, Li MH, Chen R, Sami K, Berton F, Francesconi W, Xu X. c-Fos mapping of brain regions activated by multi-modal and electric foot shock stress. Neurobiol Stress 2018; 8:92-102. [PMID: 29560385 PMCID: PMC5857493 DOI: 10.1016/j.ynstr.2018.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/17/2018] [Accepted: 02/01/2018] [Indexed: 12/29/2022] Open
Abstract
Real-world stressors are complex and multimodal, involving physical, psychological, and social dimensions. However, the brain networks that mediate stress responses to these stimuli need to be further studied. We used c-Fos mapping in mice to characterize brain circuits activated by exposure to a single episode of multimodal stress (MMS), and compared these to circuits activated by electric foot shocks (EFS). We focused on characterizing c-Fos activity in stress-relevant brain regions including the paraventricular nucleus (PVN) of the hypothalamus and the bed nucleus of the stria terminalis (BNST). We also assessed stress-induced activation of CRH-positive neurons in each of these structures. MMS and EFS activated an overlapping network of brain regions with a similar time course. c-Fos expression within the PVN and the BNST peaked 30–60 min after exposure to both MMS and EFS, and returned to baseline levels within 24 h. Quantification of c-Fos expression within BNST subregions revealed that while c-Fos expression peaked in all subregions 30–60 min after MMS and EFS exposure, the neuronal density of c-Fos expression was significantly higher in the dorsomedial and ventral BNST relative to the dorsolateral BNST. Our preliminary assessment indicated that a great majority of MMS or EFS-activated neurons in the PVN were CRH-positive (>87%); in contrast, about 6–35% of activated neurons in the BNST were CRH-positive. Our findings indicate that both MMS and EFS are effective at activating stress-relevant brain areas and support the use of MMS as an effective approach for studying multidimensional stress in animal models. The results also reveal that the PVN and BNST are part of a common neural circuit substrate involved in neural processing related to stress.
Collapse
Affiliation(s)
- Xiaoxiao Lin
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Christy A Itoga
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Sharif Taha
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112-5820, United States
| | - Ming H Li
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Ryan Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Kirolos Sami
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Fulvia Berton
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Walter Francesconi
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States.,Department of Biomedical Engineering, University of California, Irvine, CA 92697-2715, United States.,Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, United States
| |
Collapse
|
86
|
Mazzone CM, Pati D, Michaelides M, DiBerto J, Fox JH, Tipton G, Anderson C, Duffy K, McKlveen JM, Hardaway JA, Magness ST, Falls WA, Hammack SE, McElligott ZA, Hurd YL, Kash TL. Acute engagement of G q-mediated signaling in the bed nucleus of the stria terminalis induces anxiety-like behavior. Mol Psychiatry 2018; 23:143-153. [PMID: 27956747 PMCID: PMC5468515 DOI: 10.1038/mp.2016.218] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 01/23/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a brain region important for regulating anxiety-related behavior in both humans and rodents. Here we used a chemogenetic strategy to investigate how engagement of G protein-coupled receptor (GPCR) signaling cascades in genetically defined GABAergic BNST neurons modulates anxiety-related behavior and downstream circuit function. We saw that stimulation of vesicular γ-aminobutyric acid (GABA) transporter (VGAT)-expressing BNST neurons using hM3Dq, but neither hM4Di nor rM3Ds designer receptors exclusively activated by a designer drug (DREADD), promotes anxiety-like behavior. Further, we identified that activation of hM3Dq receptors in BNST VGAT neurons can induce a long-term depression-like state of glutamatergic synaptic transmission, indicating DREADD-induced changes in synaptic plasticity. Further, we used DREADD-assisted metabolic mapping to profile brain-wide network activity following activation of Gq-mediated signaling in BNST VGAT neurons and saw increased activity within ventral midbrain structures, including the ventral tegmental area and hindbrain structures such as the locus coeruleus and parabrachial nucleus. These results highlight that Gq-mediated signaling in BNST VGAT neurons can drive downstream network activity that correlates with anxiety-like behavior and points to the importance of identifying endogenous GPCRs within genetically defined cell populations. We next used a microfluidics approach to profile the receptorome of single BNST VGAT neurons. This approach yielded multiple Gq-coupled receptors that are associated with anxiety-like behavior and several potential novel candidates for regulation of anxiety-like behavior. From this, we identified that stimulation of the Gq-coupled receptor 5-HT2CR in the BNST is sufficient to elevate anxiety-like behavior in an acoustic startle task. Together, these results provide a novel profile of receptors within genetically defined BNST VGAT neurons that may serve as therapeutic targets for regulating anxiety states and provide a blueprint for examining how G-protein-mediated signaling in a genetically defined cell type can be used to assess behavior and brain-wide circuit function.
Collapse
Affiliation(s)
- Christopher M. Mazzone
- Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC 27599
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Dipanwita Pati
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Michael Michaelides
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Jeffrey DiBerto
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - James H. Fox
- Department of Psychology, University of Vermont, Burlington, VT 05405
| | - Gregory Tipton
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Carlton Anderson
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC 27599
| | - Kelly Duffy
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Jessica M. McKlveen
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - J. Andrew Hardaway
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Scott T. Magness
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599
- Department of Cell Biology and Physiology, and Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599
| | - William A. Falls
- Department of Psychology, University of Vermont, Burlington, VT 05405
| | | | - Zoe A. McElligott
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599
| | - Yasmin L. Hurd
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC, 27599
| |
Collapse
|
87
|
Barretto-de-Souza L, Adami MB, Oliveira LA, Gomes-de-Souza L, Duarte JO, Almeida J, Crestani CC. Nitric oxide-cGMP-PKG signaling in the bed nucleus of the stria terminalis modulates the cardiovascular responses to stress in male rats. Eur Neuropsychopharmacol 2018; 28:75-84. [PMID: 29169825 DOI: 10.1016/j.euroneuro.2017.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/29/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) constitutes an important component of neural substrates of physiological and behavioral responses to aversive stimuli, and it has been implicated on cardiovascular responses evoked by stress. Nevertheless, the local neurochemical mechanisms involved in BNST control of cardiovascular responses during aversive threats are still poorly understood. Thus, the aim of the present study was to assess the involvement of activation in the BNST of the neuronal isoform of the enzyme nitric oxide synthase (nNOS), as well as of signaling mechanisms related to nitric oxide effects such as soluble guanylate cyclase (sGC) and protein kinase G (PKG) on cardiovascular responses induced by an acute session of restraint stress in male rats. We observed that bilateral microinjection of either the nonselective NOS inhibitor Nω-Nitro-L-arginine methyl ester (L-NAME), the selective nNOS inhibitor Nω-Propyl-L-arginine (NPLA) or the sGC inhibitor 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) into the BNST enhanced the tachycardic response and decreased the drop in tail cutaneous temperature evoked by acute restraint stress, but without affecting the increase on blood pressure. Bilateral BNST treatment with the selective PKG inhibitor KT5823 also facilitated the heart rate increase and decreased the drop in cutaneous temperature, in addition to enhancing the blood pressure increase. Taken together, these results provide evidence that NO released from nNOS and activation of sGC and PKG within the BNST play an inhibitory influence on tachycardia to stress, whereas this signaling mechanism mediates the sympathetic-mediated cutaneous vasoconstriction.
Collapse
Affiliation(s)
- Lucas Barretto-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Mariane B Adami
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Leandro A Oliveira
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Lucas Gomes-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Josiane O Duarte
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Jeferson Almeida
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
88
|
Smithers HE, Terry JR, Brown JT, Randall AD. Aging-Associated Changes to Intrinsic Neuronal Excitability in the Bed Nucleus of the Stria Terminalis Is Cell Type-Dependent. Front Aging Neurosci 2017; 9:424. [PMID: 29311907 PMCID: PMC5744640 DOI: 10.3389/fnagi.2017.00424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022] Open
Abstract
Intrinsic neuronal excitability has been reported to change during normal aging. The bed nucleus of the stria terminalis (BNST), a limbic forebrain structure, is involved in fear, stress and anxiety; behavioral features that exhibit age-dependent properties. To examine the effect of aging on intrinsic neuronal properties in BNST we compared patch clamp recordings from cohorts of female mice at two ages, 3–4 months (Young) and 29–30 months (Aged) focusing on 2 types of BNST neurons. Aged Type I neurons exhibited a hyperpolarized resting membrane potential (RMP) of circa -80 mV compared to circa -70 mV in the Young. A key finding in this study is a hyper-excitability of Type II neurons with age reflected in an increase in firing frequency in response to depolarizing current injections; activation of Type II neurons is believed to dampen anxiety like responses. Such age-related changes in intrinsic neurophysiological function are likely to modulate how the limbic system, acting via BNST, shapes function in the HPA-axis.
Collapse
Affiliation(s)
- Hannah E Smithers
- Hatherly Laboratory, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - John R Terry
- College of Engineering, Mathematics and Physical Sciences, Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Jon T Brown
- Hatherly Laboratory, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Andrew D Randall
- Hatherly Laboratory, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
89
|
Henckens MJAG, Printz Y, Shamgar U, Dine J, Lebow M, Drori Y, Kuehne C, Kolarz A, Eder M, Deussing JM, Justice NJ, Yizhar O, Chen A. CRF receptor type 2 neurons in the posterior bed nucleus of the stria terminalis critically contribute to stress recovery. Mol Psychiatry 2017; 22:1691-1700. [PMID: 27550842 DOI: 10.1038/mp.2016.133] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is critical in mediating states of anxiety, and its dysfunction has been linked to stress-related mental disease. Although the anxiety-related role of distinct subregions of the anterior BNST was recently reported, little is known about the contribution of the posterior BNST (pBNST) to the behavioral and neuroendocrine responses to stress. Previously, we observed abnormal expression of corticotropin-releasing factor receptor type 2 (CRFR2) to be associated with post-traumatic stress disorder (PTSD)-like symptoms. Here, we found that CRFR2-expressing neurons within the pBNST send dense inhibitory projections to other stress-related brain regions (for example, the locus coeruleus, medial amygdala and paraventricular nucleus), implicating a prominent role of these neurons in orchestrating the neuroendocrine, autonomic and behavioral response to stressful situations. Local CRFR2 activation by urocortin 3 depolarized the cells, increased the neuronal input resistance and increased firing of action potentials, indicating an enhanced excitability. Furthermore, we showed that CRFR2-expressing neurons within the pBNST are critically involved in the modulation of the behavioral and neuroendocrine response to stress. Optogenetic activation of CRFR2 neurons in the pBNST decreased anxiety, attenuated the neuroendocrine stress response, ameliorated stress-induced anxiety and impaired the fear memory for the stressful event. Moreover, activation following trauma exposure reduced the susceptibility for PTSD-like symptoms. Optogenetic inhibition of pBNST CRFR2 neurons yielded opposite effects. These data indicate the relevance of pBNST activity for adaptive stress recovery.
Collapse
Affiliation(s)
- M J A G Henckens
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Y Printz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - U Shamgar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - J Dine
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - M Lebow
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Y Drori
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - C Kuehne
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A Kolarz
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - M Eder
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - J M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - N J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - O Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - A Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
90
|
Bath KG, Russo SJ, Pleil KE, Wohleb ES, Duman RS, Radley JJ. Circuit and synaptic mechanisms of repeated stress: Perspectives from differing contexts, duration, and development. Neurobiol Stress 2017; 7:137-151. [PMID: 29276735 PMCID: PMC5736942 DOI: 10.1016/j.ynstr.2017.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022] Open
Abstract
The current review is meant to synthesize research presented as part of a symposium at the 2016 Neurobiology of Stress workshop in Irvine California. The focus of the symposium was "Stress and the Synapse: New Concepts and Methods" and featured the work of several junior investigators. The presentations focused on the impact of various forms of stress (altered maternal care, binge alcohol drinking, chronic social defeat, and chronic unpredictable stress) on synaptic function, neurodevelopment, and behavioral outcomes. One of the goals of the symposium was to highlight the mechanisms accounting for how the nervous system responds to stress and their impact on outcome measures with converging effects on the development of pathological behavior. Dr. Kevin Bath's presentation focused on the impact of disruptions in early maternal care and its impact on the timing of hippocampus maturation in mice, finding that this form of stress drove accelerated synaptic and behavioral maturation, and contributed to the later emergence of risk for cognitive and emotional disturbance. Dr. Scott Russo highlighted the impact of chronic social defeat stress in adolescent mice on the development and plasticity of reward circuity, with a focus on glutamatergic development in the nucleus accumbens and mesolimbic dopamine system, and the implications of these changes for disruptions in social and hedonic response, key processes disturbed in depressive pathology. Dr. Kristen Pleil described synaptic changes in the bed nuclei of the stria terminalis that underlie the behavioral consequences of allostatic load produced by repeated cycles of alcohol binge drinking and withdrawal. Dr. Eric Wohleb and Dr. Ron Duman provided new data associating decreased mammalian target of rapamycin (mTOR) signaling and neurobiological changes in the synapses in response to chronic unpredictable stress, and highlighted the potential for the novel antidepressant ketamine to rescue synaptic and behavioral effects. In aggregate, these presentations showcased how divergent perspectives provide new insights into the ways in which stress impacts circuit development and function, with implications for understanding emergence of affective pathology.
Collapse
Affiliation(s)
- Kevin G. Bath
- Department of Cognitive Linguistic and Psychological Sciences, Brown University, Providence, RI 02912, United States
| | - Scott J. Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kristen E. Pleil
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, United States
| | - Eric S. Wohleb
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45237, United States
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06508, United States
| | - Ronald S. Duman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06508, United States
| | - Jason J. Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
91
|
Rale A, Shendye N, Bodas DS, Subhedar N, Ghose A. CART neuropeptide modulates the extended amygdalar CeA-vBNST circuit to gate expression of innate fear. Psychoneuroendocrinology 2017; 85:69-77. [PMID: 28825977 DOI: 10.1016/j.psyneuen.2017.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
Abstract
Innate fear is critical for the survival of animals and is under tight homeostatic control. Deregulation of innate fear processing is thought to underlie pathological phenotypes including, phobias and panic disorders. Although central processing of conditioned fear has been extensively studied, the circuitry and regulatory mechanisms subserving innate fear remain relatively poorly defined. In this study, we identify cocaine- and amphetamine-regulated transcript (CART) neuropeptide signaling in the central amygdala (CeA) - ventral bed nucleus of stria terminalis (vBNST) axis as a key modulator of innate fear expression. 2,4,5-trimethyl-3-thiazoline (TMT), a component of fox faeces, induces a freezing response whose intensity is regulated by the extent of CART-signaling in the CeA neurons. Abrogation of CART activity in the CeA attenuates the freezing response and reduces activation of vBNST neurons. Conversely, ectopically elevated CART signaling in the CeA potentiates the fear response concomitant with enhanced vBNST activation. We show that local levels of CART signaling modulate the activation of CeA neurons by NMDA receptor-mediated glutamatergic inputs, in turn, regulating activity in the vBNST. This study identifies the extended amygdalar CeA-vBNST circuit as a CART modulated axis encoding innate fear. CART signaling regulates the glutamatergic excitatory drive in the CeA-vBNST circuit, in turn, gating the expression of the freezing response to TMT.
Collapse
Affiliation(s)
- Abhishek Rale
- Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pune 411008, India
| | - Ninad Shendye
- Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pune 411008, India
| | - Devika S Bodas
- Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pune 411008, India
| | - Nishikant Subhedar
- Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pune 411008, India.
| | - Aurnab Ghose
- Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pune 411008, India.
| |
Collapse
|
92
|
Sanna F, Bratzu J, Argiolas A, Melis MR. Oxytocin induces penile erection and yawning when injected into the bed nucleus of the stria terminalis: Involvement of glutamic acid, dopamine, and nitric oxide. Horm Behav 2017; 96:52-61. [PMID: 28916137 DOI: 10.1016/j.yhbeh.2017.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 08/19/2017] [Accepted: 09/09/2017] [Indexed: 02/02/2023]
Abstract
Oxytocin (5-100ng), but not Arg8-vasopressin (100ng), injected unilaterally into the bed nucleus of the stria terminalis (BNST) induces penile erection and yawning in a dose-dependent manner in male rats. The minimal effective dose was 20ng for penile erection and 5ng for yawning. Oxytocin responses were abolished not only by the oxytocin receptor antagonist d(CH2)5Tyr(Me)2-Orn8-vasotocin (1μg), but also by (+) MK-801 (1μg), an excitatory amino acid receptor antagonist of the N-methyl-d-aspartic acid (NMDA) subtype, SCH 23390 (1μg), a D1 receptor antagonist, but not haloperidol (1μg), a D2 receptor antagonist, and SMTC (40μg), an inhibitor of neuronal nitric oxide synthase, injected into the BNST 15min before oxytocin. Oxytocin-induced penile erection, but not yawning, was also abolished by CNQX (1μg), an excitatory amino acid receptor antagonist of the AMPA subtype. In contrast, oxytocin responses were not reduced by bicuculline (20ng), a GABAA receptor antagonist, phaclofen (5μg), a GABAB receptor antagonist, CP 376395, a CRF receptor-1 antagonist (5μg), or astressin 2B, a CRF receptor-2 antagonist (150ng). Considering the ability of NMDA (100ng) to induce penile erection and yawning when injected into the BNST and the available evidence showing possible interaction among oxytocin, glutamic acid, and dopamine in the BNST, oxytocin possibly activates glutamatergic neurotransmission in the BNST. This in turn leads to the activation of neural pathways projecting back to the paraventricular nucleus, medial preoptic area, ventral tegmental area, and/or ventral subiculum/amygdala, thereby inducing penile erection and yawning.
Collapse
Affiliation(s)
- Fabrizio Sanna
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy.
| | - Jessica Bratzu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy
| | - Antonio Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy; Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy; Institute of Neuroscience, National Research Council, Cagliari Section, Cittadella Universitaria, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy
| | - Maria Rosaria Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy; Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
93
|
Zahm DS, Root DH. Review of the cytology and connections of the lateral habenula, an avatar of adaptive behaving. Pharmacol Biochem Behav 2017; 162:3-21. [PMID: 28647565 PMCID: PMC5659881 DOI: 10.1016/j.pbb.2017.06.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/02/2017] [Accepted: 06/13/2017] [Indexed: 12/21/2022]
Abstract
The cytology and connections of the lateral habenula (LHb) are reviewed. The habenula is first introduced, after which the cytology of the LHb is discussed mainly with reference to cell types, general topography and descriptions of subnuclei. An overview of LHb afferent connections is given followed by some details about the projections to LHb from a number of structures. An overview of lateral habenula efferent connections is given followed by some details about the projections from LHb to a number of structures. In considering the afferent and efferent connections of the LHb some attention is given to the relative validity of regarding it as a bi-partite structure featuring 'limbic' and 'pallidal' parts. The paper ends with some concluding remarks about the relative place of the LHb in adaptive behaving.
Collapse
Affiliation(s)
- Daniel S Zahm
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd., Saint Louis, MO 63104, United States.
| | - David H Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, United States.
| |
Collapse
|
94
|
Tinterri A, Deck M, Keita M, Mailhes C, Rubin AN, Kessaris N, Lokmane L, Bielle F, Garel S. Tangential migration of corridor guidepost neurons contributes to anxiety circuits. J Comp Neurol 2017; 526:397-411. [DOI: 10.1002/cne.24330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Andrea Tinterri
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Brain Development and Plasticity Team
- Boehringer Ingelheim Fonds, Foundation for Basic Research in Medicine; Mainz Germany
- Ecole de Neurosciences de Paris-Ile de France; Paris France
| | - Marie Deck
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Brain Development and Plasticity Team
| | - Maryama Keita
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Brain Development and Plasticity Team
| | - Caroline Mailhes
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Acute Transgenesis Facility
| | - Anna Noren Rubin
- University College of London, Wolfson Institute for Biomedical Research, Department of Cell and Developmental Biology; London United Kingdom
| | - Nicoletta Kessaris
- University College of London, Wolfson Institute for Biomedical Research, Department of Cell and Developmental Biology; London United Kingdom
| | - Ludmilla Lokmane
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Brain Development and Plasticity Team
| | - Franck Bielle
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Brain Development and Plasticity Team
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Service de Neuropathologie; Paris France
| | - Sonia Garel
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Brain Development and Plasticity Team
- Ecole de Neurosciences de Paris-Ile de France; Paris France
| |
Collapse
|
95
|
Goode TD, Maren S. Role of the bed nucleus of the stria terminalis in aversive learning and memory. Learn Mem 2017; 24:480-491. [PMID: 28814474 PMCID: PMC5580527 DOI: 10.1101/lm.044206.116] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023]
Abstract
Surviving threats in the environment requires brain circuits for detecting (or anticipating) danger and for coordinating appropriate defensive responses (e.g., increased cardiac output, stress hormone release, and freezing behavior). The bed nucleus of the stria terminalis (BNST) is a critical interface between the "affective forebrain"-including the amygdala, ventral hippocampus, and medial prefrontal cortex-and the hypothalamic and brainstem areas that have been implicated in neuroendocrine, autonomic, and behavioral responses to actual or anticipated threats. However, the precise contribution of the BNST to defensive behavior is unclear, both in terms of the antecedent stimuli that mobilize BNST activity and the consequent defensive reactions. For example, it is well known that the BNST is essential for contextual fear conditioning, but dispensable for fear conditioning to discrete conditioned stimuli (CSs), at least as indexed by freezing behavior. However, recent evidence suggests that there are circumstances in which contextual freezing may persist independent of the BNST. Furthermore, the BNST is involved in the reinstatement (or relapse) of conditioned freezing to extinguished discrete CSs. As such, there are critical gaps in understanding how the BNST contributes to fundamental processes involved in Pavlovian fear conditioning. Here, we attempt to provide an integrative account of BNST function in fear conditioning. We discuss distinctions between unconditioned stress and conditioned fear and the role of BNST circuits in organizing behaviors associated with these states. We propose that the BNST mediates conditioned defensive responses-not based on the modality or duration of the antecedent threat or the duration of the behavioral response to the threat-but rather as consequence the ability of an antecedent stimulus to predict when an aversive outcome will occur (i.e., its temporal predictability). We argue that the BNST is not uniquely mobilized by sustained threats or uniquely involved in organizing sustained fear responses. In contrast, we argue that the BNST is involved in organizing fear responses to stimuli that poorly predict when danger will occur, no matter the duration, modality, or complexity of those stimuli. The concepts discussed in this review are critical to understanding the contribution of the human BNST to fear and anxiety disorders.
Collapse
Affiliation(s)
- Travis D Goode
- Institute for Neuroscience and the Department of Psychology, Texas A&M University, College Station, Texas 77843-3474, USA
| | - Stephen Maren
- Institute for Neuroscience and the Department of Psychology, Texas A&M University, College Station, Texas 77843-3474, USA
| |
Collapse
|
96
|
Yeganeh F, Nasimi A, Hatam M. Interaction of GABA and norepinephrine in the lateral division of the bed nucleus of the stria terminals in anesthetized rat, correlating single-unit and cardiovascular responses. Neuroscience 2017; 356:255-264. [PMID: 28576724 DOI: 10.1016/j.neuroscience.2017.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 12/23/2022]
Abstract
The bed nucleus of the stria terminalis (BST) consists of multiple anatomically distinct nuclei. The lateral division, which receives dense noradrenergic innervation, has been implicated in cardiovascular regulation and modulation of responses to stress. This study is performed to identify the cardiovascular and single-unit responses of the lateral BST to norepinephrine (NE), involved adrenoceptors, and possible interaction with GABAergic system of the BST in urethane-anesthetized rats. NE, adrenoreceptor antagonists, and GABAA antagonist were microinjected into the lateral division of BST, while arterial pressure (AP), heart rate (HR), and single-unit responses were simultaneously recorded. NE microinjected into the lateral division of BST produced depressor and bradycardic responses. The decrease in AP and HR to NE was blocked by prazosin, an α1-adrenoreceptor antagonist, but not by yohimbine, an α2 antagonist. Furthermore, injections of the GABAA receptor antagonist, bicuculline methiodide (BMI), into the lateral BST abolished the NE-induced depressor and bradycardic responses. We also observed single-unit responses consisting of excitatory and inhibitory responses correlated with cardiovascular function to the microinjection of NE. In conclusion, these data provide the first evidence that microinjection of NE in the lateral division of BST produces depressor and bradycardic responses in urethane-anesthetized rat. The depressor and bradycardiac response are mediated by local α1- but not α2-adrenoceptors. α1-AR activates the GABAergic system within the BST, which in turn produces depressor and bradycardic responses.
Collapse
Affiliation(s)
- Fahimeh Yeganeh
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Nasimi
- Dept. of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Hatam
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
97
|
Functional Heterogeneity in the Bed Nucleus of the Stria Terminalis. J Neurosci 2017; 36:8038-49. [PMID: 27488624 DOI: 10.1523/jneurosci.0856-16.2016] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022] Open
Abstract
Early work stressed the differing involvement of the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST) in the genesis of fear versus anxiety, respectively. In 2009, Walker, Miles, and Davis proposed a model of amygdala-BNST interactions to explain these functional differences. This model became extremely influential and now guides a new wave of studies on the role of BNST in humans. Here, we consider evidence for and against this model, in the process highlighting central principles of BNST organization. This analysis leads us to conclude that BNST's influence is not limited to the generation of anxiety-like responses to diffuse threats, but that it also shapes the impact of discrete threatening stimuli. It is likely that BNST-CeA interactions are involved in modulating responses to such threats. In addition, whereas current views emphasize the contributions of the anterolateral BNST region in anxiety, accumulating data indicate that the anteromedial and anteroventral regions also play a critical role. The presence of multiple functional subregions within the small volume of BNST raises significant technical obstacles for functional imaging studies in humans.
Collapse
|
98
|
Oliveira LA, Almeida J, Gomes-de-Souza L, Benini R, Crestani CC. CRF1and CRF2receptors in the bed nucleus of stria terminalis differently modulate the baroreflex function in unanesthetized rats. Eur J Neurosci 2017; 46:1805-1812. [DOI: 10.1111/ejn.13622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Leandro A. Oliveira
- Laboratory of Pharmacology; Department of Natural Active Principles and Toxicology; School of Pharmaceutical Sciences; São Paulo State University (UNESP); Rodovia Araraquara-Jau Km 01 (Campus Universitário) 14800-903 Araraquara SP Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences; PIPGCF; São Carlos SP Brazil
| | - Jeferson Almeida
- Laboratory of Pharmacology; Department of Natural Active Principles and Toxicology; School of Pharmaceutical Sciences; São Paulo State University (UNESP); Rodovia Araraquara-Jau Km 01 (Campus Universitário) 14800-903 Araraquara SP Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences; PIPGCF; São Carlos SP Brazil
| | - Lucas Gomes-de-Souza
- Laboratory of Pharmacology; Department of Natural Active Principles and Toxicology; School of Pharmaceutical Sciences; São Paulo State University (UNESP); Rodovia Araraquara-Jau Km 01 (Campus Universitário) 14800-903 Araraquara SP Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences; PIPGCF; São Carlos SP Brazil
| | - Ricardo Benini
- Laboratory of Pharmacology; Department of Natural Active Principles and Toxicology; School of Pharmaceutical Sciences; São Paulo State University (UNESP); Rodovia Araraquara-Jau Km 01 (Campus Universitário) 14800-903 Araraquara SP Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences; PIPGCF; São Carlos SP Brazil
| | - Carlos C. Crestani
- Laboratory of Pharmacology; Department of Natural Active Principles and Toxicology; School of Pharmaceutical Sciences; São Paulo State University (UNESP); Rodovia Araraquara-Jau Km 01 (Campus Universitário) 14800-903 Araraquara SP Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences; PIPGCF; São Carlos SP Brazil
| |
Collapse
|
99
|
Fudge JL, Kelly EA, Pal R, Bedont JL, Park L, Ho B. Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate. Neuropsychopharmacology 2017; 42:1563-1576. [PMID: 28220796 PMCID: PMC5518904 DOI: 10.1038/npp.2017.38] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 02/08/2017] [Accepted: 02/12/2017] [Indexed: 01/06/2023]
Abstract
The central extended amygdala (CEA) has been conceptualized as a 'macrosystem' that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the 'limbic-associative' striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning.
Collapse
Affiliation(s)
- Julie L Fudge
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Emily A Kelly
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Ria Pal
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Joseph L Bedont
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Lydia Park
- Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Brian Ho
- Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
100
|
Excitation of GABAergic Neurons in the Bed Nucleus of the Stria Terminalis Triggers Immediate Transition from Non-Rapid Eye Movement Sleep to Wakefulness in Mice. J Neurosci 2017. [PMID: 28642284 DOI: 10.1523/jneurosci.0245-17.2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Emotionally salient situations usually trigger arousal along with autonomic and neuroendocrine reactions. To determine whether the extended amygdala plays a role in sleep-wakefulness regulation, we examined the effects of optogenetic and pharmacogenetic excitation of GABAergic neurons in the bed nucleus of the stria terminalis (GABABNST neurons). Acute optogenetic excitation of these cells during nonrapid eye movement (NREM) sleep resulted in an immediate state transition to wakefulness, whereas stimulation during REM sleep showed no effect on sleep-wakefulness states in male mice. An anterograde tracing study suggested GABABNST neurons send axonal projections to several brain regions implicated in arousal, including the preoptic area, lateral hypothalamus, periaqueductal gray, deep mesencephalic nucleus, and parabrachial nucleus. A dual orexin receptor antagonist, DORA-22, did not affect the optogenetic transition from NREM sleep to wakefulness. Chemogenetic excitation of GABABNST neurons evoked a sustained wakefulness state, but this arousal effect was markedly attenuated by DORA-22. These observations suggest that GABABNST neurons play an important role in transition from NREM sleep to wakefulness without the function of orexin neurons, but prolonged excitation of these cells mobilizes the orexin system to sustain wakefulness.SIGNIFICANCE STATEMENT We examined the role of the bed nucleus of the stria terminalis (BNST) in the regulation of wakefulness. Optogenetic excitation of GABAergic neurons in the BNST (GABABNST neurons) during nonrapid eye movement (NREM) sleep in mice resulted in immediate transition to a wakefulness state without function of orexins. Prolonged excitation of GABABNST neurons by a chemogenetic method evoked a longer-lasting, sustained wakefulness state, which was abolished by preadministration of a dual orexin receptor antagonist, DORA-22. This study revealed a role of the BNST GABAergic system in sleep-wakefulness control, especially in shifting animals' behavioral states from NREM sleep to wakefulness, and provides an important insight into the pathophysiology of insomnia and the role of orexin in arousal regulation.
Collapse
|