51
|
Dusart I, Guenet JL, Sotelo C. Purkinje cell death: differences between developmental cell death and neurodegenerative death in mutant mice. THE CEREBELLUM 2006; 5:163-73. [PMID: 16818391 DOI: 10.1080/14734220600699373] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review is devoted to Purkinje cell death occurring during development and in spontaneous cerebellar mutations of the mouse. We first present evidence in favor of an apoptotic developmental Purkinje cell death. Then, the different types of Purkinje cell degeneration occurring in mutant mice primarily affecting this neuronal population (nervous, purkinje cell degeneration, Lurcher, toppler, and woozy) are described and discussed. In addition, we show, by reporting new data, that cell death in tambaleante mutant mice can be related to autophagy. Last, we discuss the fact that the cell death pathways in mutant mice are more complex than the three types of developmental death generally described (apoptosis, autophagy, necrosis), since they share often characteristics of more than one type of these developmental cell deaths, particularly autophagy and apoptosis.
Collapse
|
52
|
Wang T, Parris J, Li L, Morgan JI. The carboxypeptidase-like substrate-binding site in Nna1 is essential for the rescue of the Purkinje cell degeneration (pcd) phenotype. Mol Cell Neurosci 2006; 33:200-13. [PMID: 16952463 DOI: 10.1016/j.mcn.2006.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/17/2006] [Accepted: 07/27/2006] [Indexed: 11/19/2022] Open
Abstract
The Purkinje cell degeneration (pcd) phenotype is characterized by adult onset neurodegeneration resulting from mutations in Nna1, a gene encoding an intracellular protein with a putative metallocarboxypeptidase domain. As Nna1 is also induced in axotomized motor neurons, the elucidation of its function can shed light on previously unsuspected mechanisms common to degenerative and regenerative responses. Structural modeling revealed that Nna1 and three related gene products constitute a new subfamily of metallocarboxypeptidases with a distinctive substrate-binding site. To test whether the metallocarboxypeptidase domain is functionally essential, transgenic mice were generated that expressed Nna1 or a substrate-binding site mutant of Nna1 selectively in Purkinje cells using the L7/pcp2 promoter. When bred onto a homozygous pcd(3J) background, wild type but not mutant Nna1 rescued ataxic behavior and Purkinje cell loss. Therefore, loss of Nna1 in Purkinje cells leads directly to their degeneration and Nna1's carboxypeptidase domain is essential for survival of these neurons.
Collapse
Affiliation(s)
- Taiyu Wang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 N. Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
53
|
Wang T, Morgan JI. The Purkinje cell degeneration (pcd) mouse: an unexpected molecular link between neuronal degeneration and regeneration. Brain Res 2006; 1140:26-40. [PMID: 16942761 DOI: 10.1016/j.brainres.2006.07.065] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
The spontaneous autosomal recessive mouse mutation, Purkinje cell degeneration (pcd), was first identified through its ataxic behavior. Since its discovery in the 1970s, the strain has undergone extensive investigation, although another quarter century elapsed until the mutant gene (agtpbp1 a.k.a. Nna1) underlying the pcd phenotype was identified. As Nna1 was initially discovered as a gene induced in motor neurons following axotomy the finding that its loss leads to selective neuronal degeneration points to a novel and unexpected common molecular mechanism contributing to the apparently opposing processes of degeneration and regeneration. The elucidation of this mechanism may of course have significant implications for an array of neurological disorders. Here we will first review the principle features of the pcd phenotype and then discuss the functional implications of more recent findings emanating from the characterization of Nna1, the protein that is lost in pcd. We also provide new data on the genetic dissection of the cell death pathways operative in pcd(3J) mice, proving that granule cell death and Purkinje cell death in these mice have distinct molecular bases. We also provide new information on the structure of mouse Nna1 as well as Nna1 protein levels in pcd(3J) mice.
Collapse
Affiliation(s)
- Taiyu Wang
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
54
|
Lalonde R, Strazielle C. Spontaneous and induced mouse mutations with cerebellar dysfunctions: behavior and neurochemistry. Brain Res 2006; 1140:51-74. [PMID: 16499884 DOI: 10.1016/j.brainres.2006.01.031] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 01/12/2006] [Indexed: 11/20/2022]
Abstract
Grid2(Lc) (Lurcher), Grid2(ho) (hot-foot), Rora(sg) (staggerer), nr (nervous), Agtpbp1(pcd) (Purkinje cell degeneration), Reln(rl) (reeler), and Girk2(Wv) (Weaver) are spontaneous mutations with cerebellar atrophy, ataxia, and deficits in motor coordination tasks requiring balance and equilibrium. In addition to these signs, the Dst(dt) (dystonia musculorum) spinocerebellar mutant displays dystonic postures and crawling. More recently, transgenic models with human spinocerebellar ataxia mutations and alterations in calcium homeostasis have been shown to exhibit cerebellar anomalies and motor coordination deficits. We describe neurochemical characteristics of these mutants with respect to regional brain metabolism as well as amino acid and biogenic amine concentrations, uptake sites, and receptors.
Collapse
Affiliation(s)
- R Lalonde
- Université de Rouen, Faculté de Médecine et de Pharmacie, INSERM U614, 76183 Rouen Cedex, France.
| | | |
Collapse
|
55
|
Chakrabarti L, Neal JT, Miles M, Martinez RA, Smith AC, Sopher BL, La Spada AR. The Purkinje cell degeneration 5J mutation is a single amino acid insertion that destabilizes Nna1 protein. Mamm Genome 2006; 17:103-10. [PMID: 16465590 DOI: 10.1007/s00335-005-0096-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 09/21/2005] [Indexed: 11/25/2022]
Abstract
In the mouse, Purkinje cell degeneration (pcd) is a recessive mutation characterized by degeneration of cerebellar Purkinje cells, retinal photoreceptors, olfactory bulb mitral neurons, and certain thalamic neurons, and is accompanied by defective spermatogenesis. Previous studies of pcd have led to the identification of Nna1 as the causal gene; however, how loss of Nna1 function results in neurodegeneration remains unresolved. One useful approach for establishing which functional domains of a protein underlie a recessive phenotype has been to determine the genetic basis of the various alleles at the locus of interest. Because none of the pcd alleles analyzed at the time of the identification of Nna1 provided insight into the molecular basis of Nna1 loss-of-function, we obtained a recent pcd remutation--pcd5J, and after determining that its phenotype is comparable to existing pcd severe alleles, we sought its genetic basis by sequencing Nna1. In this article we report that pcd5J results from the insertion of a single GAC triplet encoding an aspartic acid residue at position 775 of Nna1. Although this insertion does not affect Nna1 expression at the RNA level, Nna1pcd-5J protein expression is markedly decreased. Pulse-chase experiments reveal that the aspartic acid insertion dramatically destabilizes Nna1pcd-5J protein, accounting for the observation that pcd5J is a severe allele. The presence of a readily detectable genetic mutation in pcd5J confirms that Nna1 loss-of-function alone underlies the broad pcd phenotype and will facilitate further studies of how Nna1 loss-of-function produces neurodegeneration and defective spermatogenesis in pcd mice.
Collapse
Affiliation(s)
- Lisa Chakrabarti
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195-7110, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Grimaldi P, Carletti B, Rossi F. Neuronal replacement and integration in the rewiring of cerebellar circuits. ACTA ACUST UNITED AC 2005; 49:330-42. [PMID: 16111560 DOI: 10.1016/j.brainresrev.2004.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2004] [Indexed: 11/26/2022]
Abstract
Repair of CNS injury or degeneration by cell replacement may lead to significant functional recovery only through faithful reconstruction of the original anatomical architecture. This is particularly relevant for point-to-point systems, where precisely patterned connections have to be re-established to regain adaptive function. Despite the major interest recently drawn on cell therapies, little is known about the mechanisms and the potentialities for specific integration of new neurons in the mature CNS. Major findings and concepts about this issue will be reviewed here, with special focus on work dealing with the Purkinje cell transplantation in the rodent cerebellum. These studies show that the adult CNS may provide some efficient information to direct cell engraftment and process outgrowth. On their side, immature cells may be able to induce adaptive changes in their adult partners to facilitate their incorporation in the recipient network. Despite the rather high degree of specific integration achieved in several different CNS regions, these processes are usually defective and long-distance connections are not rewired. Thus, although some potentialities for cell replacement exist in the mature CNS, full incorporation of new neurons in adult circuits is rarely observed. Indeed, intrinsic mechanisms for growth control as well as injury-induced changes in the properties and architecture of the nervous tissue contribute to hamper repair processes. As a consequence, crucial to obtain successful cell replacement and integration in the mature CNS is a deep understanding of the basic biological mechanisms that regulate the interactions between newly added elements and the recipient environment.
Collapse
Affiliation(s)
- Piercesare Grimaldi
- Department of Neuroscience and Rita Levi Montalcini Centre for Brain Repair, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy
| | | | | |
Collapse
|
57
|
Carletti B, Rossi F. Selective rather than inductive mechanisms favour specific replacement of Purkinje cells by embryonic cerebellar cells transplanted to the cerebellum of adult Purkinje cell degeneration (pcd) mutant mice. Eur J Neurosci 2005; 22:1001-12. [PMID: 16176342 DOI: 10.1111/j.1460-9568.2005.04314.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell replacement after neuronal degeneration in the adult CNS depends on the availability of specific cues to direct specification, differentiation and integration of newly born neurons into mature circuits. Following recent reports indicating that neurogenic signals may be reactivated in the adult injured CNS, here we asked whether such signals are expressed in the cerebellum after Purkinje cell degeneration. Thus, we compared the fate of embryonic cerebellar cells transplanted to the cerebella of adult wild-type and Purkinje cell degeneration (pcd) mutant mice. Donor cells were dissected from beta-actin-enhanced green fluorescent protein (EGFP) transgenic mice and transplanted as a single cell suspension. In both hosts, grafted cells generated all major cerebellar phenotypes, with a precise localization in the recipient cortex or white matter. Nevertheless, the phenotypic distributions showed striking quantitative differences. Most notably, in the pcd cerebellum there was a higher amount of Purkinje cells, while other phenotypes were less frequent. Analysis of cell proliferation by 5-bromo-2'-deoxyuridine (BrDU) incorporation revealed that in both hosts mitotic activity was strongly reduced shortly after transplantation, and virtually all donor Purkinje cells were actually generated before grafting. Together, these results indicate that some compensatory mechanisms operate in the pcd environment. However, the very low mitotic rate of transplanted cells suggests that the adult cerebellum, either wild-type or mutant, does not provide instructive neurogenic cues to direct the specification of uncommitted progenitors. Rather, specific replacement in mutant hosts is achieved through selective mechanisms that favour the survival and integration of donor Purkinje cells at the expense of other phenotypes.
Collapse
Affiliation(s)
- Barbara Carletti
- Department of Neuroscience and Rita Levi Montalcini Centre for Brain Repair, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy
| | | |
Collapse
|
58
|
Abstract
In the central nervous system, dopamine is known to play a critical role in motor and cognitive functions. Although the cerebellum plays a role in the control of movement and posture and in cognitive functions, it has not been considered to be a dopaminergic region and the dopamine present was thought to represent a precursor of noradrenaline. However, recent evidence suggests that in the cerebellum there is a small dopaminergic element, whose properties are similar to the well characterized system of striatum. In order to better understand the functional role of this system and to delineate its specific interactions within the cerebellum, the distribution and properties of dopamine transporter (DAT) in the cerebellum of reeler and Purkinje cell degeneration (Nna1pcd) mutant mice, which are characterized by severe loss of different cell populations and abnormalities in synapse formation, have been studied. Kinetic studies revealed that [3H]dopamine is transported into cerebellar synaptosomes prepared from normal mice with affinities similar to that into striatal synaptosomes but with much lower maximal velocities. In reeler cerebellar synaptosomes the number of transport sites is significantly reduced. In Nna1pcd cerebellar synaptosomes the kinetic properties of transport of [3H]dopamine are similar to the normal. However, in vitro quantitative DAT autoradiography revealed a significantly increased binding in cerebellar nuclei, a decreased binding in molecular layer and an unaltered binding in the granule cell layer. These observations confirm a dopaminergic innervation of the cerebellum and contribute to our understanding of the intracerebellar distribution of the dopaminergic system.
Collapse
Affiliation(s)
- Panagiotis Giompres
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, Greece.
| | | |
Collapse
|
59
|
Slemmer JE, De Zeeuw CI, Weber JT. Don't get too excited: mechanisms of glutamate-mediated Purkinje cell death. PROGRESS IN BRAIN RESEARCH 2005; 148:367-90. [PMID: 15661204 DOI: 10.1016/s0079-6123(04)48029-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purkinje cells (PCs) present a unique cellular profile in both the cerebellum and the brain. Because they represent the only output cell of the cerebellar cortex, they play a vital role in the normal function of the cerebellum. Interestingly, PCs are highly susceptible to a variety of pathological conditions that may involve glutamate-mediated 'excitotoxicity', a term coined to describe an excessive release of glutamate, and a subsequent over-activation of excitatory amino acid (NMDA, AMPA, and kainite) receptors. Mature PCs, however, lack functional NMDA receptors, the means by which Ca(2+) enters the cell in classic hippocampal and cortical models of excitotoxicity. In PCs, glutamate predominantly mediates its effects, first via a rapid influx of Ca(2+)through voltage-gated calcium channels, caused by the depolarization of the membrane after AMPA receptor activation (and through Ca(2+)-permeable AMPA receptors themselves), and second, via a delayed release of Ca(2+) from intracellular stores. Although physiological levels of intracellular free Ca(2+) initiate vital second messenger signaling pathways in PCs, excessive Ca(2+) influx can detrimentally alter dendritic spine morphology via interactions with the neuronal cytoskeleton, and thus can perturb normal synaptic function. PCs possess various calcium-binding proteins, such as calbindin-D28K and parvalbumin, and glutamate transporters, in order to prevent glutamate from exerting deleterious effects. Bergmann glia are gaining recognition as key players in the clearance of extracellular glutamate; these cells are also high in S-100beta, a protein with both neurodegenerative and neuroprotective abilities. In this review, we discuss PC-specific mechanisms of glutamate-mediated excitotoxic cell death, the relationship between Ca(2+) and cytoskeleton, and the implications of glutamate, and S-100beta for pathological conditions, such as traumatic brain injury.
Collapse
Affiliation(s)
- Jennifer E Slemmer
- Department of Neuroscience, Erasmus Medical Center, Dr. Molenwaterplein 50, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | |
Collapse
|
60
|
Delis F, Mitsacos A, Giompres P. Dopamine receptor and transporter levels are altered in the brain of Purkinje Cell Degeneration mutant mice. Neuroscience 2004; 125:255-68. [PMID: 15051164 DOI: 10.1016/j.neuroscience.2004.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2004] [Indexed: 11/16/2022]
Abstract
The Purkinje Cell Degeneration (Nna1pcd, pcd) mutant mouse is mainly characterized by the complete, primary loss of the Purkinje cells and the secondary, partial, retrograde loss of the granule and inferior olive neurons and is considered a model of human degenerative ataxia. We determined, by in vitro quantitative autoradiography and in situ hybridization, the effects of the Purkinje cell deprivation on the dopaminergic system of the Nna1pcd mutant mouse. The dopamine transporters, as determined by [3H]WIN35428 binding, were increased compared with wild-type mice in the ventral mesencephalic dopaminergic nuclei and in the lateral striatum, motor cortex and septum. In the cerebellum of Nna1pcd mice, the dopamine transporters showed a significant increase in the deep cerebellar nuclei, but were significantly decreased in the molecular layer. The D1-like receptors, as determined by [3H]SCH23390 binding, increased significantly in the Nna1pcd substantia nigra. The D2/D3 receptors, as determined by [3H]raclopride binding, exhibited a significant decrease in lateral divisions of the striatum. Significant increases in D2-like receptors, as determined by [3H]nemonapride binding, were observed in most divisions of the striatum as well as in septum, hippocampus, and piriform cortex. This D2-like fraction most probably corresponds to the D4 receptor subtype. In the cerebellum of Nna1pcd mice, D2-like receptors were significantly decreased in the molecular layer. The results suggest an increased excitatory input on the dopaminergic mesencephalic neurons and an alteration of the dopaminergic neurotransmission in basal ganglia, cortical and limbic regions of the Nna1pcd mutant mouse. In the cerebellum, the significant downregulation of the dopamine transporters and D2-like receptors in the mutant cerebellar molecular layer is possibly due to the absence of the Purkinje cells.
Collapse
Affiliation(s)
- F Delis
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, 26500 Rion, Greece
| | | | | |
Collapse
|
61
|
Abstract
The object of this review is to assemble much of the literature concerning Purkinje cell death in cerebellar pathology and to relate this to what is now known about the complex topography of the cerebellar cortex. A brief introduction to Purkinje cells, and their regionalization is provided, and then the data on Purkinje cell death in mouse models and, where appropriate, their human counterparts, have been arranged according to several broad categories--naturally-occurring and targeted mutations leading to Purkinje cell death, Purkinje cell death due to toxins, Purkinje cell death in ischemia, Purkinje cell death in infection and in inherited disorders, etc. The data reveal that cerebellar Purkinje cell death is much more topographically complex than is usually appreciated.
Collapse
Affiliation(s)
- Justyna R Sarna
- Genes Development Research Group, Department of Cell Biology & Anatomy, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1
| | | |
Collapse
|
62
|
Coluccia A, Tattoli M, Bizzoca A, Arbia S, Lorusso L, De Benedictis L, Buttiglione M, Cuomo V, Furley A, Gennarini G, Cagiano R. Transgenic mice expressing F3/contactin from the transient axonal glycoprotein promoter undergo developmentally regulated deficits of the cerebellar function. Neuroscience 2004; 123:155-66. [PMID: 14667450 DOI: 10.1016/j.neuroscience.2003.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have shown that transgenic transient axonal glycoprotein (TAG)/F3 mice, in which the mouse axonal glycoprotein F3/contactin was misexpressed from a regulatory region of the gene encoding the transient axonal glycoprotein TAG-1, exhibit a transient disruption of cerebellar granule and Purkinje cell development [Development 130 (2003) 29]. In the present study we explore the neurobehavioural consequences of this mutation. We report on assays of reproductive parameters (gestation length, litter size and offspring viability) and on somatic and neurobehavioural end-points (sensorimotor development, homing performance, motor activity, motor coordination and motor learning). Compared with wild-type littermates, TAG/F3 mice display delayed sensorimotor development, reduced exploratory activity and impaired motor activity, motor coordination and motor learning. The latter parameters, in particular, were affected also in adult mice, despite the apparent recovery of cerebellar morphology, suggesting that subtle changes of neuronal circuitry persist in these animals after development is complete. These behavioural deficits indicate that the finely coordinated expression of immunoglobulin-like cell adhesion molecules such as TAG-1 and F3/contactin is of key relevance to the functional, as well as morphological maturation of the cerebellum.
Collapse
Affiliation(s)
- A Coluccia
- Department of Pharmacology and Human Physiology, Medical School, University of Bari, Policlinico, Piazza Giulio Cesare, I-70124, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Buffo A, Carulli D, Rossi F, Strata P. Extrinsic regulation of injury/growth-related gene expression in the inferior olive of the adult rat. Eur J Neurosci 2003; 18:2146-58. [PMID: 14622175 DOI: 10.1046/j.1460-9568.2003.02940.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Successful axon regeneration relies on the capability of the lesioned neurons to up-regulate a specific set of injury/growth-associated genes. In the adult central nervous system, the strength of the cell body response is generally related to the distance of the injury site from the perikaryon, being stronger for proximal lesions. Nevertheless, inferior olive (IO) cells react to injury and regenerate their axons even after distal transections. To investigate the mechanisms that regulate the IO growth properties, we examined the expression of injury/growth markers (nitric oxide synthase, growth-associated protein 43 and c-Jun) after target deletion or axotomy performed at different sites along the olivocerebellar pathway. Both axon injury and target loss disclose two subsets of IO neurons distributed within precise subnuclei: one subset up-regulates all markers in all conditions, whereas the other shows a mild c-Jun expression but remains unresponsive even after a very proximal axotomy. These observations indicate that distinct subpopulations of IO cells respond to different regulatory strategies. Unresponsive neurons appear insensitive to environmental positive or negative cues, suggesting that they are intrinsically unable to set up a cellular reaction to injury. In contrast, cell body changes in reactive neurons are elicited after the removal of retrogradely transported target-derived inhibitory signals. Target loss also induces degeneration of IO cells, whose survival remains partially dependent on Purkinje targets in adulthood. Thus, the intrinsic regenerative potential of a functionally homogeneous population is regulated by multiple mechanisms, specific for distinct neuronal subsets.
Collapse
Affiliation(s)
- Annalisa Buffo
- Rita Levi-Montalcini Center for Brain Repair, Department of Neuroscience, University of Turin, C. Raffaello 30, 10125 Turin, Italy.
| | | | | | | |
Collapse
|
64
|
Ghoumari AM, Dusart I, El-Etr M, Tronche F, Sotelo C, Schumacher M, Baulieu EE. Mifepristone (RU486) protects Purkinje cells from cell death in organotypic slice cultures of postnatal rat and mouse cerebellum. Proc Natl Acad Sci U S A 2003; 100:7953-8. [PMID: 12810951 PMCID: PMC164694 DOI: 10.1073/pnas.1332667100] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mifepristone (RU486), which binds with high affinity to both progesterone and glucocorticosteroid receptors (PR and GR), is well known for its use in the termination of unwanted pregnancy, but other activities including neuroprotection have been suggested. Cerebellar organotypic cultures from 3 to 7 postnatal day rat (P3-P7) were studied to examine the neuroprotective potential of RU486. In such cultures, Purkinje cells enter a process of apoptosis with a maximum at P3. This study shows that RU486 (20 microM) can protect Purkinje cells from this apoptotic process. The neuroprotective effect did involve neither PR nor GR, because it could not be mimicked or inhibited by other ligands of these receptors, and because it still took place in PR mutant (PR-KO) mice and in brain-specific GR mutant mice (GRNes/Cre). Potent antioxidant agents did not prevent Purkinje cells from this developmental cell death. The neuroprotective effect of RU486 could also be observed in pathological Purkinje cell death. Indeed, this steroid is able to prevent Purkinje cells from death in organotypic cultures of cerebellar slices from Purkinje cell degeneration (pcd) mutant mice, a murine model of hereditary neurodegenerative ataxia. In P0 cerebellar slices treated with RU486 for 6 days and further kept in culture up to 21 days, the synthetic steroid increased by 16.2-fold the survival of pcd/pcd Purkinje cells. Our results show that RU486 may act through a new mechanism, not yet elucidated, to protect Purkinje cells from death.
Collapse
Affiliation(s)
- A M Ghoumari
- Institut National de la Santé et de la Recherche Médicale U488, Batiment Gregory Pincus, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | | | | | | | | | | | | |
Collapse
|
65
|
Fernandez-Gonzalez A, La Spada AR, Treadaway J, Higdon JC, Harris BS, Sidman RL, Morgan JI, Zuo J. Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science 2002; 295:1904-6. [PMID: 11884758 DOI: 10.1126/science.1068912] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The classical recessive mouse mutant, Purkinje cell degeneration (pcd), exhibits adult-onset degeneration of cerebellar Purkinje neurons, retinal photoreceptors, olfactory bulb mitral neurons, and selected thalamic neurons, and has defective spermatogenesis. Here we identify Nna1 as the gene mutated in the original pcd and two additional pcd alleles (pcd2J and pcd3J). Nna1 encodes a putative nuclear protein containing a zinc carboxypeptidase domain initially identified by its induction in spinal motor neurons during axonal regeneration. The present study suggests an unexpected molecular link between neuronal degeneration and regeneration, and its results have potential implications for neurodegenerative diseases and male infertility.
Collapse
|
66
|
Killian JE, Baker JF. Horizontal vestibuloocular reflex (VOR) head velocity estimation in Purkinje cell degeneration (pcd/pcd) mutant mice. J Neurophysiol 2002; 87:1159-64. [PMID: 11826084 DOI: 10.1152/jn.00219.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The horizontal vestibuloocular reflex (VOR) of Purkinje cell degeneration (pcd/pcd) mutant mice, which lack a functional cerebellar cortex, was compared in darkness to that of wild-type animals during constant velocity yaw rotations about an earth-horizontal axis and during sinusoidal yaw rotations about an earth-vertical axis. Both wild-type and pcd/pcd mice showed a compensatory average VOR eye velocity, or bias, during constant velocity horizontal axis rotations, evidence of central neural processing of otolith afferent signals to create a signal proportional to head angular velocity. Eye velocity bias was greater in pcd/pcd mice than in wild-type mice at a low rotational velocity (32 degrees/s), but less at higher velocities (128 and 200 degrees/s). Lesion of the medial nodulus severely attenuated eye velocity bias in two wild-type mice, without attenuating VOR during sinusoidal vertical axis yaw rotations at 0.2 Hz. These results show that while head velocity estimation in mice, as in primates, depends on the cerebellum, pcd/pcd mutant mice develop velocity estimation without a functional cerebellar cortex. We conclude that neural circuits that exclude cerebellar cortex are capable of the signal processing necessary for head angular velocity estimation, but that these circuits are insufficient for normal estimation at high velocities.
Collapse
Affiliation(s)
- J Eric Killian
- Department of Physiology, Institute for Neuroscience, Northwestern University Medical School, 303 East Chicago Ave., Chicago, IL 60611, USA
| | | |
Collapse
|
67
|
Abstract
Not later than two synapses after their arrival in the cerebellar cortex all excitatory afferent signals are subsequently transformed into inhibitory ones. Guaranteed by the exceedingly ordered and stereotyped synaptic arrangement of its cellular elements, the cerebellar cortex transmits this inhibitory result of cerebellar integration exclusively via Purkinje cells (PCs) in a precise temporal succession directly onto the target neurons of the deep cerebellar and vestibular nuclei. Thus the cerebellar cortex seems to produce a temporal pattern of inhibitory influence on these target neurons that modifies their excitatory action in such a way that an activation of muscle fibers occurs which progressively integrates the intended motion into the actual condition of the motoric inventory. In consequence, disturbances that affect this cerebellar inhibition will cause uncoordinated, decomposed and ataxic movements, commonly referred to as cerebellar ataxia. Electrophysiological investigations using different cerebellar mouse mutants have shown that alterations in the cerebellar inhibitory input in the target nuclei lead to diverse neuronal responses and to different consequences for the behavioural phenotype. A dependence between the reconstitution of inhibition and the behavioural outcome seems to exist. Obviously two different basic mechanisms are responsible for these observations: (1) ineffective inhibition on target neurons by surviving PCs; and (2) enhancement of intranuclear inhibition in the deep cerebellar and vestibular nuclei. Which of the two strategies evolves is dependent upon the composition of the residual cell types in the cerebellum and on the degree of PC input loss in a given area of the target nuclei. Motor behaviour seems to deteriorate under the first of these mechanisms whereas it may benefit from the second. This is substantiated by stereotaxic removal of the remaining PC input, which eliminates the influence of the first mechanism and is able to induce the second strategy. As a consequence, motor performance improves considerably. In this review, results leading to the above conclusions are presented and links forged to human cerebellar diseases.
Collapse
Affiliation(s)
- U Grüsser-Cornehls
- Freie Universität Berlin, Fachbereich Humanmedizin, Universitätsklinikum Benjamin Franklin, Department of Physiology, 14195, Berlin, Germany.
| | | |
Collapse
|
68
|
Affiliation(s)
- L C Triarhou
- Department of Pathology and Laboratory Medicine and Program in Medical Neurobiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
69
|
King DA, Krupa DJ, Foy MR, Thompson RF. Mechanisms of neuronal conditioning. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2001; 45:313-37. [PMID: 11185906 DOI: 10.1016/s0074-7742(01)45017-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- D A King
- Neuroscience Program, University of Southern California, University Park, Los Angeles, California, USA
| | | | | | | |
Collapse
|
70
|
Parham K, Bonaiuto G, Carlson S, Turner JG, D'Angelo WR, Bross LS, Fox A, Willott JF, Kim DO. Purkinje cell degeneration and control mice: responses of single units in the dorsal cochlear nucleus and the acoustic startle response. Hear Res 2000; 148:137-52. [PMID: 10978831 DOI: 10.1016/s0378-5955(00)00147-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The cartwheel cell is the most numerous inhibitory interneuron of the dorsal cochlear nucleus (DCN). It is expected to be an important determinant of DCN function. To assess the contribution of the cartwheel cell, we examined the discharge characteristics of DCN neurons and behavioral measures in the Purkinje cell degeneration (pcd) mice, which lack cartwheel cells, and compared them to those of the control mice. Distortion product otoacoustic emissions and auditory brainstem-evoked response thresholds were similar between the two groups. Extracellularly recorded DCN single units in ketamine/xylazine-anesthetized mice were classified according to post-stimulus time histogram (PSTH) and excitatory-inhibitory response area (EI-area) schemes. PSTHs recorded in mouse DCN included chopper, pauser/buildup, onset, inhibited and nondescript types. EI-areas recorded included Types I, II, III, I/III, IV and V. There were no significant differences in the proportions of various unit types between the pcd and control mice. The pcd units had slightly lower thresholds to characteristic frequency tones; however, they had spontaneous rates, thresholds to noise, and maximum driven rates to noise that were similar to those of the control units. Pcd mice had smaller startle amplitudes, but startle latency, prepulse inhibition/augmentation and facilitation by a background tone were comparable between the two groups. From these results, we conclude that DCN function in response to relatively simple acoustic stimuli is minimally affected by the absence of the cartwheel cells. Future studies employing more complex and/or multimodal stimuli should help assess the role of the cartwheel cells.
Collapse
Affiliation(s)
- K Parham
- Division of Otolarynology, Department of Surgery, University of Connecticut Health Center, Farmington, 06030-1110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Thanks largely to cloning the genes for several neurodegenerative diseases over the past decade and the existence of mouse mutants, the molecular basis of neurodegeneration is finally beginning to yield some of its secrets. We discuss what has been learned about the pathogenesis of "triplet repeat" diseases through mouse models for spinocerebellar ataxia types 1 and 3 and Huntington disease, including the roles of nuclear aggregates and protein cleavage. We also discuss the neurologic phenotypes that arise from mutations in neurotransmitter receptors (lurcher mice) and ion channels (weaver, leaner, and tottering mice), drawing parallels between ischemic cell death and the neurodegeneration that occurs in the lurcher mouse. Finally, we discuss common mechanisms of cell death and lessons learned from these mouse models that might have broader relevance to other neurologic disorders.
Collapse
Affiliation(s)
- N Heintz
- Howard Hughes Medical Institute, Rockefeller University, New York, New York 10021, USA.
| | | |
Collapse
|
72
|
Le Marec N, Lalonde R. Treadmill performance of mice with cerebellar lesions: 2. Lurcher mutant mice. Neurobiol Learn Mem 2000; 73:195-206. [PMID: 10775492 DOI: 10.1006/nlme.1999.3926] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The sensorimotor skills of a spontaneous mouse mutant with cerebellar cortical atrophy, Lurcher, were examined on either a fast or a slow treadmill inclined at one of three slopes, requiring forward movements in order to avoid footshocks. During the early part of acquisition, Lurcher mutants had lower latencies before falling on either treadmill than normal mice, but not during a retention test. For both Lurcher mutants and controls, the amount of time spent walking as a function of time spent on the belt increased with an increase in belt speed. Lurcher mutants had higher walking time/total time ratios on the slow but not on the fast treadmill. It is concluded that cerebellar cortical degeneration impaired the time course of acquisition but not long-term retention of the treadmill task.
Collapse
Affiliation(s)
- N Le Marec
- Centre Hospitalier de l'Université de Montréal, Pavillon Hôtel-Dieu, Service de Neurologie, Unité de Neurologie du Comportement, Neurobiologie et Neuropsychologie, Montréal, Québec, H2W 1T8, Canada
| | | |
Collapse
|
73
|
Rotter A, Rath S, Evans JE, Frostholm A. Modulation of GABA(A) receptor subunit mRNA levels in olivocerebellar neurons of purkinje cell degeneration and weaver mutant mice. J Neurochem 2000; 74:2190-200. [PMID: 10800965 DOI: 10.1046/j.1471-4159.2000.0742190.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In olivocerebellar circuits, changes in the subunit composition of GABA(A) receptors occur at a time of extensive synaptic remodeling. In the deep cerebellar nuclei, GABA(A) receptor alpha1, beta2, and gamma2 subunit mRNA expression increases throughout neonatal development, whereas in the inferior olivary complex, the perinatal combination of alpha3, alpha5, beta3, and gamma2 mRNAs switches to the adult combination of alpha2, alpha4, beta3 and gamma1 during postnatal week 2. In situ hybridization was used to examine changes in subunit expression in the olivocerebellar nuclei of Purkinje cell degeneration and weaver mutant mice. In Purkinje cell degeneration, subunit transcripts decreased below control levels in olivary neurons; however, alpha1, beta2, and gamma2 transcript levels were slightly increased in the medial nucleus of the deep cerebellar nuclei. In weaver olivary neurons, although the switch from early- to late-onset subunit mRNAs occurred as in normal mice, transcript levels were differentially modulated by the mutation. Our studies indicate that major alterations in synaptic connectivity do not prevent developmentally programmed switches in GABA(A) receptor gene expression but can modulate the timing and level of transcript expression in afferent and efferent neurons.
Collapse
Affiliation(s)
- A Rotter
- Department of Pharmacology, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
74
|
Colucci-Guyon E, Gim�nez Y Ribotta M, Maurice T, Babinet C, Privat A. Cerebellar defect and impaired motor coordination in mice lacking vimentin. Glia 1999. [DOI: 10.1002/(sici)1098-1136(19990101)25:1<33::aid-glia4>3.0.co;2-j] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
75
|
Abstract
Neuronal survival during mammalian development crucially depends on target-derived neurotrophic factors. Target loss removes this trophic support and leads in most cases to the transsynaptic retrograde degeneration of the respective afferents. Primary vestibular afferents (PVA) originating from bipolar neurons in the vestibular ganglion (VG) are the first mossy fibers that enter the cerebellum, but little is known about the survival requirements of VG neurons. In the present study the influence of the differential granule cell (GC) target loss on the survival of VG neurons was studied quantitatively using unbiased stereological methods in the cerebellar mutants Purkinje cell degeneration (pcd/pcd), Lurcher (Lc/+), and Weaver (wv/wv). Neither the secondary GC loss in the Purkinje cell deficient mutants pcd/pcd and Lc/+, nor the primary loss of GCs in wv/wv produced any significant reduction in the total number of bipolar neurons in the VG compared to controls. So, PVA neurons are highly resistant to cerebellar target deprivation and survive in the absence of cerebellar granule and Purkinje cells, regardless of whether the target loss occurs before (in wv/wv), during (in Lc/+) or after (in pcd/pcd) the mossy fiber-granule cell synaptogenesis.
Collapse
Affiliation(s)
- J Bäurle
- Department of Physiology, Freie Universität Berlin, Fachbereich Humanmedizin, Universitätsklinikum Benjamin Franklin, Germany
| | | |
Collapse
|
76
|
|
77
|
Tolbert DL, Heckroth J. Purkinje cell transplants in Shaker mutant rats with hereditary Purkinje cell degeneration and ataxia. Exp Neurol 1998; 153:255-67. [PMID: 9784285 DOI: 10.1006/exnr.1998.6882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Shaker mutant rats are characterized by the adult-onset degeneration of cerebellar anterior lobe Purkinje cells and temporally correlated development of ataxia and tremor. Normal E-13 Purkinje cells were transplanted into the anterior cerebellum in adult shaker mutant rats to study donor/host interactions in an animal with adult-onset heredodegeneration. Donor Purkinje cells from extraparenchymal transplant sites migrated radially into the host molecular layer and differentiated. Donor Purkinje cell dendrites expanded to fill the host molecular layer, spinous processes were apparent, and axonal projections into the host gray and white matter were observed. Donor Purkinje cells remaining in the extraparenchymal transplant sites differentiated if they were located relatively close to the host cerebellum. Donor Purkinje cells located intraparenchymally in the host white matter or granule cell layer survived, but were stunted in their development. The orthogonal movement of donor Purkinje cells away from transplant sites in the host cerebellum was spatially restricted. The findings from this study indicate that host cerebellar cortex with adult-onset heredodegeneration of Purkinje cells supports the survival and differentiation of transplanted normal embryonic Purkinje cells.
Collapse
Affiliation(s)
- D L Tolbert
- Department of Anatomy and Neurobiology, Saint Louis University School of Medicine, St. Louis, Missouri, 63104, USA
| | | |
Collapse
|
78
|
Le Marec N, Hébert C, Amdiss F, Botez MI, Reader TA. Regional distribution of 5-HT transporters in the brain of wild type and 'Purkinje cell degeneration' mutant mice: a quantitative autoradiographic study with [3H]citalopram. J Chem Neuroanat 1998; 15:155-71. [PMID: 9797073 DOI: 10.1016/s0891-0618(98)00041-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The neurological mutant 'Purkinje cell degeneration' (pcd) is characterized by a primary degeneration of Purkinje cells, as well as by retrograde and secondary partial degeneration of cerebellar granule cells and inferior olivary neurons, and can be considered as an animal model of human degenerative ataxias. The serotonin (5-HT) innervation was examined in wild type and pcd mice, by quantifying 5-HT uptake sites, or transporters, using [3H]citalopram binding autoradiography. In both wild type and pcd mutants, the highest densities of 5-HT transporters were in mesencephalic and rostral pontine regions, in limbic structures, in hypothalamus and in discrete thalamic divisions, while the lowest labelling was found in cerebellum and brainstem reticular formation. In pcd mice, although [3H]citalopram labelling was higher in cerebellar cortex and deep cerebellar nuclei, when binding densities were corrected for surface area, the up-regulation of 5-HT transporters was present only in deep cerebellar nuclei. Also, higher labelling was found in nuclei raphe dorsalis and medialis, in ventral divisions of rostral neostriatum, caudal neostriatum, rostral globus pallidus, posteromedial amygdaloid nucleus, septum, olfactory tubercles, vertical limb of Broca's diagonal band, periventricular, latero-ventral and medio-ventral thalamic nuclei, medial geniculate nucleus, anterior hypothalamus and entorhinal cortex. The results indicate a relative integrity of the 5-HT innervation, but with a reorganization of serotoninergic terminals in the cerebellum, in particular in the deep cerebellar nuclei. This suggests that in progressive cerebellar degeneration, as found in the pcd mutant, the modified 5-HT system may still participate in motor functions by exerting an overall modulation of excitatory amino acid neurotransmission, but the availability of 5-HT may be altered in defined brain targets, as is the case for other spontaneous cerebellar mutants, in particular for the 'Lurcher' mutant mouse, a model of human olivopontocerebellar atrophy.
Collapse
Affiliation(s)
- N Le Marec
- Centre de Recherche en Sciences Neurologiques, Département de Physiologie, Faculté de Médecine, Université de Montréal, Qué., Canada
| | | | | | | | | |
Collapse
|
79
|
Smith AM, Mullen RJ. Parallin, a cerebellar granule cell protein the expression of which is developmentally regulated by Purkinje cells: evidence from mutant mice. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 104:79-89. [PMID: 9466710 DOI: 10.1016/s0165-3806(97)00141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this paper we report on monoclonal antibody 3H6 with unique specificities for development of the cerebellum. Immunohistochemical studies on normal and mutant mice suggest that it is primarily located in or on granule cell parallel fibers in the cerebellum. The only other region showing immunoreactivity is a small region of the hippocampus. The antigen is detected immunohistochemically as early as postnatal day 11 in the molecular layer of the cerebellum. In adult wild-type mice parallin expression is seen in the molecular layer and to a lesser degree in the internal granular layer. In the cerebella of two neurological granule cell-deficient mutants, weaver (wv) and staggerer (sg), parallin is not detected. However, in two Purkinje cell-deficient mutants, Purkinje cell degeneration (pcd) and nervous (nr), a more complex and interesting pattern is observed. These two mutants do have granule cells and parallel fibers and 3H6 immunoreactivity is observed. However, in both of these Purkinje cell-deficient mutants the 3H6 immunoreactivity is drastically reduced in regions where Purkinje cells have degenerated. Furthermore, in nr mutants, the antigen appears to be concentrated in regions of the parallel fiber that are in close proximity to Purkinje cells, suggesting its possible association with synapses. Taken together these results suggest that parallin is a marker of granule cells and their parallel fibers, its onset correlates with the formation of granule cell synapses on developing Purkinje cells, and it requires Purkinje cells for the maintenance of expression.
Collapse
Affiliation(s)
- A M Smith
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|
80
|
Thompson RF, Bao S, Chen L, Cipriano BD, Grethe JS, Kim JJ, Thompson JK, Tracy JA, Weninger MS, Krupa DJ. Associative learning. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1997; 41:151-89. [PMID: 9378587 DOI: 10.1016/s0074-7742(08)60351-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This chapter reviews evidence demonstrating the essential role of the cerebellum and its associated circuitry in the learning and memory of classical conditioning of discrete behavioral responses (e.g., eyeblink, limb flexion, head turn). It now seems conclusive that the memory traces for this basic category of associative learning are formed and stored in the cerebellum. Lesion, neuronal recording, electrical microstimulation, and anatomical procedures have been used to identify the essential conditioned stimulus (CS) circuit, including the pontine mossy fiber projections to the cerebellum; the essential unconditioned stimulus (US) reinforcing or teaching circuit, including neurons in the inferior olive (dorsal accessory olive) projecting to the cerebellum as climbing fibers; and the essential conditioned response (CR) circuit, including the interpositus nucleus, its projection via the superior cerebellar peduncle to the magnocellular red nucleus, and rubral projections to premotor and motor nuclei. Each major component of the eyeblink CR circuit was reversibly inactivated both in trained animals and over the course of training. In all cases in trained animals, inactivation abolished the CR (and the UR as well when motor nuclei were inactivated). When animals were trained during inactivation (and not exhibiting CRs) and then tested without inactivation, animals with inactivation of the motor nuclei, red nucleus, and superior peduncle had fully learned, whereas animals with inactivation of a very localized region of the cerebellum (anterior interpositus and overlying cortex) had not learned at all. Consequently, the memory traces are formed and stored in the cerebellum. Several alternative possibilities are considered and ruled out. Both the cerebellar cortex and the interpositus nucleus are involved in the memory storage process, suggesting that a phenomenon-like long-term depression (LTD) is involved in the cerebellar cortex and long-term potentiation (LTP) is involved in the interpositus. The experimental findings reviewed in this chapter provide perhaps the first conclusive evidence for the localization of a basic form of memory storage to a particular brain region, namely the cerebellum, and indicate that the cerebellum is indeed a cognitive machine.
Collapse
Affiliation(s)
- R F Thompson
- Neuroscience Program, University of Southern California, Los Angeles 90089, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Le Marec N, Lalonde R. Sensorimotor learning and retention during equilibrium tests in Purkinje cell degeneration mutant mice. Brain Res 1997; 768:310-6. [PMID: 9369330 DOI: 10.1016/s0006-8993(97)00666-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In order to determine the consequences of atrophy to the cerebellar cortex on postural sensorimotor learning and performance, a natural mutation, Purkinje cell degeneration (pcd), was used. The homozygous mutants were compared to heterozygous non-ataxic controls on three static beams, two grids (vertical and tilted), a mobile beam (accelerating rotorod), and a coat-hanger. Although their posture was less stable than that of controls, the pcd mutants were not impaired in distance travelled or in latencies before falling on the static beams. Mutant performance on the grids was not impaired in comparison to controls, while a reduction of latencies before falling on the coat-hanger occurred only during the early part of training. On the accelerating rotorod, pcd mutants fell far sooner than controls and spent more time in passive rotation. By contrast to controls, pcd mutants were not able to improve with practice. Both mutants and controls were deficient during a retention test conducted 8 days after acquisition. The cerebellar cortex is critically involved in timing whole body movements during postural adjustments to a mobile beam but not to four types of immobile apparatus.
Collapse
Affiliation(s)
- N Le Marec
- Unit of Behavioral Neurology, Neurobiology, and Neuropsychology, Hôtel-Dieu Hospital Research Center, Montreal, Canada
| | | |
Collapse
|
82
|
B�urle J, Helmchen C, Gr�sser-Cornehls U. Diverse effects of Purkinje cell loss on deep cerebellar and vestibular nuclei neurons in Purkinje cell degeneration mutant mice: A possible compensatory mechanism. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970811)384:4<580::aid-cne7>3.0.co;2-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
83
|
B�urle J, Gr�sser-Cornehls U. Differential number of glycine- and GABA-immunopositive neurons and terminals in the deep cerebellar nuclei of normal and Purkinje cell degeneration mutant mice. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970616)382:4<443::aid-cne2>3.0.co;2-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
84
|
Campbell DB, Hess EJ. Rapid genotyping of mutant mice using dried blood spots for polymerase chain reaction (PCR) analysis. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1997; 1:117-23. [PMID: 9385073 DOI: 10.1016/s1385-299x(96)00019-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spontaneous neurologic mutations in the mouse provide powerful tools for the study of mammalian central nervous system development. The study of mouse neurologic mutants has led to a better understanding of the complex mechanisms involved in the development of the nervous system. Because few of these mutations have been identified, molecular probes distinguishing heterozygotes from homozygotes are generally unavailable. Further, most neurologic mouse mutants breed poorly as homozygotes, making it necessary to breed heterozygotes and select homozygous mutant progeny based on phenotype. The requirement for heterozygous breeding and the lack of molecular markers specific for the mutation have hampered developmental studies because the underlying neurologic perturbations occur before the mutant mice can be identified by phenotype. The recent identification and chromosomal assignment of simple sequence repeats (SSRs), repetitive sequences of DNA found at a high density throughout the mouse genome, provide the tools for mapping mutations in the mouse and for subsequent genotyping of potential mutants prior to phenotype onset. The SSRs are useful because these markers are polymorphic (for review see Weber, J.L., Human DNA polymorphisms based on length variations in simple-sequence tandem repeats. In: K.E. Davies and S.M. Tilghman (Eds.), Genetic and Physical Mapping. Genome Analysis, Vol. I, Cold Spring Harbor Laboratory Press, Plainview, NY, 1990, pp. 159-181 [16]), that is, the size of the individual SSRs differs among strains of mice. Following polymerase chain reaction (PCR) amplification of an SSR and separation of PCR products by polyacrylamide gel electrophoresis, one can easily visualize differences in the size of the PCR product between mouse strains. Many mutations in the mouse arose spontaneously on inbred strains and were subsequently backcrossed onto a different strain. After many generations of congenic backcrosses, the only DNA retained from the original mutant strain is composed of the mutant gene and closely linked regions. Thus, it is possible to cross the mutant strain to a different mouse strain and map the mutation by correlating mutant phenotype to SSRs the same size as the original mutant strain. We have mapped the tottering (tg), Purkinje cell degeneration (pcd), and nervous (nr) mutations using SSRs in backcrossed mouse strains. The SSRs distinguishing mutant from normal strains can then be used to genotype potential mutant pups before the onset of the mutant phenotype. The protocol described below can be adapted to almost any mutation congenically inbred for genotyping. Here we describe a method for selecting primers appropriate for genotyping potential mouse mutants and a rapid protocol for genotype screening. Even with SSRs distinguishing mutant from normal mice, genotyping several mice simultaneously can be a daunting task. This is primarily because the protocols available for preparing DNA for PCR amplification are time-consuming, requiring several purification steps including phenol extractions. Although kits are commercially available for DNA preparation without organic extractions, these kits tend to be expensive. The protocol described is a rapid, inexpensive method of determining the genotype of mice using PCR analysis of dried blood spots. The protocol only requires PCR primers distinguishing among alleles and is therefore ideal for the rapid identification of potential mutants for those mouse mutations which have been mapped using microsatellite markers. The DNA preparation protocol may also be used in rapid screening of potential transgenic mice.
Collapse
Affiliation(s)
- D B Campbell
- Department of Neuroscience and Anatomy, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | |
Collapse
|
85
|
Stasi K, Mitsacos A, Triarhou LC, Kouvelas ED. Cerebellar Grafts Partially Reverse Amino Acid Receptor Changes Observed in the Cerebellum of Mice with Hereditary Ataxia: Quantitative Autoradiographic Studies. Cell Transplant 1997; 6:347-59. [PMID: 9171167 DOI: 10.1177/096368979700600317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We used quantitative autoradiography of [3H]CNQX (200 nM), [3H]muscimol (13 nM), and [3H]flunitrazepam (10 nM) binding to study the distribution of non-NMDA and GABAA receptors in the cerebellum of pcd mutant mice with unilateral cerebellar grafts. Nonspecific binding was determined by incubation with 1 mM Glu, 200 μM GABA, or 1 μM clonazepam, respectively. Saturation parameters were defined in wild-type and mutant cerebella. In mutants, non-NMDA receptors were reduced by 38% in the molecular layer and by 47% in the granule cell layer. The reduction of non-NMDA receptors in the pcd cerebellar cortex supports their localization on Purkinje cells. [3H] CNQX binding sites were visualized at higher density in grafts that had migrated to the cerebellar cortex of the hosts (4.1 and 11.0 pmol/mg protein, respectively, at 23 and 37 days after grafting) than in grafts arrested intraparen-chymally (2.6 and 6.2 pmol/mg protein, respectively, at 23 and 37 days after grafting). The pattern of expression of non-NMDA receptors in cortical vs. parenchymal grafts suggests a possible regulation of their levels by transacting elements from host parallel fibers. GABAA binding levels in the grafts for both ligands used were similar to normal molecular layer. Binding was increased in the deep cerebellar nuclei of pcd mutants: the increase in [3H]muscimol binding over normal was 215% and the increase in [3H]flunitrazepam binding was 89%. Such increases in the pcd deep cerebellar nuclei may reflect a denervation-induced supersensitivity subsequent to the loss of Purkinje axon terminal innervation. In the deep nuclei of pcd mutants with unilateral cerebellar grafts, [3H]muscimol binding was 31% lower in the grafted side than in the contralateral nongrafted side at 37 days after transplantation; [3H]fluni-trazepam binding was also lower in the grafted side by 15% compared to the nongrafted side. Such changes in GABAA receptors suggest a significant, albeit partial, normalizing trend of cerebellar grafts on the state of postsynaptic supersensitive receptors in the host cerebellar nuclei.
Collapse
Affiliation(s)
- K Stasi
- Department of Physiology, University of Patras Medical School, Greece
| | | | | | | |
Collapse
|
86
|
Zhang W, Ghetti B, Lee WH. Decreased IGF-I gene expression during the apoptosis of Purkinje cells in pcd mice. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 98:164-76. [PMID: 9051257 DOI: 10.1016/s0165-3806(96)00168-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Insulin-like growth factor I (IGF-I) plays a potential functional role in cerebellar development in the rat, as indicated by its spatio-temporally coordinated expression with the IGF-I receptor (IGFR-I), IGF binding protein (IGFBP) 2 and 5 during the postnatal critical growth period. Although IGF-I promotes the survival of cultured cerebellar neurons, its role during cerebellar development in vivo is unclear. Growth factor deprivation has been shown to trigger apoptosis, the developmental cell death which, if abnormal, may lead to various pathological states. To understand the involvement of IGF-I in Purkinje cell survival, we examined mRNA expression of IGF-I, IGFR-I, IGFBP 2 and 5 in the Purkinje cell degeneration (pcd) mice. During pcd cerebellar development, Purkinje cells rapidly degenerate leading to their almost complete depletion by adult life. IGF system mRNA expression was studied during Purkinje cell death in the pcd mutants (pcd/pcd) at postnatal day (D) 11, 17, 24 and adult. At D11 and D17, no significant difference of the IGF-I system mRNA expression was observed between the normal and pcd/pcd cerebellum. At D24, a significant decrease of IGF-I mRNA was found in the apoptotic Purkinje cells in the pcd/pcd cerebellum, which was accompanied by a severe astrogliosis and activation of astrocytic IGF-I expression. In the adult pcd/pcd cerebellum, with few Purkinje cells remaining, many granule cells underwent apoptosis. In conclusion, decreased IGF-I mRNA expression was correlated with Purkinje cell apoptosis in pcd cerebellum. Whether the decrease of IGF-I mRNA expression is the cause or result of the Purkinje cell degeneration needs to be further elucidated.
Collapse
Affiliation(s)
- W Zhang
- Herman B. Wells Center for Pediatric Research, Department of Anatomy, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | |
Collapse
|
87
|
Abstract
It is now clear that there are a number of different forms or aspects of learning and memory that involve different brain systems. Broadly, memory phenomena have been categorized as explicit or implicit. Thus, explicit memories for experience involve the hippocampus-medial temporal lobe system and implicit basic associative learning and memory involves the cerebellum, amygdala, and other systems. Under normal conditions, however, many of these brain-memory systems are engaged to some degree in learning situations. But each of these brain systems is learning something different about the situation. The cerebellum is necessary for classical conditioning of discrete behavioral responses (eyeblink, limb flexion) under all conditions; however, in the "trace" procedure where a period of no stimuli intervenes between the conditioned stimulus and the unconditioned stimulus the hippocampus plays a critical role. Trace conditioning appears to provide a simple model of explicit memory where analysis of brain substrates is feasible. Analysis of the role of the cerebellum in basic delay conditioning (stimuli overlap) indicates that the memories are formed and stored in the cerebellum. The phenomenon of cerebellar long-term depression is considered as a putative mechanism of memory storage.
Collapse
Affiliation(s)
- R F Thompson
- Neurosciences Program, University of Southern California, Los Angeles 90089-2520, USA
| | | |
Collapse
|
88
|
Fujigasaki H, Song SY, Kobayashi T, Yamakuni T. Murine central neurons express a novel member of the cdc10/SWI6 motif-containing protein superfamily. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 40:203-13. [PMID: 8872304 DOI: 10.1016/0169-328x(96)00005-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
V-1 protein is a novel member of the cdc10/SWI6 motif-containing protein superfamily several members of which have been demonstrated to play crucial roles in the regulation of intracellular signaling. In the present study we examined the distribution of V-1 mRNA in the murine central nervous system (CNS). Northern analysis revealed the expression of V-1 mRNA in various regions of the brain with the following rank order: hippocampus, cerebellum > cerebral cortex, olfactory bulb, medulla oblongata, pons > thalamus. In situ hybridization also showed that V-1 mRNA is widely distributed in various regions of the brain, with parallel expression levels to those revealed by Northern analysis. Immunohistochemical analysis revealed that the V-1 protein exists in various types of neurons, mainly in cell bodies but also in dendrites, axons and possibly in synaptic areas. These expression patterns of the V-1 gene in the murine CNS suggest that the V-1 protein performs some common function in different classes of neurons. We found no significant difference in the expression level of V-1 mRNA in cerebellar granule cells between the control and mutant mice of Purkinje cell degeneration (pcd). In comparison with our previous data obtained in another mutant, staggerer, we discussed the effects of target deprivation on the expression of V-1 mRNA in cerebellar granule cells.
Collapse
Affiliation(s)
- H Fujigasaki
- Department of Neurology, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
89
|
Miller MW. Effect of early exposure to ethanol on the protein and DNA contents of specific brain regions in the rat. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00651-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
90
|
Campbell DB, Hess EJ. Chromosomal localization of the neurological mouse mutations tottering (tg), Purkinje cell degeneration (pcd), and nervous (nr). BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 37:79-84. [PMID: 8738138 DOI: 10.1016/0169-328x(95)00275-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have refined the map positions and identified molecular markers for three neurological mutations in the mouse, tottering (tg), Purkinje cell degeneration (pcd), and nervous (nr). These mutations were localized using simple sequence length polymorphisms between the mouse strain on which the mutation arose and the inbred strain onto which the mutation was bred. This approach to mutation mapping is generalizable to any mutant that has been backcrossed for several generations. The tg mutation was localized to the 1.1 cM region of chromosome 8 distal to simple sequence repeat (SSR) D8Mit103 and proximal to SSRs D8Mit79, D8Mit105, and D8Mit283. The pcd locus was mapped to the 5 cM interval of chromosome 13 between SSRs D13Mit139 and D13Mit67, and the nr locus was mapped between SSRs D8Mit155 and D8Mit18, a 5.6 cM region of chromosome 8. For each mutation, several SSRs distinguishing mutant from wild type chromosomes were identified within these regions. The definition of molecular markers distinguishing mutant from wild type alleles makes possible for the first time identification of tg, pcd, and nr mutants prior to behavioral manifestation of the mutant genotype. Thus, developmental studies of these mutants designed to describe or dissect the biochemical basis of the induction of the mutant phenotype are now feasible.
Collapse
Affiliation(s)
- D B Campbell
- Department of Neuroscience & Anatomy, Pennsylvania State University M.S. Hershey Medical Center, Hershey 17033, USA
| | | |
Collapse
|
91
|
Triarhou LC, Zhang W, Lee WH. Amelioration of the behavioral phenotype in genetically ataxic mice through bilateral intracerebellar grafting of fetal Purkinje cells. Cell Transplant 1996. [PMID: 8689037 DOI: 10.1016/0963-6897(95)02038-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have previously applied neural grafting to "Purkinje cell degeneration" mutant mice (gene symbol pcd, mouse chromosome 13), a model of recessively inherited cerebello-olivary atrophy, to create appropriate interactions between wild-type and mutant cells in elucidating gene effects on the involved neuron populations and to address issues of the structural integration of donor Purkinje cells into the disrupted cerebellar loop. Behaviorally, pcd homozygotes manifest ataxic signs beginning at 3-4 wk of age. The functional effects of cerebellar transplants on motor performance have long remained an open question. The aim of the present study was to determine the recovery of motor responses in pcd mutants in a battery of behavioral tasks after bilateral transplantation of cerebellar cell suspensions (prepared from wild-type mice) into the parenchyma of the deep cerebellar nuclei of the hosts, according to a protocol that emphasizes the reconstruction of the missing inhibitory cortico-nuclear projection. With this approach, the denervated deep nuclei of the host receive a new Purkinje axonal innervation; further, most transplanted Purkinje cells end up occupying cortical localities anyway and display a correct dendritic tree orientation toward the pia. Motor coordination and fatigue resistance were assessed in a rotarod treadmill apparatus, a behavioral paradigm useful in studying various brain abiotrophies and treatments, including developmental perturbations of the cerebellar cytoarchitecture. Locomotor activity was quantified by the number of squares mice crossed as they moved about in an open-field matrix. Grafted pcd mice performed significantly better than sham-operated mutants in both of these tasks. Moreover, graft-recipient mice were able to sustain their abdomen above the floor on their limbs during movement, contrasting to the typical lowered, widened stance of sham-operated pcd mutants. These findings clearly demonstrate that bilateral transplants of fetal Purkinje cells have functional effects on motor performance in the pcd model of hereditary cerebellar ataxia.
Collapse
Affiliation(s)
- L C Triarhou
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | |
Collapse
|
92
|
Triarhou LC. The cerebellar model of neural grafting: structural integration and functional recovery. Brain Res Bull 1996; 39:127-38. [PMID: 8866688 DOI: 10.1016/0361-9230(95)02090-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A synopsis is presented of the recent history of cerebellar tissue transplantation over the past 25 years. The properties of growth and differentiation of cerebellar grafts placed intraocularly or intracranially are reviewed, as well as the interaction of heterotopic and orthotopic grafts with the host brain. Particular emphasis is placed on the use of ataxic mouse mutants as recipients of donor cerebellar tissue for the correction of their structural deficits and the functional recovery of behavioural responses.
Collapse
Affiliation(s)
- L C Triarhou
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis 46202-5120, USA
| |
Collapse
|
93
|
|
94
|
Zhang W, Lee WH, Triarhou LC. Grafted cerebellar cells in a mouse model of hereditary ataxia express IGF-I system genes and partially restore behavioral function. Nat Med 1996; 2:65-71. [PMID: 8564845 DOI: 10.1038/nm0196-65] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fetal grafts of normal cerebellar tissue were implanted into the cerebellum of Purkinje cell degeneration mutant mice (pcd/pcd), a model of adult-onset recessively inherited cerebello-olivary atrophy, in an attempt at correcting their cellular and motor impairment. Donor cerebellar cells engrafted in the appropriate sites, as evidenced by the pattern of expression of insulin-like growth factor-I (IGF-I) system genes. Bilateral cerebellar grafts led to an improvement of motor behaviors in balance rod tests and in the open field, providing evidence for functional integration into the atrophic mouse cerebellum and underscoring the potential of neural transplantation for counteracting the human cerebellar ataxias.
Collapse
Affiliation(s)
- W Zhang
- Department of Anatomy, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | |
Collapse
|
95
|
Luntz-Leybman V, Frostholm A, Fernando L, De Blas A, Rotter A. GABAA/benzodiazepine receptor gamma 2 subunit gene expression in developing normal and mutant mouse cerebellum. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1993; 19:9-21. [PMID: 8395631 DOI: 10.1016/0169-328x(93)90143-d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent studies have identified several subunits (alpha, beta, gamma and delta) of the gamma-aminobutyric acidA/benzodiazepine receptor; each consists of several variants. The gamma 2 subunit appears to mediate the interaction of the alpha and beta subunits making the receptor capable of modulation by benzodiazepines. In the present studies, the expression of mRNA encoding the gamma 2 subunit was examined in the cerebellum during development and in adult Purkinje cell degeneration, lurcher and reeler mutant mice. In the normal adult cerebellum, in situ hybridization with [35S]cRNA probes revealed a strong signal over the Purkinje cell layer and deep cerebellar nuclei, and a weaker signal over basket, stellate and granule cells. Labeling over Purkinje cells was detectable at birth, gradually becoming stronger and more punctate during postnatal weeks 1 and 2, as Purkinje cells formed a monolayer between the molecular and granule cell layers. Adult levels of grain density were reached by P20. The external germinal layer, which contained proliferating granule cells, was unlabeled throughout development; however, weak labeling was detected over the internal granular layer at the end of postnatal week 1, as granule cells began their migration across the molecular layer. During the second postnatal week, punctate labeling became visible over the molecular layer in a distribution indicative of basket and stellate cells. In adult Purkinje cell degeneration and lurcher mutants, in which Purkinje cells have degenerated, no punctate labeling characteristic of mature Purkinje cells was detected. In adult and developing reeler mutants, where all classes of cells are malpositioned throughout the cerebellum, the punctate hybridization signal was present and clearly associated with Purkinje cells in all cortical regions. Our results suggest that developing Purkinje cells express the gamma 2 gene at a time prior to receiving GABAergic inhibitory input, and that the continued expression in the adult is not affected by the absence of afferents.
Collapse
Affiliation(s)
- V Luntz-Leybman
- Department of Pharmacology, Ohio State University, Columbus 43210
| | | | | | | | | |
Collapse
|
96
|
Dumesnil-Bousez N, Sotelo C. Partial reconstruction of the adult Lurcher cerebellar circuitry by neural grafting. Neuroscience 1993; 55:1-21. [PMID: 8350981 DOI: 10.1016/0306-4522(93)90450-t] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Solid cerebellar grafts, taken from normal mouse embryos (gestational day 12-14), were transplanted into the cerebellum of adult Lurcher mice. The degree of Purkinje cell replacement was analysed one to three months after transplantation by means of immunocytochemistry (antibodies against calbindin, cGMP-dependent protein kinase and neurofilament proteins) and electron microscopy. Grafted Purkinje cells succeed in moving out of the graft and migrate into the host cerebellar cortex. They are present next to the graft in the granule cell and molecular layers, and far from the graft remnant, only in the molecular layer, indicating that, although both layers subserve Purkinje cell migration, the molecular layer is the ultimate target. In the host molecular layer, axons of transplanted Purkinje cells form thick bundles running in the frontal plane over long distances. Most of them terminate in the upper granule cell layer by enlarged bulbs resembling collapsed growth cones. Axons reaching their normal targets (the neurons of the deep cerebellar nuclei) are observed only in cases where the granule cell layer is disrupted and/or grafted Purkinje cells remain in the white matter. The projection is massive only from grafts lying in the close vicinity of the target neurons. Electron-microscopic analysis of grafted Purkinje cells populating the host cerebellar cortex reveals that their synaptic investment is abnormal. In the molecular layer, where the normal inputs are reduced, the compartmentation in proximal and distal dendritic segments is severely affected, climbing fibre synapses only form on a minority of grafted cells and "pinceau" formations are absent. In the granule cell layer, the synaptic investment is similar to that of Purkinje cells in agranular cerebellum, and even heterelogous synapses with mossy fibres have been observed. These results, compared to those previously obtained with grafting experiments in Purkinje cell degeneration mutant mouse, allow us to conclude that: (i) the Purkinje cell-deficient molecular layer of the host, despite its severe atrophy and reactive gliosis, still exerts a positive neurotropism specific for grafted Purkinje cells; (ii) the unlesioned host granule cell layer underlying the molecular layer containing grafted Purkinje cells, even if almost depleted of granule cells, remains an obstacle for the re-establishment of a corticonuclear projection; and (iii) the degree of synaptic integration of grafted Purkinje cells is directly related to the nearby presence of available host axon terminals. Hence, owing to the atrophy of the Lurcher cerebellum, the postgrafting restoration of the cerebellar cortical circuit is much less complete in this mutant.
Collapse
|
97
|
Kambouris M, Sangameswaran L, Dlouhy SR, Hodes ME, Ghetti B, Triarhou LC. Cellular distribution of the RNA transcripts of a newly discovered gene in the brain of normal, weaver, Purkinje cell degeneration and reeler mutant mice as evidenced by in situ hybridization histochemistry. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1993; 18:321-8. [PMID: 8326827 DOI: 10.1016/0169-328x(93)90096-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
After we identified several novel cDNAs by screening a neonatal (P1) heterozygous weaver (wv/+) cerebellar cDNA expression library with a rabbit anti-mouse granule cell antiserum, we characterized and sequenced one cDNA, GCAP-8 (standing for granule cell antiserum positive, clone number 8). In this study we examined its expression and cellular distribution in adult cerebellar mutant mice as evidenced by in situ hybridization histochemistry. In wild-type (+/+) brain, strong hybridization signal is seen in cerebellum, hippocampus, substantia nigra (SN), and cerebral cortex; in the cerebellum, hybridization signal is seen in granule cells, Purkinje cells, and in cells of the deep cerebellar nuclei. In the granuloprival weaver (wv/wv) cerebellum, hybridization signal is seen mainly in Purkinje cells. GCAP-8 expression is reduced in wv/wv SN pars compacta, which is known to lose dopamine (DA) neurons. In Purkinje cell degeneration (pcd/pcd) mutants, granule cells show hybridization signal, but overall expression is decreased owing to the absence of Purkinje cells. In reeler (rl/rl) cerebellum, the strongest hybridization signal is found in a thin granule cell layer without the typical foliation pattern, while grain clusters representing ectopic Purkinje cells are observed in the subcortical white matter and the area of the deep cerebellar nuclei. GCAP-8 expression in the reeler hippocampus and cerebral cortex shows a mixing of layers, which is known to be an aspect of the histological phenotype of this mutant.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Kambouris
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis
| | | | | | | | | | | |
Collapse
|
98
|
Abstract
The lysosomal system has often been considered a prominent morphologic marker of distressed or dying neurons. Lysosomes or their constituent hydrolases have been viewed in different neuropathologic states as either initiators and direct agents of cell death, agents of cellular repair and recompensation, effectors of end-stage cellular dissolution, or autolytic scavengers of cellular debris. Limited data and limitations of methodology often do not allow these potential roles to be discriminated. In all forms of neurodegeneration, it may be presumed that lysosomes ultimately rupture and release various hydrolases that promote cell autolysis during the final stages of cellular disintegration. Beyond this perhaps universal contribution to cell death, the degree to which the lysosomal system may be involved in neurodegenerative states varies considerably. In many conditions, morphologic evidence for activation of the lysosomal system is minimal or undetectable. In other cases, lysosomal activation is evident only when other morphologic signs of cell injury are also present. This level of participation may be viewed as either an attempt by the neuron to compensate for or repair the injury or a late-stage event leading to cell dissolution. The early involvement of the lysosomal system in neurodegeneration occurs most commonly in the form of intraneuronal accumulations of abnormal storage profiles or residual bodies (tertiary lysosomes). Very often the lysosomal involvement can be traced to a primary defect or dysfunction of lysosomal components or to accelerated or abnormal membrane breakdown that leads to the buildup of modified digestion-resistant substrates within lysosomes. Because they are often striking, changes in the lysosomal system are a sensitive morphologic indicator of certain types of metabolic distress; however, whether they reflect a salutary response of a compromised neuron or a mechanism to promote cell death and removal of debris from the brain remains to be established for most conditions. Factors that may influence the lysosomal response during lethal neuronal injury include species differences, stage of neuronal development, duration of injury and pace of cell death. The lysosomal system may be more closely coupled to certain forms of neuronal cell death in lower vertebrate or invertebrate systems than in mammalian systems.
Collapse
Affiliation(s)
- R A Nixon
- Laboratories for Molecular Neuroscience, Mailman Research Center, McLean Hospital, Belmont, Massachusetts 02178
| | | |
Collapse
|
99
|
Shinoda K, Nagano M, Osawa Y. An aromatase-associated cytoplasmic inclusion, the "stigmoid body," in the rat brain: II. Ultrastructure (with a review of its history and nomenclature). J Comp Neurol 1993; 329:1-19. [PMID: 8384220 DOI: 10.1002/cne.903290102] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ultrastructure of aromatase-associated "stigmoid (dot-like) structures," which were detected in a previous study using light-microscopic immunohistochemistry (Shinoda et al.: J. Comp. Neurol. 322:360-376, '92), were examined in the rat medial preoptic region, bed nucleus of the stria terminalis, medial amygdaloid nucleus, and arcuate nucleus by pre- and post-embedding marking with a polyclonal antibody against human placental antigen X-P2 (hPAX-P2) for immuno-electron microscopic analysis. The immunoreactive stigmoid structure was identified as a distinct, non-membrane-bounded cytoplasmic inclusion (approximately 1-3 microns in diameter), which has a granulo-fuzzy texture with moderate-to-low electron density in non-immunostained preparations. It consists of at least four distinct granular and three distinct fibrillo-tubular elements forming a granulo-fibrillar conglomerate. This type of inclusions was formally termed the "stigmoid body" under the electron microscope. The stigmoid body is composed of the outer granulo-fibrillar and inner hyaloplasmic compartments. The immunoreactivity for hPAX-P2 is mainly localized to the former, especially to the low density granulo-fuzzy materials associated with the fibrillo-tubular elements. Identification of the ultrastructure of stigmoid body clarified their prevalence not only in the limbic and hypothalamic regions, but also in sex-steroid-sensitive peripheral tissues (e.g., peripheral sensory ganglia, ovary, testis) by consulting earlier electron-microscopic studies. Reviewing the history and nomenclature of this inclusion body, we reorganized the terminology of related neuronal cytoplasmic inclusions, the terms of which have often been confused, and discussed its functional significance on the basis of the present and previously accumulated data. In conclusion, we emphasized the importance of the stigmoid bodies in the sex-steroid-sensitive neural system because of their large size, high frequency, specific distribution in brains and peripheral tissues, effects of sex-steroids, and immunological and histochemical characteristics of the antibody marking the inclusion. The stigmoid bodies may provide a subcellular site for sex-steroid metabolism in their target tissues and play a critical role in cytosolic modulation of their actions (e.g., by aromatization) prior to their receptor binding.
Collapse
Affiliation(s)
- K Shinoda
- Department of Anatomy II, Kinki University School of Medicine, Osaka, Japan
| | | | | |
Collapse
|
100
|
Gambarana C, Loria CJ, Siegel RE. GABAA receptor messenger RNA expression in the deep cerebellar nuclei of Purkinje cell degeneration mutants is maintained following the loss of innervating Purkinje neurons. Neuroscience 1993; 52:63-71. [PMID: 8381926 DOI: 10.1016/0306-4522(93)90182-f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent studies have suggested that innervation modulates GABAA receptor gene expression in the rodent cerebellum. To examine this question, the expression and levels of GABAA receptor subunit messenger RNAs in the deep cerebellar nuclei of Purkinje cell degeneration mice and littermate controls were examined by quantitative in situ hybridization histochemistry. In the Purkinje cell degeneration mutant, the selective postnatal degeneration of Purkinje neurons disrupts GABAergic input from the cerebellar cortex to the deep nuclei. Despite this loss of Purkinje cells, virtually all large neurons of the deep cerebellar nuclei of Purkinje cell degeneration animals expressed the alpha 1, beta 2, and gamma 2 subunit messenger RNAs. These subunit messenger RNAs were observed at all experimental times from postnatal day 24 to postnatal day 90, a period ranging from the onset of behavioral abnormalities in the mutant to the completion of Purkinje cell loss. At no time were additional beta subunit messenger RNAs, normally absent from the deep cerebellar nuclei in control mice, detected in this region of the mutant. Quantitative analysis of the hybridization signals over individual neurons revealed that Purkinje cell loss differentially affected the expression of GABAA receptor subunit messenger RNAs. While the levels of the beta 2 and gamma 2 subunit messenger RNAs in individual neurons were comparable in mutants and controls at all ages, differences in alpha 1 subunit messenger RNA expression were observed. At postnatal day 24, the level of alpha 1 subunit mRNA in individual neurons of the mutant was only 60% that found in the control.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Gambarana
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106-4965
| | | | | |
Collapse
|