51
|
Karlsson U, Sundgren-Andersson AK, Johansson S, Krupp JJ. Capsaicin augments synaptic transmission in the rat medial preoptic nucleus. Brain Res 2005; 1043:1-11. [PMID: 15862512 DOI: 10.1016/j.brainres.2004.10.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 10/20/2004] [Accepted: 10/30/2004] [Indexed: 11/29/2022]
Abstract
The medial preoptic nucleus (MPN) is the major nucleus of the preoptic area (POA), a hypothalamic area involved in the regulation of body-temperature. Injection of capsaicin into this area causes hypothermia in vivo. Capsaicin also causes glutamate release from hypothalamic slices. However, no data are available on the effect of capsaicin on synaptic transmission within the MPN. Here, we have studied the effect of exogenously applied capsaicin on spontaneous synaptic activity in hypothalamic slices of the rat. Whole-cell patch-clamp recordings were made from visually identified neurons located in the MPN. In a subset of the studied neurons, capsaicin enhanced the frequency of spontaneous glutamatergic EPSCs. Remarkably, capsaicin also increased the frequency of GABAergic IPSCs, an effect that was sensitive to removal of extracellular calcium, but insensitive to tetrodotoxin. This suggests an action of capsaicin at presynaptic GABAergic terminals. In contrast to capsaicin, the TRPV4 agonist 4alpha-PDD did not affect GABAergic IPSCs. Our results show that capsaicin directly affects synaptic transmission in the MPN, likely through actions at presynaptic terminals as well as on projecting neurons. Our data add to the growing evidence that capsaicin receptors are not only expressed in primary afferent neurons, but also contribute to synaptic processing in some CNS regions.
Collapse
Affiliation(s)
- Urban Karlsson
- AstraZeneca R&D Södertälje, S-151 85 Södertälje, Sweden.
| | | | | | | |
Collapse
|
52
|
Abstract
Steroid hormones regulate sexual behavior primarily by slow, genomically mediated effects. These effects are realized, in part, by enhancing the processing of relevant sensory stimuli, altering the synthesis, release, and/or receptors for neurotransmitters in integrative areas, and increasing the responsiveness of appropriate motor outputs. Dopamine has facilitative effects on sexual motivation, copulatory proficiency, and genital reflexes. Dopamine in the nigrostriatal tract influences motor activity; in the mesolimbic tract it activates numerous motivated behaviors, including copulation; in the medial preoptic area (MPOA) it controls genital reflexes, copulatory patterns, and specifically sexual motivation. Testosterone increases nitric oxide synthase in the MPOA; nitric oxide increases basal and female-stimulated dopamine release, which in turn facilitates copulation and genital reflexes. Serotonin (5-HT) is primarily inhibitory, although stimulation of 5-HT(2C) receptors increases erections and inhibits ejaculation, whereas stimulation of 5-HT(1A) receptors has the opposite effects: facilitation of ejaculation and, in some circumstances, inhibition of erection. 5-HT is released in the anterior lateral hypothalamus at the time of ejaculation. Microinjections of selective serotonin reuptake inhibitors there delay the onset of copulation and delay ejaculation after copulation begins. One means for this inhibition is a decrease in dopamine release in the mesolimbic tract.
Collapse
Affiliation(s)
- Elaine M Hull
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260-4110, USA.
| | | | | |
Collapse
|
53
|
Olazábal DE, Abercrombie E, Rosenblatt JS, Morrell JI. The content of dopamine, serotonin, and their metabolites in the neural circuit that mediates maternal behavior in juvenile and adult rats. Brain Res Bull 2004; 63:259-68. [PMID: 15196651 DOI: 10.1016/j.brainresbull.2004.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 02/16/2004] [Accepted: 02/24/2004] [Indexed: 10/26/2022]
Abstract
Continuous exposure of non-parturient rats to pups can induce maternal behavior similar in most aspects to that found in the postpartum rat. Surprisingly, young juvenile rats (20-24 days of age) only require 1-3 days of exposure to pups, while adults require 4-8 days before maternal behavior emerges. Dopamine (DA) and possibly serotonin (5-HT) may mediate the expression of adult maternal behavior. We hypothesize that postnatal changes in DA and 5-HT within the neural circuit that supports maternal behavior including the medial preoptic area (MPOA), medial and cortical amygdala (MCA), and nucleus accumbens (NAC), may underlie these differences in responsiveness across juveniles and adults. We measured DA, 5-HT, and their metabolites in postmortem samples of these regions in maternal and non-maternal juvenile and adult females. The only difference found across behavioral groups was that the MPOA of adults induced into maternal behavior by pup exposure had more DA than did that of isolated adult females or maternal juveniles. However, when adults versus juveniles were compared, the content of DA and 3,4-dihydroxyphenylacetic (DOPAC) was higher in the adult than in the juvenile NAC and MCA; the content of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in these structures did not vary across the age groups. In contrast, higher levels of 5-HT and 5-HIAA were found in the MPOA in juveniles compared to adults. We propose that these region-specific age differences in DA and 5HT may underlie differences in juvenile-adult responses to pups.
Collapse
Affiliation(s)
- D E Olazábal
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA.
| | | | | | | |
Collapse
|
54
|
Osaka T. Cold-induced thermogenesis mediated by GABA in the preoptic area of anesthetized rats. Am J Physiol Regul Integr Comp Physiol 2004; 287:R306-13. [PMID: 15031132 DOI: 10.1152/ajpregu.00003.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bilateral microinjections of GABA (300 mM, 100 nl) or the GABAA receptor agonist muscimol (100 μM, 100 nl) into the preoptic area (POA) of the hypothalamus increased the rate of whole body O2 consumption (V̇o2) and the body core (colonic) temperature of urethane-chloralose-anesthetized, artificially ventilated rats. The most sensitive site was the dorsomedial POA at the level of the anterior commissure. The GABA-induced thermogenesis was accompanied by a tachycardic response and electromyographic (EMG) activity recorded from the femoral or neck muscles. Pretreatment with muscle relaxants (1 mg/kg pancuronium bromide + 4 mg/kg vecuronium bromide iv) prevented GABA-induced EMG activity but had no significant effect on GABA-induced thermogenesis. However, pretreatment with the β-adrenoceptor propranolol (5 mg/kg iv) greatly attenuated the GABA-induced increase in V̇o2 and tachycardic responses. Accordingly, the GABA-induced increase in V̇o2 reflected mainly nonshivering thermogenesis. On the other hand, cooling of the shaved back of the rat by contact with a plastic bag containing 28°C water also elicited thermogenic, tachycardic, and EMG responses. Bilateral microinjections of the GABAA receptor antagonist bicuculline (500 μM, 100 nl), but not the vehicle saline, into the POA blocked these skin cooling-induced responses. These results suggest that GABA and GABAA receptors in the POA mediate cold information arising from the skin for eliciting cold-induced thermogenesis.
Collapse
Affiliation(s)
- Toshimasa Osaka
- National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku 162-8636, Japan.
| |
Collapse
|
55
|
Markakis EA, Palmer TD, Randolph-Moore L, Rakic P, Gage FH. Novel neuronal phenotypes from neural progenitor cells. J Neurosci 2004; 24:2886-97. [PMID: 15044527 PMCID: PMC3242437 DOI: 10.1523/jneurosci.4161-03.2004] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We report the first isolation of progenitor cells from the hypothalamus, a derivative of the embryonic basal plate that does not exhibit neurogenesis postnatally. Neurons derived from hypothalamic progenitor cells were compared with those derived from progenitor cultures of hippocampus, an embryonic alar plate derivative that continues to support neurogenesis in vivo into adulthood. Aside from their different embryonic origins and their different neurogenic potential in vivo, these brain regions were chosen because they are populated with cells of three different categories: Category I cells are generated in both hippocampus and hypothalamus, Category II cells are generated in the hypothalamus but are absent from the hippocampus, and Category III is a cell type generated in the olfactory placode that migrates into the hypothalamus during development. Stem-like cells isolated from other brain regions, with the ability to generate neurons and glia, produce neurons of several phenotypes including gabaergic, dopaminergic, and cholinergic lineages. In the present study, we extended our observations into neuroendocrine phenotypes. The cultured neural precursors from 7-week-old rat hypothalamus readily generated neuropeptide-expressing neurons. Hippocampal and hypothalamic progenitor cultures converged to indistinguishable populations and produced neurons of all three categories, confirming that even short-term culture confers or selects for immature progenitors with enough plasticity to elaborate neuronal phenotypes usually inhibited in vivo by the local microenvironment. The range of phenotypes generated from neuronal precursors in vitro now includes the peptides found in the neuroendocrine system: corticotropin-releasing hormone, growth hormone-releasing hormone, gonadotropin-releasing hormone, oxytocin, somatostatin, thyrotropin-releasing hormone, and vasopressin.
Collapse
Affiliation(s)
- Eleni A Markakis
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
56
|
Abstract
The physiological mechanisms that control energy balance are reciprocally linked to those that control reproduction, and together, these mechanisms optimize reproductive success under fluctuating metabolic conditions. Thus, it is difficult to understand the physiology of energy balance without understanding its link to reproductive success. The metabolic sensory stimuli, hormonal mediators and modulators, and central neuropeptides that control reproduction also influence energy balance. In general, those that increase ingestive behavior inhibit reproductive processes, with a few exceptions. Reproductive processes, including the hypothalamic-pituitary-gonadal (HPG) system and the mechanisms that control sex behavior are most proximally sensitive to the availability of oxidizable metabolic fuels. The role of hormones, such as insulin and leptin, are not understood, but there are two possible ways they might control food intake and reproduction. They either mediate the effects of energy metabolism on reproduction or they modulate the availability of metabolic fuels in the brain or periphery. This review examines the neural pathways from fuel detectors to the central effector system emphasizing the following points: first, metabolic stimuli can directly influence the effector systems independently from the hormones that bind to these central effector systems. For example, in some cases, excess energy storage in adipose tissue causes deficits in the pool of oxidizable fuels available for the reproductive system. Thus, in such cases, reproduction is inhibited despite a high body fat content and high plasma concentrations of hormones that are thought to stimulate reproductive processes. The deficit in fuels creates a primary sensory stimulus that is inhibitory to the reproductive system, despite high concentrations of hormones, such as insulin and leptin. Second, hormones might influence the central effector systems [including gonadotropin-releasing hormone (GnRH) secretion and sex behavior] indirectly by modulating the metabolic stimulus. Third, the critical neural circuitry involves extrahypothalamic sites, such as the caudal brain stem, and projections from the brain stem to the forebrain. Catecholamines, neuropeptide Y (NPY) and corticotropin-releasing hormone (CRH) are probably involved. Fourth, the metabolic stimuli and chemical messengers affect the motivation to engage in ingestive and sex behaviors instead of, or in addition to, affecting the ability to perform these behaviors. Finally, it is important to study these metabolic events and chemical messengers in a wider variety of species under natural or seminatural circumstances.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA.
| |
Collapse
|
57
|
Tsukahara S, Yamanouchi K. Distribution of glutamic acid decarboxylase, neurotensin, enkephalin, neuropeptide Y, and cholecystokinin neurons in the septo-preoptic region of male rats. J Reprod Dev 2004; 49:67-77. [PMID: 14967951 DOI: 10.1262/jrd.49.67] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurons in the lateral septum (LS) and preoptic area (POA) are known to play an inhibitory role in feminine sexual behavior regulation in male rats. In this study, the distribution of neurons containing glutamic acid decarboxylase (GAD) and of the peptidergic neurotransmitters neurotensin (NT), enkephalin (ENK), neuropeptide Y (NPY), and cholecystokinin (CCK), was examined immunohistochemically in the LS and POA of castrated male rats subcutaneously implanted with estrogen-containing Silastic tubes. Colchicine was injected into the lateral ventricle of the animals. The forebrain sections were immunostained for each substance. A large number of GAD-immunoreactive (ir) cells were found in the LS. Many NT-ir cells were seen in the intermediate and ventral parts of the LS at the rostral and middle levels. A considerable number of ENK-ir cells were scattered over the LS at the rostral and middle levels and were observed in the ventral part of the caudal LS. There were only a few NPY-ir cells in the LS. No CCK-ir cells were observed in the LS. In the POA, GAD-ir cells were observed in abundance. Many NT-ir cells were seen, especially in the medial preoptic nucleus. Some ENK-ir cells and a few NPY-ir cells were found in the medial POA. CCK-ir cells of the POA were restricted to the periventricular and paraventricular hypothalamic nuclei.
Collapse
Affiliation(s)
- Shinji Tsukahara
- Advanced Research Center for Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | | |
Collapse
|
58
|
Dominguez JM, Muschamp JW, Schmich JM, Hull EM. Nitric oxide mediates glutamate-evoked dopamine release in the medial preoptic area. Neuroscience 2004; 125:203-10. [PMID: 15051159 DOI: 10.1016/j.neuroscience.2004.01.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2004] [Indexed: 11/22/2022]
Abstract
Dopamine (DA) release in the medial preoptic area (MPOA) of the hypothalamus is an important facilitator of male sexual behavior. The presence of a receptive female increases extracellular DA in the MPOA, which increases further during copulation. However, the neurochemical events that mediate the increase of DA in the MPOA are not fully understood. Here we report that glutamate, reverse-dialyzed into the MPOA, increased extracellular DA, which returned to baseline after the glutamate was removed. This increase was prevented by co-administration of the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester (L-NAME), but not by the inactive isomer, Nw-nitro-d-arginine methyl ester (D-NAME). In contrast, extracellular concentrations of the major metabolites of DA were decreased by glutamate, suggesting that the DA transporter was inhibited. These decreases were also inhibited by L-NAME, but not D-NAME. These results indicate that glutamate enhances extracellular DA in the MPOA, at least in part, via nitric oxide activity. Therefore, glutamatergic stimulation of nitric oxide synthase may generate the female-induced increase in extracellular DA in the MPOA, which is important for the expression of male sexual behavior.
Collapse
Affiliation(s)
- J M Dominguez
- Department of Psychology, University at Buffalo, The State University of New York, B71 Park Hall, Buffalo, NY 14260-4110, USA
| | | | | | | |
Collapse
|
59
|
Coolen LM, Fitzgerald ME, Yu L, Lehman MN. Activation of μ opioid receptors in the medial preoptic area following copulation in male rats. Neuroscience 2004; 124:11-21. [PMID: 14960335 DOI: 10.1016/j.neuroscience.2003.10.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2003] [Indexed: 10/26/2022]
Abstract
The current study tested the hypothesis that sexual behavior is a biological stimulus for release of endogenous opioid peptides. In particular, activation of mu opioid receptors (MOR) in the medial preoptic area (MPOA), a key area for regulation of male sexual behavior, was studied in male rats. MOR endocytosis or internalization was used as a marker for ligand-induced receptor activation, utilizing confocal, electron, and bright microscopic analysis. Indeed, mating including one ejaculation induced receptor activation in the MPOA, demonstrated by increased immunoreactivity for MOR, increased numbers of endosome-like particles immunoreactive for MOR inside the cytoplasm of neurons, and increased percentage of neurons with three or more endosome-like particles inside the cytosol. Moreover, it was demonstrated that MOR activation occurred within 30 min following mating and was still evident after 6 h. Mating-induced internalization was prevented by treatment with the opioid receptor antagonist naloxone before mating, suggesting that mating-induced receptor activation is a result of action of endogenous MOR ligands. i.c.v. injections of MOR ligand [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin resulted in internalization of the MOR in a similar manner observed following mating. Finally, mating induced Fos expression in MOR containing neurons in the MPOA. However, naloxone pretreatment did not prevent Fos activation of MOR neurons, suggesting that Fos induction was not the result of MOR activation. In summary, these results provide further evidence that endogenous opioid peptides are released in the MPOA during male sexual behavior.
Collapse
Affiliation(s)
- L M Coolen
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, Vontz Center for Molecular Studies, 3125 Eden Avenue, Cincinnati, OH 45267-0521, USA.
| | | | | | | |
Collapse
|
60
|
Kiss J, Kocsis K, Csáki A, Halász B. Evidence for vesicular glutamate transporter synapses onto gonadotropin-releasing hormone and other neurons in the rat medial preoptic area. Eur J Neurosci 2003; 18:3267-78. [PMID: 14686900 DOI: 10.1111/j.1460-9568.2003.03085.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The medial preoptic area is a key structure in the control of reproduction. Several data suggest that excitatory amino acids are involved in the regulation of this function and the major site of this action is the medial preoptic region. Data concerning the neuromorphology of the glutamatergic innervation of the medial preoptic area are fragmentary. The present investigations were focused on: (i) the morphology of the vesicular glutamate transporter 1 (VGluT1)- and vesicular glutamate transporter 2 (VGluT2)-immunoreactive nerve terminals, which are considered to be specific to presumed glutamatergic neuronal elements, in the medial preoptic area of rat; and (ii) the relationship between these glutamate transporter-positive endings and the gonadotropin-releasing hormone (GnRH) neurons in the region. Single- and double-label immunocytochemistry was used at the light and electron microscopic level. There was a weak to moderate density of VGluT1- and a moderate to intense density of VGluT2-immunoreactive elements in the medial preoptic area. Electron microscopy revealed that both VGluT1- and VGluT2-immunoreactive boutons made asymmetric type synaptic contacts with unlabelled neurons. VGluT2-labelled, but not VGluT1-labelled, axon terminals established asymmetric synaptic contacts on GnRH-immunostained neurons, mainly on their dendrites. The present findings are the first electron microscopic examinations on the glutamatergic innervation of the rat medial preoptic area. They provide direct neuromorphological evidence for the existence of direct glutamatergic innervation of GnRH and other neurons in the rat medial preoptic area.
Collapse
Affiliation(s)
- J Kiss
- Neuroendocrine Research Laboratory, Hungarian Academy of Sciences and Semmelweis University, Department of Human Morphology and Developmental Biology, Semmelweis University, H-1094 Budapest, Tüzoltó u. 58., Hungary
| | | | | | | |
Collapse
|
61
|
Swaab DF, Chung WCJ, Kruijver FPM, Hofman MA, Ishunina TA. Sexual differentiation of the human hypothalamus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 511:75-100; discussion 100-5. [PMID: 12575757 DOI: 10.1007/978-1-4615-0621-8_6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Functional sex differences in reproduction, gender and sexual orientation and in the incidence of neurological and psychiatric diseases are presumed to be based on structural and functional differences in the hypothalamus and other limbic structures. Factors influencing gender, i.e., the feeling to be male or female, are prenatal hormones and compounds that change the levels of these hormones, such as anticonvulsants, while the influence of postnatal social factors is controversial. Genetic factors and prenatal hormone levels are factors in the determination of sexual orientation, i.e. heterosexuality, bisexuality or homosexuality. There is no convincing evidence for postnatal social factors involved in the determination of sexual orientation. The period of overt sexual differentiation of the human hypothalamus occurs between approximately four years of age and adulthood, thus much later than is generally presumed, although the late sexual differentiation may of course be based upon processes that have already been programmed in mid-pregnancy or during the neonatal period. The recently reported differences in a number of structures in the human hypothalamus and adjacent structures depend strongly on age. Replication of these data is certainly necessary. Since the size of brain structures may be influenced by premortem factors (e.g. agonal state) and postmortem factors (e.g. fixation time), one should not only perform volume measurements, but also estimate a parameter that is not dependent on such factors as, i.e., total cell number of the brain structure in question. In addition, functional differences that depend on the levels of circulating hormones in adulthood have been observed in several hypothalamic and other brain structures. The mechanisms causing sexual differentiation of hypothalamic nuclei, the pre- and postnatal factors influencing this process, and the exact functional consequences of the morphological and functional hypothalamic differences await further elucidation.
Collapse
Affiliation(s)
- Dick F Swaab
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
62
|
Abstract
The medial preoptic area/anterior hypothalamus (MPOA/AH) is a brain site derived from proliferative zones from the diencephalon and telencephalon. It is probably this characteristic that makes this brain region participate in different physiological and behavioral functions. The present review addresses the role of the MPOA/AH in the control of male sexual behavior. It is clear that the MPOA/AH is a crucial site in the control of sexual behavior in males of all species studied to date. But although many different publications have followed the contribution of Heimer and Larsson there is no agreement as to what is specifically the role of the MPOA/AH in sexual behavior. At least three hypotheses have been presented. The first one suggests that this brain region is involved in the consummatory aspects (execution) of sexual behavior. The second indicates that the MPOA/AH is involved in the appetitive components (motivation) of masculine sexual behavior. The third hypothesis considers that MPOA/AH neurons are involved in the regulation of consummatory and appetitive aspects of sexual behavior. From the literature reviewed, it will become evident that the evidence supporting a role of the MPOA/AH in the execution of sexual behavior is based on a number of limited studies not easy to interpret. On the other hand, several lines of evidence using a variety of methodologies support the notion that the MPOA/AH is involved in the motivational aspects of male sexual behavior.
Collapse
Affiliation(s)
- Raúl G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| |
Collapse
|
63
|
Majumdar S, Mallick BN. Increased levels of tyrosine hydroxylase and glutamic acid decarboxylase in locus coeruleus neurons after rapid eye movement sleep deprivation in rats. Neurosci Lett 2003; 338:193-6. [PMID: 12581829 DOI: 10.1016/s0304-3940(02)01404-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Norepinephrine, acetylcholine and GABA levels alter during rapid eye movement (REM) sleep and its deprivation. Increased synthesis of those neurotransmitters is necessary for their sustained release. Hence, in this study, the concentrations of tyrosine hydroxylase (TH), choline acetyl transferase (ChAT) and glutamic acid decarboxylase (GAD), the enzymes responsible for their synthesis, were immunohistochemically estimated within the neurons in locus coeruleus, laterodorsal tegmentum and pedunculopontine tegmentum and medial preoptic area in REM sleep deprived and control rats. It was observed that as compared to controls, deprivation increased TH and GAD significantly in the locus coeruleus only, while in other areas, they remained unchanged. The findings help explaining the mechanism of increase in neurotransmitter levels in the brain after REM sleep deprivation and their significance has been discussed.
Collapse
Affiliation(s)
- S Majumdar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | |
Collapse
|
64
|
Kask A, Harro J, von Hörsten S, Redrobe JP, Dumont Y, Quirion R. The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Neurosci Biobehav Rev 2002; 26:259-83. [PMID: 12034130 DOI: 10.1016/s0149-7634(01)00066-5] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review aims to give a brief overview of NPY receptor distribution and physiology in the brain and summarizes series of studies, test by test and region by region, aimed at identification receptor subtypes and neuronal circuitry mediating anxiolytic-like effects of NPY. We conclude that from four known NPY receptor subtypes in the rat (Y(1), Y(2), Y(4), Y(5)), only the NPY Y(1) receptor can be linked to anxiety-regulation with certainty in the forebrain, and that NPY Y(2) receptor may have a role in the pons. Microinjection studies with NPY and NPY receptor antagonists support the hypothesis that the amygdala, the dorsal periaqueductal gray matter, dorsocaudal lateral septum and locus coeruleus form a neuroanatomical substrate that mediates anxiolytic-like effects of NPY. The release of NPY in these areas is likely phasic, as NPY receptor antagonists are silent on their own. However, constant NPY-ergic tone seems to exist in the dorsal periaqueductal gray, the only brain region where NPY Y(1) receptor antagonists had anxiogenic-like effects. We conclude that endogenous NPY has an important role in reducing anxiety and serves as a physiological stabilizer of neural activity in circuits involved in the regulation of arousal and anxiety.
Collapse
Affiliation(s)
- Ants Kask
- Department of Pharmacology, University of Tartu, 50090, Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|
65
|
Murphy AZ, Hoffman GE. Distribution of gonadal steroid receptor-containing neurons in the preoptic-periaqueductal gray-brainstem pathway: a potential circuit for the initiation of male sexual behavior. J Comp Neurol 2001; 438:191-212. [PMID: 11536188 DOI: 10.1002/cne.1309] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The present study used anterograde and retrograde tract tracing techniques to examine the organization of the medial preoptic-periaqueductal gray-nucleus paragigantocellularis pathway in the male rat. The location of neurons containing estrogen (alpha subtype; ER alpha) and androgen receptors (AR) were also examined. We report here that injection of the anterograde tracer biotinylated dextran amine (BDA) into the medial preoptic (MPO) produced dense labeling within the periaqueductal gray (PAG); anterogradely labeled fibers terminated in close juxtaposition to neurons retrogradely labeled from the nucleus paragigantocellularis (nPGi). Dual immunostaining for Fluoro-Gold (FG) and ER alpha or FG and AR showed that over one-third of MPO efferents to the PAG contain receptors for either estrogen or androgen. In addition, approximately 50% of PAG neurons retrogradely labeled from the nPGi were immunoreactive for either ER alpha or AR. These results are the first to establish an MPO-->PAG-->nPGi circuit and further indicate that gonadal steroids can influence neuronal synaptic activity within these sites. We reported previously that nPGi reticulospinal neurons terminate preferentially within the motoneuronal pools of the lumbosacral spinal cord that innervate the pelvic viscera. Together, we propose that the MPO-->PAG-->nPGi circuit forms the final common pathway whereby MPO neural output results in the initiation and maintenance of male copulatory reflexes.
Collapse
Affiliation(s)
- A Z Murphy
- Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
66
|
Abstract
An increase in pulsatile release of LHRH is essential for the onset of puberty. However, the mechanism controlling the pubertal increase in LHRH release is still unclear. In primates the LHRH neurosecretory system is already active during the neonatal period but subsequently enters a dormant state in the juvenile/prepubertal period. Neither gonadal steroid hormones nor the absence of facilitatory neuronal inputs to LHRH neurons is responsible for the low levels of LHRH release before the onset of puberty in primates. Recent studies suggest that during the prepubertal period an inhibitory neuronal system suppresses LHRH release and that during the subsequent maturation of the hypothalamus this prepubertal inhibition is removed, allowing the adult pattern of pulsatile LHRH release. In fact, y-aminobutyric acid (GABA) appears to be an inhibitory neurotransmitter responsible for restricting LHRH release before the onset of puberty in female rhesus monkeys. In addition, it appears that the reduction in tonic GABA inhibition allows an increase in the release of glutamate as well as other neurotransmitters, which contributes to the increase in pubertal LHRH release. In this review, developmental changes in several neurotransmitter systems controlling pulsatile LHRH release are extensively reviewed.
Collapse
Affiliation(s)
- E Terasawa
- Department of Pediatrics, Wisconsin Regional Primate Research Center, and University of Wisconsin-Madison, 53715-1299, USA.
| | | |
Collapse
|
67
|
Mathieson WB, Taylor SW, Marshall M, Neumann PE. Strain and sex differences in the morphology of the medial preoptic nucleus of mice. J Comp Neurol 2000; 428:254-65. [PMID: 11064365 DOI: 10.1002/1096-9861(20001211)428:2<254::aid-cne5>3.0.co;2-a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The medial preoptic nucleus (MPO), which is involved in sexual and maternal behaviors, contains neuronal clusters that have been described as being sexually dimorphic in size and neuropeptide content in a variety of species. A subnucleus in DBA/2J (D2) inbred mice, called the pars compacta of the MPO (MPOpc), is absent in C57BL/6J (B6) inbred mice (Robinson et al. [1985] J. Neurogenet. 2:381-388). We report here on experiments that further characterize strain and sex differences in medial preoptic morphology in D2 and B6 inbred mice. A prominent MPOpc, located within the caudal part of the MPO and dorsal to the suprachiasmatic nucleus, was present in both male and female D2 animals but was absent from B6 animals. MPOpc neurons were darkly stained for Nissl substance and larger than neurons in the surrounding MPO. In D2 brains, galanin-immunoreactive (-ir), oxytocin-ir, vasopressin-ir, and NADPH diaphorase-positive neurons were concentrated within the MPOpc. Fewer similar neurons in the comparable region of the MPO of B6 mice suggests that the absence of the MPOpc is due to absence of these neurons rather than a less compact organization. In D2 animals, the density of galanin-ir neurons in the MPOpc was sexually dimorphic, with higher numbers of galanin-ir neurons in females. Strain differences in galanin-ir, oxytocin-ir, vasopressin-ir, and NADPH diaphorase staining appeared to be limited to the MPOpc. Cholecystokinin-immunoreactive neurons, which have been reported to be numerous in the sexually dimorphic central subdivision of the MPO of rats, were sparse in the MPO of D2 and B6 mice. Confirmation of the MPOpc as an accessory magnocellular neurosecretory nucleus was obtained by finding labeling of MPOpc neurons after injection of DiI into the posterior pituitary.
Collapse
Affiliation(s)
- W B Mathieson
- Department of Anatomy & Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | |
Collapse
|
68
|
Sun X, Rusak B, Semba K. Electrophysiology and pharmacology of projections from the suprachiasmatic nucleus to the ventromedial preoptic area in rat. Neuroscience 2000; 98:715-28. [PMID: 10891615 DOI: 10.1016/s0306-4522(00)00170-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extracellular and whole-cell patch-clamp recordings were made from neurons in the ventromedial preoptic area in rat horizontal brain slices. Responses to single-pulse electrical stimulation of the ipsilateral suprachiasmatic nucleus were characterized using peristimulus time histograms or postsynaptic current recordings, and bath application of neurotransmitter receptor antagonists. Extracellular recordings showed that suprachiasmatic nucleus stimulation (50-150 microA) elicited a short-latency suppression in 35 of 64 neurons (55%), with the majority (29/35, 83%) showing a biphasic response consisting of a short-latency suppression followed by a long-duration activation. In addition, 14 cells (22%) showed activation only, while 15 (23%) were unresponsive. The GABA(A) receptor antagonist bicuculline (5-10 microM) reversibly blocked suppressions evoked by suprachiasmatic nucleus stimulation (20/20 cells). In the majority of these neurons (13/20), bicuculline also unmasked an activation in response to stimulation. Activations elicited by suprachiasmatic nucleus stimulation, either in the presence or absence of bicuculline, were blocked by the non-N-methyl-D-aspartate and N-methyl-D-aspartate glutamate receptor antagonists 6,7-dinitroquinoxaline-2,3-dione and (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (10/10 cells). 6,7-Dinitroquinoxaline-2,3-dione (10 microM) selectively and reversibly blocked the initial, short-duration (<50 ms) activation, but had no effect on the longer-duration activation. In contrast, (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (10 microM) appeared to inhibit the long-duration activation selectively without affecting the initial rapid activation. Combined applications of the two ionotropic glutamate receptor antagonists blocked stimulation-induced activations completely. All the pharmacological effects were concentration dependent. Whole-cell patch-clamp recordings showed that suprachiasmatic nucleus stimulation elicited inhibitory postsynaptic currents or a combination of inhibitory and excitatory postsynaptic currents in 25 of 33 neurons tested. The inhibitory postsynaptic currents had short onset latencies (4.9+/-0.3 ms) and a reversal potential of -56.0+/-3.8 mV (n=5), and were reversibly blocked by bicuculline (5-10 microM, 4/4 cells). In the presence of bicuculline (5-10 microM), excitatory postsynaptic currents had short onset latencies (4.7+/-0.5 ms), and had a fast and a slow component. (+/-) 3-(2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid blocked the slow, but not the fast, component, whereas 6,7-dinitroquinoxaline-2, 3-dione blocked the fast, but not the slow, component (n=7). These results suggest that the projection from the suprachiasmatic nucleus conveys both inhibitory (GABA) and excitatory (glutamate) inputs to the ventromedial preoptic area. GABA(A) receptor and both non-N-methyl-D-aspartate and N-methyl-D-aspartate glutamate receptors mediate these influences. These inputs may be responsible for conveying information related to circadian phase from the suprachiasmatic nucleus to regions of the preoptic area known to be involved in regulation of sleep/waking and other physiological functions.
Collapse
Affiliation(s)
- X Sun
- Department of Anatomy and Neurobiology, Dalhousie University, Nova Scotia, B3H 4H7, Halifax, Canada
| | | | | |
Collapse
|
69
|
Geracioti TD, Ekhator NN, Nicholson WE, Arndt S, Loosen PT, Orth DN. Intra- and inter-individual correlations between cholecystokinin and corticotropin-releasing hormone concentrations in human cerebrospinal fluid. Depress Anxiety 2000; 10:77-80. [PMID: 10569131 DOI: 10.1002/(sici)1520-6394(1999)10:2<77::aid-da7>3.0.co;2-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Despite strong evidence of a physiologic relationship between cholecystokinin (CCK) and corticotropin-releasing hormone (CRH) in the rat central nervous system (CNS), evidence of such a relationship between the two hormones in the human CNS is lacking. A post hoc analysis of serial concentrations of immunoreactive CCK and CRH, obtained every ten minutes from CSF continuously collected over six hours, was performed. A total of 30 subjects were studied: 15 normal volunteers, 10 patients with major depression, and 5 recently-abstinent, alcohol-dependent patients. Overall, we observed an average intra-subject correlation of +.273 (P < 0.001) between CSF CRH and CCK. Inter-subject correlations between mean CSF levels of CRH and CCK were +.948 (P = 0.0001) and +.959 (P = 0.005) in the depressed and abstinent alcoholic patients, respectively. These inter-individual correlations were significantly greater than that seen within the group of normal volunteers (r = +.318, n.s.). The present data suggest that interactions between CCK and CRH are significant in the human CNS, particularly perhaps in depressed and alcoholic patients, and that CSF samples may be used to assess elements of the relationship between these hormones.
Collapse
Affiliation(s)
- T D Geracioti
- Psychiatry Service, Veterans Affairs Medical Center, Cincinnati, Ohio 45220, USA.
| | | | | | | | | | | |
Collapse
|
70
|
Sickel MJ, McCarthy MM. Calbindin-D28k immunoreactivity is a marker for a subdivision of the sexually dimorphic nucleus of the preoptic area of the rat: developmental profile and gonadal steroid modulation. J Neuroendocrinol 2000; 12:397-402. [PMID: 10792577 DOI: 10.1046/j.1365-2826.2000.00474.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calbindin-D28k (calbindin) is a 28 kilodalton calcium binding protein which potentially plays a role in neuroprotection. We report here the normal development and gonadal steroid modulation of a sexually dimorphic group of calbindin immunoreactive cells within the sexually dimorphic nucleus of the preoptic area (SDN) which we call the calbindin-immunoreactive SDN or CALB-SDN. Beginning on PN2, a faintly immunoreactive CALB-SDN is present, however, the volume is not sexually dimorphic. On PN4, the staining of the CALB-SDN appears more robust but the volume is still not sexually dimorphic. By PN8 and extending through PN12 and PN26, the latest age analysed, the volume of the CALB-SDN is larger in males by two- to fourfold. Cresyl violet counterstain reveals a similar developmental profile of the SDN as well as clusters of darkly staining calbindin immunonegative cells which lie around the CALB-SDN. Castration of males on PN0 decreases the volume of the CALB-SDN by PN12 and administration on the day of birth and PN1 of either testosterone propionate or oestradiol benzoate, but not dihydrotestosterone propionate to females increases the volume of the CALB-SDN by PN12. By demonstrating the sexual dimorphism and gonadal steroid modulation of the CALB-SDN, we hereby establish that calbindin is a specific marker of a subdivision of the SDN and can be used as such in future studies.
Collapse
Affiliation(s)
- M J Sickel
- Department of Physiology, University of Maryland, Baltimore School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
71
|
Heeb MM, Yahr P. Cell-body lesions of the posterodorsal preoptic nucleus or posterodorsal medial amygdala, but not the parvicellular subparafascicular thalamus, disrupt mating in male gerbils. Physiol Behav 2000; 68:317-31. [PMID: 10716541 DOI: 10.1016/s0031-9384(99)00182-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In gerbils, the posterodorsal preoptic nucleus (PdPN) and the lateral part of the posterodorsal medial amygdala (MeApd) express Fos with ejaculation. In contrast, the medial/central part of the MeApd expresses Fos when a sexually experienced male reenters the environment associated with mating. The parvicellular part of the subparafascicular thalamic nucleus (SPFp) of gerbils expresses Fos under both conditions. To study the role of the PdPN and MeApd in male sex behavior, male gerbils were tested for mating before and after these areas were bilaterally lesioned by infusions of N-methyl-D-aspartate (NMDA). Controls received the vehicle or inactive isomer, NMLA. Lesions in either area reduced mounting, but MeApd lesions, which were more complete than PdPN lesions, also delayed ejaculation when males intromitted. To determine if the MeApd and PdPN affect mating via a common pathway, they were bilaterally disconnected by lesioning them unilaterally, contralateral to each other. Other groups received ipsilateral lesions, NMLA, or bilateral lesions of the PdPN or MeApd. In addition, the SPFp was studied using bilateral lesions. MeApd and PdPN lesions again decreased mounting, and this time both lesions, which were quite complete, delayed ejaculation when males intromitted. Contralateral lesions that bilaterally disconnected these cell groups from each other mimicked both effects. Thus, the MeApd and PdPN affect mounting and ejaculation, at least in part, via their connections with each other. In contrast, SPFp lesions did not affect mating. Thus, SPFp cells activated at ejaculation may react to ejaculation rather than trigger it, possibly initiating preparations for paternity.
Collapse
Affiliation(s)
- M M Heeb
- Department of Neurobiology and Behavior, University of California, Irvine 92697-4550, USA
| | | |
Collapse
|
72
|
Westerhaus MJ, Loewy AD. Sympathetic-related neurons in the preoptic region of the rat identified by viral transneuronal labeling. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19991122)414:3<361::aid-cne6>3.0.co;2-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
73
|
Henderson RG, Brown AE, Tobet SA. Sex differences in cell migration in the preoptic area/anterior hypothalamus of mice. JOURNAL OF NEUROBIOLOGY 1999; 41:252-66. [PMID: 10512982 DOI: 10.1002/(sici)1097-4695(19991105)41:2<252::aid-neu8>3.0.co;2-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The preoptic area/anterior hypothalamus (POA/AH) sits as a boundary region rostral to the classical diencephalic hypothalamus and ventral to the telencephalic septal region. Numerous studies have pointed to the region's importance for sex-dependent functions. Previous studies suggested that migratory guidance cues within this region might be particularly unique in their diversity. To better understand the early development and differentiation of the POA/AH, cytoarchitectural, birthdate, immunocytochemical, and cell migration studies were conducted in vivo and in vitro using embryonic C57BL/6J mice. A medial preoptic nucleus became discernible using Nissl stain in males and females between embryonic days (E) E15 and E17. Cells containing immunoreactive estrogen receptor-alpha were detected in the POA/AH by E13, and increased in number with age in both sexes. From E15 to E17, examination of the radial glial fiber pattern by immunocytochemistry confirmed the presence of dual orientations for migratory guidance ventral to the anterior commissure (medial-lateral and dorsal-ventral) and uniform orientation more caudally (medial-lateral). Video microscopy studies followed the migration of DiI-labeled cells in coronal 250-microm brain slices from E15 mice maintained in serum-free media for 1-3 days. Analyses showed significant migration along a dorsal-ventral orientation in addition to medial-lateral. The video analyses showed significantly more medial-lateral migration in males than females in the caudal POA/AH. In vivo, changes in the distribution of cells labeled by the mitotic indicator bromodeoxyuridine (BrdU) suggested their progressive migration through the POA/AH. BrdU analyses also indicated significant movement from dorsal to ventral regions ventral to the anterior commissure. The significant dorsal-ventral migration of cells in the POA/AH provides additional support for the notion that the region integrates developmental information from both telencephalic and diencephalic compartments. The sex difference in the orientation of migration of cells in the caudal POA/AH suggests one locus for the influence of gonadal steroids in the embryonic mouse forebrain.
Collapse
Affiliation(s)
- R G Henderson
- Program in Neuroscience, The Shriver Center and Harvard Medical School, 200 Trapelo Rd., Waltham, Massachusetts 02452, USA
| | | | | |
Collapse
|
74
|
Hull EM, Lorrain DS, Du J, Matuszewich L, Lumley LA, Putnam SK, Moses J. Hormone-neurotransmitter interactions in the control of sexual behavior. Behav Brain Res 1999; 105:105-16. [PMID: 10553694 DOI: 10.1016/s0166-4328(99)00086-8] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The stimuli from a receptive female and/or copulation itself leads to the release of dopamine (DA) in at least three integrative hubs. The nigrostriatal system promotes somatomotor activity; the mesolimbic system subserves numerous types of motivation; and the medial preoptic area (MPOA) focuses the motivation onto specifically sexual targets, increases copulatory rate and efficiency, and coordinates genital reflexes. The previous (but not necessarily concurrent) presence of testosterone is permissive for DA release in the MPOA, both during basal conditions and in response to a female. One means by which testosterone may increase DA release is by upregulating nitric oxide synthase, which produces nitric oxide, which in turn increases DA release. Hormonal priming in females may also increase DA release in the MPOA, and copulatory activity may further increase DA levels in females. One of the intracellular effects of stimulation of DA D1 receptors in the MPOA of male rats may be increased expression of the immediate-early gene c-fos, which may mediate longer term responses to copulation. Furthermore, increased sexual experience led to increased immunoreactivity to Fos, the protein product of c-fos, following copulation to one ejaculation. Another intracellular mediator of DA's effects, particularly in castrates, may be the phosphorylation of steroid receptors. Finally, while DA is facilitative to copulation, 5-HT is generally inhibitory. 5-HT is released in the LHA, but not in the MPOA, at the time of ejaculation. Increasing 5-HT in the LHA by microinjection of a selective serotonin reuptake inhibitor (SSRI) increased the latency to begin copulating and also the latency to the first ejaculation, measured from the time the male first intromitted. These data may at least partially explain the decrease in libido and the anorgasmia of people taking SSRI antidepressants. One means by which LHA 5-HT decreases sexual motivation (i.e. increases the latency to begin copulating) may be by decreasing DA release in the NAcc, a major terminal of the mesolimbic system. Thus, reciprocal changes in DA and 5-HT release in different areas of the brain may promote copulation and sexual satiety, respectively.
Collapse
Affiliation(s)
- E M Hull
- Department of Psychology, State University of New York at Buffalo, 14260-4110, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
Male rat copulatory ability decreases dramatically following castration. This may be due in part to the impairment of medial preoptic area (MPOA) dopamine (DA) release. Previous studies showed that extracellular DA levels in the MPOA of castrates were lower than in intact males, both during basal conditions and in the presence of a receptive female. However, tissue levels of DA in the MPOA were higher in castrates than in intact males, suggesting that DA synthesis may be normal or increased in castrates, but that release may be compromised. The current study found that neither long term (2 months) nor short term (2 weeks) castration had any effect on the number of neurons in the DA A(14) area that were immunoreactive (ir) for tyrosine hydroxylase (TH), the rate limiting enzyme for DA synthesis. Therefore, castration may not affect DA synthesis in the MPOA. Tissue levels of neurotransmitter reflect release, as well as synthesis. We previously reported that nitric oxide (NO) may increase DA release in the MPOA. The present study tested whether castration affected the number of NO producing cells in the MPOA. Long term, but not short term, castration significantly decreased the number of NADPH-d (nicotinamide adenine dinucleotide phosphate diaphorase) positive neurons and brain nitric oxide synthase immunoreactive (bNOS-ir) neurons in the medial preoptic nucleus (MPN). This suggests that in gonadally intact animals testosterone may activate NOS, which increases the production of NO. Long or short term castration had no effect on the numbers of bNOS-ir neurons in the paraventricular nucleus (PVN) or medial amygdala. However, short term castration decreased bNOS-ir neurons in the bed nucleus of stria terminalis (BNST). Thus, one means by which testosterone promotes male sexual behavior may be by increasing production of NO in the MPOA, which increases local DA release.
Collapse
Affiliation(s)
- J Du
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14260-4110, USA
| | | |
Collapse
|
76
|
Murphy AZ, Rizvi TA, Ennis M, Shipley MT. The organization of preoptic-medullary circuits in the male rat: evidence for interconnectivity of neural structures involved in reproductive behavior, antinociception and cardiovascular regulation. Neuroscience 1999; 91:1103-16. [PMID: 10391487 DOI: 10.1016/s0306-4522(98)00677-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present studies used anatomical tract-tracing techniques to delineate the organization of pathways linking the medial preoptic area and the ventral medulla, two key regions involved in neuroendocrine, autonomic and sensory regulation. Wheatgerm agglutinin-horseradish peroxidase injections into the ventromedial medulla retrogradely labeled a large number of neurons in the medial preoptic area, including both the median and medial preoptic nuclei. The termination pattern of preoptic projections to the medulla was mapped using the anterograde tracers Phaseolus vulgaris leucoagglutinin and biotinylated dextran amine. Tracer injections into the preoptic area produced a dense plexus of labeled fibers and terminals in the ventromedial and ventrolateral pons and medulla. Within the caudal pons/rostral medulla, medial preoptic projections terminated heavily in the nucleus raphe magnus; strong anterograde labeling was also present in the pontine reticular field. At mid-medullary levels, labeled fibers focally targeted the nucleus paragigantocellularis, in addition to the heavy fiber labeling present in the midline raphe nuclei. By contrast, very little labeling was observed in the caudal third of the medulla. Experiments were also conducted to map the distribution of ventral pontine and medullary neurons that project to the medial preoptic area. Wheatgerm agglutinin-horseradish peroxidase injections in the preoptic area retrogradely labeled a significant population of neurons in the ventromedial and ventrolateral medulla. Ascending projections from the medulla to the preoptic area were organized along rostral-caudal, medial-lateral gradients. In the caudal pons/rostral medulla, retrogradely labeled cells were aggregated along the midline raphe nuclei; no retrograde labeling was present laterally at this level. By contrast, in the caudal half of the medulla, cells retrogradely labeled from the medial preoptic area were concentrated as a discrete zone dorsal to the lateral reticular nucleus; labeled cells were not present in the ventromedial medulla at this level. The present findings suggest that the medial preoptic area and ventral midline raphe nuclei share reciprocal connections that are organized in a highly symmetrical fashion. By contrast, preoptic-lateral medullary pathways are not reciprocal. These preoptic-brainstem circuits may participate in antinociceptive, autonomic and reproductive behaviors.
Collapse
Affiliation(s)
- A Z Murphy
- Department of Anatomy and Neurobiology, The University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | |
Collapse
|
77
|
|
78
|
Markakis EA, Gage FH. Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990419)406:4<449::aid-cne3>3.0.co;2-i] [Citation(s) in RCA: 367] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
79
|
Abstract
During the course of aging both activation and degenerative changes are found in the human hypothalamus. Degeneration may start around middle-age in some neurotransmitter- or neuromodulator-containing neurons. For instance, a decreased number of vasoactive intestinal polypeptide (VIP) neurons was observed in the suprachiasmatic nucleus (SCN) of middle-aged males. The normal circadian fluctuations seen in the number of vasopressin (AVP) neurons in the SCN of young subjects diminished in subjects older than 50 years. Moreover, a sharp decline in cell number was found in the sexually dimorphic nucleus (SDN) after 50 years in males. On the other hand, many hypothalamic systems remain perfectly intact during aging like the oxytocin (OXT) neurons in the paraventricular nucleus (PVN). The AVP neurons in the PVN are activated during aging as appears from their increasing cell number. Also the corticotrophin-releasing hormone (CRH) neurons of the PVN are activated in the course of aging, as indicated by their increased number and their increased AVP coexpression. Part of the infundibular nucleus, the subventricular nucleus, contains hypertrophic neurokinin B neurons in postmenopausal women. It can be concluded that a multitude of changes in the various hypothalamic nuclei may be the biological basis for many functional changes in aging, i.e., both endocrine and central alterations, and that only a minority of the possible human hypothalamic changes have so far been studied.
Collapse
Affiliation(s)
- J N Zhou
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research
| | | |
Collapse
|
80
|
Abstract
Increased body temperature (fever or hyperthermia) is a physiological response to many different stimuli. In fact, fever (a 1-4°C elevation of the body temperature) is not only a clinical symptom common to many infectious diseases but also a side effect of immunostimulating or antiviral therapies. Hyperthermic reactions, on the other hand, can be observed after treatment with antipsychotic drugs, 5-hydroxytryptamine-receptor agonists, and acetylcholinesterase inhibitors and as a reaction to anesthesia. Moreover, hyperthermic reactions can be related to particularly stressful emotional states, to the menstrual ovulatory cycle, and to pregnancy. Transient hyperthermia or fever is also a common consequence of cerebral ischemic events, and it is present during stress as well as intense physical exercise. This review focuses on fever, one of the main components of the systemic acute-phase reaction to external proinflammatory stimuli. Special emphasis is given to neuronal mechanisms of fever induction, in which the hypothalamus plays a crucial role in both control of the febrile response as well as other centrally mediated neurological signs of inflammation, such as increased sleep, activation of the hypothalamic-pituitary-adrenal axis, anorexia, and sickness behavior. This review pays particular attention to the role of proinflammatory cytokines as endogenous pyrogens. NEUROSCIENTIST 4:113-121, 1998
Collapse
Affiliation(s)
- Anna K. Sundgren-Andersson
- Department of Neurochemistry and Neurotoxicology (AKS-A), Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden, Research (SG), Pharmacia and UpJohn, S.p.A., Nerviano, Italy, Department PharmaResearch Preclinical Nervous System (TB), F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Silvia Gatti
- Department of Neurochemistry and Neurotoxicology (AKS-A), Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden, Research (SG), Pharmacia and UpJohn, S.p.A., Nerviano, Italy, Department PharmaResearch Preclinical Nervous System (TB), F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Tamas Bartfai
- Department of Neurochemistry and Neurotoxicology (AKS-A), Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden, Research (SG), Pharmacia and UpJohn, S.p.A., Nerviano, Italy, Department PharmaResearch Preclinical Nervous System (TB), F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| |
Collapse
|
81
|
Kalló I, Fekete C, Coen CW, Liposits Z. Synaptic connections between substance P-containing axons and estrogen receptor-synthesizing neurons in the medial preoptic area of the rat brain. Brain Res 1998; 781:335-8. [PMID: 9507182 DOI: 10.1016/s0006-8993(97)01354-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dual-label immunocytochemical procedures were employed to provide ultrastructural evidence for the presence of substance P (SP) in afferents to estrogen-receptive neurons in the medial preoptic area (MPO) of the female rat. SP-immunoreactive axon terminals were observed to innervate the periventricular (PvPO) and medial (MPN) preoptic nuclei of the MPO densely, and to form synaptic connections at these sites with neurons which contain estrogen receptors in their nucleus. These results indicate that estrogen-receptive preoptic neurons may be regulated by SP-containing neuronal pathways via synaptic mechanisms.
Collapse
Affiliation(s)
- I Kalló
- Department of Anatomy, Albert Szent-Györgyi Medical University, Kossuth Lajos sgt. 40, H-6724 Szeged, Hungary.
| | | | | | | |
Collapse
|
82
|
Park JJ, Baum MJ, Tobet SA. Sex difference and steroidal stimulation of galanin immunoreactivity in the ferret's dorsal preoptic area/anterior hypothalamus. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19971215)389:2<277::aid-cne7>3.0.co;2-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
83
|
Abstract
1. There are numerous sites in the nervous system where steroid hormones dramatically influence development. Increasing interest in mechanisms in neural development is providing avenues for understanding how gonadal steroids alter the ontogeny of these regions during sexual differentiation. 2. An increasing number of researchers are examining effects of gonadal steroids on neurite outgrowth, cell differentiation, cell death, cell migration, and synaptogenesis. The interrelated timing of these events may be a key aspect influenced by gonadal steroids throughout development. 3. The preoptic area and hypothalamus are characteristically heterogeneous in terms of cell type (e.g., different neuropeptides) and cell derivation. Perhaps a major reason for the ontogeny of sexual differences in the preoptic area and hypothalamus lies in the convergence of many different cell types from diverse sources (i.e., proliferative zones surrounding the lateral and third ventricles, and the olfactory placodes) that can be influenced in an interactive manner by gonadal steroid mechanisms. 4. The characterization of multiple mechanisms (e.g., trophic, migratory, apoptotic, fate, etc.,) that contribute to permanent changes in brain structure and ultimately function is essential for unraveling the process of sexual differentiation.
Collapse
Affiliation(s)
- S A Tobet
- Program in Neuroscience, Shriver Center, Waltham, Massachusetts 02254, USA
| | | |
Collapse
|
84
|
Hull EM, Du J, Lorrain DS, Matuszewich L. Testosterone, preoptic dopamine, and copulation in male rats. Brain Res Bull 1997; 44:327-33. [PMID: 9370196 DOI: 10.1016/s0361-9230(97)00211-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Steroid hormones prime neural circuits for sexual behavior, in part by regulating enzymes, receptors, or other proteins affecting neurotransmitter function. Dopamine facilitates male sexual behavior in numerous species and is released before and/or during copulation in three integrative neural systems. The nigrostriatal system enhances readiness to respond; the mesolimbic system promotes many appetitive behaviors; the medial preoptic area (MPOA) contributes to sexual motivation, genital reflexes, and copulation. We have reported a consistent relationship between precopulatory dopamine release in the MPOA, when an estrous female was behind a perforated barrier, and the ability to copulate after the barrier was removed. Recent, but not concurrent, testosterone was necessary for the precopulatory dopamine response and copulation. The deficit in MPOA dopamine release in castrates was observed in basal conditions as well as the sexual context. However, dopamine in tissue punches from castrates was higher than in intact males. Because tissue levels represent primarily stored neurotransmitter, dopamine appeared to have been synthesized normally, but was not being released. Amphetamine induced greater dopamine release in castrates, again suggesting excessive dopamine storage. The decreased release may result from decreased activity of nitric oxide synthase in the MPOA of castrates. A marker for this enzyme showed lower activity in castrates than in intact males. Finally, blocking nitric oxide synthase in intact males blocked the copulation-induced release of dopamine in the MPOA. Therefore, one means by which testosterone may promote copulation is by upregulating nitric oxide synthesis in the MPOA, which in turn enhances dopamine release.
Collapse
Affiliation(s)
- E M Hull
- Department of Psychology, State University of New York at Buffalo, 14260, USA
| | | | | | | |
Collapse
|
85
|
Zupanc GK, Horschke I. Neurons of the posterior subdivision of the nucleus preopticus periventricularis project to the preglomerular nucleus in the weakly electric fish, Apteronotus leptorhynchus. Brain Res 1997; 774:106-15. [PMID: 9452198 DOI: 10.1016/s0006-8993(97)81693-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
By using an in vitro tract-tracing technique, the neural connections between two diencephalic cell groups, the posterior subdivision of the nucleus preopticus periventricularis (PPp) and the preglomerular nucleus (PG), was examined in the weakly electric gymnotiform fish Apteronotus leptorhynchus. Neurons of the PPp project to one area within PG, the ventromedial cell group of the medial subdivision of the preglomerular nucleus (PGm-vmc). Axons of these cells reach the ipsilateral PGm-vmc via the basic hypothalamic tract, while collaterals decussate via the postoptic commissure to innervate the contralateral PGm-vmc. We hypothesize that those neurons within PPp that project to the PGm-vmc are homologous to neurons of the medial preoptic area of mammals. As part of an elaborate circuit, PPp and PG may participate, as in mammals, in the control of complex social behavior patterns.
Collapse
Affiliation(s)
- G K Zupanc
- Abteilung Physikalische Biologie, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | | |
Collapse
|
86
|
Markakis EA, Swanson LW. Spatiotemporal patterns of secretomotor neuron generation in the parvicellular neuroendocrine system. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 24:255-91. [PMID: 9385456 DOI: 10.1016/s0165-0173(97)00006-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spatiotemporal patterns of parvicellular neurosecretory neuron generation (birthdates) were determined in the young adult male rat using a triple fluorescence labeling method. The six classic phenotypes were identified in histological sections with rabbit antisera to neurotransmitters (or related enzymes), nuclear bromodeoxyuridine was detected with a mouse monoclonal antibody, and an axonal projection to the median eminence was determined with the fluorescent retrograde tracer fast blue. The vast majority of triply labeled neurons are generated between embryonic days 12-14, during the time when magnocellular neurosecretory neurons are also generated. This pattern of neurogenesis is distinct from the well-known 'outside-in' pattern of hypothalamic neurogenesis, where the peak of lateral zone birthdates occurs on embryonic days 12 and 13, the peak of medial zone birthdates occurs on embryonic days 14 and 15, and the peak of periventricular zone birthdates occurs on embryonic days 16 and 17. Thus, neuroendocrine motoneurons may constitute 'pioneer neurons' for the various anatomically distinct regions of the periventricular zone. In addition, many intermixed neurons that express the same neurotransmitters as parvicellular neurosecretory neurons but do not send an axon to the median eminence, also appear to be generated between embryonic days 12 and 14. What these results imply about mechanisms underlying neuroendocrine motor zone differentiation is discussed.
Collapse
Affiliation(s)
- E A Markakis
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-2520, USA
| | | |
Collapse
|
87
|
Risold PY, Swanson LW. Chemoarchitecture of the rat lateral septal nucleus. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 24:91-113. [PMID: 9385453 DOI: 10.1016/s0165-0173(97)00008-8] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The distribution of neurons and terminal fields that contain a variety of neurotransmitters and steroid hormone receptors has been examined with in situ hybridization and immunohistochemistry in closely spaced series of sections throughout the rostrocaudal extent of the rat lateral septal nucleus, as well as the adjacent septohippocampal and septofimbrial nuclei. The results indicate that the lateral septal nucleus is divided into major rostral, caudal, and ventral parts that differ from the widely used cytoarchitectonic parcellation into dorsal, intermediate, and ventral parts. Furthermore, the rostral, caudal, and ventral parts are turn divided into about 20 zones, regions, and domains on the basis of differential terminal fields and neurons that express particular neuropeptides and steroid hormone receptors. In general, the small zones and regions form dorsoventrally oriented sheets or bands that are arranged in a complex way. Differential connections of these lateral septal components are analyzed in the accompanying paper (Risold, P. Y. and Swanson, L. W., Connections of the rat lateral septal complex, Brain Res. Rev., 24 (1997) 115-195).
Collapse
Affiliation(s)
- P Y Risold
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-2520, USA
| | | |
Collapse
|
88
|
Karlsson U, Sundgren AK, Näsström J, Johansson S. Glutamate-evoked currents in acutely dissociated neurons from the rat medial preoptic nucleus. Brain Res 1997; 759:270-6. [PMID: 9221947 DOI: 10.1016/s0006-8993(97)00262-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Membrane currents evoked by glutamate were investigated in acutely dissociated neurons from the medial preoptic nucleus (MPN) of rat. Rapid application of glutamate induced a fast current component in all neurons studied. In addition, in > 50% of the neurons, a slow current component was elicited. The fast and the slow current components were selectively blocked by the AMPA-receptor antagonist NBQX and by the NMDA-receptor channel blocker MK-801, respectively. Rapid application of AMPA induced, in all neurons tested, currents with properties similar to the fast component of the glutamate-evoked currents whereas rapid application of NMDA induced, in approximately 75% of the neurons, currents similar to the slow component of the glutamate-evoked currents. The NMDA-evoked currents showed a marked outward rectification that was attributed to a potential-dependent block by extracellular Mg2+. The NMDA-evoked currents also required the presence of extracellular glycine in the micromolar range. In conclusion, the results show that MPN neurons respond to glutamate with currents that can be attributed to activation of ionotropic glutamate receptors of the AMPA-receptor type as well as of the NMDA-receptor type.
Collapse
Affiliation(s)
- U Karlsson
- Astra Pain Control AB, Novum Unit, Huddinge, Sweden
| | | | | | | |
Collapse
|
89
|
De Vries GJ, Villalba C. Brain sexual dimorphism and sex differences in parental and other social behaviors. Ann N Y Acad Sci 1997; 807:273-86. [PMID: 9071357 DOI: 10.1111/j.1749-6632.1997.tb51926.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- G J De Vries
- Department of Psychology, University of Massachusetts 01003-7710, USA
| | | |
Collapse
|
90
|
Swaab D. Chapter II Neurobiology and neuropathology of the human hypothalamus. HANDBOOK OF CHEMICAL NEUROANATOMY 1997. [DOI: 10.1016/s0924-8196(97)80004-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
91
|
Abstract
The sexually dimorphic nucleus of the preoptic area (SDN-POA) is the most striking structure displaying a morphological sex difference in the rat brain. A potentially homologous nucleus has been identified in the human hypothalamus. The objective of the present study was to pursue the putative homology of the rat and human SDN-POA by determining whether they express the same transmitter phenotype. We employed in situ hybridization histochemistry for GAD mRNA to show whether the neurons of the SDN-POA produce GABA. In both the rat and human, high levels of GAD65 and GAD67 mRNA are present in most, if not all, SDN-POA neurons. No sex difference is evident in the level of expression in either the rat or human. The data indicate that neurons of the SDN-POA in both the rat and human are GABA-producing and argue for the homology of these nuclei in the rat and human hypothalamus.
Collapse
Affiliation(s)
- B Gao
- Center for Neuroscience and Department of Psychiatry, University of Pittsburgh, PA 15261, USA
| | | |
Collapse
|
92
|
Abstract
In a previous study we have shown that microinjection of the benzodiazepine hypnotic triazolam into the medial preoptic area increases sleep in rats. In order to determine whether this effect is specific to benzodiazepines, or whether it occurs with hypnotic medications from other pharmacologic classes, we have microinjected pentobarbital (1 and 100 micrograms) and vehicle in random sequence into rats and performed two hour sleep studies in the daytime with the lights on. Both doses significantly decreased sleep latency and increased nonREM and total sleep. The amount of REM sleep, REM latency, and intermittent waking time were not significantly altered. These data are consistent with the hypothesis that the medial preoptic area may be involved in sleep induction by both benzodiazepine and barbiturate hypnotic medications.
Collapse
Affiliation(s)
- W B Mendelson
- Sleep Research Laboratory, University of Chicago, Illinois 60637, USA.
| |
Collapse
|
93
|
Park JJ, Baum MJ, Paredes RG, Tobet SA. Neurogenesis and cell migration into the sexually dimorphic preoptic area/anterior hypothalamus of the fetal ferret. JOURNAL OF NEUROBIOLOGY 1996; 30:315-28. [PMID: 8807525 DOI: 10.1002/(sici)1097-4695(199607)30:3<315::aid-neu1>3.0.co;2-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A sexually dimorphic male nucleus (MN) of the preoptic area/anterior hypothalamus (POA/AH), comprising large, estradiol-receptor containing neurons, is formed in male ferrets due to the action of estradiol, derived from the neural aromatization of circulating testosterone, during the last quarter of a 41-day gestation. Two experiments were conducted to compare the birthdates and the migration pattern of cells into the sexually dimorphic portion of the dorsomedial POA/AH as well as the nondimorphic ventral nucleus (VN) of the POA/AH of males and females. In experiment 1 the thymidine analog, bromodeoxyuridine (BrdU), was injected into the amniotic sacs of fetuses of different mothers between embryonic (E) days 18 and 30. Kits from all mothers were sacrificed on E38, and brains were processed to localize BrdU immunoreactivity (IR) for determining the birthdates of neurons in the POA/AH. Cells in the MN-POA/AH of males and in a comparable region of females were born between E22 and E28; cells in the nondimorphic VN-POA/AH of both sexes were born between these same ages. These results suggest that cells in the sexually dimorphic as well as the nondimorphic subdivision of the ferret POA/AH are born during the same embryonic period. This is well before the ages (E30-E41) when administering testosterone to females can stimulate, and blocking androgen aromatization in males can inhibit, MN-POA/AH differentiation. In experiment 2 BrdU was injected on E24, and kits from different litters were perfused on E30, E34, or E38. Brains were processed for BrdU-IR as well as glial fibrillary acidic protein (GFAP), which served as a marker for radial glial processes. The orientation of radial glial processes in fetal brains of both sexes suggested that cells migrate into the dorsomedial POA/AH from proliferative zones lining the lateral as well as the third ventricles. Quantitative, computer-assisted image analysis of BrdU-IR in groups of male and female brains supported this hypothesis. There were no significant sex differences in the distribution of BrdU-IR over the three ages studied, suggesting that formation of the MN-POA/AH in males cannot be attributed to an effect of estradiol on the migration of those cells born on E24 into this sexually dimorphic structure. Finally, total BrdU-IR did not change significantly in the POA/AH of male and female kits killed at E30, E34, or E38 while the area of the POA/AH increased more than 2.5-fold over this period, suggesting that few of the POA/AH cells born on E24 die during this period in either sex. In the absence of evidence that formation of the male ferret's MN-POA/AH depends on steroid-induced changes in neurogenesis, cell migration, or death, we suggest that the specification of a particular neuronal phenotype (e.g., large somal size; capacity to produce some undetermined neurotransmitter or neuropeptide) may be responsible.
Collapse
Affiliation(s)
- J J Park
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
94
|
Abstract
In female mammals, reproduction is extremely sensitive to the availability of oxidizable metabolic fuels. When food intake is limited or when an inordinate fraction of the available energy is diverted to other uses such as exercise or fattening, reproductive attempts are suspended in favor of processes necessary for individual survival. Both reproductive physiology and sexual behaviors are influenced by food availability. Nutritional effects on reproductive physiology are mediated by changes in the activity of gonadotropin-releasing hormone (GnRH) neurons in the forebrain, whereas the suppression of sexual behaviors appears to be due, at least in part, to decreases in estrogen receptor in the ventromedial hypothalamus. Work using pharmacological inhibitors of glucose and fatty acid oxidation indicates that reproductive physiology and behavior respond to short-term (minute-to-minute or hour-to-hour) changes in metabolic fuel oxidation, rather than to any aspect of body size or composition (e.g., body fat content or fat-to-lean ratio). These metabolic cues seem to be detected in the viscera (most likely in the liver) and in the caudal hindbrain (probably in the area postrema). This metabolic information is then transmitted to the GnRH-secreting or estradiol-binding effector neurons in the forebrain. There is no evidence to date for direct detection of metabolic cues by these forebrain effector neurons. This metabolic fuels hypothesis is consistent with a large body of evidence and seems to account for the infertility that is seen in a number of situations, including famine, eating disorders, excessive exercise, cold exposure, lactation, some types of obesity, and poorly controlled diabetes mellitus.
Collapse
Affiliation(s)
- G N Wade
- Department of Psychology, University of Massachusetts, Amherst 01003-7710, USA
| | | | | |
Collapse
|
95
|
Kawata M. Roles of steroid hormones and their receptors in structural organization in the nervous system. Neurosci Res 1995; 24:1-46. [PMID: 8848287 DOI: 10.1016/0168-0102(96)81278-8] [Citation(s) in RCA: 227] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Due to their chemical properties, steroid hormones cross the blood-brain barrier where they have profound effects on neuronal development and reorganization both in invertebrates and vertebrates, including humans mediated through their receptors. Steroids play a crucial role in the organizational actions of cellular differentiation representing sexual dimorphism and apoptosis, and in the activational effects of phenotypic changes in association with structural plasticity. Their sites of action are primarily the genes themselves but some are coupled with membrane-bound receptor/ion channels. The effects of steroid hormones on gene transcription are not direct, and other cellular components interfere with their receptors through cross-talk and convergence of the signaling pathways in neurons. These genomic and non-genomic actions account for the divergent effects of steroid hormones on brain function as well as on their structure. This review looks again at and updates the tremendous advances made in recent decades on the study of the role of steroid (gonadal and adrenal) hormones and their receptors on developmental processes and plastic changes in the nervous system.
Collapse
Affiliation(s)
- M Kawata
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Japan
| |
Collapse
|
96
|
Herbison AE, Spratt DP. Sexually dimorphic expression of calcitonin gene-related peptide (CGRP) mRNA in rat medial preoptic nucleus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 34:143-8. [PMID: 8750870 DOI: 10.1016/0169-328x(95)00144-h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous immunocytochemical analyses have identified a substantial, gonadal steroid-dependent sex difference in the number of cells expressing calcitonin gene-related peptide (CGRP) in the rat preoptic area. Using three 35S-labelled antisense oligonucleotide probes specific for both alpha and beta CGRP, the present study has examined CGRP mRNA expression within the medial preoptic nucleus (MPN) of intact and gonadectomised male and female rats. Cells expressing CGRP mRNA were found to be more numerous in the intact female (21 +/- 2 cells/hemisection) compared with the male (6 +/- 1; P < 0.01) although the average CGRP mRNA content of MPN cells was not different between intact males (62 +/- 7 silver grains/cell) and females (69 +/- 6 silver grains/cell). Gonadectomy resulted in a significant increase in the number of CGRP mRNA expressing cells detected in the male (12 +/- 1 cells/hemisection; P < 0.01) and an increase (P < 0.05) in the mean CGRP mRNA content per cell in both males (99 +/- 12 silver grains/cell) and females (107 +/- 11 silver grains/cell). These results show that sex differences exist in the number of cells containing CGRP transcripts in the rat MPN although average CGRP mRNA content per cell is not different between males and females. Gonadal steroids appear to exert a tonic suppressive influence on the CGRP mRNA content of MPN cells in both males and females.
Collapse
Affiliation(s)
- A E Herbison
- Laboratory of Neuroendocrinology, Babraham Institute, Cambridge, UK
| | | |
Collapse
|
97
|
Toni R, Mosca S, Ruggeri F, Valmori A, Orlandi G, Toni G, Lechan RM, Vezzadini P. Effect of hypothyroidism on vasoactive intestinal polypeptide-immunoreactive neurons in forebrain-neurohypophysial nuclei of the rat brain. Brain Res 1995; 682:101-15. [PMID: 7552300 DOI: 10.1016/0006-8993(95)00340-v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have recently reported that hypothyroidism increases immunoreactive (IR)-vasoactive intestinal polypeptide (VIP) and VIP mRNA content in both parvocellular and magnocellular neurons of the rat, hypothalamic paraventricular nucleus (PVN). As VIP can stimulate vasopressin (AVP) secretion, we conducted an anatomical investigation to determine whether VIP-containing neurons in other regions of the brain that are involved with homeostatic mechanisms of water and salt conservation are also affected by hypothyroidism. The distribution and intensity of VIP immunostaining in neurons and fibers of the magnocellular-neurohypophysial system, including the hypothalamic PVN, supraoptic nucleus (SON) and accessory magnocellular cell groups, circumventricular subfornical organ (SFO), preoptic and anterior hypothalamus, midline thalamus, subthalamic zona incerta and posterior septal nuclei were studied using a highly sensitive immunocytochemical technique and unbiased neuronal counting methods, based on the optical dissector principle. Hypothyroidism increased the intensity of VIP immunostaining and/or the number/section, percentage and numerical density of IR-VIP neurons in the PVN, SON, nucleus circularis, periventricular preoptic nucleus of the hypothalamus and SFO. In addition, IR-VIP perikarya and/or fibers in the hypothalamic medial preoptic area and anterior periventricular nucleus, nucleus reuniens of the thalamus and dorsal fornix-triangular septal nucleus complex were also apparent in the hypothyroid animals while no immunostaining was seen in these areas in control animals. No quantitative and/or qualitative modifications in IR-VIP neurons and fibers were noted in the anterior hypothalamic area, suprachiasmatic nucleus, thalamic paraventricular nucles an subthalamic zona incerta between hypothyroid and control animals. These findings suggest an inverse relationship between thyroid hormone and VIP content and/or distribution of IR-VIP neurons in specific forebrain regions involved in the control of AVP release, extracellular fluid volume, thirst, blood pressure and anterior pituitary secretion. This raises the possibility that changes in fluid homeostasis and cardiovascular function occurring in hypothyroidism may be mediated, at least in part, by VIP-producing neurons in diverse regions of the brain.
Collapse
Affiliation(s)
- R Toni
- Istituto di Anatomia Umana Normale, University of Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Panzica GC, Aste N, Viglietti-Panzica C, Ottinger MA. Structural sex differences in the brain: influence of gonadal steroids and behavioral correlates. J Endocrinol Invest 1995; 18:232-52. [PMID: 7615911 DOI: 10.1007/bf03347808] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- G C Panzica
- Dipartimento Anatomia e Fisiologia Umana, University of Torino
| | | | | | | |
Collapse
|
99
|
Swaab D, Hofman M. Sexual differentiation of the human hypothalamus in relation to gender and sexual orientation. Trends Neurosci 1995. [DOI: 10.1016/0166-2236(95)80007-o] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
100
|
Abstract
We have recently demonstrated that c-fos expression is strongly induced by both spontaneous and forced wakefulness in many brain regions. c-Fos expression was considerably increased in regions involved in the regulation of arousal states, such as the locus coeruleus (noradrenergic neurons) and the medial preoptic area (non-GABAergic neurons). With c-fos antisense injection in the medial preoptic area, we demonstrated that c-fos expression in this region is causally involved in sleep regulation. c-Fos expression in other areas, such as the cerebral cortex and the hippocampus, may be related to the functional consequences of prolonged wakefulness and to the need of sleep. Further work should explore the mechanisms leading to changes in the expression of c-fos, and possibly of its target genes, during the sleep-wake cycle.
Collapse
Affiliation(s)
- M Pompeiano
- Istituto di Chimica Biologica, Universita di Pisa, Italy
| | | | | | | |
Collapse
|