51
|
Sreekumar A, Toneff MJ, Toh E, Roarty K, Creighton CJ, Belka GK, Lee DK, Xu J, Chodosh LA, Richards JS, Rosen JM. WNT-Mediated Regulation of FOXO1 Constitutes a Critical Axis Maintaining Pubertal Mammary Stem Cell Homeostasis. Dev Cell 2017; 43:436-448.e6. [PMID: 29103953 DOI: 10.1016/j.devcel.2017.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/16/2017] [Accepted: 10/06/2017] [Indexed: 12/24/2022]
Abstract
Puberty is characterized by dynamic tissue remodeling in the mammary gland involving ductal elongation, resolution into the mature epithelial bilayer, and lumen formation. To decipher the cellular mechanisms underlying these processes, we studied the fate of putative stem cells, termed cap cells, present in terminal end buds of pubertal mice. Employing a p63CreERT2-based lineage-tracing strategy, we identified a unipotent fate for proliferative cap cells that only generated cells with basal features. Furthermore, we observed that dislocated "cap-in-body" cells underwent apoptosis, which aided lumen formation during ductal development. Basal lineage-specific profiling and genetic loss-of-function experiments revealed a critical role for FOXO transcription factors in mediating these proliferative versus apoptotic fates. Importantly, these studies revealed a mode of WNT signaling-mediated FOXO1 inhibition, potentially mediated through AKT. Together, these data suggest that the WNT pathway confers proliferative and survival advantages on cap cells via regulation of FOXO1 localization.
Collapse
Affiliation(s)
- Amulya Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael J Toneff
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Eajer Toh
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kevin Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - George K Belka
- Department of Cancer Biology, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Dong-Kee Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lewis A Chodosh
- Department of Cancer Biology, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
52
|
Berryhill GE, Lemay DG, Trott JF, Aimo L, Lock AL, Hovey RC. The Transcriptome of Estrogen-Independent Mammary Growth in Female Mice Reveals That Not All Mammary Glands Are Created Equally. Endocrinology 2017; 158:3126-3139. [PMID: 28938404 PMCID: PMC5659702 DOI: 10.1210/en.2017-00395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/21/2017] [Indexed: 01/22/2023]
Abstract
Allometric growth of ducts in the mammary glands (MGs) is widely held to be estrogen dependent. We previously discovered that the dietary fatty acid trans-10, cis-12 conjugated linoleic acid (CLA) stimulates estrogen-independent allometric growth and terminal end bud formation in ovariectomized mice. Given the similar phenotype induced by estrogen and CLA, we investigated the shared and/or divergent mechanisms underlying these changes. We confirmed MG growth induced by CLA is temporally distinct from that elicited by estrogen. We then used RNA sequencing to compare the transcriptome of the MG during similar proliferative and morphological states. Both estrogen and CLA affected the genes involved in proliferation. The transcriptome for estrogen-treated mice included canonical estrogen-induced genes, including Pgr, Areg, and Foxa1. In contrast, their expression was unchanged by CLA. However, CLA, but not estrogen, altered expression of a unique set of inflammation-associated genes, consistent with stromal changes. This CLA-altered signature included increased expression of epidermal growth factor receptor (EGFR) pathway components, consistent with the demonstration that CLA-induced MG growth is EGFR dependent. Our findings highlight a unique role for diet-induced inflammation that underlies estrogen-independent MG development.
Collapse
Affiliation(s)
- Grace E. Berryhill
- Department of Animal Science, University of California Davis, Davis, California 95616-8521
| | - Danielle G. Lemay
- UC Davis Genome Center, University of California Davis, Davis, California 95616-8521
- US Department of Agriculture, Agricultural Research Services, Western Human Nutrition Research Center, Davis, California 95616
| | - Josephine F. Trott
- Department of Animal Science, University of California Davis, Davis, California 95616-8521
| | - Lucila Aimo
- Department of Animal Science, University of California Davis, Davis, California 95616-8521
| | - Adam L. Lock
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824-1225
| | - Russell C. Hovey
- Department of Animal Science, University of California Davis, Davis, California 95616-8521
| |
Collapse
|
53
|
Monkkonen T, Lewis MT. New paradigms for the Hedgehog signaling network in mammary gland development and breast Cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:315-332. [PMID: 28624497 PMCID: PMC5567999 DOI: 10.1016/j.bbcan.2017.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/12/2022]
Abstract
The Hedgehog signaling network regulates organogenesis, cell fate, proliferation, survival, and stem cell self-renewal in many mammalian tissues. Aberrant activation of the Hedgehog signaling network is present in ~25% of all cancers, including breast. Altered expression of Hedgehog network genes in the mammary gland can elicit phenotypes at many stages of development. However, synthesizing a cohesive mechanistic model of signaling at different stages of development has been difficult. Emerging data suggest that this difficulty is due, in part, to non-canonical and tissue compartment-specific (i.e., epithelial, versus stromal, versus systemic) functions of Hedgehog network components. With respect to systemic functions, Hedgehog network genes regulate development of endocrine organs that impinge on mammary gland development extrinsically. These new observations offer insight into previously conflicting data, and have bearing on the potential for anti-Hedgehog therapeutics in the treatment of breast cancer.
Collapse
Affiliation(s)
- Teresa Monkkonen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; University of California, San Francisco, Dept. of Pathology, 513 Parnassus Ave., San Francisco, CA 94118, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
54
|
Diverse regulation of mammary epithelial growth and branching morphogenesis through noncanonical Wnt signaling. Proc Natl Acad Sci U S A 2017; 114:3121-3126. [PMID: 28270600 DOI: 10.1073/pnas.1701464114] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mammary gland consists of an adipose tissue that, in a process called branching morphogenesis, is invaded by a ductal epithelial network comprising basal and luminal epithelial cells. Stem and progenitor cells drive mammary growth, and their proliferation is regulated by multiple extracellular cues. One of the key regulatory pathways for these cells is the β-catenin-dependent, canonical wingless-type MMTV integration site family (WNT) signaling pathway; however, the role of noncanonical WNT signaling within the mammary stem/progenitor system remains elusive. Here, we focused on the noncanonical WNT receptors receptor tyrosine kinase-like orphan receptor 2 (ROR2) and receptor-like tyrosine kinase (RYK) and their activation by WNT5A, one of the hallmark noncanonical WNT ligands, during mammary epithelial growth and branching morphogenesis. We found that WNT5A inhibits mammary branching morphogenesis in vitro and in vivo through the receptor tyrosine kinase ROR2. Unexpectedly, WNT5A was able to enhance mammary epithelial growth, which is in contrast to its next closest relative WNT5B, which potently inhibits mammary stem/progenitor proliferation. We found that RYK, but not ROR2, is necessary for WNT5A-mediated promotion of mammary growth. These findings provide important insight into the biology of noncanonical WNT signaling in adult stem/progenitor cell regulation and development. Future research will determine how these interactions go awry in diseases such as breast cancer.
Collapse
|
55
|
Gargiulo L, May M, Rivero EM, Copsel S, Lamb C, Lydon J, Davio C, Lanari C, Lüthy IA, Bruzzone A. A Novel Effect of β-Adrenergic Receptor on Mammary Branching Morphogenesis and its Possible Implications in Breast Cancer. J Mammary Gland Biol Neoplasia 2017; 22:43-57. [PMID: 28074314 DOI: 10.1007/s10911-017-9371-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/02/2017] [Indexed: 12/20/2022] Open
Abstract
Understanding the mechanisms that govern normal mammary gland development is crucial to the comprehension of breast cancer etiology. β-adrenergic receptors (β-AR) are targets of endogenous catecholamines such as epinephrine that have gained importance in the context of cancer biology. Differences in β2-AR expression levels may be responsible for the effects of epinephrine on tumor vs non-tumorigenic breast cell lines, the latter expressing higher levels of β2-AR. To study regulation of the breast cell phenotype by β2-AR, we over-expressed β2-AR in MCF-7 breast cancer cells and knocked-down the receptor in non-tumorigenic MCF-10A breast cells. In MCF-10A cells having knocked-down β2-AR, epinephrine increased cell proliferation and migration, similar to the response by tumor cells. In contrast, in MCF-7 cells overexpressing the β2-AR, epinephrine decreased cell proliferation and migration and increased adhesion, mimicking the response of the non-tumorigenic MCF-10A cells, thus underscoring that β2-AR expression level is a key player in cell behavior. β-adrenergic stimulation with isoproterenol induced differentiation of breast cells growing in 3-dimension cell culture, and also the branching of murine mammary epithelium in vivo. Branching induced by isoproterenol was abolished in fulvestrant or tamoxifen-treated mice, demonstrating that the effect of β-adrenergic stimulation on branching is dependent on the estrogen receptor (ER). An ER-independent effect of isoproterenol on lumen architecture was nonetheless found. Isoproterenol significantly increased the expression of ERα, Ephrine-B1 and fibroblast growth factors in the mammary glands of mice, and in MCF-10A cells. In a poorly differentiated murine ductal carcinoma, isoproterenol also decreased tumor growth and induced tumor differentiation. This study highlights that catecholamines, through β-AR activation, seem to be involved in mammary gland development, inducing mature duct formation. Additionally, this differentiating effect could be resourceful in a breast tumor context.
Collapse
Affiliation(s)
- Lucía Gargiulo
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - María May
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Ezequiel M Rivero
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Sabrina Copsel
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
- Laboratorio de Farmacología de Receptores, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 1113, Buenos Aires, CABA, Argentina
| | - Caroline Lamb
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - John Lydon
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Carlos Davio
- Laboratorio de Farmacología de Receptores, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 1113, Buenos Aires, CABA, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Isabel A Lüthy
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), CONICET-Universidad Nacional del Sur, Camino La Carrindanga km 7, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
56
|
Identity and dynamics of mammary stem cells during branching morphogenesis. Nature 2017; 542:313-317. [PMID: 28135720 DOI: 10.1038/nature21046] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
Abstract
During puberty, the mouse mammary gland develops into a highly branched epithelial network. Owing to the absence of exclusive stem cell markers, the location, multiplicity, dynamics and fate of mammary stem cells (MaSCs), which drive branching morphogenesis, are unknown. Here we show that morphogenesis is driven by proliferative terminal end buds that terminate or bifurcate with near equal probability, in a stochastic and time-invariant manner, leading to a heterogeneous epithelial network. We show that the majority of terminal end bud cells function as highly proliferative, lineage-committed MaSCs that are heterogeneous in their expression profile and short-term contribution to ductal extension. Yet, through cell rearrangements during terminal end bud bifurcation, each MaSC is able to contribute actively to long-term growth. Our study shows that the behaviour of MaSCs is not directly linked to a single expression profile. Instead, morphogenesis relies upon lineage-restricted heterogeneous MaSC populations that function as single equipotent pools in the long term.
Collapse
|
57
|
Fundamental Pathways in Breast Cancer 4: Signaling to Chromatin in Breast Development. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
58
|
Voon DCC, Thiery JP. The Emerging Roles of RUNX Transcription Factors in Epithelial-Mesenchymal Transition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:471-489. [PMID: 28299674 DOI: 10.1007/978-981-10-3233-2_28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an evolutionary conserved morphogenetic program necessary for the shaping of the body plan during development. It is guided precisely by growth factor signaling and a dedicated network of specialised transcription factors. These are supported by other transcription factor families serving auxiliary functions during EMT, beyond their general roles as effectors of major signaling pathways. EMT transiently induces in epithelial cells mesenchymal properties, such as the loss of cell-cell adhesion and a gain in cell motility. Together, these newly acquired properties enable their migration to distant sites where they eventually give rise to adult epithelia. However, it is now recognized that EMT contributes to the pathogenesis of several human diseases, notably in tissue fibrosis and cancer metastasis. The RUNX family of transcription factors are important players in cell fate determination during development, where their spatio-temporal expression often overlaps with the occurrence of EMT. Furthermore, the dysregulation of RUNX expression and functions are increasingly linked to the aberrant induction of EMT in cancer. The present chapter reviews the current knowledge of this emerging field and the common themes of RUNX involvement during EMT, with the intention of fostering future research.
Collapse
Affiliation(s)
- Dominic Chih-Cheng Voon
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan.
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan.
| | - Jean Paul Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
- Institute of Molecular and Cell Biology, A-STAR, Singapore, 138673, Singapore
| |
Collapse
|
59
|
Rooney N, Riggio AI, Mendoza-Villanueva D, Shore P, Cameron ER, Blyth K. Runx Genes in Breast Cancer and the Mammary Lineage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:353-368. [PMID: 28299668 DOI: 10.1007/978-981-10-3233-2_22] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A full understanding of RUNX gene function in different epithelial lineages has been thwarted by the lethal phenotypes observed when constitutively knocking out these mammalian genes. However temporal expression of the Runx genes throughout the different phases of mammary gland development is indicative of a functional role in this tissue. A few studies have emerged describing how these genes impact on the fate of mammary epithelial cells by regulating lineage differentiation and stem/progenitor cell potential, with implications for the transformed state. The importance of the RUNX/CBFβ core factor binding complex in breast cancer has very recently been highlighted with both RUNX1 and CBFβ appearing in a comprehensive gene list of predicted breast cancer driver mutations. Nonetheless, the evidence to date shows that the RUNX genes can have dualistic outputs with respect to promoting or constraining breast cancer phenotypes, and that this may be aligned to individual subtypes of the clinical disease. We take this opportunity to review the current literature on RUNX and CBFβ in the normal and neoplastic mammary lineage while appreciating that this is likely to be the tip of the iceberg in our knowledge.
Collapse
Affiliation(s)
- Nicholas Rooney
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | | | | | - Paul Shore
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Ewan R Cameron
- School of Veterinary Medicine, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Karen Blyth
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
60
|
McBryan J, Howlin J. Pubertal Mammary Gland Development: Elucidation of In Vivo Morphogenesis Using Murine Models. Methods Mol Biol 2017; 1501:77-114. [PMID: 27796948 DOI: 10.1007/978-1-4939-6475-8_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the past 25 years, the combination of increasingly sophisticated gene targeting technology with transplantation techniques has allowed researchers to address a wide array of questions about postnatal mammary gland development. These in turn have significantly contributed to our knowledge of other branched epithelial structures. This review chapter highlights a selection of the mouse models exhibiting a pubertal mammary gland phenotype with a focus on how they have contributed to our overall understanding of in vivo mammary morphogenesis. We discuss mouse models that have enabled us to assign functions to particular genes and proteins and, more importantly, have determined when and where these factors are required for completion of ductal outgrowth and branch patterning. The reason for the success of the mouse mammary gland model is undoubtedly the suitability of the postnatal mammary gland to experimental manipulation. The gland itself is very amenable to investigation and the combination of genetic modification with accessibility to the tissue has allowed an impressive number of studies to inform biology. Excision of the rudimentary epithelial structure postnatally allows genetically modified tissue to be readily transplanted into wild type stroma or vice versa, and has thus defined the contribution of each compartment to particular phenotypes. Similarly, whole gland transplantation has been used to definitively discern local effects from indirect systemic effects of various growth factors and hormones. While appreciative of the power of these tools and techniques, we are also cognizant of some of their limitations, and we discuss some shortcomings and future strategies that can overcome them.
Collapse
Affiliation(s)
- Jean McBryan
- Department of Molecular Medicine Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, 9, Ireland
| | - Jillian Howlin
- Division of Oncology-Pathology, Lund University Cancer Center/Medicon Village, Building 404:B2, Scheelevägen 2, 223 81, Lund, Sweden.
| |
Collapse
|
61
|
Morris JS, Stein T. Pubertal Ductal Morphogenesis: Isolation and Transcriptome Analysis of the Terminal End Bud. Methods Mol Biol 2017; 1501:131-148. [PMID: 27796950 DOI: 10.1007/978-1-4939-6475-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The terminal end bud (TEB) is the growing part of the ductal mammary epithelium during puberty, enabling the formation of a primary epithelial network. These highly proliferative bulbous end structures that drive the ductal expansion into the mammary fat pad comprise an outer cap cell layer, containing the progenitor cells of the ductal myoepithelium, and the body cells, which form the luminal epithelium. As TEB make up only a very small part of the whole mammary tissue, TEB-associated factors can be easily missed when whole-tissue sections are being analyzed. Here we describe a method to enzymatically separate TEB and ducts, respectively, from the surrounding stroma of pubertal mice in order to perform transcriptomic or proteomic analysis on the isolated structures and identify potential novel regulators of epithelial outgrowth, or to allow further cell culturing. This approach has previously allowed us to identify novel TEB-associated proteins, including several axonal guidance proteins. We further include protocols for the culturing of isolated TEB, processing of mammary tissue into paraffin and immunohistochemical/fluorescent staining for verification, and localization of protein expression in the mammary tissue at different developmental time points.
Collapse
Affiliation(s)
- Joanna S Morris
- School of Veterinary Medicine, College of MVLS, University of Glasgow, Glasgow, UK
| | - Torsten Stein
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, G12 8 QQ, UK.
| |
Collapse
|
62
|
Zhang Y, Li F, Song Y, Sheng X, Ren F, Xiong K, Chen L, Zhang H, Liu D, Lengner CJ, Xue L, Yu Z. Numb and Numbl act to determine mammary myoepithelial cell fate, maintain epithelial identity, and support lactogenesis. FASEB J 2016; 30:3474-3488. [PMID: 27383182 DOI: 10.1096/fj.201600387r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/21/2016] [Indexed: 11/11/2022]
Abstract
Mammary epithelium is comprised of an inner layer of luminal epithelial cells and an outer layer of contractile myoepithelial cells with mesenchymal properties. These two compartments interact throughout mammary morphogenesis to form branching ducts during puberty and terminate in secretory alveoli during lactation. It is not known how the myoepithelial cell lineage is specified, nor how signals in myoepithelial cells contribute to lactogenesis. Here, we show that Numb and Numbl are enriched in mammary myoepithelial cells, with their expression peaking during pregnancy. We use conditional Numb- and Numbl-knockout mouse models to demonstrate that loss of Numb/Numbl compromised the myoepithelial layer and expanded the luminal layer, led epithelial cells to undergo epithelial-to-mesenchymal transition, and resulted in lactation failure as a result of abnormal alveolar formation during pregnancy. Numb and Numbl function via repression of the Notch signaling pathway and of the p53-p21 axis during mammary gland development. These findings highlight the importance of Numb and Numbl in the control of myoepithelial cell fate determination, epithelial identity, and lactogenesis.-Zhang Y., Li, F., Song, Y., Sheng, X., Ren, F., Xiong, K., Chen, L., Zhang, H., Liu, D., Lengner, C. J., Xue, L., Yu, Z. Numb and Numbl act to determine mammary myoepithelial cell fate, maintain epithelial identity, and support lactogenesis.
Collapse
Affiliation(s)
- Yue Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengyin Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongli Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaole Sheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and
| | - Kai Xiong
- Department of Radiation Oncology, Peking University Third Hospital-Medical Research Center, Beijing, China
| | - Lei Chen
- Department of Animal Science, Southwest University, Chongqing, China
| | - Hongquan Zhang
- Laboratory of Molecular Cell Biology and Tumor Biology and Department of Anatomy, Histology, and Embryology, Peking University Health Science Center, Beijing, China
| | - Dequan Liu
- Department of Breast Surgery, The Third Affiliated Hospital, Kunming Medical University, Yunnan, China; and
| | - Christopher J Lengner
- Department of Biomedical Sciences, Department of Cell and Developmental Biology, and Institute for Regenerative Medicine, University of Pennsylvania Medical Research Center, Philadelphia, Pennsylvania, USA
| | - Lixiang Xue
- Department of Radiation Oncology, Peking University Third Hospital-Medical Research Center, Beijing, China;
| | - Zhengquan Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China;
| |
Collapse
|
63
|
Gain- and Loss-of-Function Mutations in the Breast Cancer Gene GATA3 Result in Differential Drug Sensitivity. PLoS Genet 2016; 12:e1006279. [PMID: 27588951 PMCID: PMC5010247 DOI: 10.1371/journal.pgen.1006279] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/04/2016] [Indexed: 01/02/2023] Open
Abstract
Patterns of somatic mutations in cancer genes provide information about their functional role in tumourigenesis, and thus indicate their potential for therapeutic exploitation. Yet, the classical distinction between oncogene and tumour suppressor may not always apply. For instance, TP53 has been simultaneously associated with tumour suppressing and promoting activities. Here, we uncover a similar phenomenon for GATA3, a frequently mutated, yet poorly understood, breast cancer gene. We identify two functional classes of frameshift mutations that are associated with distinct expression profiles in tumours, differential disease-free patient survival and gain- and loss-of-function activities in a cell line model. Furthermore, we find an estrogen receptor-independent synthetic lethal interaction between a GATA3 frameshift mutant with an extended C-terminus and the histone methyltransferases G9A and GLP, indicating perturbed epigenetic regulation. Our findings reveal important insights into mutant GATA3 function and breast cancer, provide the first potential therapeutic strategy and suggest that dual tumour suppressive and oncogenic activities are more widespread than previously appreciated. Cancer is a disease caused by genetic mutations. Mutation patterns are often indicative of a gene’s function as either tumour promoting or tumour suppressive. Here we describe the frequently mutated, but poorly studied, breast cancer gene GATA3 as a rare exception: We discover that two different functional classes of mutations in this gene can lead to either gain- or loss-of-function activities. The most common type of mutations, resulting in an unusually extended protein, is associated with differential gene expression and decreased disease-free survival. This mutant, in contrast to other mutations or the non-mutated protein, renders cells specifically vulnerable to inhibitors of two chromatin-modifying enzymes, the histone methyltransferases G9A and GLP. Our findings shed light on the functional consequences of frequent GATA3 mutations in breast cancer and represent a first lead toward personalised therapy for a large subgroup of breast cancer patients.
Collapse
|
64
|
Nuclear repartitioning of galectin-1 by an extracellular glycan switch regulates mammary morphogenesis. Proc Natl Acad Sci U S A 2016; 113:E4820-7. [PMID: 27496330 DOI: 10.1073/pnas.1609135113] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Branching morphogenesis in the mammary gland is achieved by the migration of epithelial cells through a microenvironment consisting of stromal cells and extracellular matrix (ECM). Here we show that galectin-1 (Gal-1), an endogenous lectin that recognizes glycans bearing N-acetyllactosamine (LacNAc) epitopes, induces branching migration of mammary epithelia in vivo, ex vivo, and in 3D organotypic cultures. Surprisingly, Gal-1's effects on mammary patterning were independent of its glycan-binding ability and instead required localization within the nuclei of mammary epithelia. Nuclear translocation of Gal-1, in turn, was regulated by discrete cell-surface glycans restricted to the front of the mammary end buds. Specifically, α2,6-sialylation of terminal LacNAc residues in the end buds masked Gal-1 ligands, thereby liberating the protein for nuclear translocation. Within mammary epithelia, Gal-1 localized within nuclear Gemini bodies and drove epithelial invasiveness. Conversely, unsialylated LacNAc glycans, enriched in the epithelial ducts, sequestered Gal-1 in the extracellular environment, ultimately attenuating invasive potential. We also found that malignant breast cells possess higher levels of nuclear Gal-1 and α2,6-SA and lower levels of LacNAc than nonmalignant cells in culture and in vivo and that nuclear localization of Gal-1 promotes a transformed phenotype. Our findings suggest that differential glycosylation at the level of tissue microanatomy regulates the nuclear function of Gal-1 in the context of mammary gland morphogenesis and in cancer progression.
Collapse
|
65
|
Mammary Development and Breast Cancer: A Wnt Perspective. Cancers (Basel) 2016; 8:cancers8070065. [PMID: 27420097 PMCID: PMC4963807 DOI: 10.3390/cancers8070065] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
The Wnt pathway has emerged as a key signaling cascade participating in mammary organogenesis and breast oncogenesis. In this review, we will summarize the current knowledge of how the pathway regulates stem cells and normal development of the mammary gland, and discuss how its various components contribute to breast carcinoma pathology.
Collapse
|
66
|
Kim HJ, Kang GJ, Kim EJ, Park MK, Byun HJ, Nam S, Lee H, Lee CH. Novel effects of sphingosylphosphorylcholine on invasion of breast cancer: Involvement of matrix metalloproteinase-3 secretion leading to WNT activation. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1533-43. [PMID: 27216977 DOI: 10.1016/j.bbadis.2016.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/27/2016] [Accepted: 05/18/2016] [Indexed: 01/17/2023]
Abstract
Sphingosylphosphorylcholine (SPC) participates in several cellular processes including metastasis. SPC induces keratin reorganization and regulates the viscoelasticity of metastatic cancer cells including PANC-1 cancer cells leading to enhanced migration and invasion. The role of SPC and the relevant mechanism in invasion of breast cell are as yet unknown. SPC dose-dependently induces invasion of breast cancer cells or breast immortalized cells. Reverse transcription polymerase chain reaction and Western blot analyses of MCF10A and ZR-75-1 cells indicated that SPC induces expression and secretion of matrix metalloproteinase-3 (MMP3). From online KMPLOT, relapse free survival is high in patients having low MMP3 expressed basal breast cancer (n=581, p=0.032). UK370106 (MMP3 inhibitor) or gene silencing of MMP3 markedly inhibited the SPC-induced invasion of MCF10A cells. An extracellular signal-regulated kinase (ERK) inhibitor, PD98059, significantly suppressed the secretion and the gelatinolytic activity of MMP3, and invasion in MCF10A cells. Over-expression of ERK1 and ERK2 promoted both the expression and secretion of MMP3. In contrast, gene silencing of ERK1 and ERK2 attenuated the secretion of MMP3 in MCF10A cells. The effects of SPC-induced MMP3 secretion on β-catenin and TCF/lymphoid enhancer factor (LEF) promoter activity were examined since MMP3 indirectly activates canonical Wnt signaling. SPC induced translocation of β-catenin to nucleus and increased TCF/LEF promoter activity. These events were suppressed by UK370106 or PD98059. Wnt inhibitor, FH535 inhibited SPC-induced MMP3 secretion and invasion. Taken together, these results suggest that SPC induces MMP3 expression and secretion via ERK leading to Wnt activation.
Collapse
Affiliation(s)
- Hyun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Gyeoung Jin Kang
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Eun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyun Jung Byun
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Seungyoon Nam
- Department of Life Sciences, College of BioNano Technology, Gachon University, Sungnam 13120, Republic of Korea
| | - Ho Lee
- National Cancer Center, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Chang Hoon Lee
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
67
|
Zeng L, Cai C, Li S, Wang W, Li Y, Chen J, Zhu X, Zeng YA. Essential Roles of Cyclin Y-Like 1 and Cyclin Y in Dividing Wnt-Responsive Mammary Stem/Progenitor Cells. PLoS Genet 2016; 12:e1006055. [PMID: 27203244 PMCID: PMC4874687 DOI: 10.1371/journal.pgen.1006055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Cyclin Y family can enhance Wnt/β-catenin signaling in mitosis. Their physiological roles in mammalian development are yet unknown. Here we show that Cyclin Y-like 1 (Ccnyl1) and Cyclin Y (Ccny) have overlapping function and are crucial for mouse embryonic development and mammary stem/progenitor cell functions. Double knockout of Ccnys results in embryonic lethality at E16.5. In pubertal development, mammary terminal end buds robustly express Ccnyl1. Depletion of Ccnys leads to reduction of Lrp6 phosphorylation, hampering β-catenin activities and abolishing mammary stem/progenitor cell expansion in vitro. In lineage tracing experiments, Ccnys-deficient mammary cells lose their competitiveness and cease to contribute to mammary development. In transplantation assays, Ccnys-deficient mammary cells fail to reconstitute, whereas constitutively active β-catenin restores their regeneration abilities. Together, our results demonstrate the physiological significance of Ccnys-mediated mitotic Wnt signaling in embryonic development and mammary stem/progenitor cells, and reveal insights in the molecular mechanisms orchestrating cell cycle progression and maintenance of stem cell properties. Stem cell self-renewal has two essential elements, cell division and at least of one of the daughter cells retaining stem cell properties, so-called stemness. The interconnections between cell cycle and cell fate specification have been explored in embryonic stem cells. However, less is known about how cell cycle affects the cell fate decision in tissue stem cells. In this study, we explore the function of particular mitotic factors Ccny and Ccnyl1 in regulating the dividing tissue stem cells. The development of the mammary gland occurs mostly in postnatal pubertal stage. At the time, the robustly dividing stem/progenitor cells reside at the forefront of the mammary epithelium extension, underlining the mammary gland as a good model to study the interconnection of cell cycle and tissue stem cells. In this study, we show that in dividing mammary stem/progenitor cells, Ccny and Ccnyl1 enhance Wnt signaling activities in mitosis. The signaling enhancement in this time window is essential for the stem/progenitor cell property maintenance during division. Deletion of Ccnys results in diminishing their competitiveness and developmental potential.
Collapse
Affiliation(s)
- Liyong Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cheguo Cai
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shan Li
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yaping Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (XZ); (YAZ)
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (XZ); (YAZ)
| |
Collapse
|
68
|
MacLeod IM, Bowman PJ, Vander Jagt CJ, Haile-Mariam M, Kemper KE, Chamberlain AJ, Schrooten C, Hayes BJ, Goddard ME. Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits. BMC Genomics 2016; 17:144. [PMID: 26920147 PMCID: PMC4769584 DOI: 10.1186/s12864-016-2443-6] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dense SNP genotypes are often combined with complex trait phenotypes to map causal variants, study genetic architecture and provide genomic predictions for individuals with genotypes but no phenotype. A single method of analysis that jointly fits all genotypes in a Bayesian mixture model (BayesR) has been shown to competitively address all 3 purposes simultaneously. However, BayesR and other similar methods ignore prior biological knowledge and assume all genotypes are equally likely to affect the trait. While this assumption is reasonable for SNP array genotypes, it is less sensible if genotypes are whole-genome sequence variants which should include causal variants. RESULTS We introduce a new method (BayesRC) based on BayesR that incorporates prior biological information in the analysis by defining classes of variants likely to be enriched for causal mutations. The information can be derived from a range of sources, including variant annotation, candidate gene lists and known causal variants. This information is then incorporated objectively in the analysis based on evidence of enrichment in the data. We demonstrate the increased power of BayesRC compared to BayesR using real dairy cattle genotypes with simulated phenotypes. The genotypes were imputed whole-genome sequence variants in coding regions combined with dense SNP markers. BayesRC increased the power to detect causal variants and increased the accuracy of genomic prediction. The relative improvement for genomic prediction was most apparent in validation populations that were not closely related to the reference population. We also applied BayesRC to real milk production phenotypes in dairy cattle using independent biological priors from gene expression analyses. Although current biological knowledge of which genes and variants affect milk production is still very incomplete, our results suggest that the new BayesRC method was equal to or more powerful than BayesR for detecting candidate causal variants and for genomic prediction of milk traits. CONCLUSIONS BayesRC provides a novel and flexible approach to simultaneously improving the accuracy of QTL discovery and genomic prediction by taking advantage of prior biological knowledge. Approaches such as BayesRC will become increasing useful as biological knowledge accumulates regarding functional regions of the genome for a range of traits and species.
Collapse
Affiliation(s)
- I M MacLeod
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Victoria, 3010, Australia. .,Dairy Futures Cooperative Research Centre, AgriBio, Bundoora, Victoria, Australia. .,AgriBio, Dept. Economic Development, Jobs, Transport & Resources, Victoria, Australia.
| | - P J Bowman
- Dairy Futures Cooperative Research Centre, AgriBio, Bundoora, Victoria, Australia. .,AgriBio, Dept. Economic Development, Jobs, Transport & Resources, Victoria, Australia. .,Biosciences Research Centre, La Trobe University, Victoria, Australia.
| | - C J Vander Jagt
- Dairy Futures Cooperative Research Centre, AgriBio, Bundoora, Victoria, Australia. .,AgriBio, Dept. Economic Development, Jobs, Transport & Resources, Victoria, Australia.
| | - M Haile-Mariam
- Dairy Futures Cooperative Research Centre, AgriBio, Bundoora, Victoria, Australia. .,AgriBio, Dept. Economic Development, Jobs, Transport & Resources, Victoria, Australia.
| | - K E Kemper
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Victoria, 3010, Australia. .,AgriBio, Dept. Economic Development, Jobs, Transport & Resources, Victoria, Australia.
| | - A J Chamberlain
- Dairy Futures Cooperative Research Centre, AgriBio, Bundoora, Victoria, Australia. .,AgriBio, Dept. Economic Development, Jobs, Transport & Resources, Victoria, Australia.
| | | | - B J Hayes
- Dairy Futures Cooperative Research Centre, AgriBio, Bundoora, Victoria, Australia. .,AgriBio, Dept. Economic Development, Jobs, Transport & Resources, Victoria, Australia. .,Biosciences Research Centre, La Trobe University, Victoria, Australia.
| | - M E Goddard
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Victoria, 3010, Australia. .,Dairy Futures Cooperative Research Centre, AgriBio, Bundoora, Victoria, Australia. .,AgriBio, Dept. Economic Development, Jobs, Transport & Resources, Victoria, Australia.
| |
Collapse
|
69
|
Sreekumar A, Roarty K, Rosen JM. The mammary stem cell hierarchy: a looking glass into heterogeneous breast cancer landscapes. Endocr Relat Cancer 2015; 22. [PMID: 26206777 PMCID: PMC4618079 DOI: 10.1530/erc-15-0263] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mammary gland is a dynamic organ that undergoes extensive morphogenesis during the different stages of embryonic development, puberty, estrus, pregnancy, lactation and involution. Systemic and local cues underlie this constant tissue remodeling and act by eliciting an intricate pattern of responses in the mammary epithelial and stromal cells. Decades of studies utilizing methods such as transplantation and lineage-tracing have identified a complex hierarchy of mammary stem cells, progenitors and differentiated epithelial cells that fuel mammary epithelial development. Importantly, these studies have extended our understanding of the molecular crosstalk between cell types and the signaling pathways maintaining normal homeostasis that often are deregulated during tumorigenesis. While several questions remain, this research has many implications for breast cancer. Fundamental among these are the identification of the cells of origin for the multiple subtypes of breast cancer and the understanding of tumor heterogeneity. A deeper understanding of these critical questions will unveil novel breast cancer drug targets and treatment paradigms. In this review, we provide a current overview of normal mammary development and tumorigenesis from a stem cell perspective.
Collapse
Affiliation(s)
- Amulya Sreekumar
- Department of Molecular and Cellular BiologyBaylor College of Medicine, One Baylor Plaza, DeBakey Building M638, Houston, Texas 77030, USA
| | - Kevin Roarty
- Department of Molecular and Cellular BiologyBaylor College of Medicine, One Baylor Plaza, DeBakey Building M638, Houston, Texas 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular BiologyBaylor College of Medicine, One Baylor Plaza, DeBakey Building M638, Houston, Texas 77030, USA
| |
Collapse
|
70
|
Honvo-Houéto E, Truchet S. Indirect Immunofluorescence on Frozen Sections of Mouse Mammary Gland. J Vis Exp 2015. [PMID: 26650781 DOI: 10.3791/53179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Indirect immunofluorescence is used to detect and locate proteins of interest in a tissue. The protocol presented here describes a complete and simple method for the immune detection of proteins, the mouse lactating mammary gland being taken as an example. A protocol for the preparation of the tissue samples, especially concerning the dissection of mouse mammary gland, tissue fixation and frozen tissue sectioning, are detailed. A standard protocol to perform indirect immunofluorescence, including an optional antigen retrieval step, is also presented. The observation of the labeled tissue sections as well as image acquisition and post-treatments are also stated. This procedure gives a full overview, from the collection of animal tissue to the cellular localization of a protein. Although this general method can be applied to other tissue samples, it should be adapted to each tissue/primary antibody couple studied.
Collapse
|
71
|
Abstract
Epithelial cells are tightly coupled together through specialized intercellular junctions, including adherens junctions, desmosomes, tight junctions, and gap junctions. A growing body of evidence suggests epithelial cells also directly exchange information at cell-cell contacts via the Eph family of receptor tyrosine kinases and their membrane-associated ephrin ligands. Ligand-dependent and -independent signaling via Eph receptors as well as reverse signaling through ephrins impact epithelial tissue homeostasis by organizing stem cell compartments and regulating cell proliferation, migration, adhesion, differentiation, and survival. This review focuses on breast, gut, and skin epithelia as representative examples for how Eph receptors and ephrins modulate diverse epithelial cell responses in a context-dependent manner. Abnormal Eph receptor and ephrin signaling is implicated in a variety of epithelial diseases raising the intriguing possibility that this cell-cell communication pathway can be therapeutically harnessed to normalize epithelial function in pathological settings like cancer or chronic inflammation.
Collapse
Key Words
- ADAM, a disintegrin and metalloprotease
- Apc, adenomatous polyposis coli
- Breast
- ER, estrogen receptor
- Eph receptor
- Eph, erythropoietin-producing hepatocellular
- Erk, extracellular signal-regulated kinase
- GEF, guanine nucleotide exchange factor
- GPI, glycosylphosphatidylinositol
- HER2, human epidermal growth factor receptor 2
- HGF, hepatocyte growth factor
- IBD, inflammatory bowel disease
- KLF, Krüppel-like factor
- MAPK, mitogen-activated protein kinase
- MMTV-LTR, mouse mammary tumor virus-long terminal repeat
- MT1-MMP, membrane-type 1 matrix metalloproteinase
- PDZ, postsynaptic density protein 95, discs large 1, and zonula occludens-1
- PTP, protein tyrosine phosphatase
- RTK, receptor tyrosine kinase
- SH2, Src homology 2
- SHIP2, SH2 inositol phosphatase 2
- SLAP, Src-like adaptor protein
- TCF, T-cell specific transcription factor
- TEB, terminal end bud
- TNFα, tumor necrosis factor α.
- cell-cell
- ephrin
- epithelial
- intestine
- receptor tyrosine kinase
- skin
- stem cell
Collapse
|
72
|
Tarulli GA, Laven-Law G, Shakya R, Tilley WD, Hickey TE. Hormone-sensing mammary epithelial progenitors: emerging identity and hormonal regulation. J Mammary Gland Biol Neoplasia 2015; 20:75-91. [PMID: 26390871 DOI: 10.1007/s10911-015-9344-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/07/2015] [Indexed: 12/13/2022] Open
Abstract
The hormone-sensing mammary epithelial cell (HS-MEC-expressing oestrogen receptor-alpha (ERα) and progesterone receptor (PGR)) is often represented as being terminally differentiated and lacking significant progenitor activity after puberty. Therefore while able to profoundly influence the proliferation and function of other MEC populations, HS-MECs are purported not to respond to sex hormone signals by engaging in significant cell proliferation during adulthood. This is a convenient and practical simplification that overshadows the sublime, and potentially critical, phenotypic plasticity found within the adult HS-MEC population. This concept is exemplified by the large proportion (~80 %) of human breast cancers expressing PGR and/or ERα, demonstrating that HS-MECs clearly proliferate in the context of breast cancer. Understanding how HS-MEC proliferation and differentiation is driven could be key to unraveling the mechanisms behind uncontrolled HS-MEC proliferation associated with ERα- and/or PGR-positive breast cancers. Herein we review evidence for the existence of a HS-MEC progenitor and the emerging plasticity of the HS-MEC population in general. This is followed by an analysis of hormones other than oestrogen and progesterone that are able to influence HS-MEC proliferation and differentiation: androgens, prolactin and transforming growth factor-beta1.
Collapse
Affiliation(s)
- Gerard A Tarulli
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Geraldine Laven-Law
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Reshma Shakya
- Breast Cancer Genetics Laboratory, Centre for Personalised Cancer Medicine, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
73
|
Mauris J, Dieckow J, Schob S, Pulli B, Hatton MP, Jeong S, Bauskar A, Gabison E, Nowak R, Argüeso P. Loss of CD147 results in impaired epithelial cell differentiation and malformation of the meibomian gland. Cell Death Dis 2015; 6:e1726. [PMID: 25880093 PMCID: PMC4650560 DOI: 10.1038/cddis.2015.98] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
Abstract
Meibomian gland dysfunction is a leading cause of ocular surface disease. However, little is known about the regulatory processes that control the development and maintenance of this sebaceous gland. Here, we identify a novel function for CD147, a transmembrane protein that promotes tissue remodeling through induction of matrix metalloproteinases, in regulating meibocyte differentiation and activity. We found that CD147 localized along basal cells and within discrete membrane domains of differentiated meibocytes in glandular acini containing gelatinolytic activity. Induction of meibocyte differentiation in vitro promoted CD147 clustering and MMP9 secretion, whereas RNAi-mediated abrogation of CD147 impaired MMP9 secretion, concomitant with a reduction in the number of proliferative cells and cytoplasmic lipids. Meibomian glands of CD147 knockout mice had a lower number of acini in both the superior and inferior tarsal plates of the eyelids, and were characterized by loss of lipid-filled meibocytes compared with control mice. Together, our data provide evidence showing that gelatinolytic activity in meibocytes is dependent on CD147, and supports a role for CD147 in maintaining the normal development and function of the meibomian gland.
Collapse
Affiliation(s)
- J Mauris
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - J Dieckow
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - S Schob
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - B Pulli
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M P Hatton
- 1] Schepens Eye Research Institute and Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA [2] Ophthalmic Consultants of Boston, Boston, MA, USA
| | - S Jeong
- Institute for Genetic Medicine and Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - A Bauskar
- Institute for Genetic Medicine and Graduate Program in Medical Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - E Gabison
- Cornea and External Diseases, Fondation A. De Rothschild, Hôpital Bichat, APHP, Université Paris VII Diderot, Paris, France
| | - R Nowak
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - P Argüeso
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
74
|
Inman JL, Robertson C, Mott JD, Bissell MJ. Mammary gland development: cell fate specification, stem cells and the microenvironment. Development 2015; 142:1028-42. [DOI: 10.1242/dev.087643] [Citation(s) in RCA: 279] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of the mammary gland is unique: the final stages of development occur postnatally at puberty under the influence of hormonal cues. Furthermore, during the life of the female, the mammary gland can undergo many rounds of expansion and proliferation. The mammary gland thus provides an excellent model for studying the ‘stem/progenitor’ cells that allow this repeated expansion and renewal. In this Review, we provide an overview of the different cell types that constitute the mammary gland, and discuss how these cell types arise and differentiate. As cellular differentiation cannot occur without proper signals, we also describe how the tissue microenvironment influences mammary gland development.
Collapse
Affiliation(s)
- Jamie L. Inman
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Claire Robertson
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Joni D. Mott
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
75
|
Lindley LE, Curtis KM, Sanchez-Mejias A, Rieger ME, Robbins DJ, Briegel KJ. The WNT-controlled transcriptional regulator LBH is required for mammary stem cell expansion and maintenance of the basal lineage. Development 2015; 142:893-904. [PMID: 25655704 DOI: 10.1242/dev.110403] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The identification of multipotent mammary stem cells (MaSCs) has provided an explanation for the unique regenerative capacity of the mammary gland throughout adult life. However, it remains unclear what genes maintain MaSCs and control their specification into the two epithelial lineages: luminal and basal. LBH is a novel transcription co-factor in the WNT pathway with hitherto unknown physiological function. LBH is expressed during mammary gland development and aberrantly overexpressed in aggressive 'basal' subtype breast cancers. Here, we have explored the in vivo role of LBH in mammopoiesis. We show that in postnatal mammary epithelia, LBH is predominantly expressed in the Lin(-)CD29(high)CD24(+) basal MaSC population. Upon conditional inactivation of LBH, mice exhibit pronounced delays in mammary tissue expansion during puberty and pregnancy, accompanied by increased luminal differentiation at the expense of basal lineage specification. These defects could be traced to a severe reduction in the frequency and self-renewal/differentiation potential of basal MaSCs. Mechanistically, LBH induces expression of key epithelial stem cell transcription factor ΔNp63 to promote a basal MaSC state and repress luminal differentiation genes, mainly that encoding estrogen receptor α (Esr1/ERα). Collectively, these studies identify LBH as an essential regulator of basal MaSC expansion/maintenance, raising important implications for its potential role in breast cancer pathogenesis.
Collapse
Affiliation(s)
- Linsey E Lindley
- Department of Biochemistry and Molecular Biology, Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kevin M Curtis
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine and Bruce W. Carter Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Avencia Sanchez-Mejias
- Department of Surgery, Molecular Therapeutics Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Megan E Rieger
- Department of Biochemistry and Molecular Biology, Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David J Robbins
- Department of Surgery, Molecular Therapeutics Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Karoline J Briegel
- Department of Biochemistry and Molecular Biology, Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
76
|
Roarty K, Shore AN, Creighton CJ, Rosen JM. Ror2 regulates branching, differentiation, and actin-cytoskeletal dynamics within the mammary epithelium. ACTA ACUST UNITED AC 2015; 208:351-66. [PMID: 25624393 PMCID: PMC4315251 DOI: 10.1083/jcb.201408058] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intricate cross-talk between classical and alternative Wnt signaling pathways includes an essential role for Ror2 in mammary epithelial development and differentiation. Wnt signaling encompasses β-catenin–dependent and –independent networks. How receptor context provides Wnt specificity in vivo to assimilate multiple concurrent Wnt inputs throughout development remains unclear. Here, we identified a refined expression pattern of Wnt/receptor combinations associated with the Wnt/β-catenin–independent pathway in mammary epithelial subpopulations. Moreover, we elucidated the function of the alternative Wnt receptor Ror2 in mammary development and provided evidence for coordination of this pathway with Wnt/β-catenin–dependent signaling in the mammary epithelium. Lentiviral short hairpin RNA (shRNA)-mediated depletion of Ror2 in vivo increased branching and altered the differentiation of the mammary epithelium. Microarray analyses identified distinct gene level alterations within the epithelial compartments in the absence of Ror2, with marked changes observed in genes associated with the actin cytoskeleton. Modeling of branching morphogenesis in vitro defined specific defects in cytoskeletal dynamics accompanied by Rho pathway alterations downstream of Ror2 loss. The current study presents a model of Wnt signaling coordination in vivo and assigns an important role for Ror2 in mammary development.
Collapse
Affiliation(s)
- Kevin Roarty
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Amy N Shore
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Chad J Creighton
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
77
|
Brisken C, Ataca D. Endocrine hormones and local signals during the development of the mouse mammary gland. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:181-95. [PMID: 25645332 DOI: 10.1002/wdev.172] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/02/2014] [Accepted: 12/08/2014] [Indexed: 01/03/2023]
Abstract
Most of mammary gland development occurs postnatally under the control of female reproductive hormones, which in turn interact with other endocrine factors. While hormones impinge on many tissues and trigger very complex biological responses, tissue recombination experiments with hormone receptor-deficient mammary epithelia revealed eminent roles for estrogens, progesterone, and prolactin receptor (PrlR) signaling that are intrinsic to the mammary epithelium. A subset of the luminal mammary epithelial cells expresses the estrogen receptor α (ERα), the progesterone receptor (PR), and the PrlR and act as sensor cells. These cells convert the detected systemic signals into local signals that are developmental stage-dependent and may be direct, juxtacrine, or paracrine. This setup ensures that the original input is amplified and that the biological responses of multiple cell types can be coordinated. Some key mediators of hormone action have been identified such as Wnt, EGFR, IGFR, and RANK signaling. Multiple signaling pathways such as FGF, Hedgehog, and Notch signaling participate in driving different aspects of mammary gland development locally but how they link to the hormonal control remains to be elucidated. An increasing number of endocrine factors are appearing to have a role in mammary gland development, the adipose tissue is increasingly recognized to play a role in endocrine regulation, and a complex role of the immune system with multiple different cell types is being revealed. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Cathrin Brisken
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | |
Collapse
|
78
|
Abstract
GATA3 is a highly conserved, essential transcription factor expressed in a number of tissues, including the mammary gland. GATA3 expression is required for normal development of the mammary gland where it is estimated to be the most abundant transcription factor in luminal epithelial cells. In breast cancer, GATA3 expression is highly correlated with the luminal transcriptional program. Recent genomic analysis of human breast cancers has revealed high-frequency mutation in GATA3 in luminal tumors, suggesting "driver" function(s). Here we discuss mutation of GATA3 in breast cancer and the potential mechanism(s) by which mutation may lead to a growth advantage in cancer.
Collapse
Affiliation(s)
- Motoki Takaku
- *Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, NC, USA
| | - Sara A. Grimm
- †Integrated Bioinformatics, National Institute of Environmental Health Science, Research Triangle Park, NC, USA
| | - Paul A. Wade
- *Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, NC, USA
| |
Collapse
|
79
|
Hadsell DL, Hadsell LA, Olea W, Rijnkels M, Creighton CJ, Smyth I, Short KM, Cox LL, Cox TC. In-silico QTL mapping of postpubertal mammary ductal development in the mouse uncovers potential human breast cancer risk loci. Mamm Genome 2015; 26:57-79. [PMID: 25552398 DOI: 10.1007/s00335-014-9551-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/03/2014] [Indexed: 01/02/2023]
Abstract
Genetic background plays a dominant role in mammary gland development and breast cancer (BrCa). Despite this, the role of genetics is only partially understood. This study used strain-dependent variation in an inbred mouse mapping panel, to identify quantitative trait loci (QTL) underlying structural variation in mammary ductal development, and determined if these QTL correlated with genomic intervals conferring BrCa susceptibility in humans. For about half of the traits, developmental variation among the complete set of strains in this study was greater (P < 0.05) than that of previously studied strains, or strains in current common use for mammary gland biology. Correlations were also detected with previously reported variation in mammary tumor latency and metastasis. In-silico genome-wide association identified 20 mammary development QTL (Mdq). Of these, five were syntenic with previously reported human BrCa loci. The most significant (P = 1 × 10(-11)) association of the study was on MMU6 and contained the genes Plxna4, Plxna4os1, and Chchd3. On MMU5, a QTL was detected (P = 8 × 10(-7)) that was syntenic to a human BrCa locus on h12q24.5 containing the genes Tbx3 and Tbx5. Intersection of linked SNP (r(2) > 0.8) with genomic and epigenomic features, and intersection of candidate genes with gene expression and survival data from human BrCa highlighted several for further study. These results support the conclusion that mammary tumorigenesis and normal ductal development are influenced by common genetic factors and that further studies of genetically diverse mice can improve our understanding of BrCa in humans.
Collapse
Affiliation(s)
- Darryl L Hadsell
- Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates St. Suite 10072, Mail Stop: BCM-320, Houston, TX, 77030-2600, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Olijnyk D, Ibrahim AM, Ferrier RK, Tsuda T, Chu ML, Gusterson BA, Stein T, Morris JS. Fibulin-2 is involved in early extracellular matrix development of the outgrowing mouse mammary epithelium. Cell Mol Life Sci 2014; 71:3811-28. [PMID: 24522256 PMCID: PMC11113845 DOI: 10.1007/s00018-014-1577-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/27/2014] [Indexed: 12/11/2022]
Abstract
Cell-matrix interactions control outgrowth of mammary epithelium during puberty and pregnancy. We demonstrate here that the glycoprotein fibulin-2 (FBLN2) is strongly associated with pubertal and early pregnant mouse mammary epithelial outgrowth. FBLN2 was specifically localized to the cap cells of the terminal end buds during puberty and to myoepithelial cells during very early pregnancy (days 2-3) even before morphological changes to the epithelium become microscopically visible, but was down-regulated thereafter. Exposure to exogenous oestrogen (E2) or E2 plus progesterone (P) increased Fbln2 mRNA expression in the pubertal gland, indicating hormonal control. FBLN2 was co-expressed and co-localised with the proteoglycan versican (VCAN) and co-localised with laminin (LN), while over-expression of FBLN2 in HC-11 cells increased cell adhesion to several extracellular matrix proteins including LN and fibronectin, but not collagens. Mammary glands from Fbln2 knockout mice showed no obvious phenotype but increased fibulin-1 (FBLN1) staining was detected, suggesting a compensatory mechanism by other fibulin family members. We hypothesise that similar to embryonic aortic smooth muscle development, FBLN2 and VCAN expression alters the cell-matrix interaction to allow mammary ductal outgrowth and development during puberty and to enable epithelial budding during pregnancy.
Collapse
Affiliation(s)
- D. Olijnyk
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, G12 8QQ UK
| | - A. M. Ibrahim
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, G12 8QQ UK
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - R. K. Ferrier
- MVLS Pathology Unit Pathology Department, Southern General Hospital, Glasgow, G51 4TF UK
| | - T. Tsuda
- Nemours Biomedical Research and Nemours Cardiac Center, Alfred I. duPont Hospital for Children, Wilmington, 19803 USA
| | - M.-L. Chu
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - B. A. Gusterson
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, G12 8QQ UK
| | - T. Stein
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, G12 8QQ UK
| | - J. S. Morris
- School of Veterinary Medicine, College of MVLS, University of Glasgow, Bearsden Road, Glasgow, G61 1QH UK
| |
Collapse
|
81
|
Zhang X, Martinez D, Koledova Z, Qiao G, Streuli CH, Lu P. FGF ligands of the postnatal mammary stroma regulate distinct aspects of epithelial morphogenesis. Development 2014; 141:3352-62. [PMID: 25078648 DOI: 10.1242/dev.106732] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
FGF signaling is essential for mammary gland development, yet the mechanisms by which different members of the FGF family control stem cell function and epithelial morphogenesis in this tissue are not well understood. Here, we have examined the requirement of Fgfr2 in mouse mammary gland morphogenesis using a postnatal organ regeneration model. We found that tissue regeneration from basal stem cells is a multistep event, including luminal differentiation and subsequent epithelial branching morphogenesis. Basal cells lacking Fgfr2 did not generate an epithelial network owing to a failure in luminal differentiation. Moreover, Fgfr2 null epithelium was unable to undergo ductal branch initiation and elongation due to a deficiency in directional migration. We identified FGF10 and FGF2 as stromal ligands that control distinct aspects of mammary ductal branching. FGF10 regulates branch initiation, which depends on directional epithelial migration. By contrast, FGF2 controls ductal elongation, requiring cell proliferation and epithelial expansion. Together, our data highlight a pleiotropic role of Fgfr2 in stem cell differentiation and branch initiation, and reveal that different FGF ligands regulate distinct aspects of epithelial behavior.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Denisse Martinez
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Zuzana Koledova
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Guijuan Qiao
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Charles H Streuli
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Pengfei Lu
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
82
|
Owens TW, Rogers RL, Best S, Ledger A, Mooney AM, Ferguson A, Shore P, Swarbrick A, Ormandy CJ, Simpson PT, Carroll JS, Visvader J, Naylor MJ. Runx2 is a novel regulator of mammary epithelial cell fate in development and breast cancer. Cancer Res 2014; 74:5277-5286. [PMID: 25056120 DOI: 10.1158/0008-5472.can-14-0053] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Regulators of differentiated cell fate can offer targets for managing cancer development and progression. Here, we identify Runx2 as a new regulator of epithelial cell fate in mammary gland development and breast cancer. Runx2 is expressed in the epithelium of pregnant mice in a strict temporally and hormonally regulated manner. During pregnancy, Runx2 genetic deletion impaired alveolar differentiation in a manner that disrupted alveolar progenitor cell populations. Conversely, exogenous transgenic expression of Runx2 in mammary epithelial cells blocked milk production, suggesting that the decrease in endogenous Runx2 observed late in pregnancy is necessary for full differentiation. In addition, overexpression of Runx2 drove epithelial-to-mesenchymal transition-like changes in normal mammary epithelial cells, whereas Runx2 deletion in basal breast cancer cells inhibited cellular phenotypes associated with tumorigenesis. Notably, loss of Runx2 expression increased tumor latency and enhanced overall survival in a mouse model of breast cancer, with Runx2-deficient tumors exhibiting reduced cell proliferation. Together, our results establish a previously unreported function for Runx2 in breast cancer that may offer a novel generalized route for therapeutic interventions. Cancer Res; 74(18); 5277-86. ©2014 AACR.
Collapse
Affiliation(s)
- Thomas W Owens
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, NSW 2006, Australia
| | - Renee L Rogers
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Sarah Best
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3052, Australia
| | - Anita Ledger
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Anne-Marie Mooney
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, NSW 2006, Australia
| | - Alison Ferguson
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, NSW 2006, Australia
| | - Paul Shore
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Alexander Swarbrick
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Christopher J Ormandy
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Peter T Simpson
- The University of Queensland, UQ Centre for Clinical Research (UQCCR), Herston, Queensland 4029, Australia
| | - Jason S Carroll
- Cancer Research UK, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Jane Visvader
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3052, Australia
| | - Matthew J Naylor
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, NSW 2006, Australia.,Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
83
|
Watanabe K, Villarreal-Ponce A, Sun P, Salmans ML, Fallahi M, Andersen B, Dai X. Mammary morphogenesis and regeneration require the inhibition of EMT at terminal end buds by Ovol2 transcriptional repressor. Dev Cell 2014; 29:59-74. [PMID: 24735879 DOI: 10.1016/j.devcel.2014.03.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/17/2014] [Accepted: 03/12/2014] [Indexed: 01/19/2023]
Abstract
Epithelial cells possess remarkable plasticity, having the ability to become mesenchymal cells through alterations in adhesion and motility (epithelial-to-mesenchymal transition [EMT]). However, how epithelial plasticity is kept in check in epithelial cells during tissue development and regeneration remains to be fully understood. Here we show that restricting the EMT of mammary epithelial cells by transcription factor Ovol2 is required for proper morphogenesis and regeneration. Deletion of Ovol2 blocks mammary ductal morphogenesis, depletes stem and progenitor cell reservoirs, and leads epithelial cells to undergo EMT in vivo to become nonepithelial cell types. Ovol2 directly represses myriad EMT inducers, and its absence switches response to TGF-β from growth arrest to EMT. Furthermore, forced expression of the repressor isoform of Ovol2 is able to reprogram metastatic breast cancer cells from a mesenchymal to an epithelial state. Our findings underscore the critical importance of exquisitely regulating epithelial plasticity in development and cancer.
Collapse
Affiliation(s)
- Kazuhide Watanabe
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Alvaro Villarreal-Ponce
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael L Salmans
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Magid Fallahi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA; Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
84
|
RORα binds to E2F1 to inhibit cell proliferation and regulate mammary gland branching morphogenesis. Mol Cell Biol 2014; 34:3066-75. [PMID: 24891616 DOI: 10.1128/mcb.00279-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Retinoic acid receptor-related orphan nuclear receptor alpha (RORα) is a potent tumor suppressor that reduces cell proliferation and inhibits tumor growth. However, the molecular mechanism by which it inhibits cell proliferation remains unknown. We demonstrate a noncanonical nuclear receptor pathway in which RORα binds to E2F1 to inhibit cell cycle progression. We showed that RORα bound to the heptad repeat and marked box region of E2F1 and suppressed E2F1-regulated transcription in epithelial cells. Binding of RORα inhibited E2F1 acetylation and its DNA-binding activity by recruiting histone deacetylase 1 (HDAC1) to the protein complexes. Knockdown of HDAC1 or inhibition of HDAC activity at least partially rescued transcription factor activity of E2F1 that was repressed by RORα. Importantly, RORα levels were increased in mammary ducts compared to terminal end buds and inversely correlated with expression of E2F1 target genes and cell proliferation. Silencing RORα in mammary epithelial cells significantly enhanced cell proliferation in the ductal epithelial cells and promoted side branching of the mammary ducts. These results reveal a novel link between RORα and E2F1 in regulating cell cycle progression and mammary tissue morphogenesis.
Collapse
|
85
|
Campbell JJ, Hume RD, Watson CJ. Engineering Mammary Gland in Vitro Models for Cancer Diagnostics and Therapy. Mol Pharm 2014; 11:1971-81. [DOI: 10.1021/mp500121c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jonathan J. Campbell
- Department
of Materials Science and Metallurgy, University of Cambridge, 27 Charles
Babbage Road, Cambridge CB3 0FS, U.K
| | - Robert D. Hume
- Department
of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP. U.K
| | - Christine J. Watson
- Department
of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP. U.K
| |
Collapse
|
86
|
Zhang X, Qiao G, Lu P. Modulation of fibroblast growth factor signaling is essential for mammary epithelial morphogenesis. PLoS One 2014; 9:e92735. [PMID: 24718286 PMCID: PMC3981693 DOI: 10.1371/journal.pone.0092735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/25/2014] [Indexed: 12/28/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling is essential for vertebrate organogenesis, including mammary gland development. The mechanism whereby FGF signaling is regulated in the mammary gland, however, has remained unknown. Using a combination of mouse genetics and 3D ex vivo models, we tested the hypothesis that Spry2 gene, which encodes an inhibitor of signaling via receptor tyrosine kinases (RTKs) in certain contexts, regulates FGF signaling during mammary branching. We found that Spry2 is expressed at various stages of the developing mammary gland. Targeted removal of Spry2 function from mammary epithelium leads to accelerated epithelial invasion. Spry2 is up-regulated by FGF signaling activities and its loss sensitizes mammary epithelium to FGF stimulation, as indicated by increased expression of FGF target genes and epithelia invasion. By contrast, Spry2 gain-of-function in the mammary epithelium results in reduced FGF signaling, epithelial invasion, and stunted branching. Furthermore, reduction of Spry2 expression is correlated with tumor progression in the MMTV-PyMT mouse model. Together, the data show that FGF signaling modulation by Spry2 is essential for epithelial morphogenesis in the mammary gland and it functions to protect the epithelium against tumorigenesis.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Guijuan Qiao
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Pengfei Lu
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
87
|
Villegas E, Kabotyanski EB, Shore AN, Creighton CJ, Westbrook TF, Rosen JM. Plk2 regulates mitotic spindle orientation and mammary gland development. Development 2014; 141:1562-71. [PMID: 24598160 DOI: 10.1242/dev.108258] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Disruptions in polarity and mitotic spindle orientation contribute to the progression and evolution of tumorigenesis. However, little is known about the molecular mechanisms regulating these processes in vivo. Here, we demonstrate that Polo-like kinase 2 (Plk2) regulates mitotic spindle orientation in the mammary gland and that this might account for its suggested role as a tumor suppressor. Plk2 is highly expressed in the mammary gland and is required for proper mammary gland development. Loss of Plk2 leads to increased mammary epithelial cell proliferation and ductal hyperbranching. Additionally, a novel role for Plk2 in regulating the orientation of the mitotic spindle and maintaining proper cell polarity in the ductal epithelium was discovered. In support of a tumor suppressor function for Plk2, loss of Plk2 increased the formation of lesions in multiparous glands. Collectively, these results demonstrate a novel role for Plk2 in regulating mammary gland development.
Collapse
Affiliation(s)
- Elizabeth Villegas
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
88
|
Shennan DB, Boyd CAR. The functional and molecular entities underlying amino acid and peptide transport by the mammary gland under different physiological and pathological conditions. J Mammary Gland Biol Neoplasia 2014; 19:19-33. [PMID: 24158403 DOI: 10.1007/s10911-013-9305-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/15/2013] [Indexed: 12/20/2022] Open
Abstract
This review describes the properties and regulation of the membrane transport proteins which supply the mammary gland with aminonitrogen to support metabolism under different physiological conditions (i.e. pregnancy, lactation and involution). Early studies focussed on characterising amino acid and peptide transport pathways with respect to substrate specificity, kinetics and hormonal regulation to allow a broad picture of the systems within the gland to be established. Recent investigations have concentrated on identifying the individual transporters at the molecular level (i.e. mRNA and protein). Many of the latter studies have identified the molecular correlates of the transport systems uncovered in the earlier functional investigations but in turn have also highlighted the need for more amino acid transport studies to be performed. The transporters function as either cotransporters and exchangers (or both) and act in a coordinated and regulated fashion to support the metabolic needs of the gland. However, it is apparent that a physiological role for a number of the transport proteins has yet to be elucidated. This article highlights the many gaps in our knowledge regarding the precise cellular location of a number of amino acid transporters within the gland. We also describe the role of amino acid transport in mammary cell volume regulation. Finally, the important role that individual mammary transport proteins may have in the growth and proliferation of mammary tumours is discussed.
Collapse
Affiliation(s)
- D B Shennan
- Brasenose College, 39 Caerlaverock Road, Prestwick, UK,
| | | |
Collapse
|
89
|
Xi HQ, Wu XS, Wei B, Chen L. Eph receptors and ephrins as targets for cancer therapy. J Cell Mol Med 2014; 16:2894-909. [PMID: 22862837 PMCID: PMC4393718 DOI: 10.1111/j.1582-4934.2012.01612.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/13/2012] [Indexed: 12/15/2022] Open
Abstract
Eph receptor tyrosine kinases and their ephrin ligands are involved in various signalling pathways and mediate critical steps of a wide variety of physiological and pathological processes. Increasing experimental evidence demonstrates that both Eph receptor and ephrin ligands are overexpressed in a number of human tumours, and are associated with tumour growth, invasiveness and metastasis. In this regard, the Eph/ephrin system provides the foundation for potentially exciting new targets for anticancer therapies for Eph-expressing tumours. The purpose of this review is to outline current advances in the role of Eph receptors and ephrin ligands in cancer, and to discuss novel therapeutic approaches of anticancer therapies.
Collapse
Affiliation(s)
- Hong-Qing Xi
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | | | | | | |
Collapse
|
90
|
Howard BA, Lu P. Stromal regulation of embryonic and postnatal mammary epithelial development and differentiation. Semin Cell Dev Biol 2014; 25-26:43-51. [DOI: 10.1016/j.semcdb.2014.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 01/06/2023]
|
91
|
Bhat R, Bissell MJ. Of plasticity and specificity: dialectics of the microenvironment and macroenvironment and the organ phenotype. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:147-63. [PMID: 24719287 DOI: 10.1002/wdev.130] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 07/30/2013] [Accepted: 08/26/2013] [Indexed: 01/09/2023]
Abstract
The study of biological form and how it arises is the domain of the developmental biologists; but once the form is achieved, the organ poses a fascinating conundrum for all the life scientists: how are form and function maintained in adult organs throughout most of the life of the organism? That they do appears to contradict the inherently plastic nature of organogenesis during development. How do cells with the same genetic information arrive at, and maintain such different architectures and functions, and how do they keep remembering that they are different from each other? It is now clear that narratives based solely on genes and an irreversible regulatory dynamics cannot answer these questions satisfactorily, and the concept of microenvironmental signaling needs to be added to the equation. During development, cells rearrange and differentiate in response to diffusive morphogens, juxtacrine signals, and the extracellular matrix (ECM). These components, which constitute the modular microenvironment, are sensitive to cues from other tissues and organs of the developing embryo as well as from the external macroenvironment. On the other hand, once the organ is formed, these modular constituents integrate and constrain the organ architecture, which ensures structural and functional homeostasis and therefore, organ specificity. We argue here that a corollary of the above is that once the organ architecture is compromised in adults by mutations or by changes in the microenvironment such as aging or inflammation, that organ becomes subjected to the developmental and embryonic circuits in search of a new identity. But since the microenvironment is no longer embryonic, the confusion leads to cancer: hence as we have argued, tumors become new evolutionary organs perhaps in search of an elusive homeostasis.
Collapse
Affiliation(s)
- Ramray Bhat
- Department of Cancer & DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
92
|
Lain AR, Creighton CJ, Conneely OM. Research resource: progesterone receptor targetome underlying mammary gland branching morphogenesis. Mol Endocrinol 2013; 27:1743-61. [PMID: 23979845 DOI: 10.1210/me.2013-1144] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Progesterone (P4)-activated progesterone receptors (PRs) play an essential role in driving pregnancy-associated mammary ductal side-branching morphogenesis and alveologenesis. However, the global cistromic and transcriptome responses that are required to elicit P4-dependent branching morphogenesis have not been elucidated. By combining chromatin immunoprecipitation followed by deep sequencing to identify genome-wide PR-binding sites in PR-positive luminal epithelial cells with global gene expression signatures acutely regulated by PRs in the mammary gland, we have identified a mammary epithelial PR targetome associated with active P4-dependent branching morphogenesis in vivo. We demonstrate that P4-induced side-branching is initiated by epithelial cell rearrangement into a multilayered epithelium that sprouts laterally from quiescent ducts via a mechanism requiring P4-dependent activation of Rac-GTPase signaling. We identify effectors of Rac-GTPases as direct transcriptional targets of PRs, and we demonstrate that disruption of the P4-activated Rac-GTPase signaling axis is sufficient to eliminate P4-dependent side-branching. Our data reveal that the molecular mediators of P4-dependent ductal side-branching overlap with those implicated in breast cancer.
Collapse
Affiliation(s)
- Ashlee R Lain
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030.
| | | | | |
Collapse
|
93
|
Kessenbrock K, Dijkgraaf GJP, Lawson DA, Littlepage LE, Shahi P, Pieper U, Werb Z. A role for matrix metalloproteinases in regulating mammary stem cell function via the Wnt signaling pathway. Cell Stem Cell 2013; 13:300-13. [PMID: 23871604 DOI: 10.1016/j.stem.2013.06.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 04/03/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
The microenvironment provides cues that control the behavior of epithelial stem and progenitor cells. Here, we identify matrix metalloproteinase-3 (MMP3) as a regulator of Wnt signaling and mammary stem cell (MaSC) activity. We show that MMP3 overexpression promotes hyperplastic epithelial growth, surprisingly, in a nonproteolytic manner via its hemopexin (HPX) domain. We demonstrate that MMP3-HPX specifically binds and inactivates Wnt5b, a noncanonical Wnt ligand that inhibits canonical Wnt signaling and mammary epithelial outgrowth in vivo. Indeed, transplants overexpressing MMP3 display increased canonical Wnt signaling, demonstrating that MMP3 is an extracellular regulator of the Wnt signaling pathway. MMP3-deficient mice exhibit decreased MaSC populations and diminished mammary-reconstituting activity, whereas MMP3 overexpression elevates MaSC function, indicating that MMP3 is necessary for the maintenance of MaSCs. Our study reveals a mechanism by a microenvironmental protease that regulates Wnt signaling and impacts adult epithelial stem cell function.
Collapse
Affiliation(s)
- Kai Kessenbrock
- Department of Anatomy and Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Park JE, Son AI, Zhou R. Roles of EphA2 in Development and Disease. Genes (Basel) 2013; 4:334-57. [PMID: 24705208 PMCID: PMC3924825 DOI: 10.3390/genes4030334] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 01/12/2023] Open
Abstract
The Eph family of receptor tyrosine kinases (RTKs) has been implicated in the regulation of many aspects of mammalian development. Recent analyses have revealed that the EphA2 receptor is a key modulator for a wide variety of cellular functions. This review focuses on the roles of EphA2 in both development and disease.
Collapse
Affiliation(s)
- Jeong Eun Park
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| | - Alexander I Son
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| | - Renping Zhou
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
95
|
Correia AL, Mori H, Chen EI, Schmitt FC, Bissell MJ. The hemopexin domain of MMP3 is responsible for mammary epithelial invasion and morphogenesis through extracellular interaction with HSP90β. Genes Dev 2013; 27:805-17. [PMID: 23592797 DOI: 10.1101/gad.211383.112] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are crucial mediators in sculpting tissue architecture and are required for many physiological and pathological processes. MMP3 has been shown to regulate branching morphogenesis in the mammary gland. Ectopic expression of proteolytically active MMP3 in mouse mammary epithelia triggers supernumerary lateral branching and, eventually, tumors. Using a three-dimensional collagen-I (Col-1) gel assay that simulates epithelial invasion and branching, we show that it is the hemopexin domain that directs these processes. Using three different engineered constructs containing a variation on MMP3 structural domains, we confirmed the importance of the hemopexin domain also in primary organoids of the mammary gland. A proteomic screen of MMP3-binding partners surprisingly revealed that the intracellular chaperone heat-shock protein 90 β (HSP90β) is present extracellularly, and its interaction with the hemopexin domain of MMP3 is critical for invasion. Blocking of HSP90β with inhibitory antibodies added to the medium abolished invasion and branching. These findings shift the focus from the proteolytic activity of MMP3 as the central player to its hemopexin domain and add a new dimension to HSP90β's functions by revealing a hitherto undescribed mechanism of MMP3 regulation. Our data also may shed light on the failure of strategies to use MMP inhibitors in cancer treatment and other related disorders.
Collapse
Affiliation(s)
- Ana Luísa Correia
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
96
|
Chimge NO, Frenkel B. The RUNX family in breast cancer: relationships with estrogen signaling. Oncogene 2013; 32:2121-30. [PMID: 23045283 PMCID: PMC5770236 DOI: 10.1038/onc.2012.328] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/20/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022]
Abstract
The three RUNX family members are lineage specific master regulators, which also have important, context-dependent roles in carcinogenesis as either tumor suppressors or oncogenes. Here we review evidence for such roles in breast cancer (BCa). RUNX1, the predominant RUNX family member in breast epithelial cells, has a tumor suppressor role reflected by many somatic mutations found in primary tumor biopsies. The classical tumor suppressor gene RUNX3 does not consist of such a mutation hot spot, but it too seems to inhibit BCa; it is often inactivated in human BCa tumors and its haploinsufficiency in mice leads to spontaneous BCa development. The tumor suppressor activities of RUNX1 and RUNX3 are mediated in part by antagonism of estrogen signaling, a feature recently attributed to RUNX2 as well. Paradoxically, however RUNX2, a master osteoblast regulator, has been implicated in various aspects of metastasis in general and bone metastasis in particular. Reciprocating the anti-estrogenic tumor suppressor activity of RUNX proteins, inhibition of RUNX2 by estrogens may help explain their context-dependent anti-metastatic roles. Such roles are reserved to non-osseous metastasis, because ERα is associated with increased, not decreased skeletal dissemination of BCa cells. Finally, based on diverse expression patterns in BCa subtypes, the successful use of future RUNX-based therapies will most likely require careful patient selection.
Collapse
Affiliation(s)
- N-O Chimge
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - B Frenkel
- Departments of Orthopaedic Surgery and Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
97
|
Ferrari N, McDonald L, Morris JS, Cameron ER, Blyth K. RUNX2 in mammary gland development and breast cancer. J Cell Physiol 2013; 228:1137-42. [PMID: 23169547 DOI: 10.1002/jcp.24285] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/06/2012] [Indexed: 12/17/2022]
Abstract
Runx2 is best known as an essential factor in osteoblast differentiation and bone development but, like many other transcription factors involved in development, is known to operate over a much wider tissue range. Our understanding of these other aspects of Runx2 function is still at a relatively early stage and the importance of its role in cell fate decisions and lineage maintenance in non-osseous tissues is only beginning to emerge. One such tissue is the mammary gland, where Runx2 is known to be expressed and participate in the regulation of mammary specific genes. Furthermore, differential and temporal expression of this gene is observed during mammary epithelial differentiation in vivo, strongly indicative of an important functional role. Although the precise nature of that role remains elusive, preliminary evidence hints at possible involvement in the regulation of mammary stem and/or progenitor cells. As with many genes important in regulating cell fate, RUNX2 has also been linked to metastatic cancer where in some established breast cell lines, retention of expression is associated with a more invasive phenotype. More recently, expression analysis has been extended to primary breast cancers where high levels of RUNX2 align with a specific subtype of the disease. That RUNX2 expression correlates with the so called "Triple Negative" subtype is particularly interesting given the known cross talk between Runx2 and estrogen receptor signaling pathways. This review summaries our current understanding of Runx2 in mammary gland development and cancer, and postulates a role that may link both these processes.
Collapse
Affiliation(s)
- Nicola Ferrari
- The Beatson Institute for Cancer Research, Bearsden, Glasgow, UK
| | | | | | | | | |
Collapse
|
98
|
Brownfield DG, Venugopalan G, Lo A, Mori H, Tanner K, Fletcher DA, Bissell MJ. Patterned collagen fibers orient branching mammary epithelium through distinct signaling modules. Curr Biol 2013; 23:703-9. [PMID: 23562267 DOI: 10.1016/j.cub.2013.03.032] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/31/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
Abstract
For decades, the work of cell and developmental biologists has demonstrated the striking ability of the mesenchyme and the stroma to instruct epithelial form and function in the mammary gland, but the role of extracellular matrix (ECM) molecules in mammary pattern specification has not been elucidated. Here, we show that stromal collagen I (Col-I) fibers in the mammary fat pad are axially oriented prior to branching morphogenesis. Upon puberty, the branching epithelium orients along these fibers, thereby adopting a similar axial bias. To establish a causal relationship from Col-I fiber to epithelial orientation, we embedded mammary organoids within axially oriented Col-I fiber gels and observed dramatic epithelial co-orientation. Whereas a constitutively active form of Rac1, a molecule implicated in cell motility, prevented a directional epithelial response to Col-I fiber orientation, inhibition of the RhoA/Rho-associated kinase (ROCK) pathway did not. However, time-lapse studies revealed that, within randomly oriented Col-I matrices, the epithelium axially aligns fibers at branch sites via RhoA/ROCK-mediated contractions. Our data provide an explanation for how the stromal ECM encodes architectural cues for branch orientation as well as how the branching epithelium interprets and reinforces these cues through distinct signaling processes.
Collapse
Affiliation(s)
- Douglas G Brownfield
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
99
|
Hui M, Cazet A, Nair R, Watkins DN, O'Toole SA, Swarbrick A. The Hedgehog signalling pathway in breast development, carcinogenesis and cancer therapy. Breast Cancer Res 2013; 15:203. [PMID: 23547970 PMCID: PMC3672663 DOI: 10.1186/bcr3401] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite the progress achieved in breast cancer screening and therapeutic innovations, the basal-like subtype of breast cancer (BLBC) still represents a particular clinical challenge. In order to make an impact on survival in this type of aggressive breast cancer, new targeted therapeutic agents are urgently needed. Aberrant activation of the Hedgehog (Hh) signalling pathway has been unambiguously tied to cancer development and progression in a variety of solid malignancies, and the recent approval of vismodegib, an orally bioavailable small-molecule inhibitor of Smoothened, validates Hh signalling as a valuable therapeutic target. A number of recent publications have highlighted a role for Hh signalling in breast cancer models and clinical specimens. Interestingly, Hh ligand overexpression is associated with the BLBC phenotype and a poor outcome in terms of metastasis and breast cancer-related death. In this review, we provide a comprehensive overview of the canonical Hh signalling pathway in mammals, highlight its roles in mammary gland development and breast carcinogenesis and discuss its potential therapeutic value in BLBC.
Collapse
|
100
|
Eph receptors and their ligands: promising molecular biomarkers and therapeutic targets in prostate cancer. Biochim Biophys Acta Rev Cancer 2013; 1835:243-57. [PMID: 23396052 DOI: 10.1016/j.bbcan.2013.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/21/2013] [Accepted: 01/25/2013] [Indexed: 01/01/2023]
Abstract
Although at present, there is a high incidence of prostate cancer, particularly in the Western world, mortality from this disease is declining and occurs primarily only from clinically significant late stage tumors with a poor prognosis. A major current focus of this field is the identification of new biomarkers which can detect earlier, and more effectively, clinically significant tumors from those deemed "low risk", as well as predict the prognostic course of a particular cancer. This strategy can in turn offer novel avenues for targeted therapies. The large family of Receptor Tyrosine Kinases, the Ephs, and their binding partners, the ephrins, has been implicated in many cancers of epithelial origin through stimulation of oncogenic transformation, tumor angiogenesis, and promotion of increased cell survival, invasion and migration. They also show promise as both biomarkers of diagnostic and prognostic value and as targeted therapies in cancer. This review will briefly discuss the complex roles and biological mechanisms of action of these receptors and ligands and, with regard to prostate cancer, highlight their potential as biomarkers for both diagnosis and prognosis, their application as imaging agents, and current approaches to assessing them as therapeutic targets. This review demonstrates the need for future studies into those particular family members that will prove helpful in understanding the biology and potential as targets for treatment of prostate cancer.
Collapse
|