51
|
Priya AK, Jalil AA, Vadivel S, Dutta K, Rajendran S, Fujii M, Soto-Moscoso M. Heavy metal remediation from wastewater using microalgae: Recent advances and future trends. CHEMOSPHERE 2022; 305:135375. [PMID: 35738200 DOI: 10.1016/j.chemosphere.2022.135375] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Microalgae-based wastewater treatment has previously been carried out in huge waste stabilization ponds. Microalgae, which can absorb carbon dioxide while reusing nutrients from sewage, has recently emerged as a new trend in the wastewater treatment business. Microalgae farming is thought to be a potential match for the modern world's energy strategy, which emphasizes low-cost and environmentally benign alternatives. Microalgae are being used to treat wastewater and make useful products. Microalgae, for example, is a promising renewable resource for producing biomass from wastewater nutrients because of its quick growth rate, short life span, and high carbon dioxide utilization efficacy. Microalgae-based bioremediation has grown in importance in the treatment of numerous types of wastewater in recent years. This solar-powered wastewater treatment technology has huge potential. However, there are still issues to be resolved in terms of land requirements, as well as the process's ecological feasibility and long-term viability, before these systems can be widely adopted. Due to cost and the need for a faultless downstream process, it is difficult to deploy this technology on a large scale. Other recent breakthroughs in wastewater microalgae farming have been investigated, such as how varied pressures affect microalgae growth and quality, as well as the number of high-value components produced. In this review, the future of this biotechnology has also been examined.
Collapse
Affiliation(s)
- A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - A A Jalil
- School of Chemical and Energy Engineering Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Sethumathavan Vadivel
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo, 152-8552, Japan
| | - Kingshuk Dutta
- Advanced Polymer Design and Development Research Laboratory (APDDRL), School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bengaluru, 562149, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo, 152-8552, Japan
| | | |
Collapse
|
52
|
Utilization of unconventional water resources (UWRS) for aquaculture development in arid and semi-arid regions – a review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Today, increase of world’s population and climate change has resulted in the reduction of fresh water resources and the increase of arid and semi-arid areas, and thus, it is necessary to find a new solution to increase the production of food resources. Aquaculture is one of the sources of food production, which can play a key role in fighting poverty and hunger. Sustainable aquaculture is strongly dependents on water quantity and quality, and also, optimal fish production can be determined by the physical, chemical and biological quality of water. Due to the current restrictions and the global increase in demand for aquatic products, unconventional waters (UWs) have been used in aquaculture. UWs include: recycled water, sewage, saline water, agricultural drains and water resulting from the process of sweetening and desalination of salty water. Today, these water resources have been used to grow all kinds of aquatic animals to provide food and protein. Considering the limited water resources in the world, the use of UWs is very effective and efficient in managing drought, and is considered as one of the ways to develop food production for humans. Due to its importance in areas facing water scarcity, the use of UWRs to supplement or replace the use of conventional fresh water sources has been considered. In this review study, the importance of UWs and their sources, aquaculture products and aquatics that can be cultivated with the help of UWs are discussed.
Collapse
|
53
|
Aditya L, Mahlia TMI, Nguyen LN, Vu HP, Nghiem LD. Microalgae-bacteria consortium for wastewater treatment and biomass production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155871. [PMID: 35568165 DOI: 10.1016/j.scitotenv.2022.155871] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The diversity of microalgae and bacteria allows them to form a complementary consortium for efficient wastewater treatment and nutrient recovery. This review highlights the potential of wastewater-derived microalgal biomass as a renewable feedstock for producing animal feed, biofertilisers, biofuel, and many valuable biochemicals. Data corroborated from this review shows that microalgae and bacteria can thrive in many environments. Microalgae are especially effective at utilising nutrients from the water as they grow. This review also consolidates the current understanding of microalgae characteristics and their interactions with bacteria in a consortium system. Recent studies on the performance of only microalgae and microalgae-bacteria wastewater treatment are compared and discussed to establish a research roadmap for practical implementation of the consortium systems for various wastewaters (domestic, industrial, agro-industrial, and landfill leachate wastewater). In comparison to the pure microalgae system, the consortium system has a higher removal efficiency of up to 15% and shorter treatment time. Additionally, this review addresses a variety of possibilities for biomass application after wastewater treatment.
Collapse
Affiliation(s)
- Lisa Aditya
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - T M Indra Mahlia
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Luong N Nguyen
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Hang P Vu
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Long D Nghiem
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
54
|
Srimongkol P, Sangtanoo P, Songserm P, Watsuntorn W, Karnchanatat A. Microalgae-based wastewater treatment for developing economic and environmental sustainability: Current status and future prospects. Front Bioeng Biotechnol 2022; 10:904046. [PMID: 36159694 PMCID: PMC9489850 DOI: 10.3389/fbioe.2022.904046] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last several decades, concerns about climate change and pollution due to human activity has gained widespread attention. Microalgae have been proposed as a suitable biological platform to reduce carbon dioxide, a major greenhouse gas, while also creating commercial sources of high-value compounds such as medicines, cosmetics, food, feed, and biofuel. Industrialization of microalgae culture and valorization is still limited by significant challenges in scaling up the production processes due to economic constraints and productivity capacities. Therefore, a boost in resource usage efficiency is required. This enhancement not only lowers manufacturing costs but also enhancing the long-term viability of microalgae-based products. Using wastewater as a nutrient source is a great way to reduce manufacturing costs. Furthermore, water scarcity is one of the most important global challenges. In recent decades, industrialization, globalization, and population growth have all impacted freshwater resources. Moreover, high amounts of organic and inorganic toxins in the water due to the disposal of waste into rivers can have severe impacts on human and animal health. Microalgae cultures are a sustainable solution to tertiary and quaternary treatments since they have the ability to digest complex contaminants. This review presents biorefineries based on microalgae from all angles, including the potential for environmental pollution remediation as well as applications for bioenergy and value-added biomolecule production. An overview of current information about microalgae-based technology and a discussion of the associated hazards and opportunities for the bioeconomy are highlighted.
Collapse
Affiliation(s)
- Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Papassara Sangtanoo
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Pajareeya Songserm
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Wannapawn Watsuntorn
- Panyapiwat Institute of Management Demonstration School, Pakkred, Nonthaburi, Thailand
| | - Aphichart Karnchanatat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- *Correspondence: Aphichart Karnchanatat,
| |
Collapse
|
55
|
Ahmad I, Ibrahim NNB, Abdullah N, Koji I, Mohama SE, Khoo KS, Cheah WY, Ling TC, Show PL. Bioremediation strategies of palm oil mill effluent and landfill leachate using microalgae cultivation: An approach contributing towards environmental sustainability. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
56
|
Zahmatkesh S, Amesho KTT, Sillanpää M. A critical review on diverse technologies for advanced wastewater treatment during SARS-CoV-2 pandemic: What do we know? JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 7:100121. [PMID: 37520795 PMCID: PMC9250822 DOI: 10.1016/j.hazadv.2022.100121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022]
Abstract
Advanced wastewater treatment technologies are effective methods and currently attract growing attention, especially in arid and semi-arid areas, for reusing water, reducing water pollution, and explicitly declining, inactivating, or removing SARS-CoV-2. Overall, removing organic matter and micropollutants prior to wastewater reuse is critical, considering that water reclamation can help provide a crop irrigation system and domestic purified water. Advanced wastewater treatment processes are highly recommended for contaminants such as monovalent ions from an abiotic source and SARS-CoV-2 from an abiotic source. This work introduces the fundamental knowledge of various methods in advanced water treatment, including membranes, filtration, Ultraviolet (UV) irradiation, ozonation, chlorination, advanced oxidation processes, activated carbon (AC), and algae. Following that, an analysis of each process for organic matter removal and mitigation or prevention of SARS-CoV-2 contamination is discussed. Next, a comprehensive overview of recent advances and breakthroughs is provided for each technology. Finally, the advantages and disadvantages of each method are discussed.
Collapse
Key Words
- AOP, advanced oxidation process
- Activated carbon
- Advanced oxidation process
- Algae
- BOD, biological oxygen demand
- COD, chemical oxygen demand
- Chlorination
- DBP, disinfection by-product
- EPS, extracellular polymeric substances
- GAC, granular activated carbon
- Membrane
- Micropollutants
- Ozonation
- PAC, powdered activated carbon
- SARS-CoV-2
- TOC, total organic carbon
- TSS, total suspended solids
- UV irradiation
- UV, ultraviolet
- WWTPs, wastewater treatment plants
- Wastewater
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
| | - Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia
| | - Mika Sillanpää
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
57
|
Sarwer A, Hussain M, Al‐Muhtaseb AH, Inayat A, Rafiq S, Khurram MS, Ul‐Haq N, Shah NS, Alaud Din A, Ahmad I, Jamil F. Suitability of Biofuels Production on Commercial Scale from Various Feedstocks: A Critical Review. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Asma Sarwer
- COMSATS University Islamabad CUI Department of Chemical Engineering Lahore Pakistan
| | - Murid Hussain
- COMSATS University Islamabad CUI Department of Chemical Engineering Lahore Pakistan
| | - Ala'a H. Al‐Muhtaseb
- Sultan Qaboos University Department Department of Petroleum and Chemical Engineering College of Engineering Muscat Oman
| | - Abrar Inayat
- University of Sharjah Department of Sustainable and Renewable Energy Engineering 27272 Sharjah United Arab Emirates
| | - Sikander Rafiq
- University of Engineering and Technology Department of Chemical, Polymer and Composite Materials Engineering New Campus Lahore Pakistan
| | - M. Shahzad Khurram
- COMSATS University Islamabad CUI Department of Chemical Engineering Lahore Pakistan
| | - Noaman Ul‐Haq
- COMSATS University Islamabad CUI Department of Chemical Engineering Lahore Pakistan
| | - Noor Samad Shah
- COMSATS University Islamabad Department of Environmental Sciences Campus 61100 Vehari Pakistan
| | - Aamir Alaud Din
- National University of Sciences and Technology (NUST) Institute of Environmental Sciences and Engineering (IESE) School of Civil and Environmental Engineering (SCEE) H-12 Campus 44000 Islamabad Pakistan
| | - Ishaq Ahmad
- University of Engineering and Technology Peshawar Department of Mining Engineering Peshwar Pakistan
| | - Farrukh Jamil
- COMSATS University Islamabad CUI Department of Chemical Engineering Lahore Pakistan
- Sultan Qaboos University Department Department of Petroleum and Chemical Engineering College of Engineering Muscat Oman
| |
Collapse
|
58
|
Morillas-España A, Ruiz-Nieto Á, Lafarga T, Acién G, Arbib Z, González-López CV. Biostimulant Capacity of Chlorella and Chlamydopodium Species Produced Using Wastewater and Centrate. BIOLOGY 2022; 11:biology11071086. [PMID: 36101464 PMCID: PMC9312269 DOI: 10.3390/biology11071086] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary The world population is expected to grow by over 2 billion people in the coming decades, involving an increase in agricultural production. Agriculture demands huge amounts of water and energy, so it is crucial to minimise the use of these resources to ensure a sustainable future. Plant biostimulants can promote germination, plant growth, flowering, and crop productivity, as well as increase nutrient-use efficiencies and resistance to abiotic stress. Microalgae are a novel and interesting source of biostimulants, and they can grow using wastewater. Although there is great interest in developing and applying these natural biostimulants produced from microalgae, there is still only a limited number of well-characterised and stable products available commercially. It is therefore necessary to identify novel strains that have a biostimulant capacity that are robust, that can grow in wastewater, and that are highly productive. This work determines the viability of producing high-quality microalgal biomass using wastewater and assesses the biostimulant capacity of the produced biomass. It is focused on an initial laboratory-scale study to produce these strains in wastewater and a preliminary validation of their biostimulant capacity. Abstract The aim of the present study was to assess the potential of producing four microalgal strains using secondary-treated urban wastewater supplemented with centrate, and to evaluate the biostimulant effects of several microalgal extracts obtained using water and sonication. Four strains were studied: Chlorella vulgaris UAL-1, Chlorella sp. UAL-2, Chlorella vulgaris UAL-3, and Chlamydopodium fusiforme UAL-4. The highest biomass productivity was found for C. fusiforme, with a value of 0.38 ± 0.01 g·L−1·day−1. C. vulgaris UAL-1 achieved a biomass productivity of 0.31 ± 0.03 g·L−1·day−1 (the highest for the Chlorella genus), while the N-NH4+, N-NO3−, and P-PO43− removal capacities of this strain were 51.9 ± 2.4, 0.8 ± 0.1, and 5.7 ± 0.3 mg·L−1·day−1, respectively. C. vulgaris UAL-1 showed the greatest potential for use as a biostimulant—when used at a concentration of 0.1 g·L−1, it increased the germination index of watercress seeds by 3.5%. At concentrations of 0.5 and 2.0 g·L−1, the biomass from this microalga promoted adventitious root formation in soybean seeds by 220% and 493%, respectively. The cucumber expansion test suggested a cytokinin-like effect from C. vulgaris UAL-1; it was also the only strain that promoted the formation of chlorophylls in wheat leaves. Overall, the results of the present study suggest the potential of producing C. vulgaris UAL-1 using centrate and wastewater as well as the potential utilisation of its biomass to develop high-value biostimulants.
Collapse
Affiliation(s)
- Ainoa Morillas-España
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain; (A.M.-E.); (Á.R.-N.); (T.L.); (G.A.)
- Functional Desalination and Photosynthesis Unit, CIESOL Solar Research Centre, 04120 Almería, Spain
| | - Ángela Ruiz-Nieto
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain; (A.M.-E.); (Á.R.-N.); (T.L.); (G.A.)
| | - Tomás Lafarga
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain; (A.M.-E.); (Á.R.-N.); (T.L.); (G.A.)
- Functional Desalination and Photosynthesis Unit, CIESOL Solar Research Centre, 04120 Almería, Spain
| | - Gabriel Acién
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain; (A.M.-E.); (Á.R.-N.); (T.L.); (G.A.)
- Functional Desalination and Photosynthesis Unit, CIESOL Solar Research Centre, 04120 Almería, Spain
| | - Zouhayr Arbib
- Sustainability Area FCC Aqualia, 04001 Almería, Spain;
| | - Cynthia V. González-López
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain; (A.M.-E.); (Á.R.-N.); (T.L.); (G.A.)
- Research Center for Mediterranean Intensive Agrosystems and Agrifood Biotechnology CIAIMBITAL, 04120 Almería, Spain
- Correspondence:
| |
Collapse
|
59
|
Abstract
(1) Background: Mixotrophic growth is commonly associated with higher biomass productivity and lower energy consumption. This paper evaluates the impact of using different carbon sources on growth, protein profile, and nutrient uptake for Dunaliella tertiolecta CCAP 19/30 to assess the potential for mixotrophic growth. (2) Methods: Two experimental sets were conducted. The first assessed the contribution of atmospheric carbon to D. tertiolecta growth and the microalgae capacity to grow heterotrophically with an organic carbon source to provide both carbon and energy. The second set evaluated the impact of using different carbon sources on its growth, protein yield and quality. (3) Results: D. tertiolecta could not grow heterotrophically. Cell and optical density, ash-free dry weight, and essential amino acids index were inferior for all treatments using organic carbon compared to NaHCO3. Neither cell nor optical density presented significant differences among the treatments containing organic carbon, demonstrating that organic carbon does not boost D. tertiolecta growth. All the treatments presented similar nitrogen, phosphorus, sulfur recovery, and relative carbohydrate content. (4) Conclusions: Based on the results of this paper, D. tertiolecta CCAP 19/30 is an obligated autotroph that cannot grow mixotrophically using organic carbon.
Collapse
|
60
|
Microalgae Cultivation on Nutrient Rich Digestate: The Importance of Strain and Digestate Tailoring under PH Control. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The bioremediation of digestate using microalgae presents a solution to the current eutrophication issue in Northwest Europe, where the use of digestate as soil fertiliser is limited, thus resulting in an excess of digestate. Ammonium is the main nutrient of interest in digestate for microalgal cultivation, and improving its availability and consequent uptake is crucial for optimal bioremediation. This work aimed to determine the influence of pH on ammonium availability in cultures of two green microalgae, additionally screened for their growth performances on three digestates produced from different feedstocks, demonstrating the importance of tailoring a microalgal strain and digestate for bioremediation purposes. Results showed that an acidic pH of 6–6.5 resulted in a better ammonium availability in the digestate media, translated into better growth yields for both S. obliquus (GR: 0.099 ± 0.001 day−1; DW: 0.23 ± 0.02 g L−1) and C. vulgaris (GR: 0.09 ± 0.001 day−1; DW: 0.49 ± 0.012 g L−1). This result was especially true when considering larger-scale applications where ammonium loss via evaporation should be avoided. The results also demonstrated that digestates from different feedstocks resulted in different growth yields and biomass composition, especially fatty acids, for which, a digestate produced from pig manure resulted in acid contents of 6.94 ± 0.033% DW and 4.91 ± 0.3% DW in S. obliquus and C. vulgaris, respectively. Finally, this work demonstrated that the acclimation of microalgae to novel nutrient sources should be carefully considered, as it could convey significant advantages in terms of biomass composition, especially fatty acids and carbohydrate, for which, this study also demonstrated the importance of harvesting time.
Collapse
|
61
|
Torres MJ, González-Ballester D, Gómez-Osuna A, Galván A, Fernández E, Dubini A. Chlamydomonas-Methylobacterium oryzae cooperation leads to increased biomass, nitrogen removal and hydrogen production. BIORESOURCE TECHNOLOGY 2022; 352:127088. [PMID: 35364237 DOI: 10.1016/j.biortech.2022.127088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 05/27/2023]
Abstract
In the context of algal wastewater bioremediation, this study has identified a novel consortium formed by the bacterium Methylobacterium oryzae and the microalga Chlamydomonas reinhardtii that greatly increase biomass generation (1.22 g L-1·d-1), inorganic nitrogen removal (>99%), and hydrogen production (33 mL·L-1) when incubated in media containing ethanol and methanol. The key metabolic aspect of this relationship relied on the bacterial oxidation of ethanol to acetate, which supported heterotrophic algal growth. However, in the bacterial monocultures the acetate accumulation inhibited bacterial growth. Moreover, in the absence of methanol, ethanol was an unsuitable carbon source and its incomplete oxidation to acetaldehyde had a toxic effect on both the alga and the bacterium. In cocultures, both alcohols were used as carbon sources by the bacteria, the inhibitory effects were overcome and both microorganisms mutually benefited. Potential biotechnological applications in wastewater treatment, biomass generation and hydrogen production are discussed.
Collapse
Affiliation(s)
- María Jesús Torres
- Universidad de Córdoba, Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales, Ed. C6, Planta Baja, 14071 Córdoba, Spain.
| | - David González-Ballester
- Universidad de Córdoba, Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales, Ed. C6, Planta Baja, 14071 Córdoba, Spain.
| | - Aitor Gómez-Osuna
- Universidad de Córdoba, Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales, Ed. C6, Planta Baja, 14071 Córdoba, Spain.
| | - Aurora Galván
- Universidad de Córdoba, Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales, Ed. C6, Planta Baja, 14071 Córdoba, Spain.
| | - Emilio Fernández
- Universidad de Córdoba, Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales, Ed. C6, Planta Baja, 14071 Córdoba, Spain.
| | - Alexandra Dubini
- Universidad de Córdoba, Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales, Ed. C6, Planta Baja, 14071 Córdoba, Spain.
| |
Collapse
|
62
|
Wu P, Zhang Z, Luo Y, Bai Y, Fan J. Bioremediation of phenolic pollutants by algae - current status and challenges. BIORESOURCE TECHNOLOGY 2022; 350:126930. [PMID: 35247559 DOI: 10.1016/j.biortech.2022.126930] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Industrial production processes, especially petroleum processing, will produce high concentration phenolic wastewater. Traditional wastewater treatment technology is costly and may lead to secondary pollution. In order to avoid the adverse effects of incompletely treated phenolics, more advanced methods are required. Algae bioremediate phenolics through green pathways such as adsorption, bioaccumulation, biodegradation, and photodegradation. At the same time, the natural carbon fixation capacity of algae and its potential to produce high-value products make algal wastewater treatment technology economically feasible. This paper reviews the environmental impact of several types of phenolic pollutants in wastewater and different strategies to improve bioremediation efficiency. This paper focuses on the progress of algae removing phenols by different mechanisms and the potential of algae biomass for further biofuel production. This technology holds great promise, but more research on practical wastewater treatment at an industrial scale is needed in the future.
Collapse
Affiliation(s)
- Ping Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhaofei Zhang
- Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yeling Luo
- Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
63
|
Khan F, Shahid A, Zhu H, Wang N, Javed MR, Ahmad N, Xu J, Alam MA, Mehmood MA. Prospects of algae-based green synthesis of nanoparticles for environmental applications. CHEMOSPHERE 2022; 293:133571. [PMID: 35026203 DOI: 10.1016/j.chemosphere.2022.133571] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 05/22/2023]
Abstract
Green synthesis of nanoparticles (NPs) has emerged as an eco-friendly alternative to produce nanomaterials with diverse physical, chemical, and biological characteristics. Previously used, physical and chemical methods involve the production of toxic byproducts, costly instrumentation, and energy-intensive experimental processes thereby, limiting their applicability. Biogenic synthesis of nanoparticles has come forward as a potential alternative, providing an eco-friendly, cost-effective, and energy-efficient approach for the synthesis of a diverse range of NPs. Several biological entities are employed in the biosynthesis of NPs including bacteria, fungi, and algae. However, the distinguishing characteristics of microalgae and cyanobacteria make them promising candidates for NPs synthesis because of their higher growth rate, substantially higher rate of sequestering CO2, hyperaccumulation of heavy metals, absence of toxic byproducts, minimum energy input, and employment of biomolecules (pigments and enzymes) as reducing and capping agents. Algal extract, being a natural reducing and capping agent, serves as a living cell factory for the efficient green synthesis of nanoparticles. Physiological and biological methods allow algal cells to uptake heavy metals and utilize them as nutrient source to generate biomass by regulating their metabolic processes. Despite their enormous potential, studies on the microalgae-based synthesis of nanoparticles for the removal of toxic pollutants from wastewater remained an unexplored research area in the literature. This review was aimed to summarize the recent advancements and prospects in the algae-based synthesis of nanoparticles for environmental applications particularly treating the wastewater.
Collapse
Affiliation(s)
- Fahad Khan
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ayesha Shahid
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hui Zhu
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Ning Wang
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Muhammad Rizwan Javed
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Jianren Xu
- College of Bioscience and Engineering, North Minzu University, Yinchuan, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China; Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| |
Collapse
|
64
|
Ricky R, Chiampo F, Shanthakumar S. Efficacy of Ciprofloxacin and Amoxicillin Removal and the Effect on the Biochemical Composition of Chlorella vulgaris. Bioengineering (Basel) 2022; 9:134. [PMID: 35447694 PMCID: PMC9032391 DOI: 10.3390/bioengineering9040134] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Antibiotics are frequently detected in the aquatic environment due to their excessive usage and low-efficiency removal in wastewater treatment plants. This can provide the origin to the development of antibiotic-resistant genes in the microbial community, with considerable ecotoxicity to the environment. Among the antibiotics, the occurrence of ciprofloxacin (CIP) and amoxicillin (AMX) has been detected in various water matrices at different concentrations around the Earth. They are designated as emerging contaminants (ECs). Microalga Chlorella vulgaris (C. vulgaris) has been extensively employed in phycoremediation studies for its acclimatization property, non-target organisms for antibiotics, and the production of value-added bioproducts utilizing the nutrients from the wastewater. In this study, C. vulgaris medium was spiked with 5 mg/L of CIP and AMX, and investigated for its growth-stimulating effects, antibiotic removal capabilities, and its effects on the biochemical composition of algal cells compared to the control medium for 7 days. The results demonstrated that C. vulgaris adapted the antibiotic spiked medium and removed CIP (37 ± 2%) and AMX (25 ± 3%), respectively. The operating mechanisms were bioadsorption, followed by bioaccumulation, and biodegradation, with an increase in cell density up to 46 ± 3% (CIP) and 36 ± 4% (AMX), compared to the control medium. Further investigations revealed that, in the CIP stress-induced algal medium, an increase in major photosynthetic pigment chlorophyll-a (30%) and biochemical composition (lipids (50%), carbohydrates (32%), and proteins (65%)) was observed, respectively, compared to the control medium. In the AMX stress-induced algal medium, increases in chlorophyll-a (22%), lipids (46%), carbohydrates (45%), and proteins (49%) production were observed compared to the control medium. Comparing the two different stress conditions and considering that CIP is more toxic than AMX, this study provided insights on the photosynthetic activity and biochemical composition of C. vulgaris during the stress conditions and the response of algae towards the specific antibiotic stress. The current study confirmed the ability of C. vulgaris to adapt, bioadsorb, bioaccumulate, and biodegrade emerging contaminants. Moreover, the results showed that C. vulgaris is not only able to remove CIP and AMX from the medium but also can increase the production of valuable biomass usable in the production of various bioproducts.
Collapse
Affiliation(s)
- Rajamanickam Ricky
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India; (R.R.); (S.S.)
| | - Fulvia Chiampo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Subramaniam Shanthakumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India; (R.R.); (S.S.)
| |
Collapse
|
65
|
Microalgae as Feed Ingredients and a Potential Source of Competitive Advantage in Livestock Production: A review. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
66
|
Majhi PK, Kothari R, Arora NK, Pandey VC, Tyagi VV. Impact of pH on Pollutional Parameters of Textile Industry Wastewater with Use of Chlorella pyrenoidosa at Lab-Scale: A Green Approach. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:485-490. [PMID: 33950268 DOI: 10.1007/s00128-021-03208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
The current study focused on the pollution remediation of textile industry wastewater by using Chlorella pyrenoidosa in two different physical forms: free algal biomass and immobilized algal biomass. The hypothesis behind the present study was to analyze the pollution reduction efficiency of immobilized algal biomass and free algal biomass on comparative scale on the basis of the adsorption process which is directly proportional with the surface area of the adsorbate. So, in this context the immobilized form of algae could enhance the pollution reduction efficiency due to availability of more surface area. So, the textile industry wastewater was treated by both free algal biomass and immobilized algal biomass and the major wastewater contributors like nitrate, phosphate, Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) were assessed before and after the treatment process. To conclude the optimum comparative results, the pH of wastewater was maintained constant, as it can capitalize or moderate the adsorption process (initial pH of was 8.2 ± 0.1, but it was maintained to 8). The contamination remediation was found to be effective with immobilized algal biomass (46.7% of nitrate, 59.4% of phosphate, 83.1% BOD and 83.0% of COD) than free algal biomass (43.2% of nitrate, 56.7% of phosphate, 71.4% of BOD and 78.0% COD).
Collapse
Affiliation(s)
- Pradeep K Majhi
- Department of Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, U.P., 226025, India
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, Samba, J&K, 181143, India.
| | - N K Arora
- Department of Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, U.P., 226025, India
| | - Vimal Chandra Pandey
- Department of Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, U.P., 226025, India
| | - V V Tyagi
- School of Energy Management, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India
- Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah, 80200, Saudi Arabia
| |
Collapse
|
67
|
Krujatz F, Dani S, Windisch J, Emmermacher J, Hahn F, Mosshammer M, Murthy S, Steingroewer J, Walther T, Kühl M, Gelinsky M, Lode A. Think outside the box: 3D bioprinting concepts for biotechnological applications – recent developments and future perspectives. Biotechnol Adv 2022; 58:107930. [DOI: 10.1016/j.biotechadv.2022.107930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
|
68
|
Law XN, Cheah WY, Chew KW, Ibrahim MF, Park YK, Ho SH, Show PL. Microalgal-based biochar in wastewater remediation: Its synthesis, characterization and applications. ENVIRONMENTAL RESEARCH 2022; 204:111966. [PMID: 34450156 DOI: 10.1016/j.envres.2021.111966] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Microalgae are drawing attentions among researchers for their biorefinery use or value-added products. The high production rate of biomasses produced are attractive for conversion into volatile biochar. Torrefaction, pyrolysis and hydrothermal carbonization are the recommended thermochemical conversion techniques that could produce microalgal-based biochar with desirable physiochemical properties such as high surface area and pore volume, abundant surface functional groups, as well as functionality such as high adsorption capacity. The characterizations of the biochar significantly influence the mechanisms in adsorption of pollutants from wastewaters. Specific adsorption of the organic and inorganic pollutants from the effluent are reviewed to examine the adsorption capacity and efficiency of biochar derived from different microalgae species. Last but not least, future remarks over the challenges and improvements are discussed accordingly. Overall, this review would discuss the synthesis, characterization and application of the microalgal-based biochar in wastewater.
Collapse
Affiliation(s)
- Xin Ni Law
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Bioscience, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wai Yan Cheah
- Department of Environmental Health, Faculty of Health Sciences, MAHSA University, 42610, Jenjarom, Selangor, Malaysia.
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia.
| | - Mohamad Faizal Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor Darul Ehsan, Malaysia
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
69
|
A Review on the Reliability and the Readiness Level of Microalgae-Based Nutrient Recovery Technologies for Secondary Treated Effluent in Municipal Wastewater Treatment Plants. Processes (Basel) 2022. [DOI: 10.3390/pr10020399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Algae-based wastewater treatment technologies are promising green technologies with huge economical potential and environmental co-benefits. However, despite the immense research, work, and achievement, no publications were found wherein these technologies have been successfully applied in an operational environment for nitrogen and phosphorus removal of secondary treated effluent in municipal wastewater treatment plants. Based on a literature review and targeted comprehensive analysis, the paper seeks to identify the main reasons for this. The reliability (considering inlet wastewater quality variations, operating conditions and process control, algae harvesting method, and produced biomass) as well as the technology readiness level for five types of reactors are discussed. The review shows that the reactors with a higher level of control over the technological parameters are more reliable but algal post-treatment harvesting and additional costs are barriers for their deployment. The least reliable systems continue to be attractive for research due to the non-complex operation and relieved expenditure costs. The rotating biofilm systems are currently undertaking serious development due to their promising features. Among the remaining research gaps and challenges for all the reactor types are the identification of the optimal algal strains, establishment of technological parameters, overcoming seasonal variations in the effluent’s quality, and biomass harvesting.
Collapse
|
70
|
Mathew MM, Khatana K, Vats V, Dhanker R, Kumar R, Dahms HU, Hwang JS. Biological Approaches Integrating Algae and Bacteria for the Degradation of Wastewater Contaminants-A Review. Front Microbiol 2022; 12:801051. [PMID: 35185825 PMCID: PMC8850834 DOI: 10.3389/fmicb.2021.801051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
The traditional approach for biodegradation of organic matter in sewage treatment used a consortium of bacterial spp. that produce untreated or partially treated inorganic contaminants resulting in large amounts of poor-quality sludge. The aeration process of activated sludge treatment requires high energy. So, a sustainable technique for sewage treatment that could produce less amount of sludge and less energy demanding is required for various developed and developing countries. This led to research into using microalgae for wastewater treatment as they reduce concentrations of nutrients like inorganic nitrates and phosphates from the sewage water, hence reducing the associated chemical oxygen demand (COD). The presence of microalgae removes nutrient concentration in water resulting in reduction of chemical oxygen demand (COD) and toxic heavy metals like Al, Ni, and Cu. Their growth also offers opportunity to produce biofuels and bioproducts from algal biomass. To optimize use of microalgae, technologies like high-rate algal ponds (HRAPs) have been developed, that typically use 22% of the electricity used in Sequencing Batch Reactors for activated sludge treatment with added economic and environmental benefits like reduced comparative operation cost per cubic meter, mitigate global warming, and eutrophication potentials. The addition of suitable bacterial species may further enhance the treatment potential in the wastewater medium as the inorganic nutrients are assimilated into the algal biomass, while the organic nutrients are utilized by bacteria. Further, the mutual exchange of CO2 and O2 between the algae and the bacteria helps in enhancing the photosynthetic activity of algae and oxidation by bacteria leading to a higher overall nutrient removal efficiency. Even negative interactions between algae and bacteria mediated by various secondary metabolites (phycotoxins) have proven beneficial as it controls the algal bloom in the eutrophic water bodies. Herein, we attempt to review various opportunities and limitations of using a combination of microalgae and bacteria in wastewater treatment method toward cost effective, eco-friendly, and sustainable method of sewage treatment.
Collapse
Affiliation(s)
- Merwin Mammen Mathew
- Department of Basic and Applied Sciences, School of Engineering Sciences, GD Goenka University, Gurugram, India
| | - Kanchan Khatana
- Department of Basic and Applied Sciences, School of Engineering Sciences, GD Goenka University, Gurugram, India
| | - Vaidehi Vats
- Department of Basic and Applied Sciences, School of Engineering Sciences, GD Goenka University, Gurugram, India
| | - Raunak Dhanker
- Department of Basic and Applied Sciences, School of Engineering Sciences, GD Goenka University, Gurugram, India
| | - Ram Kumar
- Ecosystem Research Laboratory, Department of Environmental Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Fatehpur, India
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
71
|
Danouche M, El Ghachtouli N, Aasfar A, Bennis I, El Arroussi H. Pb(II)-phycoremediation mechanism using Scenedesmus obliquus: cells physicochemical properties and metabolomic profiling. Heliyon 2022; 8:e08967. [PMID: 35243087 PMCID: PMC8866896 DOI: 10.1016/j.heliyon.2022.e08967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/09/2021] [Accepted: 02/11/2022] [Indexed: 01/23/2023] Open
Abstract
This study highlights the mechanisms of Pb(II)-phycoremediation using the Pb(II) tolerant strain of Scenedesmus obliquus. First, monitoring of cell growth kinetics in control and Pb(II)-doped medium revealed significant growth inhibition, while the analyses through flow cytometry and Zetasizer revealed no difference in cell viability and size. Residual weights of control and Pb(II)-loaded cells assessed by thermogravimetric analysis were 31.34% and 57.8%, respectively, indicating the uptake of Pb(II) into S. obliquus cells. Next, the use of chemical extraction to distinguish between the intracellular and extracellular uptake indicated the involvement of both biosorption (85.5%) and bioaccumulation (14.5%) mechanisms. Biosorption interaction of Pb(II) ions and the cell wall was confirmed using SEM-EDX, FTIR, zeta potential, zero-charge pH, and contact angle analyses. Besides, the biochemical characterization of control and Pb(II)-loaded cells revealed that the bioaccumulation of Pb(II) induces significant increases in the carotenoids and lipids content, while it decreases in the chlorophyll, carbohydrates, and proteins content. Finally, the metabolomic analysis indicated an increase in the relative abundance of fatty acid methyl esters, alkanes, aromatic compounds, and sterols. However, the alkenes and monounsaturated fatty acids decreased. Such metabolic adjustment may represent an adaptive strategy that prevents high Pb(II)-bioaccumulation in cellular compartments.
Collapse
Affiliation(s)
- M. Danouche
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Corresponding author.
| | - N. El Ghachtouli
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Corresponding author.
| | - A. Aasfar
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
| | - I. Bennis
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
| | - H. El Arroussi
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
- AgroBioScience (AgBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
72
|
Mao G, Han Y, Liu X, Crittenden J, Huang N, Ahmad UM. Technology status and trends of industrial wastewater treatment: A patent analysis. CHEMOSPHERE 2022; 288:132483. [PMID: 34624344 DOI: 10.1016/j.chemosphere.2021.132483] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/18/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Globally, 80% of wastewater, among which 28% came from industry, returned to the ecosystem without treatment or reuse. The discharge of industrial wastewater poses public health and environmental concerns. The necessity and urgency of industrial wastewater treatment (IWT) will bring great challenges to most countries. This paper conducted the patent analysis combined with text mining to quantitatively analyze 11,840 patents related to IWT in the Derwent Innovations Index database. The results showed that: From 1973 to 2020, the number of patents related to IWT annually was increasing consistently. China ranked first in the number of patent publications. In contrast, the United States and some patent organizations, such as World Intellectual Property Organization, produced fewer patents, while they played more important roles in knowledge transfer. The core technology analysis suggested that method, device, material and related industry were hot topics. From activated sludge treatment technology, industrial wastewater treatment technology had gone through a development process from single technology treatment to combined technologies treatment. In the foreseeable future, research on devices for physical treatment, advanced oxidation processes, automated and energy-saving treatment systems were the promising directions.
Collapse
Affiliation(s)
- Guozhu Mao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Center for Green Buildings and Sponge Cities, Georgia Tech Tianjin University Shenzhen Institute, Shenzhen, Guangdong, 518071, China
| | - Yixin Han
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Center for Green Buildings and Sponge Cities, Georgia Tech Tianjin University Shenzhen Institute, Shenzhen, Guangdong, 518071, China
| | - Xi Liu
- Institute of Blue and Green Development, Shandong University, Weihai, 264209, China; College of Management and Economics, Tianjin University, Tianjin, 300072, China.
| | - John Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ning Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; Center for Green Buildings and Sponge Cities, Georgia Tech Tianjin University Shenzhen Institute, Shenzhen, Guangdong, 518071, China
| | - Umme Marium Ahmad
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
73
|
Arthrospira platensis Cultivation in a Bench-Scale Helical Tubular Photobioreactor. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Cultivations of Arthrospira platensis were carried out to evaluate the CO2 capture capacity of this cyanobacterium under bench-scale conditions. For this purpose, the influence of light intensity on the microbial growth and the photosynthetic efficiency has been investigated in a helical photobioreactor. Five cultivations were performed at different photosynthetic photon flux densities (23 ≤ PPFD ≤ 225 µmol photons m−2 s−1) by fed-batch pulse-feeding pure carbon dioxide from a cylinder into the helicoidal photobioreactor. In particular, a range of PPFD (82–190 µmol photons m−2 s−1) was identified in which biomass concentration reached values (9–11 gDW L−1) significantly higher than those reported in the literature for other configurations of closed photobioreactors. Furthermore, as A. platensis suspensions behave as Newtonian and non-Newtonian (pseudoplastic) fluids at very low and high biomass concentrations, respectively, a flow analysis was carried out for evaluating the most suitable mixing conditions depending on growth. The results obtained in this study appear to be very promising and suggest the use of this helicoidal photobioreactor configuration to reduce CO2 emissions from industrial gaseous effluents.
Collapse
|
74
|
Maurya R, Zhu X, Valverde-Pérez B, Ravi Kiran B, General T, Sharma S, Kumar Sharma A, Thomsen M, Venkata Mohan S, Mohanty K, Angelidaki I. Advances in microalgal research for valorization of industrial wastewater. BIORESOURCE TECHNOLOGY 2022; 343:126128. [PMID: 34655786 DOI: 10.1016/j.biortech.2021.126128] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
This review article focuses on recent updates on remediation of industrial wastewater (IWW) through microalgae cultivation. These include how adding additional supplements of nutrient to some specific IWWs lacking adequate nutrients improving the microalgae growth and remediation simultaneously. Various pretreatments strategy recently employed for IWWs treatment other than dealing with microalgae was discussed. Various nutrient-rich IWW could be utilized directly with additional dilution, supplement of nutrients and without any pretreatment. Recent advances in various approaches and new tools used for cultivation of microalgae on IWW such as two-step cultivation, pre-acclimatization, novel microalgal-bioelectrical systems, integrated catalytic intense pulse-light process, sequencing batch reactor, use of old stabilized algal-bacterial consortium, immobilized microalgae cells, microalgal bacterial membrane photobioreactor, low-intensity magnetic field, BIO_ALGAE simulation tool, etc. are discussed. In addition, biorefinery of microalgal biomass grown on IWW and its end-use applications are reviewed.
Collapse
Affiliation(s)
- Rahulkumar Maurya
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Xinyu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, DTU, Denmark
| | - Borja Valverde-Pérez
- Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby, DTU, Denmark
| | - Boda Ravi Kiran
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Thiyam General
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, U.S. Nagar, Pantnagar, Uttarakhand 263 145, India
| | - Suvigya Sharma
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, U.S. Nagar, Pantnagar, Uttarakhand 263 145, India
| | - Anil Kumar Sharma
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, U.S. Nagar, Pantnagar, Uttarakhand 263 145, India
| | - Marianne Thomsen
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Postbox 358 Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Kaustubha Mohanty
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, DTU, Denmark
| |
Collapse
|
75
|
Avila R, Justo Á, Carrero E, Crivillés E, Vicent T, Blánquez P. Water resource recovery coupling microalgae wastewater treatment and sludge co-digestion for bio-wastes valorisation at industrial pilot-scale. BIORESOURCE TECHNOLOGY 2022; 343:126080. [PMID: 34628008 DOI: 10.1016/j.biortech.2021.126080] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 05/12/2023]
Abstract
This case study is part of a circular bioeconomy project for a winery company aiming to integrate a microalgae-based system within the existing facilities of the winery WWTP, promoting nutrient recovery and transformation into valuable products and bioenergy. Microalgae were used for wastewater treatment, removing N-NH4+ (97%) and P-PO4-3 (93%). A pilot anaerobic reactor was used for batch anaerobic mono-digestion of secondary sludge (WAS) and for co-digestion of WAS and algal biomass. The methane yield using WAS from two different wine production seasons was 155.4 and 132.9 NL CH4 kg VS-1. Co-digestion led to the highest methane yield (225.8 NL CH4 kg VS-1). The application of the bio-wastes for fertilization was assessed through plant growth bioassays: mono- and co-digestion digestates and dry algal biomass enhanced plant biomass accumulation (growth indexes of 163%, 155% and 121% relative to those of the control - commercial amendment, respectively), demonstrating a lack of phytotoxicity.
Collapse
Affiliation(s)
- Romina Avila
- Chemical, Biological and Environmental Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Álvaro Justo
- Chemical, Biological and Environmental Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain; Miguel Torres S.A., Miquel Torres i Carbó 6, 08720, Villafranca del Penedès, Barcelona, Spain
| | - Elvira Carrero
- Miguel Torres S.A., Miquel Torres i Carbó 6, 08720, Villafranca del Penedès, Barcelona, Spain
| | - Eudald Crivillés
- Miguel Torres S.A., Miquel Torres i Carbó 6, 08720, Villafranca del Penedès, Barcelona, Spain
| | - Teresa Vicent
- Chemical, Biological and Environmental Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Paqui Blánquez
- Chemical, Biological and Environmental Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
76
|
Comprehensive assessment of the microalgae-nitrifying bacteria competition in microalgae-based wastewater treatment systems: Relevant factors, evaluation methods and control strategies. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
77
|
Improvement of wastewater treatment capacity using the microalga Scenedesmus sp. and membrane bioreactors. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
78
|
Dayana Priyadharshini S, Suresh Babu P, Manikandan S, Subbaiya R, Govarthanan M, Karmegam N. Phycoremediation of wastewater for pollutant removal: A green approach to environmental protection and long-term remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117989. [PMID: 34433126 DOI: 10.1016/j.envpol.2021.117989] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Surface and water bodies in many parts of the world are affected due to eutrophication, contamination and depletion. The approach of wastewater treatment using algae for eliminating nutrients and other pollutants from domestic wastewater is growing interest among the researchers. However, sustainable treatment of the wastewater is considered to be important in establishing more effective nutrient and pollutant reduction using algal systems. In comparison to the conventional method of remediation, there are opportunities to commercially viable businesses interest with phycoremediation, thus by achieving cost reductions and renewable bioenergy options. Phycoremediation is an intriguing stage for treating wastewater since it provides tertiary bio-treatment while producing potentially valuable biomass that may be used for a variety of applications. Furthermore, the phycoremediation provides the ability to remove heavy metals as well as harmful organic substances, without producing secondary contamination. In this review, the role of microalgae in treating different wastewaters and the process parameters affecting the treatment and future scope of research have been discussed. Though several algae are employed for wastewater treatment, species of the genera Chlamydomonas, Chlorella, and Scenedesmus are extensively utilized. Interestingly, there is a vast scope for employing algal species with high flocculation capacity and adsorption mechanisms for the elimination of microplastics. In addition, the algal biomass generated during phycoremediation has been found to possess high protein and lipid contents, promising their exploitation in biofuel, food and animal feed industries.
Collapse
Affiliation(s)
| | - Palanisamy Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India; Faculty of Pharmaceutical Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
79
|
Morillas-España A, Lafarga T, Sánchez-Zurano A, Acién-Fernández FG, Rodríguez-Miranda E, Gómez-Serrano C, González-López CV. Year-long evaluation of microalgae production in wastewater using pilot-scale raceway photobioreactors: Assessment of biomass productivity and nutrient recovery capacity. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
80
|
|
81
|
Singh A, Pal DB, Kumar S, Srivastva N, Syed A, Elgorban AM, Singh R, Gupta VK. Studies on Zero-cost algae based phytoremediation of dye and heavy metal from simulated wastewater. BIORESOURCE TECHNOLOGY 2021; 342:125971. [PMID: 34852442 DOI: 10.1016/j.biortech.2021.125971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
In the present study, filamentous algae, an emerging candidate for biofuel and other useful chemical production, has been investigated as a biological adsorbent for the removal of contaminants from synthetic wastewater. Operational parameters were optimized in batch phytoremediation experiments. The adsorption equilibrium isotherm models such as Langmuir, Freundlich, and Dubinin-Radushkevitch and kinetics models such as pseudo-1st and pseudo-2nd order in methylene blue decolorization and Cr(VI) removal were also investigated. The D-R isotherm theory provided the best fit. The pseudo-2nd order model accurately described the adsorption kinetic data. Maximum adsorption capacities were observed to 5.03 mg.g-1 and 0.77 mg.g-1 along with removal efficiencies were achieved to 91.3% and 91.4% for methylene blue and Cr(VI) remediation, respectively. Moreover, intra-particle diffusion kinetic theory was used to describe the mechanism. These outcomes are significant in the development of algae-based zero-cost pollutants removal technology in wastewater treatment.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Chemical Engineering, Birsa Institute of Technology Sindri, Dhanbad 828123, India; Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi 835215, India
| | - Sanjay Kumar
- Department of Chemical Engineering, Birsa Institute of Technology Sindri, Dhanbad 828123, India
| | - Neha Srivastva
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
82
|
Mohseni A, Fan L, Roddick FA. Impact of microalgae species and solution salinity on algal treatment of wastewater reverse osmosis concentrate. CHEMOSPHERE 2021; 285:131487. [PMID: 34273703 DOI: 10.1016/j.chemosphere.2021.131487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Six common microalgal species, including freshwater microalgae Scenedesmus abundans, Chlorella vulgaris, Chlamydomonas reinhardtii and Coelastrum microporum, and marine microalgae Nannochloropsis salina and Dunaliella tertiolecta, were tested in batch treatment to identify the most promising species for remediating a municipal wastewater reverse osmosis concentrate (ROC). Selected species were then studied at different ROC salinity levels (5, 10, and 15 g TDS/L) in semi-continuous treatment to evaluate their potential for nutrient remediation, and biogas production through anaerobic digestion. S. abundans, C. vulgaris, and N. salina showed higher potential for growth and nutrient remediation under salinity stress. Further tests revealed that N. salina adapted well to ROC conditions, and S. abundans could grow better and had higher tolerance to the elevated salinity than C. vulgaris. S. abundans and N. salina performed better for removing nutrients and organic matter (11.5-18 mg/L/d TN, 7.1-8.2 mg/L/d TP, and 8.6-12.4 mg/L/d DOC). Increasing salinity led to growth inhibition and N uptake reduction for freshwater species but had no significant effect on TP removal. Biochemical methane potential tests showed the algal biomass produced a significant amount of methane (e.g., up to 422 mL CH4/g VS for N. salina), suggesting the algae generated from the ROC treatment could produce significant amounts of energy through anaerobic digestion without the need for pretreatment. This study showed the environmental and economic potential of the algal system for future applications.
Collapse
Affiliation(s)
- Arash Mohseni
- WETT Research Centre, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Linhua Fan
- WETT Research Centre, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| | - Felicity A Roddick
- WETT Research Centre, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| |
Collapse
|
83
|
Azam R, Kothari R, Singh HM, Ahmad S, Sari A, Tyagi VV. Cultivation of two Chlorella species in Open sewage contaminated channel wastewater for biomass and biochemical profiles: Comparative lab-scale approach. J Biotechnol 2021; 344:24-31. [PMID: 34838946 DOI: 10.1016/j.jbiotec.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/13/2021] [Accepted: 11/20/2021] [Indexed: 11/28/2022]
Abstract
Open sewage contaminated channel wastewater (OSCCW) has high pollutant loads, responsible for eutrophication, when mixed with various channels of urban communities. But, these pollutants can be converted and recovered into useful end products with the help of algal species. In this study, two species of Chlorella (C. vulgaris and C. pyrenoidosa) were selected and investigated for the production of algal biomass and nutrient removal efficiencies with 50% concentration of OSCCW, in a comparative way at lab-scale. Chlorella sp. cultivated in OSCCW have removed nitrate (76.9-78.8%) and phosphate (67.6-79.7%) whereas COD (72.4-76.2%) and BOD (62.3-72.4%) respectively. Correlation analysis was investigated between physico-chemical parameters and biochemical profile of both species to analyze the positive and negative correlation between two variables. The bio-chemical profile and biomass productivity of both species of Chlorella were observed well on the basis of productivity of biomass (60.1, 56.5 mg/l/d), carbohydrate (15.71, 8.82 mg/l/d), protein (11.21, 15.82 mg/l/d), lipid (20.8, 17.5 mg/l/d) and chlorophyll (0.78, 0.67 mg/l/d) in OSCCW. The maximum lipid content (34.6%) was obtained with C. pyrenoidosa as compared to C. vulgaris. Findings also support that OSCCW is well-off with nutrient resources, which can be suitable alternative for algal biomass production and remediated wastewater can be used for animal and fish farming type activities.
Collapse
Affiliation(s)
- Rifat Azam
- Department of Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Rahya Suchani, (Bagla) Samba, J&K, 181143, India.
| | - Har Mohan Singh
- School of Energy Management, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India
| | - Shamshad Ahmad
- National Environmental Engineering Research Institute (NEERI), Nagpur, Maharashtra, 440020, India
| | - Ahmet Sari
- Department of Metallurgical and Material Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey; King Fahd University of Petroleum and Minerals, Centers of Research Excellence, Renewable Energy Research Institute, Dhahran 31261, Saudi Arabia
| | - V V Tyagi
- School of Energy Management, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India
| |
Collapse
|
84
|
Chen W, Wang T, Dou Z, Xie X. Microalgae Harvesting by Self-Driven 3D Microfiltration with Rationally Designed Porous Superabsorbent Polymer (PSAP) Beads. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15446-15455. [PMID: 34739206 DOI: 10.1021/acs.est.1c04907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microalgae are emerging as next-generation renewable resources for production of sustainable biofuels and high-value bioproducts. Conventional microalgae harvesting methods including centrifugation, filtration, flocculation, and flotation are limited by intensive energy consumption, high capital cost, long treatment time, or the requirement of chemical addition. In this study, we design and fabricate porous superabsorbent polymer (PSAP) beads for self-driven 3D microfiltration of microalgal cultures. The PSAP beads can swell fast in a microalgal suspension with high water absorption capacity. During this process, microalgal cells are excluded outside the beads and successfully concentrated in the residual medium. After treatment, the beads can be easily separated from the microalgal concentrate and reused after dewatering. In one PSAP treatment, a high concentration factor for microalgal cultures up to 13 times can be achieved in 30 min with a harvesting efficiency higher than 90%. Furthermore, microalgal cultures could be concentrated from 0.2 g L-1 to higher than 120 g L-1 with minimal biomass loss through multistage PSAP treatments. Therefore, the use of PSAP beads for microalgae harvesting is fast, effective, and scalable. It does not require any complex instrument or chemical addition. This technique potentially provides an efficient and feasible alternative to obtain high concentrations of functional biomass at a very low cost.
Collapse
Affiliation(s)
- Wensi Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ting Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zeou Dou
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
85
|
di Cicco MR, Iovinella M, Palmieri M, Lubritto C, Ciniglia C. Extremophilic Microalgae Galdieria Gen. for Urban Wastewater Treatment: Current State, the Case of “POWER” System, and Future Prospects. PLANTS 2021; 10:plants10112343. [PMID: 34834705 PMCID: PMC8622319 DOI: 10.3390/plants10112343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
Over the past decades, wastewater research has increasingly focused on the use of microalgae as a tool to remove contaminants, entrapping nutrients, and whose biomass could provide both material and energy resources. This review covers the advances in the emerging research on the use in wastewater sector of thermoacidophilic, low-lipid microalgae of the genus Galdieria, which exhibit high content of protein, reserve carbohydrates, and other potentially extractable high-value compounds. The natural tolerance of Galdieria for high toxic environments and hot climates recently made it a key player in a single-step process for municipal wastewater treatment, biomass cultivation and production of energetic compounds using hydrothermal liquefaction. In this system developed in New Mexico, Galdieria proved to be a highly performing organism, able to restore the composition of the effluent to the standards required by the current legislation for the discharge of treated wastewater. Future research efforts should focus on the implementation, in the context of wastewater treatment, of more energetically efficient cultivation systems, potentially capable of generating water with increasingly higher purity levels.
Collapse
Affiliation(s)
- Maria Rosa di Cicco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.R.d.C.); (M.P.); (C.L.); (C.C.)
| | - Manuela Iovinella
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
- Correspondence:
| | - Maria Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.R.d.C.); (M.P.); (C.L.); (C.C.)
| | - Carmine Lubritto
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.R.d.C.); (M.P.); (C.L.); (C.C.)
- INFN—Sezione di Napoli, Complesso Universitario di Monte S. Angelo, ed. 6, Via Cintia, 80126 Napoli, Italy
| | - Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.R.d.C.); (M.P.); (C.L.); (C.C.)
| |
Collapse
|
86
|
Li SN, Wang R, Ho SH. Algae-mediated biosystems for metallic nanoparticle production: From synthetic mechanisms to aquatic environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126625. [PMID: 34329084 DOI: 10.1016/j.jhazmat.2021.126625] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Driven by the growing impetus of green chemistry and environmental protection, the use of bio-based systems to produce green metallic nanomaterials used for environmental remediation has thus developed urgently. It is proposed that using algae as a living cell factory or algal extract as a natural reducing agent is a green and clean way to efficiently synthesize various metallic nanomaterials. However, studies on algal-based biological synthesis of metallic nanomaterials and their applications towards removal of toxic pollutants from wastewater are still limited, which largely discourage the sustainability. Herein, this review aims to introduce the recent advances on algae-mediated nanomaterial-producing biosystems. The corresponding synthetic mechanisms, operation parameters, and case studies on various algae-synthesized metallic nanoparticles are comprehensively discussed and summarized. More importantly, the applicability of algae-synthesized metallic nanoparticles on water treatment is introduced in-depth. To improve economic viability, the challenges and future perspectives are also considered. Taken together, this review systematically presents the achievements and current progress of algae-mediated metallic nanoparticle biosynthesis towards the aquatic pollutants treatment, which can provide new insights on promoting the algae-based nanomaterial production yield and environmental application potential.
Collapse
Affiliation(s)
- Sheng-Nan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
87
|
Cai Z, Li H, Pu S, Ke J, Wang D, Liu Y, Chen J, Guo R. Development of autotrophic and heterotrophic consortia via immobilized microbial beads for chemical wastewater treatment, using PTA wastewater as an approach. CHEMOSPHERE 2021; 281:131001. [PMID: 34289638 DOI: 10.1016/j.chemosphere.2021.131001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/12/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
Studies on the symbiosis of microalgae-bacteria have been accelerating as a mean for wastewater remediation. However, there were few reports about the microalgae-bacteria consortia for chemical wastewater treatment. The aim of the present study is to develop an autotrophic and heterotrophic consortium for chemical wastewater treatment and probe whether and how bacteria could benefit from the microalgae during the treatment process, using PTA wastewater as an approach. A process-dependent strategy was applied. First of all, the results showed that the sludge beads with the sludge concentration of 30 g/L were the optimal one with the COD removal rate at 84.8% but the ceiling effect occurred (COD removal rate < 90%) even several common reinforcement methods were applied. Additionally, by adding the microalgae Chlorella vulgaris, a microalgae-activated sludge consortium was formed inside the immobilized beads, which provided better performance to shatter the ceiling effect. The COD remove rate was higher than 90%, regardless of the activated sludge was pre-culture or not. COD removal capacity could also be improved (COD removal rate > 92%) when LEDs light belt was offered as an advanced light condition. Biochemical assay and DNA analysis indicated that the microalgae could form an internal circulation of substances within the activated sludge and drove the microbial community to success and the corresponding gene functions, like metabolism and.
Collapse
Affiliation(s)
- Zhibin Cai
- China Pharmaceutical University, Nanjing, 211198, China
| | - Haitao Li
- Research Institute of Nanjing Chemical Industry Group, Nanjing, 210048, China
| | - Shaochen Pu
- China Pharmaceutical University, Nanjing, 211198, China
| | - Jian Ke
- China Pharmaceutical University, Nanjing, 211198, China
| | - Dong Wang
- Research Institute of Nanjing Chemical Industry Group, Nanjing, 210048, China
| | - Yanhua Liu
- China Pharmaceutical University, Nanjing, 211198, China
| | - Jianqiu Chen
- China Pharmaceutical University, Nanjing, 211198, China.
| | - Ruixin Guo
- China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
88
|
Ugya AY, Ajibade FO, Hua X. The efficiency of microalgae biofilm in the phycoremediation of water from River Kaduna. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113109. [PMID: 34216901 DOI: 10.1016/j.jenvman.2021.113109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
This study is aimed at investigating the efficiency of microalgae biofilm in the phycoremediation of water from a polluted river. Freshwater microalgae biofilm inherent in a contaminated petrochemical stream was employed to remediate water from the River Kaduna, which is the largest river in Kaduna town, Kaduna State, Nigeria, and serves as the primary water source in Kaduna town. The results indicate high reduction efficiency of some physicochemical parameters and pollutants (turbidity (71%), conductivity (9.8%), sulfate (37.5%), alkalinity (62.5%), chloride (11.5%), TDS (9.9%), TSS (66.7%), nitrate (42.9%), COD (24%), and BOD (33%), Cd (70.0%), Ni (74.0%) and Pb (71.0%)), indicating the effectiveness of microalgae biofilm in the phycoremediation of water from River Kaduna. According to scanning electron microscope (SEM) observation, the microalgae biofilm has rough surface morphology after the treatment of the river water, which implies that the biofilm was capable of removing the pollutants in water via biosorption. Other characterizations such as XRF, XRD, and FTIR also buttressed that biosorption was the primary removal mechanism of pollutants by microalgae biofilm. Besides, the results also show the production of ROS during the treatment of water from the River Kaduna by the microalgae biofilm. This high concentration of ROS produced during the treatment correlates significantly with pollutant degradation. The GC-MS analysis of the microalgae biofilm shows the involvement of some phytochemicals in the process of pollutant degradation. As a result, microalgae biofilm is a simple and cost-effective method of polluted water phycoremediation with promising applications and future prospects.
Collapse
Affiliation(s)
- Adamu Yunusa Ugya
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun, 130012, China; Department of Environmental Management, Kaduna State University, Kaduna, Nigeria
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology Akure, PMB 704, Nigeria; Key Lab of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiuyi Hua
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun, 130012, China.
| |
Collapse
|
89
|
Plöhn M, Spain O, Sirin S, Silva M, Escudero-Oñate C, Ferrando-Climent L, Allahverdiyeva Y, Funk C. Wastewater treatment by microalgae. PHYSIOLOGIA PLANTARUM 2021; 173:568-578. [PMID: 33860948 DOI: 10.1111/ppl.13427] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
The growth of the world's population increases the demand for fresh water, food, energy, and technology, which in turn leads to increasing amount of wastewater, produced both by domestic and industrial sources. These different wastewaters contain a wide variety of organic and inorganic compounds which can cause tremendous environmental problems if released untreated. Traditional treatment systems are usually expensive, energy demanding and are often still incapable of solving all challenges presented by the produced wastewaters. Microalgae are promising candidates for wastewater reclamation as they are capable of reducing the amount of nitrogen and phosphate as well as other toxic compounds including heavy metals or pharmaceuticals. Compared to the traditional systems, photosynthetic microalgae require less energy input since they use sunlight as their energy source, and at the same time lower the carbon footprint of the overall reclamation process. This mini-review focuses on recent advances in wastewater reclamation using microalgae. The most common microalgal strains used for this purpose are described as well as the challenges of using wastewater from different origins. We also describe the impact of climate with a particular focus on a Nordic climate.
Collapse
Affiliation(s)
- Martin Plöhn
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Olivia Spain
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Sema Sirin
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Mario Silva
- Institute for Energy Technology (IFE), Kjeller, Norway
| | | | | | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | | |
Collapse
|
90
|
Ugya AY, Ari HA, Hua X. Microalgae biofilm formation and antioxidant responses to stress induce by Lemna minor L., Chlorella vulgaris, and Aphanizomenon flos-aquae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112468. [PMID: 34198191 DOI: 10.1016/j.ecoenv.2021.112468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The study shows how microalgae biofilm formation and antioxidant responses to the production of reactive oxygen species (ROS) is alter by the presences of Lemna minor L., Chlorella vulgaris, and Aphanizomenon flos-aquae. The study involves the cultivation of the biofilm of Chlorella vulgaris and Aphanizomenon flos-aquae in three bioreactors. The condition of growth for the biofilm formation was varied across the three bioreactors to enable the dominance Chlorella vulgaris and Aphanizomenon flos-aquae in one of the bioreactors. Lemna minor L. was also introduce into one of the bioreactors to determine its effect on the biofilm formation. The result obtained shows that C. vulgaris and A. flos-aquae dominate the biofilm, resulting in a high level of H2O2 and O2- (H2O2 was 0.122 ± 0.052 and 0.183 ± 0.108 mmol/L in C. vulgaris and A. flos-aquae, respectively, and O2- was 0.261 ± 0.039 and 0.251 ± 0.148 mmol/L in C. vulgaris and A. flos-aquae, respectively). The study also revealed that the presence of L. minor L. tend to reduce the oxidative stress to the biofilm leading to low production of ROS (H2O2 was 0.086 ± 0.027 and 0.089 ± 0.045 mmol/L in C. vulgaris and A. flos-aquae respectively, and O2- was 0.185 ± 0.044 and 0.161 ± 0.065 mmol/L in C. vulgaris and A. flos-aquae respectively). The variation in the ability of the biofilm of C. vulgaris and A. flos-aquae to respond via chlorophyll, carotenoid, flavonoid, anthocyanin, superoxide dismutase, peroxidase, catalase, glutathione reductase activities, antioxidant reducing power, phosphomolybdate activity, DPPH reduction activity, H2O2 scavenging activity, lipid content and organic carbon also supports the fact that the presence of biomass of microalgae and aquatic macrophytes tend to affect the process of microalgae biofilm formation and the ability of the biofilm to produce antioxidant. This high nutrient utilization leads to the production of biomass which can be used for biofuel production and other biotechnological products.
Collapse
Affiliation(s)
- Adamu Yunusa Ugya
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130012, China; Department of Environmental Management, Kaduna State University, Kaduna, Nigeria
| | - Hadiza Abdullahi Ari
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130012, China; Faculty of Sciences, National Open University of Nigeria, Lagos, Nigeria
| | - Xiuyi Hua
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
91
|
Wu X, Xiong J, Liu S, Cheng JH, Zong MH, Lou WY. Investigation of hierarchically porous zeolitic imidazolate frameworks for highly efficient dye removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126011. [PMID: 33990042 DOI: 10.1016/j.jhazmat.2021.126011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/13/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Treatment of textile water containing organic molecules as contaminants still remains a challenge and has become a central issue for environment remediation. Here, a nucleotide incorporated zeolitic imidazolate frameworks (NZIF) featuring hierarchically porous structure served as a potential adsorbent for removal of organic dye molecules. Adsorption isotherms of organic dyes were accurately described by Langmuir adsorption model with correlation coefficients of 0.98 and kinetic data followed the pseudo-second-order model. The maximum adsorption capacity of NZIF for Congo red (CR) and methylene blue (MB) reached 769 and 10 mg/g, respectively, which were 6 and 5 times higher than that of ZIF-8. The adsorption behavior of sunset yellow and crystal violet was examined for mechanism investigation. Analysis of pore size, molecular size, zeta potential and FTIR measurement together revealed that mesopores in NZIF provided more interaction sites and led to enhanced adsorption capacity. Hydrogen bonding and π-π stacking which resulted from the interaction between introduced nucleotide monophosphate and dyes dominated the driving forces for adsorption, where electrostatic interaction was also involved. Moreover, the introduced nucleoside monophosphate enabled NZIF to function under acidic condition whereas ZIF-8 collapsed. This study opens a new avenue for design of porous materials for environment remediation.
Collapse
Affiliation(s)
- Xiaoling Wu
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Xiong
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuli Liu
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Hua Cheng
- South China Institute of Collaborative Innovation, Dongguan 221116, China
| | - Min-Hua Zong
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; South China Institute of Collaborative Innovation, Dongguan 221116, China.
| |
Collapse
|
92
|
Kholssi R, Ramos PV, Marks EA, Montero O, Rad C. 2Biotechnological uses of microalgae: A review on the state of the art and challenges for the circular economy. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
93
|
Galicia-Medina CM, Vázquez-Piñón M, Alemán-Nava GS, Gallo-Villanueva RC, Martínez-Chapa SO, Madou MJ, Camacho-León S, García-Pérez JS, Esquivel-Hernández DA, Parra-Saldívar R, Pérez-González VH. Rapid Lipid Content Screening in Neochloris oleoabundans Utilizing Carbon-Based Dielectrophoresis. MICROMACHINES 2021; 12:mi12091023. [PMID: 34577668 PMCID: PMC8471556 DOI: 10.3390/mi12091023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 11/20/2022]
Abstract
In this study, we carried out a heterogeneous cytoplasmic lipid content screening of Neochloris oleoabundans microalgae by dielectrophoresis (DEP), using castellated glassy carbon microelectrodes in a PDMS microchannel. For this purpose, microalgae were cultured in nitrogen-replete (N+) and nitrogen-deplete (N−) suspensions to promote low and high cytoplasmic lipid production in cells, respectively. Experiments were carried out over a wide frequency window (100 kHz–30 MHz) at a fixed amplitude of 7 VPP. The results showed a statistically significant difference between the dielectrophoretic behavior of N+ and N− cells at low frequencies (100–800 kHz), whereas a weak response was observed for mid- and high frequencies (1–30 MHz). Additionally, a finite element analysis using a 3D model was conducted to determine the dielectrophoretic trapping zones across the electrode gaps. These results suggest that low-cost glassy carbon is a reliable material for microalgae classification—between low and high cytoplasmic lipid content—through DEP, providing a fast and straightforward mechanism.
Collapse
Affiliation(s)
- Cynthia M. Galicia-Medina
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.M.G.-M.); (M.V.-P.); (G.S.A.-N.); (R.C.G.-V.); (S.O.M.-C.); (S.C.-L.); (J.S.G.-P.)
| | - Matías Vázquez-Piñón
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.M.G.-M.); (M.V.-P.); (G.S.A.-N.); (R.C.G.-V.); (S.O.M.-C.); (S.C.-L.); (J.S.G.-P.)
| | - Gibran S. Alemán-Nava
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.M.G.-M.); (M.V.-P.); (G.S.A.-N.); (R.C.G.-V.); (S.O.M.-C.); (S.C.-L.); (J.S.G.-P.)
| | - Roberto C. Gallo-Villanueva
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.M.G.-M.); (M.V.-P.); (G.S.A.-N.); (R.C.G.-V.); (S.O.M.-C.); (S.C.-L.); (J.S.G.-P.)
| | - Sergio O. Martínez-Chapa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.M.G.-M.); (M.V.-P.); (G.S.A.-N.); (R.C.G.-V.); (S.O.M.-C.); (S.C.-L.); (J.S.G.-P.)
| | - Marc J. Madou
- Department of Mechanical and Aerospace Engineering, University of California, 4200 Engineering Gateway, Irvine, CA 92697, USA;
| | - Sergio Camacho-León
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.M.G.-M.); (M.V.-P.); (G.S.A.-N.); (R.C.G.-V.); (S.O.M.-C.); (S.C.-L.); (J.S.G.-P.)
| | - Jonathan S. García-Pérez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.M.G.-M.); (M.V.-P.); (G.S.A.-N.); (R.C.G.-V.); (S.O.M.-C.); (S.C.-L.); (J.S.G.-P.)
| | - Diego A. Esquivel-Hernández
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.M.G.-M.); (M.V.-P.); (G.S.A.-N.); (R.C.G.-V.); (S.O.M.-C.); (S.C.-L.); (J.S.G.-P.)
- Correspondence: (R.P.-S.); (V.H.P.-G.); Tel.: +52-(81)-8358-2000 (ext. 5561) (R.P.-S.); +52-(81)-8358-2000 (ext. 5414) (V.H.P.-G.)
| | - Víctor H. Pérez-González
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.M.G.-M.); (M.V.-P.); (G.S.A.-N.); (R.C.G.-V.); (S.O.M.-C.); (S.C.-L.); (J.S.G.-P.)
- Correspondence: (R.P.-S.); (V.H.P.-G.); Tel.: +52-(81)-8358-2000 (ext. 5561) (R.P.-S.); +52-(81)-8358-2000 (ext. 5414) (V.H.P.-G.)
| |
Collapse
|
94
|
Zhang F, Li Z, Yin L, Zhang Q, Askarinam N, Mundaca-Uribe R, Tehrani F, Karshalev E, Gao W, Zhang L, Wang J. ACE2 Receptor-Modified Algae-Based Microrobot for Removal of SARS-CoV-2 in Wastewater. J Am Chem Soc 2021; 143:12194-12201. [PMID: 34291944 PMCID: PMC8315242 DOI: 10.1021/jacs.1c04933] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 12/15/2022]
Abstract
The coronavirus SARS-CoV-2 can survive in wastewater for several days with a potential risk of waterborne human transmission, hence posing challenges in containing the virus and reducing its spread. Herein, we report on an active biohybrid microrobot system that offers highly efficient capture and removal of target virus from various aquatic media. The algae-based microrobot is fabricated by using click chemistry to functionalize microalgae with angiotensin-converting enzyme 2 (ACE2) receptor against the SARS-CoV-2 spike protein. The resulting ACE2-algae-robot displays fast (>100 μm/s) and long-lasting (>24 h) self-propulsion in diverse aquatic media including drinking water and river water, obviating the need for external fuels. Such movement of the ACE2-algae-robot offers effective "on-the-fly" removal of SARS-CoV-2 spike proteins and SARS-CoV-2 pseudovirus. Specifically, the active biohybrid microrobot results in 95% removal of viral spike protein and 89% removal of pseudovirus, significantly exceeding the control groups such as static ACE2-algae and bare algae. These results suggest considerable promise of biologically functionalized algae toward the removal of viruses and other environmental threats from wastewater.
Collapse
Affiliation(s)
| | | | - Lu Yin
- Department of NanoEngineering and Chemical Engineering
Program, University of California San Diego, La Jolla,
California 92093, United States
| | - Qiangzhe Zhang
- Department of NanoEngineering and Chemical Engineering
Program, University of California San Diego, La Jolla,
California 92093, United States
| | - Nelly Askarinam
- Department of NanoEngineering and Chemical Engineering
Program, University of California San Diego, La Jolla,
California 92093, United States
| | - Rodolfo Mundaca-Uribe
- Department of NanoEngineering and Chemical Engineering
Program, University of California San Diego, La Jolla,
California 92093, United States
| | - Farshad Tehrani
- Department of NanoEngineering and Chemical Engineering
Program, University of California San Diego, La Jolla,
California 92093, United States
| | - Emil Karshalev
- Department of NanoEngineering and Chemical Engineering
Program, University of California San Diego, La Jolla,
California 92093, United States
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering
Program, University of California San Diego, La Jolla,
California 92093, United States
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering
Program, University of California San Diego, La Jolla,
California 92093, United States
| | - Joseph Wang
- Department of NanoEngineering and Chemical Engineering
Program, University of California San Diego, La Jolla,
California 92093, United States
| |
Collapse
|
95
|
Sarma S, Sharma S, Rudakiya D, Upadhyay J, Rathod V, Patel A, Narra M. Valorization of microalgae biomass into bioproducts promoting circular bioeconomy: a holistic approach of bioremediation and biorefinery. 3 Biotech 2021; 11:378. [PMID: 34367870 DOI: 10.1007/s13205-021-02911-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022] Open
Abstract
The need for alternative source of fuel has demanded the cultivation of 3rd generation feedstock which includes microalgae, seaweed and cyanobacteria. These phototrophic organisms are unique in a sense that they utilise natural sources like sunlight, water and CO2 for their growth and metabolism thereby producing diverse products that can be processed to produce biofuel, biochemical, nutraceuticals, feed, biofertilizer and other value added products. But due to low biomass productivity and high harvesting cost, microalgae-based production have not received much attention. Therefore, this review provides the state of the art of the microalgae based biorefinery approach to define an economical and sustainable process. The three major segments that need to be considered for economic microalgae biorefinery is low cost nutrient source, efficient harvesting methods and production of by-products with high market value. This review has outlined the use of various wastewater as nutrient source for simultaneous biomass production and bioremediation. Further, it has highlighted the common harvesting methods used for microalgae and also described various products from both raw biomass and delipidified microalgae residues in order to establish a sustainable, economical microalgae biorefinery with a touch of circular bioeconomy. This review has also discussed various challenges to be considered followed by a techno-economic analysis of the microalgae based biorefinery model.
Collapse
Affiliation(s)
- Shyamali Sarma
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Shaishav Sharma
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Darshan Rudakiya
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Jinal Upadhyay
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Vinod Rathod
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Aesha Patel
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Madhuri Narra
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| |
Collapse
|
96
|
Salami R, Kordi M, Bolouri P, Delangiz N, Asgari Lajayer B. Algae-Based Biorefinery as a Sustainable Renewable Resource. CIRCULAR ECONOMY AND SUSTAINABILITY 2021; 1:1349-1365. [PMID: 34888572 PMCID: PMC8290136 DOI: 10.1007/s43615-021-00088-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/28/2021] [Indexed: 11/03/2022]
Abstract
Algae are a large and diverse group of autotrophic organisms that are multicellular and single-celled and found in a variety of environments. Biofuel production and value-added chemicals produced through a sustainable process are represented by the biorefinery of algae. Algae are important because of the production of polysaccharides, lipids, pigments, proteins, and other compounds for pharmaceutical and nutritional applications. They can also be used as raw materials for biofuel production. Moreover, they are useful for wastewater treatment. All these factors have absorbed the attentions of researchers around the world. This review focuses specifically on the potentials, properties, and applications of algae as a sustainable renewable resource, which can be a good alternative to other sources due to their high biomass production, less land required for cultivation, and the production of valuable metabolites.
Collapse
Affiliation(s)
- Robab Salami
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Masoumeh Kordi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Parisa Bolouri
- Department of Genetic and Bioengineering, Biotechnology, Yeditepe University, Istanbul, Turkey
| | - Nasser Delangiz
- Department of Plant Biotechnology and Breeding, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Behnam Asgari Lajayer
- Health and Environment Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
97
|
Potential of Microalgae in Bioremediation of Wastewater. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.2.10616.413-429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The increase in global pollution, industrialization and fast economic progress are considered to inflict serious consequences to the quality and availability of water throughout the world. Wastewater is generated from three major sources, i.e. industrial, agricultural, and municipal which contain pollutants, such as: xenobiotics, microplastics, heavy metals and augmented by high amount of carbon, phosphorus, and nitrogen compounds. Wastewater treatment is one of the most pressing issues since it cannot be achieved by any specific technology because of the varying nature and concentrations of pollutants and efficiency of the treatment technologies. The degradation capacity of these conventional treatment technologies is limited, especially regarding heavy metals, nutrients, and xenobiotics, steering the researchers to bioremediation using microalgae (Phycoremediation). Bioremediation can be defined as use of microalgae for removal or biotransformation of pollutants and CO2 from wastewater with concomitant biomass production. However, the usage of wastewaters for the bulk cultivation of microalgae is advantageous for reducing carbon, nutrients cost, minimizing the consumption of freshwater, nitrogen, phosphorus recovery, and removal of other pollutants from wastewater and producing sufficient biomass for value addition for either biofuels or other value-added compounds. Several types of microalgae like Chlorella and Dunaliella have proved their applicability in the treatment of wastewaters. The bottlenecks concerning the microalgal wastewater bioremediation need to be identified and elucidated to proceed in bioremediation using microalgae. This objective of this paper is to provide an insight about the treatment of different wastewaters using microalgae and microalgal potential in the treatment of wastewaters containing heavy metals and emerging contaminants, with the specialized cultivation systems. This review also summarizes the end use applications of microalgal biomass which makes the bioremediation aspect more environmentally sustainable. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
98
|
Leong WH, Lim JW, Lam MK, Lam SM, Sin JC, Samson A. Novel sequential flow baffled microalgal-bacterial photobioreactor for enhancing nitrogen assimilation into microalgal biomass whilst bioremediating nutrient-rich wastewater simultaneously. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124455. [PMID: 33168319 DOI: 10.1016/j.jhazmat.2020.124455] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
A novel sequential flow baffled microalgal-bacterial (SFB-AlgalBac) photobioreactor was designed to cater for the synergistic interactions between microalgal and bacterial consortia to enhance nitrogen assimilation into microalgal biomass from nutrient-rich wastewater medium. The performance of the SFB-AlgalBac photobioreactor was found to be optimum at the influent flow rate of 5.0 L/d, equivalent to 20 days of hydraulic retention time (HRT). The highest microalgal nitrogen assimilation rate (0.0271 /d) and biomass productivity (1350 mg/d) were recorded amidst this flow rate. Further increase to the 10.0 L/d flow rate reduced the photobioreactor performance, as evidenced by a reduction in microalgal biomass productivity (>10%). The microalgal biomass per unit of nitrogen assimilated values were attained at 16.69 mg/mg for the 5.0 L/d flow rate as opposed to 7.73 mg/mg for the 10.0 L/d flow rate, despite both having comparable specific growth rates. Also, the prior influent treatment by activated sludge was found to exude extracellular polymeric substances which significantly improved the microalgal biomass settleability up to 37%. The employment of SFB-AlgalBac photobioreactor is anticipated could exploit the low-cost nitrogen sources from nutrient-rich wastewaters via bioconversion into valuable microalgal biomass while fulfilling the requirements of sustainable wastewater treatment technologies.
Collapse
Affiliation(s)
- Wai Hong Leong
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Man Kee Lam
- Department of Chemical Engineering, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Sze Mun Lam
- Department of Environmental Engineering, Faculty of Engineering and Green Technology (FEGT), Universiti Tunku Abdul Rahman, 31900 Kampar, Perak Darul Ridzuan, Malaysia
| | - Jin Chung Sin
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology (FEGT), Universiti Tunku Abdul Rahman, 31900 Kampar, Perak Darul Ridzuan, Malaysia
| | - Abby Samson
- Department of Mechanical Engineering, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
99
|
Scherhag P, Ackermann J. Removal of sugars in wastewater from food production through heterotrophic growth of Galdieria sulphuraria. Eng Life Sci 2021; 21:233-241. [PMID: 33716621 PMCID: PMC7923567 DOI: 10.1002/elsc.202000075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022] Open
Abstract
The unicellular extremophilic red alga Galdieria sulphuraria is capable of chemoheterotrophy and its growth has been investigated on some defined and undefined substrates. In this study, the removal of sugars in wastewater from fruit-salad production with G. sulphuraria strain SAG 21.92 was analyzed. Growth and sugar consumption were determined under variation of temperature, pH-value and concentration of a model substrate, containing sucrose, glucose and fructose. In shake flask cultivation maximum specific growth rate and specific substrate consumption rate of 1.53±0.09 day-1 and 2.41±0.14 gSub·gDW -1·day-1 were measured at pH 2 and 42°C. A scale-up of this process was conducted in a 3 L stirred tank reactor (STR). Wastewater from fruit-salad production was diluted to 15 g·L-1 total sugar concentration, supplemented with micronutrients and ammonia and pH was set to 3. Determined growth rate and substrate consumption were 1.21 day-1 and 1.88 gSub·gDW -1·day-1, respectively. It was demonstrated, that high sugar concentrations in wastewater streams from food production processes can be significantly reduced with G. sulphuraria SAG 21.92. This strain could achieve substrate consumption rates in wastewater, equal to the more common strain 074G, but at higher pH values. Generated biomass can be used for production of phycocyanin, a valuable nutraceutical.
Collapse
Affiliation(s)
- Philipp Scherhag
- Department of Chemical EngineeringChair of Bioprocess Engineering and Technical BiochemistryUniversity of Applied Sciences DresdenDresdenGermany
| | - Jörg‐Uwe Ackermann
- Department of Chemical EngineeringChair of Bioprocess Engineering and Technical BiochemistryUniversity of Applied Sciences DresdenDresdenGermany
| |
Collapse
|
100
|
Castelo-Grande T, Augusto PA, Rico J, Marcos J, Iglesias R, Hernández L, Barbosa D. Magnetic water treatment in a wastewater treatment plant: Part I - sorption and magnetic particles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111872. [PMID: 33387738 DOI: 10.1016/j.jenvman.2020.111872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 05/12/2023]
Abstract
The application of magnetic sorption to treat wastewaters is nowadays seen as a potential industrial method. In this work we apply magnetite particles to remediate real wastewater samples, with several contaminants competing for the same active sorption center at the same time. We also apply our studies at three different sampling points of a Wastewater Treatment Plant. In general terms, magnetite particles have shown a very good behaviour concerning the reduction of detergents and COD, while phosphates and total nitrogen, and the majority of heavy metals are high to moderately removed. The influence of the type of wastewater (i.e., sampling point) has also shown to be important especially for high concentration of contaminants.
Collapse
Affiliation(s)
- Teresa Castelo-Grande
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Paulo A Augusto
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Departamento de Ingeniería Química y Textil, Facultad de Ciencias Quimicas, Universidad de Salamanca, Plaza de Los Caídos, 1-5, 37008, Salamanca, Spain.
| | - Javier Rico
- Departamento de Ingeniería Química y Textil, Facultad de Ciencias Quimicas, Universidad de Salamanca, Plaza de Los Caídos, 1-5, 37008, Salamanca, Spain
| | - Jorge Marcos
- Departamento de Ingeniería Química y Textil, Facultad de Ciencias Quimicas, Universidad de Salamanca, Plaza de Los Caídos, 1-5, 37008, Salamanca, Spain
| | - Roberto Iglesias
- Departamento de Ingeniería Química y Textil, Facultad de Ciencias Quimicas, Universidad de Salamanca, Plaza de Los Caídos, 1-5, 37008, Salamanca, Spain
| | - Lorenzo Hernández
- Departamento de Ingeniería Química y Textil, Facultad de Ciencias Quimicas, Universidad de Salamanca, Plaza de Los Caídos, 1-5, 37008, Salamanca, Spain
| | - Domingos Barbosa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|