51
|
Bolino A, Piguet F, Alberizzi V, Pellegatta M, Rivellini C, Guerrero-Valero M, Noseda R, Brombin C, Nonis A, D'Adamo P, Taveggia C, Previtali SC. Niacin-mediated Tace activation ameliorates CMT neuropathies with focal hypermyelination. EMBO Mol Med 2016; 8:1438-1454. [PMID: 27799291 PMCID: PMC5167133 DOI: 10.15252/emmm.201606349] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Charcot–Marie–Tooth (CMT) neuropathies are highly heterogeneous disorders caused by mutations in more than 70 genes, with no available treatment. Thus, it is difficult to envisage a single suitable treatment for all pathogenetic mechanisms. Axonal Neuregulin 1 (Nrg1) type III drives Schwann cell myelination and determines myelin thickness by ErbB2/B3‐PI3K–Akt signaling pathway activation. Nrg1 type III is inhibited by the α‐secretase Tace, which negatively regulates PNS myelination. We hypothesized that modulation of Nrg1 levels and/or secretase activity may constitute a unifying treatment strategy for CMT neuropathies with focal hypermyelination as it could restore normal levels of myelination. Here we show that in vivo delivery of Niaspan, a FDA‐approved drug known to enhance TACE activity, efficiently rescues myelination in the Mtmr2−/− mouse, a model of CMT4B1 with myelin outfoldings, and in the Pmp22+/− mouse, which reproduces HNPP (hereditary neuropathy with liability to pressure palsies) with tomacula. Importantly, we also found that Niaspan reduces hypermyelination of Vim (vimentin)−/− mice, characterized by increased Nrg1 type III and Akt activation, thus corroborating the hypothesis that Niaspan treatment downregulates Nrg1 type III signaling.
Collapse
Affiliation(s)
- Alessandra Bolino
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy .,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Françoise Piguet
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Alberizzi
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Marta Pellegatta
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Rivellini
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Marta Guerrero-Valero
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Noseda
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Brombin
- University Centre of Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Nonis
- University Centre of Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Patrizia D'Adamo
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Carla Taveggia
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Carlo Previtali
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
52
|
Chen MS, Kim H, Jagot-Lacoussiere L, Maurel P. Cadm3 (Necl-1) interferes with the activation of the PI3 kinase/Akt signaling cascade and inhibits Schwann cell myelination in vitro. Glia 2016; 64:2247-2262. [PMID: 27658374 DOI: 10.1002/glia.23072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 08/10/2016] [Accepted: 09/08/2016] [Indexed: 11/06/2022]
Abstract
Axo-glial interactions are critical for myelination and the domain organization of myelinated fibers. Cell adhesion molecules belonging to the Cadm family, and in particular Cadm3 (axonal) and its heterophilic binding partner Cadm4 (Schwann cell), mediate these interactions along the internode. Using targeted shRNA-mediated knockdown, we show that the removal of axonal Cadm3 promotes Schwann cell myelination in the in vitro DRG neuron/Schwann cell myelinating system. Conversely, over-expressing Cadm3 on the surface of DRG neuron axons results in an almost complete inability by Schwann cells to form myelin segments. Axons of superior cervical ganglion (SCG) neurons, which do not normally support the formation of myelin segments by Schwann cells, express higher levels of Cadm3 compared to DRG neurons. Knocking down Cadm3 in SCG neurons promotes myelination. Finally, the extracellular domain of Cadm3 interferes in a dose-dependent manner with the activation of ErbB3 and of the pro-myelinating PI3K/Akt pathway, but does not interfere with the activation of the Mek/Erk1/2 pathway. While not in direct contradiction, these in vitro results shed lights on the apparent lack of phenotype that was reported from in vivo studies of Cadm3-/- mice. Our results suggest that Cadm3 may act as a negative regulator of PNS myelination, potentially through the selective regulation of the signaling cascades activated in Schwann cells by axonal contact, and in particular by type III Nrg-1. Further analyses of peripheral nerves in the Cadm-/- mice will be needed to determine the exact role of axonal Cadm3 in PNS myelination. GLIA 2016;64:2247-2262.
Collapse
Affiliation(s)
- Ming-Shuo Chen
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Hyosung Kim
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey
| | | | - Patrice Maurel
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey.
| |
Collapse
|
53
|
Akt Regulates Axon Wrapping and Myelin Sheath Thickness in the PNS. J Neurosci 2016; 36:4506-21. [PMID: 27098694 DOI: 10.1523/jneurosci.3521-15.2016] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/02/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED The signaling pathways that regulate myelination in the PNS remain poorly understood. Phosphatidylinositol-4,5-bisphosphate 3-kinase 1A, activated in Schwann cells by neuregulin and the extracellular matrix, has an essential role in the early events of myelination. Akt/PKB, a key effector of phosphatidylinositol-4,5-bisphosphate 3-kinase 1A, was previously implicated in CNS, but not PNS myelination. Here we demonstrate that Akt plays a crucial role in axon ensheathment and in the regulation of myelin sheath thickness in the PNS. Pharmacological inhibition of Akt in DRG neuron-Schwann cell cocultures dramatically decreased MBP and P0 levels and myelin sheath formation without affecting expression of Krox20/Egr2, a key transcriptional regulator of myelination. Conversely, expression of an activated form of Akt in purified Schwann cells increased expression of myelin proteins, but not Krox20/Egr2, and the levels of activated Rac1. Transgenic mice expressing a membrane-targeted, activated form of Akt under control of the 2',3'-cyclic nucleotide 3'-phosphodiesterase promoter, exhibited thicker PNS and CNS myelin sheaths, and PNS myelin abnormalities, such as tomacula and myelin infoldings/outfoldings, centered around the paranodes and Schmidt Lanterman incisures. These effects were corrected by rapamycin treatmentin vivo Importantly, Akt activity in the transgenic mice did not induce myelination of nonmyelinating Schwann cells in the sympathetic trunk or Remak fibers of the dorsal roots, although, in those structures, they wrapped membranes redundantly around axons. Together, our data indicate that Akt is crucial for PNS myelination driving axonal wrapping by unmyelinated and myelinated Schwann cells and enhancing myelin protein synthesis in myelinating Schwann cells. SIGNIFICANCE STATEMENT Although the role of the key serine/threonine kinase Akt in promoting CNS myelination has been demonstrated, its role in the PNS has not been established and remains uncertain. This work reveals that Akt controls several key steps of the PNS myelination. First, its activity promotes membrane production and axonal wrapping independent of a transcriptional effect. In myelinated axons, it also enhances myelin thickness through the mTOR pathway. Finally, sustained Akt activation in Schwann cells leads to hypermyelination/dysmyelination, mimicking some features present in neuropathies, such as hereditary neuropathy with liability to pressure palsies or demyelinating forms of Charcot-Marie-Tooth disease. Together, these data demonstrate the role of Akt in regulatory mechanisms underlying axonal wrapping and myelination in the PNS.
Collapse
|
54
|
Schwann cells–axon interaction in myelination. Curr Opin Neurobiol 2016; 39:24-9. [DOI: 10.1016/j.conb.2016.03.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 01/01/2023]
|
55
|
Birchmeier C, Bennett DLH. Neuregulin/ErbB Signaling in Developmental Myelin Formation and Nerve Repair. Curr Top Dev Biol 2016; 116:45-64. [PMID: 26970613 DOI: 10.1016/bs.ctdb.2015.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myelin is essential for rapid and accurate conduction of electrical impulses by axons in the central and peripheral nervous system (PNS). Myelin is formed in the early postnatal period, and developmental myelination in the PNS depends on axonal signals provided by Nrg1/ErbB receptors. In addition, Nrg1 is required for effective nerve repair and remyelination in adulthood. We discuss here similarities and differences in Nrg1/ErbB functions in developmental myelination and remyelination after nerve injury.
Collapse
Affiliation(s)
- Carmen Birchmeier
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| | - David L H Bennett
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
56
|
Dysregulation of ErbB Receptor Trafficking and Signaling in Demyelinating Charcot-Marie-Tooth Disease. Mol Neurobiol 2016; 54:87-100. [PMID: 26732592 DOI: 10.1007/s12035-015-9668-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy with the majority of cases involving demyelination of peripheral nerves. The pathogenic mechanisms of demyelinating CMT remain unclear, and no effective therapy currently exists for this disease. The discovery that mutations in different genes can cause a similar phenotype of demyelinating peripheral neuropathy raises the possibility that there may be convergent mechanisms leading to demyelinating CMT pathogenesis. Increasing evidence indicates that ErbB receptor-mediated signaling plays a major role in the control of Schwann cell-axon communication and myelination in the peripheral nervous system. Recent studies reveal that several demyelinating CMT-linked proteins are novel regulators of endocytic trafficking and/or phosphoinositide metabolism that may affect ErbB receptor signaling. Emerging data have begun to suggest that dysregulation of ErbB receptor trafficking and signaling in Schwann cells may represent a common pathogenic mechanism in multiple subtypes of demyelinating CMT. In this review, we focus on the roles of ErbB receptor trafficking and signaling in regulation of peripheral nerve myelination and discuss the emerging evidence supporting the potential involvement of altered ErbB receptor trafficking and signaling in demyelinating CMT pathogenesis and the possibility of modulating these trafficking and signaling processes for treating demyelinating peripheral neuropathy.
Collapse
|
57
|
Li Y, Liu G, Li H, Bi Y. Neuregulin-1β Regulates the migration of Different Neurochemical Phenotypic Neurons from Organotypically Cultured Dorsal Root Ganglion Explants. Cell Mol Neurobiol 2016; 36:69-81. [PMID: 26093851 DOI: 10.1007/s10571-015-0221-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/02/2015] [Indexed: 10/24/2022]
Abstract
Neuregulin-1β (NRG-1β) has multiple roles in the development and function in the nervous system and exhibits potent neuroprotective properties. In the present study, organotypically cultured dorsal root ganglion (DRG) explants were used to evaluate the effects of NRG-1β on migration of two major phenotypic classes of DRG neurons. The signaling pathways involved in these effects were also determined. Organotypically cultured DRG explants were exposed to NRG-1β (20 nmol/L), the phosphatidylinositol 3-kinase inhibitor LY294002 (10 μmol/L) plus NRG-1β (20 nmol/L), the extracellular signal-regulated protein kinase (ERK1/2) inhibitor PD98059 (10 μmol/L) plus NRG-1β (20 nmol/L), and LY294002 (10 μmol/L) plus PD98059 (10 μmol/L) plus NRG-1β (20 nmol/L), respectively, for 3 days. The DRG explants were continuously exposed to culture media as a control. After that, all above cultures were processed for detecting the mRNA levels of calcitonin gene-related peptide (CGRP) and neurofilament-200 (NF-200) by real-time PCR analysis. CGRP and NF-200 expression in situ was determined by fluorescent labeling technique. The results showed that NRG-1β elevated the mRNA and protein levels of CGRP and NF-200. NRG-1β also increased the number and the percentage of CGRP-immunoreactive (IR) migrating neurons and NF-200-IR migrating neurons. Inhibitors (LY294002, PD98059) either alone or in combination blocked the effects of NRG-1β. The contribution of NRG-1β on modulating distinct neurochemical phenotypic plasticity of DRG neurons suggested that NRG-1β signaling system might play an important role on the biological effects of primary sensory neurons.
Collapse
Affiliation(s)
- Yunfeng Li
- Department of Cardiosurgery, Shandong University Qilu Hospital, 107 West Wenhua Xi Road, Jinan, 250012, Shandong Province, China.
| | - Guixiang Liu
- Department of Histology and Embryology, Binzhou Medical College, Binzhou, 256603, China.
| | - Hao Li
- Department of Orthopaedics, Shandong University Qilu Hospital, Jinan, 250012, China.
| | - Yanwen Bi
- Department of Cardiosurgery, Shandong University Qilu Hospital, 107 West Wenhua Xi Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
58
|
Hu X, Fan Q, Hou H, Yan R. Neurological dysfunctions associated with altered BACE1-dependent Neuregulin-1 signaling. J Neurochem 2016; 136:234-49. [PMID: 26465092 PMCID: PMC4833723 DOI: 10.1111/jnc.13395] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/09/2023]
Abstract
Inhibition of BACE1 is being pursued as a therapeutic target to treat patients suffering from Alzheimer's disease because BACE1 is the sole β-secretase that generates β-amyloid peptide. Knowledge regarding other cellular functions of BACE1 is therefore critical for the safe use of BACE1 inhibitors in human patients. Neuregulin-1 (Nrg1) is a BACE1 substrate and BACE1 cleavage of Nrg1 is critical for signaling functions in myelination, remyelination, synaptic plasticity, normal psychiatric behaviors, and maintenance of muscle spindles. This review summarizes the most recent discoveries associated with BACE1-dependent Nrg1 signaling in these areas. This body of knowledge will help to provide guidance for preventing unwanted Nrg1-based side effects following BACE1 inhibition in humans. To initiate its signaling cascade, membrane anchored Neuregulin (Nrg), mainly type I and III β1 Nrg1 isoforms and Nrg3, requires ectodomain shedding. BACE1 is one of such indispensable sheddases to release the functional Nrg signaling fragment. The dependence of Nrg on the cleavage by BACE1 is best manifested by disrupting the critical role of Nrg in the control of axonal myelination, schizophrenic behaviors as well as the formation and maintenance of muscle spindles.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Hailong Hou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
59
|
Carson RP, Kelm ND, West KL, Does MD, Fu C, Weaver G, McBrier E, Parker B, Grier MD, Ess KC. Hypomyelination following deletion of Tsc2 in oligodendrocyte precursors. Ann Clin Transl Neurol 2015; 2:1041-54. [PMID: 26734657 PMCID: PMC4693589 DOI: 10.1002/acn3.254] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/14/2015] [Accepted: 08/27/2015] [Indexed: 12/17/2022] Open
Abstract
Objective While abnormalities in myelin in tuberous sclerosis complex (TSC) have been known for some time, recent imaging‐based data suggest myelin abnormalities may be independent of the pathognomonic cortical lesions (“tubers”). Multiple mouse models of TSC exhibit myelination deficits, though the cell types responsible and the mechanisms underlying the myelin abnormalities remain unclear. Methods To determine the role of alterations in mTOR signaling in myelination, we generated a conditional knockout (CKO) mouse model using Cre‐recombinase and the Olig2 promoter to inactivate the Tsc2 gene in oligodendrocyte precursor cells. Results Characterization of myelin and myelin constituent proteins demonstrated a marked hypomyelination phenotype. Diffusion‐based magnetic resonance imaging studies were likewise consistent with hypomyelination. Hypomyelination was due in part to decreased myelinated axon density and myelin thickness as well as decreased oligodendrocyte numbers. Coincident with hypomyelination, an extensive gliosis was seen in both the cortex and white matter tracks, suggesting alterations in cell fate due to changes in mTOR activity in oligodendrocyte precursors. Despite a high‐frequency appendicular tremor and altered gait in CKO mice, no significant changes in activity, vocalizations, or anxiety‐like phenotypes were seen. Interpretation Our findings support a known role of mTOR signaling in regulation of myelination and demonstrate that increased mTORC1 activity early in development within oligodendrocytes results in hypomyelination and not hypermyelination. Our data further support a dissociation between decreased Akt activity and increased mTORC1 activity toward hypomyelination. Thus, therapies promoting activation of Akt‐dependent pathways while reducing mTORC1 activity may prove beneficial in treatment of human disease.
Collapse
Affiliation(s)
- Robert P Carson
- Department of Pediatrics Vanderbilt University Nashville Tennessee
| | - Nathaniel D Kelm
- Department of Biomedical Engineering Vanderbilt University Nashville Tennessee
| | - Kathryn L West
- Department of Biomedical Engineering Vanderbilt University Nashville Tennessee
| | - Mark D Does
- Department of Biomedical Engineering Vanderbilt University Nashville Tennessee
| | - Cary Fu
- Department of Pediatrics Vanderbilt University Nashville Tennessee
| | - Grace Weaver
- Department of Pediatrics Vanderbilt University Nashville Tennessee
| | - Eleanor McBrier
- Department of Pediatrics Vanderbilt University Nashville Tennessee
| | - Brittany Parker
- Department of Pediatrics Vanderbilt University Nashville Tennessee
| | - Mark D Grier
- Department of Pediatrics Vanderbilt University Nashville Tennessee
| | - Kevin C Ess
- Department of Pediatrics Vanderbilt University Nashville Tennessee
| |
Collapse
|
60
|
Abstract
Myelin is essential for rapid and efficient action potential propagation in vertebrates. However, the molecular mechanisms regulating myelination remain incompletely characterized. For example, even before myelination begins in the PNS, Schwann cells must radially sort axons to form 1:1 associations. Schwann cells then ensheathe and wrap axons, and establish polarized, subcellular domains, including apical and basolateral domains, paranodes, and Schmidt-Lanterman incisures. Intriguingly, polarity proteins, such as Pals1/Mpp5, are highly enriched in some of these domains, suggesting that they may regulate the polarity of Schwann cells and myelination. To test this, we generated mice with Schwann cells and oligodendrocytes that lack Pals1. During early development of the PNS, Pals1-deficient mice had impaired radial sorting of axons, delayed myelination, and reduced nerve conduction velocities. Although myelination and conduction velocities eventually recovered, polyaxonal myelination remained a prominent feature of adult Pals1-deficient nerves. Despite the enrichment of Pals1 at paranodes and incisures of control mice, nodes of Ranvier and paranodes were unaffected in Pals1-deficient mice, although we measured a significant increase in the number of incisures. As in other polarized cells, we found that Pals1 interacts with Par3 and loss of Pals1 reduced levels of Par3 in Schwann cells. In the CNS, loss of Pals1 affected neither myelination nor the establishment of polarized membrane domains. These results demonstrate that Schwann cells and oligodendrocytes use distinct mechanisms to control their polarity, and that radial sorting in the PNS is a key polarization event that requires Pals1. Significance statement: This paper reveals the role of the canonical polarity protein Pals1 in radial sorting of axons by Schwann cells. Radial sorting is essential for efficient and proper myelination and is disrupted in some types of congenital muscular dystrophy.
Collapse
|
61
|
Regulation of Peripheral Nerve Myelin Maintenance by Gene Repression through Polycomb Repressive Complex 2. J Neurosci 2015; 35:8640-52. [PMID: 26041929 DOI: 10.1523/jneurosci.2257-14.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Myelination of peripheral nerves by Schwann cells requires coordinate regulation of gene repression as well as gene activation. Several chromatin remodeling pathways critical for peripheral nerve myelination have been identified, but the functions of histone methylation in the peripheral nerve have not been elucidated. To determine the role of histone H3 Lys27 methylation, we have generated mice with a Schwann cell-specific knock-out of Eed, which is an essential subunit of the polycomb repressive complex 2 (PRC2) that catalyzes methylation of histone H3 Lys27. Analysis of this mutant revealed no significant effects on early postnatal development of myelin. However, its loss eventually causes progressive hypermyelination of small-diameter axons and apparent fragmentation of Remak bundles. These data identify the PRC2 complex as an epigenomic modulator of mature myelin thickness, which is associated with changes in Akt phosphorylation. Interestingly, we found that Eed inactivation causes derepression of several genes, e.g., Sonic hedgehog (Shh) and Insulin-like growth factor-binding protein 2 (Igfbp2), that become activated after nerve injury, but without activation of a primary regulator of the injury program, c-Jun. Analysis of the activated genes in cultured Schwann cells showed that Igfbp2 regulates Akt activation. Our results identify an epigenomic pathway required for establishing thickness of mature myelin and repressing genes that respond to nerve injury.
Collapse
|
62
|
Monk KR, Feltri ML, Taveggia C. New insights on Schwann cell development. Glia 2015; 63:1376-93. [PMID: 25921593 PMCID: PMC4470834 DOI: 10.1002/glia.22852] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
In the peripheral nervous system, Schwann cells are glial cells that are in intimate contact with axons throughout development. Schwann cells generate the insulating myelin sheath and provide vital trophic support to the neurons that they ensheathe. Schwann cell precursors arise from neural crest progenitor cells, and a highly ordered developmental sequence controls the progression of these cells to become mature myelinating or nonmyelinating Schwann cells. Here, we discuss both seminal discoveries and recent advances in our understanding of the molecular mechanisms that drive Schwann cell development and myelination with a focus on cell-cell and cell-matrix signaling events.
Collapse
Affiliation(s)
- Kelly R Monk
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| | - M Laura Feltri
- Department of Biochemistry and Neurology, Hunter James Kelly Research Institute, University at Buffalo, State University of New York, Buffalo, New York
| | - Carla Taveggia
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
63
|
Tilot AK, Frazier TW, Eng C. Balancing Proliferation and Connectivity in PTEN-associated Autism Spectrum Disorder. Neurotherapeutics 2015; 12:609-19. [PMID: 25916396 PMCID: PMC4489960 DOI: 10.1007/s13311-015-0356-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Germline mutations in PTEN, which encodes a widely expressed phosphatase, was mapped to 10q23 and identified as the susceptibility gene for Cowden syndrome, characterized by macrocephaly and high risks of breast, thyroid, and other cancers. The phenotypic spectrum of PTEN mutations expanded to include autism with macrocephaly only 10 years ago. Neurological studies of patients with PTEN-associated autism spectrum disorder (ASD) show increases in cortical white matter and a distinctive cognitive profile, including delayed language development with poor working memory and processing speed. Once a germline PTEN mutation is found, and a diagnosis of phosphatase and tensin homolog (PTEN) hamartoma tumor syndrome made, the clinical outlook broadens to include higher lifetime risks for multiple cancers, beginning in childhood with thyroid cancer. First described as a tumor suppressor, PTEN is a major negative regulator of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (mTOR) signaling pathway-controlling growth, protein synthesis, and proliferation. This canonical function combines with less well-understood mechanisms to influence synaptic plasticity and neuronal cytoarchitecture. Several excellent mouse models of Pten loss or dysfunction link these neural functions to autism-like behavioral abnormalities, such as altered sociability, repetitive behaviors, and phenotypes like anxiety that are often associated with ASD in humans. These models also show the promise of mTOR inhibitors as therapeutic agents capable of reversing phenotypes ranging from overgrowth to low social behavior. Based on these findings, therapeutic options for patients with PTEN hamartoma tumor syndrome and ASD are coming into view, even as new discoveries in PTEN biology add complexity to our understanding of this master regulator.
Collapse
Affiliation(s)
- Amanda K. Tilot
- />Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- />Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195 USA
| | - Thomas W. Frazier
- />Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- />Center for Autism, Pediatric Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- />Department of Pediatrics, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Charis Eng
- />Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- />Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- />Stanley Shalom Zielony Institute of Nursing Excellence, Cleveland Clinic, Cleveland, OH 44195 USA
- />Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195 USA
- />Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106 USA
- />Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
64
|
Abstract
Myelination of axons in the nervous system of vertebrates enables fast, saltatory impulse propagation, one of the best-understood concepts in neurophysiology. However, it took a long while to recognize the mechanistic complexity both of myelination by oligodendrocytes and Schwann cells and of their cellular interactions. In this review, we highlight recent advances in our understanding of myelin biogenesis, its lifelong plasticity, and the reciprocal interactions of myelinating glia with the axons they ensheath. In the central nervous system, myelination is also stimulated by axonal activity and astrocytes, whereas myelin clearance involves microglia/macrophages. Once myelinated, the long-term integrity of axons depends on glial supply of metabolites and neurotrophic factors. The relevance of this axoglial symbiosis is illustrated in normal brain aging and human myelin diseases, which can be studied in corresponding mouse models. Thus, myelinating cells serve a key role in preserving the connectivity and functions of a healthy nervous system.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany; ,
| | | |
Collapse
|
65
|
Abstract
Myelinated nerve fibers are essential for the rapid propagation of action potentials by saltatory conduction. They form as the result of reciprocal interactions between axons and Schwann cells. Extrinsic signals from the axon, and the extracellular matrix, drive Schwann cells to adopt a myelinating fate, whereas myelination reorganizes the axon for its role in conduction and is essential for its integrity. Here, we review our current understanding of the development, molecular organization, and function of myelinating Schwann cells. Recent findings into the extrinsic signals that drive Schwann cell myelination, their cognate receptors, and the downstream intracellular signaling pathways they activate will be described. Together, these studies provide important new insights into how these pathways converge to activate the transcriptional cascade of myelination and remodel the actin cytoskeleton that is critical for morphogenesis of the myelin sheath.
Collapse
Affiliation(s)
- James L Salzer
- Department of Neuroscience and Physiology, New York University Neuroscience Institute, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
66
|
Fingolimod induces the transition to a nerve regeneration promoting Schwann cell phenotype. Exp Neurol 2015; 271:25-35. [PMID: 25957629 DOI: 10.1016/j.expneurol.2015.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 11/23/2022]
Abstract
Successful regeneration of injured peripheral nerves is mainly attributed to the plastic behavior of Schwann cells. Upon loss of axons, these cells trans-differentiate into regeneration promoting repair cells which provide trophic support to regrowing axons. Among others, activation of cJun was revealed to be involved in this process, initiating the stereotypic pattern of Schwann cell phenotype alterations during Wallerian degeneration. Nevertheless, the ability of Schwann cells to adapt and therefore the nerve's potential to regenerate can be limited in particular after long term denervation or in neuropathies leading to incomplete regeneration only and thus emphasizing the need for novel therapeutic approaches. Here we stimulated primary neonatal and adult rat Schwann cells with Fingolimod/FTY720P and investigated its impact on the regeneration promoting phenotype. FTY720P activated a number of de-differentiation markers including cJun and interfered with maturation marker and myelin expression. Functionally, FTY720P treated Schwann cells upregulated growth factor expression and these cells enhanced dorsal root ganglion neurite outgrowth on inhibitory substrates. Our results therefore provide strong evidence that FTY720P application supports the generation of a repair promoting cellular phenotype and suggest that Fingolimod could be used as treatment for peripheral nerve injuries and diseases.
Collapse
|
67
|
Huang SY, Sung CS, Chen WF, Chen CH, Feng CW, Yang SN, Hung HC, Chen NF, Lin PR, Chen SC, Wang HMD, Chu TH, Tai MH, Wen ZH. Involvement of phosphatase and tensin homolog deleted from chromosome 10 in rodent model of neuropathic pain. J Neuroinflammation 2015; 12:59. [PMID: 25889774 PMCID: PMC4386079 DOI: 10.1186/s12974-015-0280-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/07/2015] [Indexed: 12/30/2022] Open
Abstract
Background Many cancer research studies have extensively examined the phosphatase and tensin homolog deleted from chromosome 10 (PTEN) pathway. There are only few reports that suggest that PTEN might affect pain; however, there is still a lack of evidence to show the role of PTEN for modulating pain. Here, we report a role for PTEN in a rodent model of neuropathic pain. Results We found that chronic constriction injury (CCI) surgery in rats could elicit downregulation of spinal PTEN as well as upregulation of phosphorylated PTEN (phospho-PTEN) and phosphorylated mammalian target of rapamycin (phospho-mTOR). After examining such changes in endogenous PTEN in neuropathic rats, we explored the effects of modulating the spinal PTEN pathway on nociceptive behaviors. The normal rats exhibited mechanical allodynia after intrathecal (i.t.) injection of adenovirus-mediated PTEN antisense oligonucleotide (Ad-antisense PTEN). These data indicate the importance of downregulation of spinal PTEN for nociception. Moreover, upregulation of spinal PTEN by i.t. adenovirus-mediated PTEN (Ad-PTEN) significantly prevented CCI-induced development of nociceptive sensitization, thermal hyperalgesia, mechanical allodynia, cold allodynia, and weight-bearing deficits in neuropathic rats. Furthermore, upregulation of spinal PTEN by i.t. Ad-PTEN significantly attenuated CCI-induced microglia and astrocyte activation, upregulation of tumor necrosis factor-α (TNF-α) and phospho-mTOR, and downregulation of PTEN in neuropathic rats 14 days post injury. Conclusions These findings demonstrate that PTEN plays a key, beneficial role in a rodent model of neuropathic pain.
Collapse
Affiliation(s)
- Shi-Ying Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Center for Neuroscience, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Taipei, 11217, Taiwan. .,School of Medicine, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei, 11221, Taiwan.
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, DAPI Road, Kaohsiung, 83301, Taiwan. .,Department of Neurosurgery, Xiamen Chang Gung Memorial Hospital, No. 123, Xiafei Road, Fujian, 361026, China.
| | - Chun-Hong Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - Chien-Wei Feng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - San-Nan Yang
- School of Medicine, College of Medicine and Department of Pediatrics, E-DA Hospital, I-Shou University, No. 1, Yida Road, Kaohsiung, 82445, Taiwan.
| | - Han-Chun Hung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - Nan-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, No. 2, Zhongzheng 1st Road, Kaohsiung, 80284, Taiwan.
| | - Pey-Ru Lin
- Institute of Biomedical Sciences, National Sun Yat-sen University, #70 Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - San-Cher Chen
- Center for Neuroscience, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Institute of Biomedical Sciences, National Sun Yat-sen University, #70 Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - Hui-Min David Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Kaohsiung, 80708, Taiwan. .,Graduate Institute of Natural Products, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Kaohsiung, 80708, Taiwan. .,Center for Stem Cell Research, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Kaohsiung, 80708, Taiwan.
| | - Tian-Huei Chu
- Institute of Biomedical Sciences, National Sun Yat-sen University, #70 Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - Ming-Hong Tai
- Center for Neuroscience, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Institute of Biomedical Sciences, National Sun Yat-sen University, #70 Lienhai Road, Kaohsiung, 80424, Taiwan. .,Department of Biological Sciences, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Marine Biomedical Laboratory and Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
68
|
Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1066-82. [PMID: 25680866 DOI: 10.1016/j.bbalip.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
Abstract
Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on intracellular endosomal membranes, and these changes have been linked to a number of major neurological diseases including Alzheimer's, Parkinson's, epilepsy, stroke, cancer and a range of rarer inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and neurodevelopmental conditions such as Lowe's syndrome. This article analyses recent progress in this area and explains how PIP lipids are involved, to varying degrees, in almost every class of neurological disease. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.
| |
Collapse
|
69
|
Schmitt S, Castelvetri LC, Simons M. Metabolism and functions of lipids in myelin. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:999-1005. [PMID: 25542507 DOI: 10.1016/j.bbalip.2014.12.016] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/08/2014] [Accepted: 12/16/2014] [Indexed: 12/16/2022]
Abstract
Rapid conduction of nerve impulses requires coating of axons by myelin sheaths, which are lipid-rich and multilamellar membrane stacks. The lipid composition of myelin varies significantly from other biological membranes. Studies in mutant mice targeting various lipid biosynthesis pathways have shown that myelinating glia have a remarkable capacity to compensate the lack of individual lipids. However, compensation fails when it comes to maintaining long-term stability of myelin. Here, we summarize how lipids function in myelin biogenesis, axon-glia communication and in supporting long-term maintenance of myelin. We postulate that change in myelin lipid composition might be relevant for our understanding of aging and demyelinating diseases. This article is part of a Special Issue titled Brain Lipids.
Collapse
Affiliation(s)
- Sebastian Schmitt
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany; Department of Neurology, Robert-Koch-Str. 40, University of Göttingen, Göttingen, Germany
| | - Ludovici Cantuti Castelvetri
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany; Department of Neurology, Robert-Koch-Str. 40, University of Göttingen, Göttingen, Germany
| | - Mikael Simons
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany; Department of Neurology, Robert-Koch-Str. 40, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
70
|
Sanz-Moreno A, Fuhrmann D, Zankel A, Reingruber H, Kern L, Meijer D, Niemann A, Elsässer HP. Late onset neuropathy with spontaneous clinical remission in mice lacking the POZ domain of the transcription factor Myc-interacting zinc finger protein 1 (Miz1) in Schwann cells. J Biol Chem 2014; 290:727-43. [PMID: 25416780 DOI: 10.1074/jbc.m114.605931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The transcription factor Miz1 (Myc-interacting zinc finger 1) is a known regulator of the cell cycle but also has cell cycle-independent functions. Here we analyzed the role of Miz1 in the peripheral nervous system, using an early embryonic conditional knock-out model in which the Miz1 POZ domain is ablated in Schwann cells. Although the development of myelinated nerve fibers was not impaired, Miz1ΔPOZ mice acquired behavioral signs of a peripheral neuropathy at the age of 3 months. At this time, ultrastructural analysis of the sciatic nerve showed de- and dysmyelination of fibers, with massive outfoldings and a focal infiltration of macrophages. Although the expression of genes encoding structural myelin proteins, such as periaxin, myelin basic protein, and myelin protein zero, was decreased, genes associated with a negative regulation of myelination, including c-Jun, Sox2, and Id2, were up-regulated in Miz1ΔPOZ mice compared with controls. In animals older than 4 months, the motor disabilities vanished, and the ultrastructure of the sciatic nerve exhibited numerous tomacula and remyelinated fibers, as indicated by thinner myelin. No second acute attack was observed up to the age of 1 year. Thus, the deletion of the Miz1 POZ domain in Schwann cells induces an acute neuropathy with a subsequent regeneration in which there is ongoing balancing between de- and remyelination. Miz1ΔPOZ mice are impaired in the maintenance of myelinated fibers and are a promising model for studying remyelination in adult peripheral nerves.
Collapse
Affiliation(s)
- Adrián Sanz-Moreno
- From the Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, Robert-Koch-Strasse 6, 35033 Marburg, Germany
| | - David Fuhrmann
- From the Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, Robert-Koch-Strasse 6, 35033 Marburg, Germany
| | - Armin Zankel
- Graz University of Technology, 8010 Graz, Austria
| | | | - Lara Kern
- From the Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, Robert-Koch-Strasse 6, 35033 Marburg, Germany
| | - Dies Meijer
- Erasmus Medical Center, 3015GE Rotterdam, Netherlands, and
| | | | - Hans-Peter Elsässer
- From the Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, Robert-Koch-Strasse 6, 35033 Marburg, Germany,
| |
Collapse
|
71
|
Maire CL, Ramkissoon S, Hayashi M, Haidar S, Ramkissoon L, DiTomaso E, Ligon KL. Pten loss in Olig2 expressing neural progenitor cells and oligodendrocytes leads to interneuron dysplasia and leukodystrophy. Stem Cells 2014; 32:313-26. [PMID: 24395742 DOI: 10.1002/stem.1590] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/19/2013] [Accepted: 09/05/2013] [Indexed: 11/07/2022]
Abstract
Therapeutic modulation of phosphatidylinositol 3-kinase (PI3K)/PTEN signaling is currently being explored for multiple neurological indications including brain tumors and seizure disorders associated with cortical malformations. The effects of PI3K/PTEN signaling are highly cell context dependent but the function of this pathway in specific subsets of neural stem/progenitor cells generating oligodendroglial lineage cells has not been fully studied. To address this, we created Olig2-cre:Pten(fl/fl) mice that showed a unique pattern of Pten loss and PI3K activation in Olig2-lineage cells. Olig2-cre:Pten(fl/fl) animals progressively developed central nervous system white matter hypermyelination by 3 weeks of age leading to later onset leukodystrophy, chronic neurodegeneration, and death by 9 months. In contrast, during immediate postnatal development, oligodendroglia were unaffected but abnormal and accelerated differentiation of lateral subventricular zone stem cells produced calretinin-positive interneuron dysplasia. Neural stem cells isolated from Olig2-cre:Pten(fl/fl) mice also exhibited accelerated differentiation and proliferation into calretinin-positive interneurons and oligodendrocytes indicating such effects are cell autonomous. Opposition of the pathway by treatment of human primary neural progenitor cells (NPCs) with the PI3K inhibitor, NVP-BKM120, blocked in vitro differentiation of neurons and oligodendroglia indicating PI3K/PTEN effects on NPCs can be bidirectional. In summary, our results suggest Pten is a developmental rheostat regulating interneuron and oligodendroglial differentiation and support testing of PI3K modulating drugs as treatment for developmental and myelination disorders. However, such agents may need to be administered at ages that minimize potential effects on early stem/progenitor cell development.
Collapse
Affiliation(s)
- Cécile L Maire
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Norrmén C, Figlia G, Lebrun-Julien F, Pereira JA, Trötzmüller M, Köfeler HC, Rantanen V, Wessig C, van Deijk ALF, Smit AB, Verheijen MHG, Rüegg MA, Hall MN, Suter U. mTORC1 controls PNS myelination along the mTORC1-RXRγ-SREBP-lipid biosynthesis axis in Schwann cells. Cell Rep 2014; 9:646-60. [PMID: 25310982 DOI: 10.1016/j.celrep.2014.09.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/05/2014] [Accepted: 08/28/2014] [Indexed: 11/26/2022] Open
Abstract
Myelin formation during peripheral nervous system (PNS) development, and reformation after injury and in disease, requires multiple intrinsic and extrinsic signals. Akt/mTOR signaling has emerged as a major player involved, but the molecular mechanisms and downstream effectors are virtually unknown. Here, we have used Schwann-cell-specific conditional gene ablation of raptor and rictor, which encode essential components of the mTOR complexes 1 (mTORC1) and 2 (mTORC2), respectively, to demonstrate that mTORC1 controls PNS myelination during development. In this process, mTORC1 regulates lipid biosynthesis via sterol regulatory element-binding proteins (SREBPs). This course of action is mediated by the nuclear receptor RXRγ, which transcriptionally regulates SREBP1c downstream of mTORC1. Absence of mTORC1 causes delayed myelination initiation as well as hypomyelination, together with abnormal lipid composition and decreased nerve conduction velocity. Thus, we have identified the mTORC1-RXRγ-SREBP axis controlling lipid biosynthesis as a major contributor to proper peripheral nerve function.
Collapse
Affiliation(s)
- Camilla Norrmén
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich, ETH Zürich, CH-8093 Zurich, Switzerland.
| | - Gianluca Figlia
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Frédéric Lebrun-Julien
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Jorge A Pereira
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Martin Trötzmüller
- Core Facility for Mass Spectrometry, Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
| | - Harald C Köfeler
- Core Facility for Mass Spectrometry, Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
| | - Ville Rantanen
- Research Programs Unit, Genome-Scale Biology, and Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, 00014 Helsinki, Finland
| | - Carsten Wessig
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | - Anne-Lieke F van Deijk
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081HV Amsterdam, the Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081HV Amsterdam, the Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081HV Amsterdam, the Netherlands
| | - Markus A Rüegg
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich, ETH Zürich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
73
|
Beirowski B, Babetto E, Golden JP, Chen YJ, Yang K, Gross RW, Patti GJ, Milbrandt J. Metabolic regulator LKB1 is crucial for Schwann cell-mediated axon maintenance. Nat Neurosci 2014; 17:1351-61. [PMID: 25195104 PMCID: PMC4494117 DOI: 10.1038/nn.3809] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/15/2014] [Indexed: 02/06/2023]
Abstract
Schwann cells (SCs) promote axonal integrity independently of myelination by poorly understood mechanisms. Current models suggest that SC metabolism is critical for this support function and that SC metabolic deficits may lead to axonal demise. The LKB1-AMP-activated protein kinase (AMPK) kinase pathway targets several downstream effectors, including mammalian target of rapamycin (mTOR), and is a key metabolic regulator implicated in metabolic diseases. We found through molecular, structural and behavioral characterization of SC-specific mutant mice that LKB1 activity is central to axon stability, whereas AMPK and mTOR in SCs are largely dispensable. The degeneration of axons in LKB1 mutants was most dramatic in unmyelinated small sensory fibers, whereas motor axons were comparatively spared. LKB1 deletion in SCs led to abnormalities in nerve energy and lipid homeostasis and to increased lactate release. The latter acts in a compensatory manner to support distressed axons. LKB1 signaling is essential for SC-mediated axon support, a function that may be dysregulated in diabetic neuropathy.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elisabetta Babetto
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Judith P Golden
- Department of Anesthesiology, Washington University Pain Center, St. Louis, Missouri, USA
| | - Ying-Jr Chen
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Kui Yang
- Department of Internal Medicine, Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard W Gross
- Department of Internal Medicine, Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gary J Patti
- 1] Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA. [2] Department of Chemistry, Washington University, St. Louis, Missouri, USA. [3] Department of Internal Medicine, Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey Milbrandt
- 1] Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA. [2] Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
74
|
Mei L, Nave KA. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 2014; 83:27-49. [PMID: 24991953 DOI: 10.1016/j.neuron.2014.06.007] [Citation(s) in RCA: 413] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuregulins (NRGs) comprise a large family of growth factors that stimulate ERBB receptor tyrosine kinases. NRGs and their receptors, ERBBs, have been identified as susceptibility genes for diseases such as schizophrenia (SZ) and bipolar disorder. Recent studies have revealed complex Nrg/Erbb signaling networks that regulate the assembly of neural circuitry, myelination, neurotransmission, and synaptic plasticity. Evidence indicates there is an optimal level of NRG/ERBB signaling in the brain and deviation from it impairs brain functions. NRGs/ERBBs and downstream signaling pathways may provide therapeutic targets for specific neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Goettingen, Germany.
| |
Collapse
|
75
|
Veleva-Rotse BO, Barnes AP. Brain patterning perturbations following PTEN loss. Front Mol Neurosci 2014; 7:35. [PMID: 24860420 PMCID: PMC4030135 DOI: 10.3389/fnmol.2014.00035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/15/2014] [Indexed: 12/23/2022] Open
Abstract
This review will consider the impact of compromised PTEN signaling in brain patterning. We approach understanding the contribution of PTEN to nervous system development by surveying the findings from the numerous genetic loss-of-function models that have been generated as well as other forms of PTEN inactivation. By exploring the developmental programs influenced by this central transduction molecule, we can begin to understand the molecular mechanisms that shape the developing brain. A wealth of data indicates that PTEN plays critical roles in a variety of stages during brain development. Many of them are considered here including: stem cell proliferation, fate determination, polarity, migration, process outgrowth, myelination and somatic hypertrophy. In many of these contexts, it is clear that PTEN phosphatase activity contributes to the observed effects of genetic deletion or depletion, however recent studies have also ascribed non-catalytic functions to PTEN in regulating cell function. We also explore the potential impact this alternative pool of PTEN may have on the developing brain. Together, these elements begin to form a clearer picture of how PTEN contributes to the emergence of brain structure and binds form and function in the nervous system.
Collapse
Affiliation(s)
- Biliana O Veleva-Rotse
- Neuroscience Graduate Program, Oregon Health and Science University Portland, OR, USA ; Department of Pediatrics, Oregon Health and Science University Portland, OR, USA
| | - Anthony P Barnes
- Neuroscience Graduate Program, Oregon Health and Science University Portland, OR, USA ; Department of Pediatrics, Oregon Health and Science University Portland, OR, USA ; Department of Cell and Developmental Biology, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
76
|
von Boxberg Y, Soares S, Féréol S, Fodil R, Bartolami S, Taxi J, Tricaud N, Nothias F. Giant scaffolding protein AHNAK1 interacts with β-dystroglycan and controls motility and mechanical properties of Schwann cells. Glia 2014; 62:1392-406. [PMID: 24796807 DOI: 10.1002/glia.22685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 01/02/2023]
Abstract
The profound morphofunctional changes that Schwann cells (SCs) undergo during their migration and elongation on axons, as well as during axon sorting, ensheathment, and myelination, require their close interaction with the surrounding laminin-rich basal lamina. In contrast to myelinating central nervous system glia, SCs strongly and constitutively express the giant scaffolding protein AHNAK1, localized essentially underneath the outer, abaxonal plasma membrane. Using electron microscopy, we show here that in the sciatic nerve of ahnak1(-) (/) (-) mice the ultrastructure of myelinated, and unmyelinated (Remak) fibers is affected. The major SC laminin receptor β-dystroglycan co-immunoprecipitates with AHNAK1 shows reduced expression in ahnak1(-) (/) (-) SCs, and is no longer detectable in Cajal bands on myelinated fibers in ahnak1(-) (/) (-) sciatic nerve. Reduced migration velocity in a scratch wound assay of purified ahnak1(-) (/) (-) primary SCs cultured on a laminin substrate indicated a function of AHNAK1 in SC motility. This was corroborated by atomic force microscopy measurements, which revealed a greater mechanical rigidity of shaft and leading tip of ahnak1(-) (/) (-) SC processes. Internodal lengths of large fibers are decreased in ahnak1(-) (/) (-) sciatic nerve, and longitudinal extension of myelin segments is even more strongly reduced after acute knockdown of AHNAK1 in SCs of developing sciatic nerve. Together, our results suggest that by interfering in the cross-talk between the transmembrane form of the laminin receptor dystroglycan and F-actin, AHNAK1 influences the cytoskeleton organization of SCs, and thus plays a role in the regulation of their morphology and motility and lastly, the myelination process.
Collapse
Affiliation(s)
- Ysander von Boxberg
- Sorbonne Universités, UPMC CR18 (NPS), Paris, France; Neuroscience Paris Seine (NPS), CNRS UMR 8246, Paris, France; Neuroscience Paris Seine (NPS), INSERM U1130, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Guo J, Wang L, Zhang Y, Wu J, Arpag S, Hu B, Imhof BA, Tian X, Carter BD, Suter U, Li J. Abnormal junctions and permeability of myelin in PMP22-deficient nerves. Ann Neurol 2014; 75:255-65. [PMID: 24339129 DOI: 10.1002/ana.24086] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/24/2013] [Accepted: 12/03/2013] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The peripheral myelin protein-22 (PMP22) gene is associated with the most common types of inherited neuropathies, including hereditary neuropathy with liability to pressure palsies (HNPP) caused by PMP22 deficiency. However, the function of PMP22 has yet to be defined. Our previous study has shown that PMP22 deficiency causes an impaired propagation of nerve action potentials in the absence of demyelination. In the present study, we tested an alternative mechanism relating to myelin permeability. METHODS Utilizing Pmp22(+) (/) (-) mice as a model of HNPP, we evaluated myelin junctions and their permeability using morphological, electrophysiological, and biochemical approaches. RESULTS We show disruption of multiple types of cell junction complexes in peripheral nerve, resulting in increased permeability of myelin and impaired action potential propagation. We further demonstrate that PMP22 interacts with immunoglobulin domain-containing proteins known to regulate tight/adherens junctions and/or transmembrane adhesions, including junctional adhesion molecule-C (JAM-C) and myelin-associated glycoprotein (MAG). Deletion of Jam-c or Mag in mice recapitulates pathology in HNPP. INTERPRETATION Our study reveals a novel mechanism by which PMP22 deficiency affects nerve conduction not through removal of myelin, but through disruption of myelin junctions.
Collapse
Affiliation(s)
- Jiasong Guo
- Department of Neurology, Center for Human Genetics Research, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Sheean ME, McShane E, Cheret C, Walcher J, Müller T, Wulf-Goldenberg A, Hoelper S, Garratt AN, Krüger M, Rajewsky K, Meijer D, Birchmeier W, Lewin GR, Selbach M, Birchmeier C. Activation of MAPK overrides the termination of myelin growth and replaces Nrg1/ErbB3 signals during Schwann cell development and myelination. Genes Dev 2014; 28:290-303. [PMID: 24493648 PMCID: PMC3923970 DOI: 10.1101/gad.230045.113] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/20/2013] [Indexed: 12/11/2022]
Abstract
Myelination depends on the synthesis of large amounts of myelin transcripts and proteins and is controlled by Nrg1/ErbB/Shp2 signaling. We developed a novel pulse labeling strategy based on stable isotope labeling with amino acids in cell culture (SILAC) to measure the dynamics of myelin protein production in mice. We found that protein synthesis is dampened in the maturing postnatal peripheral nervous system, and myelination then slows down. Remarkably, sustained activation of MAPK signaling by expression of the Mek1DD allele in mice overcomes the signals that end myelination, resulting in continuous myelin growth. MAPK activation leads to minor changes in transcript levels but massively up-regulates protein production. Pharmacological interference in vivo demonstrates that the effects of activated MAPK signaling on translation are mediated by mTOR-independent mechanisms but in part also by mTOR-dependent mechanisms. Previous work demonstrated that loss of ErbB3/Shp2 signaling impairs Schwann cell development and disrupts the myelination program. We found that activated MAPK signaling strikingly compensates for the absence of ErbB3 or Shp2 during Schwann cell development and myelination.
Collapse
Affiliation(s)
| | | | | | - Jan Walcher
- Molecular Physiology of Somatic Sensation, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | | - Soraya Hoelper
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | - Markus Krüger
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Klaus Rajewsky
- Immune Regulation and Cancer, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Dies Meijer
- Department of Cell Biology and Genetics, Erasmus University Medical Center, 3000 DR Rotterdam, Netherlands
| | - Walter Birchmeier
- Signal Transduction, Invasion, and Metastasis, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Gary R. Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | |
Collapse
|
79
|
Beirowski B. Concepts for regulation of axon integrity by enwrapping glia. Front Cell Neurosci 2013; 7:256. [PMID: 24391540 PMCID: PMC3867696 DOI: 10.3389/fncel.2013.00256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/25/2013] [Indexed: 12/16/2022] Open
Abstract
Long axons and their enwrapping glia (EG; Schwann cells (SCs) and oligodendrocytes (OLGs)) form a unique compound structure that serves as conduit for transport of electric and chemical information in the nervous system. The peculiar cytoarchitecture over an enormous length as well as its substantial energetic requirements make this conduit particularly susceptible to detrimental alterations. Degeneration of long axons independent of neuronal cell bodies is observed comparatively early in a range of neurodegenerative conditions as a consequence of abnormalities in SCs and OLGs . This leads to the most relevant disease symptoms and highlights the critical role that these glia have for axon integrity, but the underlying mechanisms remain elusive. The quest to understand why and how axons degenerate is now a crucial frontier in disease-oriented research. This challenge is most likely to lead to significant progress if the inextricable link between axons and their flanking glia in pathological situations is recognized. In this review I compile recent advances in our understanding of the molecular programs governing axon degeneration, and mechanisms of EG’s non-cell autonomous impact on axon-integrity. A particular focus is placed on emerging evidence suggesting that EG nurture long axons by virtue of their intimate association, release of trophic substances, and neurometabolic coupling. The correction of defects in these functions has the potential to stabilize axons in a variety of neuronal diseases in the peripheral nervous system and central nervous system (PNS and CNS).
Collapse
Affiliation(s)
- Bogdan Beirowski
- Department of Genetics, Washington University School of Medicine Saint Louis, MO, USA
| |
Collapse
|
80
|
Abstract
Akt signalling has emerged as one of the major pathways involved in myelination, implicated in the regulation of several steps during the development of myelinating Schwann cells and oligodendrocytes. One of the main pathways intimately linked with Akt is mTOR [mammalian (or mechanistic) target of rapamycin] signalling. Recent evidence suggests that many processes attributed to the Akt pathway in myelination depend, at least partly, on mTOR signalling. In the present mini-review, we summarize the major aspects of Akt/mTOR signalling and myelination, and how they appear to be linked. We focus on the PNS (peripheral nervous system), but also cover the key points of CNS (central nervous system) myelination, pointing out differences and similarities between the PNS and the CNS.
Collapse
|
81
|
Abstract
Signals that promote myelination must be tightly modulated to adjust myelin thickness to the axonal diameter. In the peripheral nervous system, axonal neuregulin 1 type III promotes myelination by activating erbB2/B3 receptors and the PI3K/AKT/mTOR pathway in Schwann cells. Conversely, PTEN (phosphatase and tensin homolog on chromosome 10) dephosphorylates PtdIns(3,4,5)P3 and negatively regulates the AKT pathway and myelination. Recently, the DLG1/SAP97 scaffolding protein was described to interact with PTEN to enhance PIP3 dephosphorylation. Here we now report that nerves from mice with conditional inactivation of Dlg1 in Schwann cells display only a transient increase in myelin thickness during development, suggesting that DLG1 is a transient negative regulator of myelination. Instead, we identified DDIT4/RTP801/REDD1 as a sustained negative modulator of myelination. We show that DDIT4 is expressed in Schwann cells and its maximum expression level precedes the peak of AKT activation and of DLG1 activity in peripheral nerves. Moreover, loss of DDIT4 expression both in vitro and in vivo in Ddit4-null mice provokes sustained hypermyelination and enhanced mTORC1 activation, thus suggesting that this molecule is a novel negative regulator of PNS myelination.
Collapse
|
82
|
Abstract
Demyelinating disorders including leukodystrophies are devastating conditions that are still in need of better understanding, and both oligodendrocyte differentiation and myelin synthesis pathways are potential avenues for developing treatment. Overexpression of lamin B1 leads to leukodystrophy characterized by demyelination of the central nervous system, and microRNA-23 (miR-23) was found to suppress lamin B1 and enhance oligodendrocyte differentiation in vitro. Here, we demonstrated that miR-23a-overexpressing mice have increased myelin thickness, providing in vivo evidence that miR-23a enhances both oligodendrocyte differentiation and myelin synthesis. Using this mouse model, we explored possible miR-23a targets and revealed that the phosphatase and tensin homologue/phosphatidylinositol trisphosphate kinase/Akt/mammalian target of rapamycin pathway is modulated by miR-23a. Additionally, a long noncoding RNA, 2700046G09Rik, was identified as a miR-23a target and modulates phosphatase and tensin homologue itself in a miR-23a-dependent manner. The data presented here imply a unique role for miR-23a in the coordination of proteins and noncoding RNAs in generating and maintaining healthy myelin.
Collapse
|
83
|
Genetic deletion of Cadm4 results in myelin abnormalities resembling Charcot-Marie-Tooth neuropathy. J Neurosci 2013; 33:10950-61. [PMID: 23825401 DOI: 10.1523/jneurosci.0571-13.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The interaction between myelinating Schwann cells and the axons they ensheath is mediated by cell adhesion molecules of the Cadm/Necl/SynCAM family. This family consists of four members: Cadm4/Necl4 and Cadm1/Necl2 are found in both glia and axons, whereas Cadm2/Necl3 and Cadm3/Necl1 are expressed by sensory and motor neurons. By generating mice lacking each of the Cadm genes, we now demonstrate that Cadm4 plays a role in the establishment of the myelin unit in the peripheral nervous system. Mice lacking Cadm4 (PGK-Cre/Cadm4(fl/fl)), but not Cadm1, Cadm2, or Cadm3, develop focal hypermyelination characterized by tomacula and myelin outfoldings, which are the hallmark of several Charcot-Marie-Tooth neuropathies. The absence of Cadm4 also resulted in abnormal axon-glial contact and redistribution of ion channels along the axon. These neuropathological features were also found in transgenic mice expressing a dominant-negative mutant of Cadm4 lacking its cytoplasmic domain in myelinating glia Tg(mbp-Cadm4dCT), as well as in mice lacking Cadm4 specifically in Schwann cells (DHH-Cre/Cadm4(fl/fl)). Consistent with these abnormalities, both PGK-Cre/Cadm4(fl/fl) and Tg(mbp-Cadm4dCT) mice exhibit impaired motor function and slower nerve conduction velocity. These findings indicate that Cadm4 regulates the growth of the myelin unit and the organization of the underlying axonal membrane.
Collapse
|
84
|
Simons M, Lyons DA. Axonal selection and myelin sheath generation in the central nervous system. Curr Opin Cell Biol 2013; 25:512-9. [PMID: 23707197 DOI: 10.1016/j.ceb.2013.04.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/04/2013] [Accepted: 04/24/2013] [Indexed: 01/06/2023]
Abstract
The formation of myelin in the central nervous system is a multi-step process that involves coordinated cell-cell interactions and dramatic changes in plasma membrane architecture. First, oligodendrocytes send our numerous highly ramified processes to sample the axonal environment and decide which axon(s) to select for myelination. After this decision is made and individual axon to oligodendrocyte contact has been established, the exploratory process of the oligodendrocyte is converted into a flat sheath that spreads and winds along and around its associated axon to generate a multilayered membrane stack. By compaction of the opposing extracellular layers of membrane and extrusion of almost all cytoplasm from the intracellular domain of the sheath, the characteristic membrane-rich multi-lamellar structure of myelin is formed. Here we highlight recent advances in identifying biophysical and signalling based mechanisms that are involved in axonal selection and myelin sheath generation by oligodendrocytes. A thorough understanding of the mechanisms underlying these events is a prerequisite for the design of novel myelin repair strategies in demyelinating and dysmyelinating diseases.
Collapse
Affiliation(s)
- Mikael Simons
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany.
| | | |
Collapse
|
85
|
Ahrendsen JT, Macklin W. Signaling mechanisms regulating myelination in the central nervous system. Neurosci Bull 2013; 29:199-215. [PMID: 23558589 DOI: 10.1007/s12264-013-1322-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/22/2013] [Indexed: 12/19/2022] Open
Abstract
The precise and coordinated production of myelin is essential for proper development and function of the nervous system. Diseases that disrupt myelin, including multiple sclerosis, cause significant functional disability. Current treatment aims to reduce the inflammatory component of the disease, thereby preventing damage resulting from demyelination. However, therapies are not yet available to improve natural repair processes after damage has already occurred. A thorough understanding of the signaling mechanisms that regulate myelin generation will improve our ability to enhance repair. in this review, we summarize the positive and negative regulators of myelination, focusing primarily on central nervous system myelination. Axon-derived signals, extracellular signals from both diffusible factors and the extracellular matrix, and intracellular signaling pathways within myelinating oligodendrocytes are discussed. Much is known about the positive regulators that drive myelination, while less is known about the negative regulators that shift active myelination to myelin maintenance at the appropriate time. Therefore, we also provide new data on potential negative regulators of CNS myelination.
Collapse
Affiliation(s)
- Jared T Ahrendsen
- Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | |
Collapse
|
86
|
Lee SM, Sha D, Mohammed AA, Asress S, Glass JD, Chin LS, Li L. Motor and sensory neuropathy due to myelin infolding and paranodal damage in a transgenic mouse model of Charcot-Marie-Tooth disease type 1C. Hum Mol Genet 2013; 22:1755-70. [PMID: 23359569 DOI: 10.1093/hmg/ddt022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Charcot-Marie-Tooth disease type 1C (CMT1C) is a dominantly inherited motor and sensory neuropathy. Despite human genetic evidence linking missense mutations in SIMPLE to CMT1C, the in vivo role of CMT1C-linked SIMPLE mutations remains undetermined. To investigate the molecular mechanism underlying CMT1C pathogenesis, we generated transgenic mice expressing either wild-type or CMT1C-linked W116G human SIMPLE. Mice expressing mutant, but not wild type, SIMPLE develop a late-onset motor and sensory neuropathy that recapitulates key clinical features of CMT1C disease. SIMPLE mutant mice exhibit motor and sensory behavioral impairments accompanied by decreased motor and sensory nerve conduction velocity and reduced compound muscle action potential amplitude. This neuropathy phenotype is associated with focally infolded myelin loops that protrude into the axons at paranodal regions and near Schmidt-Lanterman incisures of peripheral nerves. We find that myelin infolding is often linked to constricted axons with signs of impaired axonal transport and to paranodal defects and abnormal organization of the node of Ranvier. Our findings support that SIMPLE mutation disrupts myelin homeostasis and causes peripheral neuropathy via a combination of toxic gain-of-function and dominant-negative mechanisms. The results from this study suggest that myelin infolding and paranodal damage may represent pathogenic precursors preceding demyelination and axonal degeneration in CMT1C patients.
Collapse
Affiliation(s)
- Samuel M Lee
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Hu X, Schlanger R, He W, Macklin WB, Yan R. Reversing hypomyelination in BACE1-null mice with Akt-DD overexpression. FASEB J 2013; 27:1868-73. [PMID: 23335052 DOI: 10.1096/fj.12-224212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
β-Site amyloid precursor protein convertase enzyme 1 (BACE1), a type I transmembrane aspartyl protease required to cleave amyloid precursor protein for releasing a toxic amyloid peptide, also cleaves type I and type III neuregulin-1 (Nrg-1). BACE1 deficiency in mice causes hypomyelination during development and impairs remyelination if injured. In BACE1-null mice, the abolished cleavage of neuregulin-1 by BACE1 is speculated to cause reduced myelin sheath thickness in both the central nervous system and peripheral nervous system because reduced cleavage of Nrg-1 correlates with reduced Akt phosphorylation, a downstream signaling molecule of the Nrg-1/ErbB pathway. Here we tested specifically whether increasing Akt activity alone in oligodendrocytes would be sufficient to reverse the hypomyelination phenotype in BACE1-null mice. BACE1-null mice were bred with transgenic mice expressing constitutively active Akt (Akt-DD; mutations with D(308)T and D(473)S) in oligodendrocytes. Relative to littermate BACE1-null controls, BACE1(-/-)/Akt-DD mice exhibited enhanced expression of myelin basic protein and promoter of proteolipid protein. The elevated expression of myelin proteins correlated with a thicker myelin sheath in optic nerves; comparison of quantified g ratios with statistic significance was used to confirm this reversion. However, it appeared that myelin sheath thickness in the sciatic nerves was not increased in BACE1(-/-)/Akt-DD mice, as the g ratio was not significantly different from the control. Hence, increased Akt activity in BACE1-null myelinating cells only compensates for the loss of BACE1 activity in the central nervous system, which is consistent with the observation that overexpression of Akt-DD in Schwann cells did not induce hypermyelination. Our results suggest that signaling activity other than Akt may also contribute to proper myelination in peripheral nerves.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
88
|
Ng AA, Logan AM, Schmidt EJ, Robinson FL. The CMT4B disease-causing phosphatases Mtmr2 and Mtmr13 localize to the Schwann cell cytoplasm and endomembrane compartments, where they depend upon each other to achieve wild-type levels of protein expression. Hum Mol Genet 2013; 22:1493-506. [PMID: 23297362 DOI: 10.1093/hmg/dds562] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The demyelinating peripheral neuropathy Charcot-Marie-Tooth type 4B (CMT4B) is characterized by axonal degeneration and myelin outfoldings. CMT4B results from mutations in either myotubularin-related protein 2 (MTMR2; CMT4B1) or MTMR13 (CMT4B2), phosphoinositide (PI) 3-phosphatases that dephosphorylate phosphatidylinositol 3-phosphate (PtdIns3P) and PtdIns(3,5)P2, lipids which regulate endo-lysosomal membrane traffic. The catalytically active MTMR2 and catalytically inactive MTMR13 physically associate, although the significance of this association is not well understood. Here we show that Mtmr13 loss leads to axonal degeneration in sciatic nerves of older mice. In addition, CMT4B2-like myelin outfoldings are present in Mtmr13(-/-) nerves at postnatal day 3. Thus, Mtmr13(-/-) mice show both the initial dysmyelination and later degenerative pathology of CMT4B2. Given the key role of PI 3-kinase-Akt signaling in myelination, we investigated the state of the pathway in nerves of CMT4B models. We found that Akt activation is unaltered in Mtmr13(-/-) and Mtmr2(-/-) mice. Mtmr2 and Mtmr13 are found within the Schwann cell cytoplasm, where the proteins are partially localized to punctate compartments, suggesting that Mtmr2-Mtmr13 may dephosphorylate their substrates on specific intracellular compartments. Mtmr2-Mtmr13 substrates play essential roles in endo-lysosomal membrane traffic. However, endosomes and lysosomes of Mtmr13(-/-) and Mtmr2(-/-) Schwann cells are morphologically indistinguishable from those of controls, indicating that loss of these proteins does not cause wholesale dysregulation of the endo-lysosomal system. Notably, Mtmr2 and Mtmr13 depend upon each other to achieve wild-type levels of protein expression. Mtmr2 stabilizes Mtmr13 on membranes, indicating that the Mtmr13 pseudophosphatase is regulated by its catalytically active binding partner.
Collapse
Affiliation(s)
- Aubree A Ng
- The Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
89
|
Ness JK, Snyder KM, Tapinos N. Lck tyrosine kinase mediates β1-integrin signalling to regulate Schwann cell migration and myelination. Nat Commun 2013; 4:1912. [PMID: 23715271 PMCID: PMC3674276 DOI: 10.1038/ncomms2928] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 04/24/2013] [Indexed: 12/12/2022] Open
Abstract
The interaction between laminin and β1-integrin on the surface of Schwann cells regulates Schwann cell proliferation, maturation and differentiation. However, the signalling mediators that fine-tune these outcomes are not fully elucidated. Here we show that lymphoid cell kinase is the crucial effector of β1-integrin signalling in Schwann cells. Lymphoid cell kinase is activated after laminin treatment of Schwann cells, while downregulation of β1-integrin with short interfering RNAs inhibits lymphoid cell kinase phosphorylation. Treatment of Schwann cells with a selective lymphoid cell kinase inhibitor reveals a pathway that involves paxillin and CrkII, which ultimately elevates Rac-GTP levels to induce radial lamellipodia formation. Inhibition of lymphoid cell kinase in Schwann cell-dorsal root ganglion cocultures and dorsal root ganglions from Lck(-/-) mice show a reduction of Schwann cell longitudinal migration, reduced myelin formation and internode length. Finally, Lck(-/-) mice exhibit delays in myelination, thinner myelin with abnormal g-ratios and aberrant myelin outfoldings. Our data implicate lymphoid cell kinase as a major regulator of cytoskeletal dynamics, migration and myelination in the peripheral nervous system.
Collapse
Affiliation(s)
- Jennifer K. Ness
- Molecular Neuroscience Laboratory, Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, Pennsylvania 17822, USA
| | - Kristin M. Snyder
- Molecular Neuroscience Laboratory, Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, Pennsylvania 17822, USA
| | - Nikos Tapinos
- Molecular Neuroscience Laboratory, Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, Pennsylvania 17822, USA
| |
Collapse
|
90
|
Horn M, Baumann R, Pereira JA, Sidiropoulos PNM, Somandin C, Welzl H, Stendel C, Lühmann T, Wessig C, Toyka KV, Relvas JB, Senderek J, Suter U. Myelin is dependent on the Charcot-Marie-Tooth Type 4H disease culprit protein FRABIN/FGD4 in Schwann cells. Brain 2012; 135:3567-83. [PMID: 23171661 PMCID: PMC3525053 DOI: 10.1093/brain/aws275] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/24/2012] [Accepted: 08/15/2012] [Indexed: 12/21/2022] Open
Abstract
Studying the function and malfunction of genes and proteins associated with inherited forms of peripheral neuropathies has provided multiple clues to our understanding of myelinated nerves in health and disease. Here, we have generated a mouse model for the peripheral neuropathy Charcot-Marie-Tooth disease type 4H by constitutively disrupting the mouse orthologue of the suspected culprit gene FGD4 that encodes the small RhoGTPase Cdc42-guanine nucleotide exchange factor Frabin. Lack of Frabin/Fgd4 causes dysmyelination in mice in early peripheral nerve development, followed by profound myelin abnormalities and demyelination at later stages. At the age of 60 weeks, this was accompanied by electrophysiological deficits. By crossing mice carrying alleles of Frabin/Fgd4 flanked by loxP sequences with animals expressing Cre recombinase in a cell type-specific manner, we show that Schwann cell-autonomous Frabin/Fgd4 function is essential for proper myelination without detectable primary contributions from neurons. Deletion of Frabin/Fgd4 in Schwann cells of fully myelinated nerve fibres revealed that this protein is not only required for correct nerve development but also for accurate myelin maintenance. Moreover, we established that correct activation of Cdc42 is dependent on Frabin/Fgd4 function in healthy peripheral nerves. Genetic disruption of Cdc42 in Schwann cells of adult myelinated nerves resulted in myelin alterations similar to those observed in Frabin/Fgd4-deficient mice, indicating that Cdc42 and the Frabin/Fgd4-Cdc42 axis are critical for myelin homeostasis. In line with known regulatory roles of Cdc42, we found that Frabin/Fgd4 regulates Schwann cell endocytosis, a process that is increasingly recognized as a relevant mechanism in peripheral nerve pathophysiology. Taken together, our results indicate that regulation of Cdc42 by Frabin/Fgd4 in Schwann cells is critical for the structure and function of the peripheral nervous system. In particular, this regulatory link is continuously required in adult fully myelinated nerve fibres. Thus, mechanisms regulated by Frabin/Fgd4-Cdc42 are promising targets that can help to identify additional regulators of myelin development and homeostasis, which may crucially contribute also to malfunctions in different types of peripheral neuropathies.
Collapse
Affiliation(s)
- Michael Horn
- 1 Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Reto Baumann
- 1 Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jorge A. Pereira
- 1 Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Páris N. M. Sidiropoulos
- 1 Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Christian Somandin
- 1 Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Hans Welzl
- 2 Division of Neuroanatomy and Behaviour, Institute of Anatomy, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Claudia Stendel
- 1 Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Tessa Lühmann
- 3 Laboratory for Biologically Oriented Materials, Department of Materials, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Carsten Wessig
- 4 Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | - Klaus V. Toyka
- 4 Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | - João B. Relvas
- 1 Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
- 5 Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Jan Senderek
- 1 Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ueli Suter
- 1 Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
91
|
Lee SM, Chin LS, Li L. Therapeutic implications of protein homeostasis in demyelinating peripheral neuropathies. Expert Rev Neurother 2012; 12:1041-3. [PMID: 23039381 DOI: 10.1586/ern.12.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
92
|
Negative Regulators of Schwann Cell Differentiation—Novel Targets for Peripheral Nerve Therapies? J Clin Immunol 2012; 33 Suppl 1:S18-26. [DOI: 10.1007/s10875-012-9786-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 08/27/2012] [Indexed: 01/01/2023]
|