51
|
Abstract
Protein phosphorylation provides molecular control of complex physiological events within cells. In many cases, phosphorylation on specific amino acids directly controls the assembly of multi-protein complexes by recruiting phospho-specific binding modules. Here, the function, structure, and cell biology of phosphotyrosine-binding domains is discussed.
Collapse
Affiliation(s)
- Michael B Yaffe
- Center for Cancer Research, E18-580, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA.
| |
Collapse
|
52
|
Tamás P, Solti Z, Buday L. Membrane-targeting is critical for the phosphorylation of Vav2 by activated EGF receptor. Cell Signal 2001; 13:475-81. [PMID: 11516622 DOI: 10.1016/s0898-6568(01)00172-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Vav2 is a member of the Vav family that serves as guanine nucleotide exchange factors (GEFs) for the Rho family of Ras-related GTPases. Unlike Vav1, whose expression is restricted to cells of hematopoietic origin, Vav2 is broadly expressed. Recently, Vav2 has been identified as a substrate for the EGF receptor. Here, we show that in EGF-treated COS7 cells Vav2 is phosphorylated on tyrosine residues and associates with the EGF receptor. In addition, introducing point mutations into the SH2 domain of green fluorescens protein (GFP)-Vav2 fusion protein leads to the loss of Vav2 tyrosine phosphorylation in response to EGF. To investigate further the mechanism of Vav2 phosphorylation, N-terminal (NT) domain of Vav2 was transiently expressed in COS7 cells as GFP fusion protein. Whereas the NT domain of Vav2 is a preferred substrate for the activated EGF receptor in vitro, we could not detect tyrosine phosphorylation of the GFP-NT construct in EGF-treated cells. However, when the SH2 domain of Vav2 was fused to its NT domain, NT domain proved to be a substrate for the EGF receptor in vivo. These data suggest that membrane-targeting of Vav2 through its SH2 domain is an important event in the phosphorylation and activation of Vav2 in response to EGF.
Collapse
Affiliation(s)
- P Tamás
- Department of Medical Chemistry, Semmelweis University Medical School, 9 Puskin Street, 1088, Budapest, Hungary
| | | | | |
Collapse
|
53
|
Andreev J, Galisteo ML, Kranenburg O, Logan SK, Chiu ES, Okigaki M, Cary LA, Moolenaar WH, Schlessinger J. Src and Pyk2 mediate G-protein-coupled receptor activation of epidermal growth factor receptor (EGFR) but are not required for coupling to the mitogen-activated protein (MAP) kinase signaling cascade. J Biol Chem 2001; 276:20130-5. [PMID: 11274221 DOI: 10.1074/jbc.m102307200] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) and the non-receptor protein tyrosine kinases Src and Pyk2 have been implicated in linking a variety of G-protein-coupled receptors (GPCR) to the mitogen-activated protein (MAP) kinase signaling cascade. In this report we apply a genetic strategy using cells isolated from Src-, Pyk2-, or EGFR-deficient mice to explore the roles played by these protein tyrosine kinases in GPCR-induced activation of EGFR, Pyk2, and MAP kinase. We show that Src kinases are critical for activation of Pyk2 in response to GPCR-stimulation and that Pyk2 and Src are essential for GPCR-induced tyrosine phosphorylation of EGFR. By contrast, Pyk2, Src, and EGFR are dispensable for GPCR-induced activation of MAP kinase. Moreover, GPCR-induced MAP kinase activation is normal in fibroblasts deficient in both Src and Pyk2 (Src-/-Pyk2-/- cells) as well as in fibroblasts deficient in all three Src kinases expressed in these cells (Src-/-Yes-/-Fyn-/- cells). Finally, experiments are presented demonstrating that, upon stimulation of GPCR, activated Pyk2 forms a complex with Src, which in turn phosphorylates EGFR directly. These experiments reveal a role for Src kinases in Pyk2 activation and a role for Pyk2 and Src in tyrosine phosphorylation of EGFR following GPCR stimulation. In addition, EGFR, Src family kinases, and Pyk2 are not required for linking GPCRs with the MAP kinase signaling cascade.
Collapse
Affiliation(s)
- J Andreev
- Department of Pharmacology, New York University School of Medicine, Skirball Institute of Biomolecular Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Oksvold MP, Skarpen E, Wierød L, Paulsen RE, Huitfeldt HS. Re-localization of activated EGF receptor and its signal transducers to multivesicular compartments downstream of early endosomes in response to EGF. Eur J Cell Biol 2001; 80:285-94. [PMID: 11370743 DOI: 10.1078/0171-9335-00160] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The rapid internalization of receptor tyrosine kinases after ligand binding has been assumed to be a negative modulation of signal transduction. However, accumulating data indicate that signal transduction from internalized cell surface receptors also occurs from endosomes. We show that a substantial fraction of tyrosine-phosphorylated epidermal growth factor receptor (EGFR) and Shc, Grb2 and Cbl after internalization relocates from early endosomes to compartments which are negative for the early endosomes, recycling vesicle markers EEA1 and transferrin in EGF-stimulated cells. These compartments contained the multivesicular body and late endosome marker CD63, and the late endosome and lysosome marker LAMP-1, and showed a multivesicular morphology. Subcellular fractionation revealed that activated EGFR, adaptor proteins and activated ERK 1 and 2 were located in EEA1-negative and LAMP-1-positive fractions. Co-immunoprecipitations showed EGFR in complex with both Shc, Grb2 and Cbl. Treatment with the weak base chloroquine or inhibitors of lysosomal enzymes after EGF stimulation induced an accumulation of tyrosine-phosphorylated EGFR and Shc in EEA1-negative and CD63-positive vesicles after a 120-min chase period. This was accompanied by a sustained activation of ERK 1 and 2. These results suggest that EGFR signaling is not spatially restricted to the plasma membrane, primary vesicles and early endosomes, but is continuing from late endocytic trafficking organelles maturing from early endosomes.
Collapse
Affiliation(s)
- M P Oksvold
- Institute of Pathology, The National Hospital, University of Oslo, Norway.
| | | | | | | | | |
Collapse
|
55
|
Ushio-Fukai M, Griendling KK, Becker PL, Hilenski L, Halleran S, Alexander RW. Epidermal growth factor receptor transactivation by angiotensin II requires reactive oxygen species in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2001; 21:489-95. [PMID: 11304462 DOI: 10.1161/01.atv.21.4.489] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II (Ang II) is a vasoactive hormone with critical roles in vascular smooth muscle cell growth, an important feature of hypertension and atherosclerosis. Many of these effects are dependent on the production of reactive oxygen species (ROS). Ang II induces phosphorylation of the epidermal growth factor (EGF) receptor (EGF-R), which serves as a scaffold for various signaling molecules. Here, we provide novel evidence that ROS are critical mediators of EGF-R transactivation by Ang II. Pretreatment of vascular smooth muscle cells with the antioxidants diphenylene iodonium, Tiron, N-acetylcysteine, and ebselen significantly inhibited ( approximately 80% to 90%) tyrosine phosphorylation of the EGF-R by Ang II but not by EGF. Of the 5 autophosphorylation sites on the EGF-R, Ang II mainly phosphorylated Tyr1068 and Tyr1173 in a redox-sensitive manner. The Src family kinase inhibitor PP1, overexpression of kinase-inactive c-Src, or chelation of intracellular Ca(2+) attenuated EGF-R transactivation. Although antioxidants had no effects on the Ca(2+) mobilization or phosphorylation of Ca(2+)-dependent tyrosine kinase Pyk2, they inhibited c-Src activation by Ang II, suggesting that c-Src is 1 signaling molecule that links ROS and EGF-R phosphorylation. Furthermore, Ang II-induced tyrosine phosphorylation of the autophosphorylation site and the SH2 domain of c-Src was redox sensitive. These findings emphasize the importance of ROS in specific Ang II-stimulated growth-related signaling pathways and suggest that redox-sensitive EGF-R transactivation may be a potential target for antioxidant therapy in vascular disease.
Collapse
MESH Headings
- 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt/pharmacology
- Angiotensin II/pharmacology
- Angiotensin II/physiology
- Animals
- Antioxidants/pharmacology
- Azoles/pharmacology
- ErbB Receptors/drug effects
- ErbB Receptors/metabolism
- ErbB Receptors/physiology
- Isoindoles
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Onium Compounds/pharmacology
- Organoselenium Compounds/pharmacology
- Phosphorylation/drug effects
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Reactive Oxygen Species/physiology
- Receptor, ErbB-2/drug effects
- Receptor, ErbB-2/physiology
- Transcriptional Activation/drug effects
- Transcriptional Activation/physiology
- Tyrosine/metabolism
Collapse
Affiliation(s)
- M Ushio-Fukai
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
56
|
Bae SS, Choi JH, Oh YS, Perry DK, Ryu SH, Suh PG. Proteolytic cleavage of epidermal growth factor receptor by caspases. FEBS Lett 2001; 491:16-20. [PMID: 11226410 DOI: 10.1016/s0014-5793(01)02167-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apoptotic proteases cleave and inactivate survival signaling molecules such as Akt/PKB, phospholipase C (PLC)-gamma1, and Bcl-2. We have found that treatment of A431 cells with tumor necrosis factor-alpha in the presence of cycloheximide resulted in the cleavage of epidermal growth factor receptor (EGFR) as well as the activation of caspase-3. Among various caspases, caspase-1, caspase-3 and caspase-7 were most potent in the cleavage of EGFR in vitro. Proteolytic cleavage of EGFR was inhibited by both YVAD-cmk and DEVD-fmk in vitro. We also investigated the effect of caspase-dependent cleavage of EGFR upon the mediation of signals to downstream signaling molecules such as PLC-gamma1. Cleavage of EGFR by caspase-3 significantly impaired the tyrosine phosphorylation of PLC-gamma1 in vitro. Given these results, we suggest that apoptotic protease specifically cleaves and inactivates EGFR, which plays crucial roles in anti-apoptotic signaling, to abrogate the activation of EGFR-dependent downstream survival signaling molecules.
Collapse
Affiliation(s)
- S S Bae
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | | | | | | | | | | |
Collapse
|
57
|
Liu Z, Carvajal M, Carraway CA, Carraway K, Pflugfelder SC. Expression of the receptor tyrosine kinases, epidermal growth factor receptor, ErbB2, and ErbB3, in human ocular surface epithelia. Cornea 2001; 20:81-5. [PMID: 11189010 DOI: 10.1097/00003226-200101000-00016] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate the distribution and relative level of expression of the receptor tyrosine kinases, epidermal growth factor receptor (EGFR), ErbB2 and ErbB3, in human ocular surface epithelia. METHODS Immunofluorescent staining was performed to identify expression of the EGFR, ErbB2 and ErbB3 in the corneal, limbal and conjunctival epithelium in tissue sections and impression cytologies taken from normal human eyes. Western blotting was undertaken to confirm the results of immunofluorescent staining. RESULTS The three receptor tyrosine kinases, EGFR, ErbB2 and ErbB3, were detected in human corneal, limbal and conjunctival epithelia by immunofluorescent staining. Strong staining for the EGFR was observed in the basal epithelial cells at all 3 sites and throughout the corneal epithelium. Minimal or no staining for the EGFR was observed in the superficial conjunctival and limbal epithelia. The strongest staining for ErbB2 and ErbB3 was observed in the superficial ocular surface epithelium. All three receptors were detected in the corneal, limbal and conjunctival epithelium by western blot. CONCLUSION EGFR, ErbB2 and ErbB3 are expressed by the ocular surface epithelia. EGFR is preferentially expressed by the basal epithelial cells that have the greatest proliferative potential. In contrast, ErbB2 and ErbB3 are preferentially expressed by the superficial differentiated ocular surface epithelia.
Collapse
Affiliation(s)
- Z Liu
- Ocular Surface and Tear Center Bascom Palmer Eye Institute, University of Miami School of Medicine, Florida 33136, USA
| | | | | | | | | |
Collapse
|
58
|
Smith CC, Nelson J, Aurelian L, Gober M, Goswami BB. Ras-GAP binding and phosphorylation by herpes simplex virus type 2 RR1 PK (ICP10) and activation of the Ras/MEK/MAPK mitogenic pathway are required for timely onset of virus growth. J Virol 2000; 74:10417-29. [PMID: 11044086 PMCID: PMC110916 DOI: 10.1128/jvi.74.22.10417-10429.2000] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used a herpes simplex virus type 2 (HSV-2) mutant with a deletion in the RR1 (ICP10) PK domain (ICP10DeltaPK) and an MEK inhibitor (PD98059) to examine the role of ICP10 PK in virus growth. In HSV-2-infected cells, ICP10 PK binds and phosphorylates the GTPase activating protein Ras-GAP. In vitro binding and peptide competition assays indicated that Ras-GAP N-SH2 and PH domains, respectively, bind ICP10 at phosphothreonines 117 and 141 and a WD40-like motif at positions 160 to 173. Binding and phosphorylation did not occur in cells infected with ICP10DeltaPK. GTPase activity was significantly lower in HSV-2- than in ICP10DeltaPK-infected cells. Conversely, the levels of activated Ras and mitogen-activated protein kinase (MAPK), and the expression and stabilization of the transcription factor c-Fos were significantly increased in cells infected with HSV-2 or a revertant virus [HSV-2(R)] but not with ICP10DeltaPK. PD98059 inhibited MAPK activation and induction-stabilization of c-Fos. Expression from the ICP10 promoter was increased in cells infected with HSV-2 but not with ICP10DeltaPK, and increased expression was ablated by PD98059. ICP10 DNA formed a complex with nuclear extracts from HSV-2-infected cells which was supershifted by c-Fos antibody and was not seen with extracts from ICP10DeltaPK-infected cells. Complex formation was abrogated by PD98059. Onset of HSV-2 replication was significantly delayed by PD98059 (14 h versus 2 h in untreated cells), a delay similar to that seen for ICP10DeltaPK. The data indicate that Ras-GAP phosphorylation by ICP10 PK is involved in the activation of the Ras/MEK/MAPK mitogenic pathway and c-Fos induction and stabilization. This results in increased ICP10 expression and the timely onset of HSV-2 growth.
Collapse
Affiliation(s)
- C C Smith
- Departments of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
59
|
Tsuda T, Ikeda Y, Taniguchi N. The Asn-420-linked sugar chain in human epidermal growth factor receptor suppresses ligand-independent spontaneous oligomerization. Possible role of a specific sugar chain in controllable receptor activation. J Biol Chem 2000; 275:21988-94. [PMID: 10801876 DOI: 10.1074/jbc.m003400200] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To elucidate a role(s) of Asn-linked sugar chain(s) in the function of epidermal growth factor receptor (EGFR), a series of the EGFR mutants were prepared in which potential glycosylation sites in the domain III were eliminated by site-directed mutagenesis. Although the wild-type and mutants of Asn-328, Asn-337, and Asn-389 underwent autophosphorylation in response to epidermal growth factor (EGF), the Asn-420 --> Gln mutant was found to be constitutively tyrosine-phosphorylated. This abnormal ligand-independent phosphorylation of the mutant appears to be due to a ligand-independent spontaneous oligomer formation, as shown by a cross-linking experiment using the purified soluble extracellular domain (sEGFR). As revealed by the dissociation of the Asn-420 --> Gln sEGFR oligomer by simple dilution, it seems likely that the equilibrium is shifted toward oligomer formation to an unusual degree. Furthermore, it was also found that the mutation caused a loss of the ability to bind EGF. These findings suggest that the sugar chain linked to Asn-420 plays a crucial role in EGF binding and prevents spontaneous oligomerization of the EGFR, which may otherwise lead to uncontrollable receptor activation, and support the view of a specific role of an Asn-linked sugar chain in the function of a glycoprotein.
Collapse
Affiliation(s)
- T Tsuda
- Department of Biochemistry, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
60
|
Arcaro A, Zvelebil MJ, Wallasch C, Ullrich A, Waterfield MD, Domin J. Class II phosphoinositide 3-kinases are downstream targets of activated polypeptide growth factor receptors. Mol Cell Biol 2000; 20:3817-30. [PMID: 10805725 PMCID: PMC85707 DOI: 10.1128/mcb.20.11.3817-3830.2000] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/1999] [Accepted: 02/15/2000] [Indexed: 11/20/2022] Open
Abstract
The class II phosphoinositide 3-kinases (PI3K) PI3K-C2alpha and PI3K-C2beta are two recently identified members of the large PI3K family. Both enzymes are characterized by the presence of a C2 domain at the carboxy terminus and, in vitro, preferentially utilize phosphatidylinositol and phosphatidylinositol 4-monophosphate as lipid substrates. Little is understood about how the catalytic activity of either enzyme is regulated in vivo. In this study, we demonstrate that PI3K-C2alpha and PI3K-C2beta represent two downstream targets of the activated epidermal growth factor (EGF) receptor in human carcinoma-derived A431 cells. Stimulation of quiescent cultures with EGF resulted in the rapid recruitment of both enzymes to a phosphotyrosine signaling complex that contained the EGF receptor and Erb-B2. Ligand addition also induced the appearance of a second, more slowly migrating band of PI3K-C2alpha and PI3K-C2beta immunoreactivity on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Since both PI3K enzymes can utilize Ca(2+) as an essential divalent cation in lipid kinase assays and since the catalytic activity of PI3K-C2alpha is refractory to the inhibitor wortmannin, these properties were used to confirm the recruitment of each PI3K isozyme to the activated EGF receptor complex. To examine this interaction in greater detail, PI3K-C2beta was chosen for further investigation. EGF and platelet-derived growth factor also stimulated the association of PI3K-C2beta with their respective receptors in other cells, including epithelial cells and fibroblasts. The use of EGF receptor mutants and phosphopeptides derived from the EGF receptor and Erb-B2 demonstrated that the interaction with recombinant PI3K-C2beta occurs through E(p)YL/I phosphotyrosine motifs. The N-terminal region of PI3K-C2beta was found to selectively interact with the EGF receptor in vitro, suggesting that it mediates the association of this PI3K with the receptor. However, the mechanism of this interaction remains unclear. We conclude that class II PI3K enzymes may contribute to the generation of 3' phosphoinositides following the activation of polypeptide growth factor receptors in vivo and thus mediate certain aspects of their biological activity.
Collapse
Affiliation(s)
- A Arcaro
- Ludwig Institute for Cancer Research, University College, London W1P 8BT, United Kingdom
| | | | | | | | | | | |
Collapse
|
61
|
Tang H, Nishishita T, Fitzgerald T, Landon EJ, Inagami T. Inhibition of AT1 receptor internalization by concanavalin A blocks angiotensin II-induced ERK activation in vascular smooth muscle cells. Involvement of epidermal growth factor receptor proteolysis but not AT1 receptor internalization. J Biol Chem 2000; 275:13420-6. [PMID: 10788453 DOI: 10.1074/jbc.275.18.13420] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies of beta(2)-adrenergic receptor suggest that agonist-promoted receptor internalization may play an important role in extracellular signal-regulated kinase (ERK) activation by G protein-coupled receptors. In the present study, we explored the effects of angiotensin II (Ang II) type-1 receptor (AT(1)) internalization on Ang II-induced activation of ERK using the receptor internalization blocker concanavalin A (ConA) and the carboxyl terminus-truncated receptor mutants with impaired internalization. ConA inhibited AT(1) receptor internalization without affecting ligand binding to the receptor, Ang II-induced generation of second messengers, and activation of tyrosine kinases Src and Pyk2 in vascular smooth muscle cells (VSMC). ConA blocked ERK activation evoked by Ang II and the calcium ionophore A23187. Impairment of AT(1) receptor internalization by truncating the receptor carboxyl terminus did not affect Ang II-induced ERK activation. ConA induced proteolytic cleavage of the epidermal growth factor (EGF) receptor at carboxyl terminus and abolished Ang II-induced transactivation of the EGF receptor, which is critical for ERK activation by Ang II in VSMC. ConA also induced proteolysis of erbB-2 but not platelet-derived growth factor receptor. Thus, ConA blocks Ang II-induced ERK activation in VSMC through a distinct mechanism, the ConA-mediated proteolysis of the EGF receptor.
Collapse
Affiliation(s)
- H Tang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | | | |
Collapse
|
62
|
Kamer AR, Krebs L, Hoghooghi SA, Liebow C. Proliferative and apoptotic responses in cancers with special reference to oral cancer. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:58-78. [PMID: 10759427 DOI: 10.1177/10454411990100010301] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The study of signal transduction pathways for mechanisms of apoptosis and proliferation has significantly advanced our understanding of human cancer, subsequently leading to more effective treatments. Discoveries of growth factors and oncogenes, especially those that function through phosphorylation on tyrosine residues, have greatly benefited our appreciation of the biology of cancer. The regulation of proliferation and apoptosis through phosphorylation via tyrosine kinases and phosphatases is discussed, as well as the contributions of other systems, such as serine and threonine kinases and phosphatases. Receptors with seven-transmembrane domains, steroid hormones, genes, and "death domains" will also be discussed. This review attempts to compare the regulation of the growth of normal tissues and cancers with an effort to highlight the current knowledge of these factors in the growth regulation of oral/oropharyngeal cancers. Despite the strides made in our understanding of growth regulation in human cancers, the study of oral/oropharyngeal cancer specifically lags behind. More research must be done to further our understanding of oral cancer biology, if we are to develop better, more effective treatment protocols.
Collapse
Affiliation(s)
- A R Kamer
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, State University of New York at Buffalo, 14214, USA
| | | | | | | |
Collapse
|
63
|
Gual P, Giordano S, Williams TA, Rocchi S, Van Obberghen E, Comoglio PM. Sustained recruitment of phospholipase C-gamma to Gab1 is required for HGF-induced branching tubulogenesis. Oncogene 2000; 19:1509-18. [PMID: 10734310 DOI: 10.1038/sj.onc.1203514] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A distinctive property of Hepatocyte Growth Factor (HGF) is its ability to induce differentiation of tubular structures from epithelial and endothelial cells (branching tubulogenesis). The HGF receptor directly activates PI3 kinase, Ras and STAT signalling pathways and phosphorylates the adaptator GRB2 Associated Binder-1 (Gab1). Gab1 is also phosphorylated in response to Epidermal Growth Factor (EGF) but is unable to induce tubule formation. Comparison of 32P-peptide maps of Gab1 from EGF- versus HGF-treated cells, demonstrates that the same sites are phosphorylated in vivo. However, while both EGF and HGF induce rapid tyrosine phosphorylation of Gab1 with a peak at 15 min, the phosphorylation persists for over 1 h, only in response to HGF. Nine tyrosines are phosphorylated by both receptors. Three of them (Y307, Y373, Y407) bind phospholipase C-gamma (PLC-gamma). Interestingly, the overexpression of a Gab1 mutant unable to bind PLC-gamma (Gab1 Y307/373/407F) did not alter HGF-stimulated cell scattering, only partially reduced the growth stimulation but completely abolished HGF-mediated tubulogenesis. It is concluded that sustained recruitment of PLCgamma to Gab1 plays an important role in branching tubulogenesis.
Collapse
Affiliation(s)
- P Gual
- Institute for Cancer Research and Treatment (IRCC), University of Torino Medical School, Str. Prov. 142, Km 3.95, 10060 Candiolo, Italy
| | | | | | | | | | | |
Collapse
|
64
|
Rodrigues GA, Falasca M, Zhang Z, Ong SH, Schlessinger J. A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling. Mol Cell Biol 2000; 20:1448-59. [PMID: 10648629 PMCID: PMC85307 DOI: 10.1128/mcb.20.4.1448-1459.2000] [Citation(s) in RCA: 275] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Gab1 protein is tyrosine phosphorylated in response to various growth factors and serves as a docking protein that recruits a number of downstream signaling proteins, including phosphatidylinositol 3-kinase (PI-3 kinase). To determine the role of Gab1 in signaling via the epidermal growth factor (EGF) receptor (EGFR) we tested the ability of Gab1 to associate with and modulate signaling by this receptor. We show that Gab1 associates with the EGFR in vivo and in vitro via pTyr sites 1068 and 1086 in the carboxy-terminal tail of the receptor and that overexpression of Gab1 potentiates EGF-induced activation of the mitogen-activated protein kinase and Jun kinase signaling pathways. A mutant of Gab1 unable to bind the p85 subunit of PI-3 kinase is defective in potentiating EGFR signaling, confirming a role for PI-3 kinase as a downstream effector of Gab1. Inhibition of PI-3 kinase by a dominant-interfering mutant of p85 or by Wortmannin treatment similarly impairs Gab1-induced enhancement of signaling via the EGFR. The PH domain of Gab1 was shown to bind specifically to phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3], a product of PI-3 kinase, and is required for activation of Gab1-mediated enhancement of EGFR signaling. Moreover, the PH domain mediates Gab1 translocation to the plasma membrane in response to EGF and is required for efficient tyrosine phosphorylation of Gab1 upon EGF stimulation. In addition, overexpression of Gab1 PH domain blocks Gab1 potentiation of EGFR signaling. Finally, expression of the gene for the lipid phosphatase PTEN, which dephosphorylates PtdIns(3,4, 5)P3, inhibits EGF signaling and translocation of Gab1 to the plasma membrane. These results reveal a novel positive feedback loop, modulated by PTEN, in which PI-3 kinase functions as both an upstream regulator and a downstream effector of Gab1 in signaling via the EGFR.
Collapse
Affiliation(s)
- G A Rodrigues
- Department of Pharmacology and Skirball Institute, New York University Medical Center, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
65
|
Abstract
The process of signal transduction is dependent on specific protein-protein interactions. In many cases these interactions are mediated by modular protein domains that confer specific binding activity to the proteins in which they are found. Rapid progress has been made in the biochemical characterization of binding interactions, the identification of binding partners, and determination of the three-dimensional structures of binding modules and their ligands. The resulting information establishes the logical framework for our current understanding of the signal transduction machinery. In this overview a variety of protein interaction modules are discussed, and issues relating to binding specificity and the significance of a particular interaction are considered.
Collapse
Affiliation(s)
- B J Mayer
- Howard Hughes Medical Institute, Children's Hospital, Boston, MA, USA.
| |
Collapse
|
66
|
DeBell KE, Stoica BA, Verí MC, Di Baldassarre A, Miscia S, Graham LJ, Rellahan BL, Ishiai M, Kurosaki T, Bonvini E. Functional independence and interdependence of the Src homology domains of phospholipase C-gamma1 in B-cell receptor signal transduction. Mol Cell Biol 1999; 19:7388-98. [PMID: 10523627 PMCID: PMC84732 DOI: 10.1128/mcb.19.11.7388] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B-cell receptor (BCR)-induced activation of phospholipase C-gamma1 (PLCgamma1) and PLCgamma2 is crucial for B-cell function. While several signaling molecules have been implicated in PLCgamma activation, the mechanism coupling PLCgamma to the BCR remains undefined. The role of PLCgamma1 SH2 and SH3 domains at different steps of BCR-induced PLCgamma1 activation was examined by reconstitution in a PLCgamma-negative B-cell line. PLCgamma1 membrane translocation required a functional SH2 N-terminal [SH2(N)] domain, was decreased by mutation of the SH3 domain, but was unaffected by mutation of the SH2(C) domain. Tyrosine phosphorylation did not require the SH2(C) or SH3 domains but depended exclusively on a functional SH2(N) domain, which mediated the association of PLCgamma1 with the adapter protein, BLNK. Forcing PLCgamma1 to the membrane via a myristoylation signal did not bypass the SH2(N) domain requirement for phosphorylation, indicating that the phosphorylation mediated by this domain is not due to membrane anchoring alone. Mutation of the SH2(N) or the SH2(C) domain abrogated BCR-stimulated phosphoinositide hydrolysis and signaling events, while mutation of the SH3 domain partially decreased signaling. PLCgamma1 SH domains, therefore, have interrelated but distinct roles in BCR-induced PLCgamma1 activation.
Collapse
Affiliation(s)
- K E DeBell
- Laboratory of Immunobiology, Division of Monoclonal Antibodies, Center for Biologics Evaluation and Research, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Chattopadhyay A, Vecchi M, Ji QS, Mernaugh R, Carpenter G. The role of individual SH2 domains in mediating association of phospholipase C-gamma1 with the activated EGF receptor. J Biol Chem 1999; 274:26091-7. [PMID: 10473558 DOI: 10.1074/jbc.274.37.26091] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two SH2 (Src homology domain 2) domains present in phospholipase C-gamma1 (PLC-gamma1) were assayed for their capacities to recognize the five autophosphorylation sites in the epidermal growth factor receptor. Plasmon resonance and immunological techniques were employed to measure interactions between SH2 fusion proteins and phosphotyrosine-containing peptides. The N-SH2 domain recognized peptides in the order of pY1173 > pY992 > pY1068 > pY1148 >> pY1086, while the C-SH2 domain recognized peptides in the order of pY992 > pY1068 > pY1148 >> pY1086 and pY1173. The major autophosphorylation site, pY1173, was recognized only by the N-SH2 domain. Contributions of the N-SH2 and C-SH2 domains to the association of the intact PLC-gamma1 molecule with the activated epidermal growth factor (EGF) receptor were assessed in vivo. Loss of function mutants of each SH2 domain were produced in a full-length epitope-tagged PLC-gamma1. After expression of the mutants, cells were treated with EGF and association of exogenous PLC-gamma1 with EGF receptors was measured. In this context the N-SH2 is the primary contributor to PLC-gamma1 association with the EGF receptor. The combined results suggest an association mechanism involving the N-SH2 domain and the pY1173 autophosphorylation site as a primary event and the C-SH2 domain and the pY992 autophosphorylation site as a secondary event.
Collapse
Affiliation(s)
- A Chattopadhyay
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | |
Collapse
|
68
|
Abstract
Although the warfarin embryopathy syndrome, with its neurologic and bone abnormalities, has been known for decades, the role of vitamin K in the brain has not been studied systematically. Recently, it was demonstrated that vitamin K-dependent carboxylase expression is temporally regulated in a tissue-specific manner with high expression in the nervous system during the early embryonic stages and with liver expression after birth and in adult animals. This finding, along with the discovery of wide distribution of the novel vitamin K-dependent growth factor, Gas6, in the central nervous system, provides compelling evidence of a biologic role of vitamin K during the development of the nervous system. In animals and bacteria, vitamin K was observed to influence the brain sulfatide concentration and the activity and synthesis of an important enzyme involved in brain sphingolipids biosynthesis. Taken together, previous research results point to a possible role of vitamin K in the nervous system, especially during its development. Hence, the knowledge of the biologic role of vitamin K in the brain may be important for unveiling the mechanisms of normal and pathologic development and aging of the nervous system. The role of the vitamin K-dependent protein Gas6 in activation of signal transduction events in the brain in light of the age-related changes in the nervous system is also discussed.
Collapse
Affiliation(s)
- K I Tsaioun
- Harvard Medical School, New England Regional Primate Research Center, Southborough, MA 01772-9102, USA
| |
Collapse
|
69
|
Buday L. Membrane-targeting of signalling molecules by SH2/SH3 domain-containing adaptor proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1422:187-204. [PMID: 10393272 DOI: 10.1016/s0304-4157(99)00005-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
SH2/SH3 domain-containing adaptor proteins play a critical role in regulating tyrosine kinase signalling pathways. The major function of these adaptors, such as Grb2, Nck, and Crk, is to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. In recent years dozens of novel proteins have emerged that are capable of associating with the SH2 and the SH3 domains of adaptors. In this review, the author attempts to summarise these novel binding partners of Grb2, Nck, and Crk, and to discuss current controversies regarding function and regulation of protein multicomplexes held together by SH2/SH3 adaptor molecules at the plasma membrane.
Collapse
Affiliation(s)
- L Buday
- Department of Medical Chemistry, Semmelweis University Medical School, 9 Puskin Street, 1088, Budapest, Hungary.
| |
Collapse
|
70
|
Ghosh Choudhury G, Jin DC, Celeste A, Ghosh-Choudhury N, Abboud HE. Bone morphogenetic protein-2 inhibits MAPK-dependent Elk-1 transactivation and DNA synthesis induced by EGF in mesangial cells. Biochem Biophys Res Commun 1999; 258:490-6. [PMID: 10329414 DOI: 10.1006/bbrc.1999.0599] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone morphogenetic protein-2 (BMP-2) is a member of the TGFbeta superfamily of growth and differentiation factors. We investigated the effect of BMP-2 on epidermal growth factor (EGF)-induced mitogenic signaling in kidney glomerular mesangial cells. BMP-2 dose-dependently inhibits EGF-induced DNA synthesis. Maximum effect was obtained at a concentration of 100 ng/ml. BMP-2 had no inhibitory effect on the EGF receptor (EGFR)-associated tyrosine kinase activity indicating that inhibition of DNA synthesis is due to regulation of post-receptor signaling event(s). EGF stimulates MAPK activity in mesangial cells in a time-dependent manner. Inhibition of MAPK by the MEK inhibitor PD098059 blocks EGF-induced DNA synthesis indicating the requirement of this enzyme activity in EGF-mediated mitogenic signaling. Furthermore, we show that exposure of mesangial cells to BMP-2 blocks EGF-induced MAPK activity which leads to phosphorylattion of Elk-1 transcription factor. Using a GAL-4 DNA binding-domain-Elk-1 transactivation domain fusion protein-based reporter assay, we demonstrate that BMP-2 inhibits EGF-induced Elk-1-mediated transcription. These data provide the first evidence that BMP-2 signaling in mesangial cells initiates a negative regulatory cross-talk with MAPK-based transcription to inhibit EGF-induced DNA synthesis.
Collapse
Affiliation(s)
- G Ghosh Choudhury
- Geriatric Research, Education, and Clinical Center, South Texas Veteran Health Care System, San Antonio, Texas 78284, USA.
| | | | | | | | | |
Collapse
|
71
|
Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, Parsons SJ. c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem 1999; 274:8335-43. [PMID: 10075741 DOI: 10.1074/jbc.274.12.8335] [Citation(s) in RCA: 529] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence indicates that interactions between the epidermal growth factor receptor (EGFR) and the nonreceptor tyrosine kinase c-Src may contribute to an aggressive phenotype in multiple human tumors. Previous work from our laboratory demonstrated that murine fibroblasts which overexpress both these tyrosine kinases display synergistic increases in DNA synthesis, soft agar growth, and tumor formation in nude mice, and increased phosphorylation of the receptor substrates Shc and phospholipase gamma as compared with single overexpressors. These parameters correlated with the ability of c-Src and EGFR to form an EGF-dependent heterocomplex in vivo. Here we provide evidence that association between c-Src and EGFR can occur directly, as shown by receptor overlay experiments, and that it results in the appearance of two novel tyrosine phosphorylations on the receptor that are seen both in vitro and in vivo following EGF stimulation. Edman degradation analyses and co-migration of synthetic peptides with EGFR-derived tryptic phosphopeptides identify these sites as Tyr845 and Tyr1101. Tyr1101 lies within the carboxyl-terminal region of the EGFR among sites of receptor autophosphorylation, while Tyr845 resides in the catalytic domain, in a position analogous to Tyr416 of c-Src. Phosphorylation of Tyr416 and homologous residues in other tyrosine kinase receptors has been shown to be required for or to increase catalytic activity, suggesting that c-Src can influence EGFR activity by mediating phosphorylation of Tyr845. Indeed, EGF-induced phosphorylation of Tyr845 was increased in MDA468 human breast cancer cells engineered to overexpress c-Src as compared with parental MDA 468 cells. Furthermore, transient expression of a Y845F variant EGFR in murine fibroblasts resulted in an ablation of EGF-induced DNA synthesis to nonstimulated levels. Together, these data support the hypothesis that c-Src-mediated phosphorylation of EGFR Tyr845 is involved in regulation of receptor function, as well as in tumor progression.
Collapse
Affiliation(s)
- J S Biscardi
- Department of Microbiology and Cancer Center, Box 441, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
72
|
Egea J, Espinet C, Comella JX. Calcium influx activates extracellular-regulated kinase/mitogen-activated protein kinase pathway through a calmodulin-sensitive mechanism in PC12 cells. J Biol Chem 1999; 274:75-85. [PMID: 9867813 DOI: 10.1074/jbc.274.1.75] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Evidence suggests that membrane depolarization is able to promote neuronal survival through a sustained, although moderate, increase in the intracellular calcium. We have used the PC12 cell line to study the possible intracellular pathways that can be activated by calcium influx. Previously, we observed that membrane depolarization-induced calcium influx was able to activate the extracellular-regulated kinase (ERK)/mitogen-activated protein kinase pathway and most of this activation was calmodulin-dependent. We demonstrated that a part of the ERK activation is due to the phosphorylation of the epidermal growth factor receptor. Here, we show that both the epidermal growth factor receptor phosphorylation and the Shc-Grb2-Ras activation are not calmodulin-modulated. Moreover, dominant negative mutant Ha-ras (Asn-17) prevents the activation on ERKs by membrane depolarization, suggesting that Ras and calmodulin are both necessaries to activate ERKs by membrane depolarization. We failed to observe any significant induction and/or modulation of the A-Raf, B-Raf or c-Raf-1 kinase activities, thus suggesting the existence of a MEK kinase different from the classical Raf kinases that directly or indirectly can be modulated by Ca2+/calmodulin.
Collapse
Affiliation(s)
- J Egea
- Grup de Neurobiologia Molecular, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | | | | |
Collapse
|
73
|
Dulin NO, Sorokin A, Douglas JG. Arachidonate-induced tyrosine phosphorylation of epidermal growth factor receptor and Shc-Grb2-Sos association. Hypertension 1998; 32:1089-93. [PMID: 9856979 DOI: 10.1161/01.hyp.32.6.1089] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
-Protein tyrosine phosphorylation induced by arachidonic acid (AA), an important lipid second messenger, was investigated in rabbit renal proximal tubule epithelial cells. AA stimulated tyrosine phosphorylation of a number of proteins with estimated molecular weights of 42, 44, 52, 56, 85, and 170/180 kDa. The phosphoproteins pp44 and pp42 were identified as 2 isoforms of mitogen-activated protein kinase (MAPK). Phosphorylation of MAPK in response to AA was transient, dose-dependent, and accompanied by an increase in its activity. The mechanism of AA-induced MAPK activation in RTE cells was protein kinase C-independent and involved tyrosine phosphorylation of adaptor protein Shc and its association with Grb2-Sos complex. Moreover, stimulation of RTE cells with AA resulted in significant phosphorylation of epidermal growth factor (EGF) receptor and its association with Shc. The effect of AA on EGF receptor phosphorylation, its association with Shc, and MAPK activation was similar to the effect of 1 ng/mL EGF. Tyrphostin AG1478, a specific inhibitor of EGF receptor tyrosine kinase activity, completely blocked the effects of AA and EGF but not phorbol ester on MAPK phosphorylation. These data suggest that in renal tubular epithelial cells, the mechanism of AA-induced MAPK activation involves tyrosine phosphorylation of EGF receptor and its association with Shc and Grb2-Sos complex. Given the critical role of AA in signaling linked to G protein-coupled receptors (GPCRs), these observations provide a mechanism for cross talk between GPCRs linked to phospholipases and the tyrosine kinase receptor signaling cascades.
Collapse
Affiliation(s)
- N O Dulin
- Division of Hypertension, Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Ohio 44106-4982, USA
| | | | | |
Collapse
|
74
|
Cleghon V, Feldmann P, Ghiglione C, Copeland TD, Perrimon N, Hughes DA, Morrison DK. Opposing actions of CSW and RasGAP modulate the strength of Torso RTK signaling in the Drosophila terminal pathway. Mol Cell 1998; 2:719-27. [PMID: 9885560 DOI: 10.1016/s1097-2765(00)80287-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Drosophila, specification of embryonic terminal cells is controlled by the Torso receptor tyrosine kinase. Here, we analyze the molecular basis of positive (Y630) and negative (Y918) phosphotyrosine (pY) signaling sites on Torso. We find that the Drosophila homolog of RasGAP associates with pY918 and is a negative effector of Torso signaling. Further, we show that the tyrosine phosphatase Corkscrew (CSW), which associates with pY630, specifically dephosphorylates the negative pY918 Torso signaling site, thus identifying Torso to be a substrate of CSW in the terminal pathway. CSW also serves as an adaptor protein for DRK binding, physically linking Torso to Ras activation. The opposing actions of CSW and RasGAP modulate the strength of the Torso signal, contributing to the establishment of precise boundaries for terminal structure development.
Collapse
Affiliation(s)
- V Cleghon
- Molecular Basis of Carcinogenesis Laboratory, National Cancer Institute, Frederick Cancer Research and Development Center, Maryland 21702, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Jabado N, Jauliac S, Pallier A, Bernard F, Fischer A, Hivroz C. Sam68 association with p120GAP in CD4+ T cells is dependent on CD4 molecule expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 1998; 161:2798-2803. [PMID: 9743338 DOI: 10.4049/jimmunol.161.6.2798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
p120 GTPase-activating protein (p120GAP) is a major negative regulator of p21ras activity in several cell types including T cells. Catalytic activity of this enzyme is regulated in part by its interaction with several associated tyrosine-phosphorylated proteins. Sam68 was initially described as associated with p120GAP. It has been further established that Sam68 is a substrate of src kinases in mitosis and that it is not associated with p120GAP in transformed fibroblasts. We describe herein that Sam68 associates with p120GAP and PLC gamma 1 in human mature T cells and in a T cell line expressing the CD4 molecule HUT78 CD4+. This association is present in nonactivated cells and increases after anti-CD3 activation. It is dependent on CD4 expression and, in part, on the association of CD4 with p56lck, as shown by the strongly decreased association of Sam68 with p120GAP in the CD4- mutants, HUT78 CD4-, and by the reduced association of Sam68 with both p120GAP and p56lck in the HUT78 T cell line expressing a CD4 mutant unable to interact with p56lck, HUT78 C420/22. We propose that recruitment of Sam68, via CD4/p56lck, to the inner face of the plasma membrane may permit, via its docking properties, the correct association of key signaling molecules including PLC gamma 1 and p120GAP. This formation of transduction modules will enable the activation of different signaling cascades including the p21ras pathway and an array of downstream events, ultimately leading to T cell activation.
Collapse
Affiliation(s)
- N Jabado
- Institut National de la Santé et de la Recherche Médicale, Unité 429, Hôpital Necker-Enfants Malades, Paris, France.
| | | | | | | | | | | |
Collapse
|
76
|
Suc I, Meilhac O, Lajoie-Mazenc I, Vandaele J, Jürgens G, Salvayre R, Nègre-Salvayre A. Activation of EGF receptor by oxidized LDL. FASEB J 1998; 12:665-71. [PMID: 9619445 DOI: 10.1096/fasebj.12.9.665] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oxidized low density lipoproteins (oxLDL) are thought to play a major role in atherosclerosis. OxLDL exhibit a wide variety of biological effects resulting from their ability to interfere with intracellular signaling. The cellular targets and primary signaling events of oxLDL are unknown. We report that oxLDL elicit, in intact cells, tyrosine phosphorylation of the epithelial growth factor receptor (EGFR) and activation of its signaling pathway. This activation triggered by oxLDL was associated with derivatization of reactive amino groups of EGFR and was mimicked by 4-hydroxynonenal (4-HNE, a major lipid peroxidation product of oxLDL). Immunopurified EGFR was derivatized and activated in vitro by oxLDL lipid extracts and 4-HNE, thus indicating that 1) EGFR may be a primary target of oxidized lipids and 2) EGFR derivatization may be associated with activation. The reported data suggest that EGFR acts as a sensor for oxidized lipids. We therefore propose a novel concept of the mechanism by which oxidized lipids (contained in oxLDL or more generally produced during oxidative stress) are able to activate receptor tyrosine kinase and subsequent signaling pathways, resulting finally in a gain of function.
Collapse
Affiliation(s)
- I Suc
- INSERM U-466 and Biochemistry Department, Institut Louis Bugnard, CHU Rangueil, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
77
|
Wang Z, Glück S, Zhang L, Moran MF. Requirement for phospholipase C-gamma1 enzymatic activity in growth factor-induced mitogenesis. Mol Cell Biol 1998; 18:590-7. [PMID: 9418905 PMCID: PMC121526 DOI: 10.1128/mcb.18.1.590] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cytoplasmic regions of the receptors for epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) bind and activate phospholipase C-gamma1 (PLC-gamma1) and other signaling proteins in response to ligand binding outside the cell. Receptor binding by PLC-gamma1 is a function of its SH2 domains and is required for growth factor-induced cell cycle progression into the S phase. Microinjection into MDCK epithelial cells and NIH 3T3 fibroblasts of a polypeptide corresponding to the noncatalytic SH2-SH2-SH3 domains of PLC-gamma1 (PLC-gamma1 SH2-SH2-SH3) blocked growth factor-induced S-phase entry. Treatment of cells with diacylglycerol (DAG) or DAG and microinjected inositol-1,4,5-triphosphate (IP3), the products of activated PLC-gamma1, did not stimulate cellular DNA synthesis by themselves but did suppress the inhibitory effects of the PLC-gamma1 SH2-SH2-SH3 polypeptide but not the cell cycle block imposed by inhibition of the adapter protein Grb2 or p21 Ras. Two c-fos serum response element (SRE)-chloramphenicol acetyltransferase (CAT) reporter plasmids, a wild-type version, wtSRE-CAT, and a mutant, pm18, were used to investigate the function of PLC-gamma1 in EGF- and PDGF-induced mitogenesis. wtSRE-CAT responds to both protein kinase C (PKC)-dependent and -independent signals, while the mutant, pm18, responds only to PKC-independent signals. Microinjection of the dominant-negative PLC-gamma1 SH2-SH2-SH3 polypeptide greatly reduced the responses of wtSRE-CAT to EGF stimulation in MDCK cells and to PDGF stimulation in NIH 3T3 cells but had no effect on the responses of mutant pm18. These results indicate that in addition to Grb2-mediated activation of Ras, PLC-gamma1-mediated DAG production is required for EGF- and PDGF-induced S-phase entry and gene expression, possibly through activation of PKC.
Collapse
Affiliation(s)
- Z Wang
- Department of Medicine, University of Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
78
|
Affiliation(s)
- B J Mayer
- Howard Hughes Medical Institute, Children's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
79
|
Voldborg BR, Damstrup L, Spang-Thomsen M, Poulsen HS. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann Oncol 1997; 8:1197-206. [PMID: 9496384 DOI: 10.1023/a:1008209720526] [Citation(s) in RCA: 345] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a growth factor receptor that induces cell differentiation and proliferation upon activation through the binding of one of its ligands. The receptor is located at the cell surface, where the binding of a ligand activates a tyrosine kinase in the intracellular region of the receptor. This tyrosine kinase phosphorylates a number of intracellular substrates that activates pathways leading to cell growth, DNA synthesis and the expression of oncogenes such as fos and jun. EGFR is thought to be involved the development of cancer, as the EGFR gene is often amplified, and/or mutated in cancer cells. In this review we will focus on: (I) the structure and function of EGFR, (II) implications of receptor/ligand coexpression and EGFR mutations or overexpression, (III) its effect on cancer cells, (IV) the development of the malignant phenotype and (V) the clinical aspects of therapeutic targeting of EGFR.
Collapse
Affiliation(s)
- B R Voldborg
- Section for Radiation Biology, Finsen Centre, Rigshospitalet, Copenhagen, Denmark
| | | | | | | |
Collapse
|
80
|
Blaikie PA, Fournier E, Dilworth SM, Birnbaum D, Borg JP, Margolis B. The role of the Shc phosphotyrosine interaction/phosphotyrosine binding domain and tyrosine phosphorylation sites in polyoma middle T antigen-mediated cell transformation. J Biol Chem 1997; 272:20671-7. [PMID: 9252386 DOI: 10.1074/jbc.272.33.20671] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The phosphotyrosine interaction (PI)/phosphotyrosine binding (PTB) domain of Shc binds specific tyrosine-phosphorylated motifs found on activated growth factor receptors and proteins such as polyoma virus middle T antigen (MT). Phenylalanine 198 (Phe198) has been identified as a crucial residue involved in the interaction of the Shc PI/PTB with phosphopeptides. In NIH 3T3 cells expressing MT, p52 Shc carrying the F198V mutation is weakly phosphorylated and does not bind MT or Grb2. Overexpression of the PI/PTB domain alone as Shc amino acids 1-238 acted in a dominant interfering fashion blocking MT-induced transformation. However, expression of a slightly longer construct, Shc 1-260, which encompasses Tyr239/Tyr240, a novel Shc tyrosine phosphorylation site, did not block transformation. This was found to be due to the ability of Shc 1-260 to become tyrosine-phosphorylated and bind Grb2. Furthermore, full-length Shc in which Tyr239/Tyr240 had been mutated to phenylalanine did not become tyrosine-phosphorylated or bind Grb2 but did inhibit colony formation in soft agar. Conversely, p52 Shc carrying a mutation in the other tyrosine phosphorylation site, Tyr317, became heavily tyrosine-phosphorylated, bound Grb2, and gave rise to colonies in soft agar.
Collapse
Affiliation(s)
- P A Blaikie
- Department of Internal Medicine and Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0650, USA
| | | | | | | | | | | |
Collapse
|
81
|
Abstract
Tyrosine phosphorylation is widely recognized as playing an important role in cell differentiation, proliferation and carcinogenesis. We used the polymerase chain reaction (PCR) method to identify protein tyrosine kinases that were expressed in the skin. Mixed oligonucleotide probes were used to amplify and screen neonatal murine skin mRNA for clones encoding amino acid contiguities, the conservation of which is characteristic of the protein tyrosine kinase family. When the PCR products were sequenced, a novel clone encoding protein tyrosine kinase, PTK70, was identified. A full-length cDNA was isolated from a mouse thymus cDNA library. The nucleotide and deduced amino acid sequence showed that it featured src-homology (SH) 2 domain, SH3 domain and kinase domain like other src family protein tyrosine kinases, but lacked the N-terminal myristylation site and C-terminal tyrosine residue. Although the mRNA of PTK70 was detected in various tissues ubiquitously, the degree of its expression differed among tissues. Murine skin is one in which PTK70 was expressed strongly, with its expression being much stronger in the epidermis and in the cell line derived from murine keratinocytes than in those from melanoma or fibroblast cell lines. These evidences suggest that PTK70 may be involved in proliferation or differentiation of keratinocytes in the skin.
Collapse
Affiliation(s)
- Y Kawachi
- Department of Dermatology, University of Tsukuba, Japan
| | | | | |
Collapse
|
82
|
Schlessinger J. Phospholipase Cgamma activation and phosphoinositide hydrolysis are essential for embryonal development. Proc Natl Acad Sci U S A 1997; 94:2798-9. [PMID: 9096299 PMCID: PMC34153 DOI: 10.1073/pnas.94.7.2798] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- J Schlessinger
- Department of Pharmacology, New York University Medical Center, NY 10016, USA
| |
Collapse
|
83
|
Tocque B, Delumeau I, Parker F, Maurier F, Multon MC, Schweighoffer F. Ras-GTPase activating protein (GAP): a putative effector for Ras. Cell Signal 1997; 9:153-8. [PMID: 9113414 DOI: 10.1016/s0898-6568(96)00135-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One attractive candidate for a Ras effector protein, other than the Raf kinases, is Ras-GAP. Indeed, recent literature suggests that besides the Raf/MAP kinase cascade, additional pathways must be stimulated to elicit a full biological response to Ras. Ras binds the COOH terminal domain of Ras-GAP, while the NH2 terminal domain appears to be essential for triggering downstream signals. Since Ras-GAP itself has no obvious enzymatic function that might explain a role in processes associated with proliferation, differentiation or apoptosis, candidates for downstream Ras-GAP effectors that fulfill this role remain to be identified. The newly found GAP-SH3 domain Binding Protein (G3BP) may be one of these. This review will briefly overview the candidates Ras effectors and discuss the results that position Ras-GAP as a critical effector downstream of Ras.
Collapse
Affiliation(s)
- B Tocque
- RPR Gene Medicine, CRVA, Vitry/Seine, France
| | | | | | | | | | | |
Collapse
|
84
|
Strakova Z, Kumar A, Watson AJ, Soloff MS. A new linear V1A vasopressin antagonist and its use in characterizing receptor/G protein interactions. Mol Pharmacol 1997; 51:217-24. [PMID: 9203626 DOI: 10.1124/mol.51.2.217] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We characterized a new iodinated, high affinity, linear V1a vasopressin antagonist, phenylacetylD-Tyr(Et)Phe-Gln-Asn-Lys-Pro-Arg-Tyr-NH2. The antagonist bound specifically to the V1a vasopressin receptor in crude rat liver membranes with an apparent Kd value of 0.168 nM. This affinity is approximately 1 order of magnitude greater than that of the natural agonist, vasopressin. The inhibitory activity of the antagonist can be demonstrated by its inability to elicit activation and uncoupling of G proteins from the receptor. Thus, after occupancy of receptor sites in rat liver membranes with labeled antagonist and detergent solubilization, the labeled receptor (approximately 60 kDa) was eluted as a stable 400-kDa complex on size-exclusion chromatography. In contrast, when the receptor sites were occupied by the agonist [3H]vasopressin, the receptor eluted as a 60-kDa peak. Coincubation of membranes with iodinated antagonist and an excess of unlabeled vasopressin caused both reduced antagonist binding and a complete shift from the 400-kDa to the 60-kDa peak. The addition of vasopressin to unliganded 400-kDa fractions resulted in a 75% increase in [35S]guanosine-5'-O-(3-thio)triphosphate binding activity, indicating that the 400-kDa fraction contains complexes between the V1a receptor and G proteins. The vasopressin-elicited increase was inhibited by antagonist. Using specific antibodies and immunoadsorption to protein A/Sepharose columns, we found that G protein isotypes G(alpha q/11), G(alpha i3), and G(alpha s), and effector enzymes PLC-beta1, PLC-gamma2 and PLA-2 were associated with the antagonist-labeled receptor in the 400-kDa fraction. Because the 400-kDa complex was found in the absence of ligand, the V1a receptor and the appropriate G proteins and effector enzymes are likely preassociated with each other and do not aggregate after antagonist addition. The association of V1a receptor with the different specific G proteins and effector enzymes is consistent with the multiple actions of vasopressin on liver cells. Antibodies directed against a portion of the carboxyl-terminal domain of the V1a receptor interacted with 60-kDa antagonist-occupied receptor but not with receptor in the 400-kDa complex. These results suggest that the carboxyl-terminal region of the receptor is sterically hindered when coupled to G proteins. The iodinated linear vasopressin antagonist therefore allows stable receptor/G protein complexes and can be an important tool (along with the antisera) for use in the study of factors that control V1a receptor/G protein coupling.
Collapse
Affiliation(s)
- Z Strakova
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston 77555-1062, USA
| | | | | | | |
Collapse
|
85
|
Nam HJ, Haser WG, Roberts TM, Frederick CA. Intramolecular interactions of the regulatory domains of the Bcr-Abl kinase reveal a novel control mechanism. Structure 1996; 4:1105-14. [PMID: 8805596 DOI: 10.1016/s0969-2126(96)00116-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The Abl nonreceptor tyrosine kinase is implicated in a range of cellular processes and its transforming variants are involved in human leukemias. The N-terminal regulatory region of the Abl protein contains Src homology domains SH2 and SH3 which have been shown to be important for the regulation of its activity in vivo. These domains are often found together in the same protein and biochemical data suggest that the functions of one domain can be influenced by the other. RESULTS We have determined the crystal structure of the Abl regulatory region containing the SH3 and SH2 domains. In general, the individual domains are very similar to those of previously solved structures, although the Abl SH2 domain contains a loop which is extended so that one side of the resulting phosphotyrosine-binding pocket is open. In our structure the protein exists as a monomer with no intermolecular contacts to which a biological function may be attributed. However, there is a significant intramolecular contact between a loop of the SH3 domain and the extended loop of the SH2 domain. This contact surface includes the SH2 loop segment that is responsible for binding the phosphate moiety of phosphotyrosine-containing proteins and is therefore critical for orienting peptide interactions. CONCLUSIONS The crystal structure of the composite Abl SH3-SH2 domain provides the first indication of how SH2 and SH3 domains communicate with each other within the same molecule and why the presence of one directly influences the activity of the other. This is the first clear evidence that these two domains are in contact with each other. The results suggest that this direct interaction between the two domains may affect the ligand binding properties of the SH2 domain, thus providing an explanation for biochemical and functional data concerning the Bcr-Abl kinase.
Collapse
Affiliation(s)
- H J Nam
- Department of X-ray Crystallography, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
86
|
Amundadottir LT, Merlino G, Dickson RB. Transgenic mouse models of breast cancer. Breast Cancer Res Treat 1996; 39:119-35. [PMID: 8738611 DOI: 10.1007/bf01806083] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although valuable initial information can be gathered about transformation from in vitro studies, human cancer occurs in the context of a complex interaction with its environment and must ultimately be studied in living animals. Transgenic animal models have been used to study breast transformation for a number of years and have yielded valuable information on the subject. In this paper, we will summarize results from our laboratories, and others, regarding the use of transgenic mice to study breast tumorigenesis. We will also suggest future directions for the use of transgenic models to understand, and hopefully, one day to cure the disease.
Collapse
Affiliation(s)
- L T Amundadottir
- Vincent T. Lombardi Cancer Research Center, Georgetown University, Washington DC 20007, USA
| | | | | |
Collapse
|
87
|
Yajnik V, Blaikie P, Bork P, Margolis B. Identification of residues within the SHC phosphotyrosine binding/phosphotyrosine interaction domain crucial for phosphopeptide interaction. J Biol Chem 1996; 271:1813-6. [PMID: 8567619 DOI: 10.1074/jbc.271.4.1813] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Shc is an Src homology 2 (SH2) domain protein thought to be an important component of the signaling pathway leading from cell surface receptors to Ras. A new phosphotyrosine interaction (PI) domain (also known as the phosphotyrosine binding (PTB) domain) has been described in the amino terminus of Shc. The Shc PI domain binding specificity is dependent on residues lying amino-terminal to the phosphotyrosine rather than carboxyl-terminal as is seen with SH2 domains. We randomly mutagenized the Shc PTB/PI domain in an effort to identify residues in the domain crucial for interaction with phosphotyrosine-containing peptides. We then screened the mutants for binding to the tyrosine-phosphorylated carboxyl-terminal tail of the epidermal growth factor (EGF) receptor. Most striking were mutations that altered a phenylalanine residue in block 4 of the domain severely impairing PI domain function. This phenylalanine residue is conserved in all but one subfamily of PI domains that have been identified to date. Reconstitution of this phenylalanine mutation into full-length Shc created a protein unable to interact with the EGF receptor in living cells.
Collapse
Affiliation(s)
- V Yajnik
- Department of Pharmacology, New York University Medical Center, New York 10016, USA
| | | | | | | |
Collapse
|
88
|
Lai KS, Jin Y, Graham DK, Witthuhn BA, Ihle JN, Liu ET. A kinase-deficient splice variant of the human JAK3 is expressed in hematopoietic and epithelial cancer cells. J Biol Chem 1995; 270:25028-36. [PMID: 7559633 DOI: 10.1074/jbc.270.42.25028] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Signal transduction of cytokine receptors is mediated by the JAK family of tyrosine kinases. Recently, the kinase partners for the interleukin (IL)-2 receptor have been identified as JAK1 and JAK3. In this study, we report the identification of splice variants that may modulate JAK3 signaling. Three splice variants were isolated from different mRNA sources: breast (B), spleen (S), and activated monocytes (M). Sequence analysis revealed that the splice variants contain identical NH2-terminal regions but diverge at the COOH termini. Analyses of expression of the JAK3 splice isoforms by reverse transcriptase-polymerase chain reaction on a panel of cell lines show splice preferences in different cell lines: the S-form is more commonly seen in hematopoietic lines, whereas the B- and M-forms are detected in cells both of hematopoietic and epithelial origins. Antibodies raised against peptides to the B-form splice variant confirmed that the 125-kDa JAK3B protein product is found abundantly in hematopoietic as well as epithelial cells, including primary breast cancers. The lack of subdomain XI in the tyrosine kinase core of the B-form JAK3 protein suggests that it is a defective kinase. This is supported by the lack of detected autokinase activity of the B-form JAK3. Intriguingly, both the S and B splice isoforms of JAK3 appear to co-immunoprecipitate with the IL-2 receptor from HUT-78 cell lysates. This and the presence of multiple COOH-terminal splice variants coexpressed in the same cells suggest that the JAK3 splice isoforms are functional in JAK3 signaling and may enrich the complexity of the intracellular responses functional in IL-2 or cytokine signaling.
Collapse
Affiliation(s)
- K S Lai
- Department of Biology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 27599-7295, USA
| | | | | | | | | | | |
Collapse
|
89
|
Chalupny NJ, Aruffo A, Esselstyn JM, Chan PY, Bajorath J, Blake J, Gilliland LK, Ledbetter JA, Tepper MA. Specific binding of Fyn and phosphatidylinositol 3-kinase to the B cell surface glycoprotein CD19 through their src homology 2 domains. Eur J Immunol 1995; 25:2978-84. [PMID: 7589101 DOI: 10.1002/eji.1830251040] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CD19 is a B cell surface protein capable of forming non-covalent molecular complexes with a number of other B cell surface proteins including the CD21/CD81/Leu-13 complex as well as with surface immunoglobulin. CD19 tyrosine phosphorylation increases after B cell activation, and is proposed to play a role in signal transduction through its cytoplasmic domain, which contains nine tyrosine residues. Several second messenger proteins have been shown to immunoprecipitate with CD19, including p59 Fyn (Fyn), p59 Lyn (Lyn) and phosphatidylinositol-3 kinase (PI-3 kinase). These associations are predicted to occur via the src-homology 2 (SH2) domains of the second messenger proteins. Two of the cytoplasmic tyrosines in the CD19 cytoplasmic region contain the consensus binding sequence for the PI-3 kinase SH2 domain (YPO4-X-X-M). However, the reported consensus binding sequence for the Fyn and Lyn SH2 domains (YPO4-X-X-I/L) is not found in CD19. We investigated the capacity of CD19 cytoplasmic tyrosines to bind both Fyn and PI-3 kinase SH2-domain fusion proteins. In activated B cells, both Fyn and PI-3 kinase SH2-domain fusion proteins precipitate CD19. Using synthetic tyrosine-phosphorylated peptides comprising each of the CD19 cytoplasmic tyrosines and surrounding amino acids, we investigated the ability of the Fyn SH2 and PI-3 kinase SH2 fusion proteins to bind to the different CD19 cytoplasmic phosphotyrosine peptides. ELISA revealed that the two CD19 cytoplasmic tyrosine residues contained within the Y-X-X-M sequences (Y484 and Y515) bound preferentially to the PI-3 kinase SH2-domain fusion proteins. Two different tyrosines (Y405 and Y445) bound preferentially to the Fyn SH2-domain fusion protein via a novel sequence, Y-E-N-D/E, different from that previously reported for the Fyn SH2 domain. In precipitation studies, peptide Y484 was able to compete with tyrosine phosphorylated CD19 specifically for binding to the PI-3 kinase SH2 domain fusion proteins, while peptides Y405 and Y445 were able to compete specifically for binding to the Fyn SH2 domain fusion proteins. These results indicate that CD19 may be capable of binding both Fyn and PI-3 kinase concurrently, suggesting a mechanism for CD19 signal transduction, in which binding of PI-3 kinase to the Fyn SH3 domain results in activation of PI-3 kinase.
Collapse
Affiliation(s)
- N J Chalupny
- Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
Growth factors are involved in a variety of cellular responses such as growth, differentiation, migration, metabolism, and transformation. Binding of the growth factor to its corresponding cell surface receptor results in activation of the receptor's intrinsic tyrosine kinase activity, and subsequently in activation of complex multistep signal transduction cascades. Activation of these interconnected signaling pathways eventually leads to a biological response, which involves changes in gene expression and protein synthesis. The biological response has been shown to be receptor-specific and also cell-type (tissue)-specific, indicating that various receptors activate distinct signal transduction pathways in one tissue and that one receptor activates different pathways in various tissues. What determines receptor specificity and tissue specificity? In this context, this article will focus on certain receptors with intrinsic tyrosine kinase activity, including receptors for platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin, and nerve growth factor (NGF).
Collapse
Affiliation(s)
- K Seedorf
- Department of Molecular Signaling, Hagedorn Research Institute, Gentofte, Denmark
| |
Collapse
|
91
|
Galisteo ML, Dikic I, Batzer AG, Langdon WY, Schlessinger J. Tyrosine phosphorylation of the c-cbl proto-oncogene protein product and association with epidermal growth factor (EGF) receptor upon EGF stimulation. J Biol Chem 1995; 270:20242-5. [PMID: 7657591 DOI: 10.1074/jbc.270.35.20242] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The murine retroviral oncogene v-cbl induces pre-B cell lymphomas and myelogenous leukemias. The protein product of the mammalian c-cbl proto-oncogene is a widely expressed cytoplasmic 120-kDa protein (p120cbl) whose normal cellular function has not been determined. Here we show that upon stimulation of human epidermal growth factor (EGF) receptor, p12ocbl becomes strongly tyrosine-phosphorylated and associates with activated EGF receptor in vivo. A GST fusion protein containing amino acids 1-486 of p120cbl, including a region highly conserved in nematodes, binds directly to the autophosphorylated carboxyl-terminal tail of the EGF receptor. Platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or nerve growth factor (NGF) stimulation also results in tyrosine phosphorylation of p120cbl. Recent genetic studies in Caenorhabditis elegans indicate that Sli-1, a p120cbl homologue, plays a negative regulatory role in control of the Ras signaling pathway initiated by the C. elegans EGF receptor homologue. Our results indicate that p120cbl is involved in an early step in the EGF signaling pathway that is conserved from nematodes to mammals.
Collapse
Affiliation(s)
- M L Galisteo
- Department of Pharmacology, New York University Medical Center, New York 10016, USA
| | | | | | | | | |
Collapse
|
92
|
Abstract
An emerging theme in both the biology of signal transduction and the biochemistry of proteins has been the modular function of small protein domains. In some cases these can directly regulate catalytic activity. In others, they serve to interconnect important regulatory proteins. SH2 (src homology 2) domains represent some of the best studied models. Originally identified on the basis of homology in src and fps [1], SH2s are elements that ordinarily respond to tyrosine phosphorylation by binding the phosphorylated sequence. As such, they are key elements in tyrosine kinase regulation of cellular processes. Because SH2 interactions result from phosphorylation, such elements provide a regulatable circuitry along which signals can be transmitted in a timely manner. Because the regulation is based on a common mechanism, signal generators can target several different proteins coordinately. The PDGF receptor (PDGFr), for example, may interact with as many as ten different elements [2,3]. There are a number of excellent reviews on SH2 domains available [4-11]. This discussion will try to show how genetic, biochemical and biophysical results can be integrated in a satisfying way.
Collapse
Affiliation(s)
- B Schaffhausen
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
93
|
Okada N, Koizumi S. A neuroprotective compound, aurin tricarboxylic acid, stimulates the tyrosine phosphorylation cascade in PC12 cells. J Biol Chem 1995; 270:16464-9. [PMID: 7608219 DOI: 10.1074/jbc.270.27.16464] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aurin tricarboxylic acid (ATA), a general nuclease inhibitor, was reported to prevent PC12 cells from cell death caused by serum starvation (1). In our study, ATA also protected PC12 cells, but not NIH3T3 cells, from serum-starved cell death. When we investigated the mechanism of action of ATA on these cells, ATA was found to increase tyrosine phosphorylation in PC12 cells, but not in NIH3T3 cells. Further investigation on tyrosine-phosphorylated proteins revealed that ATA, similar to nerve growth factor and epidermal growth factor, induced tyrosine phosphorylation of mitogen-activated protein kinases. Since the tyrosine phosphorylation of mitogen-activated protein kinases is thought to play an important role inn growth factor-dependent signal pathways, this finding suggests that the action of ATA on PC12 cells is mediated by tyrosine phosphorylation cascade, similar to growth factor signaling. In addition, we found that Shc proteins, phosphatidylinositol 3-kinase, and phospholipase C-gamma were also phosphorylated in ATA-treated PC12 cells. These key proteins in signal transduction pathways are known to associate with ligand-activated growth factor receptors and are phosphorylated on tyrosine. Thus, the phosphorylation of these three proteins by ATA stimulation supports the speculation that ATA activates a certain receptor tyrosine kinase.
Collapse
Affiliation(s)
- N Okada
- Bio-Organic Research Department, International Research Laboratories, Ciba-Geigy Japan Limited, Takarazuka
| | | |
Collapse
|
94
|
Stover DR, Becker M, Liebetanz J, Lydon NB. Src phosphorylation of the epidermal growth factor receptor at novel sites mediates receptor interaction with Src and P85 alpha. J Biol Chem 1995; 270:15591-7. [PMID: 7797556 DOI: 10.1074/jbc.270.26.15591] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Following ligand binding, the epidermal growth factor receptor (EGF-R) autophosphorylates itself on tyrosine residues located in its carboxyl terminus; in vitro, three sites are highly phosphorylated, while two other sites are phosphorylated to lesser extents. In the presence of the Src protein-tyrosine kinase, in vitro phosphorylation of the minor autophosphorylation sites was increased, and four additional residues were phosphorylated. Following EGF stimulation, two (Tyr-891 and Tyr-920) were found to be phosphorylated in a colorectal cell line (DLD-1) and in a breast tumor cell line (MCF7). The remaining in vitro sites were not found to be highly phosphorylated in vivo. The sequences surrounding Tyr-891 and Tyr-920 match the reported consensus binding sequences for the SH2 domains of Src and the regulatory domain of phosphatidylinositol 3-kinase (p85 alpha), respectively. In vitro, both of these proteins were found to bind to Src-phosphorylated EGF-R with approximately 100-fold greater affinity than to autophosphorylated EGF-R, demonstrating that Src creates new sites for SH2 binding. Furthermore, Csk-inactivated Src was activated by interaction with Src-phosphorylated EGF-R but not by autophosphorylated EGF-R. Upon EGF treatment of MCF7 or three colorectal carcinoma cell lines (WiDr, DLD-1, and LS174T), the EGF-R coimmunoprecipitated with both p85 alpha and Src. Evidence is also presented that suggests that an EGF-R-related protein, ErbB2, may be involved in similar Src-mediated interactions. These data demonstrate that EGF-R is phosphorylated in vivo at non-autophosphorylation sites and that these novel sites can act as docking sites for Src, P85 alpha, and potentially other SH2-containing proteins. In addition, the data suggest a tyrosine phosphatase-independent mechanism for the elevation of Src activity in cells exposed to growth factors. Overexpression of Src, EGF-R, and/or ErbB2 in breast and colorectal tumor cells suggests the potential that such interactions may contribute to the transformed phenotype of these carcinomas.
Collapse
Affiliation(s)
- D R Stover
- Research Department, Ciba Geigy Limited, Basel, Switzerland
| | | | | | | |
Collapse
|
95
|
Kauffmann-Zeh A, Thomas GM, Ball A, Prosser S, Cunningham E, Cockcroft S, Hsuan JJ. Requirement for phosphatidylinositol transfer protein in epidermal growth factor signaling. Science 1995; 268:1188-90. [PMID: 7761838 DOI: 10.1126/science.7761838] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Stimulation of phosphatidylinositol-4,5-bisphosphate (PIP2) hydrolysis is a widespread mechanism for receptor-mediated signaling in eukaryotes. Cytosolic phosphatidylinositol transfer protein (PITP) is necessary for guanosine triphosphate (GTP)-dependent hydrolysis of PIP2 by phospholipase C-beta (PLC-beta), but the role of PITP is unclear. Stimulation of phospholipase C-gamma (PLC-gamma) in A431 human epidermoid carcinoma cells treated with epidermal growth factor (EGF) required PITP. Stimulation of PI-4 kinase in cells treated with EGF also required PITP. Coprecipitation studies revealed an EGF-dependent association of PITP with the EGF receptor, with PI-4 kinase, and with PLC-gamma.
Collapse
Affiliation(s)
- A Kauffmann-Zeh
- Protein Biochemistry Group, Ludwig Institute for Cancer Research, University College London School of Medicine, UK
| | | | | | | | | | | | | |
Collapse
|
96
|
Sillman AL, Monroe JG. Association of p72syk with the src homology-2 (SH2) domains of PLC gamma 1 in B lymphocytes. J Biol Chem 1995; 270:11806-11. [PMID: 7744830 DOI: 10.1074/jbc.270.20.11806] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phospholipase C gamma-catalyzed inositol phospholipid hydrolysis, a critical step in B cell antigen receptor signaling leading to second messenger generation and proliferation, depends upon tyrosine kinase activation. The B cell antigen receptor-associated tyrosine kinases p53/56lyn, p59fyn, p55blk, and p72syk are assumed to participate in receptor-initiated signaling. It is unknown, however, which of these kinases is involved in the tyrosine phosphorylation and resulting activation of phospholipase C gamma in response to antigen receptor cross-linking. We have used a fusion protein containing the tandem src homology-2 (SH2) domains of phospholipase C gamma 1 (PLC gamma 1) to identify B cell kinases which associate with PLC gamma 1. Using an in vitro kinase assay, we demonstrate SH2-dependent association of tyrosine kinase activity from anti-mu-stimulated B cells. The PLC gamma 1 SH2 domains associate with a prominent 70-72-kDa tyrosine phosphoprotein from anti-mu-stimulated, but not resting, B cells. Immunoblotting and secondary immunoprecipitation studies definitively identify this protein as p72syk. These results imply a physical interaction between PLC gamma 1 and p72syk in antigen receptor-stimulated B cells. This conclusion is confirmed by our ability to co-immunoprecipitate p72syk and PLC gamma 1 from lysates of anti-mu-stimulated B cells. These results implicate p72syk in the activation of phospholipase C gamma 1 during B cell antigen receptor signaling.
Collapse
Affiliation(s)
- A L Sillman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
97
|
Eriksson A, Nånberg E, Rönnstrand L, Engström U, Hellman U, Rupp E, Carpenter G, Heldin CH, Claesson-Welsh L. Demonstration of functionally different interactions between phospholipase C-gamma and the two types of platelet-derived growth factor receptors. J Biol Chem 1995; 270:7773-81. [PMID: 7535778 DOI: 10.1074/jbc.270.13.7773] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Phosphorylated tyrosine residues in receptor tyrosine kinases serve as binding sites for signal transduction molecules. We have identified two autophosphorylation sites, Tyr-988 and Tyr-1018, in the platelet-derived growth factor (PDGF) alpha-receptor carboxyl-terminal tail, which are involved in binding of phospholipase C-gamma (PLC-gamma). The capacities of the Y988F and Y1018F mutant PDGF alpha-receptors, expressed in porcine aortic endothelial cells, to bind PLC-gamma are 60 and 5% of that of the wild-type receptor, respectively. Phosphorylated but not unphosphorylated peptides containing Tyr-1018 are able to compete with the intact receptor for binding to immobilized PLC-gamma SH2 domains; a phosphorylated Tyr-988 peptide competes 10 times less efficiently. The complex between PLC-gamma and the PDGF alpha-receptor is more stable than that of PLC-gamma and the PDGF beta-receptor. However, PDGF stimulation results in a smaller fraction of tyrosine-phosphorylated PLC-gamma and a smaller accumulation of inositol trisphosphate in cells expressing the alpha-receptor as compared with cells expressing the beta-receptor. We conclude that phosphorylated Tyr-988 and Tyr-1018 in the PDGF alpha-receptor carboxyl-terminal tail bind PLC-gamma, but this association leads to only a relatively low level of tyrosine phosphorylation and activation of PLC-gamma.
Collapse
Affiliation(s)
- A Eriksson
- Ludwig Institute for Cancer Research, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Polk DB, McCollum GW, Carpenter G. Cell density-dependent regulation of PLC gamma 1 tyrosine phosphorylation and catalytic activity in an intestinal cell line (IEC-6). J Cell Physiol 1995; 162:427-33. [PMID: 7532179 DOI: 10.1002/jcp.1041620315] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Administration of epidermal growth factor (EGF) to rats has been shown to induce both mitogenic and nonmitogenic responses in the intestine. The mechanisms to describe a multiplicity of hormonal responses within a single tissue are unclear but likely involve selectivity among receptor substrates. A nontransformed rat jejunal crypt intestinal epithelial cell line (IEC-6) was studied to determine if the regulation of receptor tyrosine kinase substrates is affected by cell population physiology. EGF stimulated a rapid increase in inositol trisphosphate in confluent but not subconfluent cells. Similarly, treatment of confluent IEC-6 cells with EGF provoked a significant increase in the hydrolysis of PtdIns 4,5-P2 by immunoisolated PLC gamma 1. The tyrosine phosphorylation state of PLC gamma 1 and the association of PLC gamma 1 with the EGF receptor were increased by EGF in confluent cells only. In contrast, the autophosphorylation state of the EGF receptor and the tyrosine phosphorylation state of another SH2-containing EGF receptor substrate SHC were increased by EGF regardless of cell density. Western blot analysis revealed equal protein expression of PLC gamma 1 in confluent and subconfluent cells. EGF receptor protein expression and ligand binding capacity were slightly increased in confluent compared to subconfluent cells. EGF regulation of PLC gamma 1, therefore, is regulated by physiological factors dependent on cell density in IEC-6 cells.
Collapse
Affiliation(s)
- D B Polk
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | | |
Collapse
|
99
|
Gish G, Larose L, Shen R, Pawson T. Biochemical analysis of SH2 domain-mediated protein interactions. Methods Enzymol 1995; 254:503-23. [PMID: 8531711 DOI: 10.1016/0076-6879(95)54036-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- G Gish
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
100
|
MacLean D, Sefler AM, Zhu G, Decker SJ, Saltiel AR, Singh J, McNamara D, Dobrusin EM, Sawyer TK. Differentiation of peptide molecular recognition by phospholipase C gamma-1 Src homology-2 domain and a mutant Tyr phosphatase PTP1bC215S. Protein Sci 1995; 4:13-20. [PMID: 7773170 PMCID: PMC2142960 DOI: 10.1002/pro.5560040103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Activated epidermal growth factor receptor (EGFR) undergoes autophosphorylation on several cytoplasmic tyrosine residues, which may then associate with the src homology-2 (SH2) domains of effector proteins such as phospholipase C gamma-1 (PLC gamma-1). Specific phosphotyrosine (pTyr)-modified EGFR fragment peptides can inhibit this intermolecular binding between activated EGFR and a tandem amino- and carboxy-terminal (N/C) SH2 protein construct derived from PLC gamma-1. In this study, we further explored the molecular recognition of phosphorylated EGFR988-998 (Asp-Ala-Asp-Glu-pTyr-Leu-Ile-Pro-Gln-Gln-Gly, I) by PLC gamma-1 N/C SH2 in terms of singular Ala substitutions for amino acid residues N- and C-terminal to the pTyr (P site) of phosphopeptide I. Comparison of the extent to which these phosphopeptides inhibited binding of PLC gamma-1 N/C SH2 to activated EGFR showed the critical importance of amino acid side chains at positions P+2 (Ile994), P+3 (Pro995), and P+4 (Gln996). Relative to phosphopeptide I, multiple Ala substitution throughout the N-terminal sequence, N-terminal sequence, N-terminal truncation, or dephosphorylation of pTyr each resulted in significantly decreased binding to PLC gamma-1 N/C SH2. These structure-activity results were analyzed by molecular modeling studies of the predicted binding of phosphopeptide I to each the N- and C-terminal SH2 domains of PLC gamma-1.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D MacLean
- Department of Chemistry, Parke-Davis Pharmaceutical Research, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|