51
|
Sha F, Kurosawa K, Glasser E, Ketavarapu G, Albazzaz S, Koide A, Koide S. Monobody Inhibitor Selective to the Phosphatase Domain of SHP2 and its Use as a Probe for Quantifying SHP2 Allosteric Regulation. J Mol Biol 2023; 435:168010. [PMID: 36806475 PMCID: PMC10079645 DOI: 10.1016/j.jmb.2023.168010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
SHP2 is a phosphatase/adaptor protein that plays an important role in various signaling pathways. Its mutations are associated with cancers and developmental diseases. SHP2 contains a protein tyrosine phosphatase (PTP) and two SH2 domains. Selective inhibition of these domains has been challenging due to the multitude of homologous proteins in the proteome. Here, we developed a monobody, synthetic binding protein, that bound to and inhibited the SHP2 PTP domain. It was selective to SHP2 PTP over close homologs. A crystal structure of the monobody-PTP complex revealed that the monobody bound both highly conserved residues in the active site and less conserved residues in the periphery, rationalizing its high selectivity. Its epitope overlapped with the interface between the PTP and N-terminal SH2 domains that is formed in auto-inhibited SHP2. By using the monobody as a probe for the accessibility of the PTP active site, we developed a simple, nonenzymatic assay for the allosteric regulation of SHP2. The assay showed that, in the absence of an activating phospho-Tyr ligand, wild-type SHP2 and the "PTP-dead" C459E mutant were predominantly in the closed state in which the PTP active site is inaccessible, whereas the E76K and C459S mutants were in the open, active state. It also revealed that previously developed monobodies to the SH2 domains, ligands lacking a phospho-Tyr, weakly favored the open state. These results provide corroboration for a conformational equilibrium underlying allosteric regulation of SHP2, provide powerful tools for characterizing and controlling SHP2 functions, and inform drug discovery against SHP2.
Collapse
Affiliation(s)
- Fern Sha
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States
| | - Kohei Kurosawa
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States; Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, United States
| | - Eliezra Glasser
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, United States
| | - Gayatri Ketavarapu
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, United States
| | - Samara Albazzaz
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States
| | - Akiko Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States; Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, United States; Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Shohei Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, United States; Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, United States; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
52
|
Wang Z, Rabb JD, Lin Q. Orthogonal Crosslinking: A Strategy to Generate Novel Protein Topology and Function. Chemistry 2023; 29:e202202828. [PMID: 36251567 PMCID: PMC9839582 DOI: 10.1002/chem.202202828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Indexed: 11/27/2022]
Abstract
Compared to the disulfide bond, other naturally occurring intramolecular crosslinks have received little attention, presumably due to their rarity in the vast protein space. Here we presented examples of natural non-disulfide crosslinks, which we refer to as orthogonal crosslinks, emphasizing their effect on protein topology and function. We summarize recent efforts on expanding orthogonal crosslinks by using either the enzymes that catalyze protein circularization or the genetic code expansion strategy to add electrophilic amino acids site-specifically in proteins. The advantages and disadvantages of each method are discussed, along with their applications to generate novel protein topology and function. In particular, we highlight our recent work on spontaneous orthogonal crosslinking, in which a carbamate-based crosslink was generated in situ, and its applications in designing orthogonally crosslinked domain antibodies with their topology-mimicking bacterial adhesins.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA
| | - Johnathan D Rabb
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA
| |
Collapse
|
53
|
Huang RR, Kierny M, Volgina V, Iwashima M, Miller C, Kay BK. Construction of an Ultra-Large Phage Display Library by Kunkel Mutagenesis and Rolling Circle Amplification. Methods Mol Biol 2023; 2702:205-226. [PMID: 37679621 DOI: 10.1007/978-1-0716-3381-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
An important contributor to the successful generation of recombinant affinity reagents via phage display is a large and diverse library. We describe, herein, the application of Kunkel mutagenesis and rolling circle amplification (RCA) to the construction of a 1.1 × 1011 member library, with only 26 electroporations, and isolation of low- to sub-nanomolar monobodies to a number of protein targets, including human COP9 signalosome subunit 5 (COPS5), HIV-1 Rev. binding protein-like protein (HRBL), X-ray repair cross-complementing 5/6 (Ku70/80) heterodimer, the receptor-binding domain (RBD) of SARS-CoV-2, and transforming growth factor beta 1 (TGF-β1).
Collapse
Affiliation(s)
| | | | - Veronica Volgina
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Makio Iwashima
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | | | | |
Collapse
|
54
|
Hokanson CA, Zacco E, Cappuccilli G, Odineca T, Crea R. AXL-Receptor Targeted 14FN3 Based Single Domain Proteins (Pronectins™) from 3 Synthetic Human Libraries as Components for Exploring Novel Bispecific Constructs against Solid Tumors. Biomedicines 2022; 10:biomedicines10123184. [PMID: 36551940 PMCID: PMC9775294 DOI: 10.3390/biomedicines10123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
A highly specific AXL-receptor targeted family of non-immunoglobulin, single domain protein binders (Pronectins™) have been isolated from three (3) synthetic libraries that employ the human scaffold of the 14th domain of Fibronectin III (14FN3) and evolutionary CDRs diversity of over 25 billion loop sequences. The three libraries, each containing diversity in two loops, were designed to expand upon a human database of more than 6000 natural scaffold sequences and approximately 3000 human loop sequences. We used a bioinformatic-based approach to maximize "human" amino acid loop diversity and minimize or prevent altogether CDR immunogenicity created by the use of mutagenesis processes to generate diversity. A combination of phage display and yeast display was used to isolate 59 AXL receptor targeted Pronectins with KD ranging between 2 and 100 nM. FACS analysis with tumor cells over-expressing AXL and the use of an AXL knock-out cell line allowed us to identify Pronectin candidates with exquisite specificity for AXL receptor. Based upon several in vitro cell-based tests, we selected the best candidate, AXL54, to further characterize its in vitro cancer cells killing activity. Finally, AXL54 was used to produce the first bi-specific T cell engager protein (AXL54 [Pronectin]-linker-scFV CD3), a "new in class" protein for further testing of its anti-tumor activity in vitro and in vivo.
Collapse
Affiliation(s)
- Craig A. Hokanson
- Protelica, Inc., 26225 Eden Landing Road, Suite C, Hayward, CA 94545, USA
| | | | | | - Tatjana Odineca
- Protelica, Inc., 26225 Eden Landing Road, Suite C, Hayward, CA 94545, USA
| | - Roberto Crea
- Protelica, Inc., 26225 Eden Landing Road, Suite C, Hayward, CA 94545, USA
- Correspondence:
| |
Collapse
|
55
|
Albert C, Bracaglia L, Koide A, DiRito J, Lysyy T, Harkins L, Edwards C, Richfield O, Grundler J, Zhou K, Denbaum E, Ketavarapu G, Hattori T, Perincheri S, Langford J, Feizi A, Haakinson D, Hosgood SA, Nicholson ML, Pober JS, Saltzman WM, Koide S, Tietjen GT. Monobody adapter for functional antibody display on nanoparticles for adaptable targeted delivery applications. Nat Commun 2022; 13:5998. [PMID: 36220817 PMCID: PMC9553936 DOI: 10.1038/s41467-022-33490-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
Vascular endothelial cells (ECs) play a central role in the pathophysiology of many diseases. The use of targeted nanoparticles (NPs) to deliver therapeutics to ECs could dramatically improve efficacy by providing elevated and sustained intracellular drug levels. However, achieving sufficient levels of NP targeting in human settings remains elusive. Here, we overcome this barrier by engineering a monobody adapter that presents antibodies on the NP surface in a manner that fully preserves their antigen-binding function. This system improves targeting efficacy in cultured ECs under flow by >1000-fold over conventional antibody immobilization using amine coupling and enables robust delivery of NPs to the ECs of human kidneys undergoing ex vivo perfusion, a clinical setting used for organ transplant. Our monobody adapter also enables a simple plug-and-play capacity that facilitates the evaluation of a diverse array of targeted NPs. This technology has the potential to simplify and possibly accelerate both the development and clinical translation of EC-targeted nanomedicines.
Collapse
Affiliation(s)
- C Albert
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - L Bracaglia
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - A Koide
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - J DiRito
- Department of Surgery, Yale University, New Haven, CT, USA
| | - T Lysyy
- Department of Surgery, Yale University, New Haven, CT, USA
| | - L Harkins
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - C Edwards
- Department of Surgery, Yale University, New Haven, CT, USA
| | - O Richfield
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Surgery, Yale University, New Haven, CT, USA
| | - J Grundler
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - K Zhou
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - E Denbaum
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - G Ketavarapu
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - T Hattori
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - S Perincheri
- Department of Pathology, Yale University, New Haven, CT, USA
| | - J Langford
- Department of Surgery, Yale University, New Haven, CT, USA
| | - A Feizi
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - D Haakinson
- Department of Surgery, Yale University, New Haven, CT, USA
| | - S A Hosgood
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - M L Nicholson
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - J S Pober
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - W M Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - S Koide
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
| | - G T Tietjen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Department of Surgery, Yale University, New Haven, CT, USA.
| |
Collapse
|
56
|
Cano-Garrido O, Serna N, Unzueta U, Parladé E, Mangues R, Villaverde A, Vázquez E. Protein scaffolds in human clinics. Biotechnol Adv 2022; 61:108032. [PMID: 36089254 DOI: 10.1016/j.biotechadv.2022.108032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/30/2022] [Accepted: 09/03/2022] [Indexed: 11/02/2022]
Abstract
Fundamental clinical areas such as drug delivery and regenerative medicine require biocompatible materials as mechanically stable scaffolds or as nanoscale drug carriers. Among the wide set of emerging biomaterials, polypeptides offer enticing properties over alternative polymers, including full biocompatibility, biodegradability, precise interactivity, structural stability and conformational and functional versatility, all of them tunable by conventional protein engineering. However, proteins from non-human sources elicit immunotoxicities that might bottleneck further development and narrow their clinical applicability. In this context, selecting human proteins or developing humanized protein versions as building blocks is a strict demand to design non-immunogenic protein materials. We review here the expanding catalogue of human or humanized proteins tailored to execute different levels of scaffolding functions and how they can be engineered as self-assembling materials in form of oligomers, polymers or complex networks. In particular, we emphasize those that are under clinical development, revising their fields of applicability and how they have been adapted to offer, apart from mere mechanical support, highly refined functions and precise molecular interactions.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, 08916 Badalona (Barcelona), Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Ramón Mangues
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, 08916 Badalona (Barcelona), Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| |
Collapse
|
57
|
Chauhan VM, Pantazes RJ. MutDock: A computational docking approach for fixed-backbone protein scaffold design. Front Mol Biosci 2022; 9:933400. [PMID: 36106019 PMCID: PMC9465448 DOI: 10.3389/fmolb.2022.933400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the successes of antibodies as therapeutic binding proteins, they still face production and design challenges. Alternative binding scaffolds of smaller size have been developed to overcome these issues. A subset of these alternative scaffolds recognizes target molecules through mutations to a set of surface resides, which does not alter their backbone structures. While the computational design of antibodies for target epitopes has been explored in depth, the same has not been done for alternative scaffolds. The commonly used dock-and-mutate approach for binding proteins, including antibodies, is limited because it uses a constant sequence and structure representation of the scaffold. Docking fixed-backbone scaffolds with a varied group of surface amino acids increases the chances of identifying superior starting poses that can be improved with subsequent mutations. In this work, we have developed MutDock, a novel computational approach that simultaneously docks and mutates fixed backbone scaffolds for binding a target epitope by identifying a minimum number of hydrogen bonds. The approach is broadly divided into two steps. The first step uses pairwise distance alignment of hydrogen bond-forming areas of scaffold residues and compatible epitope atoms. This step considers both native and mutated rotamers of scaffold residues. The second step mutates clashing variable interface residues and thermodynamically unfavorable residues to create additional strong interactions. MutDock was used to dock two scaffolds, namely, Affibodies and DARPins, with ten randomly selected antigens. The energies of the docked poses were minimized and binding energies were compared with docked poses from ZDOCK and HADDOCK. The top MutDock poses consisted of higher and comparable binding energies than the top ZDOCK and HADDOCK poses, respectively. This work contributes to the discovery of novel binders based on smaller-sized, fixed-backbone protein scaffolds.
Collapse
|
58
|
Development of Antibody-like Proteins Targeting the Oncogenic Ser/Thr Protein Phosphatase PPM1D. Processes (Basel) 2022. [DOI: 10.3390/pr10081501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PPM1D, a protein Ser/Thr phosphatase, is overexpressed in various cancers and functions as an oncogenic protein by inactivating the p53 pathway. Therefore, molecules that bind PPM1D are expected to be useful anti-cancer agents. In this study, we constructed a phage display library based on the antibody-like small molecule protein adnectin and screened for PPM1D-specific binding molecules. We identified two adnectins, PMDB-1 and PMD-24, that bind PPM1D specific B-loop and PPM1D430 as targets, respectively. Specificity analyses of these recombinant proteins using other Ser/Thr protein phosphatases showed that these molecules bind to only PPM1D. Expression of PMDB-1 in breast cancer-derived MCF-7 cells overexpressing endogenous PPM1D stabilized p53, indicating that PMDB-1 functions as an inhibitor of PPM1D. Furthermore, MTT assay exhibited that MCF-7 cells expressing PMDB-1 showed inhibition of cell proliferation. These data suggest that the adnectin PMDB-1 identified in this study can be used as a lead compound for anti-cancer drugs targeting intracellular PPM1D.
Collapse
|
59
|
Nathawat R, Maku RV, Patel HK, Sankaranarayanan R, Sonti RV. Role of the FnIII domain associated with a cell wall-degrading enzyme cellobiosidase of Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2022; 23:1011-1021. [PMID: 35278018 PMCID: PMC9190976 DOI: 10.1111/mpp.13205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Cellobiosidase (CbsA) is an important secreted virulence factor of Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight of rice. CbsA is one of several cell wall-degrading enzymes secreted by Xoo via the type II secretion system (T2SS). CbsA is considered a fundamental virulence factor for vascular pathogenesis. CbsA has an N-terminal glycosyl hydrolase domain and a C-terminal fibronectin type III (FnIII) domain. Interestingly, the secreted form of CbsA lacks the FnIII domain during in planta growth. Here we show that the presence of the FnIII domain inhibits the enzyme activity of CbsA on polysaccharide substrates like carboxymethylcellulose. The FnIII domain is required for the interaction of CbsA with SecB chaperone, and this interaction is crucial for the stability and efficient transport of CbsA across the inner membrane. Deletion of the FnIII domain reduced virulence similar to ΔcbsA Xoo, which corroborates the importance of the FnIII domain in CbsA. Our work elucidates a hitherto unknown function of the FnIII domain in enabling the virulence-promoting activity of CbsA.
Collapse
Affiliation(s)
| | - Roshan V. Maku
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Present address:
DBT – National Institute of Animal BiotechnologyHyderabadIndia
| | | | | | - Ramesh V. Sonti
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Present address:
Indian Institute of Science Education and Research TirupatiTirupatiIndia
| |
Collapse
|
60
|
Krutzek F, Kopka K, Stadlbauer S. Development of Radiotracers for Imaging of the PD-1/PD-L1 Axis. Pharmaceuticals (Basel) 2022; 15:ph15060747. [PMID: 35745666 PMCID: PMC9228425 DOI: 10.3390/ph15060747] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has emerged as a major treatment option for a variety of cancers. Among the immune checkpoints addressed, the programmed death receptor 1 (PD-1) and its ligand PD-L1 are the key targets for an ICI. PD-L1 has especially been proven to be a reproducible biomarker allowing for therapy decisions and monitoring therapy success. However, the expression of PD-L1 is not only heterogeneous among and within tumor lesions, but the expression is very dynamic and changes over time. Immunohistochemistry, which is the standard diagnostic tool, can only inadequately address these challenges. On the other hand, molecular imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) provide the advantage of a whole-body scan and therefore fully address the issue of the heterogeneous expression of checkpoints over time. Here, we provide an overview of existing PET, SPECT, and optical imaging (OI) (radio)tracers for the imaging of the upregulation levels of PD-1 and PD-L1. We summarize the preclinical and clinical data of the different molecule classes of radiotracers and discuss their respective advantages and disadvantages. At the end, we show possible future directions for developing new radiotracers for the imaging of PD-1/PD-L1 status in cancer patients.
Collapse
Affiliation(s)
- Fabian Krutzek
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
| | - Klaus Kopka
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technical University Dresden, 01069 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, University Cancer Cancer (UCC), 01307 Dresden, Germany
| | - Sven Stadlbauer
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
- Correspondence:
| |
Collapse
|
61
|
Nakatani Y, Ye Z, Ishizue Y, Higashi T, Imai T, Fujii I, Michigami M. “Human and Mouse Cross-Reactive” Albumin-Binding Helix–Loop–Helix Peptide Tag for Prolonged Bioactivity of Therapeutic Proteins. Mol Pharm 2022; 19:2279-2286. [PMID: 35635006 PMCID: PMC9257745 DOI: 10.1021/acs.molpharmaceut.2c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The effectiveness
of protein and peptide pharmaceuticals depends
essentially on their intrinsic pharmacokinetics. Small-sized pharmaceuticals
in particular often suffer from short serum half-lives due to rapid
renal clearance. To improve the pharmacokinetics by association with
serum albumin (SA) in vivo, we generated an SA-binding
tag of a helix–loop–helix (HLH) peptide to be linked
with protein pharmaceuticals. For use in future preclinical studies,
screening of yeast-displayed HLH peptide libraries against human SA
(HSA) and mouse SA (MSA) was alternately repeated to give the SA-binding
peptide AY-VE, which exhibited cross-binding activities to HSA and
MSA with KD of 65 and 20 nM, respectively.
As a proof of concept, we site-specifically conjugated peptide AY-VE
with insulin to examine its bioactivity in vivo.
In mouse bioassay monitoring the blood glucose level, the AY-VE conjugate
was found to have a prolonged hypoglycemic effect for 12 h. The HLH
peptide tag is a general platform for extending the bioactivity of
therapeutic peptides or proteins.
Collapse
Affiliation(s)
- Yuto Nakatani
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Zhengmao Ye
- Interprotein Corporation, 3-10-2 Toyosaki, Kita-ku, Osaka 531-0072, Japan
| | - Yuki Ishizue
- Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-Honmachi, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-Honmachi, Kumamoto 862-0973, Japan
| | - Teruko Imai
- Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-Honmachi, Kumamoto 862-0973, Japan
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Ikuo Fujii
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Masataka Michigami
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
62
|
Silk Fibroin-Based Biomaterials for Tissue Engineering Applications. Molecules 2022; 27:molecules27092757. [PMID: 35566110 PMCID: PMC9103528 DOI: 10.3390/molecules27092757] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022] Open
Abstract
Tissue engineering (TE) involves the combination of cells with scaffolding materials and appropriate growth factors in order to regenerate or replace damaged and degenerated tissues and organs. The scaffold materials serve as templates for tissue formation and play a vital role in TE. Among scaffold materials, silk fibroin (SF), a naturally occurring protein, has attracted great attention in TE applications due to its excellent mechanical properties, biodegradability, biocompatibility, and bio-absorbability. SF is usually dissolved in an aqueous solution and can be easily reconstituted into different forms, including films, mats, hydrogels, and sponges, through various fabrication techniques, including spin coating, electrospinning, freeze drying, and supercritical CO2-assisted drying. Furthermore, to facilitate the fabrication of more complex SF-based scaffolds, high-precision techniques such as micro-patterning and bio-printing have been explored in recent years. These processes contribute to the diversity of surface area, mean pore size, porosity, and mechanical properties of different silk fibroin scaffolds and can be used in various TE applications to provide appropriate morphological and mechanical properties. This review introduces the physicochemical and mechanical properties of SF and looks into a range of SF-based scaffolds that have recently been developed. The typical applications of SF-based scaffolds for TE of bone, cartilage, teeth and mandible tissue, cartilage, skeletal muscle, and vascular tissue are highlighted and discussed followed by a discussion of issues to be addressed in future studies.
Collapse
|
63
|
Ealla KKR, Veeraraghavan VP, Ravula NR, Durga CS, Ramani P, Sahu V, Poola PK, Patil S, Panta P. Silk Hydrogel for Tissue Engineering: A Review. J Contemp Dent Pract 2022; 23:467-477. [PMID: 35945843 DOI: 10.5005/jp-journals-10024-3322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
AIM This review aims to explore the importance of silk hydrogel and its potential in tissue engineering (TE). BACKGROUND Tissue engineering is a procedure that incorporates cells into the scaffold materials with suitable growth factors to regenerate injured tissue. For tissue formation in TE, the scaffold material plays a key role. Different forms of silk fibroin (SF), such as films, mats, hydrogels, and sponges, can be easily manufactured when SF is disintegrated into an aqueous solution. High precision procedures such as micropatterning and bioprinting of SF-based scaffolds have been used for enhanced fabrication. REVIEW RESULTS In this narrative review, SF physicochemical and mechanical properties have been presented. We have also discussed SF fabrication techniques like electrospinning, spin coating, freeze-drying, and physiochemical cross-linking. The application of SF-based scaffolds for skeletal, tissue, joint, muscle, epidermal, tissue repair, and tympanic membrane regeneration has also been addressed. CONCLUSION SF has excellent mechanical properties, tunability, biodegradability, biocompatibility, and bioresorbability. CLINICAL SIGNIFICANCE Silk hydrogels are an ideal scaffold matrix material that will significantly impact tissue engineering applications, given the rapid scientific advancements in this field.
Collapse
Affiliation(s)
- Kranti Kiran Reddy Ealla
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospital, SIMATS, Chennai, Tamil Nadu, India; Department of Oral Pathology and Microbiology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India, e-mail:
| | | | - Nikitha Reddy Ravula
- Center for Research Development and Sustenance, Malla Reddy Health City, Hyderabad, Telangana, India
| | | | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Vikas Sahu
- Center for Research Development and Sustenance, Malla Reddy Health City, Hyderabad, Telangana, India
| | | | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Prashanth Panta
- Department of Oral Medicine and Radiology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India, e-mail:
| |
Collapse
|
64
|
Xu W, Cong Z, Duan Q, Wang Q, Su S, Wang R, Lu L, Xue J, Jiang S. A Protein-Based, Long-Acting HIV-1 Fusion Inhibitor with an Improved Pharmacokinetic Profile. Pharmaceuticals (Basel) 2022; 15:ph15040424. [PMID: 35455421 PMCID: PMC9025429 DOI: 10.3390/ph15040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Recently, a series of highly effective peptide- or protein-based HIV fusion inhibitors have been identified. However, due to their short half-life, their clinical application is limited. Therefore, the development of long-acting HIV fusion inhibitors is urgently needed. Here, we designed and constructed a protein-based, long-acting HIV fusion inhibitor, termed FLT (FN3-L35-T1144), consisting of a monobody, FN3, which contains an albumin-binding domain (ABD), a 35-mer linker (L35), and a peptide-based HIV fusion inhibitor, T1144. We found that FLT bound, via its FN3 component, with human serum albumin (HSA) in a reversible manner, thus maintaining the high efficiency of T1144 against infection by both HIV-1 IIIB (X4) and Bal (R5) strains with IC50 of 11.6 nM and 15.3 nM, respectively, and remarkably prolonging the half-life of T1144 (~27 h in SD rats). This approach affords protein-based HIV fusion inhibitors with much longer half-life compared to enfuvirtide, a peptide-based HIV fusion inhibitor approved for use in clinics. Therefore, FLT is a promising candidate as a new protein-based anti-HIV drug with an improved pharmacokinetic profile.
Collapse
Affiliation(s)
- Wei Xu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (W.X.); (Q.D.); (Q.W.); (S.S.)
| | - Zhe Cong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| | - Qianyu Duan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (W.X.); (Q.D.); (Q.W.); (S.S.)
| | - Qian Wang
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (W.X.); (Q.D.); (Q.W.); (S.S.)
| | - Shan Su
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (W.X.); (Q.D.); (Q.W.); (S.S.)
| | - Rui Wang
- Beijing Prosperous Biopharm Company, Beijing 100021, China;
| | - Lu Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (W.X.); (Q.D.); (Q.W.); (S.S.)
- Correspondence: (L.L.); (J.X.); (S.J.)
| | - Jing Xue
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
- Correspondence: (L.L.); (J.X.); (S.J.)
| | - Shibo Jiang
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (W.X.); (Q.D.); (Q.W.); (S.S.)
- Correspondence: (L.L.); (J.X.); (S.J.)
| |
Collapse
|
65
|
A Modified Fibronectin Type III Domain-Conjugated, Long-Acting Pan-Coronavirus Fusion Inhibitor with Extended Half-Life. Viruses 2022; 14:v14040655. [PMID: 35458385 PMCID: PMC9028128 DOI: 10.3390/v14040655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by infection of SARS-CoV-2 and its variants has posed serious threats to global public health, thus calling for the development of potent and broad-spectrum antivirals. We previously designed and developed a peptide-based pan-coronavirus (CoV) fusion inhibitor, EK1, which is effective against all human CoVs (HCoV) tested by targeting the HCoV S protein HR1 domain. However, its relatively short half-life may limit its clinical use. Therefore, we designed, constructed, and expressed a recombinant protein, FL-EK1, which consists of a modified fibronectin type III domain (FN3) with albumin-binding capacity, a flexible linker, and EK1. As with EK1, we found that FL-EK1 could also effectively inhibit infection of SARS-CoV-2 and its variants, as well as HCoV-OC43. Furthermore, it protected mice from infection by the SARS-CoV-2 Delta variant and HCoV-OC43. Importantly, the half-life of FL-EK1 (30 h) is about 15.7-fold longer than that of EK1 (1.8 h). These results suggest that FL-EK1 is a promising candidate for the development of a pan-CoV fusion inhibitor-based long-acting antiviral drug for preventing and treating infection by current and future SARS-CoV-2 variants, as well as other HCoVs.
Collapse
|
66
|
Michigami M, Ramanayake Mudiyanselage TMR, Suzuki M, Ishizako H, Notsu K, Sugiura K, Fujii I. New Class of Drug Modalities: Directed Evolution of a De Novo Designed Helix-Loop-Helix Peptide to Bind VEGF for Tumor Growth Inhibition. ACS Chem Biol 2022; 17:647-653. [PMID: 35176860 DOI: 10.1021/acschembio.1c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As a small affinity molecule to serve as an alternative to antibodies, we have developed a conformationally constrained peptide with a de novo designed helix-loop-helix (HLH) scaffold. To evaluate its potential for biomedical applications, we performed directed evolution of HLH peptides to obtain an inhibitor for vascular endothelial growth factor-A (VEGF). A phage-displayed library of HLH peptides was constructed and screened against VEGF, giving the peptide VS42 that inhibits the VEGF/VEGF receptor-2 interaction (IC50 = 210 nM), which was further improved by in vitro affinity maturation using a yeast-displayed library. An identified HLH peptide, VS42-LR3, exhibited improved inhibitory activity (IC50 = 37 nM), high thermal stability, and excellent resistance against chemical denaturation. In biological activity tests, the HLH peptide was found to block VEGF-induced proliferation of human umbilical vein endothelial cells and suppress tumor growth in a murine xenograft model of human colorectal cancer.
Collapse
Affiliation(s)
- Masataka Michigami
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Tharanga M. R. Ramanayake Mudiyanselage
- Department of Veterinary Science, Graduate School of Life and Environmental Science, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| | - Miho Suzuki
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hirotsugu Ishizako
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kunpei Notsu
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kikuya Sugiura
- Department of Veterinary Science, Graduate School of Life and Environmental Science, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| | - Ikuo Fujii
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
67
|
Kondo T, Matsuoka K, Umemoto S, Fujino T, Hayashi G, Iwatani Y, Murakami H. Monobodies with potent neutralizing activity against SARS-CoV-2 Delta and other variants of concern. Life Sci Alliance 2022; 5:5/6/e202101322. [PMID: 35256514 PMCID: PMC8906176 DOI: 10.26508/lsa.202101322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/24/2022] Open
Abstract
Neutralizing antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are useful for patients' treatment of the coronavirus disease 2019 (COVID-19). We report here affinity maturation of monobodies against the SARS-CoV-2 spike protein and their neutralizing activity against SARS-CoV-2 B.1.1 (Pango v.3.1.14) as well as four variants of concern. We selected matured monobodies from libraries with multi-site saturation mutagenesis on the recognition loops through in vitro selection. One clone, the C4-AM2 monobody, showed extremely high affinity (K D < 0.01 nM) against the receptor-binding domain of the SARS-CoV-2 B.1.1, even in monomer form. Furthermore, the C4-AM2 monobody efficiently neutralized the SARS-CoV-2 B.1.1 (IC 50 = 46 pM, 0.62 ng/ml), and the Alpha (IC 50 = 77 pM, 1.0 ng/ml), Beta (IC 50 = 0.54 nM, 7.2 ng/ml), Gamma (IC 50 = 0.55 nM, 7.4 ng/ml), and Delta (IC 50 = 0.59 nM, 8.0 ng/ml) variants. The obtained monobodies would be useful as neutralizing proteins against current and potentially hazardous future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Taishi Kondo
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Kazuhiro Matsuoka
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Shun Umemoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Tomoshige Fujino
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.,Japan Science and Technology Agency (JST), PRESTO, Kawaguchi, Japan
| | - Yasumasa Iwatani
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan .,Division of Basic Medicine, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| |
Collapse
|
68
|
Colecraft HM, Trimmer JS. Controlling ion channel function with renewable recombinant antibodies. J Physiol 2022; 600:2023-2036. [PMID: 35238051 PMCID: PMC9058206 DOI: 10.1113/jp282403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
Selective ion channel modulators play a critical role in physiology in defining the contribution of specific ion channels to physiological function and as proof of concept for novel therapeutic strategies. Antibodies are valuable research tools that have broad uses including defining the expression and localization of ion channels in native tissue, and capturing ion channel proteins for subsequent analyses. In this review, we detail how renewable and recombinant antibodies can be used to control ion channel function. We describe the different forms of renewable and recombinant antibodies that have been used and the mechanisms by which they modulate ion channel function. We highlight the use of recombinant antibodies that are expressed intracellularly (intrabodies) as genetically-encoded tools to control ion channel function. We also offer perspectives of avenues of future research that may be opened by the application of emerging technologies for engineering recombinant antibodies for enhanced utility in ion channel research. Overall, this review provides insights that may help stimulate and guide interested researchers to develop and incorporate renewable and recombinant antibodies as valuable tools to control ion channel function. Abstract figure legend Two different approaches for controlling ion channel function using renewable recombinant antibodies. On the left, an externally applied intact IgG antibody (purple) binds to an extracellular domain of an ion channel (light blue) to control ion channel function. On the right, a genetically-encoded intrabody, in this example a camelid nanobody (green) fused to an effector molecule (red) binds to an intracellular auxiliary subunit of an ion channel (dark blue) to control ion channel function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - James S Trimmer
- Department of Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| |
Collapse
|
69
|
Engineered protein-small molecule conjugates empower selective enzyme inhibition. Cell Chem Biol 2022; 29:328-338.e4. [PMID: 34363759 PMCID: PMC8807807 DOI: 10.1016/j.chembiol.2021.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022]
Abstract
Potent, specific ligands drive precision medicine and fundamental biology. Proteins, peptides, and small molecules constitute effective ligand classes. Yet greater molecular diversity would aid the pursuit of ligands to elicit precise biological activity against challenging targets. We demonstrate a platform to discover protein-small molecule (PriSM) hybrids to combine unique pharmacophore activities and shapes with constrained, efficiently engineerable proteins. In this platform, a fibronectin protein library is displayed on yeast with a single cysteine coupled to acetazolamide via a maleimide-poly(ethylene glycol) linker. Magnetic and flow cytometric sorts enrich specific binders to carbonic anhydrase isoforms. Isolated PriSMs exhibit potent, specific inhibition of carbonic anhydrase isoforms with efficacy superior to that of acetazolamide or protein alone, including an 80-fold specificity increase and 9-fold potency gain. PriSMs are engineered with multiple linker lengths, protein conjugation sites, and sequences against two different isoforms, which reveal platform flexibility and impacts of molecular designs. PriSMs advance the molecular diversity of efficiently engineerable ligands.
Collapse
|
70
|
Komuro H, Aminova S, Lauro K, Woldring D, Harada M. Design and Evaluation of Engineered Extracellular Vesicle (EV)-Based Targeting for EGFR-Overexpressing Tumor Cells Using Monobody Display. Bioengineering (Basel) 2022; 9:bioengineering9020056. [PMID: 35200409 PMCID: PMC8869414 DOI: 10.3390/bioengineering9020056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 01/08/2023] Open
Abstract
Background: Extracellular vesicles (EVs) are attracting interest as a new class of drug delivery vehicles due to their intrinsic nature of biomolecular transport in the body. We previously demonstrated that EV surface modification with tissue-specific molecules accomplished targeted EV-mediated DNA delivery. Methods: Here, we describe reliable methods for (i) generating EGFR tumor-targeting EVs via the display of high-affinity monobodies and (ii) in vitro measurement of EV binding using fluorescence and bioluminescence labeling. Monobodies are a well-suited class of small (10 kDa) non-antibody scaffolds derived from the human fibronectin type III (FN3) domain. Results: The recombinant protein consists of the EGFR-targeting monobody fused to the EV-binding domain of lactadherin (C1C2), enabling the monobody displayed on the surface of the EVs. In addition, the use of bioluminescence or fluorescence molecules on the EV surface allows for the assessment of EV binding to the target cells. Conclusions: In this paper, we describe methods of EV engineering to generate targeted delivery vehicles using monobodies that will have diverse applications to furnish future EV therapeutic development, including qualitative and quantitative in vitro evaluation for their binding capacity.
Collapse
Affiliation(s)
- Hiroaki Komuro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (H.K.); (S.A.); (K.L.); (D.W.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Shakhlo Aminova
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (H.K.); (S.A.); (K.L.); (D.W.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Katherine Lauro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (H.K.); (S.A.); (K.L.); (D.W.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel Woldring
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (H.K.); (S.A.); (K.L.); (D.W.)
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (H.K.); (S.A.); (K.L.); (D.W.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: ; Tel.: +1-517-884-6940
| |
Collapse
|
71
|
Gisdon FJ, Kynast JP, Ayyildiz M, Hine AV, Plückthun A, Höcker B. Modular peptide binders - development of a predictive technology as alternative for reagent antibodies. Biol Chem 2022; 403:535-543. [PMID: 35089661 DOI: 10.1515/hsz-2021-0384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/11/2022] [Indexed: 11/15/2022]
Abstract
Current biomedical research and diagnostics critically depend on detection agents for specific recognition and quantification of protein molecules. Monoclonal antibodies have been used for this purpose over decades and facilitated numerous biological and biomedical investigations. Recently, however, it has become apparent that many commercial reagent antibodies lack specificity or do not recognize their target at all. Thus, synthetic alternatives are needed whose complex designs are facilitated by multidisciplinary approaches incorporating experimental protein engineering with computational modeling. Here, we review the status of such an engineering endeavor based on the modular armadillo repeat protein scaffold and discuss challenges in its implementation.
Collapse
Affiliation(s)
- Florian J Gisdon
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Josef P Kynast
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Merve Ayyildiz
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Anna V Hine
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
72
|
Abstract
Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically-encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology"), and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
73
|
Yang S, Wu X, Daoutidou EI, Zhang Y, Shimell M, Chuang KH, Peterson AJ, O'Connor MB, Zheng X. The NDNF-like factor Nord is a Hedgehog-induced extracellular BMP modulator that regulates Drosophila wing patterning and growth. eLife 2022; 11:e73357. [PMID: 35037619 PMCID: PMC8856659 DOI: 10.7554/elife.73357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/15/2022] [Indexed: 11/23/2022] Open
Abstract
Hedgehog (Hh) and Bone Morphogenetic Proteins (BMPs) pattern the developing Drosophila wing by functioning as short- and long-range morphogens, respectively. Here, we show that a previously unknown Hh-dependent mechanism fine-tunes the activity of BMPs. Through genome-wide expression profiling of the Drosophila wing imaginal discs, we identify nord as a novel target gene of the Hh signaling pathway. Nord is related to the vertebrate Neuron-Derived Neurotrophic Factor (NDNF) involved in congenital hypogonadotropic hypogonadism and several types of cancer. Loss- and gain-of-function analyses implicate Nord in the regulation of wing growth and proper crossvein patterning. At the molecular level, we present biochemical evidence that Nord is a secreted BMP-binding protein and localizes to the extracellular matrix. Nord binds to Decapentaplegic (Dpp) or the heterodimer Dpp-Glass-bottom boat (Gbb) to modulate their release and activity. Furthermore, we demonstrate that Nord is a dosage-dependent BMP modulator, where low levels of Nord promote and high levels inhibit BMP signaling. Taken together, we propose that Hh-induced Nord expression fine-tunes both the range and strength of BMP signaling in the developing Drosophila wing.
Collapse
Affiliation(s)
- Shu Yang
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| | - Xuefeng Wu
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| | - Euphrosyne I Daoutidou
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of MinnesotaMinneapolisUnited States
| | - Ya Zhang
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| | - MaryJane Shimell
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of MinnesotaMinneapolisUnited States
| | - Kun-Han Chuang
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| | - Aidan J Peterson
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of MinnesotaMinneapolisUnited States
| | - Michael B O'Connor
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of MinnesotaMinneapolisUnited States
| | - Xiaoyan Zheng
- Department of Anatomy and Cell Biology and the GW Cancer Center, George Washington University School of Medicine and Health SciencesWashingtonUnited States
| |
Collapse
|
74
|
Luo R, Liu H, Cheng Z. Protein scaffolds: Antibody alternative for cancer diagnosis and therapy. RSC Chem Biol 2022; 3:830-847. [PMID: 35866165 PMCID: PMC9257619 DOI: 10.1039/d2cb00094f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Although antibodies are well developed and widely used in cancer therapy and diagnostic fields, some defects remain, such as poor tissue penetration, long in vivo metabolic retention, potential cytotoxicity, patent limitation, and high production cost. These issues have led scientists to explore and develop novel antibody alternatives. Protein scaffolds are small monomeric proteins with stable tertiary structures and mutable residues, which emerged in the 1990s. By combining robust gene engineering and phage display techniques, libraries with sufficient diversity could be established for target binding scaffold selection. Given the properties of small size, high affinity, and excellent specificity and stability, protein scaffolds have been applied in basic research, and preclinical and clinical fields over the past two decades. To date, more than 20 types of protein scaffolds have been developed, with the most frequently used being affibody, adnectin, ANTICALIN®, DARPins, and knottin. In this review, we focus on the protein scaffold applications in cancer therapy and diagnosis in the last 5 years, and discuss the pros and cons, and strategies of optimization and design. Although antibodies are well developed and widely used in cancer therapy and diagnostic fields, some defects remain, such as poor tissue penetration, long in vivo metabolic retention, potential cytotoxicity, patent limitation, and high production cost.![]()
Collapse
Affiliation(s)
- Renli Luo
- Department of Molecular Medicine, College of Life and Health Sciences, Northeastern University Shenyang China
| | - Hongguang Liu
- Department of Molecular Medicine, College of Life and Health Sciences, Northeastern University Shenyang China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery Yantai Shandong 264117 China
| |
Collapse
|
75
|
Kang BH, Lax BM, Wittrup KD. Yeast Surface Display for Protein Engineering: Library Generation, Screening, and Affinity Maturation. Methods Mol Biol 2022; 2491:29-62. [PMID: 35482183 DOI: 10.1007/978-1-0716-2285-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Yeast surface display is a powerful directed evolution method for developing and engineering protein molecules to attain desired properties. Here, updated protocols are presented for purposes of identification of lead binders and their affinity maturation. Large libraries are screened by magnetic bead selections followed by flow cytometric selections. Upon identification and characterization of single clones, their affinities are improved by an iterative process of mutagenesis and fluorescence-activated cell sorting.
Collapse
Affiliation(s)
- Byong H Kang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brianna M Lax
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K Dane Wittrup
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
76
|
Shipunova VO, Deyev SM. Artificial Scaffold Polypeptides As an Efficient Tool for the Targeted Delivery of Nanostructures In Vitro and In Vivo. Acta Naturae 2022; 14:54-72. [PMID: 35441046 PMCID: PMC9013437 DOI: 10.32607/actanaturae.11545] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
The use of traditional tools for the targeted delivery of nanostructures, such as antibodies, transferrin, lectins, or aptamers, often leads to an entire range of undesirable effects. The large size of antibodies often does not allow one to reach the required number of molecules on the surface of nanostructures during modification, and the constant domains of heavy chains, due to their effector functions, can induce phagocytosis. In the recent two decades, targeted polypeptide scaffold molecules of a non-immunoglobulin nature, antibody mimetics, have emerged as much more effective targeting tools. They are small in size (3-20 kDa), possess high affinity (from subnano- to femtomolar binding constants), low immunogenicity, and exceptional thermodynamic stability. These molecules can be effectively produced in bacterial cells, and, using genetic engineering manipulations, it is possible to create multispecific fusion proteins for the targeting of nanoparticles to cells with a given molecular portrait, which makes scaffold polypeptides an optimal tool for theranostics.
Collapse
Affiliation(s)
- V. O. Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - S. M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
77
|
Wensel D, Williams S, Dixon DP, Ward P, McCormick P, Concha N, Stewart E, Hong X, Mazzucco C, Pal S, Ding B, Fellinger C, Krystal M. Novel Bent Conformation of CD4 Induced by HIV-1 Inhibitor Indirectly Prevents Productive Viral Attachment. J Mol Biol 2021; 434:167395. [PMID: 34896364 DOI: 10.1016/j.jmb.2021.167395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
GSK3732394 is a multi-specific biologic inhibitor of HIV entry currently under clinical evaluation. A key component of this molecule is an adnectin (6940_B01) that binds to CD4 and inhibits downstream actions of gp160. Studies were performed to determine the binding site of the adnectin on CD4 and to understand the mechanism of inhibition. Using hydrogen-deuterium exchange with mass spectrometry (HDX), CD4 peptides showed differential rates of deuteration (either enhanced or slowed) in the presence of the adnectin that mapped predominantly to the interface of domains 2 and 3 (D2-D3). In addition, an X-ray crystal structure of an ibalizumab Fab/CD4(D1-D4)/adnectin complex revealed an extensive interface between the adnectin and residues on CD4 domains D2-D4 that stabilize a novel T-shaped CD4 conformation. A cryo-EM map of the gp140/CD4/GSK3732394 complex clearly shows the bent conformation for CD4 while bound to gp140. Mutagenic analyses on CD4 confirmed that amino acid F202 forms a key interaction with the adnectin. In addition, amino acid L151 was shown to be a critical indirect determinant of the specificity for binding to the human CD4 protein over related primate CD4 molecules, as it appears to modulate CD4's flexibility to adopt the adnectin-bound conformation. The significant conformational change of CD4 upon adnectin binding brings the D1 domain of CD4 in proximity to the host cell membrane surface, thereby re-orienting the gp120 binding site in a direction that is inaccessible to incoming virus due to a steric clash between gp160 trimers on the virus surface and the target cell membrane.
Collapse
Affiliation(s)
- David Wensel
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA.
| | - Shawn Williams
- GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA.
| | - David P Dixon
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK.
| | - Paris Ward
- GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA.
| | - Patti McCormick
- GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA.
| | - Nestor Concha
- GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA.
| | - Eugene Stewart
- GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA.
| | - Xuan Hong
- GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA.
| | - Charles Mazzucco
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA.
| | - Shreya Pal
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA.
| | - Bo Ding
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA.
| | | | - Mark Krystal
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA.
| |
Collapse
|
78
|
A Panel of Engineered Ubiquitin Variants Targeting the Family of Domains Found in Ubiquitin Specific Proteases (DUSPs). J Mol Biol 2021; 433:167300. [PMID: 34666042 DOI: 10.1016/j.jmb.2021.167300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
Domains found in ubiquitin specific proteases (DUSPs) occur in seven members of the ubiquitin specific protease (USP) family. DUSPs are defined by a distinct structural fold but their functions remain largely unknown, although studies with USP4 suggest that its DUSP enhances deubiquitination activity. We used phage-displayed libraries of ubiquitin variants (UbVs) to derive protein-based tools to target DUSP family members with high affinity and specificity. We designed a UbV library based on insights from the structure of a previously identified UbV bound to the DUSP of USP15. The new library yielded 33 unique UbVs that bound to DUSPs from five different USPs (USP4, USP11, USP15, USP20 and USP33). For each USP, we were able to identify at least one DUSP that bound with high affinity and absolute specificity relative to the other DUSPs. We showed that UbVs targeting the DUSPs of USP15, USP11 and USP20 inhibited the catalytic activity of the enzyme, despite the fact that the DUSP is located outside of the catalytic domain. These findings provide an alternative means of inhibiting USP activity by targeting DUSPs, and this mechanism could be potentially extended other DUSP-containing USPs.
Collapse
|
79
|
Non-Antibody-Based Binders for the Enrichment of Proteins for Analysis by Mass Spectrometry. Biomolecules 2021; 11:biom11121791. [PMID: 34944435 PMCID: PMC8698613 DOI: 10.3390/biom11121791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
Abstract
There is often a need to isolate proteins from body fluids, such as plasma or serum, prior to further analysis with (targeted) mass spectrometry. Although immunoglobulin or antibody-based binders have been successful in this regard, they possess certain disadvantages, which stimulated the development and validation of alternative, non-antibody-based binders. These binders are based on different protein scaffolds and are often selected and optimized using phage or other display technologies. This review focuses on several non-antibody-based binders in the context of enriching proteins for subsequent liquid chromatography-mass spectrometry (LC-MS) analysis and compares them to antibodies. In addition, we give a brief introduction to approaches for the immobilization of binders. The combination of non-antibody-based binders and targeted mass spectrometry is promising in areas, like regulated bioanalysis of therapeutic proteins or the quantification of biomarkers. However, the rather limited commercial availability of these binders presents a bottleneck that needs to be addressed.
Collapse
|
80
|
Ruan Y, Chao S, Hu X, Lu L, Lin Y, Wang Q, Zheng Y, Li J, Ding N. FN3 Domain Displaying Double Epitopes: A Cost-Effective Strategy for Producing Substitute Antigens. Front Mol Biosci 2021; 8:742617. [PMID: 34820421 PMCID: PMC8607273 DOI: 10.3389/fmolb.2021.742617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
Construction of substitute antigens based on alternative scaffold proteins is a promising strategy in bioassay technology. In this study, we proposed a strategy for constructing substitute antigens derived from 10th human fibronectin type III (FN3) using two peptide epitopes of terminal pro-brain natriuretic peptide (NT-proBNP) as an example. The base sequences encoding the two antigenic epitopes of NT-proBNP were recombined into the FG loop region and the C-terminus of FN3, fused by 4 GS or polyN linker. The fusion proteins (named FN3-epitopes-4GS and FN3-epitopes-polyN, respectively) were expressed and purified cost-effectively using an Escherichia coli expression system. The immunoreactivity of recombinant substitutes was preliminarily confirmed by western blot analysis using epitope-specific antibodies. The sandwich enzyme-linked immunosorbent assay demonstrated that either FN3-epitopes-polyN or FN3-epitopes-4GS was highly sensitive, and FN3-epitopes-polyN exhibited better kinetics to specific antibodies than FN3-epitopes-4GS, showing a linear dose-response relationship in the concentration range of 0.06–12.85 ng/ml, which suggest that the polyN linker was more suitable for constructing the FN3-based substitute antigens compared to the 4 GS linker. Furthermore, the serum stability test and differential scanning calorimetry analysis showed that the recombinant FN3-epitopes-polyN maintained the original stability of FN3. Therefore, it was confirmed that FN3 could be engineered to construct a stable biomacromolecular substitute for displaying double epitopes of antigen proteins, such as NT-proBNP. In summary, a cost-effective strategy to produce NT-proBNP substitute antigens with good immunoreactivity and physicochemical stability was established in this work, which may provide potential uses for the production of other substitute antigens in the future.
Collapse
Affiliation(s)
- Yao Ruan
- Xi'an International Medical Center Hospital, Xi'an, China.,Medical College, Dalian University, Dalian, China.,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, Xi'an, China
| | | | - Xuejun Hu
- Medical College, Dalian University, Dalian, China
| | - Longzhen Lu
- Medical College, Dalian University, Dalian, China
| | - Yue Lin
- Medical College, Dalian University, Dalian, China
| | - Qian Wang
- Medical College, Dalian University, Dalian, China
| | - Yang Zheng
- Medical College, Dalian University, Dalian, China
| | - Junming Li
- Department of Clinical Laboratory, Yuhuangding Hospital, Yantai, China
| | - Ning Ding
- Medical College, Dalian University, Dalian, China
| |
Collapse
|
81
|
Taw MN, Li M, Kim D, Rocco MA, Waraho-Zhmayev D, DeLisa MP. Engineering a Supersecreting Strain of Escherichia coli by Directed Coevolution of the Multiprotein Tat Translocation Machinery. ACS Synth Biol 2021; 10:2947-2958. [PMID: 34757717 DOI: 10.1021/acssynbio.1c00183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Escherichia coli remains one of the preferred hosts for biotechnological protein production due to its robust growth in culture and ease of genetic manipulation. It is often desirable to export recombinant proteins into the periplasmic space for reasons related to proper disulfide bond formation, prevention of aggregation and proteolytic degradation, and ease of purification. One such system for expressing heterologous secreted proteins is the twin-arginine translocation (Tat) pathway, which has the unique advantage of delivering correctly folded proteins into the periplasm. However, transit times for proteins through the Tat translocase, comprised of the TatABC proteins, are much longer than for passage through the SecYEG pore, the translocase associated with the more widely utilized Sec pathway. To date, a high protein flux through the Tat pathway has yet to be demonstrated. To address this shortcoming, we employed a directed coevolution strategy to isolate mutant Tat translocases for their ability to deliver higher quantities of heterologous proteins into the periplasm. Three supersecreting translocases were selected that each exported a panel of recombinant proteins at levels that were significantly greater than those observed for wild-type TatABC or SecYEG translocases. Interestingly, all three of the evolved Tat translocases exhibited quality control suppression, suggesting that increased translocation flux was gained by relaxation of substrate proofreading. Overall, our discovery of more efficient translocase variants paves the way for the use of the Tat system as a powerful complement to the Sec pathway for secreted production of both commodity and high value-added proteins.
Collapse
Affiliation(s)
- May N. Taw
- Department of Microbiology, Cornell University, Ithaca, New York 14853, United States
| | - Mingji Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Daniel Kim
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Mark A. Rocco
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Dujduan Waraho-Zhmayev
- Biological Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Matthew P. DeLisa
- Department of Microbiology, Cornell University, Ithaca, New York 14853, United States
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Cornell Institute of Biotechnology, Cornell University, 130 Biotechnology Building, Ithaca, New York 14853, United States
| |
Collapse
|
82
|
Akkapeddi P, Teng KW, Koide S. Monobodies as tool biologics for accelerating target validation and druggable site discovery. RSC Med Chem 2021; 12:1839-1853. [PMID: 34820623 PMCID: PMC8597423 DOI: 10.1039/d1md00188d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022] Open
Abstract
Despite increased investment and technological advancement, new drug approvals have not proportionally increased. Low drug approval rates, particularly for new targets, are linked to insufficient target validation at early stages. Thus, there remains a strong need for effective target validation techniques. Here, we review the use of synthetic binding proteins as tools for drug target validation, with focus on the monobody platform among several advanced synthetic binding protein platforms. Monobodies with high affinity and high selectivity can be rapidly developed against challenging targets, such as KRAS mutants, using protein engineering technologies. They have strong tendency to bind to functional sites and thus serve as drug-like molecules, and they can serve as targeting ligands for constructing bio-PROTACs. Genetically encoded monobodies are effective "tool biologics" for validating intracellular targets. They promote crystallization and help reveal the atomic structures of the monobody-target interface, which can inform drug design. Using case studies, we illustrate the potential of the monobody technology in accelerating target validation and small-molecule drug discovery.
Collapse
Affiliation(s)
- Padma Akkapeddi
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
| | - Kai Wen Teng
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine New York NY USA
| |
Collapse
|
83
|
Genetically encoded intrabodies as high-precision tools to visualize and manipulate neuronal function. Semin Cell Dev Biol 2021; 126:117-124. [PMID: 34782184 DOI: 10.1016/j.semcdb.2021.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022]
Abstract
Basic neuroscience research employs numerous forms of antibodies as key reagents in diverse applications. While the predominant use of antibodies is as immunolabeling reagents, neuroscientists are making increased use of intracellular antibodies or intrabodies. Intrabodies are recombinant antibodies genetically encoded for expression within neurons. These can be used to target various cargo (fluorescent proteins, reporters, enzymes, etc.) to specific molecules and subcellular domains to report on and manipulate neuronal function with high precision. Intrabodies have the advantages inherent in all genetically encoded recombinant antibodies but represent a distinct subclass in that their structure allows for their expression and function within cells. The high precision afforded by the ability to direct their expression to specific cell types, and the selective binding of intrabodies to targets within these allows intrabodies to offer unique advantages for neuroscience research, given the tremendous molecular, cellular and morphological complexity of brain neurons. Intrabodies expressed within neurons have been used for a variety of purposes in basic neuroscience research. Here I provide a general background to intrabodies and their development, and examples of their emerging utility as valuable basic neuroscience research tools.
Collapse
|
84
|
Ito T, Nishi H, Kameda T, Yoshida M, Fukazawa R, Kawada S, Nakazawa H, Umetsu M. Combination Informatic and Experimental Approach for Selecting Scaffold Proteins for Development as Antibody Mimetics. CHEM LETT 2021. [DOI: 10.1246/cl.210443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomoyuki Ito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Hafumi Nishi
- Department of Applied Information Sciences, Graduate School of Information Science, Tohoku University, 6-3-09 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
- Faculty of Core Research, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Mayu Yoshida
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Reito Fukazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Sakiya Kawada
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
85
|
Targeting small GTPases and their downstream pathways with intracellular macromolecule binders to define alternative therapeutic strategies in cancer. Biochem Soc Trans 2021; 49:2021-2035. [PMID: 34623375 DOI: 10.1042/bst20201059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
The RAS superfamily of small GTPases regulates major physiological cellular processes. Mutation or deregulation of these small GTPases, their regulators and/or their effectors are associated with many diseases including cancer. Hence, targeting these classes of proteins is an important therapeutic strategy in cancer. This has been recently achieved with the approval of the first KRASG12C covalent inhibitors for the clinic. However, many other mutants and small GTPases are still considered as 'undruggable' with small molecule inhibitors because of a lack of well-defined pocket(s) at their surface. Therefore, alternative therapeutic strategies have been developed to target these proteins. In this review, we discuss the use of intracellular antibodies and derivatives - reagents that bind their antigen inside the cells - for the discovery of novel inhibitory mechanisms, targetable features and therapeutic strategies to inhibit small GTPases and their downstream pathways. These reagents are also versatile tools used to better understand the biological mechanisms regulated by small GTPases and to accelerate the drug discovery process.
Collapse
|
86
|
Willaert RG, Kayacan Y, Devreese B. The Flo Adhesin Family. Pathogens 2021; 10:pathogens10111397. [PMID: 34832553 PMCID: PMC8621652 DOI: 10.3390/pathogens10111397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in the infection of fungal pathogens in humans is the adhesion of the pathogen to host tissue cells or abiotic surfaces such as catheters and implants. One of the main players involved in this are the expressed cell wall adhesins. Here, we review the Flo adhesin family and their involvement in the adhesion of these yeasts during human infections. Firstly, we redefined the Flo adhesin family based on the domain architectures that are present in the Flo adhesins and their functions, and set up a new classification of Flo adhesins. Next, the structure, function, and adhesion mechanisms of the Flo adhesins whose structure has been solved are discussed in detail. Finally, we identified from Pfam database datamining yeasts that could express Flo adhesins and are encountered in human infections and their adhesin architectures. These yeasts are discussed in relation to their adhesion characteristics and involvement in infections.
Collapse
Affiliation(s)
- Ronnie G. Willaert
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-2629-1846
| | - Yeseren Kayacan
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bart Devreese
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Laboratory for Microbiology, Gent University (UGent), 9000 Gent, Belgium
| |
Collapse
|
87
|
Benn JA, Mukadam AS, McEwan WA. Targeted protein degradation using intracellular antibodies and its application to neurodegenerative disease. Semin Cell Dev Biol 2021; 126:138-149. [PMID: 34654628 DOI: 10.1016/j.semcdb.2021.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 01/10/2023]
Abstract
Antibodies mediate the majority of their effects in the extracellular domain, or in intracellular compartments isolated from the cytosol. Under a growing list of circumstances, however, antibodies are found to gain access to the cytoplasm. Cytosolic immune complexes are bound by the atypical antibody receptor TRIM21, which mediates the rapid degradation of the immune complexes at the proteasome. These discoveries have informed the development of TRIM-Away, a technique to selectively deplete proteins using delivery of antibodies into cells. A range of related approaches that elicit selective protein degradation using intracellular constructs linking antibody fragments to degradative effector functions have also been developed. These methods hold promise for inducing the degradation of proteins as both research tools and as a novel therapeutic approach. Protein aggregates are a pathophysiological feature of neurodegenerative diseases and are considered to have a causal role in pathology. Immunotherapy is emerging as a promising route towards their selective targeting, and a role of antibodies in the cytosol has been demonstrated in cell-based assays. This review will explore the mechanisms by which therapeutic antibodies engage and eliminate intracellularly aggregated proteins. We will discuss how future developments in intracellular antibody technology may enhance the therapeutic potential of such antibody-derived therapies.
Collapse
Affiliation(s)
- Jonathan A Benn
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK
| | - Aamir S Mukadam
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK
| | - William A McEwan
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK.
| |
Collapse
|
88
|
Jia Z, Liu Y, Ji X, Zheng Y, Li Z, Jiang S, Li H, Kong Y. DAKS1, a Kunitz Scaffold Peptide from the Venom Gland of Deinagkistrodon acutus Prevents Carotid-Artery and Middle-Cerebral-Artery Thrombosis via Targeting Factor XIa. Pharmaceuticals (Basel) 2021; 14:ph14100966. [PMID: 34681191 PMCID: PMC8539665 DOI: 10.3390/ph14100966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
Scaffold-based peptides (SBPs) are fragments of large proteins that are characterized by potent bioactivity, high thermostability, and low immunogenicity. Some SBPs have been approved by the FDA for human use. In the present study, we developed SBPs from the venom gland of Deinagkistrodon acutus (D. acutus) by combining transcriptome sequencing and Pfam annotation. To that end, 10 Kunitz peptides were discovered from the venom gland of D. acutus, and most of which peptides exhibited Factor XIa (FXIa) inhibitory activity. One of those, DAKS1, exhibiting strongest inhibitory activity against FXIa, was further evaluated for its anticoagulant and antithrombotic activity. DAKS1 prolonged twofold APTT at a concentration of 15 μM in vitro. DAKS1 potently inhibited thrombosis in a ferric chloride-induced carotid-artery injury model in mice at a dose of 1.3 mg/kg. Furthermore, DAKS1 prevented stroke in a transient middle cerebral-artery occlusion (tMCAO) model in mice at a dose of 2.6 mg/kg. Additionally, DAKS1 did not show significant bleeding risk at a dose of 6.5 mg/kg. Together, our results indicated that DAKS1 is a promising candidate for drug development for the treatment of thrombosis and stroke disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yi Kong
- Correspondence: ; Tel.: +86-025-832-712-82
| |
Collapse
|
89
|
Vogt S, Bobbili MR, Stadlmayr G, Stadlbauer K, Kjems J, Rüker F, Grillari J, Wozniak‐Knopp G. An engineered CD81-based combinatorial library for selecting recombinant binders to cell surface proteins: Laminin binding CD81 enhances cellular uptake of extracellular vesicles. J Extracell Vesicles 2021; 10:e12139. [PMID: 34514736 PMCID: PMC8435527 DOI: 10.1002/jev2.12139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022] Open
Abstract
The research of extracellular vesicles (EVs) has boomed in the last decade, with the promise of them functioning as target-directed drug delivery vehicles, able to modulate proliferation, migration, differentiation, and other properties of the recipient cell that are vital for health of the host organism. To enhance the ability of their targeted delivery, we employed an intrinsically overrepresented protein, CD81, to serve for recognition of the desired target antigen. Yeast libraries displaying mutant variants of the large extracellular loop of CD81 have been selected for binders to human placental laminin as an example target. Their specific interaction with laminin was confirmed in a mammalian display system. Derived sequences were reformatted to full-length CD81 and expressed in EVs produced by HeLa cells. These EVs were examined for the presence of the recombinant protein and were shown to exhibit an enhanced uptake into laminin-secreting mammalian cell lines. For the best candidate, the specificity of antigen interaction was demonstrated with a competition experiment. To our knowledge, this is the first example of harnessing an EV membrane protein as mediator of de novo target antigen recognition via in vitro molecular evolution, opening horizons to a broad range of applications in various therapeutic settings.
Collapse
Affiliation(s)
- Stefan Vogt
- acib GmbH (Austrian Centre of Industrial Biotechnology)GrazAustria
- Department of BiotechnologyInstitute of Molecular BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Madhusudhan Reddy Bobbili
- Department of BiotechnologyInstitute of Molecular BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research CenterViennaAustria
| | - Gerhard Stadlmayr
- Department of BiotechnologyChristian Doppler Laboratory for Innovative ImmunotherapeuticsUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Katharina Stadlbauer
- Department of BiotechnologyChristian Doppler Laboratory for Innovative ImmunotherapeuticsUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Jørgen Kjems
- Department of Molecular Biology and GeneticsCentre for Cellular Signal Patterns (CellPat)Interdisciplinary Nanoscience Centre (iNANO)Aarhus UniversityAarhus CDenmark
| | - Florian Rüker
- Department of BiotechnologyInstitute of Molecular BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Johannes Grillari
- Department of BiotechnologyInstitute of Molecular BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research CenterViennaAustria
| | - Gordana Wozniak‐Knopp
- Department of BiotechnologyInstitute of Molecular BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Department of BiotechnologyChristian Doppler Laboratory for Innovative ImmunotherapeuticsUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| |
Collapse
|
90
|
Berger CS, Laroche J, Maaroufi H, Martin H, Moon KM, Landry CR, Foster LJ, Aubin-Horth N. The parasite Schistocephalus solidus secretes proteins with putative host manipulation functions. Parasit Vectors 2021; 14:436. [PMID: 34454597 PMCID: PMC8400842 DOI: 10.1186/s13071-021-04933-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Manipulative parasites are thought to liberate molecules in their external environment, acting as manipulation factors with biological functions implicated in their host's physiological and behavioural alterations. These manipulation factors are part of a complex mixture called the secretome. While the secretomes of various parasites have been described, there is very little data for a putative manipulative parasite. It is necessary to study the molecular interaction between a manipulative parasite and its host to better understand how such alterations evolve. METHODS Here, we used proteomics to characterize the secretome of a model cestode with a complex life cycle based on trophic transmission. We studied Schistocephalus solidus during the life stage in which behavioural changes take place in its obligatory intermediate fish host, the threespine stickleback (Gasterosteus aculeatus). We produced a novel genome sequence and assembly of S. solidus to improve protein coding gene prediction and annotation for this parasite. We then described the whole worm's proteome and its secretome during fish host infection using LC-MS/MS. RESULTS A total of 2290 proteins were detected in the proteome of S. solidus, and 30 additional proteins were detected specifically in the secretome. We found that the secretome contains proteases, proteins with neural and immune functions, as well as proteins involved in cell communication. We detected receptor-type tyrosine-protein phosphatases, which were reported in other parasitic systems to be manipulation factors. We also detected 12 S. solidus-specific proteins in the secretome that may play important roles in host-parasite interactions. CONCLUSIONS Our results suggest that S. solidus liberates molecules with putative host manipulation functions in the host and that many of them are species-specific.
Collapse
Affiliation(s)
- Chloé Suzanne Berger
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Ressources Aquatiques Québec (RAQ), Institut Des Sciences de La Mer de Rimouski, Quebec, Canada
| | - Jérôme Laroche
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
| | - Halim Maaroufi
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
| | - Hélène Martin
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Département de Biochimie, Microbiologie Et Bioinformatique, Université Laval, Quebec, QC Canada
| | - Kyung-Mee Moon
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Christian R. Landry
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Département de Biochimie, Microbiologie Et Bioinformatique, Université Laval, Quebec, QC Canada
- PROTEO, Le Réseau Québécois de Recherche Sur La Fonction, la structure et l’ingénierie des protéines, Université Laval, Quebec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Quebec, Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Nadia Aubin-Horth
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Ressources Aquatiques Québec (RAQ), Institut Des Sciences de La Mer de Rimouski, Quebec, Canada
| |
Collapse
|
91
|
Kamalinia G, Grindel BJ, Takahashi TT, Millward SW, Roberts RW. Directing evolution of novel ligands by mRNA display. Chem Soc Rev 2021; 50:9055-9103. [PMID: 34165126 PMCID: PMC8725378 DOI: 10.1039/d1cs00160d] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
mRNA display is a powerful biological display platform for the directed evolution of proteins and peptides. mRNA display libraries covalently link the displayed peptide or protein (phenotype) with the encoding genetic information (genotype) through the biochemical activity of the small molecule puromycin. Selection for peptide/protein function is followed by amplification of the linked genetic material and generation of a library enriched in functional sequences. Iterative selection cycles are then performed until the desired level of function is achieved, at which time the identity of candidate peptides can be obtained by sequencing the genetic material. The purpose of this review is to discuss the development of mRNA display technology since its inception in 1997 and to comprehensively review its use in the selection of novel peptides and proteins. We begin with an overview of the biochemical mechanism of mRNA display and its variants with a particular focus on its advantages and disadvantages relative to other biological display technologies. We then discuss the importance of scaffold choice in mRNA display selections and review the results of selection experiments with biological (e.g., fibronectin) and linear peptide library architectures. We then explore recent progress in the development of "drug-like" peptides by mRNA display through the post-translational covalent macrocyclization and incorporation of non-proteogenic functionalities. We conclude with an examination of enabling technologies that increase the speed of selection experiments, enhance the information obtained in post-selection sequence analysis, and facilitate high-throughput characterization of lead compounds. We hope to provide the reader with a comprehensive view of current state and future trajectory of mRNA display and its broad utility as a peptide and protein design tool.
Collapse
Affiliation(s)
- Golnaz Kamalinia
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
92
|
Kondo T, Eguchi M, Tsuzuki N, Murata N, Fujino T, Hayashi G, Murakami H. Construction of a Highly Diverse mRNA Library for in vitro Selection of Monobodies. Bio Protoc 2021; 11:e4125. [PMID: 34541043 DOI: 10.21769/bioprotoc.4125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 11/02/2022] Open
Abstract
Recently, we developed transcription/translation coupled with the association of puromycin linker (TRAP) display as a quick in vitro selection method to obtain antibody-like proteins. For the in vitro selection, it is important to prepare mRNA libraries among which the diversity is high. Here, we describe a method for the preparation of monobody mRNA libraries with greater than 1013 theoretical diversity. First, we synthesized two long single-stranded DNAs that corresponded to fragments of monobody DNA, with random codons in the BC and FG loops. These oligonucleotides were ligated by T4 DNA ligase with the support of guide oligonucleotides containing 3' ends that were protected by a modification. After amplifying the product DNAs by PCR, one end of each DNA fragment was digested with the type II restriction enzyme BsaI, and the resulting DNA fragments were ligated using T4 DNA ligase. After amplification of the DNA product, mRNAs were synthesized by T7 RNA polymerase. This method is simple and could be used for the preparation of mRNA libraries for various antibody-like proteins. Graphic abstract: Construction of a highly diverse mRNA library.
Collapse
Affiliation(s)
- Taishi Kondo
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Minori Eguchi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Nariaki Tsuzuki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Naoya Murata
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Tomoshige Fujino
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.,Japan Science and Technology Agency (JST), PRESTO, Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| |
Collapse
|
93
|
Boucher L, Somani S, Negron C, Ma W, Jacobs S, Chan W, Malia T, Obmolova G, Teplyakov A, Gilliland GL, Luo J. Surface salt bridges contribute to the extreme thermal stability of an FN3-like domain from a thermophilic bacterium. Proteins 2021; 90:270-281. [PMID: 34405904 DOI: 10.1002/prot.26218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 03/08/2021] [Accepted: 08/02/2021] [Indexed: 12/27/2022]
Abstract
This study uses differential scanning calorimetry, X-ray crystallography, and molecular dynamics simulations to investigate the structural basis for the high thermal stability (melting temperature 97.5°C) of a FN3-like protein domain from thermophilic bacteria Thermoanaerobacter tengcongensis (FN3tt). FN3tt adopts a typical FN3 fold with a three-stranded beta sheet packing against a four-stranded beta sheet. We identified three solvent exposed arginine residues (R23, R25, and R72), which stabilize the protein through salt bridge interactions with glutamic acid residues on adjacent strands. Alanine mutation of the three arginine residues reduced melting temperature by up to 22°C. Crystal structures of the wild type (WT) and a thermally destabilized (∆Tm -19.7°C) triple mutant (R23L/R25T/R72I) were found to be nearly identical, suggesting that the destabilization is due to interactions of the arginine residues. Molecular dynamics simulations showed that the salt bridge interactions in the WT were stable and provided a dynamical explanation for the cooperativity observed between R23 and R25 based on calorimetry measurements. In addition, folding free energy changes computed using free energy perturbation molecular dynamics simulations showed high correlation with melting temperature changes. This work is another example of surface salt bridges contributing to the enhanced thermal stability of thermophilic proteins. The molecular dynamics simulation methods employed in this study may be broadly useful for in silico surface charge engineering of proteins.
Collapse
Affiliation(s)
- Lauren Boucher
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Sandeep Somani
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | | - Wenting Ma
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Steven Jacobs
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Winnie Chan
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Thomas Malia
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Galina Obmolova
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Alexey Teplyakov
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Gary L Gilliland
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Jinquan Luo
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| |
Collapse
|
94
|
Abstract
RAS proteins represent critical drivers of tumor development and thus are the focus of intense efforts to pharmacologically inhibit these proteins in human cancer. Although recent success has been attained in developing clinically efficacious inhibitors to KRASG12C, there remains a critical need for developing approaches to inhibit additional mutant RAS proteins. A number of anti-RAS biologics have been developed which reveal novel and potentially therapeutically targetable vulnerabilities in oncogenic RAS. This review will discuss the growing field of anti-RAS biologics and potential development of these reagents into new anti-RAS therapies.
Collapse
Affiliation(s)
- Michael Whaby
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
95
|
Yasui N, Nakamura K, Yamashita A. A sweet protein monellin as a non-antibody scaffold for synthetic binding proteins. J Biochem 2021; 169:585-599. [PMID: 33386843 DOI: 10.1093/jb/mvaa147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Synthetic binding proteins that have the ability to bind with molecules can be generated using various protein domains as non-antibody scaffolds. These designer proteins have been used widely in research studies, as their properties overcome the disadvantages of using antibodies. Here, we describe the first application of a phage display to generate synthetic binding proteins using a sweet protein, monellin, as a non-antibody scaffold. Single-chain monellin (scMonellin), in which two polypeptide chains of natural monellin are connected by a short linker, has two loops on one side of the molecule. We constructed phage display libraries of scMonellin, in which the amino acid sequence of the two loops is diversified. To validate the performance of these libraries, we sorted them against the folding mutant of the green fluorescent protein variant (GFPuv) and yeast small ubiquitin-related modifier. We successfully obtained scMonellin variants exhibiting moderate but significant affinities for these target proteins. Crystal structures of one of the GFPuv-binding variants in complex with GFPuv revealed that the two diversified loops were involved in target recognition. scMonellin, therefore, represents a promising non-antibody scaffold in the design and generation of synthetic binding proteins. We termed the scMonellin-derived synthetic binding proteins 'SWEEPins'.
Collapse
Affiliation(s)
- Norihisa Yasui
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazuaki Nakamura
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Atsuko Yamashita
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
96
|
Tuning SAS-6 architecture with monobodies impairs distinct steps of centriole assembly. Nat Commun 2021; 12:3805. [PMID: 34155202 PMCID: PMC8217511 DOI: 10.1038/s41467-021-23897-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
Centrioles are evolutionarily conserved multi-protein organelles essential for forming cilia and centrosomes. Centriole biogenesis begins with self-assembly of SAS-6 proteins into 9-fold symmetrical ring polymers, which then stack into a cartwheel that scaffolds organelle formation. The importance of this architecture has been difficult to decipher notably because of the lack of precise tools to modulate the underlying assembly reaction. Here, we developed monobodies against Chlamydomonas reinhardtii SAS-6, characterizing three in detail with X-ray crystallography, atomic force microscopy and cryo-electron microscopy. This revealed distinct monobody-target interaction modes, as well as specific consequences on ring assembly and stacking. Of particular interest, monobody MBCRS6-15 induces a conformational change in CrSAS-6, resulting in the formation of a helix instead of a ring. Furthermore, we show that this alteration impairs centriole biogenesis in human cells. Overall, our findings identify monobodies as powerful molecular levers to alter the architecture of multi-protein complexes and tune centriole assembly.
Collapse
|
97
|
Xi Z, Liu X, Lin R, Persons JD, Ilina TV, Li W, Dimitrov DS, Ishima R. The reduced form of the antibody CH2 domain. Protein Sci 2021; 30:1895-1903. [PMID: 34107549 DOI: 10.1002/pro.4142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022]
Abstract
Among the immunoglobulin domains, the CH2 domain has the lowest thermal stability, which also depends on amino acid sequence and buffer conditions. To further identify factors that influence CH2 folding and stability, we characterized the domain in the reduced form using differential scanning fluorimetry and nuclear magnetic resonance. We show that the CH2 domain can fold, similarly to the disulfide-bridged form, without forming a disulfide-bridge, even though the protein contains two Cys residues. Although the reduced form exhibits thermal stability more than 15°C lower than the disulfide-bridged form, it does not undergo immediate full oxidization. To explain this phenomenon, we compared CH2 oxidization at different conditions and demonstrate a need for significant fluctuation of the folded conformation to enhance CH2 disulfide-bridge formation. We conclude that, since CH2 can be purified as a folded, semi-stable, reduced protein that can coexist with the oxidized form, verification of the level of oxidization at each step is critical in CH2 engineering studies.
Collapse
Affiliation(s)
- Zhaoyong Xi
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xianglei Liu
- Center for Antibody Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rui Lin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Gastroenterology and Hepatology, Tianjin Medical University, General Hospital, Tianjin, China
| | - John D Persons
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tatiana V Ilina
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Wei Li
- Center for Antibody Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
98
|
Zhang Y, Thangam R, You SH, Sultonova RD, Venu A, Min JJ, Hong Y. Engineering Calreticulin-Targeting Monobodies to Detect Immunogenic Cell Death in Cancer Chemotherapy. Cancers (Basel) 2021; 13:2801. [PMID: 34199835 PMCID: PMC8200062 DOI: 10.3390/cancers13112801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/26/2022] Open
Abstract
Surface-exposed calreticulin (ecto-CRT) plays a crucial role in the phagocytic removal of apoptotic cells during immunotherapy. Ecto-CRT is an immunogenic signal induced in response to treatment with chemotherapeutic agents such as doxorubicin (DOX) and mitoxantrone (MTX), and two peptides (KLGFFKR (Integrin-α) and GQPMYGQPMY (CRT binding peptide 1, Hep-I)) are known to specifically bind CRT. To engineer CRT-specific monobodies as agents to detect immunogenic cell death (ICD), we fused these peptide sequences at the binding loops (BC and FG) of human fibronectin domain III (FN3). CRT-specific monobodies were purified from E. coli by affinity chromatography. Using these monobodies, ecto-CRT was evaluated in vitro, in cultured cancer cell lines (CT-26, MC-38, HeLa, and MDA-MB-231), or in mice after anticancer drug treatment. Monobodies with both peptide sequences (CRT3 and CRT4) showed higher binding to ecto-CRT than those with a single peptide sequence. The binding affinity of the Rluc8 fusion protein-engineered monobodies (CRT3-Rluc8 and CRT4-Rluc8) to CRT was about 8 nM, and the half-life in serum and tumor tissue was about 12 h. By flow cytometry and confocal immunofluorescence of cancer cell lines, and by in vivo optical bioluminescence imaging of tumor-bearing mice, CRT3-Rluc8 and CRT4-Rluc8 bound specifically to ecto-CRT and effectively detected pre-apoptotic cells after treatment with ICD-inducing agents (DOX and MTX) but not a non-ICD-inducing agent (gemcitabine). Using CRT-specific monobodies, it is possible to detect ecto-CRT induction in cancer cells in response to drug exposure. This technique may be used to predict the therapeutic efficiency of chemo- and immuno-therapeutics early during anticancer treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea; (Y.Z.); (R.T.); (S.-H.Y.); (R.D.S.); (A.V.)
| | - Ramar Thangam
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea; (Y.Z.); (R.T.); (S.-H.Y.); (R.D.S.); (A.V.)
- Department of Materials Science & Engineering, Korea University, Seoul 02841, Korea
| | - Sung-Hwan You
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea; (Y.Z.); (R.T.); (S.-H.Y.); (R.D.S.); (A.V.)
| | - Rukhsora D. Sultonova
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea; (Y.Z.); (R.T.); (S.-H.Y.); (R.D.S.); (A.V.)
| | - Akhil Venu
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea; (Y.Z.); (R.T.); (S.-H.Y.); (R.D.S.); (A.V.)
| | - Jung-Joon Min
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea; (Y.Z.); (R.T.); (S.-H.Y.); (R.D.S.); (A.V.)
- Department of Microbiology, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Yeongjin Hong
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea; (Y.Z.); (R.T.); (S.-H.Y.); (R.D.S.); (A.V.)
- Department of Microbiology, Chonnam National University Medical School, Hwasun 58128, Korea
| |
Collapse
|
99
|
Mahboobnia K, Pirro M, Marini E, Grignani F, Bezsonov EE, Jamialahmadi T, Sahebkar A. PCSK9 and cancer: Rethinking the link. Biomed Pharmacother 2021; 140:111758. [PMID: 34058443 DOI: 10.1016/j.biopha.2021.111758] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cancer is emerging as a major problem globally, as it accounts for the second cause of death despite medical advances. According to epidemiological and basic studies, cholesterol is involved in cancer progression and there are abnormalities in cholesterol metabolism of cancer cells including prostate, breast, and colorectal carcinomas. However, the importance of cholesterol in carcinogenesis and thereby the role of cholesterol homeostasis as a therapeutic target is still a debated area in cancer therapy. Proprotein convertase subtilisin/kexin type-9 (PCSK9), a serine protease, modulates cholesterol metabolism by attachment to the LDL receptor (LDLR) and reducing its recycling by targeting the receptor for lysosomal destruction. Published research has shown that PCSK9 is also involved in degradation of other LDLR family members namely very-low-density-lipoprotein receptor (VLDLR), lipoprotein receptor-related protein 1 (LRP-1), and apolipoprotein E receptor 2 (ApoER2). As a result, this protein represents an interesting therapeutic target for the treatment of hypercholesterolemia. Interestingly, clinical trials on PCSK9-specific monoclonal antibodies have reported promising results with high efficacy in lowering LDL-C and in turn reducing cardiovascular complications. It is important to note that PCSK9 mediates several other pathways apart from its role in lipid homeostasis, including antiviral activity, hepatic regeneration, neuronal apoptosis, and modulation of various signaling pathways. Furthermore, recent literature has illustrated that PCSK9 is closely associated with incidence and progression of several cancers. In a number of studies, PCSK9 siRNA was shown to effectively suppress the proliferation and invasion of the several studied tumor cells. Hence, a novel application of PCSK9 inhibitors/silencers in cancer/metastasis could be considered. However, due to poor data on effectiveness and safety of PCSK9 inhibitors in cancer, the impact of PCSK9 inhibition in these pathological conditions is still unknown. SEARCH METHODS A vast literature search was conducted to find intended studies from 1956 up to 2020, and inclusion criteria were original peer-reviewed publications. PURPOSE OF REVIEW To date, PCSK9 has been scantly investigated in cancer. The question that needs to be discussed is "How does PCSK9 act in cancer pathophysiology and what are the risks or benefits associated to its inhibition?". We reviewed the available publications highlighting the contribution of this proprotein convertase in pathways related to cancer, with focus on the potential implications of its long-term pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Ettore Marini
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Grignani
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Evgeny E Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
100
|
Chee SMQ, Wongsantichon J, Yi LS, Sana B, Frosi Y, Robinson RC, Ghadessy FJ. Functional display of bioactive peptides on the vGFP scaffold. Sci Rep 2021; 11:10127. [PMID: 33980885 PMCID: PMC8115314 DOI: 10.1038/s41598-021-89421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Grafting bioactive peptides into recipient protein scaffolds can often increase their activities by conferring enhanced stability and cellular longevity. Here, we describe use of vGFP as a novel scaffold to display peptides. vGFP comprises GFP fused to a bound high affinity Enhancer nanobody that potentiates its fluorescence. We show that peptides inserted into the linker region between GFP and the Enhancer are correctly displayed for on-target interaction, both in vitro and in live cells by pull-down, measurement of target inhibition and imaging analyses. This is further confirmed by structural studies highlighting the optimal display of a vGFP-displayed peptide bound to Mdm2, the key negative regulator of p53 that is often overexpressed in cancer. We also demonstrate a potential biosensing application of the vGFP scaffold by showing target-dependent modulation of intrinsic fluorescence. vGFP is relatively thermostable, well-expressed and inherently fluorescent. These properties make it a useful scaffold to add to the existing tool box for displaying peptides that can disrupt clinically relevant protein–protein interactions.
Collapse
Affiliation(s)
- Sharon Min Qi Chee
- p53 Laboratory, A*STAR, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Jantana Wongsantichon
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Lau Sze Yi
- p53 Laboratory, A*STAR, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Barindra Sana
- p53 Laboratory, A*STAR, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Yuri Frosi
- p53 Laboratory, A*STAR, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Robert C Robinson
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.,Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Farid J Ghadessy
- p53 Laboratory, A*STAR, 8A Biomedical Grove, Singapore, 138648, Singapore.
| |
Collapse
|