51
|
Rosemberg DB, Rico EP, Senger MR, Arizi MDB, Dias RD, Bogo MR, Bonan CD. Acute and subchronic copper treatments alter extracellular nucleotide hydrolysis in zebrafish brain membranes. Toxicology 2007; 236:132-9. [PMID: 17499414 DOI: 10.1016/j.tox.2007.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 04/12/2007] [Accepted: 04/16/2007] [Indexed: 01/13/2023]
Abstract
Copper is a divalent cation with physiological importance since deficiency of copper homeostasis can cause serious neurological diseases. ATP is an important signalling molecule stored at nerve endings and its inactivation is promoted by ecto-nucleotidases. In this study, we verified the effect of acute and subchronic copper treatments on ecto-nucleotidase activities in zebrafish brain membranes. Treatment with copper sulfate (15 microg/L) during 24h inhibited ATP hydrolysis (16%), whereas ADP and AMP hydrolysis were not altered. Nevertheless, a 96-h exposure with the copper concentration mentioned above inhibited NTPDase (31% and 42% for ATP and ADP hydrolysis, respectively) and ecto-5'-nucleotidase (40%) activities. NTPDase1, NTPDase2_mg and NTPDase2_mv transcripts were decreased after copper exposures during 24 and 96 h. Subchronic copper treatment also reduced the NTPDase2_mq and ecto-5'-nucleotidase expression. In vitro assays demonstrated that NTPDase activities were reduced after copper exposure during 40 min. ATP hydrolysis was inhibited at 0.25, 0.5 and 1mM (13%, 31% and 48%, respectively) and ADP hydrolysis also had a significant decrease at these same copper concentrations (41%, 63% and 68%, respectively). In contrast to the subchronic exposure, no significant changes on ecto-5'-nucleotidase were observed after in vitro assays. Lineweaver-Burk plots suggested that both inhibitory effects on nucleotide hydrolysis may occur in a non-competitive manner. Altogether, these findings indicate that copper is able to promote distinct changes on ecto-nucleotidases after in vivo and in vitro treatments and, consequently, it could control the nucleotide and nucleoside levels, modulating the purinergic signalling.
Collapse
Affiliation(s)
- Denis Broock Rosemberg
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
52
|
Vuaden FC, de Paula Cognato G, Bonorino C, Bogo MR, de Freitas Sarkis JJ, Bonan CD. Lipopolysaccharide alters nucleotidase activities from lymphocytes and serum of rats. Life Sci 2007; 80:1784-91. [PMID: 17363004 DOI: 10.1016/j.lfs.2007.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 01/24/2007] [Accepted: 02/07/2007] [Indexed: 11/21/2022]
Abstract
ATP exerts a proinflammatory role and induces cytokine release by acting at P2X(7) receptors. The product of ATP hydrolysis is the nucleoside adenosine, an important immunomodulator. The main source of extracellular adenosine is the hydrolysis of extracellular ATP by a group of ecto-enzymes: ENTPDase family, NPP family and ecto-5'-nucleotidase. Considering the role of ATP and adenosine in inflammatory processes, we investigated the effect of lipopolysaccharide on ectonucleotidases activities and expression in lymphocytes from mesenteric lymph nodes and serum of rats, in order to better understand the involvement of extracellular nucleotide hydrolysis in an endotoxemia model. We observed significant changes on nucleotidase activities from lymphocytes and serum of rats after in vitro and in vivo exposure to LPS. In vitro results have shown an increase on nucleotide hydrolysis in lymphocytes and a decrease on the enzyme activity of NPP in blood serum. In vivo, we observed an increase on nucleotide hydrolysis in lymphocytes and a decrease in the hydrolysis of all nucleotides tested in blood serum. After 24 and 48 h of LPS treatment, there was a reduction in NTPDase1, 2, 3 and ecto-5'-nucleotidase transcripts. These results suggest that there is a time-dependent enhancement of extracellular nucleotides metabolism in lymphocytes and blood serum after the induction of an endotoxemic model. The changes observed suggest that these enzymes can act in the regulation of extracellular nucleosides and nucleotides in a model able to trigger inflammatory process.
Collapse
Affiliation(s)
- Fernanda Cenci Vuaden
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
53
|
Hohenstein B, Renk S, Lang K, Daniel C, Freund M, Léon C, Amann KU, Gachet C, Hugo CPM. P2Y1 Gene Deficiency Protects from Renal Disease Progression and Capillary Rarefaction during Passive Crescentic Glomerulonephritis. J Am Soc Nephrol 2007; 18:494-505. [PMID: 17215444 DOI: 10.1681/asn.2006050439] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The metabotropic receptor P2Y1 is necessary for full ADP-induced platelet activation and is localized on various intrinsic renal cells, including mesangial cells, podocytes, and endothelial cells. To date, nothing is known about the role of the P2Y1 receptor during inflammatory renal disease. The role of the P2Y1 receptor was investigated using 22 P2Y1 gene-deficient (-/-) and 27 wild-type (wt) mice during the time course of passive crescentic nephrotoxic glomerulonephritis. Six P2Y1 -/- and six wt mice served as undiseased controls. Renal tissues were harvested on days 1, 10, and 28 after disease induction. No renal phenotype was found in P2Y1 -/- versus wt mice. In contrast, during crescentic glomerulonephritis, approximately 50% of all wt mice died, whereas all P2Y1 -/- mice survived. Renal function as assessed by creatinine clearance measurements, glomerulosclerosis, and tubulointerstitial injury indices as well as glomerular and interstitial matrix expansion were improved significantly in P2Y1 -/- compared with wt mice. These changes were preceded by reduced glomerular and peritubular capillary rarefaction indices in P2Y1 -/- compared with wt mice. The alteration of the rates of both peritubular apoptosis and endothelial cell proliferation suggests improved capillary preservation in P2Y1 -/- mice early in disease (day 10) and an additional enhanced repair reaction in P2Y1 -/- mice at the late time point (day 28), whereas injury on day 1 seemed to be equivalent in both groups. It is concluded that loss of P2Y1 receptor function safeguards against capillary loss, fibrosis, and death by renal failure during experimental crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Bernd Hohenstein
- Department of Nephrology and Hypertension, University Erlangen-Nuremberg, Loschgestrasse 8, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
A series of immunological and physiological barriers must be overcome for the successful clinical application of xenotransplantation. The acute phases of xenograft rejection have been prevented or at least attenuated by a variety of interventions including treatment of the recipient and genetic modification of the donor. However, recent data suggest that xenografts have a heightened susceptibility to intravascular thrombosis, a process that is emerging as a major contributor to xenograft loss. Current data strongly suggest that thrombosis is primarily a direct consequence of the rejection process, but it may also be facilitated by the failure of porcine regulators of coagulation to efficiently regulate the primate coagulation cascade. Systemic anticoagulant therapy has met with limited success and poses significant risks. Genetic strategies to express antithrombotic agents on xenograft endothelium appear to be more promising and achievable, with candidate molecules including human and leech anticoagulants and the antiplatelet enzyme CD39. Deletion of porcine procoagulants may also prove to be a useful approach.
Collapse
Affiliation(s)
- Sandra Crikis
- Immunology Research Centre and the Department of Medicine, St. Vincent's Health, University of Melbourne, Melbourne, Australia
| | | | | |
Collapse
|
55
|
Dwyer KM, Mysore TB, Crikis S, Robson SC, Nandurkar H, Cowan PJ, D'Apice AJF. The transgenic expression of human CD39 on murine islets inhibits clotting of human blood. Transplantation 2006; 82:428-32. [PMID: 16906044 DOI: 10.1097/01.tp.0000229023.38873.c0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Platelet activation is believed to play an important role in the triggering of thrombosis of human blood by pig islets. We used a transgenic mouse model to investigate whether overexpression of CD39 (ecto nucleoside triphosphate diphosphohydrolase 1 [ENTPD1], EC 3.6.1.5), an ectonucleotidase that degrades the platelet agonists ATP, could interfere with this process. Islets isolated from CD39 transgenic mice showed 2.4-fold higher NTPDase activity than wild-type controls. When incubated with human blood, these islets significantly delayed clotting time compared to wild type islets (7.9 +/- 0.89 min versus 4.3 +/- 0.77 min, P = 0.007). Importantly, expression of human CD39 in the islets of transgenic mice had no deleterious effect on glucose metabolism. These results suggest that transgenic expression of human CD39 does not interfere with islet function and may be a useful strategy to inhibit thrombosis induced by intraportal administration of islet xenografts.
Collapse
Affiliation(s)
- Karen M Dwyer
- Immunology Research Centre, St. Vincent's Hospital, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
56
|
Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 2006; 112:358-404. [PMID: 16784779 DOI: 10.1016/j.pharmthera.2005.04.013] [Citation(s) in RCA: 782] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 02/07/2023]
Abstract
Human health is under constant threat of a wide variety of dangers, both self and nonself. The immune system is occupied with protecting the host against such dangers in order to preserve human health. For that purpose, the immune system is equipped with a diverse array of both cellular and non-cellular effectors that are in continuous communication with each other. The naturally occurring nucleotide adenosine 5'-triphosphate (ATP) and its metabolite adenosine (Ado) probably constitute an intrinsic part of this extensive immunological network through purinergic signaling by their cognate receptors, which are widely expressed throughout the body. This review provides a thorough overview of the effects of ATP and Ado on major immune cell types. The overwhelming evidence indicates that ATP and Ado are important endogenous signaling molecules in immunity and inflammation. Although the role of ATP and Ado during the course of inflammatory and immune responses in vivo appears to be extremely complex, we propose that their immunological role is both interdependent and multifaceted, meaning that the nature of their effects may shift from immunostimulatory to immunoregulatory or vice versa depending on extracellular concentrations as well as on expression patterns of purinergic receptors and ecto-enzymes. Purinergic signaling thus contributes to the fine-tuning of inflammatory and immune responses in such a way that the danger to the host is eliminated efficiently with minimal damage to healthy tissues.
Collapse
Affiliation(s)
- M J L Bours
- Maastricht University, Department of Epidemiology, Nutrition and Toxicology Research Institute Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
57
|
Robson SC, Sévigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2006; 2:409-30. [PMID: 18404480 PMCID: PMC2254478 DOI: 10.1007/s11302-006-9003-5] [Citation(s) in RCA: 726] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 01/23/2006] [Indexed: 12/17/2022] Open
Abstract
Ectonucleotidases are ectoenzymes that hydrolyze extracellular nucleotides to the respective nucleosides. Within the past decade, ectonucleotidases belonging to several enzyme families have been discovered, cloned and characterized. In this article, we specifically address the cell surface-located members of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) family (NTPDase1,2,3, and 8). The molecular identification of individual NTPDase subtypes, genetic engineering, mutational analyses, and the generation of subtype-specific antibodies have resulted in considerable insights into enzyme structure and function. These advances also allow definition of physiological and patho-physiological implications of NTPDases in a considerable variety of tissues. Biological actions of NTPDases are a consequence (at least in part) of the regulated phosphohydrolytic activity on extracellular nucleotides and consequent effects on P2-receptor signaling. It further appears that the spatial and temporal expression of NTPDases by various cell types within the vasculature, the nervous tissues and other tissues impacts on several patho-physiological processes. Examples include acute effects on cellular metabolism, adhesion, activation and migration with other protracted impacts upon developmental responses, inclusive of cellular proliferation, differentiation and apoptosis, as seen with atherosclerosis, degenerative neurological diseases and immune rejection of transplanted organs and cells. Future clinical applications are expected to involve the development of new therapeutic strategies for transplantation and various inflammatory cardiovascular, gastrointestinal and neurological diseases.
Collapse
Affiliation(s)
- Simon C. Robson
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts USA
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, Québec, Québec Canada
| | - Herbert Zimmermann
- Institut fuer Zellbiologie und Neurowissenschaft, Biozentrum der J.W. Goethe-Universitaet, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany
| |
Collapse
|
58
|
Wu Y, Sun X, Kaczmarek E, Dwyer K, Bianchi E, Usheva A, Robson S. RanBPM associates with CD39 and modulates ecto-nucleotidase activity. Biochem J 2006; 396:23-30. [PMID: 16478441 PMCID: PMC1449986 DOI: 10.1042/bj20051568] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CD39/ecto-NTPDase 1 (nucleoside triphosphate diphosphohydrolase 1) is an ecto-nucleotidase that influences P2 receptor activation to regulate vascular and immune cell adhesion and signalling events pivotal in inflammation. Whether CD39 interacts with other membrane or cytoplasmic proteins has not been established to date. Using the yeast two-hybrid system, we note that the N-terminus of CD39 binds to RanBPM (Ran binding protein M; also known as RanBP9), a multi-adaptor scaffolding membrane protein originally characterized as a binding protein for the small GTPase Ran. We confirm formation of complexes between CD39 and RanBPM in transfected mammalian cells by co-immunoprecipitation studies. Endogenous CD39 and RanBPM are also found to be co-expressed and abundant in cell membranes of B-lymphocytes. NTPDase activity of recombinant CD39, but not of N-terminus-deleted-CD39 mutant, is substantially diminished by RanBPM co-expression in COS-7 cells. The conserved SPRY [repeats in splA and RyR (ryanodine receptor)] moiety of RanBPM is insufficient alone for complete physical and functional interactions with CD39. We conclude that CD39 associations with RanBPM have the potential to regulate NTPDase catalytic activity. This intermolecular interaction may have important implications for the regulation of extracellular nucleotide-mediated signalling.
Collapse
Affiliation(s)
- Yan Wu
- *Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Xiaofeng Sun
- *Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Elzbieta Kaczmarek
- *Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Karen M. Dwyer
- *Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Elisabetta Bianchi
- †Laboratory of Immunoregulation, Department of Immunology, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris, France
| | - Anny Usheva
- ‡Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Simon C. Robson
- *Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, U.S.A
- To whom correspondence should be addressed, at Room 301, Research North, 99 Brookline Avenue, Beth Israel Deaconess Medical Center, Boston, MA 02215, U.S.A. (email )
| |
Collapse
|
59
|
Nie K, Zheng GG, Zhang XJ, Lin YM, Wang L, Li G, Song YH, Wu KF. CD 39-associated high ATPase activity contribute to the loss of P 2 X 7-mediated calcium response in LCL cells. Leuk Res 2005; 29:1325-33. [PMID: 15885776 DOI: 10.1016/j.leukres.2005.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 03/23/2005] [Indexed: 01/10/2023]
Abstract
The P 2 X 7 nucleotide receptor is an adenosine 5'-triphosphate (ATP)-gated ion channel, which induces cation channel opening imparting significant permeability to Ca(2+), and is widely expressed in cells of hematopoietic origin. Our previous report showed that P 2 X 7-mediated calcium response was absent in three Epstein-Barr virus (EBV)-positive and P 2 X 7 positive cell lines. In this report, we detected the cell surface ATPase activity, which contributes to the hydrolysis of extracellular ATP, and the expression of CD 39, which is the main source of ATPase on hematopoietic cells, in these cell lines. Then, we tried to restore the P 2 X 7-mediated calcium response in LCL-H and J 6-1 cells by either increasing the concentration of agonist or suppressing the ATPase activity by betagammaMeATP, a synthetic poorly metabolizable ATP analogue. The results showed that LCL-H and J 6-1 cells had higher levels of ATPase activity and CD 39 expression. The treatment of 300 microM betagammaMeATP efficiently inhibited the ATPase activity on LCL-H and J 6-1 cells. Both elevation of agonist concentration (10mM ATP or 1mM BzATP) and pretreatment with 300 microM betagammaMeATP followed by stimulation with normal concentration of agonists (1mM ATP or 0.1mM BzATP) could cause P 2 X 7-mediated calcium response in LCL-H but neither in J 6-1 cells. These results suggested that multiple mechanisms contributed to the loss of the P 2 X 7-mediated calcium response. CD 39-associated high ATPase activity contributed to the loss of the P 2 X 7-mediated calcium response in LCL-H cells, while additional mechanism(s) existed in J 6-1 cells.
Collapse
Affiliation(s)
- Kun Nie
- State Key Laboratory for Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tianjin 300020, PR China
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
Endothelial cells are key regulators of the inflammatory response. Lining blood vessels, they provide in the steady state an antiinflammatory, anticoagulatory surface. However, in the case of injury or infection, endothelial cells control the adhesion and migration of inflammatory cells, as well as the exchange of fluid from the bloodstream into the damaged tissue. Thus, expression of endothelial adhesion molecules, cytokines, and changes in permeability need to be tightly regulated to allow for a controlled inflammatory response. Acute inflammation is characterized by tissue infiltration of neutrophils, followed by monocytes/macrophages. For successful tissue regeneration and healing, the acute inflammatory response needs to be actively shut down, a process called resolution of inflammation. Unsuccessful resolution may lead to excessive tissue damage and ultimately results in chronic, self-promoting inflammation. This review will summarize recent advances in the field of endothelial biology, which point to an active participation of the endothelial barrier in the resolving process.
Collapse
Affiliation(s)
- Alexandra Kadl
- Cardiovascular Research Center and Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
61
|
Buergler JM, Maliszewski CR, Broekman MJ, Kaluza GL, Schulz DG, Marcus AJ, Raizner AE, Kleiman NS, Ali NM. Effects of SolCD39, a novel inhibitor of Platelet Aggregation, on Platelet Deposition and Aggregation after PTCA in a Porcine Model. J Thromb Thrombolysis 2005; 19:115-22. [PMID: 16052302 DOI: 10.1007/s11239-005-1381-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION This study evaluated CD39 in a porcine model of balloon angioplasty and in plasma of patients undergoing percutaneous intervention. CD39 (E-NTPDase1), is the endothelial ecto-ADPase inhibiting platelet function via hydrolysis of released platelet ADP. METHODS AND RESULTS A recombinant soluble form of CD39 (solCD39) given intravenously to pigs had an elimination half life of 5--7 days, increased the bleeding time to an extent similar to aspirin, and inhibits platelet aggregation by>90%. Platelet counts and clot retraction remained normal following solCD39 administration. In a pig model of acute coronary balloon injury, solCD39 resulted in non-statistically significant decreases in platelet (7.7+/-1.4 versus 11.7+/- 3.4) and fibrin (3.5+/- 0.4 versus 4.2+/- 0.7) deposition ratios. Adding ex vivo to human platelet rich plasma (PRP) solCD39 produced nearly 100% inhibition of ADP-induced platelet aggregation. A dose-response effect of solCD39 on platelet aggregation induced by collagen or a thrombin receptor activating peptide (TRAP(SFLLRN)) was noted in PRP obtained from volunteers and patients receiving aspirin, clopidogrel or ticlopidine. SolCD39 also provided additional and complete inhibition of TRAP-induced platelet aggregation in PRP from patients who had received abciximab, aspirin and clopidogrel. CONCLUSIONS SolCD39, a novel inhibitor of platelet activation and recruitment with a relatively long half-life appears to be well tolerated and is a potent inhibitor of ADP-, collagen-, or TRAP-induced platelet activation. Its potential use in percutaneous coronary intervention requires further study. ABBREVIATED ABSTRACT: E-NTPDase1/CD39 is the endothelial ecto-ADPase responsible for inhibition of platelet function. A recombinant soluble form (solCD39) had an elimination half life of 5-7 days in pigs, elevated bleeding times similar to aspirin, did not affect clot retraction, and inhibited platelet aggregation by > 90%. When combined with standard heparin therapy in a pig model of acute coronary balloon injury, solCD39 resulted in a trend toward a decrease in platelet and fibrin deposition. SolCD39 added ex vivo to human platelet rich plasma yielded nearly 100% inhibition of ADP-induced platelet aggregation and provided further inhibition when combined with standard therapy.
Collapse
Affiliation(s)
- John M Buergler
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, The Methodist DeBakey Heart Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Dynamic purine signaling and metabolism during neutrophil-endothelial interactions. Purinergic Signal 2005; 1:229-39. [PMID: 18404508 PMCID: PMC2096542 DOI: 10.1007/s11302-005-6323-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 03/07/2005] [Accepted: 03/23/2005] [Indexed: 01/09/2023] Open
Abstract
During episodes of hypoxia and inflammation, polymorphonuclear leukocytes (PMN) move into underlying tissues by initially passing between endothelial cells that line the inner surface of blood vessels (transendothelial migration, TEM). TEM creates the potential for disturbances in vascular barrier and concomitant loss of extravascular fluid and resultant edema. Recent studies have demonstrated a crucial role for nucleotide metabolism and nucleoside signaling during inflammation. These studies have implicated multiple adenine nucleotides as endogenous tissue protective mechanisms invivo. Here, we review the functional components of vascular barrier, identify strategies for increasing nucleotide generation and nucleoside signaling, and discuss potential therapeutic targets to regulate the vascular barrier during inflammation.
Collapse
|
63
|
Cheewatrakoolpong B, Gilchrest H, Anthes JC, Greenfeder S. Identification and characterization of splice variants of the human P2X7 ATP channel. Biochem Biophys Res Commun 2005; 332:17-27. [PMID: 15896293 DOI: 10.1016/j.bbrc.2005.04.087] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 01/12/2023]
Abstract
The P2X7 channel is a member of the P2X family of ligand-gated ion channels which respond to ATP as the endogenous agonist. Studies suggest that P2X7 has a potentially pivotal role in inflammatory responses largely stemming from its role in mediating the release of IL-1beta in response to ATP. We report the identification of seven variants of human P2X7 which result from alternative splicing. Two of these variants (one lacking the first transmembrane domain, the second lacking the entire cytoplasmic tail) were compared to the full-length channel. Real-time PCR analysis demonstrated that both variants were expressed in various tissues and that the cytoplasmic tail deleted variant is highly expressed. Deletion of the first transmembrane domain resulted in a non-functional channel. Deletion of the cytoplasmic tail did not affect ion movement but severely affected the ability to form a large pore and to induce activation of caspases.
Collapse
Affiliation(s)
- Boonlert Cheewatrakoolpong
- Department of Cardiovascular/Metabolism, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | | | | | | |
Collapse
|
64
|
Papanikolaou A, Papafotika A, Murphy C, Papamarcaki T, Tsolas O, Drab M, Kurzchalia TV, Kasper M, Christoforidis S. Cholesterol-dependent Lipid Assemblies Regulate the Activity of the Ecto-nucleotidase CD39. J Biol Chem 2005; 280:26406-14. [PMID: 15890655 DOI: 10.1074/jbc.m413927200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD39 (ecto-nucleoside triphosphate diphosphohydrolase-1; E-NTPDase1) is a plasma membrane ecto-enzyme that regulates purinergic receptor signaling by controlling the levels of extracellular nucleotides. In blood vessels this enzyme exhibits a thromboregulatory role through the control of platelet aggregation. CD39 is localized in caveolae, which are plasma membrane invaginations with distinct lipid composition, similar to dynamic lipid microdomains, called rafts. Cholesterol is enriched together with sphingolipids in both rafts and caveolae, as well as in other specialized domains of the membrane, and plays a key role in their function. Here, we examine the potential role of cholesterol-enriched domains in CD39 function. Using polarized Madin-Darby canine kidney (MDCK) cells and caveolin-1 gene-disrupted mice, we show that caveolae are not essential either for the enzymatic activity of CD39 or for its targeting to plasma membrane. On the other hand, flotation experiments using detergent-free or detergent-based approaches indicate that CD39 associates, at least in part, with distinct lipid assemblies. In the apical membrane of MDCK cells, which lacks caveolae, CD39 is localized in microvilli, which are also cholesterol and raft-dependent membrane domains. Interfering with cholesterol levels using drugs that either deplete or sequester membrane cholesterol results in a strong inhibition of the enzymatic and anti-platelet activity of CD39. The effects of cholesterol depletion are completely reversed by replenishment of membranes with pure cholesterol, but not by cholestenone. These data suggest a functional link between the localization of CD39 in cholesterol-rich domains of the membrane and its role in thromboregulation.
Collapse
MESH Headings
- Actins/chemistry
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/chemistry
- Antigens, CD/metabolism
- Apyrase/biosynthesis
- Apyrase/chemistry
- Apyrase/metabolism
- Caveolin 1
- Caveolins/genetics
- Cell Line
- Cell Membrane/metabolism
- Cholesterol/chemistry
- Cholesterol/metabolism
- Cricetinae
- Detergents/pharmacology
- Dogs
- Dose-Response Relationship, Drug
- Endothelium, Vascular/metabolism
- Filipin/pharmacology
- Fluorescent Antibody Technique, Indirect
- Humans
- Immunohistochemistry
- Lipids/chemistry
- Lung/metabolism
- Membrane Microdomains/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Confocal
- Nystatin/pharmacology
- Placenta/metabolism
- Plasmids/metabolism
- Platelet Aggregation
- Protein Binding
- Protein Structure, Tertiary
- Spleen/metabolism
- Sucrose/pharmacology
- Time Factors
- Transfection
- Umbilical Veins/cytology
Collapse
Affiliation(s)
- Agathi Papanikolaou
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Costa AF, Gamermann PW, Picon PX, Mosmann MP, Kettlun AM, Valenzuela MA, Sarkis JJF, Battastini AMO, Picon PD. Intravenous apyrase administration reduces arterial thrombosis in a rabbit model of endothelial denudation in vivo. Blood Coagul Fibrinolysis 2005; 15:545-51. [PMID: 15389120 DOI: 10.1097/00001721-200410000-00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The role of adenine nucleotides on vascular and platelet functions has long been established. Apyrase (CD39) takes part of a family of ecto-enzymes that hydrolyze adenosine diphosphate and adenosine triphosphate. The participation of apyrase in the thromboregulatory system is under study. An in vivo experimental model of acute arterial thrombosis was used to test the hypothesis that administering a soluble form of potato apyrase could prevent thrombus formation. Twenty-five white New Zealand male rabbits suffered balloon aortic endothelium denudation and, after 15 days, they were submitted to a thrombosis-triggering protocol with a procoagulant (Russel's viper venom) and epinephrine. After the thrombosis-triggering protocol, 12 animals received two soluble apyrase administrations intravenously (with 90 min intervals), while 13 control animals received no apyrase. Three hours after the triggering protocol, the animals were killed and the rate and area of arterial thrombosis were analyzed. The rate of thrombosis in the apyrase group was significantly lower than that of the control group (16.7 versus 69%, respectively; P = 0.015), as was the area of thrombosis (1.7 +/- 4.3 versus 21.7 +/- 37.4 mm2, respectively; P = 0.008). Our results confirm that apyrase participates in homeostasis through a potent anti-thrombotic effect.
Collapse
Affiliation(s)
- Andry F Costa
- Programa de pós-graduação em Cardiologia, Serviço de Cardiologia, Hospital de Clínicas de Porto Alegre, UFRGS, RS, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Furukoji E, Matsumoto M, Yamashita A, Yagi H, Sakurai Y, Marutsuka K, Hatakeyama K, Morishita K, Fujimura Y, Tamura S, Asada Y. Adenovirus-Mediated Transfer of Human Placental Ectonucleoside Triphosphate Diphosphohydrolase to Vascular Smooth Muscle Cells Suppresses Platelet Aggregation In Vitro and Arterial Thrombus Formation In Vivo. Circulation 2005; 111:808-15. [PMID: 15699260 DOI: 10.1161/01.cir.0000155239.46511.79] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Platelet-rich thrombus formation is a critical event in the onset of cardiovascular disease. Because ADP plays a significant role in platelet aggregation, its metabolism is important in the regulation of platelet activation and recruitment. Ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) is a key enzyme involved in vascular ADP metabolism. We recently isolated 2 isoforms of E-NTPDase from the human placenta. The present study examined whether these isoforms suppress platelet aggregation and thrombus formation after adenovirus-mediated gene transfer to vascular smooth muscle cells (SMCs).
Methods and Results—
We constructed adenovirus vectors expressing human placental E-NTPDase isoforms I (AdPlac I) and II (AdPlac II) or bacterial β-galactosidase (AdLacZ). Vascular SMCs infected with AdPlac I expressed significant NTPDase activity and inhibited the platelet aggregation induced by ADP and collagen in vitro. In contrast, SMCs infected with AdPlac II and AdLacZ did not exert antiplatelet effects. To investigate the antithrombotic and antiproliferative effects of placental E-NTPDase isoform I in vivo, we generated thrombosis in rat carotid arteries by systemically administered rose Bengal and transluminal green light 5 days after gene transfer and examined neointimal growth 3 weeks after thrombus formation. Blood flow in AdLacZ-infected arteries rapidly deteriorated and vanished within 96±18 seconds of occlusive thrombus formation. In contrast, blood flow in AdPlac I–infected arteries was preserved for at least 10 minutes during irradiation. In addition, thrombus formation and subsequent neointimal growth were obviously suppressed.
Conclusions—
The local expression of placental E-NTPDase in injured arteries might prevent arterial thrombosis and subsequent neointimal growth.
Collapse
MESH Headings
- Adenosine Triphosphatases/biosynthesis
- Adenosine Triphosphatases/genetics
- Adenoviridae/genetics
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Aorta, Thoracic
- Apyrase/biosynthesis
- Apyrase/genetics
- Blood Coagulation
- Carotid Arteries/surgery
- Cells, Cultured
- Humans
- Ligation
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/virology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/virology
- Neovascularization, Pathologic
- Placenta/enzymology
- Platelet Aggregation/physiology
- Platelet Aggregation/radiation effects
- Platelet Function Tests
- Rats
- Rats, Sprague-Dawley
- Thrombosis/prevention & control
- Transduction, Genetic/methods
- Tunica Intima/metabolism
Collapse
Affiliation(s)
- Eiji Furukoji
- Department of Radiology, Miyazaki Medical College, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Kaneider NC, Mosheimer B, Reinisch N, Patsch JR, Wiedermann CJ. Inhibition of thrombin-induced signaling by resveratrol and quercetin: effects on adenosine nucleotide metabolism in endothelial cells and platelet-neutrophil interactions. Thromb Res 2005; 114:185-94. [PMID: 15342215 DOI: 10.1016/j.thromres.2004.06.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 06/15/2004] [Accepted: 06/17/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Thrombin downregulates endothelial ectonucleotidase activity resulting in high levels of adenosine diphosphate (ADP) and adenosine triphosphate (ATP) which lead to platelet, leukocyte and endothelial activation. Depending on adenosine nucleotide levels, resting platelets inhibit and thrombin-activated platelets increase respiratory burst of neutrophils. Whether the red wine polyphenols quercetin and resveratrol affect thrombin-dependent adenosine nucleotide, metabolism and thrombin-induced signaling is unknown. MATERIALS AND METHODS ATP and ADP secretion by platelets, the impact on subsequent oxidative burst activity in neutrophils and CD39/ATPdase function in endothelial cells (ECs)was studied. Cell migration was measured in modified Boyden chambers; adenosine metabolites were quantified by high-performance liquid chromatography (HPLC). Signal transduction was studied by Western blotting. RESULTS Quercetin and resveratrol inhibited thrombin-induced ADP and ATP secretion from platelets in a concentration-dependent manner. Augmented respiratory burst of neutrophils in response to thrombin-activated platelets was also inhibited by the two polyphenols as was neutrophil migration toward thrombin-induced supernatants of platelets. Quercetin and resveratrol restored the decreased CD39/ATPdase activity in human umbilical vein endothelial cells, in response to thrombin as demonstrated by adenosine monophosphate (AMP) and adenosine increases in endothelial culture supernatants. Both polyphenols inhibited thrombin-induced MAPK, JNK and focal adhesion kinase activities in endothelial cells. CONCLUSION Quercetin and resveratrol interfere with the proinflammatory signaling of thrombin resulting in the inhibition of adenosine nucleotide secretion from activated platelets and decreased neutrophil function. Moreover, the polyphenols protect endothelial adenosine nucleotide metabolism when downregulated by thrombin. These observations may explain cardioprotective effects of grape products.
Collapse
Affiliation(s)
- Nicole C Kaneider
- Department of General Internal Medicine, University of Innsbruck, Anichstrasse 35, A-6020, Austria
| | | | | | | | | |
Collapse
|
68
|
Intravenous apyrase administration reduces arterial thrombosis in a rabbit model of endothelial denudation in vivo. Blood Coagul Fibrinolysis 2004. [DOI: 10.1097/00001721-200409000-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
69
|
Dranoff JA, Ogawa M, Kruglov EA, Gaça MDA, Sévigny J, Robson SC, Wells RG. Expression of P2Y nucleotide receptors and ectonucleotidases in quiescent and activated rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2004; 287:G417-24. [PMID: 14764443 PMCID: PMC5241161 DOI: 10.1152/ajpgi.00294.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular nucleotides regulate a variety of cellular activities, including proliferation of fibrogenic cells outside of the liver. However, the expression of receptors for extracellular nucleotides in hepatic stellate cells (HSC) is unknown. Thus our aims were to investigate the expression of mediators of nucleotide signaling in HSC and to determine whether extracellular nucleotides regulate HSC function. Confocal video microscopy was used to observe nucleotide-induced changes in cytosolic Ca(2+) (Ca(i)(2+)) in live HSC. P2Y receptor subtype expression and ectonucleotidase expression in quiescent and activated HSC were determined using RT-PCR, Northern blot, immunoblot, and confocal immunofluorescence. Functional ectonucleotidase activity was assessed using a colorimetric method. Nucleotide-sensitive procollagen-1 mRNA expression in activated HSC was assessed using real-time RT-PCR. Extracellular ATP increased Ca(i)(2+) in HSC; this was inhibited by the P2 receptor inhibitor suramin. Quiescent HSC expressed the P2Y subtypes P2Y(2) and P2Y(4) and were activated by ATP and UTP, whereas activated HSC expressed the P2Y subtype P2Y(6) and were activated by UDP and ATP. Activated but not quiescent HSC expressed the ectonucleotidase nucleoside triphosphate diphosphohydrolase 2, extracellular UDP tripled procollagen-1 mRNA expression in activated HSC, and this was inhibited by the P2Y receptor inhibitor suramin. HSC express functional P2Y receptors and switch the expression of P2Y receptor subtypes on activation. Moreover, HSC differentially regulate nucleoside triphosphate diphosphohydrolase expression after activation. Because activation of P2Y receptors in activated HSC regulates procollagen-1 transcription, P2Y receptors may be an attractive target to prevent or treat liver fibrosis.
Collapse
Affiliation(s)
- Jonathan A Dranoff
- Yale Univ. School of Medicine, Section of Digestive Diseases, 333 Cedar St. LMP 1080, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
70
|
Beigi RD, Kertesy SB, Aquilina G, Dubyak GR. Oxidized ATP (oATP) attenuates proinflammatory signaling via P2 receptor-independent mechanisms. Br J Pharmacol 2004; 140:507-19. [PMID: 14522842 PMCID: PMC1574058 DOI: 10.1038/sj.bjp.0705470] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Periodate-oxidized ATP (oATP), which covalently modifies nucleotide-binding proteins, can significantly attenuate proinflammatory signaling. Although the P2X7 nucleotide receptor (P2X7R) is irreversibly antagonized by oATP, it is unclear whether anti-inflammatory actions of oATP are predominantly mediated via its actions on P2X7R. Here, we describe inhibitory effects of oATP on proinflammatory responses in three human cell types that lack expression of P2X7R: human umbilical vein endothelial cells (HUVEC), HEK293 cells, and 1321N1 astrocytes. oATP decreased by 40-70% the secretion of interleukin (IL)-8 stimulated by tumor necrosis factor-alpha (TNF-alpha) in all three cell types, by IL-1beta in HUVEC and 1321N1 cells, and by endotoxin in HUVEC. Attenuation of TNF-alpha-stimulated IL-8 secretion by oATP was similar in wild-type HEK cells or HEK cells stably expressing recombinant P2X7R. oATP also attenuated cytokine-stimulated expression of nuclear factor-kappaB-luciferase reporter genes expressed in HEK or 1321N1 cells, but did not affect the rapid downregulation of IkappaB. oATP had no effect on uridine triphosphate-induced activation of native P2Y2 receptors in HEK cells, but reduced the potency and efficacy of ADP as an agonist of native P2Y1 receptors. However, inhibition of P2Y1 receptors with the specific antagonist MRS2216 did not mimic the effects of oATP on TNF-alpha-stimulated IL-8 secretion. Although 1321N1 astrocytes lack expression of any known P2 receptor subtypes, oATP markedly inhibited ecto-ATPase activity in these cells, resulting in a significant accumulation of extracellular ATP. In summary, oATP can attenuate proinflammatory signaling by mechanisms independent of the expression or activation of known P2 receptor subtypes.
Collapse
Affiliation(s)
- Reza D Beigi
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, U.S.A
| | - Sylvia B Kertesy
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, U.S.A
| | - Gretchen Aquilina
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, U.S.A
| | - George R Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, U.S.A
- Author for correspondence:
| |
Collapse
|
71
|
Dwyer KM, Robson SC, Nandurkar HH, Campbell DJ, Gock H, Murray-Segal LJ, Fisicaro N, Mysore TB, Kaczmarek E, Cowan PJ, d'Apice AJF. Thromboregulatory manifestations in human CD39 transgenic mice and the implications for thrombotic disease and transplantation. J Clin Invest 2004; 113:1440-6. [PMID: 15146241 PMCID: PMC406523 DOI: 10.1172/jci19560] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Accepted: 03/16/2004] [Indexed: 01/11/2023] Open
Abstract
Extracellular nucleotides play an important role in thrombosis and inflammation, triggering a range of effects such as platelet activation and recruitment, endothelial cell activation, and vasoconstriction. CD39, the major vascular nucleoside triphosphate diphosphohydrolase (NTPDase), converts ATP and ADP to AMP, which is further degraded to the antithrombotic and anti-inflammatory mediator adenosine. Deletion of CD39 renders mice exquisitely sensitive to vascular injury, and CD39-null cardiac xenografts show reduced survival. Conversely, upregulation of CD39 by somatic gene transfer or administration of soluble NTPDases has major benefits in models of transplantation and inflammation. In this study we examined the consequences of transgenic expression of human CD39 (hCD39) in mice. Importantly, these mice displayed no overt spontaneous bleeding tendency under normal circumstances. The hCD39 transgenic mice did, however, exhibit impaired platelet aggregation, prolonged bleeding times, and resistance to systemic thromboembolism. Donor hearts transgenic for hCD39 were substantially protected from thrombosis and survived longer in a mouse cardiac transplant model of vascular rejection. These thromboregulatory manifestations in hCD39 transgenic mice suggest important therapeutic potential in clinical vascular disease and in the control of serious thrombotic events that compromise the survival of porcine xenografts in primates.
Collapse
Affiliation(s)
- Karen M Dwyer
- Immunology Research Center and Department of Medicine, St. Vincent's Hospital, University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 584] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
73
|
Espinosa V, Kettlun AM, Zanocco A, Cardemil E, Valenzuela MA. Differences in nucleotide-binding site of isoapyrases deduced from tryptophan fluorescence. PHYTOCHEMISTRY 2003; 63:7-14. [PMID: 12657291 DOI: 10.1016/s0031-9422(02)00672-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Comparative studies of intrinsic and extrinsic fluorescence of apyrases purified from two potato tuber varieties (Pimpernel and Desirée) were performed to determine differences in the microenvironment of the nucleotide binding site. The dissociation constants (K(d)) of Pimpernel apyrase for the binding of different fluorescent substrate analogs: methylanthranoyl (MANT-), trinitrophenyl (TNP-), and epsilon -derivatives of ATP and ADP were determined from the quenching of Trp fluorescence, and compared with K(d) values previously reported for Desirée enzyme. Binding of non-fluorescent substrate analogues decreased the Trp emission of both isoapyrases, indicating conformational changes in the vicinity of these residues. Similar effect was observed with fluorescent derivatives where, in the quenching effect, the transfer of energy from tryptophan residues to the fluorophore moiety could be additionally involved. The existence of energy transfer between Trp residues in the Pimpernel enzyme was demonstrated with epsilon -analogues, similar to our previous observations with the Desirée. From these results we deduced that tryptophan residues are close to or in the nucleotide binding site in both enzymes. Experiments with quenchers like acrylamide, Cs(+) and I(-), both in the presence and absence of nucleotide analogues, suggest the existence of differences in the nucleotide binding site of the two enzymes. From the results obtained in this work, we can conclude that the differences found in the microenvironment of the nucleotide binding site can explain, at least in part, the kinetic behaviour of both isoenzymes.
Collapse
Affiliation(s)
- V Espinosa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
74
|
Abraham EH, Salikhova AY, Rapaport E. ATP in the Treatment of Advanced Cancer. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01013-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
75
|
Gerritsen ME, Soriano R, Yang S, Zlot C, Ingle G, Toy K, Williams PM. Branching out: a molecular fingerprint of endothelial differentiation into tube-like structures generated by Affymetrix oligonucleotide arrays. Microcirculation 2003; 10:63-81. [PMID: 12610664 DOI: 10.1038/sj.mn.7800170] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2002] [Accepted: 09/13/2002] [Indexed: 11/08/2022]
Abstract
The process of endothelial differentiation into a network of tube-like structures with patent lumens requires an integrated program of gene expression. To identify genes upregulated in endothelial cells during the process of tube formation, RNA was prepared from several different time points (0, 4, 8, 24, 40, and 48 hours) and from three different experimental models of human endothelial tube formation: in collagen gels and fibrin gels driven by the combination of PMA (80), bFGF (40 ng/ml) and bFGF (40 ng/ml) or in collagen gels driven by the combination of HGF (40 ng/ml) and VEGF (40 ng/ml). Gene expression was evaluated using Affymetrix Gene Chip oligonucleotide arrays. Over 1000 common genes were upregulated greater than twofold over baseline at one or more time points in the three different models. In the present study, we discuss the identified genes that could be assigned to major functional classes: apoptosis, cytoskeleton, proteases, matrix, and matrix turnover, pumps and transporters, membrane lipid turnover, and junctional molecules or adhesion proteins.
Collapse
Affiliation(s)
- Mary E Gerritsen
- Department of Cardiovascular Research, Genentech, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | |
Collapse
|
76
|
|
77
|
Wood E, Broekman MJ, Kirley TL, Diani-Moore S, Tickner M, Drosopoulos JHF, Islam N, Park JI, Marcus AJ, Rifkind AB. Cell-type specificity of ectonucleotidase expression and upregulation by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Arch Biochem Biophys 2002; 407:49-62. [PMID: 12392715 DOI: 10.1016/s0003-9861(02)00465-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report here that induction of ectoATPase by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is cell-type specific and not a generalized response to aryl hydrocarbon (Ah) receptor activation. TCDD increased [14C]-ATP and -ADP metabolism in two mouse hepatoma lines, Hepa1c1c7 and Hepa1-6 cells, but not in human hepatoma HepG2 or HuH-7 cells, human umbilical vein endothelial cells (HUVEC), chick hepatoma (LMH) cells, or chick primary hepatocytes or cardiac myocytes, even though all of those cell types were Ah receptor-responsive, as evidenced by cytochrome P4501A induction. To determine whether the differences in ectonucleotidase responsiveness to TCDD might be related to differences in cell-type ectonucleotidase expression, ATP and ADP metabolite patterns, the products of several classes of ectonucleotidases including ectonucleoside triphosphate diphosphohydrolases (E-NTPDases), ectophosphodiesterase/pyrophosphatases (E-NPP enzymes) and ectoalkaline phosphatase activities were examined. Those patterns, together with results of enzyme assays, Western blotting, or semiquantitative RT-PCR show that NTPDase2 is the main ectonucleotidase for murine and human hepatoma cells, NTPDase3 for chick hepatocytes and LMH cells, and an E-NPP enzyme for chick cardiac myocytes. Evidence for NTPDase2 expression was lacking in all cells except the mouse and human hepatoma cells. TCDD increased expression of the NTPDase2 gene but only in the mouse and not in the human hepatoma cells. TCDD did not increase NTPDase3, NTPDase1, E-NPP, or alkaline phosphatase in any of the cell types examined. The failure of TCDD to increase ATP metabolism in HUVEC, chick LMH cells, hepatocytes, and cardiac myocytes can be attributed to their lack of NTPDase2 expression, while the increase in ATP metabolism by TCDD in the mouse but not the human hepatoma cells can be explained by differences in TCDD effects on mouse and human hepatoma NTPDase2 gene expression. In addition to characterizing effects of TCDD on ectonucleotidases, these studies reveal major differences in the complements of ectonucleotidases present in different cell types. It is likely that such differences are important for cell-specific susceptibility to extracellular nucleotide toxicity and responses to purinergic signaling.
Collapse
Affiliation(s)
- Emily Wood
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Davis GE, Bayless KJ, Mavila A. Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. THE ANATOMICAL RECORD 2002; 268:252-75. [PMID: 12382323 DOI: 10.1002/ar.10159] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although many studies have focused on blood vessel development and new blood vessel formation associated with disease processes, the question of how endothelial cells (ECs) assemble into tubes in three dimensions (i.e., EC morphogenesis) remains unanswered. EC morphogenesis is particularly dependent on a signaling axis involving the extracellular matrix (ECM), integrins, and the cytoskeleton, which regulates EC shape changes and signals the pathways necessary for tube formation. Recent studies reveal that genes regulating this matrix-integrin-cytoskeletal (MIC) signaling axis are differentially expressed during EC morphogenesis. The Rho GTPases represent an important class of molecules involved in these events. Cdc42 and Rac1 are required for the process of EC intracellular vacuole formation and coalescence that regulates EC lumen formation in three-dimensional (3D) extracellular matrices, while RhoA appears to stabilize capillary tube networks. Once EC tube networks are established, supporting cells, such as pericytes, are recruited to further stabilize these networks, perhaps by regulating EC basement membrane matrix assembly. Furthermore, we consider recent work showing that EC morphogenesis is balanced by a tendency for newly formed tubes to regress. This morphogenesis-regression balance is controlled by differential gene expression of such molecules as VEGF, angiopoietin-2, and PAI-1, as well as a plasmin- and matrix metalloproteinase-dependent mechanism that induces tube regression through degradation of ECM scaffolds that support EC-lined tubes. It is our hope that this review will stimulate increased interest and effort focused on the basic mechanisms regulating capillary tube formation and regression in 3D extracellular matrices.
Collapse
Affiliation(s)
- George E Davis
- Department of Pathology, Texas A&M University System Health Science Center, College Station 77843, USA.
| | | | | |
Collapse
|
79
|
Kaneider NC, Egger P, Dunzendorfer S, Noris P, Balduini CL, Gritti D, Ricevuti G, Wiedermann CJ. Reversal of thrombin-induced deactivation of CD39/ATPDase in endothelial cells by HMG-CoA reductase inhibition: effects on Rho-GTPase and adenosine nucleotide metabolism. Arterioscler Thromb Vasc Biol 2002; 22:894-900. [PMID: 12067895 DOI: 10.1161/01.atv.0000018305.95943.f7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adenosine triphosphate and diphosphate that activate platelet, leukocyte, and endothelium functions are hydrolyzed by endothelial CD39/ATPDase. Because CD39/ATPDase is downregulated in endothelial cells by inflammation and this may be affected by HMG-CoA reductase inhibitors, we examined the role of cerivastatin and simvastatin in regulation of endothelial CD39/ATPDase expression, metabolism of ATP/ADP, and function in platelets. Thrombin-stimulated endothelial cells in vitro were treated with the statins, and hydrolysis of exogenous ADP and ATP was assessed by high-performance liquid chromatography and malachite green assay. Platelet aggregation studies were performed with endothelial cell supernatants as triggers. CD39/ATPDase surface expression by endothelial cells was determined immunologically by fluorescence-activated cell sorter, mRNA expression by RT-PCR, and thrombin-induced dissociation of Rho-GTPases by Western blotting. Treatment by simvastatin or cerivastatin restored impaired metabolism of exogenous ATP and ADP in thrombin-activated endothelial cells by preventing thrombin-induced downregulation of CD39/ATPDase. In platelet aggregation studies, ATP and ADP supernatants of thrombin-activated endothelial cells were less stimulatory in the presence of statins than in their absence. Data show that statins preserve CD39/ATPDase activity in thrombin-treated endothelial cells involving alterations by statins of Rho-GTPase function and CD39/ATPDase expression. Preservation of adenine nucleotide metabolism may directly contribute to the observed anti-thrombotic and anti-inflammatory actions of statins.
Collapse
|
80
|
Abstract
Atherosclerosis is a focal inflammatory disease of the arterial wall. It starts with the formation of fatty streaks on the arterial wall that evolve to form a raised plaque made of smooth muscle cells (SMCs), and infiltrating leukocytes surrounding a necrotic core. The pathogenesis of the atherosclerotic lesion is incompletely understood, but it is clear that a dysfunction of the endothelium, recruitment and activation of inflammatory cells and SMC proliferation have a pivotal role. Over recent years receptors for extracellular nucleotides, the P2 receptors, have been recognized as fundamental modulators of leukocytes, platelets, SMCs and endothelial cells. P2 receptors mediate chemotaxis, cytokine secretion, NO generation, platelet aggregation and cell proliferation in response to accumulation of nucleotides into the extracellular milieu. Clinical trials have shown the benefit of antagonists of the ADP platelet receptor(s) in the prevention of vascular accidents in patients with atherosclerosis. Therefore, we anticipate that a deeper understanding of the involvement of P2 receptors in atheroma formation will open new avenues for drug design and therapeutic intervention.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Via Borsari 46, I-44100 Ferrara, Italy.
| | | |
Collapse
|
81
|
Goepfert C, Sundberg C, Sévigny J, Enjyoji K, Hoshi T, Csizmadia E, Robson S. Disordered cellular migration and angiogenesis in cd39-null mice. Circulation 2001; 104:3109-15. [PMID: 11748109 DOI: 10.1161/hc5001.100663] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Nucleoside triphosphate diphosphohydrolase-1 (NTPDase1)/CD39 is the major ectonucleotidase of endothelial cells and monocytes and catalyzes phosphohydrolysis of extracellular nucleoside diphosphates (NDP) and triphosphates (NTP, eg, ATP and UTP). Deletion of cd39 causes perturbations in the hydrolysis of NTP and NDP in the vasculature. Activation of P2 receptors appears to influence endothelial cell chemotactic and mitogenic responses in vitro. Therefore, aberrant regulation of nucleotide P2 receptors may influence angiogenesis in cd39-null mice. Methods and Results- In control mice, implanted Matrigel plugs containing growth factors were rapidly populated by monocyte/macrophages, endothelial cells, and pericytes, with the development of new vessels over days. In cd39-null mice, migrating cells were completely confined to the tissue-Matrigel interface in a clearly stratified manner. Absolute failure of new vessel ingrowth was consistently observed in the mutant mice. Linked to these findings, chemotaxis of cd39-null monocyte/macrophages to nucleotides was impaired in vitro. This abnormality was associated with desensitization of nucleotide receptor P2Y-mediated signaling pathways. CONCLUSIONS Our findings demonstrate a role for NTPDase1 and phosphohydrolysis of extracellular nucleotides in the regulation of the cellular infiltration and new vessel growth in a model of angiogenesis.
Collapse
MESH Headings
- Acid Anhydride Hydrolases/metabolism
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/physiology
- Adenosine Triphosphate/pharmacology
- Animals
- Antigens/analysis
- Antigens, CD/analysis
- Antigens, CD/genetics
- Antigens, CD/physiology
- Apyrase
- Blood Vessels/chemistry
- Blood Vessels/growth & development
- Cell Movement/physiology
- Chemokine CCL2/pharmacology
- Drug Synergism
- Female
- Genotype
- Immunohistochemistry
- Integrin beta3
- Macrophages/cytology
- Macrophages/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Monocytes/cytology
- Monocytes/drug effects
- Mutation
- Neovascularization, Physiologic/physiology
- Nucleoside-Triphosphatase
- Platelet Endothelial Cell Adhesion Molecule-1/analysis
- Platelet Membrane Glycoproteins/analysis
- Proteoglycans/analysis
- Receptor Protein-Tyrosine Kinases/analysis
- Receptor, Platelet-Derived Growth Factor beta/analysis
- Receptors, Growth Factor/analysis
- Receptors, Vascular Endothelial Growth Factor
- Serotonin/pharmacology
Collapse
Affiliation(s)
- C Goepfert
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Robson SC, Enjyoji K, Goepfert C, Imai M, Kaczmarek E, Lin Y, Sévigny J, Warny M. Modulation of extracellular nucleotide-mediated signaling by CD39/nucleoside triphosphate diphosphohydrolase-1. Drug Dev Res 2001. [DOI: 10.1002/ddr.1188] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
83
|
Bell SE, Mavila A, Salazar R, Bayless KJ, Kanagala S, Maxwell SA, Davis GE. Differential gene expression during capillary morphogenesis in 3D collagen matrices. J Cell Sci 2001; 114:2755-73. [PMID: 11683410 DOI: 10.1242/jcs.114.15.2755] [Citation(s) in RCA: 283] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have performed a screening analysis of differential gene expression using a defined in vitro model of human capillary tube formation. Gene array, differential display and cDNA library screening were used to identify both known and novel differentially expressed genes. Major findings include: the upregulation and functional importance of genes associated with basement membrane matrix assembly; the upregulation of growth factors, transcription factors, anti-apoptotic factors, markers of endothelial cell differentiation, JAK-STAT signalling molecules, adhesion receptors, proteinase inhibitors and actin regulatory proteins; and expression changes consistent with inhibition of cell cycle progression, increased cholesterol biosynthesis, decreased ubiquitin-proteasome mediated degradation, and activation of G-protein signaling pathways. Using DNA microarray analysis, the most induced genes at 8, 24 and 48 hours compared with those at 0 hours were jagged-1, stanniocalcin and angiopoietin-2, whereas the most repressed genes were connective tissue growth factor, fibulin-3 and RGS-5. In addition, the full length coding sequence of two novel regulated capillary morphogenesis genes (CMGs) are presented. CMG-1 encodes a predicted intracellular 65 kDa protein with coiled-coil domains. A CMG-1-green fluorescent protein (GFP) chimera was observed to target to an intracellular vesicular compartment. A second novel gene, CMG-2, was found to encode a predicted intracellular protein of 45 kDa containing a transmembrane segment and a CMG-2-GFP chimera was observed to target to the endoplasmic reticulum. A recombinant portion of CMG-2 was found to bind collagen type IV and laminin, suggesting a potential role in basement membrane matrix synthesis and assembly. These data further elucidate the genetic events regulating capillary tube formation in a 3D matrix environment.
Collapse
Affiliation(s)
- S E Bell
- Department of Pathology and Laboratory Medicine, Texas A&M University System Health Science Center, College Station 77843-1114, USA
| | | | | | | | | | | | | |
Collapse
|