51
|
Li G, Liu Y, Zheng Y, Wu Y, Li D, Liang X, Chen Y, Cui Y, Yap PT, Qiu S, Zhang H, Shen D. Multiscale neural modeling of resting-state fMRI reveals executive-limbic malfunction as a core mechanism in major depressive disorder. Neuroimage Clin 2021; 31:102758. [PMID: 34284335 PMCID: PMC8313604 DOI: 10.1016/j.nicl.2021.102758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/15/2022]
Abstract
Major depressive disorder (MDD) represents a grand challenge to human health and society, but the underlying pathophysiological mechanisms remain elusive. Previous neuroimaging studies have suggested that MDD is associated with abnormal interactions and dynamics in two major neural systems including the default mode - salience (DMN-SAL) network and the executive - limbic (EXE-LIM) network, but it is not clear which network plays a central role and which network plays a subordinate role in MDD pathophysiology. To address this question, we refined a newly developed Multiscale Neural Model Inversion (MNMI) framework and applied it to test whether MDD is more affected by impaired circuit interactions in the DMN-SAL network or the EXE-LIM network. The model estimates the directed connection strengths between different neural populations both within and between brain regions based on resting-state fMRI data collected from normal healthy subjects and patients with MDD. Results show that MDD is primarily characterized by abnormal circuit interactions in the EXE-LIM network rather than the DMN-SAL network. Specifically, we observe reduced frontoparietal effective connectivity that potentially contributes to hypoactivity in the dorsolateral prefrontal cortex (dlPFC), and decreased intrinsic inhibition combined with increased excitation from the superior parietal cortex (SPC) that potentially lead to amygdala hyperactivity, together resulting in activation imbalance in the PFC-amygdala circuit that pervades in MDD. Moreover, the model reveals reduced PFC-to-hippocampus excitation but decreased SPC-to-thalamus inhibition in MDD population that potentially lead to hypoactivity in the hippocampus and hyperactivity in the thalamus, consistent with previous experimental data. Overall, our findings provide strong support for the long-standing limbic-cortical dysregulation model in major depression but also offer novel insights into the multiscale pathophysiology of this debilitating disease.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Yujie Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC USA; The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yanting Zheng
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC USA; The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ye Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Danian Li
- Cerebropathy Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinyu Liang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yaoping Chen
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Cui
- Cerebropathy Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Han Zhang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.
| |
Collapse
|
52
|
Filatova EV, Shadrina MI, Slominsky PA. Major Depression: One Brain, One Disease, One Set of Intertwined Processes. Cells 2021; 10:cells10061283. [PMID: 34064233 PMCID: PMC8224372 DOI: 10.3390/cells10061283] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/18/2023] Open
Abstract
Major depressive disorder (MDD) is a heterogeneous disease affecting one out of five individuals and is the leading cause of disability worldwide. Presently, MDD is considered a multifactorial disease with various causes such as genetic susceptibility, stress, and other pathological processes. Multiple studies allowed the formulation of several theories attempting to describe the development of MDD. However, none of these hypotheses are comprehensive because none of them can explain all cases, mechanisms, and symptoms of MDD. Nevertheless, all of these theories share some common pathways, which lead us to believe that these hypotheses depict several pieces of the same big puzzle. Therefore, in this review, we provide a brief description of these theories and their strengths and weaknesses in an attempt to highlight the common mechanisms and relationships of all major theories of depression and combine them together to present the current overall picture. The analysis of all hypotheses suggests that there is interdependence between all the brain structures and various substances involved in the pathogenesis of MDD, which could be not entirely universal, but can affect all of the brain regions, to one degree or another, depending on the triggering factor, which, in turn, could explain the different subtypes of MDD.
Collapse
|
53
|
Deif R, Salama M. Depression From a Precision Mental Health Perspective: Utilizing Personalized Conceptualizations to Guide Personalized Treatments. Front Psychiatry 2021; 12:650318. [PMID: 34045980 PMCID: PMC8144285 DOI: 10.3389/fpsyt.2021.650318] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Modern research has proven that the "typical patient" requiring standardized treatments does not exist, reflecting the need for more personalized approaches for managing individual clinical profiles rather than broad diagnoses. In this regard, precision psychiatry has emerged focusing on enhancing prevention, diagnosis, and treatment of psychiatric disorders through identifying clinical subgroups, suggesting personalized evidence-based interventions, assessing the effectiveness of different interventions, and identifying risk and protective factors for remission, relapse, and vulnerability. Literature shows that recent advances in the field of precision psychiatry are rapidly becoming more data-driven reflecting both the significance and the continuous need for translational research in mental health. Different etiologies underlying depression have been theorized and some factors have been identified including neural circuitry, biotypes, biopsychosocial markers, genetics, and metabolomics which have shown to explain individual differences in pathology and response to treatment. Although the precision approach may prove to enhance diagnosis and treatment decisions, major challenges are hindering its clinical translation. These include the clinical diversity of psychiatric disorders, the technical complexity and costs of multiomics data, and the need for specialized training in precision health for healthcare staff, besides ethical concerns such as protecting the privacy and security of patients' data and maintaining health equity. The aim of this review is to provide an overview of recent findings in the conceptualization and treatment of depression from a precision mental health perspective and to discuss potential challenges and future directions in the application of precision psychiatry for the treatment of depression.
Collapse
Affiliation(s)
- Reem Deif
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| | - Mohamed Salama
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
54
|
Chen X, Meng S, Li S, Zhang L, Wu L, Zhu H, Zhang Y. Role of 5-Hydroxytryptamine and Intestinal Flora on Depressive-Like Behavior Induced by Lead Exposure in Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5516604. [PMID: 33996997 PMCID: PMC8110379 DOI: 10.1155/2021/5516604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the effects of 5-hydroxytryptamine (5-HT) and intestinal flora on depression-like behavior induced by lead exposure in rats. METHODS 30 healthy SPF adult male SD rats were randomly divided into control group and lead exposure group. The depression-like behavior of rats was detected. The blood, striatum, and intestinal tissue were collected. The lead content was detected by ICP-MS. The mRNA expressions of ChgA, TPH1, 5-HT, and 5-HT3R were tested by qRT-PCR. The content of 5HT was checked by HPLC-ECD. The content of 5-HT3R was detected by ELISA. The protein expressions of 5-HT, 5-HT3R, ChgA, and TPH were gauged by immunohistochemistry. Fecal samples were collected, and the composition of intestinal flora in experimental rats was analyzed by 16 s RNA metagene sequencing. RESULTS Lead exposure can greatly cause depression. The content of 5-HT in blood and striatum in the lead exposure group decreased, and the expression levels of 5-HT, 5-HT3 R, ChgA, and TPH in the intestine decreased distinctly. Compared with the control group, the distribution of a-polymorphism related indexes Simpson, Chao1, Shannon, and ACE in rats with depressive-like behavior after lead exposure was significantly increased; in the lead exposure group, there were 61 different operational taxonomic units (OUTs) in intestinal flora at the family level. Based on linear discriminant analysis, it was found that the key bacteria were Lactobacillaceae and Bifidobacteriaceae, and their abundance decreased evidently in the lead exposure group. CONCLUSION Lead exposure improves depressive-like behavior by affecting intestinal flora and regulating neurotransmitter 5-HT through the intestinal-brain axis.
Collapse
Affiliation(s)
- Xiaojun Chen
- School of Public Health, North China University of Science and Technology, Hebei, China
- Workers' Hospital of Caofeidian District, China
| | | | - Shuang Li
- Experimental Animal Center, North China University of Science and Technology Tangshan, Hebei 063000, China
| | - Lijin Zhang
- School of Public Health, North China University of Science and Technology, Hebei, China
| | - Lei Wu
- School of Public Health, North China University of Science and Technology, Hebei, China
| | - Hao Zhu
- School of Public Health, North China University of Science and Technology, Hebei, China
| | - Yanshu Zhang
- School of Public Health, North China University of Science and Technology, Hebei, China
- Experimental Animal Center, North China University of Science and Technology Tangshan, Hebei 063000, China
| |
Collapse
|
55
|
Kubon J, Sokolov AN, Popp R, Fallgatter AJ, Pavlova MA. Face Tuning in Depression. Cereb Cortex 2021; 31:2574-2585. [PMID: 33350440 PMCID: PMC7799219 DOI: 10.1093/cercor/bhaa375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022] Open
Abstract
The latest COVID-19 pandemic reveals that unexpected changes elevate depression bringing people apart, but also calling for social sharing. Yet the impact of depression on social cognition and functioning is not well understood. Assessment of social cognition is crucial not only for a better understanding of major depressive disorder (MDD), but also for screening, intervention, and remediation. Here by applying a novel experimental tool, a Face-n-Food task comprising a set of images bordering on the Giuseppe Arcimboldo style, we assessed the face tuning in patients with MDD and person-by-person matched controls. The key benefit of these images is that single components do not trigger face processing. Contrary to common beliefs, the outcome indicates that individuals with depression express intact face responsiveness. Yet, while in depression face sensitivity is tied with perceptual organization, in typical development, it is knotted with social cognition capabilities. Face tuning in depression, therefore, may rely upon altered behavioral strategies and underwriting brain mechanisms. To exclude a possible camouflaging effect of female social skills, we examined gender impact. Neither in depression nor in typical individuals had females excelled in face tuning. The outcome sheds light on the origins of the face sensitivity and alterations in social functioning in depression and mental well-being at large. Aberrant social functioning in depression is likely to be the result of deeply-rooted maladaptive strategies rather than of poor sensitivity to social signals. This has implications for mental well-being under the current pandemic conditions.
Collapse
Affiliation(s)
- Julian Kubon
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Alexander N Sokolov
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Rebecca Popp
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany.,LEAD Graduate School & Research Network, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany.,German Center for Neurodegenerative Disorders (DZNE), Medical School and University Hospital, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Marina A Pavlova
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
56
|
Jiang S, Huang J, Yang H, Wagoner R, Kozel FA, Currier G, Jiang H. Neuroimaging of depression with diffuse optical tomography during repetitive transcranial magnetic stimulation. Sci Rep 2021; 11:7328. [PMID: 33795763 PMCID: PMC8016845 DOI: 10.1038/s41598-021-86751-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/10/2021] [Indexed: 12/02/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective and safe treatment for depression; however, its potential has likely been hindered due to non-optimized targeting, unclear ideal stimulation parameters, and lack of information regarding how the brain is physiologically responding during and after stimulation. While neuroimaging is ideal for obtaining such critical information, existing modalities have been limited due to poor resolutions, along with significant noise interference from the electromagnetic spectrum. In this study, we used a novel diffuse optical tomography (DOT) device in order to advance our understanding of the neurophysiological effects of rTMS in depression. Healthy and depressed subjects aged 18–70 were recruited. Treatment parameters were standardized with targeting of the left dorsolateral prefrontal cortex with a magnetic field intensity of 100% of motor threshold, pulse frequency of 10 per second, a 4 s stimulation time and a 26 s rest time. DOT imaging was simultaneously acquired from the contralateral dorsolateral prefrontal cortex. Six healthy and seven depressed subjects were included for final analysis. Hemoglobin changes and volumetric three-dimensional activation patterns were successfully captured. Depressed subjects were observed to have a delayed and less robust response to rTMS with a decreased volume of activation compared to healthy subjects. In this first-in-human study, we demonstrated the ability of DOT to safely and reliably capture and compare cortical response patterns to rTMS in depressed and healthy subjects. We introduced this emerging optical functional imaging modality as a novel approach to investigating targeting, new treatment parameters, and physiological effects of rTMS in depression.
Collapse
Affiliation(s)
- Shixie Jiang
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
| | - Jingyu Huang
- Department of Medical Engineering, University of South Florida, 4202 E. Fowler Avenue, ENG 030, Tampa, FL, USA
| | - Hao Yang
- Department of Medical Engineering, University of South Florida, 4202 E. Fowler Avenue, ENG 030, Tampa, FL, USA
| | - Ryan Wagoner
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
| | - F Andrew Kozel
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA.,Department of Behavioral Sciences and Social Medicine, Florida State University, Tallahassee, FL, USA
| | - Glenn Currier
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, 4202 E. Fowler Avenue, ENG 030, Tampa, FL, USA.
| |
Collapse
|
57
|
Rana T, Behl T, Sehgal A, Sachdeva M, Mehta V, Sharma N, Singh S, Bungau S. Exploring Sonic Hedgehog Cell Signaling in Neurogenesis: Its Potential Role in Depressive Behavior. Neurochem Res 2021; 46:1589-1602. [PMID: 33786718 DOI: 10.1007/s11064-021-03307-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Depression is the most prevalent form of neuropsychiatric disorder affecting all age groups globally. As per the estimation of the World Health Organization (WHO), depression will develop into the foremost reason for disability globally by the year 2030. The primary neurobiological mechanism implicated in depression remains ambiguous; however, dysregulation of molecular and signaling transductions results in depressive disorders. Several theories have been developed to explain the pathogenesis of depression, however, none of them completely explained all aspects of depressive-pathogenesis. In the current review, we aimed to explore the role of the sonic hedgehog (Shh) signaling pathway in the development of the depressive disorder and its potential as the therapeutic target. Shh signaling has a crucial function in neurogenesis and neural tube patterning during the development of the central nervous system (CNS). Shh signaling performs a basic function in embryogenesis and hippocampal neurogenesis. Moreover, antidepressants are also known to enhance neurogenesis in the hippocampus, which further suggests the potential of Shh signaling. Furthermore, there is decreased expression of a glioma-associated oncogene (Gli1) and Smoothened (Smo) in depression. Moreover, antidepressants also regulate brain-derived neurotrophic factor (BDNF) and wingless protein (Wnt) signaling, therefore, Shh may be implicated in the pathogenesis of the depressive disorder. Deregulation of Shh signaling in CNS results in neurological disorders such as depression.
Collapse
Affiliation(s)
- Tarapati Rana
- Government Pharmacy College, Seraj, Distt. Mandi, Himachal Pradesh, India.,Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain, United Arab Emirates
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
58
|
Zhang L, Ji R, Ji Y, Liu M, Wang R, Xu C. Relationship Between Acute Stress Responses and Quality of Life in Chinese Health Care Workers During the COVID-19 Outbreak. Front Psychol 2021; 12:599136. [PMID: 33815198 PMCID: PMC8010677 DOI: 10.3389/fpsyg.2021.599136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
This study aimed to determine the relationship between acute stress and quality of life and explore their influencing factors on health care workers. A descriptive cross-sectional study was conducted, and a sample of 525 health care workers was recruited from 15 hospitals through a convenient sampling method. Participants completed an online self-report questionnaire to assess their acute stress and quality of life. Descriptive and multiple linear regression statistics were used for this analysis. The results regarding acute stress responses varied significantly among the differences in marital status, physical activity, work status, perceived risk of contracting COVID-19, and the expected duration of the pandemic. Moreover, a younger age, lack of physical activity, being a front-line medical staff, and higher acute stress scores indicated a worse quality of life. Healthcare workers’ acute stress was negatively correlated with their quality of life. Therefore, the authorities should pay special attention to health care workers’ mental health and provide them with timely protection during the pandemic.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Nursing, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong, China
| | - Rongjian Ji
- Department of Nursing, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong, China
| | - Yanbo Ji
- Department of Nursing, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong, China
| | - Min Liu
- School of Nursing, Shandong First Medical University, Shandong, China
| | - Renxiu Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Cuiping Xu
- Department of Nursing, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong, China
| |
Collapse
|
59
|
Radwan B, Jansen G, Chaudhury D. Abnormal Sleep Signals Vulnerability to Chronic Social Defeat Stress. Front Neurosci 2021; 14:610655. [PMID: 33510614 PMCID: PMC7835126 DOI: 10.3389/fnins.2020.610655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
There is a tight association between mood and sleep as disrupted sleep is a core feature of many mood disorders. The paucity in available animal models for investigating the role of sleep in the etiopathogenesis of depression-like behaviors led us to investigate whether prior sleep disturbances can predict susceptibility to future stress. Hence, we assessed sleep before and after chronic social defeat (CSD) stress. The social behavior of the mice post stress was classified in two main phenotypes: mice susceptible to stress that displayed social avoidance and mice resilient to stress. Pre-CSD, mice susceptible to stress displayed increased fragmentation of Non-Rapid Eye Movement (NREM) sleep, due to increased switching between NREM and wake and shorter average duration of NREM bouts, relative to mice resilient to stress. Logistic regression analysis showed that the pre-CSD sleep features from both phenotypes were separable enough to allow prediction of susceptibility to stress with >80% accuracy. Post-CSD, susceptible mice maintained high NREM fragmentation while resilient mice exhibited high NREM fragmentation, only in the dark. Our findings emphasize the putative role of fragmented NREM sleep in signaling vulnerability to stress.
Collapse
Affiliation(s)
- Basma Radwan
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Gloria Jansen
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Dipesh Chaudhury
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
60
|
Khairuddin S, Aquili L, Heng BC, Hoo TLC, Wong KH, Lim LW. Dysregulation of the orexinergic system: A potential neuropeptide target in depression. Neurosci Biobehav Rev 2020; 118:384-396. [DOI: 10.1016/j.neubiorev.2020.07.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/19/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
|
61
|
Lim SH, Shin S, Kim MH, Kim EC, Lee DY, Moon J, Park HY, Ryu YK, Kang YM, Kang YJ, Kim TH, Lee NY, Kim NS, Yu DY, Shim I, Gondo Y, Satake M, Kim E, Kim KS, Min SS, Lee JR. Depression-like behaviors induced by defective PTPRT activity through dysregulated synaptic functions and neurogenesis. J Cell Sci 2020; 133:jcs243972. [PMID: 32938684 DOI: 10.1242/jcs.243972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Abstract
PTPRT has been known to regulate synaptic formation and dendritic arborization of hippocampal neurons. PTPRT-/- null and PTPRT-D401A mutant mice displayed enhanced depression-like behaviors compared with wild-type mice. Transient knockdown of PTPRT in the dentate gyrus enhanced the depression-like behaviors of wild-type mice, whereas rescued expression of PTPRT ameliorated the behaviors of PTPRT-null mice. Chronic stress exposure reduced expression of PTPRT in the hippocampus of mice. In PTPRT-deficient mice the expression of GluR2 (also known as GRIA2) was attenuated as a consequence of dysregulated tyrosine phosphorylation, and the long-term potentiation at perforant-dentate gyrus synapses was augmented. The inhibitory synaptic transmission of the dentate gyrus and hippocampal GABA concentration were reduced in PTPRT-deficient mice. In addition, the hippocampal expression of GABA transporter GAT3 (also known as SLC6A11) was decreased, and its tyrosine phosphorylation was increased in PTPRT-deficient mice. PTPRT-deficient mice displayed reduced numbers and neurite length of newborn granule cells in the dentate gyrus and had attenuated neurogenic ability of embryonic hippocampal neural stem cells. In conclusion, our findings show that the physiological roles of PTPRT in hippocampal neurogenesis, as well as synaptic functions, are involved in the pathogenesis of depressive disorder.
Collapse
Affiliation(s)
- So-Hee Lim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Sangyep Shin
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon 34824, Korea
| | - Myoung-Hwan Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eung Chang Kim
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon 34824, Korea
| | - Da Yong Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jeonghee Moon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Young-Mi Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Yu Jeong Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Tae Hwan Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Na-Yoon Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Nam-Soon Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Dae-Yeul Yu
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yoichi Gondo
- Department of Molecular Life Sciences, Tokai University School of Medicine, Shimo-Kasuya, Isehara 259-1193, Japan
| | - Masanobu Satake
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Eunhee Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Sun Seek Min
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon 34824, Korea
| | - Jae-Ran Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| |
Collapse
|
62
|
Luan D, Zhao MG, Shi YC, Li L, Cao YJ, Feng HX, Zhang ZJ. Mechanisms of repetitive transcranial magnetic stimulation for anti-depression: Evidence from preclinical studies. World J Psychiatry 2020; 10:223-233. [PMID: 33134113 PMCID: PMC7582130 DOI: 10.5498/wjp.v10.i10.223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023] Open
Abstract
This review summarizes the anti-depressant mechanisms of repetitive transcranial magnetic stimulation in preclinical studies, including anti-inflammatory effects mediated by activation of nuclear factor-E2-related factor 2 signaling pathway, anti-oxidative stress effects, enhancement of synaptic plasticity and neurogenesis via activation of the endocannabinoid system and brain derived neurotrophic factor signaling pathway, increasing the content of monoamine neurotransmitters via inhibition of Sirtuin 1/monoamine oxidase A signaling pathway, and reducing the activity of the hypothalamic-pituitary-adrenocortical axis. We also discuss the shortcomings of transcranial magnetic stimulation in preclinical studies such as inaccurate positioning, shallow depth of stimulation, and difficulty in elucidating the neural circuit mechanism up- and down-stream of the stimulation target brain region.
Collapse
Affiliation(s)
- Di Luan
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ming-Ge Zhao
- Department of Nursing, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ya-Chen Shi
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ling Li
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yu-Jia Cao
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Hai-Xia Feng
- Department of Nursing, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Department of Psychology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang province, China
| |
Collapse
|
63
|
Stanisavljević A, Perić I, Gass P, Inta D, Lang UE, Borgwardt S, Filipović D. Fluoxetine modulates neuronal activity in stress-related limbic areas of adult rats subjected to the chronic social isolation. Brain Res Bull 2020; 163:95-108. [DOI: 10.1016/j.brainresbull.2020.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022]
|
64
|
Abstract
An intranasal formulation of esketamine, the S enantiomer of ketamine, in conjunction with an oral antidepressant, has been approved by the FDA for treating treatment-resistant major depressive disorder (TRD) in 2019, almost 50 years after it was approved as an intravenous anesthetic. In contrast to traditional antidepressants, ketamine shows a rapid (within 2 h) and sustained (∼7 days) antidepressant effect and has significant positive effects on antisuicidal ideation. Ketamine's antidepressant mechanism is predominantly mediated by the N-methyl-d-aspartate receptor (NMDA) receptor, although NMDA-independent mechanisms are not ruled out. At the neurocircuitry level, ketamine affects the brain's reward and mood circuitry located in the corticomesolimbic structures involving the hippocampus, nucleus accumbens, and prefrontal cortex. Repurposing of ketamine for treating TRD provided a new understanding of the pathophysiology of depression, a paradigm shift from monoamine to glutamatergic neurotransmission, thus making it a unique tool to investigate the brain and its complex neurocircuitries.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
65
|
Clinical Evidence of Antidepressant Effects of Insulin and Anti-Hyperglycemic Agents and Implications for the Pathophysiology of Depression-A Literature Review. Int J Mol Sci 2020; 21:ijms21186969. [PMID: 32971941 PMCID: PMC7554794 DOI: 10.3390/ijms21186969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Close connections between depression and type 2 diabetes (T2DM) have been suggested by many epidemiological and experimental studies. Disturbances in insulin sensitivity due to the disruption of various molecular pathways cause insulin resistance, which underpins many metabolic disorders, including diabetes, as well as depression. Several anti-hyperglycemic agents have demonstrated antidepressant properties in clinical trials, probably due to their action on brain targets based on the shared pathophysiology of depression and T2DM. In this article, we review reports of clinical trials examining the antidepressant effect of these medications, including insulin, metformin, glucagon like peptide-1 receptor agonists (GLP-1RA), and peroxisome proliferator-activated receptor (PPAR)-γ agonists, and briefly consider possible molecular mechanisms underlying the associations between amelioration of insulin resistance and improvement of depressive symptoms. In doing so, we intend to suggest an integrative perspective for understanding the pathophysiology of depression.
Collapse
|
66
|
Xu L, Nan J, Lan Y. The Nucleus Accumbens: A Common Target in the Comorbidity of Depression and Addiction. Front Neural Circuits 2020; 14:37. [PMID: 32694984 PMCID: PMC7338554 DOI: 10.3389/fncir.2020.00037] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
The comorbidity of depression and addiction has become a serious public health issue, and the relationship between these two disorders and their potential mechanisms has attracted extensive attention. Numerous studies have suggested that depression and addiction share common mechanisms and anatomical pathways. The nucleus accumbens (NAc) has long been considered a key brain region for regulating many behaviors, especially those related to depression and addiction. In this review article, we focus on the association between addiction and depression, highlighting the potential mediating role of the NAc in this comorbidity via the regulation of changes in the neural circuits and molecular signaling. To clarify the mechanisms underlying this association, we summarize evidence from overlapping reward neurocircuitry, the resemblance of cellular and molecular mechanisms, and common treatments. Understanding the interplay between these disorders should help guide clinical comorbidity prevention and the search for a new target for comorbidity treatment.
Collapse
Affiliation(s)
- Le Xu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University School of Medicine, Yanji City, China
| | - Jun Nan
- Department of Orthopedics, Affiliated Hospital of Yanbian University, Yanji City, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University School of Medicine, Yanji City, China
| |
Collapse
|
67
|
Nagy EE, Frigy A, Szász JA, Horváth E. Neuroinflammation and microglia/macrophage phenotype modulate the molecular background of post-stroke depression: A literature review. Exp Ther Med 2020; 20:2510-2523. [PMID: 32765743 PMCID: PMC7401670 DOI: 10.3892/etm.2020.8933] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence hints to the central role of neuroinflammation in the development of post-stroke depression. Danger signals released in the acute phase of ischemia trigger microglial activation, along with the infiltration of neutrophils and macrophages. The increased secretion of proinflammatory cytokines interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor α (TNFα) provokes neuronal degeneration and apoptosis, whereas IL-6, interferon γ (IFNγ), and TNFα induce aberrant tryptophane degradation with the accumulation of the end-product quinolinic acid in resident glial cells. This promotes glutamate excitotoxicity via hyperexcitation of N-methyl-D-aspartate receptors and antagonizes 5-hydroxy-tryptamine, reducing synaptic plasticity and neuronal survival, thus favoring depression. In the post-stroke period, CX3CL1 and the CD200-CD200R interaction mediates the activation of glial cells, whereas CCL-2 attracts infiltrating macrophages. CD206 positive cells grant the removal of excessive danger signals; the high number of regulatory T cells, IL-4, IL-10, transforming growth factor β (TGFβ), and intracellular signaling via cAMP response element-binding protein (CREB) support the M2 type differentiation. In favorable conditions, these cells may exert efficient clearance, mediate tissue repair, and might be essential players in the downregulation of molecular pathways that promote post-stroke depression.
Collapse
Affiliation(s)
- Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Attila Frigy
- Department of Internal Medicine IV, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540103 Targu Mures, Romania
| | - József Attila Szász
- Neurology Clinic II, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Emőke Horváth
- Department of Pathology, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
68
|
Aleksandrova LR, Wang YT, Phillips AG. Ketamine and its metabolite, (2R,6R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression. Mol Brain 2020; 13:92. [PMID: 32546197 PMCID: PMC7296711 DOI: 10.1186/s13041-020-00627-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence implicates dysregulation of hippocampal synaptic plasticity in the pathophysiology of depression. However, the effects of ketamine on synaptic plasticity and their contribution to its mechanism of action as an antidepressant, are still unclear. We investigated ketamine's effects on in vivo dorsal hippocampal (dHPC) synaptic plasticity and their role in mediating aspects of antidepressant activity in the Wistar-Kyoto (WKY) model of depression. dHPC long-term potentiation (LTP) was significantly impaired in WKY rats compared to Wistar controls. Importantly, a single low dose (5 mg/kg, ip) of ketamine or its metabolite, (2R,6R)-HNK, rescued the LTP deficit in WKY rats at 3.5 h but not 30 min following injection, with residual effects at 24 h, indicating a delayed, sustained facilitatory effect on dHPC synaptic plasticity. Consistent with the observed dHPC LTP deficit, WKY rats exhibited impaired hippocampal-dependent long-term spatial memory as measured by the novel object location recognition test (NOLRT), which was effectively restored by pre-treatment with both ketamine or (2R,6R)-HNK. In contrast, in WKYs, which display abnormal stress coping, ketamine, but not (2R,6R)-HNK, had rapid and sustained effects in the forced swim test (FST), a commonly used preclinical screen for antidepressant-like activity. The differential effects of (2R,6R)-HNK observed here reveal a dissociation between drug effects on FST immobility and dHPC synaptic plasticity. Therefore, in the WKY rat model, restoring dHPC LTP was not correlated with ketamine's effects in FST, but importantly, may have contributed to the reversal of hippocampal-dependent cognitive deficits, which are critical features of clinical depression. Our findings support the theory that ketamine may reverse the stress-induced loss of connectivity in key neural circuits by engaging synaptic plasticity processes to "reset the system".
Collapse
Affiliation(s)
- Lily R Aleksandrova
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Yu Tian Wang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Anthony G Phillips
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
69
|
Kokane SS, Armant RJ, Bolaños-Guzmán CA, Perrotti LI. Overlap in the neural circuitry and molecular mechanisms underlying ketamine abuse and its use as an antidepressant. Behav Brain Res 2020; 384:112548. [PMID: 32061748 PMCID: PMC7469509 DOI: 10.1016/j.bbr.2020.112548] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/18/2020] [Accepted: 02/07/2020] [Indexed: 02/09/2023]
Abstract
Ketamine, a dissociative anesthetic and psychedelic compound, has revolutionized the field of psychopharmacology by showing robust, and rapid-acting antidepressant activity in patients suffering from major depressive disorder (MDD), suicidal tendencies, and treatment-resistant depression (TRD). Ketamine's efficacy, however, is transient, and patients must return to the clinic for repeated treatment as they experience relapse. This is cause for concern because ketamine is known for its abuse liability, and repeated exposure to drugs of abuse often leads to drug abuse/dependence. Though the mechanism(s) underlying its antidepressant activity is an area of current intense research, both clinical and preclinical evidence shows that ketamine's effects are mediated, at least in part, by molecular adaptations resulting in long-lasting synaptic changes in mesolimbic brain regions known to regulate natural and drug reward. This review outlines our limited knowledge of ketamine's neurobiological and biochemical underpinnings mediating its antidepressant effects and correlates them to its abuse potential. Depression and addiction share overlapping neural circuitry and molecular mechanisms, and though speculative, repeated use of ketamine for the treatment of depression could lead to the development of substance use disorder/addiction, and thus should be tempered with caution. There is much that remains to be known about the long-term effects of ketamine, and our lack of understanding of neurobiological mechanisms underlying its antidepressant effects is a clear limiting factor that needs to be addressed systematically before using repeated ketamine in the treatment of depressed patients.
Collapse
Affiliation(s)
- Saurabh S Kokane
- Department of Psychology, The University of Texas at Arlington, United States
| | - Ross J Armant
- Department of Psychology, The University of Texas at Arlington, United States
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX 77840, United States
| | - Linda I Perrotti
- Department of Psychology, The University of Texas at Arlington, United States.
| |
Collapse
|
70
|
Machado DG, Lara MVS, Dobler PB, Almeida RF, Porciúncula LO. Caffeine prevents neurodegeneration and behavioral alterations in a mice model of agitated depression. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109776. [PMID: 31707092 DOI: 10.1016/j.pnpbp.2019.109776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/15/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
Longitudinal and some experimental studies have showed the potential of caffeine to counteract some depressive behaviors and synaptic dysfunctions. In this study, we investigated the potential of caffeine in preventing behavioral outcomes, neurodegeneration and synaptic proteins alterations in a mice model of agitated depression by bilateral olfactory bulbectomy (OB). For this purpose, bulbectomized mice received caffeine (0.3 g/L and 1.0 g/L, drinking water), during the active cycle, for seven weeks (two before the surgery and throughout five weeks after OB). Caffeine prevented OB-induced hyperactivity and recognition memory impairment and rescue self care and motivational behavior. In the frontal cortex, bulbectomized mice presented increase in the adenosine A1 receptors (A1R) and GFAP, while adenosine A2A receptors (A2AR) increased in the hippocampus and striatum and SNAP-25 was decreased in frontal cortex and striatum. Caffeine increased A1R in the striatum of bulbectomized mice and in SHAM-water group caffeine increased A2AR in the striatum and decreased SNAP-25 in the frontal cortex. Astrogliosis observed in the polymorphic layer of the dentate gyrus of OB mice was prevented by caffeine as well as the neurodegeneration in the striatum and piriform cortex. Based on these behavioral and neurochemical evidences, caffeine confirms its efficacy in preventing neurodegeneration associated with memory impairment and may be considered as a promising therapeutic tool in the prophylaxis and/or treatment of depression.
Collapse
Affiliation(s)
- Daniele Guilhermano Machado
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil.
| | - Marcus Vinicius Soares Lara
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil
| | - Paula Bruna Dobler
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil
| | - Roberto Farina Almeida
- Universidade Federal de Ouro Preto, Centro de Pesquisa em Ciências Biológicas, Departamento de Ciências Biológicas, Ouro Preto, MG, Brazil
| | - Lisiane O Porciúncula
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil.
| |
Collapse
|
71
|
Nakamichi N, Matsumoto Y, Kawanishi T, Ishimoto T, Masuo Y, Horikawa M, Kato Y. Maturational Characterization of Mouse Cortical Neurons Three-Dimensionally Cultured in Functional Polymer FP001-Containing Medium. Biol Pharm Bull 2020; 42:1545-1553. [PMID: 31474714 DOI: 10.1248/bpb.b19-00307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study is to construct and characterize a novel three-dimensional culture system for mouse neurons using the functional polymer, FP001. Stereoscopically extended neurites were found in primary mouse cortical neurons cultured in the FP001-containing medium. Neurons cultured with FP001 were distributed throughout the medium of the observation range whereas neurons cultured without FP001 were distributed only on the bottom of the dish. These results demonstrated that neurons can be three-dimensionally cultured using the FP001-containing medium. The mRNA expression of the glutamatergic neuronal marker vesicular glutamate transporter 1 in neurons cultured in the FP001-containing medium were higher than that in neurons cultured in the FP001-free medium. Expression of the matured neuronal marker, microtubule-associated protein 2 (MAP2) a,b, and the synapse formation marker, Synapsin I, in neurons cultured with FP001 was also higher than that in neurons cultured without FP001. The expression pattern of MAP2a,b in neurons cultured with FP001, but not that in neurons cultured without FP001, was similar to that in the embryonic cerebral cortex. Exposure to glutamate significantly increased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction activity in neurons cultured with FP001 compared to that in neurons cultured without FP001. These results suggested that glutamatergic neurotransmission in neurons three-dimensionally cultured in the FP001-containing medium may be upregulated compared to neurons two-dimensionally cultured in the FP001-free medium. Thus, neurons with the properties close to those in the embryonic brain could be obtained by three-dimensionally culturing neurons using FP001, compared to two-dimensional culture with a conventional adhesion method.
Collapse
Affiliation(s)
- Noritaka Nakamichi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Yuta Matsumoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Takumi Kawanishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Takahiro Ishimoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Masato Horikawa
- Advanced Materials and Planning Division, Nissan Chemical Industries, Ltd
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
72
|
Ashikawa Y, Shiromizu T, Miura K, Adachi Y, Matsui T, Bessho Y, Tanaka T, Nishimura Y. C3orf70 Is Involved in Neural and Neurobehavioral Development. Pharmaceuticals (Basel) 2019; 12:ph12040156. [PMID: 31623237 PMCID: PMC6958487 DOI: 10.3390/ph12040156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/29/2022] Open
Abstract
Neurogenesis is the process by which undifferentiated progenitor cells develop into mature and functional neurons. Defects in neurogenesis are associated with neurodevelopmental and neuropsychiatric disorders; therefore, elucidating the molecular mechanisms underlying neurogenesis can advance our understanding of the pathophysiology of these disorders and facilitate the discovery of novel therapeutic targets. In this study, we performed a comparative transcriptomic analysis to identify common targets of the proneural transcription factors Neurog1/2 and Ascl1 during neurogenesis of human and mouse stem cells. We successfully identified C3orf70 as a novel common target gene of Neurog1/2 and Ascl1 during neurogenesis. Using in situ hybridization, we demonstrated that c3orf70a and c3orf70b, two orthologs of C3orf70, were expressed in the midbrain and hindbrain of zebrafish larvae. We generated c3orf70 knockout zebrafish using CRISPR/Cas9 technology and demonstrated that loss of c3orf70 resulted in significantly decreased expression of the mature neuron markers elavl3 and eno2. We also found that expression of irx3b, a zebrafish ortholog of IRX3 and a midbrain/hindbrain marker, was significantly reduced in c3orf70 knockout zebrafish. Finally, we demonstrated that neurobehaviors related to circadian rhythm and altered light–dark conditions were significantly impaired in c3orf70 knockout zebrafish. These results suggest that C3orf70 is involved in neural and neurobehavioral development and that defects in C3orf70 may be associated with midbrain/hindbrain-related neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yoshifumi Ashikawa
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (Y.A.); (T.S.); (K.M.); (Y.A.)
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (Y.A.); (T.S.); (K.M.); (Y.A.)
| | - Koki Miura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (Y.A.); (T.S.); (K.M.); (Y.A.)
| | - Yuka Adachi
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (Y.A.); (T.S.); (K.M.); (Y.A.)
| | - Takaaki Matsui
- Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Yasumasa Bessho
- Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Toshio Tanaka
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (Y.A.); (T.S.); (K.M.); (Y.A.)
- Correspondence:
| |
Collapse
|
73
|
Aleksandrova LR, Wang YT, Phillips AG. Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response. Neurosci Biobehav Rev 2019; 105:1-23. [DOI: 10.1016/j.neubiorev.2019.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022]
|
74
|
Wang S, Duan M, Guan K, Zhou X, Zheng M, Shi X, Ye M, Guan W, Kuver A, Huang M, Liu Y, Dai K, Li X. Developmental neurotoxicity of reserpine exposure in zebrafish larvae (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:115-123. [PMID: 31128281 DOI: 10.1016/j.cbpc.2019.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/22/2019] [Accepted: 05/10/2019] [Indexed: 12/28/2022]
Abstract
Reserpine is widely used for treatment of hypertension and schizophrenia. As a specific inhibitor of monoamine transporters, reserpine is known to deplete monoamine neurotransmitters and cause decreased movement symptoms. However, how zebrafish larvae respond to reserpine treatment is not well studied. Here we show that swimming distance and average velocity are significantly reduced after reserpine exposure under various stimulatory conditions. Using liquid chromatograph-mass spectrometer analysis, decreased levels of monoamines (e.g. dopamine, noradrenaline, and serotonin) were detected in reserpine-treated larvae. Moreover, reserpine treatment significantly reduced the number of dopaminergic neurons, which was identified with th (Tyrosine Hydroxylase) in situ hybridization in the preoptic area. Interestingly, dopaminergic neuron development-associated genes, such as otpa, otpb, wnt1, wnt3, wnt5 and manf, were downregulated in reserpine treated larvae. Our data indicates that 2 mg/L reserpine exposure induces dopaminergic neuron damage in the brain, demonstrating a chemical induced depression-like model in zebrafish larvae for future drug development.
Collapse
Affiliation(s)
- Shao Wang
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China; School of Mental Health, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, PR China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, PR China
| | - Kaiyu Guan
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China; School of Mental Health, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, PR China
| | - Xianyong Zhou
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China; School of Mental Health, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, PR China
| | - Miaomiao Zheng
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China; School of Mental Health, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, PR China
| | - Xulai Shi
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Minjie Ye
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China; School of Mental Health, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, PR China
| | - Wanchun Guan
- School of Mental Health, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, PR China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Aarti Kuver
- School of Mental Health, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, PR China
| | - Manli Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, PR China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, Zhejiang Province, PR China
| | - Yunbing Liu
- Yangtze Valley Water Environment Monitoring Center, Add: No.13, Yongqing Branch Road, Wuhan 430010, Hubei Province, PR China
| | - Kezhi Dai
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China; School of Mental Health, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, PR China.
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China; School of Mental Health, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, PR China.
| |
Collapse
|
75
|
Gao M, Hu P, Cai Z, Wu Y, Wang D, Hu W, Xu X, Zhang Y, Lu X, Chen D, Chen Z, Ma K, Wen J, Wang H, Huang C. Identification of a microglial activation-dependent antidepressant effect of amphotericin B liposome. Neuropharmacology 2019; 151:33-44. [DOI: 10.1016/j.neuropharm.2019.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/31/2022]
|
76
|
Palagini L, Bastien CH, Marazziti D, Ellis JG, Riemann D. The key role of insomnia and sleep loss in the dysregulation of multiple systems involved in mood disorders: A proposed model. J Sleep Res 2019; 28:e12841. [DOI: 10.1111/jsr.12841] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/20/2018] [Accepted: 02/12/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Laura Palagini
- Department of Clinical and Experimental Medicine Psychiatric Unit University of Pisa Pisa Italy
| | | | - Donatella Marazziti
- Department of Clinical and Experimental Medicine Psychiatric Unit University of Pisa Pisa Italy
| | - Jason G. Ellis
- Northumbria Sleep Research Laboratory Northumbria University Newcastle‐upon‐Tyne UK
| | - Dieter Riemann
- Department of Clinical Psychology and Psychophysiology/Sleep Medicine Center for Mental Disorders University of Freiburg Freiburg Germany
| |
Collapse
|
77
|
Martins NRB, Angelica A, Chakravarthy K, Svidinenko Y, Boehm FJ, Opris I, Lebedev MA, Swan M, Garan SA, Rosenfeld JV, Hogg T, Freitas RA. Human Brain/Cloud Interface. Front Neurosci 2019; 13:112. [PMID: 30983948 PMCID: PMC6450227 DOI: 10.3389/fnins.2019.00112] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
The Internet comprises a decentralized global system that serves humanity's collective effort to generate, process, and store data, most of which is handled by the rapidly expanding cloud. A stable, secure, real-time system may allow for interfacing the cloud with the human brain. One promising strategy for enabling such a system, denoted here as a "human brain/cloud interface" ("B/CI"), would be based on technologies referred to here as "neuralnanorobotics." Future neuralnanorobotics technologies are anticipated to facilitate accurate diagnoses and eventual cures for the ∼400 conditions that affect the human brain. Neuralnanorobotics may also enable a B/CI with controlled connectivity between neural activity and external data storage and processing, via the direct monitoring of the brain's ∼86 × 109 neurons and ∼2 × 1014 synapses. Subsequent to navigating the human vasculature, three species of neuralnanorobots (endoneurobots, gliabots, and synaptobots) could traverse the blood-brain barrier (BBB), enter the brain parenchyma, ingress into individual human brain cells, and autoposition themselves at the axon initial segments of neurons (endoneurobots), within glial cells (gliabots), and in intimate proximity to synapses (synaptobots). They would then wirelessly transmit up to ∼6 × 1016 bits per second of synaptically processed and encoded human-brain electrical information via auxiliary nanorobotic fiber optics (30 cm3) with the capacity to handle up to 1018 bits/sec and provide rapid data transfer to a cloud based supercomputer for real-time brain-state monitoring and data extraction. A neuralnanorobotically enabled human B/CI might serve as a personalized conduit, allowing persons to obtain direct, instantaneous access to virtually any facet of cumulative human knowledge. Other anticipated applications include myriad opportunities to improve education, intelligence, entertainment, traveling, and other interactive experiences. A specialized application might be the capacity to engage in fully immersive experiential/sensory experiences, including what is referred to here as "transparent shadowing" (TS). Through TS, individuals might experience episodic segments of the lives of other willing participants (locally or remote) to, hopefully, encourage and inspire improved understanding and tolerance among all members of the human family.
Collapse
Affiliation(s)
- Nuno R. B. Martins
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Center for Research and Education on Aging (CREA), University of California, Berkeley and LBNL, Berkeley, CA, United States
| | | | - Krishnan Chakravarthy
- UC San Diego Health Science, San Diego, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | | | | | - Ioan Opris
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Mikhail A. Lebedev
- Center for Neuroengineering, Duke University, Durham, NC, United States
- Center for Bioelectric Interfaces of the Institute for Cognitive Neuroscience of the National Research University Higher School of Economics, Moscow, Russia
- Department of Information and Internet Technologies of Digital Health Institute, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Melanie Swan
- Department of Philosophy, Purdue University, West Lafayette, IN, United States
| | - Steven A. Garan
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Center for Research and Education on Aging (CREA), University of California, Berkeley and LBNL, Berkeley, CA, United States
| | - Jeffrey V. Rosenfeld
- Monash Institute of Medical Engineering, Monash University, Clayton, VIC, Australia
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia
- Department of Surgery, Monash University, Clayton, VIC, Australia
- Department of Surgery, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Tad Hogg
- Institute for Molecular Manufacturing, Palo Alto, CA, United States
| | | |
Collapse
|
78
|
Kaufling J. Alterations and adaptation of ventral tegmental area dopaminergic neurons in animal models of depression. Cell Tissue Res 2019; 377:59-71. [PMID: 30848354 DOI: 10.1007/s00441-019-03007-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/11/2019] [Indexed: 01/01/2023]
Abstract
Depression is one of the most prevalent psychiatric diseases, affecting the quality of life of millions of people. Ventral tegmental area (VTA) dopaminergic (DA) neurons are notably involved in evaluating the emotional and motivational value of a stimulus, in detecting reward prediction errors, in motivated learning, or in the propensity to initiate or withhold an action. DA neurons are thus involved in psychopathologies associated with perturbations of emotional and motivational states, such as depression. In this review, we focus on adaptations/alterations of the VTA, particularly of the VTA DA neurons, in the three most frequently used animal models of depression: learned helplessness, chronic mild stress and chronic social defeat.
Collapse
Affiliation(s)
- Jennifer Kaufling
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée du Générale Rouvillois, 67000, Strasbourg, France.
| |
Collapse
|
79
|
Liang S, Wu X, Hu X, Wang T, Jin F. Recognizing Depression from the Microbiota⁻Gut⁻Brain Axis. Int J Mol Sci 2018; 19:ijms19061592. [PMID: 29843470 PMCID: PMC6032096 DOI: 10.3390/ijms19061592] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Major depression is one of the leading causes of disability, morbidity, and mortality worldwide. The brain⁻gut axis functions are disturbed, revealed by a dysfunction of the brain, immune system, endocrine system, and gut. Traditional depression treatments all target the brain, with different drugs and/or psychotherapy. Unfortunately, most of the patients have never received any treatment. Studies indicate that gut microbiota could be a direct cause for the disorder. Abnormal microbiota and the microbiota⁻gut⁻brain dysfunction may cause mental disorders, while correcting these disturbance could alleviate depression. Nowadays, the gut microbiota modulation has become a hot topic in treatment research of mental disorders. Depression is closely related with the health condition of the brain⁻gut axis, and maintaining/restoring the normal condition of gut microbiota helps in the prevention/therapy of mental disorders.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaoli Wu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xu Hu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tao Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
80
|
2, 3, 5, 4'-Tetrahydroxystilbene-2-O-β-D-glucoside prevention of lipopolysaccharide-induced depressive-like behaviors in mice involves neuroinflammation and oxido-nitrosative stress inhibition. Behav Pharmacol 2018; 28:365-374. [PMID: 28410266 DOI: 10.1097/fbp.0000000000000307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although numerous hypotheses have been raised in recent years, the exact mechanisms that promote the development of major depression are largely unknown. Recently, strategies targeting the process of neuroinflammation and oxidative stress in depression have been attracting greater attention. 2, 3, 5, 4'-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG), a compound purified from a traditional Chinese herbal medicine polygonummultiflorum, has been widely reported to inhibit neuroinflammation and oxidative stress. In this context, we investigated whether TSG affects lipopolysaccharide (LPS)-induced depressive-like behaviors in a manner associated with neuroinflammation and oxido-nitrosative stress. Results showed that administration of ICR mice with 0.83 mg/kg of LPS-induced typical depressive-like behaviors in the experiments of the tail-suspension test, the forced-swimming test, and sucrose preference, and these behaviors were prevented by TSG treatment (30 and 60 mg/kg). Further analysis showed that TSG pretreatment at the doses of 30 and 60 mg/kg not only inhibited the production of proinflammatory cytokines induced by LPS, such as interleukin-1β, interleukin-6, and tumor necrosis factor-α, but also prevented the LPS-induced enhancement of oxido-nitrosative stress in mouse hippocampus and prefrontal cortex. The LPS-induced decreases in brain-derived neurotrophic factor levels in the hippocampus and prefrontal cortex were also prevented by TSG treatment. Generally, our data provide evidence to show that TSG could be used to cope with depressive-like symptoms by inhibition of neuroinflammation and oxido-nitrosative stress.
Collapse
|
81
|
Knowland D, Lim BK. Circuit-based frameworks of depressive behaviors: The role of reward circuitry and beyond. Pharmacol Biochem Behav 2018; 174:42-52. [PMID: 29309799 PMCID: PMC6340396 DOI: 10.1016/j.pbb.2017.12.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/29/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022]
Abstract
Major depressive disorder (MDD) is a common but serious neuropsychiatric affliction that comprises a diverse set of symptoms such as the inability to feel pleasure, lack of motivation, changes in appetite, and cognitive difficulties. Given the patient to patient symptomatic variability in MDD and differing severities of individual symptoms, it is likely that maladaptive changes in distinct brain areas may mediate discrete symptoms in MDD. The advent and recent surge of studies using viral-genetic approaches have allowed for circuit-specific dissection of networks underlying motivational behavior. In particular, areas such as the ventral tegmental area (VTA), nucleus accumbens (NAc), and ventral pallidum (VP) are thought to generally promote reward, with the medial prefrontal cortex (mPFC) providing top-down control of reward seeking. On the contrary, the lateral habenula (LHb) is considered to be the aversive center of the brain as it has been shown to encode negative valence. The behavioral symptoms of MDD may arise from a disruption in the reward circuitry, hyperactivity of aversive centers, or a combination of the two. Thus, gaining access to specific circuits within the brain and how separate motivational-relevant regions transmit and encode information between each other in the context of separate depression-related symptoms can provide critical knowledge towards symptom-specific treatment of MDD. Here, we review published literature emphasizing circuit- and cell type-specific dissection of depressive-like behaviors in animal models of depression with a particular focus on the chronic social defeat stress model of MDD.
Collapse
Affiliation(s)
- Daniel Knowland
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Byung Kook Lim
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Neurobiology Section Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
82
|
Khnychenko LK, Yakovleva EE, Bychkov ER, Shabanov PD. Effects of Fluorencarbonic Acid Derivative on the Levels of Monoamines and Their Metabolites in Brain Structures of Rats with Modeled Depression-Like State. Bull Exp Biol Med 2017; 163:632-634. [DOI: 10.1007/s10517-017-3866-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Indexed: 01/17/2023]
|
83
|
Nickel A, Thomalla G. Post-Stroke Depression: Impact of Lesion Location and Methodological Limitations-A Topical Review. Front Neurol 2017; 8:498. [PMID: 28983281 PMCID: PMC5613107 DOI: 10.3389/fneur.2017.00498] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/05/2017] [Indexed: 01/30/2023] Open
Abstract
Post-stroke depression (PSD) affects approximately one-third of all stroke patients. It hinders rehabilitation and is associated with worse functional outcome and increased mortality. Since the identification of PSD is a significant clinical problem, clinicians and researchers have tried to identify predictors that indicate patients at risk of developing PSD. This also includes the research question whether there is an association between PSD and stroke lesion characteristics, e.g., lesion size and lesion location. Early studies addressing this question are largely limited by technical constraints and, thus, focused on simple lesion characteristics such as lesion side or proximity of the lesion to the frontal pole of the brain. More recent studies have addressed the impact of involvement of specific neuronal circuits in the stroke lesion. State-of-the-art methods of lesion symptom mapping to study PSD have only been applied to small patient samples. Overall, results are controversial and no clear pattern of stroke lesions associated with PSD has emerged, though there are findings suggesting that more frontal stroke lesions are associated with higher incidence of PSD. Available studies are hampered by methodological limitations, including drawbacks of lesion analysis methods, small sample size, and the issue of patient selection. These limitations together with differences in approaches to assess PSD and in methods of image analysis limit the comparability of results from different studies. To summarize, as of today no definite association between lesion location and PSD can be ascertained and the understanding of PSD rests incomplete. Further insights are expected from the use of modern lesion inference analysis methods in larger patient samples taking into account standardized assessment of possible confounding parameters, such as stroke treatment and reperfusion status.
Collapse
Affiliation(s)
- Alina Nickel
- Department of Neurology, Head and Neurocenter, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, Head and Neurocenter, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
84
|
Cerebrospinal fluid monoamine metabolite profiles in bipolar disorder, ADHD, and controls. J Neural Transm (Vienna) 2017; 124:1135-1143. [PMID: 28656371 PMCID: PMC5565665 DOI: 10.1007/s00702-017-1746-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/09/2017] [Indexed: 10/27/2022]
Abstract
Alterations in monoaminergic signaling are suggested as key aspects of the pathophysiology in bipolar disorder and ADHD, but it is not known if the monoamine metabolic profile differs between these disorders. One method to study monoaminergic systems in humans is to measure monoamine end-point metabolite concentrations in cerebrospinal fluid (CSF). Here, we analyzed CSF monoamine metabolite concentrations in 103 adults with bipolar disorder, 72 adults with ADHD, and 113 controls. Individuals with bipolar disorder had significantly higher homovanillic acid (HVA, 264 ± 112 nmol/L, p < 0.001) and 5-hydroxyindoleacetic acid (5-HIAA, 116 ± 42 nmol/L, p = 0.001) concentration, but lower 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG, 38 ± 8 nmol/L, p < 0.001) concentrations than controls (HVA, 206 ± 70 nmol/L; 5-HIAA, 98 ± 31 nmol/L; and MHPG, 42 ± 7 nmol/L). Higher HVA concentrations were associated with a history of psychosis in the bipolar disorder sample. Subjects with ADHD had higher HVA (240 ± 94 nmol/L, p < 0.001) concentrations compared with controls. In addition, SSRI treatment was associated with lower 5-HIAA concentrations in both patient groups. A power analysis indicated that for within-group comparisons, only large effects would be reliably detectable. Thus, there may be moderate-to-small effects caused by medication that were not detected due to the limited size of the sub-groups in these analyses. In conclusion, the present study suggests disorder-specific alterations of CSF monoamine metabolite concentrations in patients with bipolar disorder and ADHD compared with controls; these differences were independent of acute symptoms and medication effects.
Collapse
|
85
|
Tayyab M, Shahi MH, Farheen S, Mariyath MPM, Khanam N, Castresana JS, Hossain MM. Sonic hedgehog, Wnt, and brain-derived neurotrophic factor cell signaling pathway crosstalk: potential therapy for depression. J Neurosci Res 2017. [PMID: 28631844 DOI: 10.1002/jnr.24104] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are various theories to explain the pathophysiology of depression and support its diagnosis and treatment. The roles of monoamines, brain-derived neurotrophic factor (BDNF), and Wnt signaling are well researched, but sonic hedgehog (Shh) signaling and its downstream transcription factor Gli1 are not well studied in depression. Shh signaling plays a fundamental role in embryonic development and adult hippocampal neurogenesis and also involved in the growth of cancer. In this article, we summarize the evidence for the Shh signaling pathway in depression and the potential crosstalk of Shh with Wnt and BDNF. Antidepressants are known to upregulate the adult hippocampal neurogenesis to treat depression. Shh plays an important role in adult hippocampal neurogenesis, and its downstream signaling components regulate the synthesis of Wnt proteins. Moreover, the expression of Gli1 and Smo is downregulated in depression. BDNF and Wnt signaling are also regulated by various available antidepressants, so there is the possibility that Shh may be involved in the pathophysiology of depression. Therefore, the crosstalk between the Shh, Wnt, and BDNF signaling pathways is being discussed to identify the potential targets. Specifically, the potential role of the Shh signaling pathway in depression is explored as a new target for better therapies for depression.
Collapse
Affiliation(s)
- Mohd Tayyab
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mehdi H Shahi
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Shirin Farheen
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mubeena P M Mariyath
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Nabeela Khanam
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Javier S Castresana
- Department of Biochemistry and Genetics, University of Navarra, Faculty of Sciences, Pamplona, Spain
| | - M Mobarak Hossain
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, India.,Department of Physiology, JNMC, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
86
|
Storage of neural histamine and histaminergic neurotransmission is VMAT2 dependent in the zebrafish. Sci Rep 2017; 7:3060. [PMID: 28596586 PMCID: PMC5465064 DOI: 10.1038/s41598-017-02981-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/20/2017] [Indexed: 11/09/2022] Open
Abstract
Monoaminergic neurotransmission is greatly dependent on the function of the vesicular monoamine transporter VMAT2, which is responsible for loading monoamines into secretory vesicles. The role of VMAT2 in histaminergic neurotransmission is poorly understood. We studied the structure and function of the histaminergic system in larval zebrafish following inhibition of VMAT2 function by reserpine. We found that reserpine treatment greatly reduced histamine immunoreactivity in neurons and an almost total disappearance of histamine-containing nerve fibers in the dorsal telencephalon and habenula, the most densely innervated targets of the hypothalamic histamine neurons. The reserpine treated larvae had an impaired histamine-dependent dark-induced flash response seen during the first second after onset of darkness, implying that function of the histaminergic network is VMAT2 dependent. Levels of histamine and other monoamines were decreased in reserpine treated animals. This study provides conclusive evidence of the relevance of VMAT2 in histaminergic neurotransmission, further implying that the storage and release mechanism of neural histamine is comparable to that of other monoamines. Our results also reveal potential new insights about the roles of monoaminergic neurotransmitters in the regulation of locomotion increase during adaptation to darkness.
Collapse
|
87
|
Fox ME, Wightman RM. Contrasting Regulation of Catecholamine Neurotransmission in the Behaving Brain: Pharmacological Insights from an Electrochemical Perspective. Pharmacol Rev 2017; 69:12-32. [PMID: 28267676 DOI: 10.1124/pr.116.012948] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Catecholamine neurotransmission plays a key role in regulating a variety of behavioral and physiologic processes, and its dysregulation is implicated in both neurodegenerative and neuropsychiatric disorders. Over the last four decades, in vivo electrochemistry has enabled the discovery of contrasting catecholamine regulation in the brain. These rapid and spatially resolved measurements have been conducted in brain slices, and in anesthetized and freely behaving animals. In this review, we describe the methods enabling in vivo measurements of dopamine and norepinephrine, and subsequent findings regarding their release and regulation in intact animals. We thereafter discuss key studies in awake animals, demonstrating that these catecholamines are not only differentially regulated, but are released in opposition of each other during appetitive and aversive stimuli.
Collapse
Affiliation(s)
- Megan E Fox
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina
| | - R Mark Wightman
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
88
|
Kim HJ, Park SD, Lee RM, Lee BH, Choi SH, Hwang SH, Rhim H, Kim HC, Nah SY. Gintonin attenuates depressive-like behaviors associated with alcohol withdrawal in mice. J Affect Disord 2017; 215:23-29. [PMID: 28314177 DOI: 10.1016/j.jad.2017.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/20/2017] [Accepted: 03/08/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Panax ginseng Meyer extracts have been used to improve mood and alleviate symptoms of depression. However, little is known about the extracts' active ingredients and the molecular mechanisms underlying their reported anti-depressive effects. METHODS Gintonin is an exogenous lysophosphatidic acid (LPA) receptor ligand isolated from P. ginseng. BON cells, an enterochromaffin cell line, and C57BL/6 mice were used to investigate whether gintonin stimulates serotonin release. Furthermore, the effects of gintonin on depressive-like behaviors following alcohol withdrawal were evaluated using the forced swim and tail suspension tests. RESULTS Treatment of BON cells with gintonin induced a transient increase in the intracellular calcium concentration and serotonin release in a concentration- and time-dependent manner via the LPA receptor signaling pathway. Oral administration of the gintonin-enriched fraction (GEF) induced an increase in the plasma serotonin concentration in the mice. Oral administration of the GEF in mice with alcohol withdrawal decreased the immobility time in two depression-like behavioral tests and restored the alcohol withdrawal-induced serotonin decrease in plasma levels. LIMITATIONS We cannot exclude the possibility that the gintonin-mediated regulation of adrenal catecholamine release in the peripheral system, and acetylcholine and glutamate release in the central nervous system, could also contribute to the alleviation of depressive-like behaviors. CONCLUSION The GEF-mediated attenuation of depressive-like behavior induced by alcohol withdrawal may be mediated by serotonin release from intestinal enterochromaffin cells. Therefore, the GEF might be responsible for the ginseng extract-induced alleviation of depression-related symptoms.
Collapse
Affiliation(s)
- Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang-Deuk Park
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ra Mi Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Byung-Hwan Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
89
|
Sweeney P, Yang Y. Neural Circuit Mechanisms Underlying Emotional Regulation of Homeostatic Feeding. Trends Endocrinol Metab 2017; 28:437-448. [PMID: 28279562 PMCID: PMC5438765 DOI: 10.1016/j.tem.2017.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/06/2017] [Accepted: 02/12/2017] [Indexed: 02/06/2023]
Abstract
The neural circuits controlling feeding and emotional behaviors are intricately and reciprocally connected. Recent technological developments, including cell type-specific optogenetic and chemogenetic approaches, allow functional characterization of genetically defined cell populations and neural circuits in feeding and emotional processes. Here we review recent studies that have utilized circuit-based manipulations to decipher the functional interactions between neural circuits controlling feeding and those controlling emotional processes. Specifically, we highlight newly described neural circuit interactions between classical emotion-related brain regions, such as the hippocampus and amygdala, and homeostatic feeding circuitry in the arcuate nucleus and lateral hypothalamus (LH). Together these circuits will provide a template for future studies to examine functional interactions between feeding and emotion.
Collapse
Affiliation(s)
- Patrick Sweeney
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Yunlei Yang
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
90
|
Senba E, Kami K. A new aspect of chronic pain as a lifestyle-related disease. NEUROBIOLOGY OF PAIN 2017; 1:6-15. [PMID: 31194049 PMCID: PMC6550110 DOI: 10.1016/j.ynpai.2017.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
Activation of mesolimbic dopamine system underlies exercise-induced hypoalgesia. Interaction between mesolimbic system and hypothalamus determines physical activity. Changing the lifestyle inactive to active may attenuate and prevent chronic pain.
Physical exercise has been established as a low-cost, safe, and effective way to manage chronic intractable pain. We investigated the underlying mechanisms of exercise-induced hypoalgesia (EIH) using a mouse model of neuropathic pain (NPP). Epigenetic changes in activated microglia and maintained GABA synthesis in the spinal dorsal horn may contribute to EIH. Voluntary exercise (VE), a strong reward for animals, also induced EIH, which may be due in part to the activation of dopamine (DA) neurons in the ventral tegmental area (VTA). VE increases the expression of pCREB in dopaminergic neurons in the VTA, which would enhance dopamine production, and thereby contributes to the activation of the mesolimbic reward system in NPP model mice. We demonstrated that neurons in the laterodorsal tegmental and pedunculopontine tegmental nuclei, a major input source of rewarding stimuli to the VTA, were activated by exercise. Chronic pain is at least partly attributed to sedentary and inactive lifestyle as indicated by the Fear-avoidance model. Therefore, chronic pain could be recognized as a lifestyle-related disease. Physical activity/inactivity may be determined by genetic/epigenetic and neural factors encoded in our brain. The hypothalamus and reward system is closely related in the axis of food intake, energy metabolism and physical activity. Understanding the interactions between the mesolimbic DA system and the hypothalamus that sense and regulate energy balance is thus of significant importance. For example, proopiomelanocortin neurons and melanocortin 4 receptors may play a role in connecting these two systems. Therefore, in a certain sense, chronic pain and obesity may share common behavioral and neural pathology, i.e. physical inactivity, as a result of inactivation of the mesolimbic DA system. Exercise and increasing physical activity in daily life may be important in treating and preventing chronic pain, a life-style related disease.
Collapse
Key Words
- CBP, chronic low back pain
- Chronic pain
- DA, dopamine
- Dopamine
- Exercise-induced hypoalgesia
- FM, fibromyalgia
- GABA, gamma-aminobutyric acid
- HDAC, histone deacetylase
- LDT, laterodorsal tegmental nucleus
- LH, lateral hypothalamus
- LHb, lateral habenula
- Laterodorsal tegmental nucleus
- NAc, nucleus accumbens
- NPP, neuropathic pain
- PPTg, pedunculopontine tegmental nucleus
- PSL, partial sciatic nerve ligation
- Physical activity/inactivity
- RMTg, rostromedial tegmental nucleus
- TH, tyrosine hydroxylase
- TMD, temporomandibular disorder
- VTA, ventral tegmental area
- VWR, voluntary wheel running
- Ventral tegmental area
- delta FosB, delta FBJ murine osteosarcoma viral
- mPFC, medial prefrontal cortex
- pCREB, phosphorylated cyclic AMP response element-binding protein
Collapse
Affiliation(s)
- Emiko Senba
- Department of Physical Therapy, Osaka Yukioka College of Health Science, 1-1-41 Sojiji, Ibaraki-City, Osaka 567-0801, Japan.,Department of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama 641-8509, Japan
| | - Katsuya Kami
- Department of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama 641-8509, Japan
| |
Collapse
|
91
|
Huang X, Luo YL, Mao YS, Ji JL. The link between long noncoding RNAs and depression. Prog Neuropsychopharmacol Biol Psychiatry 2017; 73:73-78. [PMID: 27318257 DOI: 10.1016/j.pnpbp.2016.06.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022]
Abstract
The major depressive disorder (MDD) is a relatively common mental disorder from which that hundreds of million people have suffered, leading to displeasing life quality, which is characterized by health damage and even suicidal thoughts. The complicated development and functioning of MDD is still under exploration. Long noncoding RNA (lncRNAs) are highly expressed in the brain, could affect neural stem cell maintenance, neurogenesis and gliogenesis, brain patterning, synaptic and stress responses, and neural plasticity. The dysregulation of certain lncRNAs induces in neurodevelopmental, neurodegenerative and neuroimmunological disorders, primary brain tumors, and psychiatric diseases. Although advances have been made, no fully satisfactory treatments for major depression are available, further investigation is requested. And recently data showed that the expression level of the majority of lncRNAs demonstrated a clear tendency of upregulation, and the certain dysregulated miRNAs and lncRNAs in the MDD have been proved to have a co-synergism mechanism, that is why we speculate lncRNA might get the capability to regulate MDD. Few identified lncRNAs have been deeply studied in detailed experiments up until now, little predictions of their function have been raised, and further researches is calling for discover their signal pathway and related regulatory networks.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan-Li Luo
- Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai 200065, China
| | - Yue-Shi Mao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian-Lin Ji
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
92
|
WY-14643, a selective agonist of peroxisome proliferator-activated receptor-α, ameliorates lipopolysaccharide-induced depressive-like behaviors by preventing neuroinflammation and oxido-nitrosative stress in mice. Pharmacol Biochem Behav 2017; 153:97-104. [DOI: 10.1016/j.pbb.2016.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/27/2016] [Accepted: 12/19/2016] [Indexed: 11/22/2022]
|
93
|
Gellén B, Völgyi K, Györffy BA, Darula Z, Hunyadi-Gulyás É, Baracskay P, Czurkó A, Hernádi I, Juhász G, Dobolyi Á, Kékesi KA. Proteomic investigation of the prefrontal cortex in the rat clomipramine model of depression. J Proteomics 2017; 153:53-64. [DOI: 10.1016/j.jprot.2016.06.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/17/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022]
|
94
|
Xu X, Chan QL, Hilal S, Goh WK, Ikram MK, Wong TY, Cheng CY, Chen CLH, Venketasubramanian N. Cerebral microbleeds and neuropsychiatric symptoms in an elderly Asian cohort. J Neurol Neurosurg Psychiatry 2017; 88:7-11. [PMID: 27261503 DOI: 10.1136/jnnp-2016-313271] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/05/2016] [Accepted: 05/07/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Neuropsychiatric symptoms (NPS) are commonly found in patients with cerebral small vessel disease such as white matter hyperintensities and lacunar infarcts. However, the association between cerebral microbleeds (CMBs) and NPS has not been examined. Hence the present study sought to investigate the relation between CMBs and NPS in an elderly population. METHODS This is a cross-sectional study of elderly Asians living in the community, who were assessed on a comprehensive neuropsychological battery and underwent clinical examinations as well as brain MRI scans. The 12-item neuropsychiatric inventory (NPI) was administered to a reliable informant. Total scores for individual symptoms and for NPI global performance were calculated and compared across three groups: no CMB, presence of 1 CMB and presence of multiple CMBs, controlling for demographics, vascular risk factors and other MRI markers. RESULTS A total of 802 participants were included in the analysis. Participants with multiple CMBs had higher NPI total score compared to those with no CMB (1.06 vs 2.66, p=0.03). On individual symptom scores, higher score on depression (0.16 vs 0.53, p=0.02) and disinhibition (0.01 vs 0.14, p=0.04) was found in those elderly with multiple CMBs, independent of demographic and vascular risk factors, history of stroke, and other small vessel and large vessel disease markers. CONCLUSIONS The presence of multiple CMBs is associated with high global neuropsychiatric disorder burden, in particular symptoms of depression and disinhibition. Future studies are recommended to investigate the importance of CMBs in the pathogenesis and longitudinal progression of neuropsychiatric disorders in the general elderly population.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Qun Lin Chan
- Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Saima Hilal
- Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Win King Goh
- Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Mohammad Kamran Ikram
- Departments of Epidemiology & Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Tien Yin Wong
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.,Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Christopher Li-Hsian Chen
- Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Narayanaswamy Venketasubramanian
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.,Raffles Neuroscience Centre, Raffles Hospital, Singapore, Singapore
| |
Collapse
|
95
|
Iñiguez SD, Aubry A, Riggs LM, Alipio JB, Zanca RM, Flores-Ramirez FJ, Hernandez MA, Nieto SJ, Musheyev D, Serrano PA. Social defeat stress induces depression-like behavior and alters spine morphology in the hippocampus of adolescent male C57BL/6 mice. Neurobiol Stress 2016; 5:54-64. [PMID: 27981196 PMCID: PMC5154707 DOI: 10.1016/j.ynstr.2016.07.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/16/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022] Open
Abstract
Social stress, including bullying during adolescence, is a risk factor for common psychopathologies such as depression. To investigate the neural mechanisms associated with juvenile social stress-induced mood-related endophenotypes, we examined the behavioral, morphological, and biochemical effects of the social defeat stress model of depression on hippocampal dendritic spines within the CA1 stratum radiatum. Adolescent (postnatal day 35) male C57BL/6 mice were subjected to defeat episodes for 10 consecutive days. Twenty-four h later, separate groups of mice were tested on the social interaction and tail suspension tests. Hippocampi were then dissected and Western blots were conducted to quantify protein levels for various markers important for synaptic plasticity including protein kinase M zeta (PKMζ), protein kinase C zeta (PKCζ), the dopamine-1 (D1) receptor, tyrosine hydroxylase (TH), and the dopamine transporter (DAT). Furthermore, we examined the presence of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor subunit GluA2 as well as colocalization with the post-synaptic density 95 (PSD95) protein, within different spine subtypes (filopodia, stubby, long-thin, mushroom) using an immunohistochemistry and Golgi-Cox staining technique. The results revealed that social defeat induced a depression-like behavioral profile, as inferred from decreased social interaction levels, increased immobility on the tail suspension test, and decreases in body weight. Whole hippocampal immunoblots revealed decreases in GluA2, with a concomitant increase in DAT and TH levels in the stressed group. Spine morphology analyses further showed that defeated mice displayed a significant decrease in stubby spines, and an increase in long-thin spines within the CA1 stratum radiatum. Further evaluation of GluA2/PSD95 containing-spines demonstrated a decrease of these markers within long-thin and mushroom spine types. Together, these results indicate that juvenile social stress induces GluA2- and dopamine-associated dysregulation in the hippocampus - a neurobiological mechanism potentially underlying the development of mood-related syndromes as a consequence of adolescent bullying.
Collapse
Affiliation(s)
- Sergio D. Iñiguez
- Department of Psychology, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79902, USA
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | - Antonio Aubry
- Department of Psychology, Hunter College, New York, NY, 10065, USA
- The Graduate Center of CUNY, New York, NY, USA
| | - Lace M. Riggs
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | - Jason B. Alipio
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | | | - Francisco J. Flores-Ramirez
- Department of Psychology, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79902, USA
| | - Mirella A. Hernandez
- Department of Psychology, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79902, USA
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | - Steven J. Nieto
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | - David Musheyev
- Department of Psychology, Hunter College, New York, NY, 10065, USA
| | - Peter A. Serrano
- Department of Psychology, Hunter College, New York, NY, 10065, USA
- The Graduate Center of CUNY, New York, NY, USA
| |
Collapse
|
96
|
Milosevic A, Liebmann T, Knudsen M, Schintu N, Svenningsson P, Greengard P. Cell- and region-specific expression of depression-related protein p11 (S100a10) in the brain. J Comp Neurol 2016; 525:955-975. [PMID: 27616678 PMCID: PMC5222728 DOI: 10.1002/cne.24113] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/03/2016] [Accepted: 08/09/2016] [Indexed: 12/20/2022]
Abstract
P11 (S100a10), a member of the S100 family of proteins, has widespread distribution in the vertebrate body, including in the brain, where it has a key role in membrane trafficking, vesicle secretion, and endocytosis. Recently, our laboratory has shown that a constitutive knockout of p11 (p11-KO) in mice results in a depressive-like phenotype. Furthermore, p11 has been implicated in major depressive disorder (MDD) and in the actions of antidepressants. Since depression affects multiple brain regions, and the role of p11 has only been determined in a few of these areas, a detailed analysis of p11 expression in the brain is warranted. Here we demonstrate that, although widespread in the brain, p11 expression is restricted to distinct regions, and specific neuronal and nonneuronal cell types. Furthermore, we provide comprehensive mapping of p11 expression using in situ hybridization, immunocytochemistry, and whole-tissue volume imaging. Overall, expression spans multiple brain regions, structures, and cell types, suggesting a complex role of p11 in depression. J. Comp. Neurol. 525:955-975, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ana Milosevic
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York, USA
| | - Thomas Liebmann
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York, USA
| | - Margarete Knudsen
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York, USA
| | - Nicoletta Schintu
- Section for Translational Neuropharmacology, Department of Clinical Neuroscience, CMM L8:01, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Per Svenningsson
- Section for Translational Neuropharmacology, Department of Clinical Neuroscience, CMM L8:01, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York, USA
| |
Collapse
|
97
|
Neuronal Signaling: an introduction. Neuronal Signal 2016; 1:NS20160025. [PMID: 32714575 PMCID: PMC7377261 DOI: 10.1042/ns20160025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There have been a number of advances in our knowledge of neuronal communication in processes involved in development, functioning and disorders of the nervous system. This progress has prompted the Biochemical Society to launch Neuronal Signaling, a new open access journal that aims to expand on the existing knowledge about signaling within and between neurons.
Collapse
|
98
|
Ellenbroek BA, Angelucci F, Husum H, Mathé AA. Gene-environment interactions in a rat model of depression. Maternal separation affects neurotensin in selected brain regions. Neuropeptides 2016; 59:83-88. [PMID: 27372546 DOI: 10.1016/j.npep.2016.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/13/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022]
Abstract
Although the etiology of major psychiatric disorders has not been elucidated, accumulating evidence indicates that both genetic and early environmental factors play a role. We have previously demonstrated behavioral and neurochemical changes both in non-manipulated genetic rat models of depression, such as Flinders Sensitive Line (FSL) and Fawn Hooded (FH), and in normal rats following maternal separation (MS). The aim of the present study was to extend this work by exploring whether neurotensin (NT), a peptide implicated in several psychiatric disorders, is altered in a new animal model based on gene - environment interactions. More specifically, we used the FSL rats as a genetic model of depression and the Flinders Resistant Line (FRL) as controls and subjected them to MS. Pups randomly assigned to the MS procedure were separated from the dam as a litter for 180min daily between postnatal day 2 to 14. On postnatal day 90, rats were weighed and sacrificed by a two second high energy focused microwave irradiation and several brain regions were obtained by micropuncture. Neurotensin-like immunoreactivity (NT-LI) was measured by radioimmunoassay (RIA). The results showed that the FSL rats compared to the FRL rats have higher baseline NT-LI concentrations in the temporal cortex and periaqueductal gray and a markedly different response to maternal separation. The only observed change following maternal separation in the FRL rats was an NT-LI increase in the periaqueductal gray. In contrast, in the FSL significant increases were found in the nucleus accumbens, hippocampus, and entorhinal cortex and a decrease was seen in the temporal cortex after MS. The present study revealed baseline regional differences in NT-LI concentrations between the FSL and FRL strains and demonstrated that early MD differentially affects the two strains. The relevance of these alterations for depression as well as possible mechanisms underlying this gene-environment interaction are discussed.
Collapse
Affiliation(s)
- Bart A Ellenbroek
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand.
| | | | - Henriette Husum
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Aleksander A Mathé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
99
|
Cullen CL, Young KM. How Does Transcranial Magnetic Stimulation Influence Glial Cells in the Central Nervous System? Front Neural Circuits 2016; 10:26. [PMID: 27092058 PMCID: PMC4820444 DOI: 10.3389/fncir.2016.00026] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/23/2016] [Indexed: 12/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is widely used in the clinic, and while it has a direct effect on neuronal excitability, the beneficial effects experienced by patients are likely to include the indirect activation of other cell types. Research conducted over the past two decades has made it increasingly clear that a population of non-neuronal cells, collectively known as glia, respond to and facilitate neuronal signaling. Each glial cell type has the ability to respond to electrical activity directly or indirectly, making them likely cellular effectors of TMS. TMS has been shown to enhance adult neural stem and progenitor cell (NSPC) proliferation, but the effect on cell survival and differentiation is less certain. Furthermore there is limited information regarding the response of astrocytes and microglia to TMS, and a complete paucity of data relating to the response of oligodendrocyte-lineage cells to this treatment. However, due to the critical and yet multifaceted role of glial cells in the central nervous system (CNS), the influence that TMS has on glial cells is certainly an area that warrants careful examination.
Collapse
Affiliation(s)
- Carlie L. Cullen
- Menzies Institute for Medical Research, University of TasmaniaHobart, TAS, Australia
| | - Kaylene M. Young
- Menzies Institute for Medical Research, University of TasmaniaHobart, TAS, Australia
| |
Collapse
|