51
|
Differential acute and chronic responses in insulin action in cultured myotubes following from nondiabetic severely obese humans following gastric bypass surgery. Surg Obes Relat Dis 2017; 13:1853-1862. [DOI: 10.1016/j.soard.2017.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/26/2023]
|
52
|
Recchioni R, Marcheselli F, Antonicelli R, Mensà E, Lazzarini R, Procopio AD, Olivieri F. Epigenetic effects of physical activity in elderly patients with cardiovascular disease. Exp Gerontol 2017; 100:17-27. [PMID: 29074290 DOI: 10.1016/j.exger.2017.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/18/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease (CVD) is an important public health problem affecting especially the elderly. Over the past 20years, an increasing number of studies have examined its underlying pathophysiological mechanisms and new therapies are continually being discovered. However, despite considerable progress in CVD management, mortality and morbidity remain a major healthcare concern, and frequent hospital admissions compromise the daily life and social activities of these patients. Physical activity has emerged as an important non-pharmacological adjunctive therapy for CVD in older patients, especially for heart failure patients, exerting its beneficial effects on mortality, morbidity, and functional capacity. The mechanisms underlying the cardiovascular benefits of exercise are not wholly clear. Mounting evidence suggest that epigenetic modifications, such as DNA methylation, histone post-translational modifications (hPTMs) and non-coding RNA, especially microRNAs (miRNAs), may be induced by physical activity. Recently, a number of miRNAs have been identified as key players in gene expression modulation by exercise. MiRNAs are synthesized by living cells and actively released into the bloodstream through different shuttles. The epigenetic information, thus carried and delivered, is involved in the interplay between environmental factors, including physical activity, and individual genetic make-up. We review and discuss the effects of exercise on age-related CVDs, focusing on circulating miRNA (c-miRNAs) modulation. Epigenetic mechanisms may have clinical relevance in CVD prevention and management; since they can be modified, insights into the implications of lifestyle-related epigenetic changes in CVD etiology may help develop therapeutic protocols of exercise training that can be suitable and effective for elderly patients.
Collapse
Affiliation(s)
- Rina Recchioni
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy.
| | - Fiorella Marcheselli
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy
| | - Roberto Antonicelli
- Department of Cardiology, Italian National Research Center on Aging (I.N.R.C.A-IRCCS), Ancona, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Raffaella Lazzarini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy; Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy; Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
53
|
Diabetes-Induced Dysfunction of Mitochondria and Stem Cells in Skeletal Muscle and the Nervous System. Int J Mol Sci 2017; 18:ijms18102147. [PMID: 29036909 PMCID: PMC5666829 DOI: 10.3390/ijms18102147] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus is one of the most common metabolic diseases spread all over the world, which results in hyperglycemia caused by the breakdown of insulin secretion or insulin action or both. Diabetes has been reported to disrupt the functions and dynamics of mitochondria, which play a fundamental role in regulating metabolic pathways and are crucial to maintain appropriate energy balance. Similar to mitochondria, the functions and the abilities of stem cells are attenuated under diabetic condition in several tissues. In recent years, several studies have suggested that the regulation of mitochondria functions and dynamics is critical for the precise differentiation of stem cells. Importantly, physical exercise is very useful for preventing the diabetic alteration by improving the functions of both mitochondria and stem cells. In the present review, we provide an overview of the diabetic alterations of mitochondria and stem cells and the preventive effects of physical exercise on diabetes, focused on skeletal muscle and the nervous system. We propose physical exercise as a countermeasure for the dysfunction of mitochondria and stem cells in several target tissues under diabetes complication and to improve the physiological function of patients with diabetes, resulting in their quality of life being maintained.
Collapse
|
54
|
Qi Z, Xia J, Xue X, Liu J, Liu W, Ding S. Targeting viperin improves diet-induced glucose intolerance but not adipose tissue inflammation. Oncotarget 2017; 8:101418-101436. [PMID: 29254175 PMCID: PMC5731885 DOI: 10.18632/oncotarget.20724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
Viperin is an interferon-inducible antiviral protein, responsible for antiviral response to a variety of viral infections. Here, we show that silencing viperin by antisense oligonucleotides (ASO) protects against diet-induced glucose intolerance, and yet exacerbates adipose tissue inflammation. In high-fat diet-fed mice, viperin ASO improves glucose homeostasis, reduces plasma triglyceride concentrations and ameliorates diet-induced hepatic steatosis. Peripheral delivery of viperin by adeno-associated virus elevates fasting plasma glucose and insulin concentrations and reduces insulin-stimulated glucose uptake in skeletal muscle. Viperin overexpression reduces epinephrine- stimulated lipolysis in white adipose tissue, whereas viperin ASO increases expression of lipolytic genes. Targeting viperin by antisense oligonucleotides promotes reciprocal regulation of hepatic and adipose lipogenesis by reducing hepatic lipid content and increasing triacylglycerol content in adipose tissue. These findings reveal viperin as an important target to improve glucose metabolism, and suggest that suppressing antiviral potential may improve the metabolic adaptability to high-fat diet.
Collapse
Affiliation(s)
- Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China.,College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Jie Xia
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China.,College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xiangli Xue
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China.,College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Jiatong Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China.,College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Weina Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China.,College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Shuzhe Ding
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China.,College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|
55
|
Tobina T, Mori Y, Doi Y, Nakayama F, Kiyonaga A, Tanaka H. Peroxisome proliferator-activated receptor gamma co-activator 1 gene Gly482Ser polymorphism is associated with the response of low-density lipoprotein cholesterol concentrations to exercise training in elderly Japanese. J Physiol Sci 2017; 67:595-602. [PMID: 27699582 PMCID: PMC10717479 DOI: 10.1007/s12576-016-0491-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/20/2016] [Indexed: 01/20/2023]
Abstract
Muscle peroxisome proliferator-activated receptor gamma co-activator 1 (PGC-1)α gene expression is influenced by the Gly482Ser gene polymorphism, which is a candidate genetic risk factor for diabetes mellitus and obesity. This study investigated the effects of PGC-1 gene Gly482Ser polymorphisms on alterations in glucose and lipid metabolism induced by exercise training. A 12-week intervention study was performed for 119 participants who were more than 65 years of age and completed exercise training at lactate threshold intensity. Total cholesterol and low-density lipoprotein cholesterol were significantly reduced in Gly/Gly but not in Gly/Ser and Ser/Ser participants after exercise. The Gly/Gly genotype of the PGC-1 gene Gly482Ser polymorphism influences the effects of moderate-intensity exercise training on low-density lipoprotein cholesterol and total cholesterol concentrations in older people.
Collapse
Affiliation(s)
- Takuro Tobina
- Faculty of Nursing and Nutrition, University of Nagasaki, Manabino1-1-1, Nagayo-cho, Nishisonogi-gun, Nagasaki, 851-2195, Japan.
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.
| | - Yukari Mori
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| | - Yukiko Doi
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
- Faculty of Commerce, Department of Tourism Industry, Kyushu Sangyo University, Fukuoka, Japan
| | - Fuki Nakayama
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| | - Akira Kiyonaga
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| | - Hiroaki Tanaka
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
56
|
Watadani R, Kotoh J, Sasaki D, Someya A, Matsumoto K, Maeda A. 10-Hydroxy-2-decenoic acid, a natural product, improves hyperglycemia and insulin resistance in obese/diabetic KK-Ay mice, but does not prevent obesity. J Vet Med Sci 2017; 79:1596-1602. [PMID: 28740028 PMCID: PMC5627335 DOI: 10.1292/jvms.17-0348] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
10-Hydroxy-2-decenoic acid (10H2DA) is a fatty acid found in royal jelly (RJ). In healthy mice, it activates 5’-AMP-activated protein kinase (AMPK) and increases glucose transporter 4 (GLUT4) translocation. Therefore, we examined
whether 10H2DA has a potential therapeutic effect against type 2 diabetes in obese/diabetic KK-Ay mice. 10H2DA (3 mg/kg body weight) was administered to female KK-Ay mice for 4 weeks by oral gavage. Phenotypes for body weight,
plasma glucose by oral glucose tolerance test and insulin levels were measured. mRNA and protein levels were determined using qRT-PCR and Western blot analyses, respectively. Long-term administration of 10H2DA significantly
improved hyperglycemia and insulin resistance in KK-Ay mice, but did not prevent obesity. 10H2DA increased the expression of phosphorylated AMPK (pAMPK) protein in skeletal muscles; however, this expression did not correlate with
increased GLUT4 translocation. Furthermore, 10H2DA neither enhanced the expression of adiponectin receptor mRNA nor activated the insulin signaling cascade, such as GSK-3β phosphorylation, in the liver. We found that
10H2DA-treated mice had a significant increase in the expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (Pgc-1α) mRNA in skeletal muscles compared with non-treated group
(P=0.0024). These findings suggest that 10H2DA is involved in the improvement of type 2 diabetes, at least in part via activation of Pgc-1α expression, but does not prevent obesity.
Collapse
Affiliation(s)
- Risa Watadani
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Jun Kotoh
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Daiki Sasaki
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Azusa Someya
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Kozo Matsumoto
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Akihiko Maeda
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
57
|
Boulinguiez A, Staels B, Duez H, Lancel S. Mitochondria and endoplasmic reticulum: Targets for a better insulin sensitivity in skeletal muscle? Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:901-916. [PMID: 28529179 DOI: 10.1016/j.bbalip.2017.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/16/2022]
Abstract
Obesity and its associated metabolic disorders represent a major health burden, with economic and social consequences. Although adapted lifestyle and bariatric surgery are effective in reducing body weight, obesity prevalence is still rising. Obese individuals often become insulin-resistant. Obesity impacts on insulin responsive organs, such as the liver, adipose tissue and skeletal muscle, and increases the risk of cardiovascular diseases, type 2 diabetes and cancer. In this review, we discuss the effects of obesity and insulin resistance on skeletal muscle, an important organ for the control of postprandial glucose. The roles of mitochondria and the endoplasmic reticulum in insulin signaling are highlighted and potential innovative research and treatment perspectives are proposed.
Collapse
Affiliation(s)
- Alexis Boulinguiez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France.
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France.
| | - Hélène Duez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France.
| | - Steve Lancel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France.
| |
Collapse
|
58
|
Skeletal Muscle Nucleo-Mitochondrial Crosstalk in Obesity and Type 2 Diabetes. Int J Mol Sci 2017; 18:ijms18040831. [PMID: 28420087 PMCID: PMC5412415 DOI: 10.3390/ijms18040831] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/01/2017] [Accepted: 04/08/2017] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle mitochondrial dysfunction, evidenced by incomplete beta oxidation and accumulation of fatty acid intermediates in the form of long and medium chain acylcarnitines, may contribute to ectopic lipid deposition and insulin resistance during high fat diet (HFD)-induced obesity. The present review discusses the roles of anterograde and retrograde communication in nucleo-mitochondrial crosstalk that determines skeletal muscle mitochondrial adaptations, specifically alterations in mitochondrial number and function in relation to obesity and insulin resistance. Special emphasis is placed on the effects of high fat diet (HFD) feeding on expression of nuclear-encoded mitochondrial genes (NEMGs) nuclear receptor factor 1 (NRF-1) and 2 (NRF-2) and peroxisome proliferator receptor gamma coactivator 1 alpha (PGC-1α) in the onset and progression of insulin resistance during obesity and how HFD-induced alterations in NEMG expression affect skeletal muscle mitochondrial adaptations in relation to beta oxidation of fatty acids. Finally, the potential ability of acylcarnitines or fatty acid intermediates resulting from mitochondrial beta oxidation to act as retrograde signals in nucleo-mitochondrial crosstalk is reviewed and discussed.
Collapse
|
59
|
Bonafiglia JT, Edgett BA, Baechler BL, Nelms MW, Simpson CA, Quadrilatero J, Gurd BJ. Acute upregulation of PGC-1α mRNA correlates with training-induced increases in SDH activity in human skeletal muscle. Appl Physiol Nutr Metab 2017; 42:656-666. [PMID: 28177701 DOI: 10.1139/apnm-2016-0463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The purpose of the present study was to determine if acute responses in PGC-1α, VEGFA, SDHA, and GPD1-2 mRNA expression predict their associated chronic skeletal muscle molecular (SDH-GPD activity and substrate storage) and morphological (fibre-type composition and capillary density) adaptations following training. Skeletal muscle biopsies were collected from 14 recreationally active men (age: 22.0 ± 2.4 years) before (PRE) and 3 h after (3HR) the completion of an acute bout of sprint interval training (SIT) (eight 20-s intervals at ∼170% peak oxygen uptake work rate separated by 10 s of recovery). Participants then completed 6 weeks of SIT 4 times per week with additional biopsies after 2 (MID) and 6 (POST) weeks of training. Acute increases in PGC-1α mRNA strongly predicted increases in SDH activity (a marker of oxidative capacity) from PRE and MID to POST (PRE-POST: r = 0.81, r2 = 0.65, p < 0.01; MID-POST: r = 0.79, r2 = 0.62, p < 0.01) and glycogen content from MID to POST (r = 0.60, r2 = 0.36, p < 0.05). No other significant relationships were found between acute responses in PGC-1α, VEGFA, SDHA, and GPD1-2 mRNA expression and chronic adaptations to training. These results suggest that acute upregulation of PGC-1α mRNA relates to the magnitude of subsequent training-induced increases in oxidative capacity, but not other molecular and morphological chronic skeletal muscle adaptations. Additionally, acute mRNA responses in PGC-1α correlated with VEGFA, but not SDHA, suggesting a coordinated upregulation between PGC-1α and only some of its proposed targets in human skeletal muscle.
Collapse
Affiliation(s)
- Jacob T Bonafiglia
- a School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6 Canada
| | - Brittany A Edgett
- a School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6 Canada
| | - Brittany L Baechler
- c Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Matthew W Nelms
- a School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6 Canada
| | - Craig A Simpson
- b Department of Emergency Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Joe Quadrilatero
- c Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Brendon J Gurd
- a School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6 Canada
| |
Collapse
|
60
|
Wang C, Guelfi KJ, Yang HX. Exercise and its role in gestational diabetes mellitus. Chronic Dis Transl Med 2016; 2:208-214. [PMID: 29063044 PMCID: PMC5643755 DOI: 10.1016/j.cdtm.2016.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 12/15/2022] Open
Abstract
Gestational diabetes mellitus (GDM) refers to diabetes diagnosed in the second or third trimester of pregnancy that is not clearly either type 1 or type 2 diabetes. GDM is a common medical complication in pregnancy that has been rapidly increasing worldwide. GDM is associated with both short- and long-term health issues for both mothers and offspring. Consistent with type 2 diabetes, peripheral insulin resistance contributes to the hyperglycemia associated with GDM. Accordingly, it is important to identify strategies to reduce the insulin resistance associated with GDM. To date, observational studies have shown that exercise can be a non-invasive therapeutic option for preventing and managing GDM that can be readily applied to the antenatal population. However, the relevant mechanisms for these outcomes are yet to be fully elucidated. The present review aimed to explain the potential mechanisms of exercise from the perspective of reducing the insulin resistance, which is the root cause of GDM. Exercise recommendations and opinions of exercise during pregnancy are briefly summarized.
Collapse
Affiliation(s)
- Chen Wang
- Department of Obstetrics and Gynecology of Peking University First Hospital, Beijing 100034, China
| | - Kym Janese Guelfi
- Exercise Physiology and Biochemistry, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Hui-Xia Yang
- Department of Obstetrics and Gynecology of Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
61
|
Suzuki J. Short-duration intermittent hypoxia enhances endurance capacity by improving muscle fatty acid metabolism in mice. Physiol Rep 2016; 4:4/7/e12744. [PMID: 27044851 PMCID: PMC4831319 DOI: 10.14814/phy2.12744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 12/20/2022] Open
Abstract
This study was designed to (1) investigate the effects of acute short-duration intermittent hypoxia on musclemRNAand microRNAexpression levels; and (2) clarify the mechanisms by which short-duration intermittent hypoxia improves endurance capacity. Experiment-1: Male mice were subjected to either acute 1-h hypoxia (12% O2), acute short-duration intermittent hypoxia (12% O2for 15 min, room air for 10 min, 4 times, Int-Hypo), or acute endurance exercise (Ex). The expression of vascular endothelial growth factor-AmRNAwas significantly greater than the control at 0 h post Ex and 6 h post Int-Hypo in the deep red region of the gastrocnemius muscle. miR-16 expression levels were significantly lower at 6 and 10 h post Int-Hypo. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)mRNAlevels were significantly greater than the control at 3 h post Ex and 6 h post Int-Hypo. miR-23a expression levels were lower than the control at 6-24 h post Int-Hypo. Experiment-2: Mice were subjected to normoxic exercise training with or without intermittent hypoxia for 3 weeks. Increases in maximal exercise capacity were significantly greater by training with short-duration intermittent hypoxia (IntTr) than without hypoxia. Both 3-Hydroxyacyl-CoA-dehydrogenase and total carnitine palmitoyl transferase activities were significantly enhanced in IntTr. Peroxisome proliferator-activated receptor delta andPGC-1α mRNAlevels were both significantly greater in IntTr than in the sedentary controls. These results suggest that exercise training under normoxic conditions with exposure to short-duration intermittent hypoxia represents a beneficial strategy for increasing endurance performance by enhancing fatty acid metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Junichi Suzuki
- Laboratory of Exercise Physiology, Health and Sports Sciences, Course of Sports Education, Department of Education, Hokkaido University of Education, Midorigaoka, Iwamizawa, Hokkaido, 068-8642, Japan
| |
Collapse
|
62
|
Sharma P, Arias EB, Cartee GD. Protein Phosphatase 1-α Regulates AS160 Ser588 and Thr642 Dephosphorylation in Skeletal Muscle. Diabetes 2016; 65:2606-17. [PMID: 27246912 PMCID: PMC5001182 DOI: 10.2337/db15-0867] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 05/23/2016] [Indexed: 01/09/2023]
Abstract
Akt substrate of 160 kDa (AS160) phosphorylation on Thr(642) and Ser(588) by Akt is essential for insulin's full effect on glucose transport. However, protein phosphorylation is determined by the balance of actions by kinases and phosphatases, and the specific phosphatase(s) controlling AS160 dephosphorylation is (are) unknown. Accordingly, we assessed roles of highly expressed skeletal muscle serine/threonine phosphatases (PP1, PP2A, PP2B, and PP2C) on AS160 dephosphorylation. Preliminary screening of candidate phosphatases used an AS160 dephosphorylation assay. Lysates from insulin-stimulated skeletal muscle were treated with pharmacological phosphatase inhibitors and assessed for AS160 Ser(588) and Thr(642) dephosphorylation. AS160 dephosphorylation on both phosphorylation sites was unaltered by PP2B or PP2C inhibitors. Okadaic acid (low dose inhibits PP2A; high dose inhibits PP1) delayed AS160 Ser(588) (both doses) and Thr(642) (high dose only) dephosphorylation concomitant with greater Akt phosphorylation (both doses). AS160 was coimmunoprecipitated with PP1-α but not with PP1-β, PP1-γ1, or PP2A. Recombinant inhibitor-2 protein (a selective PP1 inhibitor) delayed AS160 dephosphorylation on both phosphorylation sites without altering Akt phosphorylation. Furthermore, knockdown of PP1-α but not PP1-β or PP1-γ1 by small interfering RNA caused greater AS160 Ser(588) and Thr(642) phosphorylation concomitant with unaltered Akt phosphorylation. Together, these results identified PP1-α as a regulator of AS160 Thr(642) and Ser(588) dephosphorylation in skeletal muscle.
Collapse
Affiliation(s)
- Pragya Sharma
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI Institute of Gerontology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
63
|
Mehrabian S, Taheri E, Karkhaneh M, Qorbani M, Hosseini S. Association of circulating irisin levels with normal weight obesity, glycemic and lipid profile. J Diabetes Metab Disord 2016; 15:17. [PMID: 27354972 PMCID: PMC4924282 DOI: 10.1186/s40200-016-0239-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/14/2016] [Indexed: 02/08/2023]
Abstract
Background Irisin, a recently identified myokine/adipokine, has potential role in type 2 diabetes and obesity. Normal weight obesity (NWO) is associated with a significantly higher risk of developing metabolic syndrome and cardiometabolic dysfunction. The aim of this study was to investigate association of irisin level with NWO, glycemicand lipid profile in women. Methods In this matchedcase-control study, 38 subjects with NWO (body mass index (BMI) <25 kg/m2 and BF % > 30) as case and 26 controls (BMI <25 kg/m2 and BF % < 30) were selected randomly from sport clubs in the East area of Tehran, Iran. In addition to anthropometric variables, including BMI and body composition, fasting blood sugar (FBS), fasting levels of irisin andinsulin, triglyceride (TG), total cholesterol (TC), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol were measured. All statistical analyses were performed with SPSS 18.0. Results In univariate analysis, levels of irisin were significantly higher in subjects with NWO compared to controls (0.81 ± 0.41vs. 0.58 ± 0.26 ng/ml, P = 0.009). This association remained significant after adjusting for confounders (adjusted for energy intake, physical activity, waist circumference and BMI) (P = 0.049). In NWO, irisin level was not significantly correlated with all glycemic and lipid profile. In control group, only correlation ofirisin with insulin was statistically significant (P = 0.03). Conclusion Serum irisin levels were higher in NWO subjects than controls. In control group, only the negative association between irisin and insulin levels was statistically significant. Further studies with larger sample size are clearly needed to evaluate the potential role of irisin in NWO subject and other disturbed metabolic conditions.
Collapse
Affiliation(s)
- Sarvenaz Mehrabian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetic, Tehran University of Medical Sciences, No 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, Tehran, 1416-643931 Iran
| | - Ehsaneh Taheri
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Karkhaneh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetic, Tehran University of Medical Sciences, No 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, Tehran, 1416-643931 Iran
| | - Mostafa Qorbani
- Dietary Supplements and Probiotics Research Center, Alborz University of Medical Sciences, Karaj, Iran ; Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Hosseini
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran ; Department of Clinical Nutrition, School of Nutritional Sciences and Dietetic, Tehran University of Medical Sciences, No 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, Tehran, 1416-643931 Iran
| |
Collapse
|
64
|
Kadlec AO, Chabowski DS, Ait-Aissa K, Gutterman DD. Role of PGC-1α in Vascular Regulation: Implications for Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:1467-74. [PMID: 27312223 DOI: 10.1161/atvbaha.116.307123] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/02/2016] [Indexed: 11/16/2022]
Abstract
Mitochondrial dysfunction results in high levels of oxidative stress and mitochondrial damage, leading to disruption of endothelial homeostasis. Recent discoveries have clarified several pathways, whereby mitochondrial dysregulation contributes to endothelial dysfunction and vascular disease burden. One such pathway centers around peroxisome proliferator receptor-γ coactivator 1α (PGC-1α), a transcriptional coactivator linked to mitochondrial biogenesis and antioxidant defense, among other functions. Although primarily investigated for its therapeutic potential in obesity and skeletal muscle differentiation, the ability of PGC-1α to alter a multitude of cellular functions has sparked interest in its role in the vasculature. Within this context, recent studies demonstrate that PGC-1α plays a key role in endothelial cell and smooth muscle cell regulation through effects on oxidative stress, apoptosis, inflammation, and cell proliferation. The ability of PGC-1α to affect these parameters is relevant to vascular disease progression, particularly in relation to atherosclerosis. Upregulation of PGC-1α can prevent the development of, and even encourage regression of, atherosclerotic lesions. Therefore, PGC-1α is poised to serve as a promising target in vascular disease. This review details recent findings related to PGC-1α in vascular regulation, regulation of PGC-1α itself, the role of PGC-1α in atherosclerosis, and therapies that target this key protein.
Collapse
Affiliation(s)
- Andrew O Kadlec
- From the Department of Physiology (A.O.K., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., D.D.G.), and Cardiovascular Center (A.O.K., D.S.C., K.A.-A., D.D.G.), Medical College of Wisconsin, Milwaukee; and Department of Veterans Administration Medical Center, Milwaukee, WI (D.D.G.)
| | - Dawid S Chabowski
- From the Department of Physiology (A.O.K., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., D.D.G.), and Cardiovascular Center (A.O.K., D.S.C., K.A.-A., D.D.G.), Medical College of Wisconsin, Milwaukee; and Department of Veterans Administration Medical Center, Milwaukee, WI (D.D.G.)
| | - Karima Ait-Aissa
- From the Department of Physiology (A.O.K., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., D.D.G.), and Cardiovascular Center (A.O.K., D.S.C., K.A.-A., D.D.G.), Medical College of Wisconsin, Milwaukee; and Department of Veterans Administration Medical Center, Milwaukee, WI (D.D.G.)
| | - David D Gutterman
- From the Department of Physiology (A.O.K., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., D.D.G.), and Cardiovascular Center (A.O.K., D.S.C., K.A.-A., D.D.G.), Medical College of Wisconsin, Milwaukee; and Department of Veterans Administration Medical Center, Milwaukee, WI (D.D.G.).
| |
Collapse
|
65
|
Wu H, Deng X, Shi Y, Su Y, Wei J, Duan H. PGC-1α, glucose metabolism and type 2 diabetes mellitus. J Endocrinol 2016; 229:R99-R115. [PMID: 27094040 DOI: 10.1530/joe-16-0021] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/11/2016] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by glucose metabolic disturbance. A number of transcription factors and coactivators are involved in this process. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is an important transcription coactivator regulating cellular energy metabolism. Accumulating evidence has indicated that PGC-1α is involved in the regulation of T2DM. Therefore, a better understanding of the roles of PGC-1α may shed light on more efficient therapeutic strategies. Here, we review the most recent progress on PGC-1α and discuss its regulatory network in major glucose metabolic tissues such as the liver, skeletal muscle, pancreas and kidney. The significant associations between PGC-1α polymorphisms and T2DM are also discussed in this review.
Collapse
Affiliation(s)
- Haijiang Wu
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Xinna Deng
- Departments of Oncology & ImmunotherapyHebei General Hospital, Shijiazhuang, China
| | - Yonghong Shi
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Ye Su
- Mathew Mailing Centre for Translational Transplantation StudiesLawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada Departments of Medicine and PathologyUniversity of Western Ontario, London, Ontario, Canada
| | - Jinying Wei
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Huijun Duan
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| |
Collapse
|
66
|
Bonen A, Jain SS, Snook LA, Han XX, Yoshida Y, Buddo KH, Lally JS, Pask ED, Paglialunga S, Beaudoin MS, Glatz JFC, Luiken JJFP, Harasim E, Wright DC, Chabowski A, Holloway GP. Extremely rapid increase in fatty acid transport and intramyocellular lipid accumulation but markedly delayed insulin resistance after high fat feeding in rats. Diabetologia 2015. [PMID: 26197708 DOI: 10.1007/s00125-015-3691-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS The mechanisms for diet-induced intramyocellular lipid accumulation and its association with insulin resistance remain contentious. In a detailed time-course study in rats, we examined whether a high-fat diet increased intramyocellular lipid accumulation via alterations in fatty acid translocase (FAT/CD36)-mediated fatty acid transport, selected enzymes and/or fatty acid oxidation, and whether intramyocellular lipid accretion coincided with the onset of insulin resistance. METHODS We measured, daily (on days 1-7) and/or weekly (for 6 weeks), the diet-induced changes in circulating substrates, insulin, sarcolemmal substrate transporters and transport, selected enzymes, intramyocellular lipids, mitochondrial fatty acid oxidation and basal and insulin-stimulated sarcolemmal GLUT4 and glucose transport. We also examined whether upregulating fatty acid oxidation improved glucose transport in insulin-resistant muscles. Finally, in Cd36-knockout mice, we examined the role of FAT/CD36 in intramyocellular lipid accumulation, insulin sensitivity and diet-induced glucose intolerance. RESULTS Within 2-3 days, diet-induced increases occurred in insulin, sarcolemmal FAT/CD36 (but not fatty acid binding protein [FABPpm] or fatty acid transporter [FATP]1 or 4), fatty acid transport and intramyocellular triacylglycerol, diacylglycerol and ceramide, independent of enzymatic changes or muscle fatty acid oxidation. Diet-induced increases in mitochondria and mitochondrial fatty acid oxidation and impairments in insulin-stimulated glucose transport and GLUT4 translocation occurred much later (≥21 days). FAT/CD36 ablation impaired insulin-stimulated fatty acid transport and lipid accumulation, improved insulin sensitivity and prevented diet-induced glucose intolerance. Increasing fatty acid oxidation in insulin-resistant muscles improved glucose transport. CONCLUSIONS/INTERPRETATIONS High-fat feeding rapidly increases intramyocellular lipids (in 2-3 days) via insulin-mediated upregulation of sarcolemmal FAT/CD36 and fatty acid transport. The 16-19 day delay in the onset of insulin resistance suggests that additional mechanisms besides intramyocellular lipids contribute to this pathology.
Collapse
Affiliation(s)
- Arend Bonen
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1.
| | - Swati S Jain
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Laelie A Snook
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Xiao-Xia Han
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Yuko Yoshida
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Kathryn H Buddo
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - James S Lally
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Elizabeth D Pask
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Sabina Paglialunga
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Marie-Soleil Beaudoin
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Jan F C Glatz
- Department of Molecular Genetics, Maastricht University, Maastricht, the Netherlands
| | - Joost J F P Luiken
- Department of Molecular Genetics, Maastricht University, Maastricht, the Netherlands
| | - Ewa Harasim
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - David C Wright
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Graham P Holloway
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
67
|
Salma N, Song JS, Arany Z, Fisher DE. Transcription Factor Tfe3 Directly Regulates Pgc-1alpha in Muscle. J Cell Physiol 2015; 230:2330-6. [PMID: 25736533 DOI: 10.1002/jcp.24978] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022]
Abstract
The microphthalmia (MiT) family of transcription factors is an important mediator of metabolism. Family members Mitf and Tfeb directly regulate the expression of the master regulator of metabolism, peroxisome-proliferator activated receptor gamma coactivator-1 alpha (Pgc-1alpha), in melanomas and in the liver, respectively. Pgc-1alpha is enriched in tissues with high oxidative capacity and plays an important role in the regulation of mitochondrial biogenesis and cellular metabolism. In skeletal muscle, Pgc-1alpha affects many aspects of muscle functionally such as endurance, fiber-type switching, and insulin sensitivity. Tfe3 also regulates muscle metabolic genes that enhance insulin sensitivity in skeletal muscle. Tfe3 has not yet been shown to regulate Pgc-1alpha expression. Our results reported here show that Tfe3 directly regulates Pgc-1alpha expression in myotubes. Tfe3 ectopic expression induces Pgc-1alpha, and Tfe3 silencing suppresses Pgc-1alpha expression. This regulation is direct, as shown by Tfe3's binding to E-boxes on the Pgc-1alpha proximal promoter. We conclude that Tfe3 is a critical transcription factor that regulates Pgc-1alpha gene expression in myotubes. Since Pgc-1alpha coactivates numerous biological programs in diverse tissues, the regulation of its expression by upstream transcription factors such Tfe3 implies potential opportunities for the treatment of diseases where modulation of Pgc-1alpha expression may have important clinical outcomes.
Collapse
Affiliation(s)
- Nunciada Salma
- Department of Dermatology, Cutaneous Biology Research Center (CBRC), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Jun S Song
- Institute for Genomic Biology, CDMC Theme, Urbana, Illinois.,Department of Bioengineering, University of Illinois, Urbana, Illinois.,Department of Physics, University of Illinois, Urbana, Illinois
| | - Zoltan Arany
- Cardiovascular Institute Perelman School of Medicine. University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania
| | - David E Fisher
- Department of Dermatology, Cutaneous Biology Research Center (CBRC), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
68
|
Stinkens R, Goossens GH, Jocken JWE, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev 2015; 16:715-57. [PMID: 26179344 DOI: 10.1111/obr.12298] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 12/15/2022]
Abstract
Disturbances in fatty acid metabolism in adipose tissue, liver, skeletal muscle, gut and pancreas play an important role in the development of insulin resistance, impaired glucose metabolism and type 2 diabetes mellitus. Alterations in diet composition may contribute to prevent and/or reverse these disturbances through modulation of fatty acid metabolism. Besides an increased fat mass, adipose tissue dysfunction, characterized by an altered capacity to store lipids and an altered secretion of adipokines, may result in lipid overflow, systemic inflammation and excessive lipid accumulation in non-adipose tissues like liver, skeletal muscle and the pancreas. These impairments together promote the development of impaired glucose metabolism, insulin resistance and type 2 diabetes mellitus. Furthermore, intrinsic functional impairments in either of these organs may contribute to lipotoxicity and insulin resistance. The present review provides an overview of fatty acid metabolism-related pathways in adipose tissue, liver, skeletal muscle, pancreas and gut, which can be targeted by diet or food components, thereby improving glucose metabolism.
Collapse
Affiliation(s)
- R Stinkens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
69
|
Zamora M, Pardo R, Villena JA. Pharmacological induction of mitochondrial biogenesis as a therapeutic strategy for the treatment of type 2 diabetes. Biochem Pharmacol 2015. [PMID: 26212547 DOI: 10.1016/j.bcp.2015.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Defects in mitochondrial oxidative function have been associated with the onset of type 2 diabetes. Although the causal relationship between mitochondrial dysfunction and diabetes has not been fully established, numerous studies indicate that improved glucose homeostasis achieved via lifestyle interventions, such as exercise or calorie restriction, is tightly associated with increased mitochondrial biogenesis and oxidative function. Therefore, it is conceivable that potentiating mitochondrial biogenesis by pharmacological means could constitute an efficacious therapeutic strategy that would particularly benefit those diabetic patients who cannot adhere to comprehensive programs based on changes in lifestyle or that require a relatively rapid improvement in their diabetic status. In this review, we discuss several pharmacological targets and drugs that modulate mitochondrial biogenesis as well as their potential use as treatments for insulin resistance and diabetes.
Collapse
Affiliation(s)
- Mònica Zamora
- Cell Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Rosario Pardo
- Laboratory of Metabolism and Obesity, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, CIBER on Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | - Josep A Villena
- Laboratory of Metabolism and Obesity, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, CIBER on Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
70
|
Montgomery MK, Turner N. Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect 2015; 4:R1-R15. [PMID: 25385852 PMCID: PMC4261703 DOI: 10.1530/ec-14-0092] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 12/11/2022]
Abstract
Mitochondrial dysfunction has been implicated in the development of insulin resistance (IR); however, a large variety of association and intervention studies as well as genetic manipulations in rodents have reported contrasting results. Indeed, even 39 years after the first publication describing a relationship between IR and diminished mitochondrial function, it is still unclear whether a direct relationship exists, and more importantly if changes in mitochondrial capacity are a cause or consequence of IR. This review will take a journey through the past and summarise the debate about the occurrence of mitochondrial dysfunction and its possible role in causing decreased insulin action in obesity and type 2 diabetes. Evidence is presented from studies in various human populations, as well as rodents with genetic manipulations of pathways known to affect mitochondrial function and insulin action. Finally, we have discussed whether mitochondria are a potential target for the treatment of IR.
Collapse
Affiliation(s)
- Magdalene K Montgomery
- Department of PharmacologyUNSW Medicine, School of Medical Sciences, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Nigel Turner
- Department of PharmacologyUNSW Medicine, School of Medical Sciences, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| |
Collapse
|
71
|
Zheng JL, Zhuo MQ, Luo Z, Pan YX, Song YF, Huang C, Zhu QL, Hu W, Chen QL. Peroxisome proliferator-activated receptor gamma (PPARγ) in yellow catfish Pelteobagrus fulvidraco: molecular characterization, mRNA expression and transcriptional regulation by insulin in vivo and in vitro. Gen Comp Endocrinol 2015; 212:51-62. [PMID: 25637673 DOI: 10.1016/j.ygcen.2014.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/24/2014] [Accepted: 12/26/2014] [Indexed: 12/29/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is ligand-inducible transcription factor and has important roles in lipid metabolism, cell proliferation and inflammation. In the present study, yellow catfish Pelteobagrus fulvidraco PPARγ cDNA was isolated from liver by RT-PCR and RACE, and its molecular characterization and transcriptional regulation by insulin in vivo and in vitro were determined. The generation of PPARγ1 and PPARγ2 was due to alternative promoter of PPARγ gene. PPARγ1 and PPARγ2 mRNA covered 2426 bp and 2537 bp, respectively, with an open reading frame (ORF) of 1584 bp encoding 527 amino acid residues. Yellow catfish PPARγ gene was organized in a manner similar to that of their mammalian homologs, implying a modular organization of the protein's domains. A comparison between the yellow catfish PPARγ amino acid sequence and the correspondent sequences of several other species revealed the identity of 55-76.2%. Two PPARγ transcripts (PPARγ1 and PPARγ2) mRNAs were expressed in a wide range of tissues, but the abundance of each PPARγ mRNA showed the tissue- and developmental stage-dependent expression patterns. Intraperitoneal injection of insulin in vivo significantly stimulated the mRNA expression of total PPARγ and PPARγ1, but not PPARγ2 in the liver of yellow catfish. In contrast, incubation of hepatocytes with insulin in vitro increased the mRNA levels of PPARγ1, PPARγ2 and total PPARγ. To our knowledge, for the first time, the present study provides evidence that PPARγ1 and PPARγ2 are differentially expressed with and among tissues during different developmental stages and also regulated by insulin both in vivo and in vitro, which serves to increase our understanding on PPARγ physiological function in fish.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Mei-Qin Zhuo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China.
| | - Ya-Xiong Pan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Chao Huang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Qing-Ling Zhu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Wei Hu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Qi-Liang Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| |
Collapse
|
72
|
Villena JA. New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J 2015; 282:647-72. [DOI: 10.1111/febs.13175] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/31/2014] [Accepted: 12/10/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Josep A. Villena
- Laboratory of Metabolism and Obesity; Vall d'Hebron-Institut de Recerca; Universitat Autònoma de Barcelona; Spain
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas); Instituto de Salud Carlos III; Barcelona Spain
| |
Collapse
|
73
|
Picklo MJ, Thyfault JP. Vitamin E and vitamin C do not reduce insulin sensitivity but inhibit mitochondrial protein expression in exercising obese rats. Appl Physiol Nutr Metab 2014; 40:343-52. [PMID: 25761734 DOI: 10.1139/apnm-2014-0302] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Controversy exists as to whether supplementation with the antioxidants vitamin E and vitamin C blocks adaptation to exercise. Exercise is a first-line means to treat obesity and its complications. While diet-induced obesity alters mitochondrial function and induces insulin resistance (IR), no data exist as to whether supplementation with vitamin E and vitamin C modify responses to exercise in pre-existing obesity. We tested the hypothesis that dietary supplementation with vitamin E (0.4 g α-tocopherol acetate/kg) and vitamin C (0.5 g/kg) blocks exercise-induced improvements on IR and mitochondrial content in obese rats maintained on a high-fat (45% fat energy (en)) diet. Diet-induced obese, sedentary rats had a 2-fold higher homeostasis model assessment of insulin resistance and larger insulin area under the curve following glucose tolerances test than rats fed a low-fat (10% fat en) diet. Exercising (12 weeks at 5 times per week in a motorized wheel) of obese rats normalized IR indices, an effect not modified by vitamin E and vitamin C. Vitamin E and vitamin C supplementation with exercise elevated mtDNA content in adipose and skeletal muscle to a greater extent (20%) than exercise alone in a depot-specific manner. On the other hand, vitamin C and vitamin E decreased exercise-induced increases in mitochondrial protein content for complex I (40%) and nicotinamide nucleotide transhydrogenase (35%) in a muscle-dependent manner. These data indicate that vitamin E and vitamin C supplementation in obese rodents does not modify exercise-induced improvements in insulin sensitivity but that changes in mitochondrial biogenesis and mitochondrial protein expression may be modified by antioxidant supplementation.
Collapse
Affiliation(s)
- Matthew J Picklo
- USDA-ARS Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND 58201, USA
| | | |
Collapse
|
74
|
Li Z, Dungan CM, Carrier B, Rideout TC, Williamson DL. Alpha-lipoic acid supplementation reduces mTORC1 signaling in skeletal muscle from high fat fed, obese Zucker rats. Lipids 2014; 49:1193-201. [PMID: 25366515 DOI: 10.1007/s11745-014-3964-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/13/2014] [Indexed: 12/27/2022]
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway is hyperactive in liver, adipose and skeletal muscle tissues of obese rodents. Alpha-lipoic acid (αLA) has been well accepted as a weight-loss treatment, though there are limited studies on its effect on mTOR signaling in high-fat fed, obese rodents. Therefore, the goal of this study was to determine mTOR signaling and oxidative protein alterations in skeletal muscle of high-fat fed, obese rats after αLA supplementation. Phosphorylation of the mTOR substrate, eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) and eIF4B were significantly reduced (p < 0.05) in muscle from αLA supplemented rats. Activation of AMP-activated protein kinase (AMPK), an mTOR inhibitory kinase, was higher (p < 0.05) in the αLA group. Protein expression of markers of oxidative metabolism, acetyl CoA carboxylase (ACC), cytochrome c oxidase IV (COX IV), peroxisome proliferator-activated receptor (PPAR), and PPAR gamma coactivator 1-alpha (PGC-1α) were significantly higher (p < 0.05) after αLA supplementation compared to non-supplemented group. Our findings show that αLA supplementation limits the negative ramifications of consuming a high fat diet on skeletal muscle markers of oxidative metabolism and mTORC1 signaling.
Collapse
Affiliation(s)
- Zhuyun Li
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, SUNY, 2 Sherman Hall (Office)/5 Sherman Hall (Lab), Buffalo, NY, 14214, USA
| | | | | | | | | |
Collapse
|
75
|
Potential roles of PINK1 for increased PGC-1α-mediated mitochondrial fatty acid oxidation and their associations with Alzheimer disease and diabetes. Mitochondrion 2014; 18:41-8. [PMID: 25260493 DOI: 10.1016/j.mito.2014.09.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/12/2014] [Accepted: 09/15/2014] [Indexed: 11/21/2022]
Abstract
Down-regulation of PINK1 and PGC-1α proteins is implicated in both mitochondrial dysfunction and oxidative stress potentially linking metabolic abnormality and neurodegeneration. Here, we report that PGC-1α and PINK1 expression is markedly decreased in Alzheimer disease (AD) and diabetic brains. We observed a significant down-regulation of PGC-1α and PINK1 protein expression in H2O2-treated cells but not in those cells treated with N-acetyl cysteine. The protein levels of two key enzymes of the mitochondrial β-oxidation machinery, acyl-coenzyme A dehydrogenase, very long chain (ACADVL) and mitochondrial trifunctional enzyme subunit α are significantly decreased in AD and diabetic brains. Moreover, we observed a positive relationship between ACADVL and 64 kDa PINK1 protein levels in AD and diabetic brains. Overexpression of PGC-1α decreases lipid-droplet accumulation and increases mitochondrial fatty acid oxidation; down-regulation of PINK1 abolishes these effects. Together, these results provide new insights into potential cooperative roles of PINK1 and PGC-1α in mitochondrial fatty acid oxidation, suggesting possible regulatory roles for mitochondrial function in the pathogenesis of AD and diabetes.
Collapse
|
76
|
In vivo calcium regulation in diabetic skeletal muscle. Cell Calcium 2014; 56:381-9. [PMID: 25224503 DOI: 10.1016/j.ceca.2014.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 07/23/2014] [Accepted: 08/09/2014] [Indexed: 01/30/2023]
Abstract
In skeletal muscle, dysfunctional contractile activity has been linked to impaired intracellular Ca(2+) concentration ([Ca(2+)]i) regulation. Muscle force production is impaired and fatigability and muscle fragility deteriorate with diabetes. Use of a novel in vivo model permits investigation of [Ca(2+)]i homeostasis in diabetic skeletal muscle. Within this in vivo environment we have shown that diabetes perturbs the Ca(2+) regulatory system such that resting [Ca(2+)]i homeostasis following muscle contractions is compromised and elevations of [Ca(2+)]i are exacerbated. This review considers the impact of diabetes on the capacity of skeletal muscle to regulate [Ca(2+)]i, following muscle contractions and, in particular, the relationship between muscle fatigue and elevated [Ca(2+)]i in a highly ecologically relevant circulation-intact environment. Importantly, the role of mitochondria in calcium sequestration and the possibility that diabetes impacts this process is explored. Given the profound microcirculatory dysfunction in diabetes this preparation offers the unique opportunity to study the interrelationships among microvascular function, blood-myocyte oxygen flux and [Ca(2+)]i as they relate to enhanced muscle fatigability and exercise intolerance.
Collapse
|
77
|
Maher AC, McFarlan J, Lally J, Snook LA, Bonen A. TBC1D1 reduces palmitate oxidation by inhibiting β-HAD activity in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1115-23. [PMID: 25163918 DOI: 10.1152/ajpregu.00014.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In skeletal muscle the Rab-GTPase-activating protein TBC1D1 has been implicated in the regulation of fatty acid oxidation by an unknown mechanism. We determined whether TBC1D1 altered fatty acid utilization via changes in protein-mediated fatty acid transport and/or selected enzymes regulating mitochondrial fatty acid oxidation. We also determined the effects of TBC1D1 on glucose transport and oxidation. Electrotransfection of mouse soleus muscles with TBC1D1 cDNA increased TBC1D1 protein after 2 wk (P<0.05), without altering its paralog AS160. TBC1D1 overexpression decreased basal palmitate oxidation (-22%) while blunting 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)-stimulated palmitate oxidation (-18%). There was a tendency to increase fatty acid esterification (+10 nmol·g(-1)·60 min(-1), P=0.07), which reflected the reduction in fatty acid oxidation (-12 nmol·g(-1)·60 min(-1)). Concomitantly, basal (+21%) and AICAR-stimulated glucose oxidation (+8%) were increased in TBC1D1-transfected muscles relative to their respective controls (P<0.05), independent of changes in GLUT4 and glucose transport. The reductions in TBC1D1-mediated fatty acid oxidation could not be attributed to changes in the transporter FAT/CD36, muscle mitochondrial content, CPT1 expression or the expression and phosphorylation of AS160, acetyl-CoA carboxylase, or AMPK. However, TBC1D1 overexpression reduced β-HAD enzyme activity (-18%, P<0.05). In conclusion, TBC1D1-mediated reduction of muscle fatty acid oxidation appears to occur via inhibition of β-HAD activity.
Collapse
Affiliation(s)
- A C Maher
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - J McFarlan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - J Lally
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - L A Snook
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - A Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
78
|
Santos JM, Tewari S, Benite-Ribeiro SA. The effect of exercise on epigenetic modifications of PGC1: The impact on type 2 diabetes. Med Hypotheses 2014; 82:748-53. [DOI: 10.1016/j.mehy.2014.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/10/2014] [Indexed: 12/16/2022]
|
79
|
Jain SS, Paglialunga S, Vigna C, Ludzki A, Herbst EA, Lally JS, Schrauwen P, Hoeks J, Tupling AR, Bonen A, Holloway GP. High-fat diet-induced mitochondrial biogenesis is regulated by mitochondrial-derived reactive oxygen species activation of CaMKII. Diabetes 2014; 63:1907-13. [PMID: 24520120 DOI: 10.2337/db13-0816] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Calcium/calmodulin-dependent protein kinase (CaMK) activation induces mitochondrial biogenesis in response to increasing cytosolic calcium concentrations. Calcium leak from the ryanodine receptor (RyR) is regulated by reactive oxygen species (ROS), which is increased with high-fat feeding. We examined whether ROS-induced CaMKII-mediated signaling induced skeletal muscle mitochondrial biogenesis in selected models of lipid oversupply. In obese Zucker rats and high-fat-fed rodents, in which muscle mitochondrial content was upregulated, CaMKII phosphorylation was increased independent of changes in calcium uptake because sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) protein expression or activity was not altered, implicating altered sarcoplasmic reticulum (SR) calcium leak in the activation of CaMKII. In support of this, we found that high-fat feeding increased mitochondrial ROS emission and S-nitrosylation of the RyR, whereas hydrogen peroxide induced SR calcium leak from the RyR and activation of CaMKII. Moreover, administration of a mitochondrial-specific antioxidant, SkQ, prevented high-fat diet-induced phosphorylation of CaMKII and the induction of mitochondrial biogenesis. Altogether, these data suggest that increased mitochondrial ROS emission is required for the induction of SR calcium leak, activation of CaMKII, and induction of mitochondrial biogenesis in response to excess lipid availability.
Collapse
Affiliation(s)
- Swati S Jain
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Sabina Paglialunga
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Chris Vigna
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Alison Ludzki
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Eric A Herbst
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - James S Lally
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Patrick Schrauwen
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - Joris Hoeks
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - A Russ Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Arend Bonen
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Graham P Holloway
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
80
|
Holloway GP, Han XX, Jain SS, Bonen A, Chabowski A. Chronic muscle stimulation improves insulin sensitivity while increasing subcellular lipid droplets and reducing selected diacylglycerol and ceramide species in obese Zucker rats. Diabetologia 2014; 57:832-40. [PMID: 24458200 DOI: 10.1007/s00125-014-3169-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/02/2014] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Although insulin resistance has been associated with accumulations of specific intramuscular fatty acids and altered subcellular localisation of lipid droplets, these concepts remain controversial. Therefore, we aimed to identify specific intramuscular fatty acids and subcellular lipid localisations associated with improved insulin sensitivity following chronic muscle contraction. METHODS In lean and insulin-resistant obese Zucker rats the tibialis anterior muscle was stimulated (6 h/day for 6 days). Thereafter, muscles were examined for insulin sensitivity, intramuscular lipid droplet localisation and triacylglycerol (TAG), diacylglycerol (DAG) and ceramide fatty acid composition. RESULTS In lean and obese animals, regardless of muscle type, chronic muscle contraction improved muscle insulin sensitivity and increased intramuscular levels of total and most C14-C22 TAG fatty acids (p < 0.05). Therefore, accumulation in subcellular lipid droplet compartments reflected the oversupply of lipids within muscle. In contrast, improvements in insulin sensitivity induced by muscle contraction were associated with reductions in specific DAG and ceramide species that were not uniform in red and white muscle of obese rats. However, these reductions were insufficient to fully normalise insulin sensitivity, indicating that other mechanisms are involved. CONCLUSIONS/INTERPRETATION Reductions in 18 C length DAG and ceramide species were the most consistent in red and white muscle and therefore may represent therapeutic targets for improving insulin sensitivity.
Collapse
Affiliation(s)
- Graham P Holloway
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, NIG, 2W1,
| | | | | | | | | |
Collapse
|
81
|
Nijland PG, Michailidou I, Witte ME, Mizee MR, van der Pol SMA, van Het Hof B, Reijerkerk A, Pellerin L, van der Valk P, de Vries HE, van Horssen J. Cellular distribution of glucose and monocarboxylate transporters in human brain white matter and multiple sclerosis lesions. Glia 2014; 62:1125-41. [PMID: 24692237 DOI: 10.1002/glia.22667] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 12/12/2022]
Abstract
To ensure efficient energy supply to the high demanding brain, nutrients are transported into brain cells via specific glucose (GLUT) and monocarboxylate transporters (MCT). Mitochondrial dysfunction and altered glucose metabolism are thought to play an important role in the progression of neurodegenerative diseases, including multiple sclerosis (MS). Here, we investigated the cellular localization of key GLUT and MCT proteins in human brain tissue of non-neurological controls and MS patients. We show that in control brain tissue GLUT and MCT proteins were abundantly expressed in a variety of central nervous system cells, particularly in microglia and endothelial cells. In active MS lesions, GLUTs and MCTs were highly expressed in infiltrating leukocytes and reactive astrocytes. Astrocytes manifest increased MCT1 staining and maintain GLUT expression in inactive lesions, whereas demyelinated axons exhibit significantly reduced GLUT3 and MCT2 immunoreactivity in inactive lesions. Finally, we demonstrated that the co-transcription factor peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α), an important protein involved in energy metabolism, is highly expressed in reactive astrocytes in active MS lesions. Overexpression of PGC-1α in astrocyte-like cells resulted in increased production of several GLUT and MCT proteins. In conclusion, we provide for the first time a comprehensive overview of key nutrient transporters in white matter brain samples. Moreover, our data demonstrate an altered expression of these nutrient transporters in MS brain tissue, including a marked reduction of axonal GLUT3 and MCT2 expression in chronic lesions, which may impede efficient nutrient supply to the hypoxic demyelinated axons thereby contributing to the ongoing neurodegeneration in MS.
Collapse
Affiliation(s)
- Philip G Nijland
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Silvestre M, Viollet B, Caton P, Leclerc J, Sakakibara I, Foretz M, Holness M, Sugden M. The AMPK-SIRT signaling network regulates glucose tolerance under calorie restriction conditions. Life Sci 2014; 100:55-60. [DOI: 10.1016/j.lfs.2014.01.080] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/14/2014] [Accepted: 01/27/2014] [Indexed: 01/31/2023]
|
83
|
Chan MC, Rowe GC, Raghuram S, Patten IS, Farrell C, Arany Z. Post-natal induction of PGC-1α protects against severe muscle dystrophy independently of utrophin. Skelet Muscle 2014; 4:2. [PMID: 24447845 PMCID: PMC3914847 DOI: 10.1186/2044-5040-4-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/23/2013] [Indexed: 11/10/2022] Open
Abstract
Background Duchenne muscle dystrophy (DMD) afflicts 1 million boys in the US and has few effective treatments. Constitutive transgenic expression of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α improves skeletal muscle function in the murine “mdx” model of DMD, but how this occurs, or whether it can occur post-natally, is not known. The leading mechanistic hypotheses for the benefits conferred by PGC-1α include the induction of utrophin, a dystrophin homolog, and/or induction and stabilization of the neuromuscular junction. Methods The effects of transgenic overexpression of PGC-1β, a homolog of PGC-1α in mdx mice was examined using different assays of skeletal muscle structure and function. To formally test the hypothesis that PGC-1α confers benefit in mdx mice by induction of utrophin and stabilization of neuromuscular junction, PGC-1α transgenic animals were crossed with the dystrophin utrophin double knock out (mdx/utrn-/-) mice, a more severe dystrophic model. Finally, we also examined the effect of post-natal induction of skeletal muscle-specific PGC-1α overexpression on muscle structure and function in mdx mice. Results We show here that PGC-1β does not induce utrophin or other neuromuscular genes when transgenically expressed in mouse skeletal muscle. Surprisingly, however, PGC-1β transgenesis protects as efficaciously as PGC-1α against muscle degeneration in dystrophin-deficient (mdx) mice, suggesting that alternate mechanisms of protection exist. When PGC-1α is overexpressed in mdx/utrn-/- mice, we find that PGC-1α dramatically ameliorates muscle damage even in the absence of utrophin. Finally, we also used inducible skeletal muscle-specific PGC-1α overexpression to show that PGC-1α can protect against dystrophy even if activated post-natally, a more plausible therapeutic option. Conclusions These data demonstrate that PGC-1α can improve muscle dystrophy post-natally, highlighting its therapeutic potential. The data also show that PGC-1α is equally protective in the more severely affected mdx/utrn-/- mice, which more closely recapitulates the aggressive progression of muscle damage seen in DMD patients. The data also identify PGC-1β as a novel potential target, equally efficacious in protecting against muscle dystrophy. Finally, the data also show that PGC-1α and PGC-1β protect against dystrophy independently of utrophin or of induction of the neuromuscular junction, indicating the existence of other mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Zolt Arany
- Cardiovascular Institute, and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, 02215 Boston, MA, USA.
| |
Collapse
|
84
|
|
85
|
EDdb: a web resource for eating disorder and its application to identify an extended adipocytokine signaling pathway related to eating disorder. SCIENCE CHINA-LIFE SCIENCES 2013; 56:1086-96. [PMID: 24302289 DOI: 10.1007/s11427-013-4573-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/23/2013] [Indexed: 01/07/2023]
Abstract
Eating disorder is a group of physiological and psychological disorders affecting approximately 1% of the female population worldwide. Although the genetic epidemiology of eating disorder is becoming increasingly clear with accumulated studies, the underlying molecular mechanisms are still unclear. Recently, integration of various high-throughput data expanded the range of candidate genes and started to generate hypotheses for understanding potential pathogenesis in complex diseases. This article presents EDdb (Eating Disorder database), the first evidence-based gene resource for eating disorder. Fifty-nine experimentally validated genes from the literature in relation to eating disorder were collected as the core dataset. Another four datasets with 2824 candidate genes across 601 genome regions were expanded based on the core dataset using different criteria (e.g., protein-protein interactions, shared cytobands, and related complex diseases). Based on human protein-protein interaction data, we reconstructed a potential molecular sub-network related to eating disorder. Furthermore, with an integrative pathway enrichment analysis of genes in EDdb, we identified an extended adipocytokine signaling pathway in eating disorder. Three genes in EDdb (ADIPO (adiponectin), TNF (tumor necrosis factor) and NR3C1 (nuclear receptor subfamily 3, group C, member 1)) link the KEGG (Kyoto Encyclopedia of Genes and Genomes) "adipocytokine signaling pathway" with the BioCarta "visceral fat deposits and the metabolic syndrome" pathway to form a joint pathway. In total, the joint pathway contains 43 genes, among which 39 genes are related to eating disorder. As the first comprehensive gene resource for eating disorder, EDdb ( http://eddb.cbi.pku.edu.cn ) enables the exploration of gene-disease relationships and cross-talk mechanisms between related disorders. Through pathway statistical studies, we revealed that abnormal body weight caused by eating disorder and obesity may both be related to dysregulation of the novel joint pathway of adipocytokine signaling. In addition, this joint pathway may be the common pathway for body weight regulation in complex human diseases related to unhealthy lifestyle.
Collapse
|
86
|
Russell AP, Foletta VC, Snow RJ, Wadley GD. Skeletal muscle mitochondria: a major player in exercise, health and disease. Biochim Biophys Acta Gen Subj 2013; 1840:1276-84. [PMID: 24291686 DOI: 10.1016/j.bbagen.2013.11.016] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/01/2013] [Accepted: 11/16/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Maintaining skeletal muscle mitochondrial content and function is important for sustained health throughout the lifespan. Exercise stimulates important key stress signals that control skeletal mitochondrial biogenesis and function. Perturbations in mitochondrial content and function can directly or indirectly impact skeletal muscle function and consequently whole-body health and wellbeing. SCOPE OF REVIEW This review will describe the exercise-stimulated stress signals and molecular mechanisms positively regulating mitochondrial biogenesis and function. It will then discuss the major myopathies, neuromuscular diseases and conditions such as diabetes and ageing that have dysregulated mitochondrial function. Finally, the impact of exercise and potential pharmacological approaches to improve mitochondrial function in diseased populations will be discussed. MAJOR CONCLUSIONS Exercise activates key stress signals that positively impact major transcriptional pathways that transcribe genes involved in skeletal muscle mitochondrial biogenesis, fusion and metabolism. The positive impact of exercise is not limited to younger healthy adults but also benefits skeletal muscle from diseased populations and the elderly. Impaired mitochondrial function can directly influence skeletal muscle atrophy and contribute to the risk or severity of disease conditions. Pharmacological manipulation of exercise-induced pathways that increase skeletal muscle mitochondrial biogenesis and function in critically ill patients, where exercise may not be possible, may assist in the treatment of chronic disease. GENERAL SIGNIFICANCE This review highlights our understanding of how exercise positively impacts skeletal muscle mitochondrial biogenesis and function. Exercise not only improves skeletal muscle mitochondrial health but also enables us to identify molecular mechanisms that may be attractive targets for therapeutic manipulation. This article is part of a Special Issue entitled Frontiers of mitochondrial research.
Collapse
Affiliation(s)
- Aaron P Russell
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Hwy, 3125 Burwood, Australia.
| | - Victoria C Foletta
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Hwy, 3125 Burwood, Australia
| | - Rod J Snow
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Hwy, 3125 Burwood, Australia
| | - Glenn D Wadley
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Hwy, 3125 Burwood, Australia
| |
Collapse
|
87
|
Stefanyk LE, Bonen A, Dyck DJ. Fatty acid transport proteins chronically relocate to the transverse-tubules in muscle from obese Zucker rats but are resistant to further insulin-induced translocation. Metabolism 2013; 62:1296-304. [PMID: 23743348 DOI: 10.1016/j.metabol.2013.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/12/2013] [Accepted: 04/29/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Recently, we have demonstrated that FA transport proteins are located within the t-tubule fraction of rodent muscle, and that insulin stimulation causes their translocation to this membrane fraction. Chronic relocation of the FA transport protein FAT/CD36 to the sarcolemma is observed in obese rodents and humans, and correlates with intramuscular lipid accumulation and insulin resistance. It is not known whether in an obese, insulin resistant state FA transporters also chronically relocate to the t-tubules. Furthermore, it is not known whether the insulin-stimulated translocation of the various FA transport proteins to the t-tubules is impaired in insulin resistance. METHODS Sarcolemmal and t-tubule membrane fractions were isolated via differential centrifugation from muscles of lean and obese female Zucker rats during basal or insulin stimulated conditions. FA transport proteins were measured via western blot on both membrane fractions. RESULTS Our results demonstrate that in muscle from insulin resistant Zucker rats, FAT/CD36, FABPpm and FATP1 are all increased on the t-tubules in the basal state (+72%, +120%, and +69%, respectively), potentially contributing to the accumulation of intramuscular lipids. Insulin failed to increase the content of the FA transport proteins on either the t-tubule or sarcolemma above the elevated basal levels, analogous to the well characterized impairment of insulin-stimulated GLUT4 translocation to both membrane domains in obesity. CONCLUSION FA transport proteins chronically relocate to the t-tubule domain in insulin resistant muscle, potentially contributing to lipid accumulation. Further translocation of the FA transport proteins to this domain during insulin stimulation, however, is impaired.
Collapse
Affiliation(s)
- Leslie E Stefanyk
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | | | | |
Collapse
|
88
|
Kim DI, Park SH. Sequential signaling cascade of IL-6 and PGC-1α is involved in high glucose-induced podocyte loss and growth arrest. Biochem Biophys Res Commun 2013; 435:702-7. [PMID: 23692924 DOI: 10.1016/j.bbrc.2013.05.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 11/29/2022]
Abstract
Podocyte loss, which is mediated by podocyte apoptosis, is implicated in the onset of diabetic nephropathy. In this study, we investigated the involvement of interleukin (IL)-6 in high glucose-induced apoptosis of rat podocytes. We also examined the pathophysiological role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) in this system. High glucose treatment induced not only podocyte apoptosis but also podocyte growth arrest. High glucose treatment also increased IL-6 secretion and activated IL-6 signaling. The high glucose-induced podocyte apoptosis was blocked by IL-6 neutralizing antibody. IL-6 treatment or overexpression induced podocyte apoptosis and growth arrest, and IL-6 siRNA transfection blocked high glucose-induced podocyte apoptosis and growth arrest. Furthermore, high glucose or IL-6 treatment increased PGC-1α expression, and PGC-1α overexpression also induced podocyte apoptosis and growth arrest. PGC-1α siRNA transfection blocked high glucose-induced podocyte apoptosis and growth arrest. Collectively, these findings showed that high glucose promoted apoptosis and cell growth arrest in podocytes via IL-6 signaling. In addition, PGC-1α is involved in podocyte apoptosis and cell growth arrest. Therefore, blocking IL-6 and its downstream mediators such as IL6Rα, gp130 and PGC-1α may attenuate the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Dong Il Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju 500 757, Republic of Korea
| | | |
Collapse
|
89
|
Choi J, Batchu VVK, Schubert M, Castellani RJ, Russell JW. A novel PGC-1α isoform in brain localizes to mitochondria and associates with PINK1 and VDAC. Biochem Biophys Res Commun 2013; 435:671-7. [PMID: 23688429 DOI: 10.1016/j.bbrc.2013.05.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 11/19/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma co-activator 1α (PGC-1α) and PTEN-induced putative kinase 1 (PINK1) are powerful regulators of mitochondrial function. Here, we report that a previously unrecognized, novel 35 kDa PGC-1α isoform localizes to the mitochondrial inner membrane and matrix in brain as determined by protease protection and carbonate extraction assays, as well as by immunoelectron microscopy. Immunoelectron microscopy and import experiments in vitro revealed that 35 kDa PGC-1α colocalizes and interacts with the voltage-dependent anion channel (VDAC), and that its import depends on VDAC. Valinomycin treatment which depolarizes the membrane potential, abolished mitochondrial localization of the 35 kDa PGC-1α. Using blue native-PAGE, co-immunoprecipitation, and immunoelectron microscopy analyses, we found that the 35 kDa PGC-1α binds and colocalizes with PINK1 in brain mitochondria. This is the first report regarding mitochondrial localization of a novel 35 kDa PGC-1α isoform and its association with PINK1, suggesting possible regulatory roles for mitochondrial function in the brain.
Collapse
Affiliation(s)
- Joungil Choi
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
90
|
Bernard JR, Liao YH, Ding Z, Hara D, Kleinert M, Nelson JL, Ivy JL. An amino acid mixture improves glucose tolerance and lowers insulin resistance in the obese Zucker rat. Amino Acids 2013; 45:191-203. [DOI: 10.1007/s00726-013-1488-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/11/2013] [Indexed: 12/27/2022]
|
91
|
Hoshino D, Yoshida Y, Kitaoka Y, Hatta H, Bonen A. High-intensity interval training increases intrinsic rates of mitochondrial fatty acid oxidation in rat red and white skeletal muscle. Appl Physiol Nutr Metab 2013; 38:326-33. [DOI: 10.1139/apnm-2012-0257] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-intensity interval training (HIIT) can increase mitochondrial volume in skeletal muscle. However, it is unclear whether HIIT alters the intrinsic capacity of mitochondrial fatty acid oxidation, or whether such changes are associated with changes in mitochondrial FAT/CD36, a regulator of fatty acid oxidation, or with reciprocal changes in the nuclear receptor coactivator (peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α)) and the corepressor (receptor-interacting protein 140 (RIP140)). We examined whether HIIT alters fatty acid oxidation rates in the isolated subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria of red and white skeletal muscle and (or) induces changes in muscle PGC-1α and RIP140 proteins and mitochondrial FAT/CD36 protein content. Rats were divided into untrained or HIIT-trained groups. HIIT animals performed 10 bouts of 1-min high-intensity treadmill running (30–55 m·min–1), separated by 2 min of rest, for 5 days a week for 4 weeks. As expected, after the training period, HIIT increased mitochondrial enzymes (citrate synthase, COXIV, and β-hydroxyacyl CoA dehydrogenase) in red and white muscle, indicating that muscle mitochondrial volume had increased. HIIT also increased the rates of palmitate oxidation in mitochondria of red (37% for SS and 19% for IMF) and white (36% for SS and 12% for IMF) muscle. No changes occurred in SS and IMF mitochondrial FAT/CD36 proteins, despite increasing FAT/CD36 at the whole-muscle level (27% for red and 22% for white). Concurrently, muscle PGC-1α protein was increased in red (22%) and white (16%) muscle, but RIP140 was not altered. These results indicate that increases in SS and IMF mitochondrial fatty acid oxidation induced by HIIT are accompanied by an increase in PGC-1α, but not RIP140 or FAT/CD36.
Collapse
Affiliation(s)
- Daisuke Hoshino
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yuko Yoshida
- Department of Human Health and Nutritional Sciences, University of Guelph, ON N1G 2W1, Canada
| | - Yu Kitaoka
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Arend Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, ON N1G 2W1, Canada
| |
Collapse
|
92
|
Yoshida Y, Jain SS, McFarlan JT, Snook LA, Chabowski A, Bonen A. Exercise- and training-induced upregulation of skeletal muscle fatty acid oxidation are not solely dependent on mitochondrial machinery and biogenesis. J Physiol 2012; 591:4415-26. [PMID: 22890711 DOI: 10.1113/jphysiol.2012.238451] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Regulation of skeletal muscle fatty acid oxidation (FAO) and adaptation to exercise training have long been thought to depend on delivery of fatty acids (FAs) to muscle, their diffusion into muscle, and muscle mitochondrial content and biochemical machinery. However, FA entry into muscle occurs via a regulatable, protein-mediated mechanism, involving several transport proteins. Among these CD36 is key. Muscle contraction and pharmacological agents induce CD36 to translocate to the cell surface, a response that regulates FA transport, and hence FAO. In exercising CD36 KO mice, exercise duration (-44%), and FA transport (-41%) and oxidation (-37%) are comparably impaired, while carbohydrate metabolism is augmented. In trained CD36 KO mice, training-induced upregulation of FAO is not observed, despite normal training-induced increases in mitochondrial density and enzymes. Transfecting CD36 into sedentary WT muscle (+41%), comparable to training-induced CD36 increases (+44%) in WT muscle, markedly upregulates FAO to rates observed in trained WT mice, but without any changes in mitochondrial density and enzymes. Evidently, in vivo CD36-mediated FA transport is key for muscle fuel selection and training-induced FAO upregulation, independent of mitochondrial adaptations. This CD36 molecular mechanism challenges the view that skeletal muscle FAO is solely regulated by muscle mitochondrial content and machinery.
Collapse
Affiliation(s)
- Yuko Yoshida
- A. Bonen: University of Guelph, Human Health and Nutritional Sciences, Gordon St Bldg 70, Guelph, ON, Canada, N1G 2W1.
| | | | | | | | | | | |
Collapse
|
93
|
Weikard R, Goldammer T, Brunner RM, Kuehn C. Tissue-specific mRNA expression patterns reveal a coordinated metabolic response associated with genetic selection for milk production in cows. Physiol Genomics 2012; 44:728-39. [PMID: 22669841 DOI: 10.1152/physiolgenomics.00007.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The molecular mechanisms regulating the physiological adaptation of tissues important for nutrient partitioning and metabolism in lactating cows are still not completely understood. The aim of our study was to identify tissue-specific regulatory mechanisms necessary to accommodate metabolic changes associated with different genetic potential for milk performance. For this purpose, we analyzed mRNA expression of genes involved in energy metabolism of segregating F(2) beef type cows with a combined genetic dairy and beef background (Charolais × German Holstein cross, CH×GH) in contrast to purebred German Holstein (GH) dairy cows. Three groups of cows differing in milk performance were examined using quantitative real-time PCR in liver, mammary gland, and skeletal muscle. Our results describe substantial tissue-specific differences in mRNA transcription profiles between cow groups in relation to their genetic potential for milk performance and highlight genes exhibiting specific, partially yet-unknown functions in dairy and beef type cows, e.g., upregulation of PCK2 transcripts in the mammary gland and FBP2 transcripts in skeletal muscle of dairy cows. Noticeably, PCCA and PPARGC1A mRNA abundance varied significantly across experimental groups in all three tissues, pointing to potential key gene functions in the metabolic adaptation relative to divergent milk production performance. Correlations of mRNA expression levels to milk performance traits indicate that gene transcriptional processes may play a regulatory role in liver, mammary gland, and skeletal muscle to enable cows with different genetic potential for milk performance to cope with metabolic lactation-associated challenges.
Collapse
Affiliation(s)
- R Weikard
- Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
| | | | | | | |
Collapse
|
94
|
Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid Redox Signal 2012; 16:1323-67. [PMID: 22146081 PMCID: PMC3324814 DOI: 10.1089/ars.2011.4123] [Citation(s) in RCA: 372] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 02/06/2023]
Abstract
Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function.
Collapse
Affiliation(s)
- Diane E Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
95
|
Watt MJ, Hoy AJ. Lipid metabolism in skeletal muscle: generation of adaptive and maladaptive intracellular signals for cellular function. Am J Physiol Endocrinol Metab 2012; 302:E1315-28. [PMID: 22185843 DOI: 10.1152/ajpendo.00561.2011] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fatty acids derived from adipose tissue lipolysis, intramyocellular triacylglycerol lipolysis, or de novo lipogenesis serve a variety of functions in skeletal muscle. The two major fates of fatty acids are mitochondrial oxidation to provide energy for the myocyte and storage within a variety of lipids, where they are stored primarily in discrete lipid droplets or serve as important structural components of membranes. In this review, we provide a brief overview of skeletal muscle fatty acid metabolism and highlight recent notable advances in the field. We then 1) discuss how lipids are stored in and mobilized from various subcellular locations to provide adaptive or maladaptive signals in the myocyte and 2) outline how lipid metabolites or metabolic byproducts derived from the actions of triacylglycerol metabolism or β-oxidation act as positive and negative regulators of insulin action. We have placed an emphasis on recent developments in the lipid biology field with respect to understanding skeletal muscle physiology and discuss unanswered questions and technical limitations for assessing lipid signaling in skeletal muscle.
Collapse
Affiliation(s)
- Matthew J Watt
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
96
|
McFarlan JT, Yoshida Y, Jain SS, Han XX, Snook LA, Lally J, Smith BK, Glatz JFC, Luiken JJFP, Sayer RA, Tupling AR, Chabowski A, Holloway GP, Bonen A. In vivo, fatty acid translocase (CD36) critically regulates skeletal muscle fuel selection, exercise performance, and training-induced adaptation of fatty acid oxidation. J Biol Chem 2012; 287:23502-16. [PMID: 22584574 DOI: 10.1074/jbc.m111.315358] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For ~40 years it has been widely accepted that (i) the exercise-induced increase in muscle fatty acid oxidation (FAO) is dependent on the increased delivery of circulating fatty acids, and (ii) exercise training-induced FAO up-regulation is largely attributable to muscle mitochondrial biogenesis. These long standing concepts were developed prior to the recent recognition that fatty acid entry into muscle occurs via a regulatable sarcolemmal CD36-mediated mechanism. We examined the role of CD36 in muscle fuel selection under basal conditions, during a metabolic challenge (exercise), and after exercise training. We also investigated whether CD36 overexpression, independent of mitochondrial changes, mimicked exercise training-induced FAO up-regulation. Under basal conditions CD36-KO versus WT mice displayed reduced fatty acid transport (-21%) and oxidation (-25%), intramuscular lipids (less than or equal to -31%), and hepatic glycogen (-20%); but muscle glycogen, VO(2max), and mitochondrial content and enzymes did not differ. In acutely exercised (78% VO(2max)) CD36-KO mice, fatty acid transport (-41%), oxidation (-37%), and exercise duration (-44%) were reduced, whereas muscle and hepatic glycogen depletions were accelerated by 27-55%, revealing 2-fold greater carbohydrate use. Exercise training increased mtDNA and β-hydroxyacyl-CoA dehydrogenase similarly in WT and CD36-KO muscles, but FAO was increased only in WT muscle (+90%). Comparable CD36 increases, induced by exercise training (+44%) or by CD36 overexpression (+41%), increased FAO similarly (84-90%), either when mitochondrial biogenesis and FAO enzymes were up-regulated (exercise training) or when these were unaltered (CD36 overexpression). Thus, sarcolemmal CD36 has a key role in muscle fuel selection, exercise performance, and training-induced muscle FAO adaptation, challenging long held views of mechanisms involved in acute and adaptive regulation of muscle FAO.
Collapse
Affiliation(s)
- Jay T McFarlan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Gurd BJ, Holloway GP, Yoshida Y, Bonen A. In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase-independent manner. Metabolism 2012; 61:733-41. [PMID: 22078938 DOI: 10.1016/j.metabol.2011.09.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 09/19/2011] [Accepted: 09/28/2011] [Indexed: 11/18/2022]
Abstract
In selected cell lines, it appears (a) that metabolic stressors induce the translocation of SIRT3 from the nucleus to mitochondria and (b) that SIRT3 may contribute to the regulation of mitochondrial biogenesis and/or fatty acid utilization. We have examined in mammalian muscle (1) the association between SIRT3 protein content and muscle oxidative capacity and mitochondrial fatty acid oxidation, (2) the subcellular location of SIRT3, (3) whether exercise induces the translocation of SIRT3 from the nucleus to the mitochondria, and (4) the response of SIRT3 protein to stressors known to induce mitochondrial biogenesis (chronic muscle stimulation and 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside administration). SIRT3 protein displayed hierarchical expression based on oxidative potential of muscle tissues (heart >> red >> white). In contrast to studies in some cell lines, metabolic stress (exercise) did not induce the translocation of SIRT3 from the nucleus to mitochondria, as SIRT3 was only present in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria, not in the nucleus. Chronic stimulation increased muscle mitochondrial content and SIRT3 protein in SS (+33%) and IMF (+27%) mitochondria (P < .05). In contrast, chronic 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside administration, while inducing mitochondrial biogenesis, did not alter SS or IMF mitochondrial SIRT3 protein content. These studies have shown that, in muscle, SIRT3 (a) scales with muscle oxidative capacity and with enzymes regulating fatty acid oxidation, (b) in resting muscle is localized to SS and IMF mitochondria and not nuclei, (c) in contracting muscle is not acutely translocated to mitochondria, and (d) is upregulated with chronic stimulation in an adenosine monophosphate-activated protein kinase-independent manner.
Collapse
Affiliation(s)
- Brendon J Gurd
- School of Kinesiology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | | | | | |
Collapse
|
98
|
Hu S, Yao J, Howe AA, Menke BM, Sivitz WI, Spector AA, Norris AW. Peroxisome proliferator-activated receptor γ decouples fatty acid uptake from lipid inhibition of insulin signaling in skeletal muscle. Mol Endocrinol 2012; 26:977-88. [PMID: 22474127 DOI: 10.1210/me.2011-1253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is expressed at low levels in skeletal muscle, where it protects against adiposity and insulin resistance via unclear mechanisms. To test the hypothesis that PPARγ directly modulates skeletal muscle metabolism, we created two models that isolate direct PPARγ actions on skeletal myocytes. PPARγ was overexpressed in murine myotubes by adenotransfection and in mouse skeletal muscle by plasmid electroporation. In cultured myotubes, PPARγ action increased fatty acid uptake and incorporation into myocellular lipids, dependent upon a 154 ± 20-fold up-regulation of CD36 expression. PPARγ overexpression more than doubled insulin-stimulated thymoma viral proto-oncogene (AKT) phosphorylation during low lipid availability. Furthermore, in myotubes exposed to palmitate levels that inhibit insulin signaling, PPARγ overexpression increased insulin-stimulated AKT phosphorylation and glycogen synthesis over 3-fold despite simultaneously increasing myocellular palmitate uptake. The insulin signaling enhancement was associated with an increase in activating phosphorylation of phosphoinositide-dependent protein kinase 1 and a normalized expression of palmitate-induced genes that antagonize AKT phosphorylation. In vivo, PPARγ overexpression more than doubled insulin-dependent AKT phosphorylation in lipid-treated mice but did not augment insulin-stimulated glucose uptake. We conclude that direct PPARγ action promotes myocellular storage of energy by increasing fatty acid uptake and esterification while simultaneously enhancing insulin signaling and glycogen formation. However, direct PPARγ action in skeletal muscle is not sufficient to account for the hypoglycemic actions of PPARγ agonists during lipotoxicity.
Collapse
Affiliation(s)
- Shanming Hu
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Lally JSV, Snook LA, Han XX, Chabowski A, Bonen A, Holloway GP. Subcellular lipid droplet distribution in red and white muscles in the obese Zucker rat. Diabetologia 2012; 55:479-88. [PMID: 22101973 DOI: 10.1007/s00125-011-2367-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/10/2011] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Little is known about the subcellular distribution of lipids in insulin-resistant skeletal muscle. However, it has recently been suggested that lipid accumulation in the subsarcolemmal region directly contributes to insulin resistance. Therefore we hypothesised that regional differences in lipid distribution in insulin-resistant muscle may be mediated by: (1) a reduction in fatty acid trafficking into mitochondria; and/or (2) a regional increase in the enzymes regulating lipid synthesis. METHODS Transmission electron microscopy was used to quantify lipid droplet and mitochondrial abundance in the subsarcolemmal and intermyofibrillar compartments in red and white muscles from lean and obese Zucker rats. To estimate rates of lipid trafficking into mitochondria, the metabolic fate of radiolabelled palmitate was determined. Key enzymes of triacylglycerol synthesis were also determined in each subcellular region. RESULTS Subsarcolemmal-compartmentalised lipids represented a small absolute fraction of the overall lipid content in muscle, as regardless of fibre composition (red/white) or phenotype (lean/obese), lipid droplets were more prevalent in the intermyofibrillar region, whereas insulin-resistant white muscles were devoid of subsarcolemmal-compartmentalised lipid droplets. While, in obese animals, lipid droplets accumulated in both subcellular regions, in red muscle of these animals lipids only appeared to be trafficked away from intermyofibrillar mitochondria, a process that cannot be explained by regional differences in the abundance of triacylglycerol esterification enzymes. CONCLUSIONS/INTERPRETATION Lipid accumulation in the subsarcolemmal region is not necessary for insulin resistance. In the intermyofibrillar compartment, the diversion of lipids away from mitochondria in insulin-resistant animals probably contributes to lipid accumulation in this subcellular area.
Collapse
Affiliation(s)
- J S V Lally
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | | | | | | | | |
Collapse
|
100
|
Hoshino D, Yoshida Y, Holloway GP, Lally J, Hatta H, Bonen A. Clenbuterol, a β2-adrenergic agonist, reciprocally alters PGC-1 alpha and RIP140 and reduces fatty acid and pyruvate oxidation in rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2012; 302:R373-84. [DOI: 10.1152/ajpregu.00183.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Clenbuterol, a β2-adrenergic agonist, reduces mitochondrial content and enzyme activities in skeletal muscle, but the mechanism involved has yet to be identified. We examined whether clenbuterol-induced changes in the muscles' metabolic profile and the intrinsic capacity of mitochondria to oxidize substrates are associated with reductions in the nuclear receptor coactivator PGC-1 alpha and/or an increase in the nuclear corepressor RIP140. In rats, clenbuterol was provided in the drinking water (30 mg/l). In 3 wk, this increased body (8%) and muscle weights (12–17%). In red (R) and white (W) muscles, clenbuterol induced reductions in mitochondrial content (citrate synthase: R, 27%; W, 52%; cytochrome- c oxidase: R, 24%; W, 34%), proteins involved in fatty acid transport (fatty acid translocase/CD36: R, 36%; W, 35%) and oxidation [β-hydroxyacyl CoA dehydrogenase (β-HAD): R, 33%; W, 62%], glucose transport (GLUT4: R, 8%; W, 13%), lactate transport monocarboxylate transporter (MCT1: R, 61%; W, 37%), and pyruvate oxidation (PDHE1α, R, 18%; W, 12%). Concurrently, only red muscle lactate dehydrogenase activity (25%) and MCT4 (31%) were increased. Palmitate oxidation was reduced in subsarcolemmal (SS) (R, 30%; W, 52%) and intermyofibrillar (IMF) mitochondria (R, 17%; W, 44%) along with reductions in β-HAD activity (SS: R, 17%; W, 51%; IMF: R, 20%; W, 57%). Pyruvate oxidation was only reduced in SS mitochondria (R, 20%; W, 28%), but this was not attributable solely to PDHE1α, which was reduced in both SS (R, 21%; W, 20%) and IMF mitochondria (R, 15%; W, 43%). These extensive metabolic changes induced by clenbuterol were associated with reductions in PGC-1α (R, 37%; W, 32%) and increases in RIP140 (R, 23%; W, 21%). This is the first evidence that clenbuterol appears to exert its metabolic effects via simultaneous and reciprocal changes in the nuclear receptor coactivator PGC-1α and the nuclear corepressor RIP140.
Collapse
Affiliation(s)
- Daisuke Hoshino
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan; and
| | - Yuko Yoshida
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Graham P. Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - James Lally
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan; and
| | - Arend Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|