51
|
Cao F, Souders Ii CL, Perez-Rodriguez V, Martyniuk CJ. Elucidating Conserved Transcriptional Networks Underlying Pesticide Exposure and Parkinson's Disease: A Focus on Chemicals of Epidemiological Relevance. Front Genet 2019; 9:701. [PMID: 30740124 PMCID: PMC6355689 DOI: 10.3389/fgene.2018.00701] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
While a number of genetic mutations are associated with Parkinson's disease (PD), it is also widely acknowledged that the environment plays a significant role in the etiology of neurodegenerative diseases. Epidemiological evidence suggests that occupational exposure to pesticides (e.g., dieldrin, paraquat, rotenone, maneb, and ziram) is associated with a higher risk of developing PD in susceptible populations. Within dopaminergic neurons, environmental chemicals can have an array of adverse effects resulting in cell death, such as aberrant redox cycling and oxidative damage, mitochondrial dysfunction, unfolded protein response, ubiquitin-proteome system dysfunction, neuroinflammation, and metabolic disruption. More recently, our understanding of how pesticides affect cells of the central nervous system has been strengthened by computational biology. New insight has been gained about transcriptional and proteomic networks, and the metabolic pathways perturbed by pesticides. These networks and cell signaling pathways constitute potential therapeutic targets for intervention to slow or mitigate neurodegenerative diseases. Here we review the epidemiological evidence that supports a role for specific pesticides in the etiology of PD and identify molecular profiles amongst these pesticides that may contribute to the disease. Using the Comparative Toxicogenomics Database, these transcripts were compared to those regulated by the PD-associated neurotoxicant MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). While many transcripts are already established as those related to PD (alpha-synuclein, caspases, leucine rich repeat kinase 2, and parkin2), lesser studied targets have emerged as “pesticide/PD-associated transcripts” [e.g., phosphatidylinositol glycan anchor biosynthesis class C (Pigc), allograft inflammatory factor 1 (Aif1), TIMP metallopeptidase inhibitor 3, and DNA damage inducible transcript 4]. We also compared pesticide-regulated genes to a recent meta-analysis of genome-wide association studies in PD which revealed new genetic mutant alleles; the pesticides under review regulated the expression of many of these genes (e.g., ELOVL fatty acid elongase 7, ATPase H+ transporting V0 subunit a1, and bridging integrator 3). The significance is that these proteins may contribute to pesticide-related increases in PD risk. This review collates information on transcriptome responses to PD-associated pesticides to develop a mechanistic framework for quantifying PD risk with exposures.
Collapse
Affiliation(s)
- Fangjie Cao
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, College of Veterinary Medicine, University of Florida Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, United States
| | - Christopher L Souders Ii
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, College of Veterinary Medicine, University of Florida Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, United States
| | - Veronica Perez-Rodriguez
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, College of Veterinary Medicine, University of Florida Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, United States
| | - Christopher J Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, College of Veterinary Medicine, University of Florida Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
52
|
Cui YQ, Zheng Y, Tan GL, Zhang DM, Wang JY, Wang XM. (5R)-5-hydroxytriptolide inhibits the inflammatory cascade reaction in astrocytes. Neural Regen Res 2019; 14:913-920. [PMID: 30688278 PMCID: PMC6375032 DOI: 10.4103/1673-5374.249240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Many studies have shown that (5R)-5-hydroxytriptolide is the optimal modified analogue of triptolide, possessing comparable immunosuppressive activity but much lower cytotoxicity than triptolide. Whether (5R)-5-hydroxytriptolide has preventive effects on neuroinflammation is unclear. This study was designed to pretreat primary astrocytes from the brains of neonatal Sprague-Dawley rats with 20, 100 and 500 nM (5R)-5-hydroxytriptolide for 1 hour before establishing an in vitro neuroinflammation model with 1.0 μg/mL lipopolysaccharide for 24 hours. The generation of nitric oxide was detected by Griess reagents. Astrocyte marker glial fibrillary acidic protein was measured by immunohistochemical staining. The levels of tumor necrosis factor-α and interleukin-1β in the culture supernatant were assayed by enzyme linked immunosorbent assay. Nuclear factor-κB/p65 expression was examined by immunofluorescence staining. The phosphorylation of inhibitor of nuclear factor IκB-α and the location of nuclear factor-κB/P65 were determined using western blot assay. Our data revealed that (5R)-5-hydroxytriptolide inhibited the generation of nitric oxide, tumor necrosis factor-α and interleukin-1β from primary astrocytes activated by lipopolysaccharide, decreased the positive reaction intensity of glial fibrillary acidic protein, reduced the expression of tumor necrosis factor alpha and interleukin-1β in culture supernatant, inhibited the phosphorylation of IκB-α and the translocation of nuclear factor-κB/P65 to the nucleus. These results have confirmed that (5R)-5-hydroxytriptolide inhibits lipopolysaccharide-induced glial inflammatory response and provides cytological experimental data for (5R)-5-hydroxytriptolide in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan-Qiu Cui
- Functional Laboratory of Experiment Teaching Center for Basic Medical Sciences; Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China
| | - Yan Zheng
- Department of Physiology, Capital Medical University, Beijing, China
| | - Gui-Lian Tan
- Department of Basic Medicine, Yanjing Medical College, Capital Medical University, Beijing, China
| | - Dong-Mei Zhang
- Department of Basic Medicine, Yanjing Medical College, Capital Medical University, Beijing, China
| | - Jun-Ya Wang
- Department of Basic Medicine, Yanjing Medical College, Capital Medical University, Beijing, China
| | - Xiao-Min Wang
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University; Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
53
|
Neubrand VE, Forte-Lago I, Caro M, Delgado M. The atypical RhoGTPase RhoE/Rnd3 is a key molecule to acquire a neuroprotective phenotype in microglia. J Neuroinflammation 2018; 15:343. [PMID: 30553270 PMCID: PMC6295018 DOI: 10.1186/s12974-018-1386-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Over-activated microglia play a central role during neuroinflammation, leading to neuronal cell death and neurodegeneration. Reversion of over-activated to neuroprotective microglia phenotype could regenerate a healthy CNS-supporting microglia environment. Our aim was to identify a dataset of intracellular molecules in primary microglia that play a role in the transition of microglia to a ramified, neuroprotective phenotype. METHODS We exploited the anti-inflammatory and neuroprotective properties of conditioned medium of adipose-derived mesenchymal stem cells (CM) as a tool to generate the neuroprotective phenotype of microglia in vitro, and we set up a microscopy-based siRNA screen to identify its hits by cell morphology. RESULTS We initially assayed an array of 157 siRNAs against genes that codify proteins and factors of cytoskeleton and activation/inflammatory pathways in microglia. From them, 45 siRNAs significantly inhibited the CM-induced transition from a neurotoxic to a neuroprotective phenotype of microglia, and 50 siRNAs had the opposite effect. As a proof-of-concept, ten of these targets were validated with individual siRNAs and by downregulation of protein expression. This validation step resulted essential, because three of the potential targets were false positives. The seven validated targets were assayed in a functional screen that revealed that the atypical RhoGTPase RhoE/Rnd3 is necessary for BDNF expression and plays an essential role in controlling microglial migration. CONCLUSIONS Besides the identification of RhoE/Rnd3 as a novel inducer of a potential neuroprotective phenotype in microglia, we propose a list of potential targets to be further confirmed with selective activators or inhibitors.
Collapse
Affiliation(s)
- Veronika E Neubrand
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Avd. Conocimiento 17, PTS Granada, 18016, Granada, Spain.
| | - Irene Forte-Lago
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Avd. Conocimiento 17, PTS Granada, 18016, Granada, Spain
| | - Marta Caro
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Avd. Conocimiento 17, PTS Granada, 18016, Granada, Spain
| | - Mario Delgado
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Avd. Conocimiento 17, PTS Granada, 18016, Granada, Spain.
| |
Collapse
|
54
|
Stem Cell Transplantation and Physical Exercise in Parkinson's Disease, a Literature Review of Human and Animal Studies. Stem Cell Rev Rep 2018; 14:166-176. [PMID: 29270820 DOI: 10.1007/s12015-017-9798-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The absence of effective and satisfactory treatments that contribute to repairing the dopaminergic damage caused by Parkinson's Disease (PD) and the limited recovery capacity of the nervous system are troubling issues and the focus of many research and clinical domains. Recent advances in the treatment of PD through stem cell (SC) therapy have recognized their promising restorative and neuroprotective effects that are implicated in the potentiation of endogenous mechanisms of repair and contribute to functional locomotor improvement. Physical exercise (PE) has been considered an adjuvant intervention that by itself induces beneficial effects in patients and animal models with Parkinsonism. In this sense, the combination of both therapies could provide synergic or superior effects for motor recovery, in contrast with their individual use. This review aims to provide an update on recent progress and the potential effectiveness of SC transplantation and PE for the treatment of locomotor deficits in PD. It has reviewed the neuropathological pathways involved in the classical motor symptoms of this condition and the mechanisms of action described in experimental studies that are associated with locomotor enhancement through exercise, cellular transplantation, and their union in some neurodegenerative conditions.
Collapse
|
55
|
Dong Y, Han LL, Xu ZX. Suppressed microRNA-96 inhibits iNOS expression and dopaminergic neuron apoptosis through inactivating the MAPK signaling pathway by targeting CACNG5 in mice with Parkinson's disease. Mol Med 2018; 24:61. [PMID: 30486773 PMCID: PMC6263543 DOI: 10.1186/s10020-018-0059-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/04/2018] [Indexed: 12/15/2022] Open
Abstract
Background There have been a number of reports implicating the association of microRNAs (miRs) and the MAPK signaling pathway with the dopaminergic neuron, which is involved in the development of Parkinson’s disease (PD). The present study was conducted with aims of exploring the role of miR-96 in the activation of iNOS and apoptosis of dopaminergic neuron through the MAPK signaling pathway in mice with PD. Methods The miR and the differentially expressed gene in PD were screened out and the relationship between them was verified. A mouse model of PD induced by MPTP and was then constructed and treated with miR-96 mimic/inhibitor and CACNG5 overexpression plasmid to extract nigral dopaminergic neuron for the purpose of detecting the effect of miR-96 on PD. The TH and iNOS positive neuronal cells, the apoptotic neuronal cells by TUNEL staining, and expression of miR-96, CACNG5, iNOS, p38MAPK, p-p38MAPK, c-Fos, Bax, and Bcl-2 in substantia nigra dopaminergic neuronal tissues were evaluated. Results The results obtained from the aforementioned procedure were then verified by cell culture of the SH-SY5Y cells, followed by treatment with miR-96 mimic/inhibitor, CACNG5 overexpression plasmid and the inhibitor of the MAPK signaling pathway. CACNG5 was confirmed as a target gene of miR-96. The inhibition of miR-96 resulted in a substantial increase in nigral cells, TH positive cells and expression of CACNG5 and Bcl-2 in nigral dopaminergic neuronal tissues, and a decrease in iNOS positive cells, apoptotic neuronal cells, and expression of iNOS, p38MAPK, p-p38MAPK, c-Fos, and Bax. Conclusion The above results implicated that the downregulation of miR-96 inhibits the activation of iNOS and apoptosis of dopaminergic neuron through the blockade of the MAPK signaling pathway by promoting CACNG5 in mice with PD.
Collapse
Affiliation(s)
- Yue Dong
- Department of Neurology , China-Japan Union Hospital, Jilin University, No. 126, Xiantai Street, Erdao District, Changchun, 130012, Jilin Province, People's Republic of China
| | - Li-Li Han
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061000, People's Republic of China
| | - Zhong-Xin Xu
- Department of Neurology , China-Japan Union Hospital, Jilin University, No. 126, Xiantai Street, Erdao District, Changchun, 130012, Jilin Province, People's Republic of China.
| |
Collapse
|
56
|
Elyasi L, Eftekhar-Vaghefi SH, Asadi-Shekaari M, Esmaeili-Mahani S. Induction of cross-tolerance between protective effect of morphine and nicotine in 6-hydroxydopamine-induce neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells. Int J Neurosci 2018; 129:129-138. [DOI: 10.1080/00207454.2018.1494169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Leila Elyasi
- Department of Anatomy, Faculty of Medicine, Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Hassan Eftekhar-Vaghefi
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neurosience Research Center, Neuropharmacology Institute, Kerman University of Medical Scieces, Kerman, Iran
| | - Majid Asadi-Shekaari
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neurosience Research Center, Neuropharmacology Institute, Kerman University of Medical Scieces, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Neurosience Research Center, Neuropharmacology Institute, Kerman University of Medical Scieces, Kerman, Iran
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
57
|
Joshi AU, Mochly-Rosen D. Mortal engines: Mitochondrial bioenergetics and dysfunction in neurodegenerative diseases. Pharmacol Res 2018; 138:2-15. [PMID: 30144530 DOI: 10.1016/j.phrs.2018.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022]
Abstract
Mitochondria are best known for their role in ATP generation. However, studies over the past two decades have shown that mitochondria do much more than that. Mitochondria regulate both necrotic and apoptotic cell death pathways, they store and therefore coordinate cellular Ca2+ signaling, they generate and metabolize important building blocks, by-products and signaling molecules, and they also generate and are targets of free radical species that modulate many aspects of cell physiology and pathology. Most estimates suggest that although the brain makes up only 2 percent of body weight, utilizes about 20 percent of the body's total ATP. Thus, mitochondrial dysfunction greatly impacts brain functions and is indeed associated with numerous neurodegenerative diseases. Furthermore, a number of abnormal disease-associated proteins have been shown to interact directly with mitochondria, leading to mitochondrial dysfunction and subsequent neuronal cell death. Here, we discuss the role of mitochondrial dynamics impairment in the pathological processes associated with neurodegeneration and suggest that a therapy targeting mitochondrialdysfunction holds a great promise.
Collapse
Affiliation(s)
- Amit U Joshi
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, CA, 94305-5174, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, CA, 94305-5174, USA.
| |
Collapse
|
58
|
Wang Q, He Q, Chen Y, Shao W, Yuan C, Wang Y. JNK-mediated microglial DICER degradation potentiates inflammatory responses to induce dopaminergic neuron loss. J Neuroinflammation 2018; 15:184. [PMID: 29907159 PMCID: PMC6003208 DOI: 10.1186/s12974-018-1218-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
Background Amplified inflammation is important for the progression of Parkinson’s disease (PD). However, how this enhanced inflammation is regulated remains largely unknown. Deletion of DICER leads to progressive dopamine neuronal loss and induces gliosis. We hypothesized that the homeostasis of microglial DICER would be responsible for the amplified inflammation in the mouse model of PD. Methods The microglia or C57BL/6 mice were treated or injected with l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium (MPP+), respectively, for the model establishment. Microglia and astrocytes sorted by fluorescence-activated cell sorter (FACS) were assayed by quantitative real-time PCR, Western blotting, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA), immunohistofluorescence, and mass spectrometry. Results Microglial DICER was phosphorylated at serine 1456 by c-jun N-terminal kinase (JNK) and downregulated in response to 1-methyl-4-phenylpyridinium (MPP+), a causative agent in PD. Inhibition of JNK phosphorylation of DICER at serine 1456 rescued the MPP+-induced DICER degradation, suppressed microglial inflammatory process, and prevented the loss of tyrosine hydroxylase-expressing neurons in the mouse MPTP model. Conclusions JNK-mediated microglial DICER degradation potentiates inflammation to induce dopaminergic neuronal loss. Thus, preventing microglial DICER degradation could be a novel strategy for controlling neuroinflammation in PD. Electronic supplementary material The online version of this article (10.1186/s12974-018-1218-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qing Wang
- Center of Cognition and Brain Science, Beijing Institute of Medical Sciences, Beijing, 100000, People's Republic of China
| | - Qian He
- Center of Cognition and Brain Science, Beijing Institute of Medical Sciences, Beijing, 100000, People's Republic of China
| | - Yifei Chen
- Center of Cognition and Brain Science, Beijing Institute of Medical Sciences, Beijing, 100000, People's Republic of China
| | - Wei Shao
- Center of Cognition and Brain Science, Beijing Institute of Medical Sciences, Beijing, 100000, People's Republic of China
| | - Chao Yuan
- Center of Cognition and Brain Science, Beijing Institute of Medical Sciences, Beijing, 100000, People's Republic of China
| | - Yizheng Wang
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
59
|
Wu KC, Liou HH, Lee CY, Lin CJ. Down-regulation of natural resistance-associated macrophage protein-1 (Nramp1) is associated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/1-methyl-4-phenylpyridinium (MPP + )-induced α-synuclein accumulation and neurotoxicity. Neuropathol Appl Neurobiol 2018; 45:157-173. [PMID: 29679389 DOI: 10.1111/nan.12493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/17/2018] [Indexed: 12/22/2022]
Abstract
AIMS The accumulation of α-synuclein is a hallmark in the pathogenesis of Parkinson's disease (PD). Natural resistance-associated macrophage protein-1 (Nramp1) was previously shown to contribute to the degradation of extracellular α-synuclein in microglia under conditions of iron overload. This study was aimed at investigating the role of Nramp1 in α-synuclein pathology in the neurone under 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/1-methyl-4-phenylpyridinium (MPP+ ) treatment. METHODS The expression of Nramp1 and pathological features (including iron and α-synuclein accumulation) were examined in the dopaminergic neurones of humans (with and without PD) and of mice [with and without receiving chronic MPTP intoxication]. The effects of Nramp1 expression on low-dose MPP+ -induced α-synuclein expression and neurotoxicity were determined in human dopaminergic neuroblastoma SH-SY5Y cells. RESULTS Similar to the findings in the substantia nigra of human PD, lower expression of Nramp1 but higher levels of iron and α-synuclein were identified in the dopaminergic neurones of mice receiving chronic MPTP intoxication, compared to controls. In parallel to the loss of dopaminergic neurones, the numbers of glial fibrillary acidic protein- and ionized calcium-binding adapter molecule-1-positive cells were significantly increased in the substantia nigra of MPTP-treated mice. Likewise, in human neuroblastoma SH-SY5Y cells exposed to low-dose MPP+ , Nramp1 expression and cathepsin D activity were decreased, along with an increase in α-synuclein protein expression and aggregation. Overexpression of functional Nramp1 restored cathepsin D activity and attenuated α-synuclein up-regulation and neuronal cell death caused by MPP+ treatment. CONCLUSIONS These data suggest that the neuronal expression of Nramp1 is important for protecting against the development of MPTP/MPP+ -induced α-synuclein pathology and neurotoxicity.
Collapse
Affiliation(s)
- K-C Wu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - H-H Liou
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - C-Y Lee
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - C-J Lin
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
60
|
Chu D, Dong X, Shi X, Zhang C, Wang Z. Neutrophil-Based Drug Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706245. [PMID: 29577477 PMCID: PMC6161715 DOI: 10.1002/adma.201706245] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/13/2017] [Indexed: 05/19/2023]
Abstract
White blood cells (WBCs) are a major component of immunity in response to pathogen invasion. Neutrophils are the most abundant WBCs in humans, playing a central role in acute inflammation induced by pathogens. Adhesion to vasculature and tissue infiltration of neutrophils are key processes in acute inflammation. Many inflammatory/autoimmune disorders and cancer therapies have been found to be involved in activation and tissue infiltration of neutrophils. A promising strategy to develop novel targeted drug delivery systems is the targeting and exploitation of activated neutrophils. Herein, a new drug delivery platform based on neutrophils is reviewed. There are two types of drug delivery systems: neutrophils as carriers and neutrophil-membrane-derived nanovesicles. It is discussed how nanoparticles hijack neutrophils in vivo to deliver therapeutics across blood vessel barriers and how neutrophil-membrane-derived nanovesicles target inflamed vasculature. Finally, the potential applications of neutrophil-based drug delivery systems in treating inflammation and cancers are presented.
Collapse
Affiliation(s)
- Dafeng Chu
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99210, United States
| | - Xinyue Dong
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99210, United States
| | - Xutong Shi
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99210, United States
| | - Canyang Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99210, United States
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99210, United States
| |
Collapse
|
61
|
Liu W, Geng L, Chen Y. MiR-19b alleviates MPP +-induced neuronal cytotoxicity via targeting the HAPLN4/MAPK pathway in SH-SY5Y cells. RSC Adv 2018; 8:10706-10714. [PMID: 35540477 PMCID: PMC9078925 DOI: 10.1039/c7ra13406a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 11/21/2022] Open
Abstract
Background: miR-19b has been reported to be involved in nervous system disease including Parkinson's disease (PD). However its molecular basis has not been exhaustively elucidated. Materials and Methods: SH-SY5Y cells were treated with 1-methyl-4-phenylpyridinium (MPP+) to construct PD model in vitro. RT-qPCR was performed to detect the expression of miR-19b and proteoglycan link protein 4 (HAPLN4) mRNA. Western blot analysis was used to measure the level of HAPLN4 and mitogen activated protein kinase (MAPK)-related protein. Cell viability and apoptosis were determined by MTT and flow cytometry. Commercial ELISA kits were applied to quantify caspase-3 activity, lactate dehydrogenase (LDH), reactive oxygen species (ROS), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β). Dual-luciferase reporter assay was applied to assess the relationship between miR-19b and HAPLN4. Results: miR-19b was downregulated in MPP+-induced SH-SY5Y cells. miR-19b overexpression reversed MPP+-induced suppression of cell viability and promotion of cell apoptosis in SH-SY5Y cells. Moreover, miR-19b alleviated MPP+-induced cytotoxicity of SH-SY5Y cells, embodied by the decrease of LDH release, caspase-3 activity, ROS expression, TNF-α and IL-1β secretion, as well as the increase of SOD level. HAPLN4 was identified as a direct target of miR-19b and miR-19b repressed HAPLN4 expression in a post-transcriptional manner. In addition, miR-19b-mediated anti-apoptosis effect was abated following HAPLN4 expression restoration in MPP+-induced SH-SY5Y cells. Furthermore, MAPK signaling participated in miR-19b/HAPLN4-mediated regulation in MPP+-treated SH-SY5Y cells. Conclusion: the neuroprotective effect of miR-19b might be mediated by HAPLN4/MAPK pathway in SH-SY5Y cells.
Collapse
Affiliation(s)
- Wei Liu
- Department of Neurology, Huaihe Hospital of Henan University Kaifeng 475000 China
| | - Lijiao Geng
- Department of Rehabilitation Medicine, Huaihe Hospital of Henan University No. 357 Ximen Street Kaifeng 475000 China +86-0371-23906882
| | - Yong Chen
- Department of Rehabilitation Medicine, Huaihe Hospital of Henan University No. 357 Ximen Street Kaifeng 475000 China +86-0371-23906882
| |
Collapse
|
62
|
Liu N, Zheng JX, Zhuang YS, Zhou ZK, Zhao JH, Yang L. Anti-Inflammatory Effects of Schisandrin B on LPS-Stimulated BV2 Microglia via Activating PPAR-γ. Inflammation 2018; 40:1006-1011. [PMID: 28303415 DOI: 10.1007/s10753-017-0544-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Schisandrin B (Sch B), a dibenzocyclooctadiene lignan isolated from Schisandra chinensis (Turcz.) Baill, has been shown to have anti-inflammatory effect. The purpose of this study was to evaluate the effect of Sch B on LPS-induced inflammation in microglia and to investigate the molecular targets of Sch B. BV2 cells were stimulated by LPS in the presence or absence of Sch B. The results showed that the levels of TNF-α, IL-6, IL-1β, and PGE2 upregulated by LPS were significantly suppressed by Sch B. LPS-induced NF-κB activation was also inhibited by Sch B. Furthermore, Sch B was found to upregulate the expression of PPAR-γ in a concentration-dependent manner. In addition, the inhibition of Sch B on TNF-α, IL-6, IL-1β, and PGE2 production were reversed by PPAR-γ antagonist GW9662. In conclusion, these results suggested that Sch B inhibited LPS-induced inflammatory response by activating PPAR-γ.
Collapse
Affiliation(s)
- Na Liu
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Jin-Xu Zheng
- Department of Respiratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| | - Yuan-Su Zhuang
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Zhi-Kui Zhou
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Jin-Hua Zhao
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Lei Yang
- Department of Respiratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| |
Collapse
|
63
|
de Souza JM, Goncalves BDC, Gomez MV, Vieira LB, Ribeiro FM. Animal Toxins as Therapeutic Tools to Treat Neurodegenerative Diseases. Front Pharmacol 2018; 9:145. [PMID: 29527170 PMCID: PMC5829052 DOI: 10.3389/fphar.2018.00145] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases affect millions of individuals worldwide. So far, no disease-modifying drug is available to treat patients, making the search for effective drugs an urgent need. Neurodegeneration is triggered by the activation of several cellular processes, including oxidative stress, mitochondrial impairment, neuroinflammation, aging, aggregate formation, glutamatergic excitotoxicity, and apoptosis. Therefore, many research groups aim to identify drugs that may inhibit one or more of these events leading to neuronal cell death. Venoms are fruitful natural sources of new molecules, which have been relentlessly enhanced by evolution through natural selection. Several studies indicate that venom components can exhibit selectivity and affinity for a wide variety of targets in mammalian systems. For instance, an expressive number of natural peptides identified in venoms from animals, such as snakes, scorpions, bees, and spiders, were shown to lessen inflammation, regulate glutamate release, modify neurotransmitter levels, block ion channel activation, decrease the number of protein aggregates, and increase the levels of neuroprotective factors. Thus, these venom components hold potential as therapeutic tools to slow or even halt neurodegeneration. However, there are many technological issues to overcome, as venom peptides are hard to obtain and characterize and the amount obtained from natural sources is insufficient to perform all the necessary experiments and tests. Fortunately, technological improvements regarding heterologous protein expression, as well as peptide chemical synthesis will help to provide enough quantities and allow chemical and pharmacological enhancements of these natural occurring compounds. Thus, the main focus of this review is to highlight the most promising studies evaluating animal toxins as therapeutic tools to treat a wide variety of neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, brain ischemia, glaucoma, amyotrophic lateral sclerosis, and multiple sclerosis.
Collapse
Affiliation(s)
- Jessica M. de Souza
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno D. C. Goncalves
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcus V. Gomez
- Department of Neurotransmitters, Instituto de Ensino e Pesquisa Santa Casa, Belo Horizonte, Brazil
| | - Luciene B. Vieira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiola M. Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
64
|
Emerging Roles of Immune Cells in Postoperative Cognitive Dysfunction. Mediators Inflamm 2018; 2018:6215350. [PMID: 29670465 PMCID: PMC5835271 DOI: 10.1155/2018/6215350] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/25/2017] [Indexed: 02/03/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD), a long-lasting cognitive decline after surgery, is currently a major clinical problem with no clear pathophysiological mechanism or effective therapy. Accumulating evidence suggests that neuroinflammation plays a critical role in POCD. After surgery, alarmins are leaked from the injury sites and proinflammatory cytokines are increased in the peripheral circulation. Neurons in the hippocampus, which is responsible for learning and memory, can be damaged by cytokines transmitted to the brain parenchyma. Microglia, bone marrow-derived macrophages, mast cells, and T cells in the central nervous system (CNS) can be activated to secrete more cytokines, further aggravating neuroinflammation after surgery. Conversely, blocking the inflammation network between these immune cells and related cytokines alleviates POCD in experimental animals. Thus, a deeper understanding of the roles of immune cells and the crosstalk between them in POCD may uncover promising therapeutic targets for POCD treatment and prevention. Here, we reviewed several major immune cells and discussed their functional roles in POCD.
Collapse
|
65
|
Lai SW, Chen JH, Lin HY, Liu YS, Tsai CF, Chang PC, Lu DY, Lin C. Regulatory Effects of Neuroinflammatory Responses Through Brain-Derived Neurotrophic Factor Signaling in Microglial Cells. Mol Neurobiol 2018; 55:7487-7499. [PMID: 29427085 DOI: 10.1007/s12035-018-0933-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/25/2018] [Indexed: 11/26/2022]
Abstract
Inhibition of microglial over-activation is an important strategy to counter balance neurodegenerative progression. We previously demonstrated that the adenosine monophosphate-activated protein kinase (AMPK) may be a therapeutic target in mediating anti-neuroinflammatory responses in microglia. Brain-derived neurotrophic factor (BDNF) is one of the major neurotrophic factors produced by astrocytes to maintain the development and survival of neurons in the brain, and have recently been shown to modulate homeostasis of neuroinflammation. Therefore, the present study focused on BDNF-mediated neuroinflammatory responses and may provide an endogenous regulation of neuroinflammation. Among the tested neuroinflammation, epigallocatechin gallate (EGCG) and minocycline exerted BDNF upregulation to inhibit COX-2 and proinflammatory mediator expressions. Furthermore, both EGCG and minocycline upregulated BDNF expression in microglia through AMPK signaling. In addition, minocycline and EGCG also increased expressions of erythropoietin (EPO) and sonic hedgehog (Shh). In the endogenous modulation of neuroinflammation, astrocyte-conditioned medium (AgCM) also decreased the expression of COX-2 and upregulated BDNF expression in microglia. The anti-inflammatory effects of BDNF were mediated through EPO/Shh in microglia. Our results indicated that the BDNF-EPO-Shh novel-signaling pathway underlies the regulation of inflammatory responses and may be regarded as a potential therapeutic target in neurodegenerative diseases. This study also reveals a better understanding of an endogenous crosstalk between astrocytes and microglia to regulate anti-inflammatory actions, which could provide a novel strategy for the treatment of neuroinflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sheng-Wei Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsiao-Yun Lin
- Department of Pharmacology, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics, Asia University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan.
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
66
|
Guo L, Rezvanian A, Kukreja L, Hoveydai R, Bigio EH, Mesulam MM, El Khoury J, Geula C. Postmortem Adult Human Microglia Proliferate in Culture to High Passage and Maintain Their Response to Amyloid-β. J Alzheimers Dis 2018; 54:1157-1167. [PMID: 27567845 DOI: 10.3233/jad-160394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microglia are immune cells of the brain that display a range of functions. Most of our knowledge about microglia biology and function is based on cells from the rodent brain. Species variation in the complexity of the brain and differences in microglia response in the primate when compared with the rodent, require use of adult human microglia in studies of microglia biology. While methods exist for isolation of microglia from postmortem human brains, none allow culturing cells to high passage. Thus cells from the same case could not be used in parallel studies and multiple conditions. Here we report a method, which includes use of growth factors such as granulocyte macrophage colony stimulating factor, for successful culturing of adult human microglia from postmortem human brains up to 28 passages without significant loss of proliferation. Such cultures maintained their phenotype, including uptake of the scavenger receptor ligand acetylated low density lipoprotein and response to the amyloid-β peptide, and were used to extend in vivo studies in the primate brain demonstrating that inhibition of microglia activation protects neurons from amyloid-β toxicity. Significantly, microglia cultured from brains with pathologically confirmed Alzheimer's disease displayed the same characteristics as microglia cultured from normal aged brains. The method described here provides the scientific community with a new and reliable tool for mechanistic studies of human microglia function in health from childhood to old age, and in disease, enhancing the relevance of the findings to the human brain and neurodegenerative conditions.
Collapse
Affiliation(s)
- Ling Guo
- The Third People's Hospital of Yunnan Province, Kunming, China
| | - Aras Rezvanian
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Lokesh Kukreja
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Ramez Hoveydai
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Eileen H Bigio
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - M-Marsel Mesulam
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Joseph El Khoury
- Department of Medicine, Harvard Medical School and Division of Infectious Disease, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Changiz Geula
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
67
|
Guo JD, Zhao X, Li Y, Li GR, Liu XL. Damage to dopaminergic neurons by oxidative stress in Parkinson's disease (Review). Int J Mol Med 2018; 41:1817-1825. [PMID: 29393357 DOI: 10.3892/ijmm.2018.3406] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 12/13/2017] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress is increasingly recognized as a central event contributing to the degeneration of dopaminergic neurons in the pathogenesis of Parkinson's disease (PD). Although reactive oxygen species (ROS) production is implicated as a causative factor in PD, the cellular and molecular mechanisms linking oxidative stress with dopaminergic neuron death are complex and not well characterized. The primary insults cause the greatest production of ROS, which contributes to oxidative damage by attacking all macromolecules, including lipids, proteins and nucleic acids, leading to defects in their physiological function. Consequently, the defects in these macromolecules result in mitochondrial dysfunction and neuroinflammation, which subsequently enhance the production of ROS and ultimately neuronal damage. The interaction between these various mechanisms forms a positive feedback loop that drives the progressive loss of dopaminergic neurons in PD, and oxidative stress‑mediated neuron damage appears to serve a central role in the neurodegenerative process. Thus, understanding the cellular and molecular mechanisms by which oxidative stress contributes to the loss of dopaminergic neurons may provide a promising therapeutic approach in PD treatment.
Collapse
Affiliation(s)
- Ji-Dong Guo
- Department of Neurology, The First Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Li
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guang-Ren Li
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiao-Liang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
68
|
Li J, Shi Z, Mi Y. Purple sweet potato color attenuates high fat-induced neuroinflammation in mouse brain by inhibiting MAPK and NF-κB activation. Mol Med Rep 2018; 17:4823-4831. [PMID: 29344660 DOI: 10.3892/mmr.2018.8440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 03/30/2017] [Indexed: 11/06/2022] Open
Abstract
Purple sweet potato color (PSPC) is a natural anthocyanin pigment that is derived from purple sweet potato storage roots. PSPC possesses a variety of biological activities, including antioxidant, anti‑inflammatory and neuroprotective effects; however, the detailed effects of PSPC on high‑fat diet (HFD)‑induced neuroinflammation remain to be determined. The aim of the present study was to investigate whether PSPC has a protective role in HFD‑associated neuroinflammation in the mouse brain and to provide novel insight into the mechanisms of the action. C57BL 6J mice were maintained on a normal diet (10 kcal% fat), a HFD (60 kcal% fat), a HFD with PSPC (700 mg/kg/day) or PSPC alone, which was administrated over 20 weeks. Open field and step‑through tests were used to evaluate the effects of HFD and PSPC on mouse behavior and memory function. Western blotting and ELISA analyses were used to assess the expression of inflammatory cytokines and the activation of mitogen‑activated protein kinase and nuclear factor‑κB (NF‑κB). The results demonstrated that PSPC treatment was able to significantly improve the HFD‑induced impairment of mouse behavior and memory function, and suppressed the increase in body weight, fat content, hyperlipemia and the level of endotoxin. PSPC treatment also markedly decreased the expression of cyclooxygenase‑2, inducible nitric oxide synthase, tumor necrosis factor‑α, interleukin (IL)‑1β and IL‑6, and increased the level of IL‑10 in the HFD‑treated mouse brain. In addition, PSPC inhibited the HFD‑induced phosphorylation of extracellular signal‑regulated kinase (ERK), c‑Jun N‑terminal kinase (JNK) and p38, and the activation of NF‑κB. These findings indicated that PSPC treatment may alleviate HFD‑induced neuroinflammation in the mouse brain by inhibiting ERK, JNK, p38 and NF-κB activation.
Collapse
Affiliation(s)
- Jian Li
- Department of Anatomy, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Zhao Shi
- Department of Anatomy, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yongjie Mi
- Department of Anatomy, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
69
|
Wang GQ, Li DD, Huang C, Lu DS, Zhang C, Zhou SY, Liu J, Zhang F. Icariin Reduces Dopaminergic Neuronal Loss and Microglia-Mediated Inflammation in Vivo and in Vitro. Front Mol Neurosci 2018; 10:441. [PMID: 29375304 PMCID: PMC5767257 DOI: 10.3389/fnmol.2017.00441] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/19/2017] [Indexed: 01/14/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases characterized with a gradual loss of midbrain substantia nigra (SN) dopamine (DA) neurons. An excessive evidence demonstrated that microglia-mediated inflammation might be involved in the pathogenesis of PD. Thus, inhibition of neuroinflammation might possess a promising potential for PD treatment. Icariin (ICA), a single active component extracted from the Herba Epimedii, presents amounts of pharmacological properties, such as anti-inflammation, anti-oxidant, and anti-aging. Recent studies show ICA produced neuroprotection against brain dysfunction. However, the mechanisms underlying ICA-exerted neuroprotection are fully illuminated. In the present study, two different neurotoxins of 6-hydroxydopamine (6-OHDA) and lipopolysaccharide (LPS)-induced rat midbrain DA neuronal damage were applied to investigate the neuroprotective effects of ICA. In addition, primary rat midbrain neuron-glia co-cultures were performed to explore the mechanisms underlying ICA-mediated DA neuroprotection. In vitro data showed that ICA protected DA neurons from LPS/6-OHDA-induced DA neuronal damage and inhibited microglia activation and pro-inflammatory factors production via the suppression of nuclear factor-κB (NF-κB) pathway activation. In animal results, ICA significantly reduced microglia activation and significantly attenuated LPS/6-OHDA-induced DA neuronal loss and subsequent animal behavior changes. Together, ICA could protect DA neurons against LPS- and 6-OHDA-induced neurotoxicity both in vivo and in vitro. These actions might be closely associated with the inhibition of microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feng Zhang
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
70
|
Kaindlstorfer C, Jellinger KA, Eschlböck S, Stefanova N, Weiss G, Wenning GK. The Relevance of Iron in the Pathogenesis of Multiple System Atrophy: A Viewpoint. J Alzheimers Dis 2018; 61:1253-1273. [PMID: 29376857 PMCID: PMC5798525 DOI: 10.3233/jad-170601] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 12/16/2022]
Abstract
Iron is essential for cellular development and maintenance of multiple physiological processes in the central nervous system. The disturbance of its homeostasis leads to abnormal iron deposition in the brain and causes neurotoxicity via generation of free radicals and oxidative stress. Iron toxicity has been established in the pathogenesis of Parkinson's disease; however, its contribution to multiple system atrophy (MSA) remains elusive. MSA is characterized by cytoplasmic inclusions of misfolded α-synuclein (α-SYN) in oligodendrocytes referred to as glial cytoplasmic inclusions (GCIs). Remarkably, the oligodendrocytes possess high amounts of iron, which together with GCI pathology make a contribution toward MSA pathogenesis likely. Consistent with this observation, the GCI density is associated with neurodegeneration in central autonomic networks as well as olivopontocerebellar and striatonigral pathways. Iron converts native α-SYN into a β-sheet conformation and promotes its aggregation either directly or via increasing levels of oxidative stress. Interestingly, α-SYN possesses ferrireductase activity and α-SYN expression underlies iron mediated translational control via RNA stem loop structures. Despite a correlation between progressive putaminal atrophy and iron accumulation as well as clinical decline, it remains unclear whether pathologic iron accumulation in MSA is a secondary event in the cascade of neuronal degeneration rather than a primary cause. This review summarizes the current knowledge of iron in MSA and gives evidence for perturbed iron homeostasis as a potential pathogenic factor in MSA-associated neurodegeneration.
Collapse
Affiliation(s)
| | | | - Sabine Eschlböck
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K. Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
71
|
Liu M, Shin EJ, Dang DK, Jin CH, Lee PH, Jeong JH, Park SJ, Kim YS, Xing B, Xin T, Bing G, Kim HC. Trichloroethylene and Parkinson's Disease: Risk Assessment. Mol Neurobiol 2017; 55:6201-6214. [PMID: 29270919 DOI: 10.1007/s12035-017-0830-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
Abstract
This study was conducted to investigate the mechanism of action and extent of selective dopaminergic neurodegeneration caused by exposure to trichloroethylene (TCE) leading to the endogenous formation of the neurotoxin 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo) in rodents. Beginning at 3 months of age, male C57BL/6 mice received oral TCE dissolved in vehicle for 8 months. Dopaminergic neuronal loss was assessed by nigral tyrosine hydroxylase (TH) immunoreactivity. Selective dopaminergic neurodegeneration was determined based on histological analysis of non-dopaminergic neurons in the brain. Behavioral assays were evaluated using open field activity and rotarod tests. Mitochondrial complex I activity, oxidative stress markers, and microglial activation were also examined in the substantia nigra. The level of TaClo was detected using HPLC-electrospray ionization tandem mass spectrometry. Dopaminergic neurotoxicity of TaClo was determined in midbrain organotypic cultures from rat pups. Following 8 months of TCE treatment, there was a progressive and selective loss of 50% of the dopaminergic neurons in mouse substantia nigra (SN) and about 50% loss of dopamine and 72% loss of 3,4-dihydroxyphenylacetic acid in the striatum, respectively. In addition, motor deficits, mitochondrial impairment, oxidative stress, and inflammation were measured. TaClo content was quantified in the brain after TCE treatment. In organotypic cultures, TaClo rather than TCE induced dopaminergic neuronal loss, similar to MPP+. TCE exposure may stimulate the endogenous formation of TaClo, which is responsible for dopaminergic neurodegeneration. However, even prolonged administration of TCE was insufficient for producing a greater than 50% loss of nigral dopamine neurons, indicating that additional co-morbid factors would be needed for mimicking the profound loss of dopamine neurons seen in Parkinson's disease.
Collapse
Affiliation(s)
- Mei Liu
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Chun-Hui Jin
- Department of Geriatrics, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151, China
| | - Phil Ho Lee
- National Creative Research Initiative Center for Catalytic Organic Reactions, Department of Chemistry, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seok-Joo Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
- Ilsong Institute of Life Science, Hallym University, Anyang, 14066, Republic of Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, 14066, Republic of Korea
| | - Bin Xing
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Tao Xin
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Guoying Bing
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA.
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
72
|
Shahbazi S, Kaur J, Singh S, Achary KG, Wani S, Jema S, Akhtar J, Sobti RC. Impact of novel N-aryl piperamide NO donors on NF-κB translocation in neuroinflammation: rational drug-designing synthesis and biological evaluation. Innate Immun 2017; 24:24-39. [PMID: 29145791 PMCID: PMC6830765 DOI: 10.1177/1753425917740727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
NO donor drugs showed a significant therapeutic effect in the treatment of many
diseases, such as arteriopathies, various acute and chronic inflammatory
conditions, and several degenerative diseases. NO-releasing anti-inflammatory
drugs are the prototypes of a novel class of compounds, combining the
pharmacological activities of anti-inflammatory and anti-nociceptive of drugs
with those of NO, thus possessing potential therapeutic applications in a great
variety of diseases. In this study, we designed and predicted biological
activity by targeting cyclooxygenase type 2 (COX-2) and NF-κB subunits and
pharmacological profiling along with toxicity predictions of various
N-aryl piperamides linked via an ester bond to a spacer
that is bound to a NO-releasing moiety (-ONO2). The result of absorption,
distribution, metabolism and excretion and Docking studies indicated that among
51 designed molecules PA-3′K showed the best binding potential in both the
substrate and inhibitory binding pocket of the COX-2 enzyme with affinity values
of –9.33 and –5.12 for PDB ID 1CVU and 3LN1, respectively, thereby having the
potential to be developed as a therapeutic agent. The results of cell
viabilities indicated that PA-3′k possesses the best cell viability property
with respect to its dose (17.33 ng/ml), with 67.76% and 67.93% viable cells for
CHME3 and SVG cell lines, respectively.
Collapse
Affiliation(s)
- Sajad Shahbazi
- Department of Biotechnology, Panjab
University, Chandigarh, India
- Sajad Shahbazi, Department of Biotechnology,
Panjab University, Chandigarh, 160014, India.
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab
University, Chandigarh, India
| | - Shikha Singh
- Center of Biotechnology, Siksha O
Anusandhan University, Khandagiri, Bhubaneswar, Odisha, India
| | | | - Sameena Wani
- Department of Experimental Medicine and
Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh,
India
| | | | - Jabed Akhtar
- Imgenex India, E5, Infocity,
Bhubaneswar, Odisha, India
| | - Ranbir Chander Sobti
- Department of Biotechnology, Panjab
University, Chandigarh, India
- Babasaheb Bhimrao Ambedkar University,
Lucknow, India
| |
Collapse
|
73
|
Hosseinzadeh L, Monaghash H, Ahmadi F, Ghiasvand N, Shokoohinia Y. Bioassay-guided Isolation of Neuroprotective Fatty Acids from Nigella sativa against 1-methyl-4-phenylpyridinium-induced Neurotoxicity. Pharmacogn Mag 2017; 13:627-633. [PMID: 29200724 PMCID: PMC5701402 DOI: 10.4103/pm.pm_470_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
Objective Parkinson's disease, a slowly progressive neurological disease, is associated with degeneration of the basal ganglia of the brain and a deficiency of the neurotransmitter dopamine. The main aspects of researches are the protection of normal neurons against degeneration. Fatty acids (FAs), the key structural elements of dietary lipids, are carboxylic straight chains and notable parameters in nutritional and industrial usefulness of a plant. Materials and Methods Black cumin, a popular anti-inflammatory and antioxidant food seasoning, contains nonpolar constituents such as FAs which were extracted using hexane. Different fractions and subfractions were apt to cytoprotection against apoptosis and inflammation induced by 1-methyl-4-phenylpyridinium (MPP+) in rat pheochromocytoma cell line (PC12) as a neural cell death model. The experiment consisted of examination of cell viability assessment, mitochondrial membrane potential (MMP), caspase-3 and -9 activity, and measurement of cyclooxygenase (COX) activity. Results MPP+ induced neurotoxicity in PC12 cells. Pretreatment with subfractions containing FA mixtures attenuated MPP+-mediated apoptosis partially dependent on the inhibition of caspase-3 and -9 activity and increasing the MMP. A mixture of linoleic acid, oleic acid, and palmitic acid also decreased the COX activity induced by MPP+ in PC12 cells. Conclusion Our observation indicated that subtoxic concentration of FA from Nigella sativa may exert cytoprotective effects through their anti-apoptotic and anti-inflammation actions and could be regarded as a dietary supplement. SUMMARY MPP+ induced neurotoxicity in PC12 cellsNigella sativa contains bioactive fatty acidsPretreatment with fatty acids attenuated MPP+ mediated apoptosis through inhibition of caspase 3 and 9 activityA mixture of linoleic acid, oleic acid, and palmitic acid decreased the COX activity induced by MPP+ in PC12 cellsDue to cytoprotective, anti apoptotic and anti inflammation actions of N. sativa, it could be regarded as a dietary supplement. Abbreviations used: ANOVA: Analysis of variance; Ca: Calcium; CDCl3: Chloroform; COX: Cyclooxygenase; DMSO: Dimethyl sulfoxide; EA: Elidic acid; EDTA: Ethylene diamine tetraacetic acid; ELISA: Enzyme Linked Immunosorbent Assay; ESI-MS: Electron spray mass spectroscopy; FAs: Fatty acids; FBS: Fetal bovine serum; GC: Gas chromatography; 1HNMR: Hydrogen nuclear magnetic resonance; LA: Linoleic acid; MPP+: 1-Methyl-4-phenylpyridinium; MPTP: 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine; MTT: 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide; N. sativa: Nigella sativa; OA: Oleic acid; PA: Palmitic acid; PBS: Phosphate buffer saline; PC12: Rat pheochromocytoma cell line; PD: Parkinson's disease; PDA: Photo diode array detector; PGE2: Prostaglandin E2; TLC: Thin layer chromatography; TMPD: N,N,N',N'-tetramethyl-p-phenylenediamine; USA: United states of America.
Collapse
Affiliation(s)
- Leila Hosseinzadeh
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hoda Monaghash
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farahnaz Ahmadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nastaran Ghiasvand
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yalda Shokoohinia
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Pharmacognosy and Biotechnology, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
74
|
Abushouk AI, El-Husseny MWA, Magdy M, Ismail A, Attia A, Ahmed H, Pallanti R, Negida A. Evidence for association between hepatitis C virus and Parkinson's disease. Neurol Sci 2017; 38:1913-1920. [PMID: 28780707 DOI: 10.1007/s10072-017-3077-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/18/2017] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a globally prevalent neurodegenerative disorder, characterized by progressive neuronal loss in the substantia nigra and formation of Lewy bodies. These pathological characteristics are clinically translated into motor symptoms, such as bradykinesia, rigidity, resting tremors, and postural instability. Emerging data from epidemiological studies suggest a possible association between PD and hepatitis C virus (HCV) infection, which affects up to 71 million individuals worldwide. Preclinical studies have shown that HCV can penetrate and replicate within the brain macrophages and microglial cells, increasing their production of pro-inflammatory cytokines that can directly cause neuronal toxicity. Other studies reported that interferon, previously used to treat HCV infection, can increase the risk of PD through inhibition of the nigrostriatal dopaminergic transmission or induction of neuroinflammation. In this article, we provide a comprehensive review on the possible association between HCV infection and PD and highlight recommendations for further research and practice in this regard.
Collapse
Affiliation(s)
- Abdelrahman Ibrahim Abushouk
- Faculty of Medicine, Ain Shams University, Ramsis St., Abbasia, Cairo, 11591, Egypt. .,NovaMed Medical Research Association, Cairo, Egypt. .,Medical Research Group of Egypt, Cairo, Egypt.
| | - Mostafa Wanees Ahmed El-Husseny
- NovaMed Medical Research Association, Cairo, Egypt.,Faculty of Medicine, Fayoum University, Fayoum, Egypt.,Fayoum Medical Research Association, Fayoum, Egypt
| | - Mayar Magdy
- Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
| | - Ammar Ismail
- NovaMed Medical Research Association, Cairo, Egypt.,Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Attia Attia
- Medical Research Group of Egypt, Cairo, Egypt.,Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hussien Ahmed
- Medical Research Group of Egypt, Cairo, Egypt.,Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Ravikishore Pallanti
- Medical Research Group of Egypt, Cairo, Egypt.,Osmania College of Medicine, Hyderabad, India
| | - Ahmed Negida
- Medical Research Group of Egypt, Cairo, Egypt.,Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| |
Collapse
|
75
|
Wang X, Li M, Cao Y, Wang J, Zhang H, Zhou X, Li Q, Wang L. Tenuigenin inhibits LPS-induced inflammatory responses in microglia via activating the Nrf2-mediated HO-1 signaling pathway. Eur J Pharmacol 2017; 809:196-202. [DOI: 10.1016/j.ejphar.2017.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
|
76
|
Marashly ET, Bohlega SA. Riboflavin Has Neuroprotective Potential: Focus on Parkinson's Disease and Migraine. Front Neurol 2017; 8:333. [PMID: 28775706 PMCID: PMC5517396 DOI: 10.3389/fneur.2017.00333] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
With the huge negative impact of neurological disorders on patient's life and society resources, the discovery of neuroprotective agents is critical and cost-effective. Neuroprotective agents can prevent and/or modify the course of neurological disorders. Despite being underestimated, riboflavin offers neuroprotective mechanisms. Significant pathogenesis-related mechanisms are shared by, but not restricted to, Parkinson's disease (PD) and migraine headache. Those pathogenesis-related mechanisms can be tackled through riboflavin proposed neuroprotective mechanisms. In fact, it has been found that riboflavin ameliorates oxidative stress, mitochondrial dysfunction, neuroinflammation, and glutamate excitotoxicity; all of which take part in the pathogenesis of PD, migraine headache, and other neurological disorders. In addition, riboflavin-dependent enzymes have essential roles in pyridoxine activation, tryptophan-kynurenine pathway, and homocysteine metabolism. Indeed, pyridoxal phosphate, the active form of pyridoxine, has been found to have independent neuroprotective potential. Also, the produced kynurenines influence glutamate receptors and its consequent excitotoxicity. In addition, methylenetetrahydrofolate reductase requires riboflavin to ensure normal folate cycle influencing the methylation cycle and consequently homocysteine levels which have its own negative neurovascular consequences if accumulated. In conclusion, riboflavin is a potential neuroprotective agent affecting a wide range of neurological disorders exemplified by PD, a disorder of neurodegeneration, and migraine headache, a disorder of pain. In this article, we will emphasize the role of riboflavin in neuroprotection elaborating on its proposed neuroprotective mechanisms in opposite to the pathogenesis-related mechanisms involved in two common neurological disorders, PD and migraine headache, as well as, we encourage the clinical evaluation of riboflavin in PD and migraine headache patients in the future.
Collapse
Affiliation(s)
- Eyad T. Marashly
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Saeed A. Bohlega
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
77
|
Li X, Xue L, Sun J, Sun Y, Xie A. Single nucleotide polymorphisms in the toll-like receptor 2 (TLR2) gene are associated with sporadic Parkinson's disease in the North-eastern Han Chinese population. Neurosci Lett 2017; 656:72-76. [PMID: 28729076 DOI: 10.1016/j.neulet.2017.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 11/15/2022]
Abstract
Growing evidences suggested that inflammatory process played a critical role in the pathogenesis of Parkinson's disease (PD). Given that TLR2 has been implicated in the perpetuation of inflammatory responses in the central nervous system (CNS), we investigated the association between two genetic variants (rs3804099 and rs3804100) of TLR2 and sporadic PD in Han Chinese population. 395 Han Chinese sporadic PD patients and 413 healthy age and gender-matched controls were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The sporadic PD patients showed a higher T allele frequency than the healthy-matched control (p=0.019). Furthermore rs3804099 dominate model TT versus (vs.) TC+CC increase the risk of sporadic PD (OR=1.376, 95%CI=1.043-1.814, p=024). From the subgroup analysis, the variant allele T of rs3804099 was higher in sporadic PD cases (73.1%) than in controls (67.4%) in the late-onset cohort. Meanwhile rs3804099 revealed significant association in dominant model: Subjects with TT genotypes vs. those with TC+CC genotype showed evident significant in late-onset cohort (LOPD OR=1.417, 95%CI=1.051-1.911, p=022). In contrast, allele frequencies at rs3804100 were similar between patients and controls. Taken together, this study reveals that polymorphism of TLR2 locus is associated with risk of sporadic PD in the North-eastern part of Han Chinese population. Further studies are required to evaluate the association.
Collapse
Affiliation(s)
- Xiaoyuan Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, China; Department of Neurology, Hospital of Integrated Traditional and Western Medicine, China
| | - Li Xue
- Department of Rehabilitation, The Affiliated Hospital of Qingdao University, China
| | - Jinfang Sun
- Department of Neurology, Hospital of Integrated Traditional and Western Medicine, China
| | - Yanping Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, China.
| |
Collapse
|
78
|
Chrysin Attenuates VCAM-1 Expression and Monocyte Adhesion in Lipopolysaccharide-Stimulated Brain Endothelial Cells by Preventing NF-κB Signaling. Int J Mol Sci 2017; 18:ijms18071424. [PMID: 28671640 PMCID: PMC5535915 DOI: 10.3390/ijms18071424] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023] Open
Abstract
Adhesion of leukocytes to endothelial cells plays an important role in neuroinflammation. Therefore, suppression of the expression of adhesion molecules in brain endothelial cells may inhibit neuroinflammation. Chrysin (5,7-dihydroxyflavone) is a flavonoid component of propolis, blue passion flowers, and fruits. In the present study, we examined the effects of chrysin on lipopolysaccharide (LPS)-induced expression of vascular cell adhesion molecule-1 (VCAM-1) in mouse cerebral vascular endothelial (bEnd.3) cells. In bEnd.3 cells, LPS increased mRNA expression of VCAM-1 in a time-dependent manner, and chrysin significantly decreased LPS-induced mRNA expression of VCAM-1. Chrysin also reduced VCAM-1 protein expression in a concentration-dependent manner. Furthermore, chrysin blocked adhesion of monocytes to bEnd.3 cells exposed to LPS. Nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase, which are all activated by LPS, were significantly inhibited by chrysin. These results indicate that chrysin inhibits the expression of VCAM-1 in brain endothelial cells by inhibiting NF-κB translocation and MAPK signaling, resulting in the attenuation of leukocyte adhesion to endothelial cells. The anti-inflammatory effects of chrysin suggest a possible therapeutic application of this agent to neurodegenerative diseases, such as multiple sclerosis, septic encephalopathy, and allergic encephalomyelitis.
Collapse
|
79
|
Seo M, Lee JH, Baek M, Kim MA, Ahn MY, Kim SH, Yun EY, Hwang JS. A novel role for earthworm peptide Lumbricusin as a regulator of neuroinflammation. Biochem Biophys Res Commun 2017; 490:1004-1010. [PMID: 28666870 DOI: 10.1016/j.bbrc.2017.06.154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 11/28/2022]
Abstract
Recently, we reported that Lumbricusin, an antimicrobial peptide isolated from earthworm Lumbricus terrestris, enhanced neuronal proliferation and ameliorated motor dysfunction and dopaminergic neurodegeneration. Accumulating evidence suggests that neurodegeneration is the primary pathological feature of acute or chronic inflammation mediated by microglia, the resident macrophage of the central nervous system. Therefore, microglial activation inhibitors may be useful as therapeutic agents for neurodegenerative diseases. To determine whether Lumbricusin ameliorates neuroinflammation through inhibition of microglial activation by lipopolysaccharides (LPS), we newly synthesized 9-mer Lumbricusin analogues based on the amino acid sequence of Lumbricusin. One of these, Lumbricusin Analogue 5 (LumA5; QLICWRRFR-NH2), markedly reduced expression of enzymes (COX-2, iNOS), cytokines (IL-6, IL-1β, TNF-α), and signal transduction factors (AKT, MAPKs, NF-κB) involved in inflammation triggered by LPS in vitro and in vivo. In addition, LumA5 inhibited the cytotoxicity of conditioned medium prepared by LPS-activated BV-2 microglia to neuronal SH-SY5Y cells and improved cell viability. These results indicate that LumA5 may be a potential therapeutic agent for the treatment of various neuroinflammatory conditions.
Collapse
Affiliation(s)
- Minchul Seo
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun, 55365, Republic of Korea
| | - Joon Ha Lee
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun, 55365, Republic of Korea
| | - Minhee Baek
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun, 55365, Republic of Korea
| | - Mi-Ae Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun, 55365, Republic of Korea
| | - Mi-Young Ahn
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun, 55365, Republic of Korea
| | - Seong Hyun Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun, 55365, Republic of Korea
| | - Eun-Young Yun
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun, 55365, Republic of Korea
| | - Jae-Sam Hwang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun, 55365, Republic of Korea.
| |
Collapse
|
80
|
Craciunas SC, Gorgan MR, Ianosi B, Lee P, Burris J, Cirstea CM. Remote motor system metabolic profile and surgery outcome in cervical spondylotic myelopathy. J Neurosurg Spine 2017; 26:668-678. [PMID: 28304238 DOI: 10.3171/2016.10.spine16479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE In patients with cervical spondylotic myelopathy (CSM), the motor system may undergo progressive functional/structural changes rostral to the lesion, and these changes may be associated with clinical disability. The extent to which these changes have a prognostic value in the clinical recovery after surgical treatment is not yet known. In this study, magnetic resonance spectroscopy (MRS) was used to test 2 primary hypotheses. 1) Based on evidence of corticospinal and spinocerebellar, rubro-, or reticulospinal tract degeneration/dysfunction during chronic spinal cord compression, the authors hypothesized that the metabolic profile of the primary motor cortices (M1s) and cerebellum, respectively, would be altered in patients with CSM, and these alterations would be associated with the extent of the neurological disabilities. 2) Considering that damage and/or plasticity in the remote motor system may contribute to clinical recovery, they hypothesized that M1 and cerebellar metabolic profiles would predict, at least in part, surgical outcome. METHODS The metabolic profile, consisting of N-acetylaspartate (NAA; marker of neuronal integrity), myoinositol (glial marker), choline (cell membrane synthesis and turnover), and glutamate-glutamine (glutamatergic system), of the M1 hand/arm territory in each hemisphere and the cerebellum vermis was investigated prior to surgery in 21 patients exhibiting weakness of the upper extremities and/or gait abnormalities. Age- and sex-matched controls (n = 16) were also evaluated to estimate the pre-CSM metabolic profile of these areas. Correlation and regression analyses were performed between preoperative metabolite levels and clinical status 6 months after surgery. RESULTS Relative to controls, patients exhibited significantly higher levels of choline but no difference in the levels of other metabolites across M1s. Cerebellar metabolite levels were indistinguishable from control levels. Certain metabolites-myo-inositol and choline across M1s, NAA and glutamate-glutamine in the left M1, and myo-inositol and glutamate-glutamine in the cerebellum-were significantly associated with postoperative clinical status. These associations were greatly improved by including preoperative clinical metrics into the models. Likewise, these models improved the predictive value of preoperative clinical metrics alone. CONCLUSIONS These preliminary findings demonstrate relationships between the preoperative metabolic profiles of two remote motor areas and surgical outcome in CSM patients. Including preoperative clinical metrics in the models significantly strengthened the predictive value. Although further studies are needed, this investigation provides an important starting point to understand how the changes upstream from the injury may influence the effect of spinal cord decompression.
Collapse
Affiliation(s)
- Sorin C Craciunas
- Department of Neurosurgery, Bagdasar-Arseni Hospital, Bucharest, Romania
| | - Mircea R Gorgan
- Department of Neurosurgery, Bagdasar-Arseni Hospital, Bucharest, Romania
| | - Bogdan Ianosi
- Department of Neurology, Elbe Kliniken Hospital, University Medical Center Hamburg-Eppendorf, Germany.,Romanian National Institute of Neurology and Neurovascular Diseases, Bucharest, Romania
| | - Phil Lee
- Departments of 4 Molecular and Integrative Physiology and
| | - Joseph Burris
- Department of Physical Medicine & Rehabilitation, University of Missouri, Columbia, Missouri
| | - Carmen M Cirstea
- Neurology, Kansas University Medical Center, Kansas City, Kansas; and.,Department of Physical Medicine & Rehabilitation, University of Missouri, Columbia, Missouri
| |
Collapse
|
81
|
Zeng WX, Han YL, Zhu GF, Huang LQ, Deng YY, Wang QS, Jiang WQ, Wen MY, Han QP, Xie D, Zeng HK. Hypertonic saline attenuates expression of Notch signaling and proinflammatory mediators in activated microglia in experimentally induced cerebral ischemia and hypoxic BV-2 microglia. BMC Neurosci 2017; 18:32. [PMID: 28288585 PMCID: PMC5348816 DOI: 10.1186/s12868-017-0351-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/08/2017] [Indexed: 11/30/2022] Open
Abstract
Background Ischemic stroke is a major disease that threatens human health in ageing population. Increasing evidence has shown that neuroinflammatory mediators play crucial roles in the pathophysiology of cerebral ischemia injury. Notch signaling is recognized as the cell fate signaling but recent evidence indicates that it may be involved in the inflammatory response in activated microglia in cerebral ischemia. Previous report in our group demonstrated hypertonic saline (HS) could reduce the release of interleukin-1 beta and tumor necrosis factor-alpha in activated microglia, but the underlying molecular and cellular mechanisms have remained uncertain. This study was aimed to explore whether HS would partake in regulating production of proinflammatory mediators through Notch signaling. Results HS markedly attenuated the expression of Notch-1, NICD, RBP-JK and Hes-1 in activated microglia both in vivo and in vitro. Remarkably, HS also reduced the expression of iNOS in vivo, while the in vitro levels of inflammatory mediators Phos-NF-κB, iNOS and ROS were reduced by HS as well. Conclusion Our results suggest that HS may suppress of inflammatory mediators following ischemia/hypoxic through the Notch signaling which operates synergistically with NF-κB pathway in activated microglia. Our study has provided the morphological and biochemical evidence that HS can attenuate inflammation reaction and can be neuroprotective in cerebral ischemia, thus supporting the use of hypertonic saline by clinicians in patients with an ischemia stroke. Electronic supplementary material The online version of this article (doi:10.1186/s12868-017-0351-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Xin Zeng
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Yong-Li Han
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.
| | - Gao-Feng Zhu
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Lin-Qiang Huang
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Yi-Yu Deng
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Qiao-Sheng Wang
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Wen-Qiang Jiang
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Miao-Yun Wen
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Qian-Peng Han
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Di Xie
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Hong-Ke Zeng
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
82
|
Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roqué PJ. Neurotoxicity of traffic-related air pollution. Neurotoxicology 2017; 59:133-139. [PMID: 26610921 PMCID: PMC4875879 DOI: 10.1016/j.neuro.2015.11.008] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/10/2015] [Accepted: 11/15/2015] [Indexed: 12/31/2022]
Abstract
The central nervous system is emerging as an important target for adverse health effects of air pollution, where it may contribute to neurodevelopmental and neurodegenerative disorders. Air pollution comprises several components, including particulate matter (PM) and ultrafine particulate matter (UFPM), gases, organic compounds, and metals. An important source of ambient PM and UFPM is represented by traffic-related air pollution, primarily diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution, and to traffic-related air pollution or DE in particular, may lead to neurotoxicity. In particular, air pollution is emerging as a possible etiological factor in neurodevelopmental (e.g. autism spectrum disorders) and neurodegenerative (e.g. Alzheimer's disease) disorders. The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro-inflammation. Studies in mice acutely exposed to DE (250-300μg/m3 for 6h) have shown microglia activation, increased lipid peroxidation, and neuro-inflammation in various brain regions, particularly the hippocampus and the olfactory bulb. An impairment of adult neurogenesis was also found. In most cases, the effects of DE were more pronounced in male mice, possibly because of lower antioxidant abilities due to lower expression of paraoxonase 2.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Dept. of Neuroscience, University of Parma, Italy.
| | - Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Jacki Coburn
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Pamela J Roqué
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
83
|
Lai SW, Lin CH, Lin HF, Lin CL, Lin CC, Liao KF. Herpes zoster correlates with increased risk of Parkinson's disease in older people: A population-based cohort study in Taiwan. Medicine (Baltimore) 2017; 96:e6075. [PMID: 28207515 PMCID: PMC5319504 DOI: 10.1097/md.0000000000006075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Little is known on the relationship between herpes zoster and Parkinson's disease in older people. This study aimed to explore whether herpes zoster could be associated with Parkinson's disease in older people in Taiwan.We conducted a retrospective cohort study using the claim data of the Taiwan National Health Insurance Program. There were 10,296 subjects aged 65 years and older with newly diagnosed herpes zoster as the herpes zoster group and 39,405 randomly selected subjects aged 65 years and older without a diagnosis of herpes zoster as the nonherpes zoster group from 1998 to 2010. Both groups were followed up until subjects received a diagnosis of Parkinson's disease. This follow-up design would explore whether subjects with herpes zoster were at an increased risk of Parkinson's disease. Relative risks were estimated by adjusted hazard ratio (HR) and 95% confidence interval (CI) using the multivariable Cox proportional hazards regression model.The incidence of Parkinson's disease was higher in the herpes zoster group than that in the nonherpes zoster group (4.86 vs 4.00 per 1000 person-years, 95% CI 1.14, 1.29). After adjustment for confounding factors, the multivariable Cox proportional hazards regression model revealed that the adjusted HR of Parkinson's disease was 1.17 for the herpes zoster group (95% CI 1.10, 1.25), compared with the nonherpes zoster group.Older people with herpes zoster confer a slightly increased hazard of developing Parkinson's disease when compared to those without herpes zoster. We think that herpes zoster correlates with increased risk of Parkinson's disease in older people. When older people with herpes zoster seek help, clinicians should pay more attention to the development of the cardinal symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Shih-Wei Lai
- College of Medicine
- Department of Family Medicine
| | | | - Hsien-Feng Lin
- Department of Family Medicine
- College of Chinese Medicine
| | - Cheng-Li Lin
- College of Medicine
- Management Office for Health Data, China Medical University Hospital
| | - Cheng-Chieh Lin
- College of Medicine
- Department of Family Medicine
- Department of Healthcare Administration, College of Health Science, Asia University, Taichung
| | - Kuan-Fu Liao
- College of Medicine, Tzu Chi University, Hualien
- Graduate Institute of Integrated Medicine, China Medical University
- Department of Internal Medicine, Taichung Tzu Chi General Hospital, Taichung, Taiwan
| |
Collapse
|
84
|
Traffic-Related Air Pollution and Neurodegenerative Diseases: Epidemiological and Experimental Evidence, and Potential Underlying Mechanisms. ADVANCES IN NEUROTOXICOLOGY 2017. [DOI: 10.1016/bs.ant.2017.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
85
|
Cole TB, Coburn J, Dao K, Roqué P, Chang YC, Kalia V, Guilarte TR, Dziedzic J, Costa LG. Sex and genetic differences in the effects of acute diesel exhaust exposure on inflammation and oxidative stress in mouse brain. Toxicology 2016; 374:1-9. [PMID: 27865893 PMCID: PMC5154914 DOI: 10.1016/j.tox.2016.11.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/28/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
Abstract
In addition to increased morbidity and mortality caused by respiratory and cardiovascular diseases, air pollution may also contribute to central nervous system (CNS) diseases. Traffic-related air pollution is a major contributor to global air pollution, and diesel exhaust (DE) is its most important component. DE contains more than 40 toxic air pollutants and is a major constituent of ambient particulate matter (PM), particularly of ultrafine-PM. Limited information suggests that exposure to DE may cause oxidative stress and neuroinflammation in the CNS. We hypothesized that males may be more susceptible than females to DE neurotoxicity, because of a lower level of expression of paraoxonase 2 (PON2), an intracellular anti-oxidant and anti-inflammatory enzyme. Acute exposure of C57BL/6 mice to DE (250-300μg/m3 for 6h) caused significant increases in lipid peroxidation and of pro-inflammatory cytokines (IL-1α, IL-1β, IL-3, IL-6, TNF-α) in various brain regions (particularly olfactory bulb and hippocampus). In a number of cases the observed effects were more pronounced in male than in female mice. DE exposure also caused microglia activation, as measured by increased Iba1 (ionized calcium-binding adapter molecule 1) expression, and of TSPO (translocator protein) binding. Mice heterozygotes for the modifier subunit of glutamate cysteine ligase (the limiting enzyme in glutathione biosynthesis; Gclm+/- mice) appeared to be significantly more susceptible to DE-induced neuroinflammation than wild type mice. These findings indicate that acute exposure to DE causes neuroinflammation and oxidative stress in brain, and suggest that sex and genetic background may play important roles in modulating susceptibility to DE neurotoxicity.
Collapse
Affiliation(s)
- Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Jacki Coburn
- Dept. of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Pam Roqué
- Dept. of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Vrinda Kalia
- Dept. of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Tomas R Guilarte
- Dept. of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jennifer Dziedzic
- Dept. of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Dept. of Neuroscience, University of Parma, Italy.
| |
Collapse
|
86
|
Medicinal Plants of the Australian Aboriginal Dharawal People Exhibiting Anti-Inflammatory Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2935403. [PMID: 28115968 PMCID: PMC5223016 DOI: 10.1155/2016/2935403] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023]
Abstract
Chronic inflammation contributes to multiple ageing-related musculoskeletal and neurodegenerative diseases, cardiovascular diseases, asthma, rheumatoid arthritis, and inflammatory bowel disease. More recently, chronic neuroinflammation has been attributed to Parkinson's and Alzheimer's disease and autism-spectrum and obsessive-compulsive disorders. To date, pharmacotherapy of inflammatory conditions is based mainly on nonsteroidal anti-inflammatory drugs which in contrast to cytokine-suppressive anti-inflammatory drugs do not influence the production of cytokines such as tumour necrosis factor-α or nitric oxide. However, their prolonged use can cause gastrointestinal toxicity and promote adverse events such as high blood pressure, congestive heart failure, and thrombosis. Hence, there is a critical need to develop novel and safer nonsteroidal anti-inflammatory drugs possessing alternate mechanism of action. In this study, plants used by the Dharawal Aboriginal people in Australia for the treatment of inflammatory conditions, for example, asthma, arthritis, rheumatism, fever, oedema, eye inflammation, and inflammation of bladder and related inflammatory diseases, were evaluated for their anti-inflammatory activity in vitro. Ethanolic extracts from 17 Eucalyptus spp. (Myrtaceae) were assessed for their capacity to inhibit nitric oxide and tumor necrosis factor-α production in RAW 264.7 macrophages. Eucalyptus benthamii showed the most potent nitric oxide inhibitory effect (IC50 5.57 ± 1.4 µg/mL), whilst E. bosistoana, E. botryoides, E. saligna, E. smithii, E. umbra, and E. viminalis exhibited nitric oxide inhibition values between 7.58 and 19.77 µg/mL.
Collapse
|
87
|
Wang XH, Xie X, Luo XG, Shang H, He ZY. Inhibiting purinergic P2X7 receptors with the antagonist brilliant blue G is neuroprotective in an intranigral lipopolysaccharide animal model of Parkinson's disease. Mol Med Rep 2016; 15:768-776. [PMID: 28035410 PMCID: PMC5364844 DOI: 10.3892/mmr.2016.6070] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 11/21/2016] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder, which is characterized by the selective and progressive death of dopaminergic (DA) neurons in the substantia nigra. Increasing evidence suggests that inflammation is important in the degeneration of DA neurons. The purinergic receptor subtype P2X7 receptor (P2X7R) is key in the activation and proliferation of microglia. The present study aimed to examine whether inhibiting purinergic P2X7 receptors is neuroprotective in a rat model of PD, specifically via inhibiting p38 mitogen-activated protein kinase (MAPK). In an intranigral lipopolysaccharide (LPS) rat model of PD, immunohistochemical analysis revealed enhanced expression of P2X7R was observed in microglia. The administration of the P2X7R antagonist, brilliant blue G (BBG), reduced activation of the microglia and the loss of nigral DA neurons. In addition, immunohistochemistry and western blot analysis revealed the phosphorylation level of p38 MAPK increased in the microglia of the LPS-injected rats, which was inhibited by BBG treatment. The p38 MAPK inhibitor, SB203580, reduced microglial activation and the loss of DA neurons. Thus, these findings suggested that inhibition of P2X7R by BBG attenuated microglial activation and the loss of substantia nigra DA neurons via p38 MAPK in the rat LPS model of PD.
Collapse
Affiliation(s)
- Xin-Hong Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xin Xie
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiao-Guang Luo
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hong Shang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhi-Yi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
88
|
Zhang J, Zhang Z, Xiang J, Cai M, Yu Z, Li X, Wu T, Cai D. Neuroprotective Effects of Echinacoside on Regulating the Stress-Active p38MAPK and NF-κB p52 Signals in the Mice Model of Parkinson's Disease. Neurochem Res 2016; 42:975-985. [PMID: 27981472 DOI: 10.1007/s11064-016-2130-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/26/2016] [Accepted: 11/29/2016] [Indexed: 12/15/2022]
Abstract
Herbal medicines have long been used to treat Parkinson's disease (PD). To systematically analyze the anti-parkinsonian activity of echinacoside (ECH) in a neurotoxic model of PD and provide a future basis for basic and clinical investigations, male C57BL/6 mice were randomized into blank control, PD model and ECH-administration groups. ECH significantly suppressed the dopaminergic neuron loss (P < 0.01) caused by MPTP and maintained dopamine content (P < 0.01) and dopamine metabolite content (P < 0.05) compared with that measured in mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced damage. Additionally, ECH inhibited the activation of microglia and astrocytes in the substantia nigra, which suggested the involvement of neuroinflammation. The relevant cytokines were detected with a Proteome Profiler Array, which confirmed that ECH participated in the regulation of seven cytokines. Given that p38 mitogen-activated protein kinase (p38MAPK) and NF-kappaB (NF-κB) signals are considered to be closely related to neuroninflammation, the gene expression levels of p38MAPK and six NF-κB DNA-binding subunits were assessed. Western blotting analysis showed that both p38MAPK and the NF-κB p52 subunit were upregulated in the MPTP group and that ECH downregulated their expressions. Minocycline was administered as the positive control to inhibit neuroinflammation, and no differences were detected between the minocycline- and ECH-mediated inhibition of the p38MAPK and NF-κB p52 signals. In conclusion, echinacoside is a potential novel orally active compound for regulating neuroinflammation and related signals in Parkinson's disease and may provide a new prospect for clinical treatment.
Collapse
Affiliation(s)
- Jingsi Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhennian Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhonghai Yu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiangting Li
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ting Wu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dingfang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
89
|
Zhou W, Zhong G, Fu S, Xie H, Chi T, Li L, Rao X, Zeng S, Xu D, Wang H, Sheng G, Ji X, Liu X, Ji X, Wu D, Zou L, Tortorella M, Zhang K, Hu W. Microglia-Based Phenotypic Screening Identifies a Novel Inhibitor of Neuroinflammation Effective in Alzheimer's Disease Models. ACS Chem Neurosci 2016; 7:1499-1507. [PMID: 27504670 DOI: 10.1021/acschemneuro.6b00125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Currently, anti-AD drug discovery using target-based approaches is extremely challenging due to unclear etiology of AD and absence of validated therapeutic protein targets. Neuronal death, regardless of causes, plays a key role in AD progression, and it is directly linked to neuroinflammation. Meanwhile, phenotypic screening is making a resurgence in drug discovery process as an alternative to target-focused approaches. Herein, we employed microglia-based phenotypic screenings to search for small molecules that modulate the release of detrimental proinflammatory cytokines. The identified novel pharmacological inhibitor of neuroinflammation (named GIBH-130) was validated to alter phenotypes of neuroinflammation in AD brains. Notably, this molecule exhibited comparable in vivo efficacy of cognitive impairment relief to donepezil and memantine respectively in both β amyloid-induced and APP/PS1 double transgenic Alzheimer's murine models at a substantially lower dose (0.25 mg/kg). Therefore, GIBH-130 constitutes a unique chemical probe for pathogenesis research and drug development of AD, and it also suggests microglia-based phenotypic screenings that target neuroinflammation as an effective and feasible strategy to identify novel anti-AD agents.
Collapse
Affiliation(s)
- Wei Zhou
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
- Institute
of Natural Products and Green Chemistry, School of Light Industry
and Chemical Engineering, Guangdong University of Technology, Guangzhou 510003, People’s Republic of China
| | - Guifa Zhong
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Sihai Fu
- Department
of Pharmacy, South China Center of Innovative Pharmaceuticals, Guangzhou 510663, People’s Republic of China
| | - Hui Xie
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, People’s Republic of China
| | - Tianyan Chi
- Department
of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Luyi Li
- Department
of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Xiurong Rao
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Shaogao Zeng
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Dengfeng Xu
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Hao Wang
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Guoqing Sheng
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Xing Ji
- Department
of Pharmacy, South China Center of Innovative Pharmaceuticals, Guangzhou 510663, People’s Republic of China
| | - Xiaorong Liu
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Xuefei Ji
- Department
of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Donghai Wu
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Libo Zou
- Department
of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Micky Tortorella
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Kejian Zhang
- Department
of Pharmacy, South China Center of Innovative Pharmaceuticals, Guangzhou 510663, People’s Republic of China
| | - Wenhui Hu
- State
Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| |
Collapse
|
90
|
Liu Z, Huang Y, Cao BB, Qiu YH, Peng YP. Th17 Cells Induce Dopaminergic Neuronal Death via LFA-1/ICAM-1 Interaction in a Mouse Model of Parkinson's Disease. Mol Neurobiol 2016; 54:7762-7776. [PMID: 27844285 DOI: 10.1007/s12035-016-0249-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 10/23/2016] [Indexed: 01/05/2023]
Abstract
T helper (Th)17 cells, a subset of CD4+ T lymphocytes, have strong pro-inflammatory property and appear to be essential in the pathogenesis of many inflammatory diseases. However, the involvement of Th17 cells in Parkinson's disease (PD) that is characterized by a progressive degeneration of dopaminergic (DAergic) neurons in the nigrostriatal system is unclear. Here, we aimed to demonstrate that Th17 cells infiltrate into the brain parenchyma and induce neuroinflammation and DAergic neuronal death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- or 1-methyl-4-phenylpyridinium (MPP+)-induced PD models. Blood-brain barrier (BBB) disruption in the substantia nigra (SN) was assessed by the signal of FITC-labeled albumin that was injected into blood circulation via the ascending aorta. Live cell imaging system was used to observe a direct contact of Th17 cells with neurons by staining these cells using the two adhesion molecules, leukocyte function-associated antigen (LFA)-1 and intercellular adhesion molecule (ICAM)-1, respectively. Th17 cells invaded into the SN where BBB was disrupted in MPTP-induced PD mice. Th17 cells exacerbated DAergic neuronal loss and pro-inflammatory/neurotrophic factor disorders in MPP+-treated ventral mesencephalic (VM) cell cultures. A direct contact of LFA-1-stained Th17 cells with ICAM-1-stained VM neurons was dynamically captured. Either blocking LFA-1 in Th17 cells or blocking ICAM-1 in VM neurons with neutralizing antibodies abolished Th17-induced DAergic neuronal death. These results establish that Th17 cells infiltrate into the brain parenchyma of PD mice through lesioned BBB and exert neurotoxic property by promoting glial activation and importantly by a direct damage to neurons depending on LFA-1/ICAM-1 interaction.
Collapse
Affiliation(s)
- Zhan Liu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yan Huang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Bei-Bei Cao
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
91
|
ER Stress Induced by Tunicamycin Triggers α-Synuclein Oligomerization, Dopaminergic Neurons Death and Locomotor Impairment: a New Model of Parkinson’s Disease. Mol Neurobiol 2016; 54:5798-5806. [DOI: 10.1007/s12035-016-0114-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/09/2016] [Indexed: 11/27/2022]
|
92
|
Kinin Peptides Enhance Inflammatory and Oxidative Responses Promoting Apoptosis in a Parkinson's Disease Cellular Model. Mediators Inflamm 2016; 2016:4567343. [PMID: 27721576 PMCID: PMC5046043 DOI: 10.1155/2016/4567343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/06/2016] [Accepted: 08/09/2016] [Indexed: 01/06/2023] Open
Abstract
Kinin peptides ubiquitously occur in nervous tissue and participate in inflammatory processes associated with distinct neurological disorders. These substances have also been demonstrated to promote the oxidative stress. On the other hand, the importance of oxidative stress and inflammation has been emphasized in disorders that involve the neurodegenerative processes such as Parkinson's disease (PD). A growing number of reports have demonstrated the increased expression of kinin receptors in neurodegenerative diseases. In this study, the effect of bradykinin and des-Arg10-kallidin, two representative kinin peptides, was analyzed with respect to inflammatory response and induction of oxidative stress in a PD cellular model, obtained after stimulation of differentiated SK-N-SH cells with a neurotoxin, 1-methyl-4-phenylpyridinium. Kinin peptides caused an increased cytokine release and enhanced production of reactive oxygen species and NO by cells. These changes were accompanied by a loss of cell viability and a greater activation of caspases involved in apoptosis progression. Moreover, the neurotoxin and kinin peptides altered the dopamine receptor 2 expression. Kinin receptor expression was also changed by the neurotoxin. These results suggest a mediatory role of kinin peptides in the development of neurodegeneration and may offer new possibilities for its regulation by using specific antagonists of kinin receptors.
Collapse
|
93
|
Wang J, Wu WY, Huang H, Li WZ, Chen HQ, Yin YY. Biochanin A Protects Against Lipopolysaccharide-Induced Damage of Dopaminergic Neurons Both In Vivo and In Vitro via Inhibition of Microglial Activation. Neurotox Res 2016; 30:486-98. [PMID: 27417698 DOI: 10.1007/s12640-016-9648-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 11/28/2022]
Abstract
Neuroinflammation has been reported to be involved in the pathogenesis of Parkinson's disease (PD). Inhibition of microglia-mediated neuroinflammation might be a potential strategy for PD treatment. Biochanin A, is an O-methylated isoflavone, classified as a kind of phytoestrogens due to its chemical structure that is similar to mammalian estrogens. It has been found to possess antifibrotic, antiapoptotic, and antioxidant effects. In the present study, we investigated the neuroprotective effects of biochanin A on lipopolysaccharide (LPS)-induced dopaminergic neurons damage both in vivo and in vitro and the related molecular mechanisms. The results showed that biochanin A treatment for 21 days significantly attenuated the behavioral dysfunction of PD rats, prevented dopaminergic neurons damage, and inhibited activation of microglia in the LPS-induced PD rats. Furthermore, biochanin A decreased the levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the serum, and inhibited the phosphorylation of ERK, JNK, p38 in the substantia nigra of PD rats. In vitro test, biochanin A also inhibited primary microglial activation and protected dopaminergic neurons, decreased the content of nitric oxide, IL-1β, and TNF-α in supernatants, and inhibited the reactive oxygen species production. Taken together, these results suggest that biochanin A exerts protective effects on LPS-induced PD rats, and the mechanisms may be associated with the inhibition of inflammatory response and the MAPK signaling pathway.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,School of Food Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, People's Republic of China
| | - Wang-Yang Wu
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,School of Food Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, People's Republic of China
| | - Huan Huang
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Wei-Zu Li
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Han-Qing Chen
- School of Food Science and Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, People's Republic of China.
| | - Yan-Yan Yin
- Department of Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
94
|
Kiani-Esfahani A, Kazemi Sheykhshabani S, Peymani M, Hashemi MS, Ghaedi K, Nasr-Esfahani MH. Overexpression of Annexin A1 Suppresses Pro-Inflammatory Factors in PC12 Cells Induced by 1-Methyl-4-Phenylpyridinium. CELL JOURNAL 2016; 18:197-204. [PMID: 27540524 PMCID: PMC4988418 DOI: 10.22074/cellj.2016.4314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 07/28/2015] [Indexed: 01/19/2023]
Abstract
Objective Annexin A1 (ANXA1) is suggested to have anti-inflammatory function. However, the precise function of ANXA1 has remained unclear. In this study, we therefore
examined the potency of ANXA1 in regulating reactive oxygen species (ROS) production
and suppressing pro-inflammatory responses in PC12 cells induced by 1-methyl-4-phenylpyridinium (MPP+).
Materials and Methods In this experimental study, cDNA of ANXA1 was cloned and
inserted to the PGL268 pEpi-FGM18F vector to produce a recombinant PGL/ANXA1 vector for transfection into the PC12 cells. ANXA1 transfected cells were then treated with
MPP+. Apoptosis and the content of pro-inflammatory factors including ROS, Interlukin-6
(IL-6), inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB) were
assessed by flow-cytometry, real-time quantitative polymerase chain reaction (RT-qPCR)
and western blot in ANXA1-transfected cells and the data were compared with those obtained from mock and control cells.
Results Data revealed that overexpression of ANXA1 is associated with decreased levels of ROS and expression level of IL-6 and iNOS transcripts, and NF-κB protein in MPP+
treated PC12 cells.
Conclusion ANXA1 may be considered as an agent for prevention of neurodegenerative
or inflammatory conditions.
Collapse
Affiliation(s)
- Abbas Kiani-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Maryam Peymani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Sahrekord, Iran
| | - Motahare-Sadat Hashemi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
95
|
Aging-related 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurochemial and behavioral deficits and redox dysfunction: improvement by AK-7. Exp Gerontol 2016; 82:19-29. [PMID: 27235848 DOI: 10.1016/j.exger.2016.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Aging is a prominent risk factor for the occurrence and progression of Parkinson disease (PD). Aging animals are more significant for PD research than young ones. It is promising to develop effective treatments for PD through modulation of aging-related molecules. Sirtuin 2 (SIRT2), a strong deacetylase highly expressed in the brain, has been implicated in the aging process. In our present study, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 12mg/kg once daily) was observed to bring about significant behavioral deficits and striatal dopamine depletion in aging male and female mice, while it did not do so in young animals. MPTP did not cause significant reduction in striatal 5-hydroxytryptamine content in aging male and female mice. Furthermore, we observed that MPTP treatment resulted in significant reduction in GSH content and significant increase in MDA content and SIRT2 expression in the substantia nigra (SN) of aging mice, while it did not do so in young animals. Importantly, we observed that AK-7 (a selective SIRT2 inhibitor) significantly improved behavior abnormality and neurochemical deficits in aging male and female mice treated with MPTP. Significant increase in GSH content and significant decrease in MDA content were also observed in the SN of aging male and female mice co-treated with MPTP and AK-7 compared with the MPTP-treated animals. Our results indicated that MPTP induce aging-related neurochemical and behavioural deficits and dysfunction of redox network in male and female mice and AK-7 may be neuroprotective in PD through modulating redox network.
Collapse
|
96
|
Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Res Bull 2016; 125:19-29. [PMID: 27021169 DOI: 10.1016/j.brainresbull.2016.03.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 12/15/2022]
Abstract
Major depressive disorder (MDD), schizophrenia (SCH), Alzheimer's disease (AD), and Parkinson's disease (PD) are devastating neurological disorders, which increasingly contribute to global morbidity and mortality. Although the pathogenic mechanisms of these conditions are quite diverse, chronic neuroinflammation is one underlying feature shared by all these diseases. Even though the specific root causes of these diseases remain to be identified, evidence indicates that the observed neuroinflammation is initiated by unique pathological features associated with each specific disease. If the initial acute inflammation is not resolved, a chronic neuroinflammatory state develops and ultimately contributes to disease progression. Chronic neuroinflammation is characterized by adverse and non-specific activation of glial cells, which can lead to collateral damage of nearby neurons and other glia. This misdirected neuroinflammatory response is hypothesized to contribute to neuropathology in MDD, SCH, AD, and PD. Physical activity (PA), which is critical for maintenance of whole body and brain health, may also beneficially modify neuroimmune responses. Since PA has neuroimmune-modifying properties, and the common underlying feature of MDD, SCH, AD, and PD is chronic neuroinflammation, we hypothesize that PA could minimize brain diseases by modifying glia-mediated neuroinflammation. This review highlights current evidence supporting the disease-altering potential of PA and exercise through modifications of neuroimmune responses, specifically in MDD, SCH, AD and PD.
Collapse
|
97
|
Sugama S, Sekiyama K, Kodama T, Takamatsu Y, Takenouchi T, Hashimoto M, Bruno C, Kakinuma Y. Chronic restraint stress triggers dopaminergic and noradrenergic neurodegeneration: Possible role of chronic stress in the onset of Parkinson's disease. Brain Behav Immun 2016; 51:39-46. [PMID: 26291405 PMCID: PMC4849407 DOI: 10.1016/j.bbi.2015.08.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/13/2015] [Accepted: 08/16/2015] [Indexed: 01/21/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and, to a lesser extent, in the noradrenergic neurons of the locus coeruleus (LC). Most cases of PD are idiopathic and sporadic and are believed to be the result of both environmental and genetic factors. Here, to the best of our knowledge, we report the first evidence that chronic restraint stress (8h/day, 5days/week) substantially reduces nigral DA and LC noradrenergic neuronal cell numbers in rats. Loss of DA neurons in the SNpc was evident after 2weeks of stress and progressed in a time-dependent manner, reaching up to 61% at 16weeks. This reduction was accompanied by robust microglial activation and oxidative stress and was marked by nitrotyrosine in the SNpc and LC of the midbrain. These results indicate that chronic stress triggers DA and noradrenergic neurodegeneration by increasing oxidative stress, and that activated microglia in the substantia nigra and LC may play an important role in modulating the neurotoxic effects of oxidative stress. Taken together, these data suggest that exposure to chronic stress triggers DA and noradrenergic neurodegeneration, which is a cause of PD.
Collapse
Affiliation(s)
- Shuei Sugama
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | - Kazunari Sekiyama
- Division of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan
| | - Tohru Kodama
- Division of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan
| | - Yoshiki Takamatsu
- Division of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan
| | - Takato Takenouchi
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Makoto Hashimoto
- Division of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan
| | - Conti Bruno
- Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yoshihiko Kakinuma
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
98
|
Alaşehirli B, Oguz E, Gokcen C, Erbagcı AB, Orkmez M, Demiryurek AT. Relationship between soluble intercellular adhesion molecules and attention-deficit/hyperactivity disorder. Int J Psychiatry Med 2015; 50:238-47. [PMID: 26377944 DOI: 10.1177/0091217415605040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-oneset psychiatric disease, characterized by excessive overactivity, inattention, and impulsiveness. In recent studies, it is emphasized that inflammation may have a role in ADHD. In this study, we aimed to investigate whether there are associations between ADHD and serum levels of soluble intercellular adhesion molecules (s-ICAMs) which have important role in inflammatory diseases. We also measured the levels of these molecules after treatment with oros-methylphenidate. METHODS Twenty-five patients diagnosed with ADHD according to Diagnostic and Statistical Manual of Mental Disorders-IV-TR criteria and 18 healthy volunteer controls were included in this study. The levels of sICAMs were measured in the serum of the patients and healthy volunteers by ELISA kit as described. RESULTS The levels of sICAM-1 and sICAM-2 were significantly higher in patients compared with controls. The level of sICAM-2 was decreased significantly in group treated with oros-methylphenidate. CONCLUSIONS This is the first study pointing out the relationship between sICAMs and ADHD. The changes in sICAM-2 level may have a role in the effect mechanism of oros-methylphenidate, used for the treatment of ADHD.
Collapse
Affiliation(s)
- Belgin Alaşehirli
- Department of Medical Pharmacology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Elif Oguz
- Department of Medical Pharmacology, Faculty of Medicine, University of Harran, Sanliurfa, Turkey
| | - Cem Gokcen
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Ayse Binnur Erbagcı
- Department of Medical Biochemistry, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Mustafa Orkmez
- Department of Medical Biochemistry, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Abdullah T Demiryurek
- Department of Medical Pharmacology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| |
Collapse
|
99
|
Venigalla M, Gyengesi E, Münch G. Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease. Neural Regen Res 2015; 10:1181-5. [PMID: 26487830 PMCID: PMC4590215 DOI: 10.4103/1673-5374.162686] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder, characterized by deposition of amyloid beta, neurofibrillary tangles, astrogliosis and microgliosis, leading to neuronal dysfunction and loss in the brain. Current treatments for Alzheimer's disease primarily focus on enhancement of cholinergic transmission. However, these treatments are only symptomatic, and no disease-modifying drug is available for Alzheimer's disease patients. This review will provide an overview of the proven antioxidant, anti-inflammatory, anti-amyloidogenic, neuroprotective, and cognition-enhancing effects of curcumin and apigenin and discuss the potential of these compounds for Alzheimer's disease prevention and treatment. We suggest that these compounds might delay the onset of Alzheimer's disease or slow down its progression, and they should enter clinical trials as soon as possible.
Collapse
Affiliation(s)
- Madhuri Venigalla
- Department of Pharmacology, School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia
| | - Erika Gyengesi
- Department of Pharmacology, School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia ; Molecular Medicine Research Group, University of Western Sydney, Penrith, NSW, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia ; National Institute of Complementary Medicine, University of Western Sydney, Penrith, NSW, Australia ; Molecular Medicine Research Group, University of Western Sydney, Penrith, NSW, Australia
| |
Collapse
|
100
|
Wu WYY, Kang KH, Chen SLS, Chiu SYH, Yen AMF, Fann JCY, Su CW, Liu HC, Lee CZ, Fu WM, Chen HH, Liou HH. Hepatitis C virus infection: a risk factor for Parkinson's disease. J Viral Hepat 2015; 22:784-91. [PMID: 25608223 DOI: 10.1111/jvh.12392] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/02/2014] [Indexed: 12/12/2022]
Abstract
Recent studies found that hepatitis C virus (HCV) may invade the central nervous system, and both HCV and Parkinson's disease (PD) have in common the overexpression of inflammatory biomarkers. We analysed data from a community-based integrated screening programme based on a total of 62,276 subjects. We used logistic regression models to investigate association between HCV infection and PD. The neurotoxicity of HCV was evaluated in the midbrain neuron-glia coculture system in rats. The cytokine/chemokine array was performed to measure the differences of amounts of cytokines released from midbrain in the presence and absence of HCV. The crude odds ratios (ORs) for having PD were 0.62 [95% confidence interval (CI), 0.48-0.81] and 1.91 (95% CI, 1.48-2.47) for hepatitis B virus (HBV) and HCV. After controlling for potential confounders, the association between HCV and PD remained statistically significant (adjusted OR = 1.39; 95% CI, 1.07-1.80), but not significantly different between HBV and PD. The HCV induced 60% dopaminergic neuron death in the midbrain neuron-glia coculture system in rats, similar to that of 1-methyl-4-phenylpyridinium (MPP(+) ) but not caused by HBV. This link was further supported by the finding that HCV infection may release the inflammatory cytokines, which may play a role in the pathogenesis of PD. In conclusion, our study demonstrated a significantly positive epidemiological association between HCV infection and PD and corroborated the dopaminergic toxicity of HCV similar to that of MPP(+) .
Collapse
Affiliation(s)
- W Y-Y Wu
- Graduate Institute of Epidemiology and Preventive medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - K-H Kang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - S L-S Chen
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - S Y-H Chiu
- Department and Graduate Institute of Health Care Management, Chang Gung University, Tao-Yuan, Taiwan
| | - A M-F Yen
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - J C-Y Fann
- Department of Health Industry Management, School of Health Care Management, Kainan University, Taoyuan, Taiwan
| | - C-W Su
- Graduate Institute of Epidemiology and Preventive medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - H-C Liu
- Graduate Institute of Epidemiology and Preventive medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - C-Z Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - W-M Fu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - H-H Chen
- Graduate Institute of Epidemiology and Preventive medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - H-H Liou
- Department of Neurology and Pharmacology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|