51
|
McCann MR, George De la Rosa MV, Rosania GR, Stringer KA. L-Carnitine and Acylcarnitines: Mitochondrial Biomarkers for Precision Medicine. Metabolites 2021; 11:51. [PMID: 33466750 PMCID: PMC7829830 DOI: 10.3390/metabo11010051] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Biomarker discovery and implementation are at the forefront of the precision medicine movement. Modern advances in the field of metabolomics afford the opportunity to readily identify new metabolite biomarkers across a wide array of disciplines. Many of the metabolites are derived from or directly reflective of mitochondrial metabolism. L-carnitine and acylcarnitines are established mitochondrial biomarkers used to screen neonates for a series of genetic disorders affecting fatty acid oxidation, known as the inborn errors of metabolism. However, L-carnitine and acylcarnitines are not routinely measured beyond this screening, despite the growing evidence that shows their clinical utility outside of these disorders. Measurements of the carnitine pool have been used to identify the disease and prognosticate mortality among disorders such as diabetes, sepsis, cancer, and heart failure, as well as identify subjects experiencing adverse drug reactions from various medications like valproic acid, clofazimine, zidovudine, cisplatin, propofol, and cyclosporine. The aim of this review is to collect and interpret the literature evidence supporting the clinical biomarker application of L-carnitine and acylcarnitines. Further study of these metabolites could ultimately provide mechanistic insights that guide therapeutic decisions and elucidate new pharmacologic targets.
Collapse
Affiliation(s)
- Marc R. McCann
- The NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mery Vet George De la Rosa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (M.V.G.); (G.R.R.)
| | - Gus R. Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (M.V.G.); (G.R.R.)
| | - Kathleen A. Stringer
- The NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
52
|
Cortés Fuentes IA, Burotto M, Retamal MA, Frelinghuysen M, Caglevic C, Gormaz JG. Potential use of n-3 PUFAs to prevent oxidative stress-derived ototoxicity caused by platinum-based chemotherapy. Free Radic Biol Med 2020; 160:263-276. [PMID: 32827639 DOI: 10.1016/j.freeradbiomed.2020.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Platinum-based compounds are widely used for the treatment of different malignancies due to their high effectiveness. Unfortunately, platinum-based treatment may lead to ototoxicity, an often-irreversible side effect without a known effective treatment and prevention plan. Platinum-based compound-related ototoxicity results mainly from the production of toxic levels of reactive oxygen species (ROS) rather than DNA-adduct formation, which has led to test strategies based on direct ROS scavengers to ameliorate hearing loss. However, favorable clinical results have been associated with several complications, including potential interactions with chemotherapy efficacy. To understand the contribution of the different cytotoxic mechanisms of platinum analogues on malignant cells and auditory cells, the particular susceptibility and response of both kinds of cells to molecules that potentially interfere with these mechanisms, is fundamental to develop innovative strategies to prevent ototoxicity without affecting antineoplastic effects. The n-3 long-chain polyunsaturated fatty acids (n-3 PUFAs) have been tried in different clinical settings, including with cancer patients. Nevertheless, their use to decrease cisplatin-induced ototoxicity has not been explored to date. In this hypothesis paper, we address the mechanisms of platinum compounds-derived ototoxicity, focusing on the differences between the effects of these compounds in neoplastic versus auditory cells. We discuss the basis for a strategic use of n-3 PUFAs to potentially protect auditory cells from platinum-derived injury without affecting neoplastic cells and chemotherapy efficacy.
Collapse
Affiliation(s)
- Ignacio A Cortés Fuentes
- Otorhinolaryngology Service, Hospital Barros Luco-Trudeau, San Miguel, Santiago, Chile; Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mauricio Burotto
- Oncology Department, Clínica Universidad de Los Andes, Santiago, Chile; Bradford Hill, Clinical Research Center, Santiago, Chile
| | - Mauricio A Retamal
- Universidad Del Desarrollo, Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Santiago, Chile.
| | | | - Christian Caglevic
- Cancer Research Department, Fundación Arturo López Pérez, Santiago, Chile
| | - Juan G Gormaz
- Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
53
|
Antioxidant Therapy against Oxidative Damage of the Inner Ear: Protection and Preconditioning. Antioxidants (Basel) 2020; 9:antiox9111076. [PMID: 33147893 PMCID: PMC7693733 DOI: 10.3390/antiox9111076] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress is an important mechanism underlying cellular damage of the inner ear, resulting in hearing loss. In order to prevent hearing loss, several types of antioxidants have been investigated; several experiments have shown their ability to effectively prevent noise-induced hearing loss, age-related hearing loss, and ototoxicity in animal models. Exogenous antioxidants has been used as single therapeutic agents or in combination. Antioxidant therapy is generally administered before the production of reactive oxygen species. However, post-exposure treatment could also be effective. Preconditioning refers to the phenomenon of pre-inducing a preventative pathway by subtle stimuli that do not cause permanent damage in the inner ear. This renders the inner ear more resistant to actual stimuli that cause permanent hearing damage. The preconditioning mechanism is also related to the induction of antioxidant enzymes. In this review, we discuss the mechanisms underlying antioxidant-associated therapeutic effects and preconditioning in the inner ear.
Collapse
|
54
|
Mukherjea D, Dhukhwa A, Sapra A, Bhandari P, Woolford K, Franke J, Ramkumar V, Rybak L. Strategies to reduce the risk of platinum containing antineoplastic drug-induced ototoxicity. Expert Opin Drug Metab Toxicol 2020; 16:965-982. [PMID: 32757852 DOI: 10.1080/17425255.2020.1806235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Cisplatin is a highly effective chemotherapeutic agent against a variety of solid tumors in adults and in children. Unfortunately, a large percentage of patients suffer permanent sensorineural hearing loss. Up to 60% of children and at least 50% of adults suffer this complication that seriously compromises their quality of life. Hearing loss is due to damage to the sensory cells in the inner ear. The mechanisms of cochlear damage are still being investigated. However, it appears that inner ear damage is triggered by reactive oxygen species (ROS) formation and inflammation 34. AREAS COVERED We discuss a number of potential therapeutic targets that can be addressed to provide hearing protection. These strategies include enhancing the endogenous antioxidant pathways, heat shock proteins, G protein coupled receptors and counteracting ROS and reactive nitrogen species, and blocking pathways that produce inflammation, including TRPV1 and STAT1 36. EXPERT OPINION Numerous potential protective agents show promise in animal models by systemic or local administration. However, clinical trials have not shown much efficacy to date with the exception of sodium thiosulfate. There is an urgent need to discover safe and effective protective agents that do not interfere with the efficacy of cisplatin against tumors yet preserve hearing 151.
Collapse
Affiliation(s)
| | - Asmita Dhukhwa
- Springfield Combined Laboratory Facility, Novear Therapeutics LLC ., Springfield, IL, USA
| | - Amit Sapra
- Department of Internal Medicine, SIU School of Medicine , Springfield, IL, USA
| | - Priyanka Bhandari
- Department of Internal Medicine, SIU School of Medicine , Springfield, IL, USA
| | - Katlyn Woolford
- Department of Otolaryngology, SIU School of Medicine , Springfield, IL, USA
| | - Jacob Franke
- Department of Otolaryngology, SIU School of Medicine , Springfield, IL, USA
| | - Vickram Ramkumar
- Department of Pharmacology, SIU School of Medicine , Springfield, IL, USA
| | - Leonard Rybak
- Department of Otolaryngology, SIU School of Medicine , Springfield, IL, USA
| |
Collapse
|
55
|
Szepesy J, Miklós G, Farkas J, Kucsera D, Giricz Z, Gáborján A, Polony G, Szirmai Á, Tamás L, Köles L, Varga ZV, Zelles T. Anti-PD-1 Therapy Does Not Influence Hearing Ability in the Most Sensitive Frequency Range, but Mitigates Outer Hair Cell Loss in the Basal Cochlear Region. Int J Mol Sci 2020; 21:ijms21186701. [PMID: 32933159 PMCID: PMC7555949 DOI: 10.3390/ijms21186701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
The administration of immune checkpoint inhibitors (ICIs) often leads to immune-related adverse events. However, their effect on auditory function is largely unexplored. Thorough preclinical studies have not been published yet, only sporadic cases and pharmacovigilance reports suggest their significance. Here we investigated the effect of anti-PD-1 antibody treatment (4 weeks, intraperitoneally, 200 μg/mouse, 3 times/week) on hearing function and cochlear morphology in C57BL/6J mice. ICI treatment did not influence the hearing thresholds in click or tone burst stimuli at 4–32 kHz frequencies measured by auditory brainstem response. The number and morphology of spiral ganglion neurons were unaltered in all cochlear turns. The apical-middle turns (<32 kHz) showed preservation of the inner and outer hair cells (OHCs), whilst ICI treatment mitigated the age-related loss of OHCs in the basal turn (>32 kHz). The number of Iba1-positive macrophages has also increased moderately in this high frequency region. We conclude that a 4-week long ICI treatment does not affect functional and morphological integrity of the inner ear in the most relevant hearing range (4–32 kHz; apical-middle turns), but a noticeable preservation of OHCs and an increase in macrophage activity appeared in the >32 kHz basal part of the cochlea.
Collapse
Affiliation(s)
- Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Gabriella Miklós
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
| | - János Farkas
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
| | - Dániel Kucsera
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, H-1089 Budapest, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- Pharmahungary Group, H-6722 Szeged, Hungary
| | - Anita Gáborján
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Gábor Polony
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Ágnes Szirmai
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - László Tamás
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
| | - Zoltán V. Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, H-1089 Budapest, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- Department of Pharmacology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-210-4416/56297; Fax: +36-1-210-4412
| |
Collapse
|
56
|
Zaazaa AM, Motelp BAAE, Aniss NND. Potential Protective Role of Rutin and Alpha-lipoic Acid Against Cisplatin-induced Nephrotoxicity in Rats. Pak J Biol Sci 2020; 22:361-371. [PMID: 31930824 DOI: 10.3923/pjbs.2019.361.371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Cisplatin-induced nephrotoxicity is a serious complication that restricts its utilization in cancer treatment. Rutin and alpha-lipoic acid have antioxidant effectiveness, anti-inflammatory efficacy and prevent oxidative stress. Therefore, the current study planned to investigate the potential defensive impacts of rutin and alpha-lipoic acid on cisplatin-induced renal damage in rats. MATERIALS AND METHODS Fifty-six adult male Wistar albino rats were randomly divided into seven groups. Rats of group 1: Treated with saline as the control. Group 2: Orally received rutin daily for 2 weeks. Group 3: Rats were orally administered with alpha-lipoic acid (ALA) daily for 2 weeks. Group 4: Rats were intraperitoneal (i.p.) injected with cisplatin to develop the acute renal injury. Group 5: Rats injected with cisplatin then treated orally with RT. Group 6: Rats were injected i.p., with cisplatin then treated orally with ALA. Group 7: Rats injected with cisplatin then treated orally with RT and ALA daily for 2 weeks. RESULTS The cisplatin administration to rats induced nephrotoxicity associated with a significant increase in serum urea, creatinine, albumin and significantly reduce haemoglobin and red blood cells count. The animal treated with cisplatin showed a significant increase in the level of renal malondialdehyde associated with reduction in the levels of glutathione-s-transferase, glutathione reductase and catalase compared to control group. Moreover, cisplatin treated group recorded significant increase in nuclear factor kappa B, IL-6 and p53 levels compared to control group. Additionally, histopathological examination showed that cisplatin-induced interstitial congestion, focal mononuclear cell inflammatory, cell infiltrate and acute tubular injury. In correlation with the cisplatin group, Rutin and alpha-lipoic acid ameliorated cisplatin-induction increase in serum urea, creatinine, albumin, oxidative stress and inflammation were observed. Moreover, rutin and alpha-lipoic acid showed an enhancement in haematological and histopathological structures. CONCLUSION These results indicated that rutin and alpha-lipoic acid showed a protective effect against cisplatin-induced nephrotoxicity in rats.
Collapse
|
57
|
Ginsenoside Rh1 Alleviates HK-2 Apoptosis by Inhibiting ROS and the JNK/p53 Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3401067. [PMID: 32695207 PMCID: PMC7362279 DOI: 10.1155/2020/3401067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022]
Abstract
Background Cisplatin is widely used in the treatment of malignant patients; however, its adverse nephrotoxic effects limit its clinical use. Ginsenoside Rh1 is a main component of ginseng and has many pharmaceutical effects, including immunomodulatory effects. Objective The objective of this research is to assess the effects of ginsenoside Rh1 on a cisplatin-induced HK-2 injury model and to study its potential effect mechanisms. Methods HK-2 cell vitality was assessed via Cell Counting Kit-8 (CCK-8) assay. Carboxyfluorescein succinimidyl ester/propidium iodide (CFSF/PI) staining was used to detect the apoptosis of HK-2 cells. ROS expression was detected by DCFDA. The expressions of JNK, p53, caspase-3, Bax, and NGAL were detected by western blot. Results Ginsenoside Rh1 was found to increase the vitality of HK-2 cells and inhibit ROS production and the apoptosis of HK-2 cells in a cisplatin-induced injury model. Ginsenoside Rh1 was found to inhibit the expression of JNK, p53, caspase-3, Bax, and NGAL in a cisplatin-induced injury model. Conclusion Ginsenoside Rh1 alleviated HK-2 apoptosis in a cisplatin-induced injury model by inhibiting ROS production and the JNK/p53 pathway. Ginsenoside Rh1 may be a promising drug for the alleviation of cisplatin-induced nephrotoxicity in malignant patients.
Collapse
|
58
|
Yu D, Gu J, Chen Y, Kang W, Wang X, Wu H. Current Strategies to Combat Cisplatin-Induced Ototoxicity. Front Pharmacol 2020; 11:999. [PMID: 32719605 PMCID: PMC7350523 DOI: 10.3389/fphar.2020.00999] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is widely used for the treatment of a number of solid malignant tumors. However, ototoxicity induced by cisplatin is an obstacle to effective treatment of tumors. The basis for this toxicity has not been fully elucidated. It is generally accepted that hearing loss is due to excessive production of reactive oxygen species by cells of the cochlea. In addition, recent data suggest that inflammation may trigger inner ear cell death through endoplasmic reticulum stress, autophagy, and necroptosis, which induce apoptosis. Strategies have been extensively explored by which to prevent, alleviate, and treat cisplatin-induced ototoxicity, which minimize interference with antitumor activity. Of these strategies, none have been approved by the Federal Drug Administration, although several preclinical studies have been promising. This review highlights recent strategies that reduce cisplatin-induced ototoxicity. The focus of this review is to identify candidate agents as novel molecular targets, drug administration routes, delivery systems, and dosage schedules. Animal models of cisplatin ototoxicity are described that have been used to evaluate drug efficacy and side effect prevention. Finally, clinical reports of otoprotection in patients treated with cisplatin are highlighted. For the future, high-quality studies are required to provide reliable data regarding the safety and effectiveness of pharmacological interventions that reduce cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Yuming Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Wen Kang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| |
Collapse
|
59
|
Estfanous RS, Elseady WS, Kabel AM, Abd Ellatif RA. Amelioration of Cisplatin-Induced Ototoxicity in Rats by L-arginine: The Role of Nitric Oxide, Transforming Growth Factor Beta 1 and Nrf2/HO-1 Pathway. Asian Pac J Cancer Prev 2020; 21:2155-2162. [PMID: 32711445 PMCID: PMC7573422 DOI: 10.31557/apjcp.2020.21.7.2155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Cisplatin is an alkylating agent that inhibits DNA replication and interferes with proliferation of cancer cells. However, the major limiting factor for its use is the possible development of adverse effects, including ototoxicity. Up till now, the mechanisms of this ototoxicity remain poorly understood. However, induction of oxidative stress and activation of the inflammatory cascade were suggested as contributing factors. Purpose: The aim of this study was to explore the effect of L-arginine on cisplatin-induced ototoxicity in rats. Methods: Thirty male adult Wistar rats were divided into three equal groups as follows: control group; cisplatin group and cisplatin + L-arginine group. Auditory brainstem response (ABR), tissue oxidative stress parameters, total nitrate/nitrite, nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase-1 (HO-1) content, transforming growth factor beta 1 (TGF-β1), tumor necrosis factor alpha (TNF-α) and interleukin 15 (IL-15) were assessed. Also, the cochlear tissues were subjected to histopathological and electron microscopic examination. Results: Administration of L-arginine to cisplatin-treated rats induced significant decrease in the average ABR threshold shifts at all frequencies, tissue TGF-β1, TNF-α and IL-15 associated with significant increase in tissue antioxidant enzymes, total nitrate/nitrite and Nrf2/HO-1 content compared to cisplatin group. Also, pretreatment of cisplatin-injected rats with L-arginine induced significant improvement of the histopathological and electron microscopic picture compared to cisplatin group. Conclusion: L-arginine may serve as a promising therapeutic modality for amelioration of cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Remon S Estfanous
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Walaa S Elseady
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed M Kabel
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.,Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Rasha A Abd Ellatif
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
60
|
Lee CH, Lee DH, Lee SM, Kim SY. Otoprotective Effects of Zingerone on Cisplatin-Induced Ototoxicity. Int J Mol Sci 2020; 21:ijms21103503. [PMID: 32429117 PMCID: PMC7278998 DOI: 10.3390/ijms21103503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
Previous studies have described the effects of zingerone (ZO) on cisplatin (CXP)-induced injury to the kidneys, liver, and other organs but not to the cochlea. This study aimed to investigate the effects of ZO on CXP-induced ototoxicity. Eight-week-old Sprague-Dawley rats were used and divided into a control group, a CXP group, and a CXP + ZO group. Rats in the CXP group received 5 mg/kg/day CXP intraperitoneally for five days. Rats in the CXP + ZO group received 5 mg/kg/day CXP intraperitoneally for five days and 50 mg/kg/day ZO intraperitoneally for seven days. Auditory brainstem response thresholds (ABRTs) were measured before (day 0) and after (day 10) drug administration. Cochlear histology was examined using hematoxylin and eosin (H&E) staining and cochlear whole mounts. The expression levels of cytochrome P450 (CYP)1A1, CYP1B1, inducible nitric oxide synthase (iNOS), nuclear factor kappa B (NFκB), tumor necrosis factor alpha (TNFα), and interleukin 6 (IL6) were estimated using quantitative reverse transcription-polymerase chain reaction. The expression levels of heme oxygenase 1 (HO1) and caspase 3 were analyzed via Western blotting. The auditory thresholds at 4, 8, and 16 kHz were attenuated in the CXP + ZO group compared with the CXP group. The mRNA expression levels of CYP1A1, CYP1B1, iNOS, NFκB, TNFα, and IL6 were lower in the CXP + ZO group than in the CXP group. The protein expression levels of HO1 and caspase 3 were lower in the CXP + ZO group than in the CXP group. Cotreatment with ZO exerted otoprotective effects against CXP-induced cochlear injury via antioxidative and anti-inflammatory activities involving CYPs, iNOS, NFκB, and TNFα.
Collapse
Affiliation(s)
| | | | | | - So Young Kim
- Correspondence: ; Tel.: +82-31-870-5340; Fax: +82-31-870-5346
| |
Collapse
|
61
|
Protective Mechanisms of Avocado Oil Extract Against Ototoxicity. Nutrients 2020; 12:nu12040947. [PMID: 32235401 PMCID: PMC7230542 DOI: 10.3390/nu12040947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the excellent antimicrobial activity of aminoglycoside antibiotics, permanent inner ear damage associated with the use of these drugs has resulted in the need to develop strategies to address the ototoxic risk given their widespread use. In a previous study, we showed that avocado oil protects ear hair cells from damage caused by neomycin. However, the detailed mechanism by which this protection occurs is still unclear. Here, we investigated the auditory cell-protective mechanism of enhanced functional avocado oil extract (DKB122). RNA sequencing followed by pathway analysis revealed that DKB122 has the potential to enhance the expression of detoxification and antioxidant genes associated with glutathione metabolism (Hmox4, Gsta4, Mgst1, and Abcc3) in HEI-OC1 cells. Additionally, DKB122 effectively decreased ROS levels, resulting in the inhibition of apoptosis in HEI-OC1 cells. The expression of the inflammatory genes that encode chemokines and interleukins was also downregulated by DKB122 treatment. Consistent with these results, DKB122 significantly inhibited p65 nuclear migration induced by TNF-α or LPS in HEI-OC1 cells and THP-1 cells and the expression of inflammatory chemokine and interleukin genes induced by TNF-α was significantly reduced. Moreover, DKB122 treatment increased LC3-II and decreased p62 in HEI-OC1 cells, suggesting that DKB122 increases autophagic flux. These results suggest that DKB122 has otoprotective effects attributable to its antioxidant activity, induction of antioxidant gene expression, anti-inflammatory activity, and autophagy activation.
Collapse
|
62
|
rAAV-Mediated Cochlear Gene Therapy: Prospects and Challenges for Clinical Application. J Clin Med 2020; 9:jcm9020589. [PMID: 32098144 PMCID: PMC7073754 DOI: 10.3390/jcm9020589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, pioneering molecular gene therapy for inner-ear disorders have achieved experimental hearing improvements after a single local or systemic injection of adeno-associated, virus-derived vectors (rAAV for recombinant AAV) encoding an extra copy of a normal gene, or ribozymes used to modify a genome. These results hold promise for treating congenital or later-onset hearing loss resulting from monogenic disorders with gene therapy approaches in patients. In this review, we summarize the current state of rAAV-mediated inner-ear gene therapies including the choice of vectors and delivery routes, and discuss the prospects and obstacles for the future development of efficient clinical rAAV-mediated cochlear gene medicine therapy.
Collapse
|
63
|
Lee CH, Park SS, Lee DH, Lee SM, Kim MY, Choi BY, Kim SY. Tauroursodeoxycholic acid attenuates cisplatin-induced hearing loss in rats. Neurosci Lett 2020; 722:134838. [PMID: 32061715 DOI: 10.1016/j.neulet.2020.134838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/22/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
Tauroursodeoxycholic acid (TUDCA) has been reported to be protective against apoptosis and oxidative stress in various cell types. A few studies have demonstrated otoprotective effects of TUDCA in mouse models. This study investigated the otoprotective effects of TUDCA in cisplatin (CXP)-induced hearing-loss rats. Eight-week-old female Sprague-Dawley rats were used. The CXP group received intraperitoneal injection of CXP at a dose of 5 mg/kg from day 1 to day 3. The CXP + TUDCA group received an intraperitoneal injection of 5 mg/kg CXP and 100 mg/kg TUDCA from day 1 to day 3. The mRNA expression levels of heme oxygenase 1 (HO1) and superoxide dismutase 2 (SOD2) were measured, and the protein levels of caspase 3, cleaved caspase 3, and aryl hydrocarbon receptor (AhR) were evaluated. The CXP group demonstrated higher mean auditory brainstem responses (ABR) thresholds than the control group. The mean ABR threshold shifts were lower in the CXP + TUDCA group than in the CXP group. The CXP group showed elevated HO1 and SOD2 mRNA expression levels compared to the control group, but these changes were reversed in the CXP + TUDCA group. Compared to the levels in the control group, caspase 3, cleaved caspase 3, and AhR levels were higher in the CXP group, but the increase in cleaved caspase-3 was attenuated in the CXP + TUDCA group. The cochlea showed a higher number of spiral ganglion cells and outer hair cells in the CXP + TUDCA group than in the CXP group. TUDCA reduced CXP-induced hearing loss in adult rats. The HO1-mediated antioxidative effects attenuated apoptosis in the cochlea, but AhR activation was not reversed.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, CHA University College of Medicine, Republic of Korea
| | - Sung-Su Park
- Department of Otorhinolaryngology-Head & Neck Surgery, CHA University College of Medicine, Republic of Korea
| | - Da-Hye Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, CHA University College of Medicine, Republic of Korea
| | - So Min Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, CHA University College of Medicine, Republic of Korea
| | - Min Young Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Seoul National University Bundang Hospital, Republic of Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head & Neck Surgery, Seoul National University Bundang Hospital, Republic of Korea
| | - So Young Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, CHA University College of Medicine, Republic of Korea.
| |
Collapse
|
64
|
Katsumi S, Sahin MI, Lewis RM, Iyer JS, Landegger LD, Stankovic KM. Intracochlear Perfusion of Tumor Necrosis Factor-Alpha Induces Sensorineural Hearing Loss and Synaptic Degeneration in Guinea Pigs. Front Neurol 2020; 10:1353. [PMID: 32116980 PMCID: PMC7025643 DOI: 10.3389/fneur.2019.01353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a proinflammatory cytokine that plays a prominent role in the nervous system, mediating a range of physiologic and pathologic functions. In the auditory system, elevated levels of TNF-α have been implicated in several types of sensorineural hearing loss, including sensorineural hearing loss induced by vestibular schwannoma, a potentially fatal intracranial tumor that originates from the eighth cranial nerve; however, the mechanisms underlying the tumor's deleterious effects on hearing are not well-understood. Here, we investigated the effect of acute elevations of TNF-α in the inner ear on cochlear function and morphology by perfusing the cochlea with TNF-α in vivo in guinea pigs. TNF-α perfusion did not significantly change thresholds for compound action potential (CAP) responses, which reflect cochlear nerve activity, or distortion product otoacoustic emissions, which reflect outer hair cell integrity. However, intracochlear TNF-α perfusion reduced CAP amplitudes and increased the number of inner hair cell synapses without paired post-synaptic terminals, suggesting a pattern of synaptic degeneration that resembles that observed in primary cochlear neuropathy. Additionally, etanercept, a TNF-α blocker, protected against TNF-α-induced synaptopathy when administered systemically prior to intracochlear TNF-α perfusion. Findings motivate further investigation into the harmful effects of chronically elevated intracochlear levels of TNF-α, and the potential for etanercept to counter these effects.
Collapse
Affiliation(s)
- Sachiyo Katsumi
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Mehmet I Sahin
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Rebecca M Lewis
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Janani S Iyer
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States
| | - Lukas D Landegger
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States.,Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
65
|
Gao D, Yu H, Li B, Chen L, Li X, Gu W. Cisplatin Toxicology: The Role of Pro-inflammatory Cytokines and GABA Transporters in Cochlear Spiral Ganglion. Curr Pharm Des 2020; 25:4820-4826. [PMID: 31692421 DOI: 10.2174/1381612825666191106143743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
Background:
The current study was conducted to examine the specific activation of pro-inflammatory
cytokines (PICs), namely IL-1β, IL-6 and TNF-α in the cochlear spiral ganglion of rats after ototoxicity induced
by cisplatin. Since γ-aminobutyric acid (GABA) and its receptors are involved in pathophysiological processes of
ototoxicity, we further examined the role played by PICs in regulating expression of GABA transporter type 1
and 3 (GAT-1 and GAT-3), as two essential subtypes of GATs responsible for the regulation of extracellular
GABA levels in the neuronal tissues.
Methods:
ELISA and western blot analysis were employed to examine the levels of PICs and GATs; and auditory
brainstem response was used to assess ototoxicity induced by cisplatin.
Results:
IL-1β, IL-6 and TNF-α as well as their receptors were significantly increased in the spiral ganglion of
ototoxic rats as compared with sham control animals (P<0.05, ototoxic rats vs. control rats). Cisplatin-ototoxicity
also induced upregulation of the protein levels of GAT-1 and GAT-3 in the spiral ganglion (P<0.05 vs. controls).
In addition, administration of inhibitors to IL-1β, IL-6 and TNF-α attenuated amplification of GAT-1 and GAT-3
and improved hearing impairment induced by cisplatin.
Conclusion:
Our data indicate that PIC signals are activated in the spiral ganglion during cisplatin-ototoxicity
which thereby leads to upregulation of GABA transporters. As a result, it is likely that de-inhibition of GABA
system is enhanced in the cochlear spiral ganglion. This supports a role for PICs in engagement of the signal
mechanisms associated with cisplatin-ototoxicity, and has pharmacological implications to target specific PICs
for GABAergic dysfunction and vulnerability related to cisplatin-ototoxicity.
Collapse
Affiliation(s)
- Dongmei Gao
- Department of Otorhinolaryngology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hong Yu
- Department of Otorhinolaryngology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Bo Li
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Li Chen
- Hospital of Stomatology, Jilin University, Changchun, Jilin 130000, China
| | - Xiaoyu Li
- Department of Otorhinolaryngology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wenqing Gu
- Department of Otorhinolaryngology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
66
|
Gentilin E, Simoni E, Candito M, Cazzador D, Astolfi L. Cisplatin-Induced Ototoxicity: Updates on Molecular Targets. Trends Mol Med 2019; 25:1123-1132. [DOI: 10.1016/j.molmed.2019.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022]
|
67
|
Ma N, Wei W, Fan X, Ci X. Farrerol Attenuates Cisplatin-Induced Nephrotoxicity by Inhibiting the Reactive Oxygen Species-Mediated Oxidation, Inflammation, and Apoptotic Signaling Pathways. Front Physiol 2019; 10:1419. [PMID: 31849693 PMCID: PMC6901966 DOI: 10.3389/fphys.2019.01419] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Cisplatin is a chemotherapy drug that is often used in clinical practice, but its frequent use often leads to nephrotoxicity. Therefore, we urgently need a drug that reduces the nephrotoxicity induced by cisplatin. Farrerol reportedly has antioxidant potential, but its renal protective effects and potential mechanisms remain unclear. In this study, we used both cell and mouse models to determine the mechanism of farrerol in cisplatin-induced nephrotoxicity. The in vitro experiments revealed that farrerol improved cisplatin-induced nephrotoxicity and reactive oxygen species (ROS) production via nuclear factor erythrocyte 2-related factor 2 (Nrf2) activation. Moreover, farrerol effectively activated Nrf2 and subsequently increased the expression of Nrf2-targeted antioxidant enzymes, including heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 (NQO1), but inhibited Kelch-like ECH-associated protein 1 (Keap1) and NADPH oxidase type 4 (NOX4). Furthermore, farrerol attenuated the phosphorylation of C-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (p38); the activation of phosphorylated nuclear factor-κB (p-NF-κB) and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3); and the expression of phosphorylated p53 (p-p53), Bax, and cleaved caspase-3. In vivo, farrerol significantly improved cisplatin-induced renal damage, as demonstrated by the recovery of blood urea nitrogen (BUN), serum creatinine (SCr), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and pathological damage. Moreover, farrerol inhibited inflammatory and apoptotic protein expression in vivo. Notably, farrerol exerted slight protection in Nrf2-knockout mice compared with wild-type mice. These findings indicate that farrerol can effectively activate Nrf2 and can serve as a therapeutic target in the treatment of acute kidney injury (AKI).
Collapse
Affiliation(s)
- Ning Ma
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China.,Department of Urology, The First Hospital, Jilin University, Changchun, China
| | - Wei Wei
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Xiaoye Fan
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
68
|
Prasad KN, Bondy SC. Increased oxidative stress, inflammation, and glutamate: Potential preventive and therapeutic targets for hearing disorders. Mech Ageing Dev 2019; 185:111191. [PMID: 31765645 DOI: 10.1016/j.mad.2019.111191] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
Abstract
Hearing disorders constitute one of the major health concerns in the USA. Decades of basic and clinical studies have identified numerous ototoxic agents and investigated their modes of action on the inner ear, utilizing tissue culture as well as animal and human models. Current preventive and therapeutic approaches are considered unsatisfactory. Therefore, additional modalities should be developed. Many studies suggest that increased levels of oxidative stress, chronic inflammation, and glutamate play an important role in the initiation and progression of damage to the inner ear leading to hearing impairments. To prevent these cellular deficits, antioxidants, anti-inflammatory agents, and antagonists of glutamate receptor have been used individually or in combination with limited success. It is essential, therefore, to simultaneously enhance the levels of antioxidant enzymes by activating the Nrf2 (a nuclear transcriptional factor) pathway, dietary and endogenous antioxidant compounds, and B12-vitamins in order to reduce the levels of oxidative stress, chronic inflammation, and glutamate at the same time. This review presents evidence to show that increased levels of these cellular metabolites, biochemical or factors are involved in the pathogenesis of cochlea leading to hearing impairments. It presents scientific rationale for the use of a mixture of micronutrients that may decrease the levels of oxidative damage, chronic inflammation, and glutamate at the same time. The benefits for using oral administration of proposed micronutrient mixture in humans are presented. Animal and limited human studies indirectly suggest that orally administered micronutrients can accumulate in the inner ear. Therefore, this route of administration may be useful in prevention, and in combination with standard care, in improved management of hearing problems following exposure to well-recognized and studied ototoxic agents, such as noise, cisplatin, aminoglycoside antibiotics, and advanced age.
Collapse
Affiliation(s)
- Kadar N Prasad
- Engage Global, 245 El Faisan Drive, San Rafael, CA, 94903, United States.
| | - Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, 92697-1830, United States
| |
Collapse
|
69
|
Abstract
Deafness or hearing deficits are debilitating conditions. They are often caused by loss of sensory hair cells or defects in their function. In contrast to mammals, nonmammalian vertebrates robustly regenerate hair cells after injury. Studying the molecular and cellular basis of nonmammalian vertebrate hair cell regeneration provides valuable insights into developing cures for human deafness. In this review, we discuss the current literature on hair cell regeneration in the context of other models for sensory cell regeneration, such as the retina and the olfactory epithelium. This comparison reveals commonalities with, as well as differences between, the different regenerating systems, which begin to define a cellular and molecular blueprint of regeneration. In addition, we propose how new technical advances can address outstanding questions in the field.
Collapse
Affiliation(s)
- Nicolas Denans
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Sungmin Baek
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Tatjana Piotrowski
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| |
Collapse
|
70
|
Dhukhwa A, Bhatta P, Sheth S, Korrapati K, Tieu C, Mamillapalli C, Ramkumar V, Mukherjea D. Targeting Inflammatory Processes Mediated by TRPVI and TNF-α for Treating Noise-Induced Hearing Loss. Front Cell Neurosci 2019; 13:444. [PMID: 31632242 PMCID: PMC6786284 DOI: 10.3389/fncel.2019.00444] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
Noise trauma is the most common cause of hearing loss in adults. There are no known FDA approved drugs for prevention or rescue of noise-induced hearing loss (NIHL). In this study, we provide evidence that implicates stress signaling molecules (TRPV1, NOX3, and TNF-α) in NIHL. Furthermore, we provide evidence that inhibiting any one of these moieties can prevent and treat NIHL when administered within a window period. Hearing loss induced by loud noise is associated with the generation of reactive oxygen species (ROS), increased calcium (Ca2+) in the endolymph and hair cells, and increased inflammation in the cochlea. Increased (Ca2+) and ROS activity persists for several days after traumatic noise exposure (NE). Chronic increases in (Ca2+) and ROS have been shown to increase inflammation and apoptosis in various tissue. However, the precise role of Ca2+ up-regulation and the resulting inflammation causing a positive feedback loop in the noise-exposed cochlea to generate sustained toxic amounts of Ca2+ are unknown. Here we show cochlear TRPV1 dysregulation is a key step in NIHL, and that inflammatory TNF-α cytokine-mediated potentiation of TRPV1 induced Ca2+ entry is an essential mechanism of NIHL. In the Wistar rat model, noise produces an acute (within 48 h) and a chronic (within 21 days) increase in cochlear gene expression of TRPV1, NADPH oxidase 3 (NOX3) and pro-inflammatory mediators such as tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX2). Additionally, we also show that H2O2 (100 μM) produces a robust increase in Ca2+ entry in cell cultures which is enhanced by TNF-α via the TRPV1 channel and which involves ERK1/2 phosphorylation. Mitigation of NIHL could be achieved by using capsaicin (TRPV1 agonist that rapidly desensitizes TRPV1. This mechanism is used in the treatment of pain in diabetic peripheral neuropathy) pretreatment or by inhibition of TNF-α with Etanercept (ETA), administered up to 7 days prior to NE or within 24 h of noise. Our results demonstrate the importance of the synergistic interaction between TNF-α and TRPV1 in the cochlea and suggest that these are important therapeutic targets for treating NIHL.
Collapse
Affiliation(s)
- Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Puspanjali Bhatta
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, United States
| | - Krishi Korrapati
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Coral Tieu
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Chaitanya Mamillapalli
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Debashree Mukherjea
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
| |
Collapse
|
71
|
Kim H, Cao W, Oh G, Lee S, Shen A, Khadka D, Lee S, Sharma S, Kim SY, Choe S, Kwak TH, Kim J, Park R, So H. Augmentation of cellular NAD + by NQO1 enzymatic action improves age-related hearing impairment. Aging Cell 2019; 18:e13016. [PMID: 31353811 PMCID: PMC6718544 DOI: 10.1111/acel.13016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/09/2019] [Accepted: 07/07/2019] [Indexed: 12/20/2022] Open
Abstract
Age-related hearing loss (ARHL) is a major neurodegenerative disorder and the leading cause of communication deficit in the elderly population, which remains largely untreated. The development of ARHL is a multifactorial event that includes both intrinsic and extrinsic factors. Recent studies suggest that NAD+ /NADH ratio may play a critical role in cellular senescence by regulating sirtuins, PARP-1, and PGC-1α. Nonetheless, the beneficial effect of direct modulation of cellular NAD+ levels on aging and age-related diseases has not been studied, and the underlying mechanisms remain obscure. Herein, we investigated the effect of β-lapachone (β-lap), a known plant-derived metabolite that modulates cellular NAD+ by conversion of NADH to NAD+ via the enzymatic action of NADH: quinone oxidoreductase 1 (NQO1) on ARHL in C57BL/6 mice. We elucidated that the reduction of cellular NAD+ during the aging process was an important contributor for ARHL; it facilitated oxidative stress and pro-inflammatory responses in the cochlear tissue through regulating sirtuins that alter various signaling pathways, such as NF-κB, p53, and IDH2. However, augmentation of NAD+ by β-lap effectively prevented ARHL and accompanying deleterious effects through reducing inflammation and oxidative stress, sustaining mitochondrial function, and promoting mitochondrial biogenesis in rodents. These results suggest that direct regulation of cellular NAD+ levels by pharmacological agents may be a tangible therapeutic option for treating various age-related diseases, including ARHL.
Collapse
Affiliation(s)
- Hyung‐Jin Kim
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
- NADIANBIO Ltd, Business Incubation Center Iksan Korea
| | - Wa Cao
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Gi‐Su Oh
- NADIANBIO Ltd, Business Incubation Center Iksan Korea
| | - SeungHoon Lee
- NADIANBIO Ltd, Business Incubation Center Iksan Korea
| | - AiHua Shen
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Dipendra Khadka
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Su‐Bin Lee
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Subham Sharma
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Seon Young Kim
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Seong‐Kyu Choe
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Tae Hwan Kwak
- NADIANBIO Ltd, Business Incubation Center Iksan Korea
| | - Jin‐Man Kim
- Department of Pathology and Infection Signaling Network Research Center Chungnam National University School of Medicine Daejeon Korea
| | - Raekil Park
- Department of Biomedical Science & Engineering, Institute of Integrated Technology Gwangju Institute of Science and Technology Gwangju Korea
| | - Hong‐Seob So
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| |
Collapse
|
72
|
Sahley TL, Anderson DJ, Hammonds MD, Chandu K, Musiek FE. Evidence for a dynorphin-mediated inner ear immune/inflammatory response and glutamate-induced neural excitotoxicity: an updated analysis. J Neurophysiol 2019; 122:1421-1460. [DOI: 10.1152/jn.00595.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acoustic overstimulation (AOS) is defined as the stressful overexposure to high-intensity sounds. AOS is a precipitating factor that leads to a glutamate (GLU)-induced Type I auditory neural excitotoxicity and an activation of an immune/inflammatory/oxidative stress response within the inner ear, often resulting in cochlear hearing loss. The dendrites of the Type I auditory neural neurons that innervate the inner hair cells (IHCs), and respond to the IHC release of the excitatory neurotransmitter GLU, are themselves directly innervated by the dynorphin (DYN)-bearing axon terminals of the descending brain stem lateral olivocochlear (LOC) system. DYNs are known to increase GLU availability, potentiate GLU excitotoxicity, and induce superoxide production. DYNs also increase the production of proinflammatory cytokines by modulating immune/inflammatory signal transduction pathways. Evidence is provided supporting the possibility that the GLU-mediated Type I auditory neural dendritic swelling, inflammation, excitotoxicity, and cochlear hearing loss that follow AOS may be part of a brain stem-activated, DYN-mediated cascade of inflammatory events subsequent to a LOC release of DYNs into the cochlea. In support of a DYN-mediated cascade of events are established investigations linking DYNs to the immune/inflammatory/excitotoxic response in other neural systems.
Collapse
Affiliation(s)
- Tony L. Sahley
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- School of Health Sciences, Cleveland State University, Cleveland, Ohio
| | - David J. Anderson
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | | | - Karthik Chandu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Frank E. Musiek
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
73
|
Qi L, Luo Q, Zhang Y, Jia F, Zhao Y, Wang F. Advances in Toxicological Research of the Anticancer Drug Cisplatin. Chem Res Toxicol 2019; 32:1469-1486. [PMID: 31353895 DOI: 10.1021/acs.chemrestox.9b00204] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cisplatin is one of the most widely used chemotherapeutic agents for various solid tumors in the clinic due to its high efficacy and broad spectrum. The antineoplastic activity of cisplatin is mainly due to its ability to cross-link with DNA, thus blocking transcription and replication. Unfortunately, the clinical use of cisplatin is limited by its severe, dose-dependent toxic side effects. There are approximately 40 specific toxicities of cisplatin, among which nephrotoxicity is the most common one. Other common side effects include ototoxicity, neurotoxicity, gastrointestinal toxicity, hematological toxicity, cardiotoxicity, and hepatotoxicity. These side effects together reduce the life quality of patients and require lowering the dosage of the drug, even stopping administration, thus weakening the treatment effect. Few effective measures exist clinically against these side effects because the exact mechanisms of various side effects from cisplatin remain still unclear. Therefore, substantial effort has been made to explore the complicated biochemical processes involved in the toxicology of cisplatin, aiming to identify effective ways to reduce or eradicate its toxicity. This review summarizes and reviews the updated advances in the toxicological research of cisplatin. We anticipate to provide insights into the understanding of the mechanisms underlying the side effects of cisplatin and designing comprehensive therapeutic strategies involving cisplatin.
Collapse
Affiliation(s)
- Luyu Qi
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Feifei Jia
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China.,Basic Medical College , Shandong University of Chinese Traditional Medicine , Jinan 250355 , P.R. China
| |
Collapse
|
74
|
Köles L, Szepesy J, Berekméri E, Zelles T. Purinergic Signaling and Cochlear Injury-Targeting the Immune System? Int J Mol Sci 2019; 20:ijms20122979. [PMID: 31216722 PMCID: PMC6627352 DOI: 10.3390/ijms20122979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Hearing impairment is the most common sensory deficit, affecting more than 400 million people worldwide. Sensorineural hearing losses currently lack any specific or efficient pharmacotherapy largely due to the insufficient knowledge of the pathomechanism. Purinergic signaling plays a substantial role in cochlear (patho)physiology. P2 (ionotropic P2X and the metabotropic P2Y) as well as adenosine receptors expressed on cochlear sensory and non-sensory cells are involved mostly in protective mechanisms of the cochlea. They are implicated in the sensitivity adjustment of the receptor cells by a K+ shunt and can attenuate the cochlear amplification by modifying cochlear micromechanics. Cochlear blood flow is also regulated by purines. Here, we propose to comprehend this field with the purine-immune interactions in the cochlea. The role of harmful immune mechanisms in sensorineural hearing losses has been emerging in the horizon of cochlear pathologies. In addition to decreasing hearing sensitivity and increasing cochlear blood supply, influencing the immune system can be the additional avenue for pharmacological targeting of purinergic signaling in the cochlea. Elucidating this complexity of purinergic effects on cochlear functions is necessary and it can result in development of new therapeutic approaches in hearing disabilities, especially in the noise-induced ones.
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Ecology, University of Veterinary Medicine, H-1078 Budapest, Hungary.
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary.
| |
Collapse
|
75
|
Moon SK, Woo JI, Lim DJ. Involvement of TNF-α and IFN-γ in Inflammation-Mediated Cochlear Injury. Ann Otol Rhinol Laryngol 2019; 128:8S-15S. [DOI: 10.1177/0003489419837689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objectives: Inflammation is crucial for the pathogenesis of acquired sensorineural hearing loss, but the precise mechanism involved remains elusive. Among a number of inflammatory mediators, tumor necrosis factor-alpha (TNF-α) plays a pivotal role in cisplatin ototoxicity. However, TNF-α alone is cytotoxic to cochlear sensory cells only at the extremely high concentrations, suggesting the involvement of other factors that may sensitize cells to TNF-α cytotoxicity. Since interferon gamma (IFN-γ) importantly contributes to the cochlear inflammatory processes, we aim to determine whether and how IFN-γ affects TNF-α cytotoxicity to cochlear sensory cells. Methods: TNF-α expression was determined with western blotting in RSL cells and immunolabeling of mouse temporal bone sections. HEI-OC1 cell viability was determined with MTT assays, cytotoxicity assays, and cytometric analysis with methylene blue staining. Cochlear sensory cell injury was determined in the organotypic culture of the mouse organ of Corti. Results: Spiral ligament fibrocytes were shown to upregulate TNF-α in response to pro-inflammatory stimulants. We demonstrated IFN-γ increases the susceptibility of HEI-OC1 cells to TNF-α cytotoxicity via JAK1/2-STAT1 signaling. TNFR1-mediated Caspase-1 activation was found to mediate the sensitization effect of IFN-γ on TNF-α cytotoxicity. The combination of IFN-γ and TNF-α appeared to augment cisplatin cytotoxicity to cochlear sensory cells ex vivo. Conclusions: Taken together, these findings suggest the involvement of IFN-γ in the sensitization of cochlear cells to TNF-α cytotoxicity, which would enable us to better understand the complex mechanisms underlying inflammation-mediated cochlear injury.
Collapse
Affiliation(s)
- Sung K. Moon
- Department of Head and Neck Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jeong-Im Woo
- Department of Head and Neck Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - David J. Lim
- Department of Head and Neck Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
76
|
Abdel-Wahab WM, Moussa FI. Neuroprotective effect of N-acetylcysteine against cisplatin-induced toxicity in rat brain by modulation of oxidative stress and inflammation. Drug Des Devel Ther 2019; 13:1155-1162. [PMID: 31043768 PMCID: PMC6469471 DOI: 10.2147/dddt.s191240] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neurotoxicity is a major obstacle to the effectiveness of cisplatin (CDDP) in cancer chemotherapy. Oxidative stress and inflammation are considered to be the major mechanisms involved in CDDP-induced neurotoxicity. The rationale of our study was to investigate the efficacy of N-acetylcysteine (NAC) at two different doses in the management of CDDP-induced toxicity in rat brain by monitoring its antioxidant and anti-inflammatory effects. METHODS Thirty-five male rats were divided into five groups (n=7) as follows: control group (0.5 mL saline), NAC100 group (100 mg/kg), CDDP group (8 mg/kg), NAC50-CDDP group (50 mg/kg NAC and 8 mg/kg CDDP), and NAC100-CDDP group (100 mg/kg NAC and 8 mg/kg CDDP). NAC was administered for 20 consecutive days, while CDDP was injected once on day 15 of the treatment protocol. RESULTS The neurotoxicity of CDDP was evidenced by a marked increase in acetylcholinesterase and monoamine oxidase activities. It also induced oxidative stress as indicated by increased levels of lipid peroxidation, nitric oxide, and protein carbonyl with a concomitant decline in reduced glutathione, glutathione peroxidase, glutathione S-transferase, superoxide dismutase, and catalase in the brain. Moreover, CDDP enhanced the synthesis of pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, and interleukin-6. Treatment with NAC at the two selected doses significantly attenuated CDDP-induced changes in the brain cholinergic function, improved the brain oxidant/antioxidant status, and also reversed the overproduction of pro-inflammatory cytokines in brain and serum. CONCLUSION NAC could serve as an appropriate and safe complementary therapeutic agent to attenuate the toxicity of CDDP in the brain and therefore improve its outcomes in chemotherapy.
Collapse
Affiliation(s)
- Wessam M Abdel-Wahab
- Department of Zoology, Faculty of Science, University of Alexandria, Alexandria, Egypt,
- Department of Basic Sciences/Biology Unit, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahaman Bin Faisal University, Dammam, Saudi Arabia,
| | - Farouzia I Moussa
- Department of Zoology, Faculty of Science, University of Alexandria, Alexandria, Egypt,
| |
Collapse
|
77
|
OHC-TRECK: A Novel System Using a Mouse Model for Investigation of the Molecular Mechanisms Associated with Outer Hair Cell Death in the Inner Ear. Sci Rep 2019; 9:5285. [PMID: 30918314 PMCID: PMC6437180 DOI: 10.1038/s41598-019-41711-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
Outer hair cells (OHCs) are responsible for the amplification of sound, and the death of these cells leads to hearing loss. Although the mechanisms for sound amplification and OHC death have been well investigated, the effects on the cochlea after OHC death are poorly understood. To study the consequences of OHC death, we established an OHC knockout system using a novel mouse model, Prestin-hDTR, which uses the prestin promoter to express the human diphtheria toxin (DT) receptor gene (hDTR). Administration of DT to adult Prestin-hDTR mice results in the depletion of almost all OHCs without significant damage to other cochlear and vestibular cells, suggesting that this system is an effective tool for the analysis of how other cells in the cochlea and vestibula are affected after OHC death. To evaluate the changes in the cochlea after OHC death, we performed differential gene expression analysis between the untreated and DT-treated groups of wild-type and Prestin-hDTR mice. This analysis revealed that genes associated with inflammatory/immune responses were significantly upregulated. Moreover, we found that several genes linked to hearing loss were strongly downregulated by OHC death. Together, these results suggest that this OHC knockout system is a useful tool to identify biomarkers associated with OHC death.
Collapse
|
78
|
Capsaicin Protects Against Cisplatin Ototoxicity by Changing the STAT3/STAT1 Ratio and Activating Cannabinoid (CB2) Receptors in the Cochlea. Sci Rep 2019; 9:4131. [PMID: 30858408 PMCID: PMC6411993 DOI: 10.1038/s41598-019-40425-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 07/26/2018] [Indexed: 12/20/2022] Open
Abstract
Capsaicin, the spicy component of hot chili peppers activates the TRPV1 pain receptors, and causes rapid desensitization. Capsaicin also ameliorates cisplatin-induced nephrotoxicity. Cisplatin, a commonly used anti-neoplastic agent for solid tumors causes significant hearing loss, nephrotoxicity and peripheral neuropathy. Upregulation of cochlear TRPV1 expression is related to cisplatin-mediated ototoxicity. Here we report that direct TRPV1 activation by localized trans-tympanic (TT) or oral administration of capsaicin (TRPV1 agonist) prevents cisplatin ototoxicity by sustained increased activation of pro-survival transcription factor signal transducer and activator of transcription (STAT3) in the Wistar rat. Cisplatin treatment produced prolonged activation of pro-apoptotic Ser727 p-STAT1 and suppressed Tyr705-p-STAT3 for up to 72 h in the rat cochlea. Our data indicate that capsaicin causes a transient STAT1 activation via TRPV1 activation, responsible for the previously reported temporary threshold shift. Additionally, we found that capsaicin increased cannabinoid receptor (CB2) in the cochlea, which leads to pro-survival Tyr705-p-STAT3 activation. This tilts the delicate balance of p-STAT3/p-STAT1 towards survival. Furthermore, capsaicin mediated protection is lost when CB2 antagonist AM630 is administered prior to capsaicin treatment. In conclusion, capsaicin otoprotection appears to be mediated by activation of CB2 receptors in the cochlea which are coupled to both STAT1 and STAT3 activation.
Collapse
|
79
|
Castañeda R, Natarajan S, Jeong SY, Hong BN, Kang TH. Traditional oriental medicine for sensorineural hearing loss: Can ethnopharmacology contribute to potential drug discovery? JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:409-428. [PMID: 30439402 DOI: 10.1016/j.jep.2018.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Traditional Oriental Medicine (TOM), the development of hearing pathologies is related to an inadequate nourishment of the ears by the kidney and other organs involved in regulation of bodily fluids and nutrients. Several herbal species have historically been prescribed for promoting the production of bodily fluids or as antiaging agents to treat deficiencies in hearing. AIM OF REVIEW The prevalence of hearing loss has been increasing in the last decade and is projected to grow considerably in the coming years. Recently, several herbal-derived products prescribed in TOM have demonstrated a therapeutic potential for acquired sensorineural hearing loss and tinnitus. Therefore, the aims of this review are to provide a comprehensive overview of the current known efficacy of the herbs used in TOM for preventing different forms of acquired sensorineural hearing loss and tinnitus, and associate the traditional principle with the demonstrated pharmacological mechanisms to establish a solid foundation for directing future research. METHODS The present review collected the literature related to herbs used in TOM or related compounds on hearing from Chinese, Korean, and Japanese herbal classics; library catalogs; and scientific databases (PubMed, Scopus, Google Scholar; and Science Direct). RESULTS This review shows that approximately 25 herbal species and 40 active compounds prescribed in TOM for hearing loss and tinnitus have shown in vitro or in vivo beneficial effects for acquired sensorineural hearing loss produced by noise, aging, ototoxic drugs or diabetes. The inner ear is highly vulnerable to ischemia and oxidative damage, where several TOM agents have revealed a direct effect on the auditory system by normalizing the blood supply to the cochlea and increasing the antioxidant defense in sensory hair cells. These strategies have shown a positive impact on maintaining the inner ear potential, sustaining the production of endolymph, reducing the accumulation of toxic and inflammatory substances, preventing sensory cell death and preserving sensory transmission. There are still several herbal species with demonstrated therapeutic efficacy whose mechanisms have not been deeply studied and others that have been traditionally used in hearing loss but have not been tested experimentally. In clinical studies, Ginkgo biloba, Panax ginseng, and Astragalus propinquus have demonstrated to improve hearing thresholds in patients with sensorineural hearing loss and alleviated the symptoms of tinnitus. However, some of these clinical studies have been limited by small sample sizes, lack of an adequate control group or contradictory results. CONCLUSIONS Current therapeutic strategies have proven that the goal of the traditional oriental medicine principle of increasing bodily fluids is a relevant approach for reducing the development of hearing loss by improving microcirculation in the blood-labyrinth barrier and increasing cochlear blood flow. The potential benefits of TOM agents expand to a multi-target approach on different auditory structures of the inner ear related to increased cochlear blood flow, antioxidant, anti-inflammatory, anti-apoptotic and neuroprotective activities. However, more research is required, given the evidence is very limited in terms of the mechanism of action at the preclinical in vivo level and the scarce number of clinical studies published.
Collapse
Affiliation(s)
- Rodrigo Castañeda
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Sathishkumar Natarajan
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Seo Yule Jeong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Bin Na Hong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea.
| | - Tong Ho Kang
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| |
Collapse
|
80
|
Bishr A, Sallam N, Nour El-Din M, Awad AS, Kenawy SA. Ambroxol attenuates cisplatin-induced hepatotoxicity and nephrotoxicity via inhibition of p-JNK/p-ERK. Can J Physiol Pharmacol 2019; 97:55-64. [DOI: 10.1139/cjpp-2018-0528] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatotoxicity and nephrotoxicity are important drawbacks of cisplatin. The objective of this study is to evaluate the ability of ambroxol in 2 different doses (35 and 70 mg/kg, i.p.) to protect liver and kidney from damage induced by a single dose of cisplatin (10 mg/kg, i.p.) in comparison with N-acetylcysteine (250 mg/kg, i.p.). Inflammatory, oxidative stress, and apoptotic biomarkers were investigated to show the influence of ambroxol on hepatotoxicity and nephrotoxicity. Ambroxol decreased the elevated activity of liver enzymes (aspartate aminotransferase and alanine aminotransferase) and kidney function tests (blood urea nitrogen and creatinine). Ambroxol mitigated cisplatin inflammatory damage by inhibition of tumor necrosis factor-α, interleukin-1β, and nuclear factor kappa-B and elevation of nuclear factor erythroid 2-related factor 2. Moreover, ambroxol inhibited oxidative damage indicated by reduction of malondialdehyde and replenished the store of reduced glutathione likely by upregulating glutathione reductase and superoxide dismutase. Elevation of phosphorylated c-Jun N-terminal kinases (p-JNK) and phosphorylated extracellular signal-regulated kinase (p-ERK) were attenuated by ambroxol associated with a decrease in the expression of caspase-3; these results were consistent with histopathological results. These results recommend ambroxol to be co-administered with cisplatin in cancer patients to ameliorate liver and kidney damage, and this was confirmed by MTT assay.
Collapse
Affiliation(s)
- Abeer Bishr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Nada Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza City, Giza, Egypt
| | - Mahmoud Nour El-Din
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Azza S. Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Sanaa A. Kenawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza City, Giza, Egypt
| |
Collapse
|
81
|
Waykar BB, Ali Alqadhi Y. Administration of Honey and Royal Jelly Ameliorate Cisplatin Induced Changes in Liver and Kidney Function in Rat. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bpj/1601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although cisplatin is an effective drug, its clinical use is limited because of its side effects. Honey and royal jelly are natural antioxidants that can be extracted from honey bees. The aim of this investigation is to study the ameliorative role of both honey and royal jelly against cisplatin induced changes in levels of liver and kidney function biomarkers in rat. Male wistar albino rats of almost same age and weight were divided randomly into four groups. Group I: (control group) rats were given 0.9% saline. Group II; (cisplatin group) rats were injected by cisplatin (7mg/ kg/ day) intraperitoneally for 15 days. Group III; (Honey and Royall jelly group) rats were fed orally honey (500 mg/kg/day) with royal jelly (100mg/kg/day) for 15 days. Group IV; (cisplatin and honey with royal jelly group) rats were injected cisplatin (7mg/kg/day) intraperitoneally and fed orally honey (500mg/kg/day) with royal jelly (100mg/kg/day) daily for 15 days. At the end of experiment, blood was collected and serum was got by centrifugation at 3500 rpm. Serum obtained was analyzed for liver function test by estimating ALT, AST, ALP, total bilirubin, albumin, and total protein and kidney function test by estimating creatinine, urea, and uric acid levels. Administration of cisplatin to rats (Group, II) leads to a significant increase in serum ALT, AST, ALP enzyme activity, while the values of total bilirubin, total protein and albumin were significantly decreased as compared to control. Oral supplementation of royal jelly and honey to rats (Group, III) showed comparable enzyme activity of ALT, AST, ALP and values of total bilirubin, total protein and albumin to control. In the rat group that were administered honey and royal jelly in association of cisplatin (Group, IV) improvement was observed in liver function biomarkers. Cisplatin administrated rats (G, II) shows a significant increase in the values of kidney function biomarkers like creatinine, urea and uric acid compare to control. Oral supplementation of royal jelly and honey treated to rats (Group, III) showed comparable values of creatinine, urea and uric acid to control. In the rat group that were administered honey and royal jelly in association of cisplatin (Group, IV) improvement was observed in kidney function biomarkers. The study found that combined administration of honey and royal jelly attenuated the cisplatin induced alterations in liver and kidney function biomarkers, because honey and royal jelly are free radical scavengers, lipid peroxidation inhibitors and anti-inflammatory effects and hence are recommended during the cisplatin chemotherapy.
Collapse
Affiliation(s)
- Bhalchandra Baburao Waykar
- Department of Zoology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431001, Maharashtra, India
| | - Yahya Ali Alqadhi
- Department of Zoology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431001, Maharashtra, India
| |
Collapse
|
82
|
Zhang Y, Zhang W, Wang H, Yang B. miR-21 Contributes to Human Amniotic Membrane-Derived Mesenchymal Stem Cell Growth and Human Amniotic Membrane-Derived Mesenchymal Stem Cell-Induced Immunoregulation. Genet Test Mol Biomarkers 2018; 22:665-673. [PMID: 30481073 DOI: 10.1089/gtmb.2018.0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Wenjin Zhang
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, PR China
| | - Huancheng Wang
- Department of Blood Transfusion, The First People's Hospital of Nanyang, Nanyang, PR China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
83
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
84
|
Abstract
Sensorineural hearing impairment is the most common sensory disorder and a major health and socio-economic issue in industrialized countries. It is primarily due to the degeneration of mechanosensory hair cells and spiral ganglion neurons in the cochlea via complex pathophysiological mechanisms. These occur following acute and/or chronic exposure to harmful extrinsic (e.g., ototoxic drugs, noise...) and intrinsic (e.g., aging, genetic) causative factors. No clinical therapies currently exist to rescue the dying sensorineural cells or regenerate these cells once lost. Recent studies have, however, provided renewed hope, with insights into the therapeutic targets allowing the prevention and treatment of ototoxic drug- and noise-induced, age-related hearing loss as well as cochlear cell degeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes are showing promise, as are cell-replacement therapies to repair damaged cells for the future restoration of hearing in deaf people. This review begins by recapitulating our current understanding of the molecular pathways that underlie cochlear sensorineural damage, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. It then guides the reader through to the recent discoveries in pharmacological, gene and cell therapy research towards hearing protection and restoration as well as their potential clinical application.
Collapse
Affiliation(s)
- Jing Wang
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
85
|
Kim SJ, Park C, Lee JN, Park R. Protective roles of fenofibrate against cisplatin-induced ototoxicity by the rescue of peroxisomal and mitochondrial dysfunction. Toxicol Appl Pharmacol 2018; 353:43-54. [PMID: 29908243 DOI: 10.1016/j.taap.2018.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/18/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022]
Abstract
Cisplatin is an alkylating agent that interferes with DNA replication and kills proliferating carcinogenic cells. Several studies have been conducted to attenuate the side effects of cisplatin; one such side effect in cancer patients undergoing cisplatin chemotherapy is ototoxicity. However, owing to a lack of understanding of the precise mechanism underlying cisplatin-induced side effects, management of cisplatin-induced ototoxicity remains unsolved. We investigated the protective effects of fenofibrate, a PPAR-α activator, on cisplatin-induced ototoxicity. Fenofibrate prevented cisplatin-induced loss of hair cells and improved cell viability; moreover, fenofibrate significantly attenuated the threshold of auditory brainstem responses (ABR) in cisplatin-injected mice. Fenofibrate significantly increased PPAR-α, PPAR-γ, and PGC-1α expression, which consequently resulted in increased number and functional enzyme levels of peroxisomes and mitochondria, and markedly decreased phospho-p53 (S15), activated caspase-3, cleaved-PARP, and NF-κB p65 nuclear translocation, which reduced NADPH oxidase isoform (NOX3 and NOX4) expression, thereby decreasing reactive oxygen species (ROS) production in cisplatin-treated tissues ex vivo. Taken together, these results indicate that fenofibrate rescues cisplatin-induced ototoxicity by maintaining peroxisome and mitochondria number and function, reducing inflammation, and decreasing ROS levels. Our findings suggest that fenofibrate administration might serve as an effective therapeutic agent against cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Se-Jin Kim
- Lab of Peroxisomes & Lipid Metabolism, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Channy Park
- Lab of Peroxisomes & Lipid Metabolism, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Joon No Lee
- Lab of Peroxisomes & Lipid Metabolism, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Raekil Park
- Lab of Peroxisomes & Lipid Metabolism, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
86
|
Marchiori LLM, Dias ACM, Gonçalvez AS, Poly-Frederico RC, Doi MY. Association between polymorphism of tumor necrosis factor alpha (tnfα) in the region -308 g/a with tinnitus in the elderly with a history of occupational noise exposure. Noise Health 2018; 20:37-41. [PMID: 29676293 PMCID: PMC5926314 DOI: 10.4103/nah.nah_34_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Context: Tinnitus is a common disorder that occurs frequently across all strata of population and has an important health concern and is often associated with different forms of the hearing loss of varying severity. Aims: To investigate the association between the polymorphism of tumor necrosis factor alpha (TNFα) in the region −308 G/A with the susceptibility to tinnitus in individuals with the history of exposure to occupational noise. Settings and Design: This was a cross-sectional study with a sample of 179 independent elderly people above 60 years of age. Materials and Methods: Information on exposure to occupational noise was obtained by interviews. Audiological evaluation was performed using pure tone audiometry and genotyped through polymerase chain reaction by restriction fragment length polymorphism. Statistical Analysis Used: Data were analyzed using the chi-square test and the odds ratio (OR), with the significance level set at 5%. Results: Among elderly with tinnitus (43.01%), 33.76% had a history of exposure to occupational noise. A statistically significant association was found between genotype frequencies of the TNFα gene in the −308 G/A region and the complaint of tinnitus (P = 0.04 and χ2 = 4.19). The elderly with the G allele were less likely to have tinnitus due to occupational noise exposure when compared to those carrying the A allele (OR = 2.74; 95% CI: 1.56–4.81; P < 0.0005). Conclusion: This study suggests an association between the TNFα with susceptibility to tinnitus in individuals with a history of exposure to occupational noise.
Collapse
Affiliation(s)
- Luciana L M Marchiori
- Centre of Biological and Health Sciences (CCBS), University of Northern Paraná (UNOPAR), Londrina, PR, Brazil
| | - Ana C M Dias
- Centre of Biological and Health Sciences (CCBS), University of Northern Paraná (UNOPAR), Londrina, PR, Brazil
| | - Alyne S Gonçalvez
- Centre of Biological and Health Sciences (CCBS), University of Northern Paraná (UNOPAR), Londrina, PR, Brazil
| | - Regina C Poly-Frederico
- Research Centre in Health Sciences (CPCS), University of Northern Paraná (UNOPAR), Londrina, PR, Brazil
| | - Marcelo Y Doi
- Research Centre in Health Sciences (CPCS), University of Northern Paraná (UNOPAR), Londrina, PR, Brazil
| |
Collapse
|
87
|
Yin H, Yang Q, Cao Z, Li H, Yu Z, Zhang G, Sun G, Man R, Wang H, Li J. Activation of NLRX1-mediated autophagy accelerates the ototoxic potential of cisplatin in auditory cells. Toxicol Appl Pharmacol 2018; 343:16-28. [DOI: 10.1016/j.taap.2018.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/25/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023]
|
88
|
Mateer EJ, Huang C, Shehu NY, Paessler S. Lassa fever-induced sensorineural hearing loss: A neglected public health and social burden. PLoS Negl Trop Dis 2018; 12:e0006187. [PMID: 29470486 PMCID: PMC5823363 DOI: 10.1371/journal.pntd.0006187] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although an association between Lassa fever (LF) and sudden-onset sensorineural hearing loss (SNHL) was confirmed clinically in 1990, the prevalence of LF-induced SNHL in endemic countries is still underestimated. LF, a viral hemorrhagic fever disease caused by Lassa virus (LASV), is endemic in West Africa, causing an estimated 500,000 cases and 5,000 deaths per year. Sudden-onset SNHL, one complication of LF, occurs in approximately one-third of survivors and constitutes a neglected public health and social burden. In the endemic countries, where access to hearing aids is limited, SNHL results in a decline of the quality of life for those affected. In addition, hearing loss costs Nigeria approximately 43 million dollars per year. The epidemiology of LF-induced SNHL has not been characterized well. The complication of LF induced by SNHL is also an important consideration for vaccine development and treatments. However, research into the mechanism has been hindered by the lack of autopsy samples and relevant small animal models. Recently, the first animal model that mimics the symptoms of SNHL associated with LF was developed. Preliminary data from the new animal model as well as the clinical case studies support the mechanism of immune-mediated injury that causes SNHL in LF patients. This article summarizes clinical findings of hearing loss in LF patients highlighting the association between LASV infection and SNHL as well as the potential mechanism(s) for LF-induced SNHL. Further research is necessary to identify the mechanism and the epidemiology of LF-induced SNHL.
Collapse
Affiliation(s)
- Elizabeth J. Mateer
- Department of Pathology and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Cheng Huang
- Department of Pathology and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nathan Y. Shehu
- Department of Medicine, Infectious Disease Unit, Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | - Slobodan Paessler
- Department of Pathology and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
89
|
Ren Y, Stankovic KM. The Role of Tumor Necrosis Factor Alpha (TNFα)in Hearing Loss and Vestibular Schwannomas. CURRENT OTORHINOLARYNGOLOGY REPORTS 2018; 6:15-23. [PMID: 31485383 DOI: 10.1007/s40136-018-0186-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of review The aim of this review is to highlight relevant literature on the role of tumor necrosis factor alpha (TNFα) in sensorineural hearing loss (SNHL) and vestibular schwannomas (VS). Recent Findings A comprehensive review of publically available databases including PubMed was performed. The mechanism by which hearing loss occurs in VS is still unknown and likely multifactorial. Genetic differences between VSs and tumor secreted proteins may be responsible, at least in part, for VS-associated SNHL. TNFα has pleotropic roles in promoting inflammation, maintaining cellular homeostasis, inducing apoptosis, and mediating ototoxicity in patients with sporadic VS. TNFα-targeted therapies have shown efficacy in both animal models of sensorineural hearing loss and clinical trials in patients with immune-mediated hearing loss. Efforts are underway to develop novel nanotechnology-based methods to target TNFα and other pathogenic molecules in VS. Summary Development of molecularly targeted therapies against TNFα represents an important area of research in ameliorating VS-associated hearing loss.
Collapse
Affiliation(s)
- Yin Ren
- Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Konstantina M Stankovic
- Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.,Eaton Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA.,Harvard Program in Speech and Hearing Bioscience and Technology, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
90
|
Alabi QK, Akomolafe RO, Olukiran OS, Nafiu AO, Adefisayo MA, Owotomo OI, Omole JG, Olamilosoye KP. Combined Administration ofl-Carnitine and Ascorbic Acid Ameliorates Cisplatin-Induced Nephrotoxicity in Rats. J Am Coll Nutr 2018; 37:387-398. [DOI: 10.1080/07315724.2017.1409139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Quadri Kunle Alabi
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
- Department of Haematology and Blood Transfusion, College of Medicine, Faculty of Basic Medical Sciences, Afe Babalola University, Ado Ekiti, Ekiti, State, Nigeria
| | - Rufus Ojo Akomolafe
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Olaoluwa Sesan Olukiran
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Aliyat Olajumoke Nafiu
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Modinat Adebukola Adefisayo
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
- Department of Physiology, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo State, Nigeria
| | - Olurotimi Isaac Owotomo
- Department of Haematology and Immunology, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Joseph Gbenga Omole
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Kehinde Peace Olamilosoye
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| |
Collapse
|
91
|
Sandoval R, Lazcano P, Ferrari F, Pinto-Pardo N, González-Billault C, Utreras E. TNF-α Increases Production of Reactive Oxygen Species through Cdk5 Activation in Nociceptive Neurons. Front Physiol 2018; 9:65. [PMID: 29467671 PMCID: PMC5808211 DOI: 10.3389/fphys.2018.00065] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
The participation of reactive oxygen species (ROS) generated by NOX1 and NOX2/NADPH oxidase has been documented during inflammatory pain. However, the molecular mechanism involved in their activation is not fully understood. We reported earlier a key role of Cyclin-dependent kinase 5 (Cdk5) during inflammatory pain. In particular, we demonstrated that TNF-α increased p35 expression, a Cdk5 activator, causing Cdk5-mediated TRPV1 phosphorylation followed by an increment in Ca2+ influx in nociceptive neurons and increased pain sensation. Here we evaluated if Cdk5 activation mediated by p35 transfection in HEK293 cells or by TNF-α treatment in primary culture of nociceptive neurons could increase ROS production. By immunofluorescence we detected the expression of catalytic subunit (Nox1 and Nox2) and their cytosolic regulators (NOXO1 and p47phox) of NOX1 and NOX2/NADPH oxidase complexes, and their co-localization with Cdk5/p35 in HEK293 cells and in nociceptive neurons. By using a hydrogen peroxide sensor, we detected a significant increase of ROS production in p35 transfected HEK293 cells as compared with control cells. This effect was significantly blocked by VAS2870 (NADPH oxidase inhibitor) or by roscovitine (Cdk5 activity inhibitor). Also by using another ROS probe named DCFH-DA, we found a significant increase of ROS production in nociceptive neurons treated with TNF-α and this effect was also blocked by VAS2870 or by roscovitine treatment. Interestingly, TNF-α increased immunodetection of p35 protein and NOX1 and NOX2/NADPH oxidase complexes in primary culture of trigeminal ganglia neurons. Finally, the cytosolic regulator NOXO1 was significantly translocated to plasma membrane after TNF-α treatment and roscovitine blocked this effect. Altogether these results suggest that Cdk5 activation is implicated in the ROS production by NOX1 and NOX2/NADPH oxidase complexes during inflammatory pain.
Collapse
Affiliation(s)
- Rodrigo Sandoval
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Pablo Lazcano
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Franco Ferrari
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Nicolás Pinto-Pardo
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Doctorate in Biomedicine, Universidad de los Andes, Santiago, Chile
| | - Christian González-Billault
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Elías Utreras
- Laboratory of Molecular and Cellular Mechanisms of Pain, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| |
Collapse
|
92
|
Capelo IOJ, Batista AMA, Brito YNF, Diniz KB, Brito GADC, Freitas MRD. Study of the protective effect of dexamethasone on cisplatin-induced ototoxicity in rats. Acta Cir Bras 2018; 32:873-880. [PMID: 29160374 DOI: 10.1590/s0102-865020170100000009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To evaluate the ability of dexamethasone to protect against cisplatin (CDDP)-induced ototoxicity. METHODS Male Wistar rats were divided into the following three groups: 1) Control (C): 6 animals received intraperitoneal (IP) saline solution, 8 ml/kg/day for four days; 2) C + CDDP: 11 animals received 8 ml/kg/day of IP saline and, 90 min after saline administration, 8 mg/kg/day of IP CDDP for four days; and 3) DEXA15 + CDDP: 11 animals received IP dexamethasone 15 mg/kg/day and, 90 min after dexamethasone administration, received 8 mg/kg/day of IP CDDP for four days. RESULTS It was found that dexamethasone did not protect against weight loss in CDDP-exposed animals. The mortality rate was comparable with that previously reported in the literature. The auditory threshold of animals in the DEXA15 + CDDP group was not significantly altered after exposure to CDDP. The stria vascularis of animals in the DEXA15 + CDDP group was partially preserved after CDDP exposure. CONCLUSIONS Dexamethasone at the dose of 15 mg/kg/day partially protected against CDDP-induced ototoxicity, based on functional evaluation by brainstem evoked response audiontry (BERA) and morphological evaluation by optical microscopy. However, dexamethasone did not protect against systemic toxicity.
Collapse
Affiliation(s)
- Isabelle Oliveira Jatai Capelo
- MSc, Department of Surgery, Universidade Federal do Ceará (UFC), Fortaleza-CE, Brazil. Acquisition and interpretation of data, technical procedures, manuscript preparation
| | | | | | - Krissia Braga Diniz
- Graduate student, UFC, Fortaleza-CE, Brazil. Acquisition of data, technical procedures
| | - Gerly Anne de Castro Brito
- PhD, Associate Professor, Morphology Department, School of Medicine, UFC, Fortaleza-CE, Brazil. Analysis and interpretation of data, technical procedures, critical revision
| | - Marcos Rabelo de Freitas
- PhD, Associate Professor, School of Medicine, UFC, Fortaleza-CE, Brazil. Conception, design, intellectual and scientific content of the study; analysis and interpretation of data; critical revision
| |
Collapse
|
93
|
Martins MJB, Batista AMA, Brito YNF, Soares PMG, Martins CDS, Ribeiro RDA, Brito GADC, de Freitas MR. Effect of Remote Ischemic Preconditioning on Systemic Toxicity and Ototoxicity Induced by Cisplatin in Rats: Role of TNF-α and Nitric Oxide. ORL J Otorhinolaryngol Relat Spec 2018; 79:336-346. [PMID: 29339643 DOI: 10.1159/000485514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND/AIMS Cisplatin is a chemotherapeutic agent. The use of remote ischemic preconditioning (RIPC) was proposed after the observation that ischemic preconditioning of a cardiac vascular area could protect another completely distinctly. METHODS This is an experimental study. Male Wistar rats were anesthetized, and they underwent a hearing evaluation via measurement of the brainstem auditory evoked potential (BSAEP). Then, cisplatin was administered intraperitoneally (IP) at a dose of 8 mg/kg/day for 4 consecutive days to group 1, whereas saline solution was administered IP to group 2. In groups 3 and 4, ischemia of the right hind paw was performed for 10 min, followed by reperfusion for 30 min, after which cisplatin or saline was administered IP to group 3 or group 4, respectively. Afterwards, all animals were evaluated via the BSAEP. The right cochlea was dissected for immunohistochemistry. RESULTS RIPC lowered the increase in BSAEP of the animals treated with cisplatin (p = 0.0146). Weight loss decreased in the animals subjected to RIPC (p < 0.005). In group 3, RIPC reversed immunostaining for tumor necrosis factor-α and inducible nitric oxide synthase in the stria vascularis injured by cisplatin (p < 0.05). CONCLUSION RIPC protects against systemic toxicity and ototoxicity induced by cisplatin in rats.
Collapse
|
94
|
Dormer NH, Nelson-Brantley J, Staecker H, Berkland CJ. Evaluation of a transtympanic delivery system in Mus musculus for extended release steroids. Eur J Pharm Sci 2018; 126:3-10. [PMID: 29329746 DOI: 10.1016/j.ejps.2018.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The current investigation evaluated a novel extended release delivery system for treating inner ear diseases. The platform technology consists of a film forming agent (FFA) and microsphere component to localize and extend drug delivery within the ear. STUDY DESIGN Studies evaluated dissolution kinetics of microspheres with multiple encapsulates, testing of a variety of FFAs, and ability to localize to the round window membrane in mice in vivo. SETTING Studies were completed at Orbis Biosciences and The University of Kansas Medical Center. SUBJECTS In conjunction with in vitro characterization, an infrared dye-containing microsphere formulation was evaluated for round window membrane (RWM) localization and general tolerability in C57/BL6 Mus musculus for 35 days. METHODS In vitro characterization was performed using upright diffusion cells on cellulose acetate membranes, with drug content quantified by high performance liquid chromatography. Mus musculus dosing of infrared dye-containing microspheres was performed under anesthesia with a 27 GA needle and 2.0 μL injection volume RESULTS: In vitro dissolution demonstrates the ability of the FFA with microsphere platform to release steroids, proteins, peptides, and nucleic acids for at least one month, while necroscopy shows the ability of the FFA with dye-loaded microspheres to remain localized to Mus musculus RWM for the same period of time, with favorable tolerability. CONCLUSIONS Combining FFA and microsphere for localized drug delivery may enable cost-effective, extended release local delivery to the inner ear of new and existing small molecules, proteins, peptides, and nucleic acids.
Collapse
Affiliation(s)
| | - Jennifer Nelson-Brantley
- The University of Kansas Medical Center, Department of Otolaryngology-Head and Neck Surgery, 3901 Rainbow Boulevard, Kansas City, KS, USA
| | - Hinrich Staecker
- The University of Kansas Medical Center, Department of Otolaryngology-Head and Neck Surgery, 3901 Rainbow Boulevard, Kansas City, KS, USA
| | - Cory J Berkland
- Orbis Biosciences, 8006 Reeder Street, Lenexa, KS, USA; The University of Kansas Department of Pharmaceutical Chemistry, 2030 Becker Drive, Lawrence, KS, USA
| |
Collapse
|
95
|
Sheth S, Mukherjea D, Rybak LP, Ramkumar V. Mechanisms of Cisplatin-Induced Ototoxicity and Otoprotection. Front Cell Neurosci 2017; 11:338. [PMID: 29163050 PMCID: PMC5663723 DOI: 10.3389/fncel.2017.00338] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
Evidence of significant hearing loss during the early days of use of cisplatin as a chemotherapeutic agent in cancer patients has stimulated research into the causes and treatment of this side effect. It has generally been accepted that hearing loss is produced by excessive generation of reactive oxygen species (ROS) in cell of the cochlea, which led to the development of various antioxidants as otoprotective agents. Later studies show that ROS could stimulate cochlear inflammation, suggesting the use of anti-inflammatory agents for treatment of hearing loss. In this respect, G-protein coupled receptors, such as adenosine A1 receptor and cannabinoid 2 receptors, have shown efficacy in the treatment of hearing loss in experimental animals by increasing ROS scavenging, suppressing ROS generation, or by decreasing inflammation. Inflammation could be triggered by activation of transient receptor potential vanilloid 1 (TRPV1) channels in the cochlea and possibly other TRP channels. Targeting TRPV1 for knockdown has also been shown to be a useful strategy for ensuring otoprotection. Cisplatin entry into cochlear hair cells is mediated by various transporters, inhibitors of which have been shown to be effective for treating hearing loss. Finally, cisplatin-induced DNA damage and activation of the apoptotic process could be targeted for cisplatin-induced hearing loss. This review focuses on recent development in our understanding of the mechanisms underlying cisplatin-induced hearing loss and provides examples of how drug therapies have been formulated based on these mechanisms.
Collapse
Affiliation(s)
- Sandeep Sheth
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Debashree Mukherjea
- Department of Surgery (Otolaryngology), Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Leonard P Rybak
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States.,Department of Surgery (Otolaryngology), Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| |
Collapse
|
96
|
Mwangi M, Kil SH, Phak D, Park HY, Lim DJ, Park R, Moon SK. Interleukin-10 Attenuates Hypochlorous Acid-Mediated Cytotoxicity to HEI-OC1 Cochlear Cells. Front Cell Neurosci 2017; 11:314. [PMID: 29056901 PMCID: PMC5635053 DOI: 10.3389/fncel.2017.00314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Inflammatory reaction plays a crucial role in the pathophysiology of acquired hearing loss such as ototoxicity and labyrinthitis. In our earlier work, we showed the pivotal role of otic fibrocytes in cochlear inflammation and the critical involvement of proinflammatory cytokines in cisplatin ototoxicity. We also demonstrated that otic fibrocytes inhibit monocyte chemoattractant protein 1 (CCL2) upregulation in response to interleukin-10 (IL-10) via heme oxygenase 1 (HMOX1) signaling, resulting in suppression of cochlear inflammation. However, it is still unclear how IL-10 affects inflammation-mediated cochlear injury. Here we aim to determine how hypochlorous acid, a model inflammation mediator affects cochlear cell viability and how IL-10 affects hypochlorous acid-mediated cochlear cell injury. NaOCl, a sodium salt of hypochlorous acid (HOCl) was found to induce cytotoxicity of HEI-OC1 cells in a dose-dependent manner. Combination of hydrogen peroxide and myeloperoxidase augmented cisplatin cytotoxicity, and this synergism was inhibited by N-Acetyl-L-cysteine and ML-171. The rat spiral ligament cell line (RSL) appeared to upregulate the antioxidant response element (ARE) activities upon exposure to IL-10. RSL cells upregulated the expression of NRF2 (an ARE ligand) and NR0B2 in response to CoPP (a HMOX1 inducer), but not to ZnPP (a HMOX1 inhibitor). Adenovirus-mediated overexpression of NR0B2 was found to suppress CCL2 upregulation. IL-10-positive cells appeared in the mouse stria vascularis 1 day after intraperitoneal injection of lipopolysaccharide (LPS). Five days after injection, IL-10-positive cells were observed in the spiral ligament, spiral limbus, spiral ganglia, and suprastrial area, but not in the stria vascularis. IL-10R1 appeared to be expressed in the mouse organ of Corti as well as HEI-OC1 cells. HEI-OC1 cells upregulated Bcl-xL expression in response to IL-10, and IL-10 was shown to attenuate NaOCl-induced cytotoxicity. In addition, HEI-OC1 cells upregulated IL-22RA upon exposure to cisplatin, and NaOCl cytotoxicity was inhibited by IL-22. Taken together, our findings suggest that hypochlorous acid is involved in cochlear injury and that IL-10 potentially reduces cochlear injury through not only inhibition of inflammation but also enhancement of cochlear cell viability. Further studies are needed to determine immunological characteristics of intracochlear IL-10-positive cells and elucidate molecular mechanisms involved in the otoprotective activity of IL-10.
Collapse
Affiliation(s)
- Martin Mwangi
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sung-Hee Kil
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Phak
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hun Yi Park
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, South Korea
| | - David J Lim
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Raekil Park
- Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Sung K Moon
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
97
|
Intestinal toxicity evaluation of long-circulating and pH-sensitive liposomes loaded with cisplatin. Eur J Pharm Sci 2017; 106:142-151. [DOI: 10.1016/j.ejps.2017.05.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 12/20/2022]
|
98
|
Prophylactic etanercept treatment in cisplatin ototoxicity. Eur Arch Otorhinolaryngol 2017; 274:3577-3583. [PMID: 28730299 DOI: 10.1007/s00405-017-4677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/15/2017] [Indexed: 10/19/2022]
Abstract
The aim of our study was to evaluate the audiological protective effects of etanercept using distortion product otoacoustic emission (DPOAE) in rats with hearing loss due to cisplatin ototoxicity. The study began with 36 healthy female albino rats; 31 rats had good measurements in DPOAE and were included in the study. On day 0, a single dose of etanercept was given by intraperitoneal administration to 15 rats (etanercept group). No medication was given to the control group. After 24 h, 16 mg/kg cisplatin was given to all rats. DPOAE measurements were performed on the 3rd, 7th, and 21st day. After the DPOAE test on the 21st day, the animals were killed by decapitation. Between-group and intra-group comparisons were made using the data of the two groups. A statistically significant difference was observed on the 3rd day at 4921 Hz and higher frequencies, on the 7th day at 6064 Hz and higher frequencies, and on the 21st day at 6494 Hz and higher frequencies (p < 0.05). We observed 10% ototoxicity in the etanercept group and 56% ototoxicity in the control group. A single dose of etanercept 1 day before cisplatin administration decreases cisplatin ototoxicity in the early period. This effect comes to the fore especially over 4500 Hz frequencies at 65 dB and higher.
Collapse
|
99
|
Youm I, West MB, Li W, Du X, Ewert DL, Kopke RD. siRNA-loaded biodegradable nanocarriers for therapeutic MAPK1 silencing against cisplatin-induced ototoxicity. Int J Pharm 2017. [PMID: 28627458 DOI: 10.1016/j.ijpharm.2017.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ototoxicity represents a major adverse side-effect of cis-diamminedichloroplatinum-II (cisplatin, CDDP). The mitogen-activated protein kinase (MAPK) pathway is thought to play a central role in potentiating the apoptotic effect of CDDP within the cochlea. We hypothesized that prophylactic inhibition of MAPK signaling, using small interfering RNA (siRNA), might confer a protective effect against CDDP-induced apoptosis within the auditory sensory epithelia. To enhance the therapeutic utility of this approach, we synthesized biocompatible siMAPK1-loaded nanoparticles (NPs) and performed physicochemical characterizations for size, morphology, drug loading and release kinetics, using dynamic light scattering, electron microscopy and spectrophotometric analyses, respectively. Our findings show 183.88±6.26 nm-sized spherical siMAPK1-loaded NPs with -27.12±6.65mV zeta potential and 112.78±0.24pmol/mg of siMAPK1 loading that exhibit a sustained release profile for prolonged therapeutic efficacy. Synthesized NPs were validated for biocompatibility and prophylactically protected against CDDP-induced cytotoxicity in HEI-OC1 cells and hair cell loss in murine organotypic cochlear explants. Our study confirms a pivotal role for MAPK1 signaling as a potentiating factor for CDDP-induced apoptosis and cochlear hair cell loss, and highlights siMAPK1 NP treatment as a therapeutic strategy for limiting the ototoxic side-effects associated with systemic CDDP administration.
Collapse
Affiliation(s)
| | | | - Wei Li
- Hough Ear Institute, Oklahoma City, OK, USA
| | | | | | - Richard D Kopke
- Hough Ear Institute, Oklahoma City, OK, USA; Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Departments of Physiology and Otolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
100
|
Martín-Saldaña S, Palao-Suay R, Aguilar MR, Ramírez-Camacho R, San Román J. Polymeric nanoparticles loaded with dexamethasone or α-tocopheryl succinate to prevent cisplatin-induced ototoxicity. Acta Biomater 2017; 53:199-210. [PMID: 28213099 DOI: 10.1016/j.actbio.2017.02.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/23/2017] [Accepted: 02/11/2017] [Indexed: 12/20/2022]
Abstract
The aim of this work is the development of highly protective agents to be administered locally within the middle ear to avoid cisplatin-induced ototoxicity, which affects to 100% of the clinical patients at ultra-high concentrations (16mg/kg). The protective agents are based on polymeric nanoparticles loaded with dexamethasone or α-tocopheryl succinate as anti-inflammarory and anti-apoptotic molecules. Dexamethasone and α-tocopheryl succinate are poorly soluble in water and present severe side effects when systemic administered during long periods of time. Their incorporation in the hydrophobic core of nanoparticles with the appropriate hydrodynamic properties provides the desired effects in vitro (lower cisplatin-induced toxicity, decreasing of caspase 3/7 activity, and lower IL-1β release) and in vivo (reducing the hearing loss at the local level). The local administration of the nanoparticles by bullostomy provides an adequate dose of drug without systemic interference with the chemotherapeutic effect of cisplatin. STATEMENT OF SIGNIFICANCE 100% of the cancer patients receiving ultra-high doses of CDDP (16mg/kg) suffer severe hearing loss, being a limiting factor in antineoplastic treatments. In this paper we describe the application of polymeric nanoparticles loaded with dexamethasone or α-tocopheryl succinate to palliate the cisplatin ototoxicity derived from chemotherapy treatment. These new nanoparticles, that encapsulate, transport, and deliver dexamethasone or α-tocopheryl succinate in the middle ear, are able to partially prevent ototoxicity derived from high doses of CDDP. This is an interdisciplinary study in which in vitro and in vivo experiments are described and extensively discussed. The importance of the results opens an excellent opportunity to the translation to the clinic.
Collapse
Affiliation(s)
- Sergio Martín-Saldaña
- Department of Otorhinolaryngology, Puerta de Hierro Majadahonda University Hospital, C/ Manuel de Falla, 1, 28222 Majadahonda, Spain; Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/ Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Raquel Palao-Suay
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/ Juan de la Cierva, 3, 28006 Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain
| | - María Rosa Aguilar
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/ Juan de la Cierva, 3, 28006 Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain.
| | - Rafael Ramírez-Camacho
- Department of Otorhinolaryngology, Puerta de Hierro Majadahonda University Hospital, C/ Manuel de Falla, 1, 28222 Majadahonda, Spain; Universidad Autónoma de Madrid, Cantoblanco Campus University, 28049 Madrid, Spain
| | - Julio San Román
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/ Juan de la Cierva, 3, 28006 Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain
| |
Collapse
|