51
|
Lacasse MJ, Summers KL, Khorasani-Motlagh M, George GN, Zamble DB. Bimodal Nickel-Binding Site on Escherichia coli [NiFe]-Hydrogenase Metallochaperone HypA. Inorg Chem 2019; 58:13604-13618. [PMID: 31273981 DOI: 10.1021/acs.inorgchem.9b00897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[NiFe]-hydrogenase enzymes catalyze the reversible oxidation of hydrogen at a bimetallic cluster and are used by bacteria and archaea for anaerobic growth and pathogenesis. Maturation of the [NiFe]-hydrogenase requires several accessory proteins to assemble and insert the components of the active site. The penultimate maturation step is the delivery of nickel to a primed hydrogenase enzyme precursor protein, a process that is accomplished by two nickel metallochaperones, the accessory protein HypA and the GTPase HypB. Recent work demonstrated that nickel is rapidly transferred to HypA from GDP-loaded HypB within the context of a protein complex in a nickel selective and unidirectional process. To investigate the mechanism of metal transfer, we examined the allosteric effects of nucleotide cofactors and partner proteins on the nickel environments of HypA and HypB by using a combination of biochemical, microbiological, computational, and spectroscopic techniques. We observed that loading HypB with either GDP or a nonhydrolyzable GTP analogue resulted in a similar nickel environment. In addition, interaction with a mutant version of HypA with disrupted nickel binding, H2Q-HypA, does not induce substantial changes to the HypB G-domain nickel site. Instead, the results demonstrate that HypB modifies the acceptor site of HypA. Analysis of a peptide maquette derived from the N-terminus of HypA revealed that nickel is predominately coordinated by atoms from the N-terminal Met-His motif. Furthermore, HypA is capable of two nickel-binding modes at the N-terminus, a HypB-induced mode and a binding mode that mirrors the peptide maquette. Collectively, these results reveal that HypB brings about changes in the nickel coordination of HypA, providing a mechanism for the HypB-dependent control of the acquisition and release of nickel by HypA.
Collapse
Affiliation(s)
- Michael J Lacasse
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Kelly L Summers
- Department of Chemistry , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5C9 , Canada
| | | | - Graham N George
- Department of Geological Sciences , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5E2 , Canada
| | - Deborah B Zamble
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada.,Department of Biochemistry , University of Toronto , Toronto , Ontario M5S 1A8 , Canada
| |
Collapse
|
52
|
Lv Y, Ezemaduka AN, Wang Y, Xu J, Li X. AgsA response to cadmium and copper effects at different temperatures in Escherichia coli. J Biochem Mol Toxicol 2019; 33:e22344. [PMID: 31211484 DOI: 10.1002/jbt.22344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/31/2019] [Accepted: 04/04/2019] [Indexed: 11/06/2022]
Abstract
Small heat shock proteins (sHsps), present from prokaryotes to eukaryotes, are a highly conserved molecular chaperone family. They play a crucial role in protecting organisms against cellular insults from single or multiple environmental stressors including heavy metal exposure, heat or cold shock, oxidative stress, desiccation, etc. Here, the toxicity of cadmium and copper, and their ability to modify the cellular growth rate at different temperatures in Escherichia coli cells were tested. Also, the response mechanism of the sHSP aggregation-suppressing protein (AgsA) in such multiple stress conditions was investigated. The results showed that the half effect concentration (EC50 ) of cadmium in AgsA-transformed E. coli cells at 37°C, 42°C, and 50°C were 11.106, 29.50, and 4.35 mg/L, respectively, and that of the control cells lacking AgsA were 5.05, 0.93, and 0.18 mg/L, respectively, while the half effect concentration (EC50 ) of copper in AgsA-transformed E. coli cells at 37°C, 42°C, and 50°C were 27.3, 3.40, and 1.28 mg/L, respectively, and that of the control cells lacking AgsA were 27.7, 5.93, and 0.134 mg/L, respectively. The toxicities of cadmium and copper at different temperatures as observed by their modification of the cellular growth rate and inhibitory effects were in a dose-dependent manner. Additionally, biochemical characterization of AgsA protein in cells subjected to cadmium and copper stresses at different temperatures implicated suppressed aggregation of cellular proteins in AgsA-transformed E. coli cells. Altogether, our data implicate the AgsA protein as a sensitive protein-based biomarker for metal-induced toxicity monitoring.
Collapse
Affiliation(s)
- Yanchun Lv
- Environmental Sciences, School of Environment, Northeast Normal University, Changchun, China
| | - Anastasia N Ezemaduka
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yunbiao Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jingbo Xu
- Environmental Sciences, School of Environment, Northeast Normal University, Changchun, China
| | - Xiujun Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
53
|
Messerli MA, Sarkar A. Advances in Electrochemistry for Monitoring Cellular Chemical Flux. Curr Med Chem 2019; 26:4984-5002. [PMID: 31057100 DOI: 10.2174/0929867326666190506111629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 11/22/2022]
Abstract
The transport of organic and inorganic molecules, along with inorganic ions across the plasma membrane results in chemical fluxes that reflect the cellular function in healthy and diseased states. Measurement of these chemical fluxes enables the characterization of protein function and transporter stoichiometry, characterization of a single cell and embryo viability prior to implantation, and screening of pharmaceutical agents. Electrochemical sensors emerge as sensitive and non-invasive tools for measuring chemical fluxes immediately outside the cells in the boundary layer, that are capable of monitoring a diverse range of transported analytes including inorganic ions, gases, neurotransmitters, hormones, and pharmaceutical agents. Used on their own or in combination with other methods, these sensors continue to expand our understanding of the function of rare cells and small tissues. Advances in sensor construction and detection strategies continue to improve sensitivity under physiological conditions, diversify analyte detection, and increase throughput. These advances will be discussed in the context of addressing technical challenges to measuring chemical flux in the boundary layer of cells and measuring the resultant changes to the chemical concentration in the bulk media.
Collapse
Affiliation(s)
- Mark A Messerli
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD. United States
| | - Anyesha Sarkar
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD. United States
| |
Collapse
|
54
|
Zhou DR, Eid R, Miller KA, Boucher E, Mandato CA, Greenwood MT. Intracellular second messengers mediate stress inducible hormesis and Programmed Cell Death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:773-792. [DOI: 10.1016/j.bbamcr.2019.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
|
55
|
Stevenson MJ, Uyeda KS, Harder NHO, Heffern MC. Metal-dependent hormone function: the emerging interdisciplinary field of metalloendocrinology. Metallomics 2019; 11:85-110. [PMID: 30270362 PMCID: PMC10249669 DOI: 10.1039/c8mt00221e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
For over 100 years, there has been an incredible amount of knowledge amassed concerning hormones in the endocrine system and their central role in human health. Hormones represent a diverse group of biomolecules that are released by glands, communicate signals to their target tissue, and are regulated by feedback loops to maintain organism health. Many disease states, such as diabetes and reproductive disorders, stem from misregulation or dysfunction of hormones. Increasing research is illuminating the intricate roles of metal ions in the endocrine system where they may act advantageously in concert with hormones or deleteriously catalyze hormone-associated disease states. As the critical role of metal ions in the endocrine system becomes more apparent, it is increasingly important to untangle the complex mechanisms underlying the connections between inorganic biochemistry and hormone function to understand and control endocrinological phenomena. This tutorial review harmonizes the interdisciplinary fields of endocrinology and inorganic chemistry in the newly-termed field of "metalloendocrinology". We describe examples linking metals to both normal and aberrant hormone function with a focus on highlighting insight to molecular mechanisms. Hormone activities related to both essential metal micronutrients, such as copper, iron, zinc, and calcium, and disruptive nonessential metals, such as lead and cadmium are discussed.
Collapse
Affiliation(s)
- Michael J Stevenson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
56
|
Ciofi-Baffoni S, Nasta V, Banci L. Protein networks in the maturation of human iron-sulfur proteins. Metallomics 2019; 10:49-72. [PMID: 29219157 DOI: 10.1039/c7mt00269f] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The biogenesis of iron-sulfur (Fe-S) proteins in humans is a multistage process occurring in different cellular compartments. The mitochondrial iron-sulfur cluster (ISC) assembly machinery composed of at least 17 proteins assembles mitochondrial Fe-S proteins. A cytosolic iron-sulfur assembly (CIA) machinery composed of at least 13 proteins has been more recently identified and shown to be responsible for the Fe-S cluster incorporation into cytosolic and nuclear Fe-S proteins. Cytosolic and nuclear Fe-S protein maturation requires not only the CIA machinery, but also the components of the mitochondrial ISC assembly machinery. An ISC export machinery, composed of a protein transporter located in the mitochondrial inner membrane, has been proposed to act in mediating the export process of a still unknown component that is required for the CIA machinery. Several functional and molecular aspects of the protein networks operative in the three machineries are still largely obscure. This Review focuses on the Fe-S protein maturation processes in humans with the specific aim of providing a molecular picture of the currently known protein-protein interaction networks. The human ISC and CIA machineries are presented, and the ISC export machinery is discussed with respect to possible molecules being the substrates of the mitochondrial protein transporter.
Collapse
Affiliation(s)
- Simone Ciofi-Baffoni
- Magnetic Resonance Center-CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy.
| | | | | |
Collapse
|
57
|
Dover EN, Patel NY, Stýblo M. Impact of in vitro heavy metal exposure on pancreatic β-cell function. Toxicol Lett 2018; 299:137-144. [PMID: 30300733 PMCID: PMC6214754 DOI: 10.1016/j.toxlet.2018.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 11/24/2022]
Abstract
Susceptibility to type-2 diabetes mellitus (DM) is determined, in part, by a variety of environmental factors, including exposure to metals. Heavy metals including inorganic arsenic (iAs), zinc (Zn), manganese (Mn), and cadmium (Cd) have been reported to affect glucose homeostasis or DM risk in population-based and/or laboratory studies. Previous evidence from our lab has shown that iAs can increase DM risk by impairing mitochondrial metabolism, one of the key steps in the regulation of glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells. The goal of the current study was to compare the effects of iAs on GSIS and mitochondrial function in INS-1 832/13 β-cells with those of Cd, Mn, and Zn, and to evaluate effects of binary mixtures of these metals. As expected, 24-hour exposure to iAs (arsenite, ≥1 μM) significantly inhibited GSIS as did Cd (5 μM) and Mn (12.5, 25, or 50 μM). Zn had no effects on GSIS at concentrations up to 50 μM. Mitochondrial function was assessed by measuring oxygen consumption rate (OCR) after glucose stimulation and during simulated mitochondrial stress. While both iAs and Mn impaired mitochondrial function (inhibiting OCR, maximal respiration, and/or spare respiratory capacity of mitochondria), no significant effects were found in cells exposed to Cd. Interestingly, no additive or synergistic effects on GSIS or OCR were observed in binary mixtures of iAs with either Mn or Cd. These data suggest that Mn, like iAs, may inhibit GSIS by impairing mitochondrial function, whereas Cd may target other mechanisms that regulate GSIS in β-cells.
Collapse
Affiliation(s)
- E Nicole Dover
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Naishal Y Patel
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
58
|
A copper transcription factor, AfMac1, regulates both iron and copper homeostasis in the opportunistic fungal pathogen Aspergillus fumigatus. Biochem J 2018; 475:2831-2845. [PMID: 30072493 DOI: 10.1042/bcj20180399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 11/17/2022]
Abstract
Although iron and copper are co-ordinately regulated in living cells, the homeostatic effects of each of these metals on the other remain unknown. Here, we show the function of AfMac1, a transcriptional activator of the copper and iron regulons of Aspergillus fumigatus, on the interaction between iron and copper. In addition to the copper-specific AfMac1-binding motif 5'-TGTGCTCA-3' found in the promoter region of ctrC, the iron-specific AfMac1-binding motif 5'-AT(C/G)NN(A/T)T(A/C)-3' was identified in the iron regulon but not in the copper regulon by ChIP sequence analysis. Furthermore, mutation of the AfMac1-binding motif of sit1 eliminated AfMac1-mediated sit1 up-regulation. Interestingly, the regulation of gene expression in the iron regulon by AfMac1 was not affected by copper and vice versa AfMac1 localized to the nucleus under iron- or copper-depleted conditions, and AfMac1 was mostly detected in the cytoplasm under iron- or copper-replete conditions. Taken together, these results suggest that A. fumigatus independently regulates iron and copper homeostasis in a manner that involves AfMac1 and mutual interactions.
Collapse
|
59
|
Beneš V, Leonhardt T, Sácký J, Kotrba P. Two P 1B-1-ATPases of Amanita strobiliformis With Distinct Properties in Cu/Ag Transport. Front Microbiol 2018; 9:747. [PMID: 29740406 PMCID: PMC5924815 DOI: 10.3389/fmicb.2018.00747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/03/2018] [Indexed: 01/02/2023] Open
Abstract
As we have shown previously, the Cu and Ag concentrations in the sporocarps of Ag-hyperaccumulating Amanita strobiliformis are correlated, and both metals share the same uptake system and are sequestered by the same metallothioneins intracellularly. To further improve our knowledge of the Cu and Ag handling in A. strobiliformis cells, we searched its transcriptome for the P1B-1-ATPases, recognizing Cu+ and Ag+ for transport. We identified transcripts encoding 1097-amino acid (AA) AsCRD1 and 978-AA AsCCC2, which were further subjected to functional studies in metal sensitive Saccharomyces cerevisiae. The expression of AsCRD1 conferred highly increased Cu and Ag tolerance to metal sensitive yeasts in which the functional AsCRD1:GFP (green fluorescent protein) fusion localized exclusively to the tonoplast, indicating that the AsCRD1-mediated Cu and Ag tolerance was a result of vacuolar sequestration of the metals. Increased accumulation of AsCRD1 transcripts observed in A. strobiliformis mycelium upon the treatments with Cu and Ag (8.7- and 4.5-fold in the presence of 5 μM metal, respectively) supported the notion that AsCRD1 can be involved in protection of the A. strobiliformis cells against the toxicity of both metals. Neither Cu nor Ag affected the levels of AsCCC2 transcripts. Heterologous expression of AsCCC2 in mutant yeasts did not contribute to Cu tolerance, but complemented the mutant genotype of the S. cerevisiae ccc2Δ strain. Consistent with the role of the yeast Ccc2 in the trafficking of Cu from cytoplasm to nascent proteins via post-Golgi, the GFP fluorescence in AsCCC2-expressing ccc2Δ yeasts localized among Golgi-like punctate foci within the cells. The AsCRD1- and AsCCC2-associated phenotypes were lost in yeasts expressing mutant transporter variants in which a conserved phosphorylation/dephosphorylation site was altered. Altogether, the data support the roles of AsCRD1 and AsCCC2 as genuine P1B-1-ATPases, and indicate their important functions in the removal of toxic excess of Cu and Ag from the cytoplasm and charging the endomembrane system with Cu, respectively.
Collapse
Affiliation(s)
- Vojtěch Beneš
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jan Sácký
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Pavel Kotrba
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| |
Collapse
|
60
|
Aldana G, Hernández M, Cram S, Arellano O, Morton O, Ponce de León C. Trace metal speciation in a wastewater wetland and its bioaccumulation in tilapia Oreochromis niloticus. CHEMICAL SPECIATION AND BIOAVAILABILITY 2018. [DOI: 10.1080/09542299.2018.1452635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- G. Aldana
- Faculty of Science, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - M. Hernández
- Faculty of Science, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - S. Cram
- Geography Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - O. Arellano
- Faculty of Science, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - O. Morton
- Geophysics Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - C. Ponce de León
- Faculty of Science, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| |
Collapse
|
61
|
Khorasani-Motlagh M, Lacasse MJ, Zamble DB. High-affinity metal binding by the Escherichia coli [NiFe]-hydrogenase accessory protein HypB is selectively modulated by SlyD. Metallomics 2018; 9:482-493. [PMID: 28352890 DOI: 10.1039/c7mt00037e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
[NiFe]-hydrogenase, which catalyzes the reversible conversion between hydrogen gas and protons, is a vital component of the metabolism of many pathogens. Maturation of [NiFe]-hydrogenase requires selective nickel insertion that is completed, in part, by the metallochaperones SlyD and HypB. Escherichia coli HypB binds nickel with sub-picomolar affinity, and the formation of the HypB-SlyD complex activates nickel release from the high-affinity site (HAS) of HypB. In this study, the metal selectivity of this process was investigated. Biochemical experiments revealed that the HAS of full length HypB can bind stoichiometric zinc. Moreover, in contrast to the acceleration of metal release observed with nickel-loaded HypB, SlyD blocks the release of zinc from the HypB HAS. X-ray absorption spectroscopy (XAS) demonstrated that SlyD does not impact the primary coordination sphere of nickel or zinc bound to the HAS of HypB. Instead, computational modeling and XAS of HypB loaded with nickel or zinc indicated that zinc binds to HypB with a different coordination sphere than nickel. The data suggested that Glu9, which is not a nickel ligand, directly coordinates zinc. These results were confirmed through the characterization of E9A-HypB, which afforded weakened zinc affinity compared to wild-type HypB but similar nickel affinity. This mutant HypB fully supports the production of [NiFe]-hydrogenase in E. coli. Altogether, these results are consistent with the model that the HAS of HypB functions as a nickel site during [NiFe]-hydrogenase enzyme maturation and that the metal selectivity is controlled by activation of metal release by SlyD.
Collapse
|
62
|
Miguel-Ávila J, Tomás-Gamasa M, Olmos A, Pérez PJ, Mascareñas JL. Discrete Cu(i) complexes for azide-alkyne annulations of small molecules inside mammalian cells. Chem Sci 2018; 9:1947-1952. [PMID: 29675241 PMCID: PMC5892125 DOI: 10.1039/c7sc04643j] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/15/2018] [Indexed: 12/31/2022] Open
Abstract
The archetype reaction of "click" chemistry, namely, the copper-promoted azide-alkyne cycloaddition (CuAAC), has found an impressive number of applications in biological chemistry. However, methods for promoting intermolecular annulations of exogenous, small azides and alkynes in the complex interior of mammalian cells, are essentially unknown. Herein we demonstrate that isolated, well-defined copper(i)-tris(triazolyl) complexes featuring designed ligands can readily enter mammalian cells and promote intracellular CuAAC annulations of small, freely diffusible molecules. In addition to simplifying protocols and avoiding the addition of "non-innocent" reductants, the use of these premade copper complexes leads to more efficient processes than with the alternative, in situ made copper species prepared from Cu(ii) sources, tris(triazole) ligands and sodium ascorbate. Under the reaction conditions, the well-defined copper complexes exhibit very good cell penetration properties, and do not present significant toxicities.
Collapse
Affiliation(s)
- Joan Miguel-Ávila
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| | - María Tomás-Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| | - Andrea Olmos
- Laboratorio de Catálisis Homogénea , Unidad Asociada al CSIC , CIQSO-Centro de Investigación en Química Sostenible , Departamento de Química , Universidad de Huelva , Campus de El Carmen s/n , 21007 Huelva , Spain .
| | - Pedro J Pérez
- Laboratorio de Catálisis Homogénea , Unidad Asociada al CSIC , CIQSO-Centro de Investigación en Química Sostenible , Departamento de Química , Universidad de Huelva , Campus de El Carmen s/n , 21007 Huelva , Spain .
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| |
Collapse
|
63
|
Oh-Hashi K, Soga A, Naruse Y, Takahashi K, Kiuchi K, Hirata Y. Elucidating post-translational regulation of mouse CREB3 in Neuro2a cells. Mol Cell Biochem 2018; 448:287-297. [PMID: 29455434 DOI: 10.1007/s11010-018-3333-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/09/2018] [Indexed: 12/30/2022]
Abstract
CREB3 is an ER membrane-bound transcription factor; however, post-translational regulation of CREB3, including expression, processing, and activation, is not fully characterized. We therefore constructed several types of mouse CREB3 expression genes and elucidated their expression in Neuro2a cells by treatment with stimuli and co-transfection with genes associated with ER-Golgi homeostasis, such as mutant Sar1 [H79G], GRP78, and KDEL receptor 1 (KDELR1). Interestingly, treatment of Neuro2a cells expressing Flag-tagged full-length CREB3 with monensin and nigericin induced the expression of the approximately 50 kDa N-terminal fragment; however, its cleavage was not parallel to the levels of GADD153 and LC3-II. Co-transfection of full-length CREB3 together with Sar1 [H79G], GRP78, or KDELR1 showed that only Sar1 [H79G] induced expression of the cleaved form, and KDELR1 dramatically decreased the expression of the full-length form. Accordingly, Sar1 [H79G]- and KDELR1-overexpression influenced GAL4-CREB3-dependent luciferase activities. To understand the activation of CREB3 under more pathophysiological conditions, we focused on the effect of metal ions on CREB3 cleavage in Neuro2a cells. Among the six metal ions we tested, only copper ion stabilized full-length CREB3 expression. Copper ion also increased its N-terminal form and GAL4-CREB3-dependent luciferase activity, which was accompanied by the increase in the ubiquitinated proteins in Neuro2a cells. Taken together, CREB3 expression is regulated by multiple ER-Golgi resident factors in a post-translational manner, but its processing is not directly associated with ER stress and autophagic dysfunction. This finding is especially true for the unique action of the copper ion on CREB3 stabilization and processing in parallel to aberration of ubiquitin-proteasome system, which might provide new insights into understanding the mechanisms of intractable disorders.
Collapse
Affiliation(s)
- Kentaro Oh-Hashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan. .,Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Ayano Soga
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yoshihisa Naruse
- Department of Natural Science, Medical Education and Research Center, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, 629-0392, Japan
| | - Kanto Takahashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kazutoshi Kiuchi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yoko Hirata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
64
|
Flórez MR, Costas-Rodríguez M, Grootaert C, Van Camp J, Vanhaecke F. Cu isotope fractionation response to oxidative stress in a hepatic cell line studied using multi-collector ICP-mass spectrometry. Anal Bioanal Chem 2018; 410:2385-2394. [DOI: 10.1007/s00216-018-0909-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 12/28/2022]
|
65
|
Wu X, Wu L, Cao X, Li Y, Liu A, Liu S. Nitrogen-doped carbon quantum dots for fluorescence detection of Cu2+ and electrochemical monitoring of bisphenol A. RSC Adv 2018; 8:20000-20006. [PMID: 35541682 PMCID: PMC9080772 DOI: 10.1039/c8ra03180k] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/23/2018] [Indexed: 11/21/2022] Open
Abstract
Nitrogen-doped carbon dots were applied in the fluorescence detection of Cu2+ and electrochemical detection of BPA.
Collapse
Affiliation(s)
- Xinran Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device (CMD)
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
| | - Lina Wu
- Jiangsu Entry-Exit Inspection and Quarantine Bureau Industrial Products Testing Center
- P. R. China
| | - Xizhong Cao
- Jiangsu Entry-Exit Inspection and Quarantine Bureau Industrial Products Testing Center
- P. R. China
| | - Ying Li
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device (CMD)
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
| | - Anran Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device (CMD)
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device (CMD)
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
| |
Collapse
|
66
|
Hao Z, Zhu R, Chen PR. Genetically encoded fluorescent sensors for measuring transition and heavy metals in biological systems. Curr Opin Chem Biol 2017; 43:87-96. [PMID: 29275290 DOI: 10.1016/j.cbpa.2017.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 11/30/2022]
Abstract
Great progress has been made in expanding the repertoire of genetically encoded fluorescent sensors for monitoring intracellular transition metals (TMs). This powerful toolkit permits dynamic and non-invasive detection of TMs with high spatial-temporal resolution, which enables us to better understand the roles of TM homeostasis in both physiological and pathological settings. Here we summarize the recent development of genetically encoded fluorescent sensors for intracellular detection of TMs such as zinc and copper, as well as heavy metals including lead, cadmium, mercury, and arsenic.
Collapse
Affiliation(s)
- Ziyang Hao
- Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Department of Chemistry, The University of Chicago, Chicago 60637, USA
| | - Rongfeng Zhu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing, China.
| |
Collapse
|
67
|
Sherrington SL, Kumwenda P, Kousser C, Hall RA. Host Sensing by Pathogenic Fungi. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:159-221. [PMID: 29680125 DOI: 10.1016/bs.aambs.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability to cause disease extends from the ability to grow within the host environment. The human host provides a dynamic environment to which fungal pathogens must adapt to in order to survive. The ability to grow under a particular condition (i.e., the ability to grow at mammalian body temperature) is considered a fitness attribute and is essential for growth within the human host. On the other hand, some environmental conditions activate signaling mechanisms resulting in the expression of virulence factors, which aid pathogenicity. Therefore, pathogenic fungi have evolved fitness and virulence attributes to enable them to colonize and infect humans. This review highlights how some of the major pathogenic fungi respond and adapt to key environmental signals within the human host.
Collapse
Affiliation(s)
- Sarah L Sherrington
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Pizga Kumwenda
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Courtney Kousser
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A Hall
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
68
|
Pan J, Huang X, Li Y, Li M, Yao N, Zhou Z, Li X. Zinc protects against cadmium-induced toxicity by regulating oxidative stress, ions homeostasis and protein synthesis. CHEMOSPHERE 2017; 188:265-273. [PMID: 28886561 DOI: 10.1016/j.chemosphere.2017.08.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
The widespread environmental toxin cadmium (Cd) is associated with numerous human diseases. The essential trace element zinc (Zn) strongly counteracts Cd-induced toxicity; however, the mechanism is incompletely understood. Here, we conducted RNA sequencing and bioinformatics analyses to determine the global gene expression profiles of yeast cells exposed to Cd or Cd plus Zn. We identified 912 Cd-induced and 627 Cd plus Zn-induced differentially expressed genes (DEGs). Adding Zn during Cd exposure efficiently reversed the expression of 92.1% of Cd-induced DEGs; that of 48.7% was entirely reversed. Gene Ontology, Cluster of Orthologous Group and KEGG Ontology analyses revealed that the response of yeasts to Cd or Cd plus Zn was mainly involved in metal-specific oxidative stress; energy production and conversion; ion homeostasis and ribosome biogenesis and translation. Exposure of yeasts to Cd plus Zn protected them from oxidative stress by efficiently inhibiting the expression of genes associated with Cd-triggered oxidative stress and preventing the disruption of Fe- and Zn-ion homeostasis and reduced glutathione and partially restored mitochondrial membrane potential. Moreover, Zn reduced the intracellular level of Cd to prevent the replacement by Cd of elements required for antioxidant enzyme activity and to protect protein sulphydryl groups against oxidation by free radicals. Further, Zn inhibited the synthesis alterations of Cd-induced ribosomal proteins, S-containing amino acids, S-rich proteins and antioxidant enzymes. Conversely, the investigation results of our study on the yeast model revealed that the Cd-treated protective effects of Zn on Cd-induced toxicity might be partially protective.
Collapse
Affiliation(s)
- Jingmei Pan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xinhe Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuxing Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ming Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ning Yao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhengdong Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xueru Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
69
|
Levina A, Crans DC, Lay PA. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
70
|
Gorter FA, Derks MFL, van den Heuvel J, Aarts MGM, Zwaan BJ, de Ridder D, de Visser JAGM. Genomics of Adaptation Depends on the Rate of Environmental Change in Experimental Yeast Populations. Mol Biol Evol 2017; 34:2613-2626. [PMID: 28957501 DOI: 10.1093/molbev/msx185] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The rate of directional environmental change may have profound consequences for evolutionary dynamics and outcomes. Yet, most evolution experiments impose a sudden large change in the environment, after which the environment is kept constant. We previously cultured replicate Saccharomyces cerevisiae populations for 500 generations in the presence of either gradually increasing or constant high concentrations of the heavy metals cadmium, nickel, and zinc. Here, we investigate how each of these treatments affected genomic evolution. Whole-genome sequencing of evolved clones revealed that adaptation occurred via a combination of SNPs, small indels, and whole-genome duplications and other large-scale structural changes. In contrast to some theoretical predictions, gradual and abrupt environmental change caused similar numbers of genomic changes. For cadmium, which is toxic already at comparatively low concentrations, mutations in the same genes were used for adaptation to both gradual and abrupt increase in concentration. Conversely, for nickel and zinc, which are toxic at high concentrations only, mutations in different genes were used for adaptation depending on the rate of change. Moreover, evolution was more repeatable following a sudden change in the environment, particularly for nickel and zinc. Our results show that the rate of environmental change and the nature of the selection pressure are important drivers of evolutionary dynamics and outcomes, which has implications for a better understanding of societal problems such as climate change and pollution.
Collapse
Affiliation(s)
- Florien A Gorter
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Martijn F L Derks
- Bioinformatics Group, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands.,Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| | - Joost van den Heuvel
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - J Arjan G M de Visser
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
71
|
Chen Y, Lai B, Zhang Z, Cohen SM. The effect of metalloprotein inhibitors on cellular metal ion content and distribution. Metallomics 2017; 9:250-257. [PMID: 28168254 DOI: 10.1039/c6mt00267f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
With metalloproteins garnering increased interest as therapeutic targets, designing target-specific metalloprotein inhibitors (MPi) is of substantial importance. However, in many respects, the development and evaluation of MPi lags behind that of conventional small molecule therapeutics. Core concerns around MPi, such as target selectivity and potential disruption of metal ion homeostasis linger. Herein, we used a suite of analytical methods, including energy-dispersive X-ray spectroscopy (EDX), inductively coupled plasma atomic emission spectroscopy (ICP-OES), and synchrotron X-ray fluorescence microscopy (SXRF) to investigate the effect of several MPi on cellular metal ion distribution and homeostasis. The results reveal that at therapeutically relevant concentrations, the tested MPi have no significant effects on cellular metal ion content or distribution. In addition, the affinity of the metal-binding pharmacophore (MBP) utilized by the MPi does not have a substantial influence on the effect of the MPi on cellular metal distribution. These studies provide an important, original data set indicating that metal ion homeostasis is not notably perturbed by MPi, which should encourage the development of and aid in designing new MPi, guide MBP selection, and clarify the effect of MPi on the 'metallome'.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China. and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Barry Lai
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China. and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
72
|
da Silva FH, Ribeiro AAL, Deluque AL, Cotrim ACDM, de Marchi PGF, França EL, Honorio-França AC. Effects of barium chloride adsorbed to polyethylene glycol (PEG) microspheres on co-culture of human blood mononuclear cell and breast cancer cell lines (MCF-7). Immunopharmacol Immunotoxicol 2017; 40:18-24. [DOI: 10.1080/08923973.2017.1392563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fabiana Helen da Silva
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | | | - Alessandra Lima Deluque
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | - Aron Carlos de melo Cotrim
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | | | - Eduardo Luzía França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | | |
Collapse
|
73
|
Golla U, Swagatika S, Chauhan S, Tomar RS. A systematic assessment of chemical, genetic, and epigenetic factors influencing the activity of anticancer drug KP1019 (FFC14A). Oncotarget 2017; 8:98426-98454. [PMID: 29228701 PMCID: PMC5716741 DOI: 10.18632/oncotarget.21416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
KP1019 ([trans-RuCl4(1H-indazole)2]; FFC14A) is one of the promising ruthenium-based anticancer drugs undergoing clinical trials. Despite the pre-clinical and clinical success of KP1019, the mode of action and various factors capable of modulating its effects are largely unknown. Here, we used transcriptomics and genetic screening approaches in budding yeast model and deciphered various genetic targets and plethora of cellular pathways including cellular signaling, metal homeostasis, vacuolar transport, and lipid homeostasis that are primarily targeted by KP1019. We also demonstrated that KP1019 modulates the effects of TOR (target of rapamycin) signaling pathway and induces accumulation of neutral lipids (lipid droplets) in both yeast and HeLa cells. Interestingly, KP1019-mediated effects were found augmented with metal ions (Al3+/Ca2+/Cd2+/Cu2+/Mn2+/Na+/Zn2+), and neutralized by Fe2+, antioxidants, osmotic stabilizer, and ethanolamine. Additionally, our comprehensive screening of yeast histone H3/H4 mutant library revealed several histone residues that could significantly modulate the KP1019-induced toxicity. Altogether, our findings in both the yeast and HeLa cells provide molecular insights into mechanisms of action of KP1019 and various factors (chemical/genetic/epigenetic) that can alter the therapeutic efficiency of this clinically important anticancer drug.
Collapse
Affiliation(s)
- Upendarrao Golla
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| | - Swati Swagatika
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| | - Sakshi Chauhan
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| |
Collapse
|
74
|
Eid R, Zhou DR, Arab NTT, Boucher E, Young PG, Mandato CA, Greenwood MT. Heterologous expression of anti-apoptotic human 14-3-3β/α enhances iron-mediated programmed cell death in yeast. PLoS One 2017; 12:e0184151. [PMID: 28854230 PMCID: PMC5576682 DOI: 10.1371/journal.pone.0184151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/20/2017] [Indexed: 01/06/2023] Open
Abstract
The induction of Programmed Cell Death (PCD) requires the activation of complex responses involving the interplay of a variety of different cellular proteins, pathways, and processes. Uncovering the mechanisms regulating PCD requires an understanding of the different processes that both positively and negatively regulate cell death. Here we have examined the response of normal as well as PCD resistant yeast cells to different PCD inducing stresses. As expected cells expressing the pro-survival human 14-3-3β/α sequence show increased resistance to numerous stresses including copper and rapamycin. In contrast, other stresses including iron were more lethal in PCD resistant 14-3-3β/α expressing cells. The increased sensitivity to PCD was not iron and 14-3-3β/α specific since it was also observed with other stresses (hydroxyurea and zinc) and other pro-survival sequences (human TC-1 and H-ferritin). Although microscopical examination revealed little differences in morphology with iron or copper stresses, cells undergoing PCD in response to high levels of prolonged copper treatment were reduced in size. This supports the interaction some forms of PCD have with the mechanisms regulating cell growth. Analysis of iron-mediated effects in yeast mutant strains lacking key regulators suggests that a functional vacuole is required to mediate the synergistic effects of iron and 14-3-3β/α on yeast PCD. Finally, mild sub-lethal levels of copper were found to attenuate the observed inhibitory effects of iron. Taken together, we propose a model in which a subset of stresses like iron induces a complex process that requires the cross-talk of two different PCD inducing pathways.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - David R. Zhou
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Nagla T. T. Arab
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Paul G. Young
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Craig A. Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Michael T. Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
75
|
Boilan E, Winant V, Dumortier E, ElMoualij B, Quatresooz P, Osiewacz HD, Debacq-Chainiaux F, Toussaint O. Role of Prion protein in premature senescence of human fibroblasts. Mech Ageing Dev 2017; 170:106-113. [PMID: 28800967 DOI: 10.1016/j.mad.2017.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/29/2017] [Accepted: 08/03/2017] [Indexed: 01/07/2023]
Abstract
Prion protein (PrP) is essentially known for its capacity to induce neurodegenerative prion diseases in mammals caused by a conformational change in its normal cellular isoform (PrPC) into an infectious and disease-associated misfolded form, called scrapie isoform (PrPSc). Although its sequence is highly conserved, less information is available on its physiological role under normal conditions. However, increasing evidence supports a role for PrPC in the cellular response to oxidative stress. In the present study, a new link between PrP and senescence is highlighted. The role of PrP in premature senescence induced by copper was investigated. WI-38 human fibroblasts were incubated with copper sulfate (CuSO4) to trigger premature senescence. This induced an increase of PrP mRNA level, an increase of protein abundance of the normal form of PrP and a nuclear localization of the protein. Knockdown of PrP expression using specific small interfering RNA (siRNA) gave rise to appearance of several biomarkers of senescence as a senescent morphology, an increase of senescence associated β-galactosidase activity and a decrease of the cellular proliferative potential. Overall these data suggest that PrP protects cells against premature senescence induced by copper.
Collapse
Affiliation(s)
- Emmanuelle Boilan
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium.
| | - Virginie Winant
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium
| | - Elise Dumortier
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium
| | | | | | - Heinz D Osiewacz
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Florence Debacq-Chainiaux
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium.
| | - Olivier Toussaint
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium
| |
Collapse
|
76
|
Functional characterization of the copper transcription factor AfMac1 from Aspergillus fumigatus. Biochem J 2017; 474:2365-2378. [PMID: 28515264 DOI: 10.1042/bcj20170191] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/14/2017] [Accepted: 05/16/2017] [Indexed: 01/20/2023]
Abstract
Although copper functions as a cofactor in many physiological processes, copper overload leads to harmful effects in living cells. Thus, copper homeostasis is tightly regulated. However, detailed copper metabolic pathways have not yet been identified in filamentous fungi. In this report, we investigated the copper transcription factor AfMac1 ( Aspergillus fumigatusMac1 homolog) and identified its regulatory mechanism in A. fumigatus AfMac1 has domains homologous to the DNA-binding and copper-binding domains of Mac1 from Saccharomyces cerevisiae, and AfMac1 efficiently complemented Mac1 in S. cerevisiae Expression of Afmac1 resulted in CTR1 up-regulation, and mutation of the DNA-binding domain of Afmac1 failed to activate CTR1 expression in S. cerevisiae The Afmac1 deletion strain of A. fumigatus failed to grow in copper-limited media, and its growth was restored by introducing ctrC We found that AfMac1 specifically bound to the promoter region of ctrC based on EMSA. The AfMac1-binding motif 5'-TGTGCTCA-3' was identified from the promoter region of ctrC, and the addition of mutant ctrC lacking the AfMac1-binding motif failed to up-regulate ctrC in A. fumigatus Furthermore, deletion of Afmac1 significantly reduced strain virulence and activated conidial killing activity by neutrophils and macrophages. Taken together, these results suggest that AfMac1 is a copper transcription factor that regulates cellular copper homeostasis in A. fumigatus.
Collapse
|
77
|
Tian J, Ji Z, Wang F, Song M, Li H. The Toxic Effects of Tetrachlorobisphenol A in Saccharomyces cerevisiae Cells via Metabolic Interference. Sci Rep 2017; 7:2655. [PMID: 28572609 PMCID: PMC5453934 DOI: 10.1038/s41598-017-02939-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/20/2017] [Indexed: 11/16/2022] Open
Abstract
Tetrachlorobisphenol A (TCBPA) is a common flame retardant detected in different environments. However, its toxic effects on animals and humans are not fully understood. Here, the differential intracellular metabolites and associated gene expression were used to clarify the metabolic interference of TCBPA in Saccharomyces cerevisiae, a simple eukaryotic model organism. The results indicated that TCBPA treatment promoted the glycolysis pathway but inhibited the tricarboxylic acid (TCA) cycle, energy metabolism and the hexose monophosphate pathway (HMP) pathway. Thus, the HMP pathway produced less reducing power, leading to the accumulation of reactive oxygen species (ROS) and aggravation of oxidative damage. Accordingly, the carbon flux was channelled into the accumulation of fatty acids, amino acids and glycerol instead of biomass production and energy metabolism. The accumulation of these metabolites might serve a protective function against TCBPA stress by maintaining the cell membrane integrity or providing a stable intracellular environment in S. cerevisiae. These results enhance our knowledge of the toxic effects of TCBPA on S. cerevisiae via metabolic interference and pave the way for clarification of the mechanisms underlying TCBPA toxicity in animals and humans.
Collapse
Affiliation(s)
- Juan Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhihua Ji
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fengbang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Hao Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
78
|
Grillo AS, SantaMaria AM, Kafina MD, Cioffi AG, Huston NC, Han M, Seo YA, Yien YY, Nardone C, Menon AV, Fan J, Svoboda DC, Anderson JB, Hong JD, Nicolau BG, Subedi K, Gewirth AA, Wessling-Resnick M, Kim J, Paw BH, Burke MD. Restored iron transport by a small molecule promotes absorption and hemoglobinization in animals. Science 2017; 356:608-616. [PMID: 28495746 PMCID: PMC5470741 DOI: 10.1126/science.aah3862] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/30/2016] [Accepted: 03/21/2017] [Indexed: 12/15/2022]
Abstract
Multiple human diseases ensue from a hereditary or acquired deficiency of iron-transporting protein function that diminishes transmembrane iron flux in distinct sites and directions. Because other iron-transport proteins remain active, labile iron gradients build up across the corresponding protein-deficient membranes. Here we report that a small-molecule natural product, hinokitiol, can harness such gradients to restore iron transport into, within, and/or out of cells. The same compound promotes gut iron absorption in DMT1-deficient rats and ferroportin-deficient mice, as well as hemoglobinization in DMT1- and mitoferrin-deficient zebrafish. These findings illuminate a general mechanistic framework for small molecule-mediated site- and direction-selective restoration of iron transport. They also suggest that small molecules that partially mimic the function of missing protein transporters of iron, and possibly other ions, may have potential in treating human diseases.
Collapse
Affiliation(s)
- Anthony S Grillo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anna M SantaMaria
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martin D Kafina
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander G Cioffi
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas C Huston
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Murui Han
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Yvette Y Yien
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Nardone
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Archita V Menon
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - James Fan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dillon C Svoboda
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jacob B Anderson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - John D Hong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bruno G Nicolau
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kiran Subedi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew A Gewirth
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marianne Wessling-Resnick
- Department of Genetic and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| | - Barry H Paw
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Division of Hematology-Oncology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Martin D Burke
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
79
|
Newby R, Lee LH, Perez JL, Tao X, Chu T. Characterization of zinc stress response in Cyanobacterium Synechococcus sp. IU 625. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:159-170. [PMID: 28284152 DOI: 10.1016/j.aquatox.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
The ability of cyanobacteria to survive many environmental stress factors is a testament to their resilience in nature. Of these environmental stress factors, overexposure to zinc is important to study since excessive zinc intake can be a severe hazard. Zinc toxicity in freshwater has been demonstrated to affects organisms such as invertebrates, algae and cyanobacteria. Cyanobacteria which possess increased resistance to zinc have been isolated. It is therefore important to elucidate the mechanism of survival and response to determine what factors allow their survival; as well as any remediation implications they may have. To characterize the effects of zinc in freshwater cyanobacteria, we investigated the response of Synechococcus sp. IU 625 (S. IU 625) over 29days to various concentrations (10, 25, and 50mg/L) of ZnCl2. S. IU 625 was shown to be tolerant up to 25mg/L ZnCl2 exposure, with 10mg/L ZnCl2 having no outward physiological change and 50mg/L ZnCl2 proving lethal to the cells. To determine a potential mechanism Inductive Coupled Plasma-Mass Spectrometry (ICP-MS) and RNA-seq analysis were performed on zinc exposed cells. Analysis performed on days 4 and 7 indicated that response is dose-dependent, with 10mg/L ZnCl2 exhibiting nearly all zinc extracellular, corresponding with upregulation of cation transport response. Whereas the 25mg/L ZnCl2 exhibited half of total zinc sequestered by the cells, which corresponds with the upregulation of sequestering proteins such as metallothionein and the downregulation of genes involved with ATP synthesis and phycobilisome assembly. These analyses were combined with growth monitoring, microscopy, quantitative polymerase chain reaction (qPCR) and flow cytometry to present a full spectrum of mechanisms behind zinc response in S. IU 625.
Collapse
Affiliation(s)
- Robert Newby
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Lee H Lee
- Department of Biology, Montclair State University, Montclair, NJ, USA
| | - Jose L Perez
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Xin Tao
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Tinchun Chu
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| |
Collapse
|
80
|
Lago L, Nunes EA, Vigato AA, Souza VCO, Barbosa F, Sato JR, Batista BL, Cerchiaro G. Flow of essential elements in subcellular fractions during oxidative stress. Biometals 2017; 30:83-96. [PMID: 28083799 DOI: 10.1007/s10534-016-9988-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022]
Abstract
Essential trace elements are commonly found in altered concentrations in the brains of patients with neurodegenerative diseases. Many studies in trace metal determination and quantification are conducted in tissue, cell culture or whole brain. In the present investigation, we determined by ICP-MS Fe, Cu, Zn, Ca, Se, Co, Cr, Mg, and Mn in organelles (mitochondria, nuclei) and whole motor neuron cell cultured in vitro. We performed experiments using two ways to access oxidative stress: cell treatments with H2O2 or Aβ-42 peptide in its oligomeric form. Both treatments caused accumulation of markers of oxidative stress, such as oxidized proteins and lipids, and alteration in DNA. Regarding trace elements, cells treated with H2O2 showed higher levels of Zn and lower levels of Ca in nuclei when compared to control cells with no oxidative treatments. On the other hand, cells treated with Aβ-42 peptide in its oligomeric form showed higher levels of Mg, Ca, Fe and Zn in nuclei when compared to control cells. These differences showed that metal flux in cell organelles during an intrinsic external oxidative condition (H2O2 treatment) are different from an intrinsic external neurodegenerative treatment.
Collapse
Affiliation(s)
- Larissa Lago
- Center for Natural Sciences and Humanities, Universidade Federal do ABC - UFABC, Santo André, SP, Brazil
| | - Emilene A Nunes
- Center for Natural Sciences and Humanities, Universidade Federal do ABC - UFABC, Santo André, SP, Brazil
| | - Aryane A Vigato
- Center for Natural Sciences and Humanities, Universidade Federal do ABC - UFABC, Santo André, SP, Brazil
| | - Vanessa C O Souza
- Department of Clinical Analysis, Toxicological and Bromatological, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Prêto, Brazil
| | - Fernando Barbosa
- Department of Clinical Analysis, Toxicological and Bromatological, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Prêto, Brazil
| | - João R Sato
- Center for Mathematics, Computation, and Cognition, Universidade Federal do ABC - UFABC, São Bernardo do Campo, SP, Brazil
| | - Bruno L Batista
- Center for Natural Sciences and Humanities, Universidade Federal do ABC - UFABC, Santo André, SP, Brazil
| | - Giselle Cerchiaro
- Center for Natural Sciences and Humanities, Universidade Federal do ABC - UFABC, Santo André, SP, Brazil.
| |
Collapse
|
81
|
Scheller JS, Irvine GW, Wong DL, Hartwig A, Stillman MJ. Stepwise copper(i) binding to metallothionein: a mixed cooperative and non-cooperative mechanism for all 20 copper ions. Metallomics 2017; 9:447-462. [DOI: 10.1039/c7mt00041c] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
82
|
Eid R, Arab NTT, Greenwood MT. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:399-430. [PMID: 27939167 DOI: 10.1016/j.bbamcr.2016.12.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Iron is an essential micronutrient that is problematic for biological systems since it is toxic as it generates free radicals by interconverting between ferrous (Fe2+) and ferric (Fe3+) forms. Additionally, even though iron is abundant, it is largely insoluble so cells must treat biologically available iron as a valuable commodity. Thus elaborate mechanisms have evolved to absorb, re-cycle and store iron while minimizing toxicity. Focusing on rarely encountered situations, most of the existing literature suggests that iron toxicity is common. A more nuanced examination clearly demonstrates that existing regulatory processes are more than adequate to limit the toxicity of iron even in response to iron overload. Only under pathological or artificially harsh situations of exposure to excess iron does it become problematic. Here we review iron metabolism and its toxicity as well as the literature demonstrating that intracellular iron is not toxic but a stress responsive programmed cell death-inducing second messenger.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada.
| |
Collapse
|
83
|
Huang X, Li Y, Pan J, Li M, Lai Y, Gao J, Li X. RNA-Seq identifies redox balance related gene expression alterations under acute cadmium exposure in yeast. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:1038-1047. [PMID: 27718328 DOI: 10.1111/1758-2229.12484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
The nonessential metal cadmium can cause cell toxicity and is associated with a range of human diseases including cardiovascular diseases, neurodegenerative diseases and cancers. In this study, cadmium-induced global gene expression profile of yeast was obtained using RNA Sequencing (RNA-Seq) and further analyzed by means of informatics and experiments. A total of 912 Differentially Expressed Genes (DEGs) (FDR of q < 0.01), including 415 Cd-inducible and 497 Cd-repressed genes were identified. Based on the DEGs, 25 cadmium responsive Clusters of Orthologous Group (COG) and three types of cadmium-induced Gene Ontology (GO) including cellular components, molecular functions and biological processes were analyzed in details. Thereafter, 79 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways under cadmium exposure were assigned. Collectively, 108 redox balance related genes were extracted under cadmium exposure. Meanwhile, cadmium exposure lowered cellular Mitochondrial Membrane Potential (MMP) and increased Reactive Oxygen Species (ROS) levels significantly in the context of mitochondrial dysfunction. Furthermore, cadmium exposure increased cellular GSH levels and decreased GSSG levels and also lowered GSSG/GSH ratio of cells, which supports experimentally our claim that the redox balance is the primary mechanism for cadmium toxicity. The results present in this study may provide new strategies for cadmium detoxification and prevention or therapies of cadmium-associated diseases.
Collapse
Affiliation(s)
- Xinhe Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuxing Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jingmei Pan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ming Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yongqin Lai
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Gao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xueru Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
84
|
Lacasse MJ, Douglas CD, Zamble DB. Mechanism of Selective Nickel Transfer from HypB to HypA, Escherichia coli [NiFe]-Hydrogenase Accessory Proteins. Biochemistry 2016; 55:6821-6831. [PMID: 27951644 DOI: 10.1021/acs.biochem.6b00706] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[NiFe]-hydrogenase enzymes catalyze the reversible reduction of protons to molecular hydrogen and serve as a vital component of the metabolism of many pathogens. The synthesis of the bimetallic catalytic center requires a suite of accessory proteins, and the penultimate step, nickel insertion, is facilitated by the metallochaperones HypA and HypB. In Escherichia coli, nickel moves from a site in the GTPase domain of HypB to HypA in a process accelerated by GDP. To determine how the transfer of nickel is controlled, the impacts of HypA and nucleotides on the properties of HypB were examined. Integral to this work was His2Gln HypA, a mutant with attenuated nickel affinity that does not support hydrogenase production in E. coli. This mutation inhibits the translocation of nickel from HypB. H2Q-HypA does not modulate the apparent metal affinity of HypB, but the stoichiometry and stability of the HypB-nickel complex are modulated by the nucleotide. Furthermore, the HypA-HypB interaction was detected by gel filtration chromatography if HypB was loaded with GDP, but not a GTP analogue, and the protein complex dissociated upon binding of nickel to His2 of HypA. In contrast, a nucleotide does not modulate the binding of zinc to HypB, and loading zinc into the GTPase domain of HypB inhibits formation of the complex with HypA. These results demonstrate that GTP hydrolysis controls both metal binding and protein-protein interactions, conferring selective and directional nickel transfer during [NiFe]-hydrogenase biosynthesis.
Collapse
Affiliation(s)
- Michael J Lacasse
- Department of Chemistry, University of Toronto , Toronto, Ontario, Canada M5S 3H6
| | - Colin D Douglas
- Department of Chemistry, University of Toronto , Toronto, Ontario, Canada M5S 3H6
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto , Toronto, Ontario, Canada M5S 3H6.,Department of Biochemistry, University of Toronto , Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
85
|
Jo MC, Qin L. Microfluidic Platforms for Yeast-Based Aging Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5787-5801. [PMID: 27717149 PMCID: PMC5554731 DOI: 10.1002/smll.201602006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/30/2016] [Indexed: 06/06/2023]
Abstract
The budding yeast Saccharomyces cerevisiae has been a powerful model for the study of aging and has enabled significant contributions to our understanding of basic mechanisms of aging in eukaryotic cells. However, the laborious low-throughput nature of conventional methods of performing aging assays limits the pace of discoveries in this field. Some of the technical challenges of conventional aging assay methods can be overcome by use of microfluidic systems coupled to time-lapse microscopy. One of the major advantages is the ability of a microfluidic system to perform long-term cell culture under well-defined environmental conditions while tracking individual yeast. Here, recent advancements in microfluidic platforms for various yeast-based studies including replicative lifespan assay, long-term culture and imaging, gene expression, and cell signaling are discussed. In addition, emerging problems and limitations of current microfluidic approaches are examined and perspectives on the future development of this dynamic field are presented.
Collapse
Affiliation(s)
- Myeong Chan Jo
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| |
Collapse
|
86
|
Polvi EJ, Averette AF, Lee SC, Kim T, Bahn YS, Veri AO, Robbins N, Heitman J, Cowen LE. Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis. PLoS Genet 2016; 12:e1006350. [PMID: 27695031 PMCID: PMC5047589 DOI: 10.1371/journal.pgen.1006350] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 09/08/2016] [Indexed: 01/01/2023] Open
Abstract
Fungal pathogens have evolved diverse strategies to sense host-relevant cues and coordinate cellular responses, which enable virulence and drug resistance. Defining circuitry controlling these traits opens new opportunities for chemical diversity in therapeutics, as the cognate inhibitors are rarely explored by conventional screening approaches. This has great potential to address the pressing need for new therapeutic strategies for invasive fungal infections, which have a staggering impact on human health. To explore this approach, we focused on a leading human fungal pathogen, Candida albicans, and screened 1,280 pharmacologically active compounds to identify those that potentiate the activity of echinocandins, which are front-line therapeutics that target fungal cell wall synthesis. We identified 19 compounds that enhance activity of the echinocandin caspofungin against an echinocandin-resistant clinical isolate, with the broad-spectrum chelator DTPA demonstrating the greatest synergistic activity. We found that DTPA increases susceptibility to echinocandins via chelation of magnesium. Whole genome sequencing of mutants resistant to the combination of DTPA and caspofungin identified mutations in the histidine kinase gene NIK1 that confer resistance to the combination. Functional analyses demonstrated that DTPA activates the mitogen-activated protein kinase Hog1, and that NIK1 mutations block Hog1 activation in response to both caspofungin and DTPA. The combination has therapeutic relevance as DTPA enhanced the efficacy of caspofungin in a mouse model of echinocandin-resistant candidiasis. We found that DTPA not only reduces drug resistance but also modulates morphogenesis, a key virulence trait that is normally regulated by environmental cues. DTPA induced filamentation via depletion of zinc, in a manner that is contingent upon Ras1-PKA signaling, as well as the transcription factors Brg1 and Rob1. Thus, we establish a new mechanism by which metal chelation modulates morphogenetic circuitry and echinocandin resistance, and illuminate a novel facet to metal homeostasis at the host-pathogen interface, with broad therapeutic potential. Invasive fungal infections pose a serious threat to human health worldwide, with Candida albicans being a leading fungal pathogen. Mortality is in part due to the limited arsenal of effective antifungals, with drug resistance on the rise. The echinocandins, which target the fungal cell wall, are the newest class of antifungal, and echinocandin resistance has already emerged. Here, we screened a library of 1,280 pharmacologically active compounds to identify those that potentiate echinocandin activity against an echinocandin-resistant isolate. The lead compound was a chelator, DTPA, which affects resistance by depleting magnesium. Genome sequencing of mutants resistant to the combination of DTPA and echinocandin revealed mutations in the gene encoding Nik1, which signals upstream of the Hog1 stress response pathway. We established that DTPA acts through Nik1 to modulate Hog1 signaling and enhance echinocandin activity, and that this combination has therapeutic benefits in a murine model of candidiasis. We also discovered that DTPA modulates C. albicans morphogenesis, a key virulence trait. DTPA induced filamentation by chelating zinc, in a manner that is contingent upon core filamentation pathways and specialized circuitry. Thus, we establish novel roles for metal homeostasis in C. albicans pathogenesis, thereby illuminating new therapeutic strategies for life-threatening infectious disease.
Collapse
Affiliation(s)
- Elizabeth J. Polvi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Anna F. Averette
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Taeyup Kim
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yong-Sun Bahn
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Amanda O. Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
87
|
Gasperini L, Meneghetti E, Legname G, Benetti F. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution. Front Neurosci 2016; 10:437. [PMID: 27729845 PMCID: PMC5037227 DOI: 10.3389/fnins.2016.00437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/09/2016] [Indexed: 12/21/2022] Open
Abstract
Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments.
Collapse
Affiliation(s)
- Lisa Gasperini
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Elisa Meneghetti
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Federico Benetti
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| |
Collapse
|
88
|
Polishchuk EV, Polishchuk RS. The emerging role of lysosomes in copper homeostasis. Metallomics 2016; 8:853-62. [PMID: 27339113 DOI: 10.1039/c6mt00058d] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lysosomal system operates as a focal point where a number of important physiological processes such as endocytosis, autophagy and nutrient sensing converge. One of the key functions of lysosomes consists of regulating the metabolism/homeostasis of metals. Metal-containing components are carried to the lysosome through incoming membrane flows, while numerous transporters allow metal ions to move across the lysosome membrane. These properties enable lysosomes to direct metal fluxes to the sites where metal ions are either used by cellular components or sequestered. Copper belongs to a group of metals that are essential for the activity of vitally important enzymes, although it is toxic when in excess. Thus, copper uptake, supply and intracellular compartmentalization have to be tightly regulated. An increasing number of publications have indicated that these processes involve lysosomes. Here we review studies that reveal the expanding role of the lysosomal system as a hub for the control of Cu homeostasis and for the regulation of key Cu-dependent processes in health and disease.
Collapse
Affiliation(s)
- Elena V Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli (NA), 80078, Italy.
| | | |
Collapse
|
89
|
Sánchez-Sutil MC, Marcos-Torres FJ, Pérez J, Ruiz-González M, García-Bravo E, Martínez-Cayuela M, Gómez-Santos N, Moraleda-Muñoz A, Muñoz-Dorado J. Dissection of the sensor domain of the copper-responsive histidine kinase CorS from Myxococcus xanthus. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:363-370. [PMID: 26929132 DOI: 10.1111/1758-2229.12389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Myxococcus xanthus CorSR is a two-component system responsible for maintaining the response of this bacterium to copper. In the presence of this metal it upregulates, among others, the genes encoding the multicopper oxidase CuoA and the P1B -ATPase CopA. Dissection of the periplasmic sensor domain of the histidine kinase CorS by the analysis of a series of in-frame deletion mutants generated in this portion of the protein has revealed that copper sensing requires a region of 28 residues in the N terminus and another region of nine residues in the C terminus. Point mutations at His34, His38 and His171 demonstrate that they are essential for the ability of CorS to sense copper. Furthermore, the use of a bacterial two-hybrid system has revealed dimerization between monomers of CorS even in the absence of any metal, and that copper enhances this interaction. When dimerization was tested with proteins mutated at the three essential His residues, it was observed that these proteins maintain the intrinsic dimerization ability in the absence of metal. In contrast to the wild-type protein, copper did not strengthen the interaction, corroborating that copper binding to the three His residues of CorS is required for enhancing dimerization and transmitting the signal.
Collapse
Affiliation(s)
- María Celestina Sánchez-Sutil
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda, Fuentenueva s/n, E-18071, Granada, Spain
| | - Francisco Javier Marcos-Torres
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda, Fuentenueva s/n, E-18071, Granada, Spain
| | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda, Fuentenueva s/n, E-18071, Granada, Spain
| | - María Ruiz-González
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda, Fuentenueva s/n, E-18071, Granada, Spain
| | - Elena García-Bravo
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda, Fuentenueva s/n, E-18071, Granada, Spain
| | - Marina Martínez-Cayuela
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, E-18071, Granada, Spain
| | - Nuria Gómez-Santos
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda, Fuentenueva s/n, E-18071, Granada, Spain
| | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda, Fuentenueva s/n, E-18071, Granada, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda, Fuentenueva s/n, E-18071, Granada, Spain
| |
Collapse
|
90
|
Muneer B, Lali T, Iqbal MJ, Shakoori FR, Shakoori AR. Arsenic processing of yeast isolates IIB-As1 & IIB-As2 and production of glutathione under stress conditions. J Basic Microbiol 2016; 56:1124-1131. [PMID: 27166582 DOI: 10.1002/jobm.201600092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/16/2016] [Indexed: 11/09/2022]
Abstract
Four arsenic resistant yeast were isolated from the industrial wastewater. Two strains IIB-As1 and IIB-As2 identified as Candida tropicalis and Saccharomyces cerevisiae, respectively. IIB-As1 and IIB-As2 showed maximum arsenic resistance. IIB-As1 showed maximum growth at 35 °C whereas it was 30 °C for IIB-As2. The yeast isolate showed typical growth curves, but arsenic extended the lag phase. Glutathione plays an important role in metal tolerance. In the present study, As increased the level glutathione and non-protein thiols in yeast isolates. Removal of As from supernatant was analyzed using the atomic absorption spectrophotometer. They removed arsenic from the medium after 72 h of incubation. Both yeast strains efficiently removed arsenic from the industrial effluent when used individually or in consortia.
Collapse
Affiliation(s)
- Bushra Muneer
- Institute of Industrial Biotechnology, GC University, Lahore, Pakistan.
| | - Tayyaba Lali
- Institute of Industrial Biotechnology, GC University, Lahore, Pakistan
| | - Muhammad J Iqbal
- Department of Zoology, University of the Punjab, Quaid-I-Azam Campus, Lahore, Pakistan
| | - Farah R Shakoori
- Department of Zoology, University of the Punjab, Quaid-I-Azam Campus, Lahore, Pakistan
| | - Abdul R Shakoori
- School of Biological Sciences, University of the Punjab, Quaid-I-Azam Campus, Lahore, Pakistan
| |
Collapse
|
91
|
Oral subchronic exposure to silver nanoparticles in rats. Food Chem Toxicol 2016; 92:177-87. [PMID: 27090107 DOI: 10.1016/j.fct.2016.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 11/20/2022]
Abstract
Because of their extremely small size, silver nanoparticles (AgNPs) show unique physical and chemical properties, with specific biological effects, which make them particularly attractive for being used in a number of consumer applications. However, these properties also influence the potential toxicity of AgNPs. In this study, we assessed the potential toxic effects of an in vivo oral sub-chronic exposure to polyvinyl pyrrolidone coated AgNPs (PVP-AgNPs) in adult male rats. We also assessed if oral PVP-AgNPs exposure could alter the levels of various metals (Fe, Mg, Zn and Cu) in tissues. Rats were orally given 0, 50, 100 and 200 mg/kg/day of PVP-AgNPs. Silver (Ag) accumulation in tissues, Ag excretion, biochemical and hematological parameters, metal levels, as well as histopathological changes and subcellular distribution following PVP-AgNPs exposure, were also investigated. After 90 days of treatment, AgNPs were found within hepatic and ileum cells. The major tissue concentration of Ag was found in ileum of treated animals. However, all tissues of PVP-AgNPs-exposed animals showed increased levels of Ag in comparison with those of rats in the control group. No harmful effects in liver and kidney, as well as in biochemical markers were noted at any treatment dose. In addition, no hematological or histopathological changes were found in treated animals. However, significant differences in Cu and Zn levels were found in thymus and brain of PVP-AgNPs-treated rats.
Collapse
|
92
|
Niemiec MJ, De Samber B, Garrevoet J, Vergucht E, Vekemans B, De Rycke R, Björn E, Sandblad L, Wellenreuther G, Falkenberg G, Cloetens P, Vincze L, Urban CF. Trace element landscape of resting and activated human neutrophils on the sub-micrometer level. Metallomics 2016; 7:996-1010. [PMID: 25832493 DOI: 10.1039/c4mt00346b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Every infection is a battle for trace elements. Neutrophils migrate first to the infection site and accumulate quickly to high numbers. They fight pathogens by phagocytosis and intracellular toxication. Additionally, neutrophils form neutrophil extracellular traps (NETs) to inhibit extracellular microbes. Yet, neutrophil trace element characteristics are largely unexplored. We investigated unstimulated and phorbol myristate acetate-stimulated neutrophils using synchrotron radiation X-ray fluorescence (SR-XRF) on the sub-micron spatial resolution level. PMA activates pinocytosis, cytoskeletal rearrangements and the release of NETs, all mechanisms deployed by neutrophils to combat infection. By analyzing Zn, Fe, Cu, Mn, P, S, and Ca, not only the nucleus but also vesicular granules were identifiable in the elemental maps. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) revealed a neutrophil-specific composition of Zn, Fe, Cu, and Mn in comparison with J774 and HeLa cells, indicating a neutrophil-specific metallome complying with their designated functions. When investigating PMA-activated neutrophils, the SR-XRF analysis depicted typical subcellular morphological changes: the transformation of nucleus and granules and the emergence of void vacuoles. Mature NETs were evenly composed of Fe, P, S, and Ca with occasional hot spots containing Zn, Fe, and Ca. An ICP-MS-based quantification of NET supernatants revealed a NETosis-induced decrease of soluble Zn, whereas Fe, Cu, and Mn concentrations were only slightly affected. In summary, we present a combination of SR-XRF and ICP-MS as a powerful tool to analyze trace elements in human neutrophils. The approach will be applicable and valuable to numerous aspects of nutritional immunity.
Collapse
Affiliation(s)
- M J Niemiec
- Department of Clinical Microbiology/MIMS, Umeå University, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Sácký J, Leonhardt T, Kotrba P. Functional analysis of two genes coding for distinct cation diffusion facilitators of the ectomycorrhizal Zn-accumulating fungus Russula atropurpurea. Biometals 2016; 29:349-63. [PMID: 26906559 DOI: 10.1007/s10534-016-9920-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 12/26/2022]
Abstract
Russula atropurpurea can accumulate remarkably high concentrations of Zn in its sporocarps. We have previously demonstrated that 40 % of the intracellular Zn in this species is sequestered by MT-like RaZBP peptides. To see what other mechanisms for the handling of the accumulated Zn are available to R. atropurpurea, we searched its transcriptome for cDNAs coding for transporters of the cation diffusion facilitator (CDF) family. The transcriptome search enabled us to identify RaCDF1 and RaCDF2, which were further subjected to functional studies in metal sensitive Saccharomyces cerevisiae. The expression of RaCDF1 and its translational fusion with green fluorescent protein (GFP) protected the yeasts against Zn and Co, but not Cd or Mn, toxicity and led to increased Zn accumulation in the cells. The GFP fluorescence, observed in the RaCDF1::GFP-expressing yeasts on tonoplasts, indicated that the RaCDF1-mediated Zn and Co tolerance was a result of vacuolar sequestration of the metals. The expression of RaCDF2 supported Zn, but not Mn, tolerance in the yeasts and reduced the cellular uptake of Zn, which is congruent with the proposed idea of the Zn-efflux function of RaCDF2, supported by the localization of GFP-derived fluorescence on the plasma membrane of the yeasts expressing functional RaCDF2::GFP. Contrarily, RaCDF2 increased the sensitivity to Co and Cd in the yeasts and significantly promoted Cd uptake, which suggested that it can act as a bidirectional metal transporter. The notion that RaCDF1 and RaCDF2 are genuine CDF transporters in R. atropurputrea was further reinforced by the fact that the RaCDF-associated metal tolerance and uptake phenotypes were lost upon the replacement of histidyl (in RaCDF1) and aspartyl (in RaCDF2), which are highly conserved in the second transmembrane domain and known to be essential for the function of CDF proteins.
Collapse
Affiliation(s)
- Jan Sácký
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic
| | - Pavel Kotrba
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic.
| |
Collapse
|
94
|
Eid R, Boucher E, Gharib N, Khoury C, Arab NTT, Murray A, Young PG, Mandato CA, Greenwood MT. Identification of human ferritin, heavy polypeptide 1 (FTH1) and yeast RGI1 (YER067W) as pro-survival sequences that counteract the effects of Bax and copper in Saccharomyces cerevisiae. Exp Cell Res 2016; 342:52-61. [PMID: 26886577 DOI: 10.1016/j.yexcr.2016.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 02/06/2023]
Abstract
Ferritin is a sub-family of iron binding proteins that form multi-subunit nanotype iron storage structures and prevent oxidative stress induced apoptosis. Here we describe the identification and characterization of human ferritin, heavy polypeptide 1 (FTH1) as a suppressor of the pro-apoptotic murine Bax sequence in yeast. In addition we demonstrate that FTH1 is a general pro-survival sequence since it also prevents the cell death inducing effects of copper when heterologously expressed in yeast. Although ferritins are phylogenetically widely distributed and are present in most species of Bacteria, Archaea and Eukarya, ferritin is conspicuously absent in most fungal species including Saccharomyces cerevisiae. An in silico analysis of the yeast proteome lead to the identification of the 161 residue RGI1 (YER067W) encoded protein as a candidate for being a yeast ferritin. In addition to sharing 20% sequence identity with the 183 residue FTH1, RGI1 also has similar pro-survival properties as ferritin when overexpressed in yeast. Analysis of recombinant protein by SDS-PAGE and by electron microscopy revealed the expected formation of higher-order structures for FTH1 that was not observed with Rgi1p. Further analysis revealed that cells overexpressing RGI1 do not show increased resistance to iron toxicity and do not have enhanced capacity to store iron. In contrast, cells lacking RGI1 were found to be hypersensitive to the toxic effects of iron. Overall, our results suggest that Rgi1p is a novel pro-survival protein whose function is not related to ferritin but nevertheless it may have a role in regulating yeast sensitivity to iron stress.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada; Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Nada Gharib
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada
| | - Chamel Khoury
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada; Department of Biology, Queen's University, Kingston, Ontario, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada; Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Alistair Murray
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Paul G Young
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada.
| |
Collapse
|
95
|
Huang Y, Wu Z, Zhou B. Behind the curtain of tauopathy: a show of multiple players orchestrating tau toxicity. Cell Mol Life Sci 2016; 73:1-21. [PMID: 26403791 PMCID: PMC11108533 DOI: 10.1007/s00018-015-2042-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/22/2015] [Accepted: 09/08/2015] [Indexed: 12/24/2022]
Abstract
tau, a microtubule-associated protein, directly binds with microtubules to dynamically regulate the organization of cellular cytoskeletons, and is especially abundant in neurons of the central nervous system. Under disease conditions such as Pick's disease, progressive supranuclear palsy, frontotemporal dementia, parkinsonism linked to chromosome 17 and Alzheimer's disease, tau proteins can self-assemble to paired helical filaments progressing to neurofibrillary tangles. In these diseases, collectively referred to as "tauopathies", alterations of diverse tau modifications including phosphorylation, metal ion binding, glycosylation, as well as structural changes of tau proteins have all been observed, indicating the complexity and variability of factors in the regulation of tau toxicity. Here, we review our current knowledge and hypotheses from relevant studies on tau toxicity, emphasizing the roles of phosphorylations, metal ions, folding and clearance control underlining tau etiology and their regulations. A summary of clinical efforts and associated findings of drug candidates under development is also presented. It is hoped that a more comprehensive understanding of tau regulation will provide us with a better blueprint of tau networking in neuronal cells and offer hints for the design of more efficient strategies to tackle tau-related diseases in the future.
Collapse
Affiliation(s)
- Yunpeng Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhihao Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
96
|
Hoffman L, Trombetta L, Hardej D. Ethylene bisdithiocarbamate pesticides Maneb and Mancozeb cause metal overload in human colon cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:78-88. [PMID: 26650801 DOI: 10.1016/j.etap.2015.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/31/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Previous studies in our laboratory have shown that ethylene bisdithiocarbamate (EBDC) fungicides Maneb and Mancozeb are equipotent gastrointestinal toxicants that produce cell loss and metal accumulation within HT-29 and Caco2 colon cells. Nabam, MnCl2, CuCl2 and ZnCl2 exposure produced no loss of viability up to 200 μM and increases in metal levels were noted but not to the same extent as Maneb and Mancozeb. EBDC exposure caused increases in copper levels (20-200 μM). Maneb and Mancozeb treatment also caused increases in manganese and zinc concentrations (20-200 μM). Nabam plus MnCl2 and Nabam and MnCl2 plus ZnCl2 caused decreases in viability and increases in metal levels comparable to Maneb and Mancozeb. Decreases in the ratio of reduced glutathione to glutathione disulfide were observed with Maneb and Mancozeb (20-200 μM). Maneb and Mancozeb treatment results in intracellular metal accumulation leading to the oxidative stress. The metal moiety and the organic portion of EBDCs contribute to toxicity.
Collapse
Affiliation(s)
- Lisa Hoffman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Louis Trombetta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Diane Hardej
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA.
| |
Collapse
|
97
|
F. M. Cellier M. Evolutionary analysis of Slc11 mechanism of proton-coupled metal-ion transmembrane import. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.2.286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
98
|
Keni S, Punekar NS. Contribution of arginase to manganese metabolism of Aspergillus niger. Biometals 2015; 29:95-106. [PMID: 26679485 DOI: 10.1007/s10534-015-9900-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/05/2015] [Indexed: 11/29/2022]
Abstract
Aspects of manganese metabolism during normal and acidogenic growth of Aspergillus niger were explored. Arginase from this fungus was a Mn[II]-enzyme. The contribution of the arginase protein towards A. niger manganese metabolism was investigated using arginase knockout (D-42) and arginase over-expressing (ΔXCA-29) strains of A. niger NCIM 565. The Mn[II] contents of various mycelial fractions were found in the order: D-42 strain < parent strain < ΔXCA-29 strain. While the soluble fraction forms 60% of the total mycelial Mn[II] content, arginase accounted for a significant fraction of this soluble Mn[II] pool. Changes in the arginase levels affected the absolute mycelial Mn[II] content but not its distribution in the various mycelial fractions. The A. niger mycelia harvested from acidogenic growth media contain substantially less Mn[II] as compared to those from normal growth media. Nevertheless, acidogenic mycelia harbor considerable Mn[II] levels and a functional arginase. Altered levels of mycelial arginase protein did not significantly influence citric acid production. The relevance of arginase to cellular Mn[II] pool and homeostasis was evaluated and the results suggest that arginase regulation could occur via manganese availability.
Collapse
Affiliation(s)
- Sarita Keni
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Narayan S Punekar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
99
|
Mores L, França EL, Silva NA, Suchara EA, Honorio-França AC. Nanoparticles of barium induce apoptosis in human phagocytes. Int J Nanomedicine 2015; 10:6021-6. [PMID: 26451108 PMCID: PMC4592030 DOI: 10.2147/ijn.s90382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Purpose Nutrients and immunological factors of breast milk are essential for newborn growth and the development of their immune system, but this secretion can contain organic and inorganic toxins such as barium. Colostrum contamination with barium is an important issue to investigate because this naturally occurring element is also associated with human activity and industrial pollution. The study evaluated the administration of barium nanoparticles to colostrum, assessing the viability and functional activity of colostral mononuclear phagocytes. Methods Colostrum was collected from 24 clinically healthy women (aged 18–35 years). Cell viability, superoxide release, intracellular Ca2+ release, and phagocyte apoptosis were analyzed in the samples. Results Treatment with barium lowered mononuclear phagocyte viability, increased superoxide release, and reduced intracellular calcium release. In addition, barium increased cell death by apoptosis. Conclusion These data suggest that nanoparticles of barium in colostrum are toxic to cells, showing the importance of avoiding exposure to this element.
Collapse
Affiliation(s)
- Luana Mores
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | - Eduardo Luzia França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | - Núbia Andrade Silva
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | - Eliane Aparecida Suchara
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil
| | | |
Collapse
|
100
|
Jo MC, Liu W, Gu L, Dang W, Qin L. High-throughput analysis of yeast replicative aging using a microfluidic system. Proc Natl Acad Sci U S A 2015; 112:9364-9. [PMID: 26170317 PMCID: PMC4522780 DOI: 10.1073/pnas.1510328112] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Saccharomyces cerevisiae has been an important model for studying the molecular mechanisms of aging in eukaryotic cells. However, the laborious and low-throughput methods of current yeast replicative lifespan assays limit their usefulness as a broad genetic screening platform for research on aging. We address this limitation by developing an efficient, high-throughput microfluidic single-cell analysis chip in combination with high-resolution time-lapse microscopy. This innovative design enables, to our knowledge for the first time, the determination of the yeast replicative lifespan in a high-throughput manner. Morphological and phenotypical changes during aging can also be monitored automatically with a much higher throughput than previous microfluidic designs. We demonstrate highly efficient trapping and retention of mother cells, determination of the replicative lifespan, and tracking of yeast cells throughout their entire lifespan. Using the high-resolution and large-scale data generated from the high-throughput yeast aging analysis (HYAA) chips, we investigated particular longevity-related changes in cell morphology and characteristics, including critical cell size, terminal morphology, and protein subcellular localization. In addition, because of the significantly improved retention rate of yeast mother cell, the HYAA-Chip was capable of demonstrating replicative lifespan extension by calorie restriction.
Collapse
Affiliation(s)
- Myeong Chan Jo
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065
| | - Wei Liu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Liang Gu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030
| | - Weiwei Dang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065;
| |
Collapse
|