51
|
Zhuang S, Li B, Wang X. Engineering the electronic structure of high performance FeCo bimetallic cathode catalysts for microbial fuel cell application in treating wastewater. ENVIRONMENTAL RESEARCH 2023; 216:114542. [PMID: 36228689 DOI: 10.1016/j.envres.2022.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The development of high-performance, strong-durability and low-cost cathode catalysts toward oxygen reduction reaction (ORR) is of great significance for microbial fuel cells (MFCs). In this study, a series of bimetallic catalysts were synthesized by pyrolyzing a mixture of g-C3N4 and Fe, Co-tannic complex with various Fe/Co atomic ratios. The initial Fe/Co atomic ratio (3.5:0.5, 3:1, 2:2, 1:3) could regulate the electronic state, which effectively promoted the intrinsic electrocatalytic ORR activity. The alloy metal particles and metal-Nx sites presented on the catalyst surface. In addition, N-doped carbon interconnected network consisting of graphene-like and bamboo-like carbon nanotube structure derived from g-C3N4 provided more accessible active sites. The resultant Fe3Co1 catalyst calcined at 700 °C (Fe3Co1-700) exhibited high catalytic performance in neutral electrolyte with a half-wave potential of 0.661 V, exceeding that of the commercial Pt/C (0.6 V). As expected, the single chamber microbial fuel cell (SCMFC) with 1 mg/cm2 loading of Fe3Co1-700 catalyst as the cathode catalyst afforded a maximum power density of 1425 mW/m2, which was 10.5% higher than commercial Pt/C catalyst with the same loading (1290 mW/m2) and comparable to the Pt/C catalyst with 2.5 times higher loading ( 1430 mW/m2). Additionally, the Fe3Co1-700 also displayed better long-term stability over 1100 h than the Pt/C. This work provides an effective strategy for regulating the surface electronic state in the bimetallic electro-catalyst.
Collapse
Affiliation(s)
- Shiguang Zhuang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Baitao Li
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Xiujun Wang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
52
|
Schreck S, Diesen E, Dell'Angela M, Liu C, Weston M, Capotondi F, Ogasawara H, LaRue J, Costantini R, Beye M, Miedema PS, Halldin Stenlid J, Gladh J, Liu B, Wang HY, Perakis F, Cavalca F, Koroidov S, Amann P, Pedersoli E, Naumenko D, Nikolov I, Raimondi L, Abild-Pedersen F, Heinz TF, Voss J, Luntz AC, Nilsson A. Atom-Specific Probing of Electron Dynamics in an Atomic Adsorbate by Time-Resolved X-Ray Spectroscopy. PHYSICAL REVIEW LETTERS 2022; 129:276001. [PMID: 36638285 DOI: 10.1103/physrevlett.129.276001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/14/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The electronic excitation occurring on adsorbates at ultrafast timescales from optical lasers that initiate surface chemical reactions is still an open question. Here, we report the ultrafast temporal evolution of x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) of a simple well-known adsorbate prototype system, namely carbon (C) atoms adsorbed on a nickel [Ni(100)] surface, following intense laser optical pumping at 400 nm. We observe ultrafast (∼100 fs) changes in both XAS and XES showing clear signatures of the formation of a hot electron-hole pair distribution on the adsorbate. This is followed by slower changes on a few picoseconds timescale, shown to be consistent with thermalization of the complete C/Ni system. Density functional theory spectrum simulations support this interpretation.
Collapse
Affiliation(s)
- Simon Schreck
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Elias Diesen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | | | - Chang Liu
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Matthew Weston
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Flavio Capotondi
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Hirohito Ogasawara
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Jerry LaRue
- Schmid College of Science and Technology, Chapman University, Orange, California 92866, USA
| | - Roberto Costantini
- CNR-IOM, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
- Physics Department, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - Martin Beye
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Piter S Miedema
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Joakim Halldin Stenlid
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Jörgen Gladh
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Boyang Liu
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Hsin-Yi Wang
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Filippo Cavalca
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Sergey Koroidov
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Peter Amann
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Emanuele Pedersoli
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Denys Naumenko
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Ivaylo Nikolov
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Lorenzo Raimondi
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Tony F Heinz
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Johannes Voss
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Alan C Luntz
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
53
|
Mao S, Wang Z, Luo Q, Lu B, Wang Y. Geometric and Electronic Effects in Hydrogenation Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shanjun Mao
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Zhe Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Qian Luo
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Bing Lu
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| |
Collapse
|
54
|
Wang B, Shen L. Recent Advances in NH 3 Synthesis with Chemical Looping Technology. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Baoyi Wang
- School of Energy and Environment, Southeast University, Nanjing210096, China
| | - Laihong Shen
- School of Energy and Environment, Southeast University, Nanjing210096, China
| |
Collapse
|
55
|
Gheytanzadeh M, Baghban A, Habibzadeh S, Jabbour K, Esmaeili A, Mashhadzadeh AH, Mohaddespour A. Intelligent route to design efficient CO 2 reduction electrocatalysts using ANFIS optimized by GA and PSO. Sci Rep 2022; 12:20859. [PMID: 36460814 PMCID: PMC9718738 DOI: 10.1038/s41598-022-25512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Recently, electrochemical reduction of CO2 into value-added fuels has been noticed as a promising process to decrease CO2 emissions. The development of such technology is strongly depended upon tuning the surface properties of the applied electrocatalysts. Considering the high cost and time-consuming experimental investigations, computational methods, particularly machine learning algorithms, can be the appropriate approach for efficiently screening the metal alloys as the electrocatalysts. In doing so, to represent the surface properties of the electrocatalysts numerically, d-band theory-based electronic features and intrinsic properties obtained from density functional theory (DFT) calculations were used as descriptors. Accordingly, a dataset containg 258 data points was extracted from the DFT method to use in machine learning method. The primary purpose of this study is to establish a new model through machine learning methods; namely, adaptive neuro-fuzzy inference system (ANFIS) combined with particle swarm optimization (PSO) and genetic algorithm (GA) for the prediction of *CO (the key intermediate) adsorption energy as the efficiency metric. The developed ANFIS-PSO and ANFIS-GA showed excellent performance with RMSE of 0.0411 and 0.0383, respectively, the minimum errors reported so far in this field. Additionally, the sensitivity analysis showed that the center and the filling of the d-band are the most determining parameters for the electrocatalyst surface reactivity. The present study conveniently indicates the potential and value of machine learning in directing the experimental efforts in alloy system electrocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Majedeh Gheytanzadeh
- grid.411368.90000 0004 0611 6995Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Alireza Baghban
- grid.411368.90000 0004 0611 6995Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Mahshahr Campus, Mahshahr, Iran
| | - Sajjad Habibzadeh
- grid.411368.90000 0004 0611 6995Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Karam Jabbour
- grid.472279.d0000 0004 0418 1945College of Engineering and Technology, American University of the Middle East, Kuwait City, Kuwait
| | - Amin Esmaeili
- grid.452189.30000 0000 9023 6033Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, College of the North Atlantic - Qatar, Doha, Qatar
| | - Amin Hamed Mashhadzadeh
- grid.428191.70000 0004 0495 7803Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 010000 Nur-Sultan, Kazakhstan
| | - Ahmad Mohaddespour
- grid.472279.d0000 0004 0418 1945College of Engineering and Technology, American University of the Middle East, Kuwait City, Kuwait
| |
Collapse
|
56
|
Zhang M, Zhang K, Ai X, Liang X, Zhang Q, Chen H, Zou X. Theory-guided electrocatalyst engineering: From mechanism analysis to structural design. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
57
|
Kauppinen M, Grönbeck H. Hydrogen Adsorption on Pd–In Intermetallic Surfaces. Top Catal 2022. [DOI: 10.1007/s11244-022-01748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AbstractIt has recently been shown that $$\hbox {CO}_2$$
CO
2
hydrogenation to methanol over PdIn and $$\hbox {In}_2\hbox {O}_3$$
In
2
O
3
depends critically on the adsorption energy of hydrogen. Here we use density functional theory calculations to investigate hydrogen adsorption over Pd–In intermetallic compound surfaces with different Pd:In ratios. The electronic structure and properties of hydrogen adsorption are investigated for a range of surface facets and compared to the corresponding results for the pure parent metals and Cu. Increased In content is found to shift the Pd(d) density of states away from the Fermi level, making the intermetallic Pd–In compounds to appear “Cu-like”. We find a linear correlation between the hydrogen binding energy and the d-band center of surface Pd atoms. Understanding of how the hydrogen adsorption energy depends on composition and structure provides a possibility to enhance the performance of $$\hbox {CO}_2$$
CO
2
hydrogenation catalysts to methanol.
Collapse
|
58
|
Wexler RB, Carter EA. Oxygen‐Chlorine Chemisorption Scaling for Seawater Electrolysis on Transition Metals: The Role of Redox. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Robert B. Wexler
- Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment Princeton University Princeton NJ 08544‐5263 USA
| | - Emily A. Carter
- Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment Princeton University Princeton NJ 08544‐5263 USA
| |
Collapse
|
59
|
Zheng W, Liu Y, Liu F, Wang Y, Ren N, You S. Atomic Hydrogen in Electrocatalytic Systems: Generation, Identification, and Environmental Applications. WATER RESEARCH 2022; 223:118994. [PMID: 36007400 DOI: 10.1016/j.watres.2022.118994] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical reduction has emerged as a viable technology for the removal of a variety of organic contaminants from water. Atomic hydrogen (H*) is the primary species generated in electrochemical reduction processes. In this work, identification and quantification for H* are reviewed with a focus on methods used to generate H* at different positions. Additionally, we present recently developed proposals for the surface chemistry mechanisms of H* on the most commonly used cathodes as well as the use of H* in standard electrochemical reactors. The proposed reaction pathways in different H* systems for environmental applications are also discussed in detail. As shown in this review, the key hurdles facing H* reduction technologies are related to i) the establishment of systematic and practical synthetic methods; ii) the development of effective identification approaches with high specificity; and, iii) an in-depth exploration of the H* reaction mechanism to better understand the reaction process of H*.
Collapse
Affiliation(s)
- Wentian Zheng
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China.
| | - Fuqiang Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ying Wang
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
60
|
Huang C, Zhou J, Duan D, Zhou Q, Wang J, Peng B, Yu L, Yu Y. Roles of heteroatoms in electrocatalysts for alkaline water splitting: A review focusing on the reaction mechanism. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
61
|
Hu Q, Gao K, Wang X, Zheng H, Cao J, Mi L, Huo Q, Yang H, Liu J, He C. Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat Commun 2022; 13:3958. [PMID: 35803959 PMCID: PMC9270335 DOI: 10.1038/s41467-022-31660-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Subnanometric metal clusters usually have unique electronic structures and may display electrocatalytic performance distinctive from single atoms (SAs) and larger nanoparticles (NPs). However, the electrocatalytic performance of clusters, especially the size-activity relationship at the sub-nanoscale, is largely unexplored. Here, we synthesize a series of Ru nanocrystals from single atoms, subnanometric clusters to larger nanoparticles, aiming at investigating the size-dependent activity of hydrogen evolution in alkaline media. It is found that the d band center of Ru downshifts in a nearly linear relationship with the increase of diameter, and the subnanometric Ru clusters with d band center closer to Femi level display a stronger water dissociation ability and thus superior hydrogen evolution activity than SAs and larger nanoparticles. Benefiting from the high metal utilization and strong water dissociation ability, the Ru clusters manifest an ultrahigh turnover frequency of 43.3 s-1 at the overpotential of 100 mV, 36.1-fold larger than the commercial Pt/C.
Collapse
Affiliation(s)
- Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Keru Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Xiaodeng Wang
- School of Electronic Information and Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing, 400030, PR China
| | - Hongju Zheng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Jianyong Cao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Lingren Mi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Qihua Huo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Jianhong Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, PR China.
| |
Collapse
|
62
|
Miao Y, Zhao Y, Zhang S, Shi R, Zhang T. Strain Engineering: A Boosting Strategy for Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200868. [PMID: 35304927 DOI: 10.1002/adma.202200868] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Whilst the photocatalytic technique is considered to be one of the most significant routes to address the energy crisis and global environmental challenges, the solar-to-chemical conversion efficiency is still far from satisfying practical industrial requirements, which can be traced to the suboptimal bandgap and electronic structure of photocatalysts. Strain engineering is a universal scheme that can finely tailor the bandgap and electronic structure of materials, hence supplying a novel avenue to boost their photocatalytic performance. Accordingly, to explore promising directions for certain breakthroughs in strained photocatalysts, an overview on the recent advances of strain engineering from the basics of strain effect, creations of strained materials, as well as characterizations and simulations of strain level is provided. Besides, the potential applications of strain engineering in photocatalysis are summarized, and a vision for the future controllable-electronic-structure photocatalysts by strain engineering is also given. Finally, perspectives on the challenges for future strain-promoted photocatalysis are discussed, placing emphasis on the creation and decoupling of strain effect, and the modification of theoretical frameworks.
Collapse
Affiliation(s)
- Yingxuan Miao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuai Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
63
|
Zhao L, Cheng X, Luo L, Zheng Z, Shen S, Zhang J. Progress and prospects of low platinum oxygen reduction catalysts for proton exchange membrane fuel cells. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
64
|
Wang Y, Liang Y, Bo T, Meng S, Liu M. Orbital Dependence in Single-Atom Electrocatalytic Reactions. J Phys Chem Lett 2022; 13:5969-5976. [PMID: 35735355 DOI: 10.1021/acs.jpclett.2c01381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transition metal single-atom catalysts supported on N-doped graphene (TM-N-C) could serve as an ideal model for studying orbital dependence in electrocatalytic reactions because the atom on the catalytic active site has discrete single-atom-like orbitals. In this work, the catalytic efficiency of Fe-N-C for the oxygen evolution reaction (OER) under a small structural perturbation has been comprehensively investigated with density functional theory calculations. The results suggest that the subtle local environment of a single atom can significantly modulate the catalytic reactivity. Further analysis demonstrates that the energy level of the TM dz2 orbital center, rather than the d-band center, is responsible for the OER catalytic efficiency as the dz2 orbital participates mainly in the reactions. Essentially, the d-band theory can be extended to the sub-d orbital level, and a small perturbation of the crystal field, induced by lattice strain or z-direction displacement of the TM atom, can prominently change the sub-d orbital associated with the reaction and in turn affect the catalytic activity.
Collapse
Affiliation(s)
- Yanan Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingzong Liang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Bo
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Sheng Meng
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Miao Liu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
65
|
Sun F, Tang Q, Jiang DE. Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - De-en Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
66
|
Liu F, Shi C, Guo X, He Z, Pan L, Huang Z, Zhang X, Zou J. Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200307. [PMID: 35435329 PMCID: PMC9218766 DOI: 10.1002/advs.202200307] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/07/2022] [Indexed: 05/05/2023]
Abstract
The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed.
Collapse
Affiliation(s)
- Fan Liu
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Xiaolei Guo
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Zexing He
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Zhen‐Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| |
Collapse
|
67
|
Hu L, Poeppelmeier KR. Synthesis of Perovskite Polyhedron Nanocrystals with Equivalent Facets and the Controlled Growth of Pt Nanoparticles with Differing Surface Concentration of Oxidized Pt4+/Pt2+Species. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
68
|
Withanage KPK, Sharkas K, Johnson JK, Perdew JP, Peralta JE, Jackson KA. Fermi–Löwdin orbital self-interaction correction of adsorption energies on transition metal ions. J Chem Phys 2022; 156:134102. [DOI: 10.1063/5.0078970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Density functional theory (DFT)-based descriptions of the adsorption of small molecules on transition metal ions are prone to self-interaction errors. Here, we show that such errors lead to a large over-estimation of adsorption energies of small molecules on Cu+, Zn+, Zn2+, and Mn+ in local spin density approximation (LSDA) and Perdew, Burke, Ernzerhof (PBE) generalized gradient approximation calculations compared to reference values computed using the coupled-cluster with single, doubles, and perturbative triple excitations method. These errors are significantly reduced by removing self-interaction using the Perdew–Zunger self-interaction correction (PZ-SIC) in the Fermi–Löwdin Orbital (FLO) SIC framework. In the case of FLO-PBE, typical errors are reduced to less than 0.1 eV. Analysis of the results using DFT energies evaluated on self-interaction-corrected densities [DFT(@FLO)] indicates that the density-driven contributions to the FLO-DFT adsorption energy corrections are roughly the same size in DFT = LSDA and PBE, but the total corrections due to removing self-interaction are larger in LSDA.
Collapse
Affiliation(s)
- Kushantha P. K. Withanage
- Department of Physics and Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, Michigan 48859, USA
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Kamal Sharkas
- Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - J. Karl Johnson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - John P. Perdew
- Department of Physics and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Juan E. Peralta
- Department of Physics and Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - Koblar A. Jackson
- Department of Physics and Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| |
Collapse
|
69
|
|
70
|
Ding M, Shan BQ, Peng B, Zhou JF, Zhang K. Dynamic Pt-OH -·H 2O-Ag species mediate coupled electron and proton transfer for catalytic hydride reduction of 4-nitrophenol at the confined nanoscale interface. Phys Chem Chem Phys 2022; 24:7923-7936. [PMID: 35311880 DOI: 10.1039/d2cp00673a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Generally, the catalytic transformation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) at heterogeneous metal surfaces follows a Langmuir-Hinshelwood (L-H) mechanism when sodium borohydride (NaBH4) is used as the sacrificial reductant. Herein, with Pt-Ag bimetallic nanoparticles confined in dendritic mesoporous silica nanospheres (DMSNs) as a model catalyst, we demonstrated that the conversion of 4-NP did not pass through the direct hydrogen transfer route with the hydride equivalents being supplied by borohydride via the bimolecular L-H mechanism, since Fourier transform infrared (FTIR) spectroscopy with the use of isotopically labeled reactants (NaBD4 and D2O) showed that the final product of 4-AP was composed of protons (or deuterons) that originated from the solvent water (or heavy water). Combined characterization by X-ray photoelectron spectroscopy (XPS), 1H nuclear magnetic resonance (NMR) and the optical excitation and photoluminescence spectrum evidenced that the surface hydrous hydroxide complex bound to the metal surface (also called structural water molecules, SWs), due to the space overlap of p orbitals of two O atoms in SWs, could form an ensemble of dynamic interface transient states, which provided the alternative electron and proton transfer channels for selective transformation of 4-NP. The cationic Pt species in the Ag-Pt bimetallic catalyst mainly acts as a dynamic adsorption center to temporally anchor SWs and related reactants, and not as the active site for hydrogen activation.
Collapse
Affiliation(s)
- Meng Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Bing-Qian Shan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Bo Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Jia-Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. .,Laboratoire de chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, 46 Allée d'italie, 69364 Lyon cedex 07, France.,Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, P. R. China.,Institute of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
71
|
Back S, Mostaghimi AHB, Siahrostami S. Enhancing Oxygen Reduction Reaction Activity Using Single Atom Catalyst Supported on Tantalum Pentoxide. ChemCatChem 2022. [DOI: 10.1002/cctc.202101763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Seoin Back
- Sogang University Department of Chemical and Biomolecular Engineering KOREA, DEMOCRATIC PEOPLE'S REPUBLIC OF
| | | | - Samira Siahrostami
- University of Calgary Chemistry 2500 University Drive, NW AB T2N 1N4 Calgary CANADA
| |
Collapse
|
72
|
Kim MA, Sorescu DC, Amemiya S, Jordan KD, Liu H. Real-Time Modulation of Hydrogen Evolution Activity of Graphene Electrodes Using Mechanical Strain. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10691-10700. [PMID: 35170299 DOI: 10.1021/acsami.1c21821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper reports the effect of mechanically applied elastic strain on the hydrogen evolution reaction (HER) activity of graphene under acidic conditions. An applied tensile strain of 0.2% on a graphene electrode is shown to lead to a 1-3% increase in the HER current. The tensile strain increases HER activity, whereas compressive strain decreases it. Density functional theory (DFT) calculations using a periodic graphene slab model predict an increase in the adsorption energy of the H atom with growing tensile strain, consistent with an enhancement of the current density in HER, similar to that observed experimentally.
Collapse
Affiliation(s)
- Min A Kim
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Dan C Sorescu
- National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, Pennsylvania 15236, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kenneth D Jordan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Haitao Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
73
|
Liu H, Wang P, Jiang J, Cheng G, Wu T, Zhang Y. Construction of stable Mo xS y/CeO 2 heterostructures for the electrocatalytic hydrogen evolution reaction. Phys Chem Chem Phys 2022; 24:4891-4898. [PMID: 35137755 DOI: 10.1039/d1cp05466j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unique structures of polynuclear MoxSy clusters make it possible to maximize the number of their active sites and for them to be good candidates for HER catalysts. An appropriate support is highly necessary not only to avoid the desorption of MoxSy clusters in a working environment, but also to improve their HER activity. Our work here shows that the CeO2 support could provide strong support for interaction with various MoxSy clusters and the formed MoxSy/CeO2 hetero-structures also have modest ΔGH* for the HER. The electronic features of MoxSy clusters are regulated by the CeO2 support, which leads to charge redistribution on edge atoms and plays a key role in H adsorption. Our studies provide instructive predictions on efficient candidates of molybdenum-sulfur based catalysts for the HER.
Collapse
Affiliation(s)
- Hongxian Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Pai Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Jinxiu Jiang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Gang Cheng
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, P. R. China
| | - Tongwei Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Yanning Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| |
Collapse
|
74
|
Shetty S, Gayen M, Agarwal S, Chatterjee D, Singh A, Ravishankar N. Tuning Catalytic Activity in Ultrathin Bimetallic Nanowires via Surface Segregation: Some Insights. J Phys Chem Lett 2022; 13:770-776. [PMID: 35041416 DOI: 10.1021/acs.jpclett.1c03852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The efficiency of heterogeneous catalysts critically depends on the nature of the surface. We present results on controlling the composition in ultrathin bimetallic AuPd. AuPd wires were grown using Au nanowire templates; the surface composition could be tuned by increasing the amount of Pd. Further, segregation of Pd to the surface could be induced in alloyed nanowires by annealing under a controlled CO atmosphere. Electrocatalytic activity of these bimetallic systems is assessed for the methanol oxidation reaction (MOR). While the MOR potential shows a monotonic increase with Pd content, the specific activity displays a typical volcano-type behavior. The CO-annealed nanowires show a lowering of potential owing to a higher Pd content on the surface while still maintaining the specific activity. These findings provide clear strategies to independently control the reaction potential and the activities of nanocatalysts. The experimental findings are well supported by the theoretical investigations using density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Shwetha Shetty
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Meghabarna Gayen
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Sakshi Agarwal
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | | | - Abhishek Singh
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - N Ravishankar
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
75
|
Wang X, Jiao Y, Li L, Zheng Y, Qiao S. Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xuesi Wang
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Laiquan Li
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Shi‐Zhang Qiao
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
76
|
Wang B, Zhang F. Main Descriptors To Correlate Structures with the Performances of Electrocatalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bin Wang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Dalian Institute of Chemical Physics Chinese Academy of Sciences 457# Zhongshan Road Dalian 116023 Liaoning China
- Center for Advanced Materials Research School of Materials and Chemical Engineering Zhongyuan University of Technology 41# Zhongyuan Road Zhengzhou 450007 Henan China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Dalian Institute of Chemical Physics Chinese Academy of Sciences 457# Zhongshan Road Dalian 116023 Liaoning China
| |
Collapse
|
77
|
Liu Y, Liu X, Yang Z, Li H, Ding X, Xu M, Li X, Tu WF, Zhu M, Han YF. Unravelling the metal–support interactions in χ-Fe5C2/MgO catalysts for olefin synthesis directly from syngas. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02022f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural and electronic modifications of χ-Fe5C2 by MgO contribute to the high selectivity towards lower olefins and the high catalyst stability.
Collapse
Affiliation(s)
- Yitao Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xianglin Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zixu Yang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hu Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaoxu Ding
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Minjie Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xinli Li
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei-Feng Tu
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yi-Fan Han
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
78
|
Torimoto M, Sekine Y. Effects of alloying for steam or dry reforming of methane: a review of recent studies. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00066k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A survey on the catalytic nature of Ni-based alloy catalysts in recent years provides a direction for future catalyst development.
Collapse
Affiliation(s)
- Maki Torimoto
- Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yasushi Sekine
- Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
79
|
Jung H, Choung S, Han JW. Design principles of noble metal-free electrocatalysts for hydrogen production in alkaline media: combining theory and experiment. NANOSCALE ADVANCES 2021; 3:6797-6826. [PMID: 36132358 PMCID: PMC9417748 DOI: 10.1039/d1na00606a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/19/2021] [Indexed: 05/06/2023]
Abstract
Water electrolysis is a promising solution to convert renewable energy sources to hydrogen as a high-energy-density energy carrier. Although alkaline conditions extend the scope of electrocatalysts beyond precious metal-based materials to earth-abundant materials, the sluggish kinetics of cathodic and anodic reactions (hydrogen and oxygen evolution reactions, respectively) impede the development of practical electrocatalysts that do not use precious metals. This review discusses the rational design of efficient electrocatalysts by exploiting the understanding of alkaline hydrogen evolution reaction and oxygen evolution reaction mechanisms and of the electron structure-activity relationship, as achieved by combining experimental and computational approaches. The enhancement of water splitting not only deals with intrinsic catalytic activity but also includes the aspect of electrical conductivity and stability. Future perspectives to increase the synergy between theory and experiment are also proposed.
Collapse
Affiliation(s)
- Hyeonjung Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 37673 Republic of Korea
| | - Seokhyun Choung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 37673 Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 37673 Republic of Korea
| |
Collapse
|
80
|
Huang Y, Ye Z, Pei F, Ma G, Peng X, Li D. Strain in a platinum plate induced by an ultrahigh energy laser boosts the hydrogen evolution reaction. RSC Adv 2021; 11:39087-39094. [PMID: 35492455 PMCID: PMC9044436 DOI: 10.1039/d1ra06688a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
The ligand and the strain near the active sites in catalysts jointly affect the electrocatalytic activity for the catalytic industry. In many cases, there is no effective strategy for the independent study of the strain effect without the ligand effect on the electrocatalytic activity for the hydrogen evolution reaction (HER). Laser shock peening (LSP) with a GW cm-2 level power density and a 10-30 ns short pulse is employed to form compressive strain on the surface and in the depth direction of a platinum (Pt) plate, which changes the inherent interatomic distance and modifies the energy level of the bonded electrons, thereby greatly optimizing the energy barrier for the HER. The crystal lattice near the surface of the LSP Pt plate is distorted by the strain, and the interplanar spacing decreases from 0.225 nm in the undeformed region to 0.211 nm in the deformed region. The specific activity of the LSP Pt has an increase of 2.9 and 6.4 times in comparison with that of the pristine Pt in alkaline and acidic environments, respectively. This investigation provides a novel strategy for the independent study of the strain effect on the electrocatalytic activity and the improvement of electrocatalysts with high performance in extensive energy conversion.
Collapse
Affiliation(s)
- Yuqian Huang
- School of Material Science and Engineering, Nanchang Hangkong University 696#, Feng HeNan Road Nanchang 330063 China
| | - Zhiguo Ye
- School of Material Science and Engineering, Nanchang Hangkong University 696#, Feng HeNan Road Nanchang 330063 China
| | - Feng Pei
- State Grid JiangXi Electric Power Research Institute Nanchang 330096 China
| | - Guang Ma
- State Key Laboratory of Advanced Power Transmission Technology (Global Energy Interconnection Research Institute Co. Ltd) Beijing 102209 China
| | - Xinyuan Peng
- School of Material Science and Engineering, Nanchang Hangkong University 696#, Feng HeNan Road Nanchang 330063 China
| | - Duosheng Li
- School of Material Science and Engineering, Nanchang Hangkong University 696#, Feng HeNan Road Nanchang 330063 China
| |
Collapse
|
81
|
Nie Y, Li L, Wei Z. Achievements in Pt nanoalloy oxygen reduction reaction catalysts: strain engineering, stability and atom utilization efficiency. Chem Commun (Camb) 2021; 57:12898-12913. [PMID: 34797362 DOI: 10.1039/d1cc05534h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Pt nanoalloy surfaces often show unique electronic and physicochemical properties that are distinct from those of their parent metals, which provide significant room for manipulating their oxygen reduction reaction (ORR) behaviour. In this Feature Article, we present the progress of our recent research and that of other groups in Pt nanoalloy catalysts for ORR from three aspects, namely, strain engineering, stability and atom utilization efficiency. Some new insights into Pt surface strain engineering will be firstly introduced, with a focus on discussing the effect of compressive and tensile strain on the chemisorption properties. Secondly, the design concepts and synthetic methodologies to intensify the inherent stability of Pt nanoalloys will be summarized. Then, the exciting research push in developing nanostructured alloys with high atom utilization efficiency of Pt will be presented. Finally, a brief illumination of challenges and future developing perspectives of Pt nanoalloy catalysts will be provided.
Collapse
Affiliation(s)
- Yao Nie
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Li Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| |
Collapse
|
82
|
Han J, Sun H, Shi T, Chen ZX. Rationalization of Nonlinear Adsorption Energy-Strain Relations and Brønsted-Evans-Polanyi and Transition State Scaling Relationships under Strain. J Phys Chem Lett 2021; 12:11578-11584. [PMID: 34807621 DOI: 10.1021/acs.jpclett.1c02960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Scaling relations play a vital role in high-throughput screening of catalytic materials, and more and more attention is being paid to strain-based regulation of catalytic performance. Here we investigated the variation of several energetics, including adsorption energies in the initial state, transition state, and final state, reaction energies, and energy barriers with strain, by studying CO, BH, NH, CH, and NO adsorption and dissociation on M(111) (M = Cu, Ag, Ni, Pd, or Pt) surfaces. We show that energy barriers, reaction energies, and adsorption energies can vary either linearly or nonlinearly (quadratically) with strain. Systems with stronger adsorbate-substrate interaction and weaker atom-atom interaction in substrates are more likely to exhibit nonlinear relations. The well-known Brønsted-Evans-Polanyi relationships and transition state scaling relationships under strain were also examined, and both of them can be nonlinear under strain, in principle. The observed nonlinear relationships were satisfactorily rationalized with the equations derived from Mechanics of Solids.
Collapse
Affiliation(s)
- Jinyu Han
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hongliang Sun
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Taotao Shi
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhao-Xu Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
83
|
Yan WQ, Zhu YA, Zhou XG, Yuan WK. Rational design of heterogeneous catalysts by breaking and rebuilding scaling relations. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
84
|
Wang X, Jiao Y, Li L, Zheng Y, Qiao SZ. Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angew Chem Int Ed Engl 2021; 61:e202114253. [PMID: 34825452 DOI: 10.1002/anie.202114253] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/07/2022]
Abstract
We demonstrate a widely applicable method to alter the adsorption configuration of multi-carbon containing reactants by no catalyst engineering but simply adjusting the local reaction environment of the catalyst surface. Using electrocatalytic acetone to propane hydrogenation (APH) as a model reaction and common commercial Pt/Pt-based materials as catalysts, we found local H+ concentration can significantly influence the adsorption mode of acetone reactant, for example, in vertical or flat mode, and target product selectivity. Electrocatalytic measurement combined with in situ spectroscopic characterizations reveals that the vertically adsorbed acetone is favorable for propane production while the flatly adsorbed mode suppresses the reaction. DFT calculations indicate that the H coverage on catalyst surface plays a decisive role in the adsorption configuration of acetone. The increased local acidity can facilitate the adsorption configuration of acetone from flat to vertical mode and suppress the competing hydrogen evaluation reaction, which consequently enhances the APH selectivity.
Collapse
Affiliation(s)
- Xuesi Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Laiquan Li
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
85
|
What Is the Real State of Single-Atom Catalysts under Electrochemical Conditions—From Adsorption to Surface Pourbaix Plots? Catalysts 2021. [DOI: 10.3390/catal11101207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The interest in single-atom catalysts (SACs) is increasing, as these materials have the ultimate level of catalyst utilization, while novel reactions where SACs are used are constantly being discovered. However, to properly understand SACs and to further improve these materials, it is necessary to consider the nature of active sites under operating conditions. This is particularly important when SACs are used as electrocatalysts due to harsh experimental conditions, including extreme pH values or high anodic and cathodic potential. In this contribution, density functional theory-based thermodynamic modelling is used to address the nature of metal centers in SACs formed by embedding single metal atoms (Ru, Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au) into graphene monovacancy. Our results suggest that none of these SAC metal centers are clean at any potential or pH in the water thermodynamic stability region. Instead, metal centers are covered with Hads, OHads, or Oads, and in some cases, we observed the restructuring of the metal sites due to oxygen incorporation. Based on these findings, it is suggested that setting up theoretical models for SAC modelling and the interpretation of ex situ characterization results using ultra-high vacuum (UHV) techniques requires special care, as the nature of SAC active sites under operating conditions can significantly diverge from the basic models or the pictures set by the UHV measurements.
Collapse
|
86
|
Wang B, Zhang F. Main Descriptors To Correlate Structures with the Performances of Electrocatalysts. Angew Chem Int Ed Engl 2021; 61:e202111026. [PMID: 34587345 DOI: 10.1002/anie.202111026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Indexed: 01/05/2023]
Abstract
Traditional trial and error approaches to search for hydrogen/oxygen redox catalysts with high activity and stability are typically tedious and inefficient. There is an urgent need to identify the most important parameters that determine the catalytic performance and so enable the development of design strategies for catalysts. In the past decades, several descriptors have been developed to unravel structure-performance relationships. This Minireview summarizes reactivity descriptors in electrocatalysis including adsorption energy descriptors involving reaction intermediates, electronic descriptors represented by a d-band center, structural descriptors, and universal descriptors, and discusses their merits/limitations. Understanding the trends in electrocatalytic performance and predicting promising catalytic materials using reactivity descriptors should enable the rational construction of catalysts. Artificial intelligence and machine learning have also been adopted to discover new and advanced descriptors. Finally, linear scaling relationships are analyzed and several strategies proposed to circumvent the established scaling relationships and overcome the constraints imposed on the catalytic performance.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457# Zhongshan Road, Dalian 116023, Liaoning, China.,Center for Advanced Materials Research, School of Materials and Chemical Engineering, Zhongyuan University of Technology, 41# Zhongyuan Road, Zhengzhou, 450007, Henan, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457# Zhongshan Road, Dalian 116023, Liaoning, China
| |
Collapse
|
87
|
Boukhvalov D, Cheng J, D’Olimpio G, Bocquet F, Kuo CN, Sarkar AB, Ghosh B, Vobornik I, Fujii J, Hsu K, Wang LM, Azulay O, Daptary GN, Naveh D, Lue CS, Vorokhta M, Agarwal A, Zhang L, Politano A. Unveiling the Mechanisms Ruling the Efficient Hydrogen Evolution Reaction with Mitrofanovite Pt 3Te 4. J Phys Chem Lett 2021; 12:8627-8636. [PMID: 34472339 PMCID: PMC8436201 DOI: 10.1021/acs.jpclett.1c01261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
By means of electrocatalytic tests, surface-science techniques and density functional theory, we unveil the physicochemical mechanisms ruling the electrocatalytic activity of recently discovered mitrofanovite (Pt3Te4) mineral. Mitrofanovite represents a very promising electrocatalyst candidate for energy-related applications, with a reduction of costs by 47% compared to pure Pt and superior robustness to CO poisoning. We show that Pt3Te4 is a weak topological metal with the Z2 invariant, exhibiting electrical conductivity (∼4 × 106 S/m) comparable with pure Pt. In hydrogen evolution reaction (HER), the electrode based on bulk Pt3Te4 shows a very small overpotential of 46 mV at 10 mA cm-2 and a Tafel slope of 36-49 mV dec-1 associated with the Volmer-Heyrovsky mechanism. The outstanding ambient stability of Pt3Te4 also provides durability of the electrode and long-term stability of its efficient catalytic performances.
Collapse
Affiliation(s)
- Danil
W. Boukhvalov
- College
of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, P. R. China
- Theoretical
Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia
| | - Jia Cheng
- College
of Chemistry and Chemical Engineering, Qingdao
University, Qingdao 266071, Shandong, P. R. China
| | - Gianluca D’Olimpio
- INSTM
and Department of Physical and Chemical Sciences, University of L’Aquila, via Vetoio, 67100 L’Aquila (AQ), Italy
| | - François
C. Bocquet
- Peter
Grünberg Institut (PGI-3), Forschungszentrum
Jülich, 52425 Jülich, Germany
- Jülich
Aachen Research Alliance (JARA), Fundamentals
of Future Information Technology, 52425 Jülich, Germany
| | - Chia-Nung Kuo
- Department
of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
| | - Anan Bari Sarkar
- Department
of Physics, Indian Institute of Technology
Kanpur, Kanpur, 208016, India
| | - Barun Ghosh
- Department
of Physics, Indian Institute of Technology
Kanpur, Kanpur, 208016, India
| | - Ivana Vobornik
- CNR-IOM,
TASC Laboratory, Area Science Park-Basovizza, 34139 Trieste, Italy
| | - Jun Fujii
- CNR-IOM,
TASC Laboratory, Area Science Park-Basovizza, 34139 Trieste, Italy
| | - Kuan Hsu
- Department
of Physics/Graduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Li-Min Wang
- Department
of Physics/Graduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Ori Azulay
- Faculty
of Engineering and Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Gopi Nath Daptary
- Department
of Physics and Institure of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Doron Naveh
- Faculty
of Engineering and Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Chin Shan Lue
- Department
of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
| | - Mykhailo Vorokhta
- Charles
University, V Holesovickǎch
2, Prague 8, 18000 Prague, Czechia
| | - Amit Agarwal
- Department
of Physics, Indian Institute of Technology
Kanpur, Kanpur, 208016, India
| | - Lixue Zhang
- College
of Chemistry and Chemical Engineering, Qingdao
University, Qingdao 266071, Shandong, P. R. China
| | - Antonio Politano
- INSTM
and Department of Physical and Chemical Sciences, University of L’Aquila, via Vetoio, 67100 L’Aquila (AQ), Italy
- CNR-IMM Istituto per la
Microelettronica e Microsistemi, VIII strada 5, I-95121 Catania, Italy
| |
Collapse
|
88
|
Effect of the coverage of modulated Au(Pd) atoms over bimetallic Pd-Au catalysts on catalytic performance for direct oxidative esterification of methacrolein into methyl methacrylate. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
89
|
Baruah K, Deb P. Electrochemically active site-rich nanocomposites of two-dimensional materials as anode catalysts for direct oxidation fuel cells: new age beyond graphene. NANOSCALE ADVANCES 2021; 3:3681-3707. [PMID: 36133025 PMCID: PMC9418720 DOI: 10.1039/d1na00046b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/24/2021] [Indexed: 05/11/2023]
Abstract
Direct oxidation fuel cell (DOFC) has been opted as a green alternative to fossil fuels and intermittent energy resources as it is economically viable, possesses good conversion efficiency, as well as exhibits high power density and superfast charging. The anode catalyst is a vital component of DOFC, which improves the oxidation of fuels; however, the development of an efficient anode catalyst is still a challenge. In this regard, 2D materials have attracted attention as DOFC anode catalysts due to their fascinating electrochemical properties such as excellent mechanical properties, large surface area, superior electron transfer, presence of active sites, and tunable electronic states. This timely review encapsulates in detail different types of fuel cells, their mechanisms, and contemporary challenges; focuses on the anode catalyst/support based on new generation 2D materials, namely, 2D transition metal carbide/nitride or carbonitride (MXene), graphitic carbon nitride, transition metal dichalcogenides, and transition metal oxides; as well as their properties and role in DOFC along with the mechanisms involved.
Collapse
Affiliation(s)
- Kashmiri Baruah
- Department of Physics, Tezpur University (Central University) Napaam Tezpur 784028 Assam India
| | - Pritam Deb
- Department of Physics, Tezpur University (Central University) Napaam Tezpur 784028 Assam India
| |
Collapse
|
90
|
Seong H, Efremov V, Park G, Kim H, Yoo JS, Lee D. Atomically Precise Gold Nanoclusters as Model Catalysts for Identifying Active Sites for Electroreduction of CO 2. Angew Chem Int Ed Engl 2021; 60:14563-14570. [PMID: 33877721 DOI: 10.1002/anie.202102887] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/05/2021] [Indexed: 11/07/2022]
Abstract
Accurate identification of active sites is critical for elucidating catalytic reaction mechanisms and developing highly efficient and selective electrocatalysts. Herein, we report the atomic-level identification of active sites using atomically well-defined gold nanoclusters (Au NCs) Au25 , Au38 , and Au144 as model catalysts in the electrochemical CO2 reduction reaction (CO2 RR). The studied Au NCs exhibited remarkably high CO2 RR activity, which increased with increasing NC size. Electrochemical and X-ray photoelectron spectroscopy analyses revealed that the Au NCs were activated by removing one thiolate group from each staple motif at the beginning of CO2 RR. In addition, density functional theory calculations revealed higher charge densities and upshifts of d-states for dethiolated Au sites. The structure-activity properties of the studied Au NCs confirmed that dethiolated Au sites were the active sites and that CO2 RR activity was determined by the number of active sites on the cluster surface.
Collapse
Affiliation(s)
- Hoeun Seong
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Vladimir Efremov
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Gibeom Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong Suk Yoo
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Dongil Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
91
|
Seong H, Efremov V, Park G, Kim H, Yoo JS, Lee D. Atomically Precise Gold Nanoclusters as Model Catalysts for Identifying Active Sites for Electroreduction of CO
2. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hoeun Seong
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Vladimir Efremov
- Department of Chemical Engineering University of Seoul Seoul 02504 Republic of Korea
| | - Gibeom Park
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Jong Suk Yoo
- Department of Chemical Engineering University of Seoul Seoul 02504 Republic of Korea
| | - Dongil Lee
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
92
|
Giuffredi G, Asset T, Liu Y, Atanassov P, Di Fonzo F. Transition Metal Chalcogenides as a Versatile and Tunable Platform for Catalytic CO 2 and N 2 Electroreduction. ACS MATERIALS AU 2021; 1:6-36. [PMID: 36855615 PMCID: PMC9888655 DOI: 10.1021/acsmaterialsau.1c00006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Group VI transition metal chalcogenides are the subject of increasing research interest for various electrochemical applications such as low-temperature water electrolysis, batteries, and supercapacitors due to their high activity, chemical stability, and the strong correlation between structure and electrochemical properties. Particularly appealing is their utilization as electrocatalysts for the synthesis of energy vectors and value-added chemicals such as C-based chemicals from the CO2 reduction reaction (CO2R) or ammonia from the nitrogen fixation reaction (NRR). This review discusses the role of structural and electronic properties of transition metal chalcogenides in enhancing selectivity and activity toward these two key reduction reactions. First, we discuss the morphological and electronic structure of these compounds, outlining design strategies to control and fine-tune them. Then, we discuss the role of the active sites and the strategies developed to enhance the activity of transition metal chalcogenide-based catalysts in the framework of CO2R and NRR against the parasitic hydrogen evolution reaction (HER); leveraging on the design rules applied for HER applications, we discuss their future perspective for the applications in CO2R and NRR. For these two reactions, we comprehensively review recent progress in unveiling reaction mechanisms at different sites and the most effective strategies for fabricating catalysts that, by exploiting the structural and electronic peculiarities of transition metal chalcogenides, can outperform many metallic compounds. Transition metal chalcogenides outperform state-of-the-art catalysts for CO2 to CO reduction in ionic liquids due to the favorable CO2 adsorption on the metal edge sites, whereas the basal sites, due to their conformation, represent an appealing design space for reduction of CO2 to complex carbon products. For the NRR instead, the resemblance of transition metal chalcogenides to the active centers of nitrogenase enzymes represents a powerful nature-mimicking approach for the design of catalysts with enhanced performance, although strategies to hinder the HER must be integrated in the catalytic architecture.
Collapse
Affiliation(s)
- Giorgio Giuffredi
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia (IIT@Polimi), Via Pascoli 70/3, 20133 Milano, Italy,Department
of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy
| | - Tristan Asset
- Department
of Chemical & Biomolecular Engineering and National Fuel Cell
Research Center, University of California, Irvine, California 92697-2580, United States
| | - Yuanchao Liu
- Department
of Chemical & Biomolecular Engineering and National Fuel Cell
Research Center, University of California, Irvine, California 92697-2580, United States
| | - Plamen Atanassov
- Department
of Chemical & Biomolecular Engineering and National Fuel Cell
Research Center, University of California, Irvine, California 92697-2580, United States
| | - Fabio Di Fonzo
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia (IIT@Polimi), Via Pascoli 70/3, 20133 Milano, Italy,
| |
Collapse
|
93
|
Clausen CM, Batchelor TAA, Pedersen JK, Rossmeisl J. What Atomic Positions Determines Reactivity of a Surface? Long-Range, Directional Ligand Effects in Metallic Alloys. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003357. [PMID: 33977047 PMCID: PMC8097360 DOI: 10.1002/advs.202003357] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Ligand and strain effects can tune the adsorption energy of key reaction intermediates on a catalyst surface to speed up rate-limiting steps of the reaction. As novel fields like high-entropy alloys emerge, understanding these effects on the atomic structure level is paramount: What atoms near the binding site determine the reactivity of the alloy surface? By statistical analysis of 2000 density functional theory calculations and subsequent host/guest calculations, it is shown that three atomic positions in the third layer of an fcc(111) metallic structure fourth-nearest to the adsorption site display significantly increased influence on reactivity over any second or third nearest atomic positions. Subsequently observed in multiple facets and host metals, the effect cannot be explained simply through the d-band model or a valence configuration model but rather by favorable directions of interaction determined by lattice geometry and the valence difference between host and guest elements. These results advance the general understanding of how the electronic interaction of different elements affect adsorbate-surface interactions and will contribute to design principles for rational catalyst discovery of better, more stable and energy efficient catalysts to be employed in energy conversion, fuel cell technologies, and industrial processes.
Collapse
Affiliation(s)
| | | | - Jack K. Pedersen
- Department of ChemistryUniversity of CopenhagenKøbenhavn Ø2100Denmark
| | - Jan Rossmeisl
- Department of ChemistryUniversity of CopenhagenKøbenhavn Ø2100Denmark
| |
Collapse
|
94
|
Kitano S, Ooi ML, Yamamoto T, Matsumura S, Yamauchi M. Catalytic Roles and Synergetic Effects of Iron-Group Elements on Monometals and Alloys for Electrochemical Oxidation of Ammonia. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sho Kitano
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mei Lee Ooi
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomokazu Yamamoto
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Syo Matsumura
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Miho Yamauchi
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
95
|
Gao J, Zhu Z, Shen B, Bai Y, Sun S, Wei F. Bandgap-Coupled Template Autocatalysis toward the Growth of High-Purity sp 2 Nanocarbons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003078. [PMID: 33854884 PMCID: PMC8025012 DOI: 10.1002/advs.202003078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Extraordinary properties and great application potentials of carbon nanotubes (CNT) and graphene fundamentally rely on their large-scale perfect sp2 structure. Particularly for high-end applications, ultralow defect density and ultrahigh selectivity are prerequisites, for which metal-catalyzed chemical vapor deposition (CVD) is the most promising approach. Due to their structure and peculiarity, CNTs and graphene can themselves provide growth templates and nonlocal dual conductance, serving as template autocatalysts with tunable bandgap during the CVD. However, current growth kinetics models all focus on the external factors and edges. Here, the growth kinetics of sp2 nanocarbons is elaborated from the perspective of template autocatalysis and holistic electronic structure. After reviewing current growth kinetics, various representative works involving CVD growth of different sp2 nanocarbons are analyzed, to reveal their bandgap-coupled kinetics and resulting selective synthesis. Recent progress is then reviewed, which has demonstrated the interlocking between the atomic assembly rate and bandgap of CNTs, with an explicit volcano dependence whose peak would be determined by the environment. In addition, the topological protection for perfect sp2 structure and the defect-induced perturbation for the interlocking are discussed. Finally, the prospects for the kinetic selective growth of perfect nanocarbons are proposed.
Collapse
Affiliation(s)
- Jun Gao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Zhenxing Zhu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Boyuan Shen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Yunxiang Bai
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Silei Sun
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
96
|
Elucidating the Influence of the d-Band Center on the Synthesis of Isobutanol. Catalysts 2021. [DOI: 10.3390/catal11030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As the search for carbon-efficient synthesis pathways for green alternatives to fossil fuels continues, an expanding class of catalysts have been developed for the upgrading of lower alcohols. Understanding of the acid base functionalities has greatly influenced the search for new materials, but the influence of the metal used in catalysts cannot be explained in a broader sense. We address this herein and correlate our findings with the most fundamental understanding of chemistry to date by applying it to d-band theory as part of an experimental investigation. The commercial catalysts of Pt, Rh, Ru, Cu, Pd, and Ir on carbon as a support have been characterized by means of SEM, EDX-mapping, STEM, XRD, N2-physisorption, and H2-chemisorption. Their catalytic activity has been established by means of c-methylation of ethanol with methanol. For all catalysts, the TOF with respect to i-butanol was examined. The Pt/C reached the highest TOF with a selectivity towards i-butanol of 89%. The trend for the TOFs could be well correlated with the d-band centers of the metal, which formed a volcano curve. Therefore, this study is another step towards the rationalization of catalyst design for the upgrading of alcohols into carbon-neutral fuels or chemical feedstock.
Collapse
|
97
|
Gogate MR. New perspectives on the nature and imaging of active site in small metallic particles: II. Electronic effects. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2020.1719078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Makarand R. Gogate
- Independent Consultant for ChE Education and Research, Aurangabad, Maharashtra, India
| |
Collapse
|
98
|
|
99
|
Shen J, Tang R, Huang J, Wu Y, Chen C, Zhou Q, Huang Y, Motkuri RK, Jin X, Cao H. Strain engineered gas-consumption electroreduction reactions: Fundamentals and perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
100
|
DFT insight into Hashmi phenol synthesis catalyzed by Au single-walled nanotubes: mechanism and charge effect. Theor Chem Acc 2021. [DOI: 10.1007/s00214-020-02715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|