51
|
McClellan L, Dominick KC, Pedapati EV, Wink LK, Erickson CA. Lurasidone for the treatment of irritability and anger in autism spectrum disorders. Expert Opin Investig Drugs 2017; 26:985-989. [DOI: 10.1080/13543784.2017.1353600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lynn McClellan
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kelli C. Dominick
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Ernest V. Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Logan K. Wink
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Craig A. Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
52
|
Arbaclofen in Children and Adolescents with Autism Spectrum Disorder: A Randomized, Controlled, Phase 2 Trial. Neuropsychopharmacology 2017; 42:1390-1398. [PMID: 27748740 PMCID: PMC5436109 DOI: 10.1038/npp.2016.237] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022]
Abstract
Several lines of emerging data point to an imbalance between neuronal excitation and inhibition in at least a subgroup of individuals with autism spectrum disorder (ASD), including in those with fragile X syndrome (FXS), one of the most common genetic syndromes within ASD. In animal models of FXS and of ASD, GABA-B agonists have improved both brain and behavioral phenotypes, including social behavior. A phase 2 randomized, placebo-controlled, crossover trial found that the GABA-B agonist arbaclofen improved social avoidance symptoms in FXS. A pilot open-label trial of arbaclofen suggested similar benefits in ASD. We therefore evaluated arbaclofen in a randomized, placebo-controlled, phase 2 study of 150 participants, aged 5-21 years, with ASD. No difference from placebo was detected on the primary outcome measure, the parent-rated Aberrant Behavior Checklist Social Withdrawal/Lethargy subscale. However, a specified secondary analysis found improvement on the clinician-rated Clinical Global Impression of Severity. An exploratory post hoc analysis of participants with a consistent rater across the trial revealed greater improvement in the Vineland Adaptive Behavior Scales II socialization domain in participants receiving arbaclofen. Affect lability (11%) and sedation (9%) were the most common adverse events. In this exploratory study, secondary analyses suggest that arbaclofen may have the potential to improve symptoms in some children with ASD, but further study will be needed to replicate and extend these initial findings.
Collapse
|
53
|
Amaral DG, Li D, Libero L, Solomon M, Van de Water J, Mastergeorge A, Naigles L, Rogers S, Wu Nordahl C. In pursuit of neurophenotypes: The consequences of having autism and a big brain. Autism Res 2017; 10:711-722. [PMID: 28239961 PMCID: PMC5520638 DOI: 10.1002/aur.1755] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/25/2022]
Abstract
A consensus has emerged that despite common core features, autism spectrum disorder (ASD) has multiple etiologies and various genetic and biological characteristics. The fact that there are likely to be subtypes of ASD has complicated attempts to develop effective therapies. The UC Davis MIND Institute Autism Phenome Project is a longitudinal, multidisciplinary analysis of children with autism and age-matched typically developing controls; nearly 400 families are participating in this study. The overarching goal is to gather sufficient biological, medical, and behavioral data to allow definition of clinically meaningful subtypes of ASD. One reasonable hypothesis is that different subtypes of autism will demonstrate different patterns of altered brain organization or development i.e., different neurophenotypes. In this Commentary, we discuss one neurophenotype that is defined by megalencephaly, or having brain size that is large and disproportionate to body size. We have found that 15% of the boys with autism demonstrate this neurophenotype, though it is far less common in girls. We review behavioral and medical characteristics of the large-brained group of boys with autism in comparison to those with typically sized brains. While brain size in typically developing individuals is positively correlated with cognitive function, the children with autism and larger brains have more severe disabilities and poorer prognosis. This research indicates that phenotyping in autism, like genotyping, requires a very substantial cohort of subjects. Moreover, since brain and behavior relationships may emerge at different times during development, this effort highlights the need for longitudinal analyses to carry out meaningful phenotyping. Autism Res 2017, 10: 711-722. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David G Amaral
- MIND Institute, UC Davis, 2825 50th Street, Sacramento, California
| | - Deana Li
- MIND Institute, UC Davis, 2825 50th Street, Sacramento, California
| | - Lauren Libero
- MIND Institute, UC Davis, 2825 50th Street, Sacramento, California
| | - Marjorie Solomon
- MIND Institute, UC Davis, 2825 50th Street, Sacramento, California
| | | | - Ann Mastergeorge
- MIND Institute, UC Davis, 2825 50th Street, Sacramento, California
| | - Letitia Naigles
- MIND Institute, UC Davis, 2825 50th Street, Sacramento, California
| | - Sally Rogers
- MIND Institute, UC Davis, 2825 50th Street, Sacramento, California
| | | |
Collapse
|
54
|
Kang JY, Chadchankar J, Vien TN, Mighdoll MI, Hyde TM, Mather RJ, Deeb TZ, Pangalos MN, Brandon NJ, Dunlop J, Moss SJ. Deficits in the activity of presynaptic γ-aminobutyric acid type B receptors contribute to altered neuronal excitability in fragile X syndrome. J Biol Chem 2017; 292:6621-6632. [PMID: 28213518 PMCID: PMC5399111 DOI: 10.1074/jbc.m116.772541] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/07/2017] [Indexed: 11/06/2022] Open
Abstract
The behavioral and anatomical deficits seen in fragile X syndrome (FXS) are widely believed to result from imbalances in the relative strengths of excitatory and inhibitory neurotransmission. Although modified neuronal excitability is thought to be of significance, the contribution that alterations in GABAergic inhibition play in the pathophysiology of FXS are ill defined. Slow sustained neuronal inhibition is mediated by γ-aminobutyric acid type B (GABAB) receptors, which are heterodimeric G-protein-coupled receptors constructed from R1a and R2 or R1b and R2 subunits. Via the activation of Gi/o, they limit cAMP accumulation, diminish neurotransmitter release, and induce neuronal hyperpolarization. Here we reveal that selective deficits in R1a subunit expression are seen in Fmr1 knock-out mice (KO) mice, a widely used animal model of FXS, but the levels of the respective mRNAs were unaffected. Similar trends of R1a expression were seen in a subset of FXS patients. GABAB receptors (GABABRs) exert powerful pre- and postsynaptic inhibitory effects on neurotransmission. R1a-containing GABABRs are believed to mediate presynaptic inhibition in principal neurons. In accordance with this result, deficits in the ability of GABABRs to suppress glutamate release were seen in Fmr1-KO mice. In contrast, the ability of GABABRs to suppress GABA release and induce postsynaptic hyperpolarization was unaffected. Significantly, this deficit contributes to the pathophysiology of FXS as the GABABR agonist (R)-baclofen rescued the imbalances between excitatory and inhibitory neurotransmission evident in Fmr1-KO mice. Collectively, our results provided evidence that selective deficits in the activity of presynaptic GABABRs contribute to the pathophysiology of FXS.
Collapse
Affiliation(s)
- Ji-Yong Kang
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Jayashree Chadchankar
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Thuy N Vien
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | - Thomas M Hyde
- the Lieber Institute for Brain Development and
- Departments of Neurology and Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert J Mather
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Neuroscience, Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts 02451
| | - Tarek Z Deeb
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Menelas N Pangalos
- Innovative Medicines and Early Development, AstraZeneca, Melbourn Science Park, Cambridge Road, Royston Herts SG8 6EE, United Kingdom, and
| | - Nicholas J Brandon
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Neuroscience, Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts 02451
| | - John Dunlop
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Neuroscience, Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts 02451
| | - Stephen J Moss
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111,
- Neuroscience, Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts 02451
- the Department of Neuroscience, Physiology and Pharmacology, University College, London WC1E 6BT, United Kingdom
| |
Collapse
|
55
|
Hollander E, Uzunova G. Are there new advances in the pharmacotherapy of autism spectrum disorders? World Psychiatry 2017; 16:101-102. [PMID: 28127936 PMCID: PMC5269487 DOI: 10.1002/wps.20398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Eric Hollander
- Department of PsychiatryAlbert Einstein College of Medicine and Montefiore Medical CenterBronxNYUSA
| | - Genoveva Uzunova
- Department of PsychiatryAlbert Einstein College of Medicine and Montefiore Medical CenterBronxNYUSA
| |
Collapse
|
56
|
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders with early onset, characterized by deficits in social communication and repetitive and restricted interests and activities. A growing number of studies over the last 10 years support the efficacy of behaviorally based interventions in ASD for the improvement of social communication and behavioral functioning. In contrast, research on neurobiological based therapies for ASD is still at its beginnings. In this article, we will provide a selective overview of both well-established evidence-based treatments and novel interventions and drug treatments based on neurobiological principles aiming at improving core symptoms in ASD. Directions and options for future research on treatment in ASD are discussed.
Collapse
Affiliation(s)
- L Poustka
- Clinic for Child and Adolescent Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - I Kamp-Becker
- Clinic for Child and Adolescent Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
57
|
Singh R, Turner RC, Nguyen L, Motwani K, Swatek M, Lucke-Wold BP. Pediatric Traumatic Brain Injury and Autism: Elucidating Shared Mechanisms. Behav Neurol 2016; 2016:8781725. [PMID: 28074078 PMCID: PMC5198096 DOI: 10.1155/2016/8781725] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/23/2016] [Indexed: 02/08/2023] Open
Abstract
Pediatric traumatic brain injury (TBI) and autism spectrum disorder (ASD) are two serious conditions that affect youth. Recent data, both preclinical and clinical, show that pediatric TBI and ASD share not only similar symptoms but also some of the same biologic mechanisms that cause these symptoms. Prominent symptoms for both disorders include gastrointestinal problems, learning difficulties, seizures, and sensory processing disruption. In this review, we highlight some of these shared mechanisms in order to discuss potential treatment options that might be applied for each condition. We discuss potential therapeutic and pharmacologic options as well as potential novel drug targets. Furthermore, we highlight advances in understanding of brain circuitry that is being propelled by improved imaging modalities. Going forward, advanced imaging will help in diagnosis and treatment planning strategies for pediatric patients. Lessons from each field can be applied to design better and more rigorous trials that can be used to improve guidelines for pediatric patients suffering from TBI or ASD.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Ryan C. Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Linda Nguyen
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Kartik Motwani
- Department of Medical Sciences, University of Florida School of Medicine, Gainesville, FL 32611, USA
| | - Michelle Swatek
- Department of Psychology, North Carolina State University, Raleigh, NC 27695, USA
| | - Brandon P. Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| |
Collapse
|
58
|
Affiliation(s)
- Jörg Striessnig
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
59
|
Port RG, Gaetz W, Bloy L, Wang DJ, Blaskey L, Kuschner ES, Levy SE, Brodkin ES, Roberts TPL. Exploring the relationship between cortical GABA concentrations, auditory gamma-band responses and development in ASD: Evidence for an altered maturational trajectory in ASD. Autism Res 2016; 10:593-607. [PMID: 27696740 DOI: 10.1002/aur.1686] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/03/2016] [Accepted: 07/10/2016] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorder (ASD) is hypothesized to arise from imbalances between excitatory and inhibitory neurotransmission (E/I imbalance). Studies have demonstrated E/I imbalance in individuals with ASD and also corresponding rodent models. One neural process thought to be reliant on E/I balance is gamma-band activity (Gamma), with support arising from observed correlations between motor, as well as visual, Gamma and underlying GABA concentrations in healthy adults. Additionally, decreased Gamma has been observed in ASD individuals and relevant animal models, though the direct relationship between Gamma and GABA concentrations in ASD remains unexplored. This study combined magnetoencephalography (MEG) and edited magnetic resonance spectroscopy (MRS) in 27 typically developing individuals (TD) and 30 individuals with ASD. Auditory cortex localized phase-locked Gamma was compared to resting Superior Temporal Gyrus relative cortical GABA concentrations for both children/adolescents and adults. Children/adolescents with ASD exhibited significantly decreased GABA+/Creatine (Cr) levels, though typical Gamma. Additionally, these children/adolescents lacked the typical maturation of GABA+/Cr concentrations and gamma-band coherence. Furthermore, children/adolescents with ASD additionally failed to exhibit the typical GABA+/Cr to gamma-band coherence association. This altered coupling during childhood/adolescence may result in Gamma decreases observed in the adults with ASD. Therefore, individuals with ASD exhibit improper local neuronal circuitry maturation during a childhood/adolescence critical period, when GABA is involved in configuring of such circuit functioning. Provocatively a novel line of treatment is suggested (with a critical time window); by increasing neural GABA levels in children/adolescents with ASD, proper local circuitry maturation may be restored resulting in typical Gamma in adulthood. Autism Res 2017, 10: 593-607. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Russell G Port
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - William Gaetz
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Dah-Jyuu Wang
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lisa Blaskey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Susan E Levy
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
60
|
Brondino N, Fusar-Poli L, Panisi C, Damiani S, Barale F, Politi P. Pharmacological Modulation of GABA Function in Autism Spectrum Disorders: A Systematic Review of Human Studies. J Autism Dev Disord 2016; 46:825-39. [PMID: 26443675 DOI: 10.1007/s10803-015-2619-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Autism spectrum disorders are an emerging health problem worldwide, but little is known about their pathogenesis. It has been hypothesized that autism may result from an imbalance between excitatory glutamatergic and inhibitory GABAergic pathways. Commonly used medications such as valproate, acamprosate, and arbaclofen may act on the GABAergic system and be a potential treatment for people with ASD. The present systematic review aimed at evaluating the state-of-the-art of clinical trials of GABA modulators in autism. To date there is insufficient evidence to suggest the use of these drugs in autistic subjects, even if data are promising. Of note, short-term use of all the reviewed medications appears to be safe. Future well designed trials are needed to elucidate these preliminary findings.
Collapse
Affiliation(s)
- Natascia Brondino
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100, Pavia, Italy.
| | - Laura Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| | - Cristina Panisi
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| | - Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| | - Francesco Barale
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| |
Collapse
|
61
|
Lozano R, Martinez-Cerdeno V, Hagerman RJ. Advances in the Understanding of the Gabaergic Neurobiology of FMR1 Expanded Alleles Leading to Targeted Treatments for Fragile X Spectrum Disorder. Curr Pharm Des 2016; 21:4972-4979. [PMID: 26365141 DOI: 10.2174/1381612821666150914121038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/11/2015] [Indexed: 12/15/2022]
Abstract
Fragile X spectrum disorder (FXSD) includes: fragile X syndrome (FXS), fragile X-associated tremor ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI), as well as other medical, psychiatric and neurobehavioral problems associated with the premutation and gray zone alleles. FXS is the most common monogenetic cause of autism (ASD) and intellectual disability (ID). The understanding of the neurobiology of FXS has led to many targeted treatment trials in FXS. The first wave of phase II clinical trials in FXS were designed to target the mGluR5 pathway; however the results did not show significant efficacy and the trials were terminated. The advances in the understanding of the GABA system in FXS have shifted the focus of treatment trials to GABA agonists, and a new wave of promising clinical trials is under way. Ganaxolone and allopregnanolone (GABA agonists) have been studied in individuals with FXSD and are currently in phase II trials. Both allopregnanolone and ganaxolone may be efficacious in treatment of FXS and FXTAS, respectively. Allopregnanolone, ganaxolone, riluzole, gaboxadol, tiagabine, and vigabatrin are potential GABAergic treatments. The lessons learned from the initial trials have not only shifted the targeted system, but also have refined the design of clinical trials. The results of these new trials will likely impact further clinical trials for FXS and other genetic disorders associated with ASD.
Collapse
Affiliation(s)
- Reymundo Lozano
- Icahn School of Medicine at Mount Sinai, New York, NY USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Veronica Martinez-Cerdeno
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, UC Davis, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospital for Children of Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis, Sacramento, USA
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, UC Davis, CA, USA; Department of Pediatrics, UC Davis, Sacramento, CA, USA
| |
Collapse
|
62
|
Hutson PH, Clark JA, Cross AJ. CNS Target Identification and Validation: Avoiding the Valley of Death or Naive Optimism? Annu Rev Pharmacol Toxicol 2016; 57:171-187. [PMID: 27575715 DOI: 10.1146/annurev-pharmtox-010716-104624] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There are many challenges along the path to the approval of new drugs to treat CNS disorders, one of the greatest areas of unmet medical need with a large societal burden and health-care impact. Unfortunately, over the past two decades, few CNS drug approvals have succeeded, leading many pharmaceutical companies to deprioritize this therapeutic area. The reasons for the failures in CNS drug discovery are likely to be multifactorial. However, selecting the most biologically plausible molecular targets that are relevant to the disorder is a critical first step to improve the probability of success. In this review, we outline previous methods for identifying and validating novel targets for CNS drug discovery, and, cognizant of previous failures, we discuss potential new strategies that may improve the probability of success of developing novel treatments for CNS disorders.
Collapse
Affiliation(s)
- P H Hutson
- Neurobiology, CNS Discovery, Teva Pharmaceuticals, West Chester, Pennsylvania 19380;
| | - J A Clark
- Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland 20892;
| | - A J Cross
- Neuroscience Innovative Medicines, AstraZeneca, Cambridge, Massachusetts 01239;
| |
Collapse
|
63
|
Dickinson A, Jones M, Milne E. Measuring neural excitation and inhibition in autism: Different approaches, different findings and different interpretations. Brain Res 2016; 1648:277-289. [PMID: 27421181 DOI: 10.1016/j.brainres.2016.07.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/23/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022]
Abstract
The balance of neural excitation and inhibition (E/I balance) is often hypothesised to be altered in autism spectrum disorder (ASD). One widely held view is that excitation levels are elevated relative to inhibition in ASD. Understanding whether, and how, E/I balance may be altered in ASD is important given the recent interest in trialling pharmacological interventions for ASD which target inhibitory neurotransmitter function. Here we provide a critical review of evidence for E/I balance in ASD. We conclude that data from a number of domains provides support for alteration in excitation and inhibitory neurotransmission in ASD, but when considered collectively, the available literature provide little evidence to support claims for either a net increase in excitation or a net increase in inhibition. Strengths and limitations of available techniques are considered, and directions for future research discussed.
Collapse
Affiliation(s)
- Abigail Dickinson
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK.
| | - Myles Jones
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK
| | - Elizabeth Milne
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK.
| |
Collapse
|
64
|
Beas BS, Setlow B, Bizon JL. Effects of acute administration of the GABA(B) receptor agonist baclofen on behavioral flexibility in rats. Psychopharmacology (Berl) 2016; 233:2787-97. [PMID: 27256354 PMCID: PMC4919234 DOI: 10.1007/s00213-016-4321-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/09/2016] [Indexed: 12/20/2022]
Abstract
RATIONALE The ability to adjust response strategies when faced with changes in the environment is critical for normal adaptive behavior. Such behavioral flexibility is compromised by experimental disruption of cortical GABAergic signaling, as well as in conditions such as schizophrenia and normal aging that are characterized by cortical hyperexcitability. The current studies were designed to determine whether stimulation of GABAergic signaling using the GABA(B) receptor agonist baclofen can facilitate behavioral flexibility. METHODS Male Fischer 344 rats were trained in a set-shifting task in which they learned to discriminate between two response levers to obtain a food reward. Correct levers were signaled in accordance with two distinct response rules (rule 1: correct lever signaled by a cue light; rule 2: correct lever signaled by its left/right position). The order of rule presentation varied, but they were always presented sequentially, with the trials and errors to reach criterion performance on the second (set shift) rule providing the measure of behavioral flexibility. Experiments determined the effects of the GABA(B) receptor agonist baclofen (intraperitoneal, 0, 1.0, 2.5, and 4.0 mg/kg) administered acutely before the shift to the second rule. RESULTS Baclofen enhanced set-shifting performance. Control experiments demonstrated that this enhancement was not simply due to improved discrimination learning, nor was it due to impaired recall of the initial discrimination rule. CONCLUSIONS The results demonstrate that baclofen can facilitate behavioral flexibility, suggesting that GABA(B) receptor agonists may have utility for treating behavioral dysfunction in neuropsychiatric disorders.
Collapse
Affiliation(s)
- B. Sofia Beas
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
| | - Barry Setlow
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL,Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL
| | - Jennifer L. Bizon
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL,Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
65
|
Frye RE, Rossignol DA. Identification and Treatment of Pathophysiological Comorbidities of Autism Spectrum Disorder to Achieve Optimal Outcomes. CLINICAL MEDICINE INSIGHTS-PEDIATRICS 2016; 10:43-56. [PMID: 27330338 PMCID: PMC4910649 DOI: 10.4137/cmped.s38337] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/15/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023]
Abstract
Despite the fact that the prevalence of autism spectrum disorder (ASD) continues to rise, no effective medical treatments have become standard of care. In this paper we review some of the pathophysiological abnormalities associated with ASD and their potential associated treatments. Overall, there is evidence for some children with ASD being affected by seizure and epilepsy, neurotransmitter dysfunction, sleep disorders, metabolic abnormalities, including abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, redox and mitochondrial metabolism, and immune and gastrointestinal disorders. Although evidence for an association between these pathophysiological abnormalities and ASD exists, the exact relationship to the etiology of ASD and its associated symptoms remains to be further defined in many cases. Despite these limitations, treatments targeting some of these pathophysiological abnormalities have been studied in some cases with high-quality studies, whereas treatments for other pathophysiological abnormalities have not been well studied in many cases. There are some areas of more promising treatments specific for ASD including neurotransmitter abnormalities, particularly imbalances in glutamate and acetylcholine, sleep onset disorder (with behavioral therapy and melatonin), and metabolic abnormalities in folate, cobalamin, tetrahydrobiopterin, carnitine, and redox pathways. There is some evidence for treatments of epilepsy and seizures, mitochondrial and immune disorders, and gastrointestinal abnormalities, particularly imbalances in the enteric microbiome, but further clinical studies are needed in these areas to better define treatments specific to children with ASD. Clearly, there are some promising areas of ASD research that could lead to novel treatments that could become standard of care in the future, but more research is needed to better define subgroups of children with ASD who are affected by specific pathophysiological abnormalities and the optimal treatments for these abnormalities.
Collapse
Affiliation(s)
- Richard E Frye
- Arkansas Children's Research Institute, Little Rock, AR, USA.; Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | |
Collapse
|
66
|
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders including autistic disorder, Asperger syndrome, and pervasive developmental disorder not otherwise specified as to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. All these categories are grouped together in Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, classification under the category of Autism Spectrum Disorders.Behavioral disorders including irritability, attention-deficit/hyperactivity disorder (ADHD) symptoms, and aggression are additional symptoms found in up to 20% of children and adolescents with ASD and require careful evaluation for appropriate treatment. Attention-deficit/hyperactivity disorder is defined by impaired attention, hyperactivity, and impulsivity, whereas ASD is defined by social dysfunction, communicative impairment, and restricted/repetitive behaviors. They should be distinctly evaluated in children and adolescents with ASD and intellectual disability in contrast to individuals without intellectual disability, because significant differences between these conditions exist. Mood disorders are also common in ASD and should be systematically investigated in this population of children and adolescents. Approximately 50% of children and adolescents with ASD receive medication for comorbid behavioral/ADHD and mood symptoms, mostly stimulants, antiepileptics and antipsychotics. Guidelines for the evaluation and treatment including medications for ADHD-like symptoms have recently been provided and should be carefully considered. Antiepileptic drugs are commonly used in ASDs with epilepsy, because seizures are associated with ASD in 10% to 30% of young patients, and as mood stabilizers. Lithium is another option for children and adolescents with ASD who present with symptoms of a mood disorder, such as elevated moods/euphoria, mania, and paranoia, whether accompanied or not by irritability. Experimental treatments are under investigation and currently include arbaclofen, a γ-aminobutyric acid agent, and N-acetylcisteine, a glutamate agent.
Collapse
|
67
|
Port RG, Edgar JC, Ku M, Bloy L, Murray R, Blaskey L, Levy SE, Roberts TPL. Maturation of auditory neural processes in autism spectrum disorder - A longitudinal MEG study. Neuroimage Clin 2016; 11:566-577. [PMID: 27158589 PMCID: PMC4844592 DOI: 10.1016/j.nicl.2016.03.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/20/2016] [Accepted: 03/29/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Individuals with autism spectrum disorder (ASD) show atypical brain activity, perhaps due to delayed maturation. Previous studies examining the maturation of auditory electrophysiological activity have been limited due to their use of cross-sectional designs. The present study took a first step in examining magnetoencephalography (MEG) evidence of abnormal auditory response maturation in ASD via the use of a longitudinal design. METHODS Initially recruited for a previous study, 27 children with ASD and nine typically developing (TD) children, aged 6- to 11-years-old, were re-recruited two to five years later. At both timepoints, MEG data were obtained while participants passively listened to sinusoidal pure-tones. Bilateral primary/secondary auditory cortex time domain (100 ms evoked response latency (M100)) and spectrotemporal measures (gamma-band power and inter-trial coherence (ITC)) were examined. MEG measures were also qualitatively examined for five children who exhibited "optimal outcome", participants who were initially on spectrum, but no longer met diagnostic criteria at follow-up. RESULTS M100 latencies were delayed in ASD versus TD at the initial exam (~ 19 ms) and at follow-up (~ 18 ms). At both exams, M100 latencies were associated with clinical ASD severity. In addition, gamma-band evoked power and ITC were reduced in ASD versus TD. M100 latency and gamma-band maturation rates did not differ between ASD and TD. Of note, the cohort of five children that demonstrated "optimal outcome" additionally exhibited M100 latency and gamma-band activity mean values in-between TD and ASD at both timepoints. Though justifying only qualitative interpretation, these "optimal outcome" related data are presented here to motivate future studies. CONCLUSIONS Children with ASD showed perturbed auditory cortex neural activity, as evidenced by M100 latency delays as well as reduced transient gamma-band activity. Despite evidence for maturation of these responses in ASD, the neural abnormalities in ASD persisted across time. Of note, data from the five children whom demonstrated "optimal outcome" qualitatively suggest that such clinical improvements may be associated with auditory brain responses intermediate between TD and ASD. These "optimal outcome" related results are not statistically significant though, likely due to the low sample size of this cohort, and to be expected as a result of the relatively low proportion of "optimal outcome" in the ASD population. Thus, further investigations with larger cohorts are needed to determine if the above auditory response phenotypes have prognostic utility, predictive of clinical outcome.
Collapse
Affiliation(s)
- Russell G Port
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew Ku
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rebecca Murray
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa Blaskey
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susan E Levy
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
68
|
Radwan B, Dvorak D, Fenton AA. Impaired cognitive discrimination and discoordination of coupled theta-gamma oscillations in Fmr1 knockout mice. Neurobiol Dis 2016; 88:125-38. [PMID: 26792400 PMCID: PMC4758895 DOI: 10.1016/j.nbd.2016.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/31/2015] [Accepted: 01/07/2016] [Indexed: 12/21/2022] Open
Abstract
Fragile X syndrome (FXS) patients do not make the fragile X mental retardation protein (FMRP). The absence of FMRP causes dysregulated translation, abnormal synaptic plasticity and the most common form of inherited intellectual disability. But FMRP loss has minimal effects on memory itself, making it difficult to understand why the absence of FMRP impairs memory discrimination and increases risk of autistic symptoms in patients, such as exaggerated responses to environmental changes. While Fmr1 knockout (KO) and wild-type (WT) mice perform cognitive discrimination tasks, we find abnormal patterns of coupling between theta and gamma oscillations in perisomatic and dendritic hippocampal CA1 local field potentials of the KO. Perisomatic CA1 theta-gamma phase-amplitude coupling (PAC) decreases with familiarity in both the WT and KO, but activating an invisible shock zone, subsequently changing its location, or turning it off, changes the pattern of oscillatory events in the LFPs recorded along the somato-dendritic axis of CA1. The cognition-dependent changes of this pattern of neural activity are relatively constrained in WT mice compared to KO mice, which exhibit abnormally weak changes during the cognitive challenge caused by changing the location of the shock zone and exaggerated patterns of change when the shock zone is turned off. Such pathophysiology might explain how dysregulated translation leads to intellectual disability in FXS. These findings demonstrate major functional abnormalities after the loss of FMRP in the dynamics of neural oscillations and that these impairments would be difficult to detect by steady-state measurements with the subject at rest or in steady conditions.
Collapse
Affiliation(s)
- Basma Radwan
- Center for Neural Science, New York University, USA
| | - Dino Dvorak
- Center for Neural Science, New York University, USA; Joint Graduate Program in Biomedical Engineering State University of New York, Downstate Medical Center and New York University/Polytechnic University, USA
| | - André A Fenton
- Center for Neural Science, New York University, USA; Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural & Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
69
|
Zamzow RM, Ferguson BJ, Stichter JP, Porges EC, Ragsdale AS, Lewis ML, Beversdorf DQ. Effects of propranolol on conversational reciprocity in autism spectrum disorder: a pilot, double-blind, single-dose psychopharmacological challenge study. Psychopharmacology (Berl) 2016; 233:1171-8. [PMID: 26762378 DOI: 10.1007/s00213-015-4199-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
RATIONALE Pharmacological intervention for autism spectrum disorder (ASD) is an important addition to treatment, yet currently available agents target co-morbid psychiatric concerns, such as aggression and irritability. Propranolol, a beta-adrenergic antagonist with anxiolytic effects, has been shown to improve verbal fluency and working memory in adults and adolescents with ASD in single-dose challenges. OBJECTIVES The present pilot study explores the acute effects of propranolol on a measure of conversational reciprocity in this population. We also examined whether autonomic activity and anxiety moderate or mediate response to the drug, given relationships between these variables and ASD, as well as the drug's effects. METHODS In a within-subject crossover design, 20 individuals with ASD received a single dose of propranolol or placebo during two sessions in a double-blinded, counterbalanced manner. After drug administration, participants performed a conversational reciprocity task by engaging in a short conversation with the researcher. Measurements of autonomic activity and anxiety were obtained before and after drug administration. RESULTS Propranolol significantly improved performance on the conversational reciprocity task total [d = 0.40] and nonverbal communication domain scores when compared to the placebo condition. However, neither autonomic activity nor anxiety was significantly associated with drug response. CONCLUSIONS Acute propranolol administration improved conversational reciprocity in ASD. Further exploration of these preliminary findings, as well as other potential treatment response predictors, with serial doses is warranted.
Collapse
Affiliation(s)
- Rachel M Zamzow
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA
| | - Bradley J Ferguson
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA
| | - Janine P Stichter
- Department of Special Education, University of Missouri, Columbia, MO, USA
| | - Eric C Porges
- Center for Cognitive Aging and Memory (CAM), Institute on Aging, McKnight Brain Institute, Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32608, USA
| | | | - Morgan L Lewis
- Department of Biological Sciences, University of Missouri, Columbia, MO, USA
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - David Q Beversdorf
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA.
- William and Nancy Thompson Endowed Chair in Radiology, Departments of Radiology and Neurology, and the Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, Columbia, MO, USA.
- Department of Radiology, DC069.10, University of Missouri Health Care, One Hospital Dr, Columbia, MO, 65212, USA.
| |
Collapse
|
70
|
Lee HM, Kim Y. Drug Repurposing Is a New Opportunity for Developing Drugs against Neuropsychiatric Disorders. SCHIZOPHRENIA RESEARCH AND TREATMENT 2016; 2016:6378137. [PMID: 27073698 PMCID: PMC4814692 DOI: 10.1155/2016/6378137] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/24/2016] [Indexed: 01/03/2023]
Abstract
Better the drugs you know than the drugs you do not know. Drug repurposing is a promising, fast, and cost effective method that can overcome traditional de novo drug discovery and development challenges of targeting neuropsychiatric and other disorders. Drug discovery and development targeting neuropsychiatric disorders are complicated because of the limitations in understanding pathophysiological phenomena. In addition, traditional de novo drug discovery and development are risky, expensive, and time-consuming processes. One alternative approach, drug repurposing, has emerged taking advantage of off-target effects of the existing drugs. In order to identify new opportunities for the existing drugs, it is essential for us to understand the mechanisms of action of drugs, both biologically and pharmacologically. By doing this, drug repurposing would be a more effective method to develop drugs against neuropsychiatric and other disorders. Here, we review the difficulties in drug discovery and development in neuropsychiatric disorders and the extent and perspectives of drug repurposing.
Collapse
Affiliation(s)
- Hyeong-Min Lee
- Department of Cell Biology & Physiology, School of Medicine, University of North Carolina, 115 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Yuna Kim
- Department of Pediatrics, School of Medicine, Duke University, 905 S. LaSalle Street, Durham, NC 27710, USA
| |
Collapse
|
71
|
Accordino RE, Kidd C, Politte LC, Henry CA, McDougle CJ. Psychopharmacological interventions in autism spectrum disorder. Expert Opin Pharmacother 2016; 17:937-52. [PMID: 26891879 DOI: 10.1517/14656566.2016.1154536] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Individuals with autism spectrum disorder (ASD) commonly present for treatment of emotional and behavioral disturbances associated with ASD's "core" symptoms. Psychotropic medications are widely utilized in alleviating associated emotional and behavioral symptoms. AREAS COVERED Emotional and behavioral disturbances associated with ASD include irritability/severely disruptive behavior, which comprises the heaviest symptom burden; hyperactivity and other Attention-Deficit-Hyperactivity-Disorder (ADHD)-type symptoms; repetitive/stereotyped behaviors; and social withdrawal. Existing evidence for medications for each of these symptom clusters will be examined in this review. EXPERT OPINION Psychopharmacological treatment of core and associated symptoms in ASD is challenging, in large part because of the heterogeneity in the presentation of ASD. Furthermore, children and adolescents with ASD are more vulnerable to the side effects of psychopharmacological intervention than their age-matched, typically developing counterparts. Currently, risperidone and aripiprazole are the only medications that have been (relatively) reliably shown to help treat certain symptom clusters associated with ASD, namely severely disruptive behavior and hyperactivity. Recent studies have begun to look at medications with mechanisms that are novel in the treatment of ASD and that may address underlying pathophysiology and/or core symptoms such as glutamate-modulating agents. Overall, randomized, placebo-controlled studies of medications for the treatment of ASD are scarce.
Collapse
Affiliation(s)
- Robert E Accordino
- a Massachusetts General Hospital & McLean Hospital, Child & Adolescent Psychiatry Service , Yawkey Outpatient Care Center , Boston , MA , USA
| | - Christen Kidd
- b Payne-Whitney Clinic , New York-Presbyterian Hospital/Weill-Cornell Medical Center , New York , NY , USA
| | - Laura C Politte
- c Carolina Institute for Developmental Disabilities , University of North Carolina School of Medicine , Carrboro , NC , USA
| | - Charles A Henry
- d Massachusetts General Hospital, Harvard Medical School, Child & Adolescent Psychiatry Service , Yawkey Outpatient Care Center , Boston , MA , USA
| | - Christopher J McDougle
- e Lurie Center for Autism, Massachusetts General Hospital , Harvard Medical School , Lexington , MA , USA
| |
Collapse
|
72
|
Minshawi NF, Wink LK, Shaffer R, Plawecki MH, Posey DJ, Liu H, Hurwitz S, McDougle CJ, Swiezy NB, Erickson CA. A randomized, placebo-controlled trial of D-cycloserine for the enhancement of social skills training in autism spectrum disorders. Mol Autism 2016; 7:2. [PMID: 26770664 PMCID: PMC4712595 DOI: 10.1186/s13229-015-0062-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 12/14/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Researchers have demonstrated that d-cycloserine (DCS) can enhance the effects of behavioral interventions in adults with anxiety and enhances prosocial behavior in animal models of autism spectrum disorders (ASD). This study extended upon this background by combining DCS with behavioral social skills therapy in youth with ASD to assess its impact on the core social deficits of ASD. We hypothesized that DCS used in combination with social skills training would enhance the acquisition of social skills in children with ASD. METHODS A 10-week, double-blind, placebo-controlled trial of DCS (50 mg) given 30 min prior to weekly group social skills training was conducted at two sites. Children with ASD were randomized to receive 10 weeks (10 doses) of DCS or placebo in a 1:1 ratio. RESULTS No statistically significant difference attributable to drug treatment was observed in the change scores for the primary outcome measure, the Social Responsiveness Scale (SRS), total score (p = 0.45), or on secondary outcome measures. CONCLUSIONS The results of this trial demonstrated no drug-related short-term improvement on the primary outcome measure, or any of the secondary outcome measures. However, an overall significant improvement in SRS total raw score was observed from baseline to end of treatment for the entire group of children with ASD. This suggests a need to further study the efficacy of the social skills training protocol. Limitations to the current study and areas for future research are discussed. TRIAL REGISTRATION ClinicalTrials.govNCT01086475.
Collapse
Affiliation(s)
- Noha F. Minshawi
- />Christian Sarkine Autism Treatment Center, Riley Hospital for Children at Indiana University Health, Indiana University School of Medicine Department of Psychiatry, Indianapolis, IN USA
| | - Logan K. Wink
- />Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue MLC 4002, Cincinnati, OH 45229 USA
| | - Rebecca Shaffer
- />Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue MLC 4002, Cincinnati, OH 45229 USA
| | - Martin H. Plawecki
- />Christian Sarkine Autism Treatment Center, Riley Hospital for Children at Indiana University Health, Indiana University School of Medicine Department of Psychiatry, Indianapolis, IN USA
| | | | - Hai Liu
- />Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Sarah Hurwitz
- />Indiana University School of Education, Bloomington, IN USA
| | - Christopher J. McDougle
- />Lurie Center for Autism, Departments of Psychiatry and Pediatrics, Massachusetts General Hospital and MassGeneral Hospital for Children, Harvard Medical School, Boston, MA USA
| | - Naomi B. Swiezy
- />Christian Sarkine Autism Treatment Center, Riley Hospital for Children at Indiana University Health, Indiana University School of Medicine Department of Psychiatry, Indianapolis, IN USA
| | - Craig A. Erickson
- />Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue MLC 4002, Cincinnati, OH 45229 USA
| |
Collapse
|
73
|
Fitzpatrick SE, Srivorakiat L, Wink LK, Pedapati EV, Erickson CA. Aggression in autism spectrum disorder: presentation and treatment options. Neuropsychiatr Dis Treat 2016; 12:1525-38. [PMID: 27382295 PMCID: PMC4922773 DOI: 10.2147/ndt.s84585] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent difficulties in social communication and social interaction, coupled with restricted, repetitive patterns of behavior or interest. Research indicates that aggression rates may be higher in individuals with ASD compared to those with other developmental disabilities. Aggression is associated with negative outcomes for children with ASD and their caregivers, including decreased quality of life, increased stress levels, and reduced availability of educational and social support. Therapeutic strategies including functional behavioral assessment, reinforcement strategies, and functional communication training may have a significant impact in reducing the frequency and intensity of aggressive behavior in individuals with ASD. Pharmacologic treatments, particularly the use of second-generation antipsychotics, may also be of some benefit in reducing aggression in individuals with ASD. With the ever-increasing rate of ASD diagnosis, development of effective therapeutic and pharmacologic methods for preventing and treating aggression are essential to improving outcomes in this disorder.
Collapse
Affiliation(s)
- Sarah E Fitzpatrick
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Laura Srivorakiat
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Logan K Wink
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ernest V Pedapati
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Craig A Erickson
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
74
|
Kazdoba TM, Leach PT, Yang M, Silverman JL, Solomon M, Crawley JN. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics. Curr Top Behav Neurosci 2016; 28:1-52. [PMID: 27305922 PMCID: PMC5116923 DOI: 10.1007/7854_2015_5003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal models provide preclinical tools to investigate the causal role of genetic mutations and environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and humanized knock-in mice, and more recently knockout rats, have been generated for many of the de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid neurodevelopmental disorders. Mouse models incorporating genetic and environmental manipulations have been employed for preclinical testing of hypothesis-driven pharmacological targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In this review, we summarize rodent behavioral assays relevant to the core features of autism, preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the translational value of rodent models of autism.
Collapse
Affiliation(s)
- Tatiana M Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Prescott T Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Mu Yang
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Jill L Silverman
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Marjorie Solomon
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA.
| |
Collapse
|
75
|
Peñagarikano O. New Therapeutic Options for Autism Spectrum Disorder: Experimental Evidences. Exp Neurobiol 2015; 24:301-11. [PMID: 26713078 PMCID: PMC4688330 DOI: 10.5607/en.2015.24.4.301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impairment in two behavioral domains: social interaction/communication together with the presence of stereotyped behaviors and restricted interests. The heterogeneity in the phenotype among patients and the complex etiology of the disorder have long impeded the advancement of the development of successful pharmacotherapies. However, in the recent years, the integration of findings of multiple levels of research, from human genetics to mouse models, have made considerable progress towards the understanding of ASD pathophysiology, allowing the development of more effective targeted drug therapies. The present review discusses the current state of pharmacological research in ASD based on the emerging common pathophysiology signature.
Collapse
Affiliation(s)
- Olga Peñagarikano
- Department of Pharmacology, School of Medicine, University of the Basque Country, Sarriena s/n, Leioa 48940, Spain
| |
Collapse
|
76
|
Sastre A, Campillo NE, Gil C, Martinez A. Therapeutic approaches for the future treatment of Fragile X. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2015.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
77
|
GABAB Receptor Agonist R-Baclofen Reverses Social Deficits and Reduces Repetitive Behavior in Two Mouse Models of Autism. Neuropsychopharmacology 2015; 40:2228-39. [PMID: 25754761 PMCID: PMC4613612 DOI: 10.1038/npp.2015.66] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is diagnosed by two core behavioral criteria, unusual reciprocal social interactions and communication, and stereotyped, repetitive behaviors with restricted interests. Excitatory/inhibitory imbalance is a prominent hypothesis for the etiology of autism. The selective GABAB receptor agonist R-baclofen previously reversed social deficits and reduced repetitive behaviors in a mouse model of Fragile X syndrome, and Arbaclofen improved some clinical symptoms in some Fragile X and ASD patients. To evaluate R-baclofen in a broader range of mouse models of ASD, we tested both the R-baclofen enantiomer and the less potent S-baclofen enantiomer in two inbred strains of mice that display low sociability and/or high repetitive or stereotyped behaviors. R-baclofen treatment reversed social approach deficits in BTBR T+ Itpr3tf/J (BTBR), reduced repetitive self-grooming and high marble burying scores in BTBR, and reduced stereotyped jumping in C58/J (C58), at nonsedating doses. S-baclofen produced minimal effects at the same doses. These findings encourage investigations of R-baclofen in other preclinical model systems. Additional clinical studies may be warranted to further evaluate the hypothesis that the GABAB receptor represents a promising pharmacological target for treating appropriately stratified subsets of individuals with ASD.
Collapse
|
78
|
Frye RE, Slattery J, MacFabe DF, Allen-Vercoe E, Parker W, Rodakis J, Adams JB, Krajmalnik-Brown R, Bolte E, Kahler S, Jennings J, James J, Cerniglia CE, Midtvedt T. Approaches to studying and manipulating the enteric microbiome to improve autism symptoms. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:26878. [PMID: 25956237 PMCID: PMC4425814 DOI: 10.3402/mehd.v26.26878] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/05/2015] [Accepted: 04/06/2015] [Indexed: 02/07/2023]
Abstract
There is a growing body of scientific evidence that the health of the microbiome (the trillions of microbes that inhabit the human host) plays an important role in maintaining the health of the host and that disruptions in the microbiome may play a role in certain disease processes. An increasing number of research studies have provided evidence that the composition of the gut (enteric) microbiome (GM) in at least a subset of individuals with autism spectrum disorder (ASD) deviates from what is usually observed in typically developing individuals. There are several lines of research that suggest that specific changes in the GM could be causative or highly associated with driving core and associated ASD symptoms, pathology, and comorbidities which include gastrointestinal symptoms, although it is also a possibility that these changes, in whole or in part, could be a consequence of underlying pathophysiological features associated with ASD. However, if the GM truly plays a causative role in ASD, then the manipulation of the GM could potentially be leveraged as a therapeutic approach to improve ASD symptoms and/or comorbidities, including gastrointestinal symptoms. One approach to investigating this possibility in greater detail includes a highly controlled clinical trial in which the GM is systematically manipulated to determine its significance in individuals with ASD. To outline the important issues that would be required to design such a study, a group of clinicians, research scientists, and parents of children with ASD participated in an interdisciplinary daylong workshop as an extension of the 1st International Symposium on the Microbiome in Health and Disease with a Special Focus on Autism (www.microbiome-autism.com). The group considered several aspects of designing clinical studies, including clinical trial design, treatments that could potentially be used in a clinical trial, appropriate ASD participants for the clinical trial, behavioral and cognitive assessments, important biomarkers, safety concerns, and ethical considerations. Overall, the group not only felt that this was a promising area of research for the ASD population and a promising avenue for potential treatment but also felt that further basic and translational research was needed to clarify the clinical utility of such treatments and to elucidate possible mechanisms responsible for a clinical response, so that new treatments and approaches may be discovered and/or fostered in the future.
Collapse
Affiliation(s)
- Richard E Frye
- Division of Neurology, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA;
| | - John Slattery
- Division of Neurology, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Derrick F MacFabe
- Department of Psychology and Psychiatry, Western University, London, ON, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | - John Rodakis
- N of One: Autism Research Foundation, Dallas, TX, USA
| | - James B Adams
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Rosa Krajmalnik-Brown
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Ellen Bolte
- N of One: Autism Research Foundation, Dallas, TX, USA
| | - Stephen Kahler
- Division of Neurology, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Jill James
- Department of Developmental Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | |
Collapse
|
79
|
Chen J, Yu S, Fu Y, Li X. Synaptic proteins and receptors defects in autism spectrum disorders. Front Cell Neurosci 2014; 8:276. [PMID: 25309321 PMCID: PMC4161164 DOI: 10.3389/fncel.2014.00276] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/21/2014] [Indexed: 12/27/2022] Open
Abstract
Recent studies have found that hundreds of genetic variants, including common and rare variants, rare and de novo mutations, and common polymorphisms contribute to the occurrence of autism spectrum disorders (ASDs). The mutations in a number of genes such as neurexin, neuroligin, postsynaptic density protein 95, SH3, and multiple ankyrin repeat domains 3 (SHANK3), synapsin, gephyrin, cadherin, and protocadherin, thousand-and-one-amino acid 2 kinase, and contactin, have been shown to play important roles in the development and function of synapses. In addition, synaptic receptors, such as gamma-aminobutyric acid receptors and glutamate receptors, have also been associated with ASDs. This review will primarily focus on the defects of synaptic proteins and receptors associated with ASDs and their roles in the pathogenesis of ASDs via synaptic pathways.
Collapse
Affiliation(s)
- Jianling Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Yingmei Fu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Xiaohong Li
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities Staten Island, NY USA
| |
Collapse
|
80
|
Rojas DC. The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment. J Neural Transm (Vienna) 2014; 121:891-905. [PMID: 24752754 PMCID: PMC4134390 DOI: 10.1007/s00702-014-1216-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 04/06/2014] [Indexed: 12/11/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain and may be a key neurotransmitter involved in autism. Literature pertaining to glutamate and autism or related disorders (e.g., Fragile X syndrome) is reviewed in this article. Interest in glutamatergic dysfunction in autism is high due to increasing convergent evidence implicating the system in the disorder from peripheral biomarkers, neuroimaging, protein expression, genetics and animal models. Currently, there are no pharmaceutical interventions approved for autism that address glutamate deficits in the disorder. New treatments related to glutamatergic neurotransmission, however, are emerging. In addition, older glutamate-modulating medications with approved indications for use in other disorders are being investigated for re-tasking as treatments for autism. This review presents evidence in support of glutamate abnormalities in autism and the potential for translation into new treatments for the disorder.
Collapse
Affiliation(s)
- Donald C Rojas
- Department of Psychology, Campus Delivery 1876, Colorado State University, Fort Collins, CO, 80523, USA,
| |
Collapse
|
81
|
Colvin SM, Kwan KY. Dysregulated nitric oxide signaling as a candidate mechanism of fragile X syndrome and other neuropsychiatric disorders. Front Genet 2014; 5:239. [PMID: 25101118 PMCID: PMC4105824 DOI: 10.3389/fgene.2014.00239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/03/2014] [Indexed: 12/31/2022] Open
Abstract
A mechanistic understanding of the pathophysiology underpinning psychiatric disorders is essential for the development of targeted molecular therapies. For fragile X syndrome (FXS), recent mechanistic studies have been focused on the metabotropic glutamate receptor (mGluR) signaling pathway. This line of research has led to the discovery of promising candidate drugs currently undergoing various phases of clinical trial, and represents a model of how biological insights can inform therapeutic strategies in neurodevelopmental disorders. Although mGluR signaling is a key mechanism at which targeted treatments can be directed, it is likely to be one of many mechanisms contributing to FXS. A more complete understanding of the molecular and neural underpinnings of the disorder is expected to inform additional therapeutic strategies. Alterations in the assembly of neural circuits in the neocortex have been recently implicated in genetic studies of autism and schizophrenia, and may also contribute to FXS. In this review, we explore dysregulated nitric oxide signaling in the developing neocortex as a novel candidate mechanism of FXS. This possibility stems from our previous work demonstrating that neuronal nitric oxide synthase 1 (NOS1 or nNOS) is regulated by the FXS protein FMRP in the mid-fetal human neocortex. Remarkably, in the mid-late fetal and early postnatal neocortex of human FXS patients, NOS1 expression is severely diminished. Given the role of nitric oxide in diverse neural processes, including synaptic development and plasticity, the loss of NOS1 in FXS may contribute to the etiology of the disorder. Here, we outline the genetic and neurobiological data that implicate neocortical dysfunction in FXS, review the evidence supporting dysregulated nitric oxide signaling in the developing FXS neocortex and its contribution to the disorder, and discuss the implications for targeting nitric oxide signaling in the treatment of FXS and other psychiatric illnesses.
Collapse
Affiliation(s)
- Steven M Colvin
- Department of Human Genetics - The Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School Ann Arbor, MI, USA
| | - Kenneth Y Kwan
- Department of Human Genetics - The Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School Ann Arbor, MI, USA
| |
Collapse
|
82
|
Frye RE. Clinical potential, safety, and tolerability of arbaclofen in the treatment of autism spectrum disorder. DRUG HEALTHCARE AND PATIENT SAFETY 2014; 6:69-76. [PMID: 24872724 PMCID: PMC4025936 DOI: 10.2147/dhps.s39595] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a behaviorally defined disorder which has increased in prevalence over the last two decades. Despite decades of research, no effective treatment is currently available. Animal models, as well as other lines of evidence, point to abnormalities in the balance of cortical excitation to inhibition in individuals with ASD, with this imbalance resulting in an overall increase in cortical excitation. To reduce cortical excitatory glutamate pathways, arbaclofen, a selective agonist of the gamma aminobutyric acid receptor type B, has been developed. This article reviews the evidence for this treatment for ASD using a systematic review methodology. Overall, a systematic search of the literature revealed 148 relevant references with the majority of these being review papers or news items that mentioned the potential promise of arbaclofen. Five original studies were identified, four of which used STX209, a form of arbaclofen developed by Seaside Therapeutics, Inc., and one which used R-baclofen. In an animal model, treatment of Fragile X, a genetic disease with ASD features, demonstrated a reversal of behavioral, neurological, and neuropathological features associated with the disease. One double-blind, placebo-controlled study treated children and adults with Fragile X. Results from this study were promising, with signs of improvement in social function, especially in the most severely socially impaired. Two studies, one open-label and one double-blind, placebo-controlled, were conducted in children, adolescents, and young adults with ASD. These studies suggested some improvements in socialization, although the effects were limited and may have been driven by individuals with ASD that were higher-functioning. These studies and others that have used arbaclofen for the treatment of gastroesophageal reflux suggest that arbaclofen is safe and well-tolerated. Clearly, further clinical studies are needed in order to refine the symptoms and characteristics of children with ASD that are best treated with arbaclofen.
Collapse
Affiliation(s)
- Richard E Frye
- Arkansas Children's Hospital Research Institute, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
83
|
Lee YJ, Oh SH, Park C, Hong M, Lee AR, Yoo HJ, Shin CY, Cheon KA, Bahn GH. Advanced pharmacotherapy evidenced by pathogenesis of autism spectrum disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2014; 12:19-30. [PMID: 24851117 PMCID: PMC4022762 DOI: 10.9758/cpn.2014.12.1.19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 01/08/2023]
Abstract
In clinical practice, pharmacological treatment is mostly focused on behavioral symptoms in everyday life. Nevertheless, persistent effort continues to develop medication for causal treatment. Recent changes in diagnostic criteria from Diagnostic and Statistical Manual of Mental Disorders, 4th edition, text revision (DSM-IV-TR) to DSM-5 would affect not only diagnosing approaches, but also therapeutic approaches. Because previous pervasive developmental disorders have been integrated into a single entity, the autism spectrum disorder (ASD), we have to prepare for what medications are valuable for the ASD. In this article, we reviewed the following etiological treatment: acetylcholine and glutamate related medicine; amino acid medicine such as secretin, endogenous opioid, and oxytocin; complementary and alternative medicine such as chelating agents, vitamins, and omega-3; promising drugs related to the scope of pharmacogenetics currently under study.
Collapse
Affiliation(s)
- Yeon Jung Lee
- Department of Psychiatry, Kyung Hee University School of Medicine, Seoul, Korea
| | - Soo Hyun Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Chanmin Park
- Department of Psychiatry, Kyung Hee University School of Medicine, Seoul, Korea
| | - Minha Hong
- Department of Psychiatry, Dankook University Medical College, Chungnam, Korea
| | - Ah Rah Lee
- Kyung Hee University School of Medicine, Seoul, Korea
| | - Hee Jeong Yoo
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Chan Young Shin
- Department of Pharmacology, Konkuk University School of Medicine, Seoul, Korea
| | - Keun-Ah Cheon
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea
| | - Geon Ho Bahn
- Department of Psychiatry, Kyung Hee University School of Medicine, Seoul, Korea
| |
Collapse
|
84
|
Abstract
Autism spectrum disorder is often comorbid with behavioral disturbances such as irritability, aggression and hyperactivity. Throughout the mid 2000s, several large-scale controlled clinical trials were published leading to the approval of two medications (aripiprazole and risperidone) for treatment of irritability in this condition. This review serves as an update regarding new research findings regarding psychopharmacology for children and adolescents with ASD. In summary, the past five years have yielded no further approved medications with ASD as a primary indication. Important new research results include 1) long-term safety and efficacy data (52 week) regarding treatment with aripiprazole for irritability, 2) consensus regarding potential harm from SSRIs for treatment of repetitive behaviors in children/ adolescents with ASD, 3) a randomized controlled trial showing modest benefits from atomoxetine on hyperactivity, 4) many novel agents currently under investigation.
Collapse
|
85
|
Canitano R. New experimental treatments for core social domain in autism spectrum disorders. Front Pediatr 2014; 2:61. [PMID: 24999471 PMCID: PMC4064155 DOI: 10.3389/fped.2014.00061] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/29/2014] [Indexed: 12/21/2022] Open
Abstract
Current therapeutics in autism spectrum disorders (ASD) only treat the associated symptoms, without addressing core social dysfunctions. A paradigm shift in research of the pathogenesis of ASD, its synaptic abnormalities and altered signaling in multiple dynamic systems, have led to new experimental treatments for treating the core social abnormalities of ASD. NMDA antagonists, especially memantine, have been introduced in clinical trials addressing glutamatergic transmission in children and adolescents with ASD. GABAergic signaling has been targeted in trials using the GABAB receptor agonist arbaclofen for ASD patients with promising results. Oxytocin has been recognized as implicated in social development and affiliative behaviors. Preliminary findings from clinical trials using oxytocin in children with ASD show encouraging improvements in social cognition, but larger studies are needed. In two of the single gene disorders associated with ASD, Insulin Growth Factor (IGF-1) is a new treatment that has been tested in Rett syndrome and Phelan-McDermid syndrome (Chromosome 22 deletion syndrome). IGF-1 has been demonstrated to reverse the reduction in the number of excitatory synapses and the density of neurons that characterize these conditions in animal studies and it is being introduced as an experimental treatment. As a novel approach to verify treatment efficacy, neural processing modifications were recently evaluated by fMRI after a pivotal response training intervention. Another study of neural changes in response to treatment examined variations in EEG signaling in patients after an Early Start Denver Model (ESDM) intervention.
Collapse
Affiliation(s)
- Roberto Canitano
- Division of Child Neuropsychiatry, University Hospital of Siena , Siena , Italy
| |
Collapse
|