51
|
Fan YY, Huo J. A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils? Neurochem Int 2021; 148:105080. [PMID: 34048845 DOI: 10.1016/j.neuint.2021.105080] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
Astrocytes play a pivotal role in maintaining the central nervous system (CNS) homeostasis and function. In response to CNS injuries and diseases, reactive astrocytes are triggered. By purifying and genetically profiling reactive astrocytes, it has been now found that astrocytes can be activated into two polarization states: the neurotoxic or pro-inflammatory phenotype (A1) and the neuroprotective or anti-inflammatory phenotype (A2). Although the simple dichotomy of the A1/A2 phenotypes does not reflect the wide range of astrocytic phenotypes, it facilitates our understanding of the reactive state of astrocytes in various CNS disorders. This article reviews the recent evidences regarding A1/A2 astrocytes, including (a) the specific markers and morphological characteristics, (b) the effects of A1/A2 astrocytes on the neurovascular unit, and (c) the molecular mechanisms involved in the phenotypic switch of astrocytes. Although many questions remain, a deeper understanding of different phenotypic astrocytes will eventually help us to explore effective strategies for neurological disorders by targeting astrocytes.
Collapse
Affiliation(s)
- Yan-Ying Fan
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jing Huo
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
52
|
Hiskens MI, Schneiders AG, Vella RK, Fenning AS. Repetitive mild traumatic brain injury affects inflammation and excitotoxic mRNA expression at acute and chronic time-points. PLoS One 2021; 16:e0251315. [PMID: 33961674 PMCID: PMC8104440 DOI: 10.1371/journal.pone.0251315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/24/2021] [Indexed: 12/30/2022] Open
Abstract
The cumulative effect of mild traumatic brain injuries (mTBI) can result in chronic neurological damage, however the molecular mechanisms underpinning this detriment require further investigation. A closed head weight drop model that replicates the biomechanics and head acceleration forces of human mTBI was used to provide an exploration of the acute and chronic outcomes following single and repeated impacts. Adult male C57BL/6J mice were randomly assigned into one of four impact groups (control; one, five and 15 impacts) which were delivered over 23 days. Outcomes were assessed 48 hours and 3 months following the final mTBI. Hippocampal spatial learning and memory assessment revealed impaired performance in the 15-impact group compared with control in the acute phase that persisted at chronic measurement. mRNA analyses were performed on brain tissue samples of the cortex and hippocampus using quantitative RT-PCR. Eight genes were assessed, namely MAPT, GFAP, AIF1, GRIA1, CCL11, TARDBP, TNF, and NEFL, with expression changes observed based on location and follow-up duration. The cortex and hippocampus showed vulnerability to insult, displaying upregulation of key excitotoxicity and inflammation genes. Serum samples showed no difference between groups for proteins phosphorylated tau and GFAP. These data suggest that the cumulative effect of the impacts was sufficient to induce mTBI pathophysiology and clinical features. The genes investigated in this study provide opportunity for further investigation of mTBI-related neuropathology and may provide targets in the development of therapies that help mitigate the effects of mTBI.
Collapse
Affiliation(s)
- Matthew I. Hiskens
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
- Mackay Institute of Research and Innovation, Mackay Hospital and Health Service, Mackay, Queensland, Australia
| | - Anthony G. Schneiders
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Rebecca K. Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Andrew S. Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| |
Collapse
|
53
|
Celecoxib in a Preclinical Model of Repetitive Mild Traumatic Brain Injury: Hippocampal Learning Deficits Persist with Inflammatory and Excitotoxic Neuroprotection. TRAUMA CARE 2021. [DOI: 10.3390/traumacare1010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Repetitive mild traumatic brain injuries (mTBIs) contribute to inflammation-induced neurodegeneration. Cycloxygenase (COX) enzymes produce inflammatory cytokines that influence the microglia response to neurotrauma. Celecoxib is a selective COX-2 inhibitor that is prescribed in some conditions of mTBI to alleviate symptoms of concussion, and has shown benefits in neurodegenerative conditions. We investigated molecular pathways of neuroinflammation in response to celecoxib treatment in a mouse model of repetetive mTBI. Fifteen mTBIs were delivered over 23 days in adult male C57BL/6J mice in one of four groups (control, celecoxib without impact, celecoxib with impact, and vehicle with impact). Cognitive function was assessed at 48 h and three months following the final mTBI. Morris Water Maze testing revealed impaired hippocampal spatial learning performance in the celecoxib treatment with the impact group compared to the vehicle with impact control in the acute phase, with celecoxib treatment providing no improvement compared with the control at chronic testing; mRNA analysis of the cerebral cortex and hippocampus revealed expression change, indicating significant improvement in microglial activation, inflammation, excitotoxicity, and neurodegeneration at chronic measurement. These data suggest that, in the acute phase following injury, celecoxib protected against neuroinflammation, but exacerbated clinical cognitive disturbance. Moreover, while there was evidence of neuroprotective alleviation of mTBI pathophysiology at chronic measurement, there remained no change in clinical features.
Collapse
|
54
|
Nobile B, Durand M, Olié E, Guillaume S, Molès JP, Haffen E, Courtet P. The Anti-inflammatory Effect of the Tricyclic Antidepressant Clomipramine and Its High Penetration in the Brain Might Be Useful to Prevent the Psychiatric Consequences of SARS-CoV-2 Infection. Front Pharmacol 2021; 12:615695. [PMID: 33767623 PMCID: PMC7985338 DOI: 10.3389/fphar.2021.615695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
At the time of writing (December 2020), coronavirus disease 2019 (COVID-19) has already caused more than one million deaths worldwide, and therefore, it is imperative to find effective treatments. The “cytokine storm” induced by Severe Acute Respiratory Syndrome-Coronavirus type 2 (SARS-CoV-2) is a good target to prevent disease worsening, as indicated by the results obtained with tocilizumab and dexamethasone. SARS-CoV-2 can also invade the brain and cause neuro-inflammation with dramatic neurological manifestations, such as viral encephalitis. This could lead to potentially incapacitating long-term consequences, such as the development of psychiatric disorders, as previously observed with SARS-CoV. Several pathways/mechanisms could explain the link between viral infection and development of psychiatric diseases, especially neuro-inflammation induced by SARS-CoV-2. Therefore, it is important to find molecules with anti-inflammatory properties that penetrate easily into the brain. For instance, some antidepressants have anti-inflammatory action and pass easily through the blood brain barrier. Among them, clomipramine has shown very strong anti-inflammatory properties in vitro, in vivo (animal models) and human studies, especially in the brain. The aim of this review is to discuss the potential application of clomipramine to prevent post-infectious mental complications. Repositioning and testing antidepressants for COVID-19 management could help to reduce peripheral and especially central inflammation and to prevent the acute and particularly the long-term consequences of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- B Nobile
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Montpellier, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - M Durand
- Pathogenesis and Control of Chronic Infection, University of Montpellier, INSERM, EFS; CHU Montpellier, Montpellier, France
| | - E Olié
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Montpellier, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France.,FondaMental Foundation, Créteil, France
| | - S Guillaume
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Montpellier, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France.,FondaMental Foundation, Créteil, France
| | - J P Molès
- Pathogenesis and Control of Chronic Infection, University of Montpellier, INSERM, EFS; CHU Montpellier, Montpellier, France
| | - E Haffen
- FondaMental Foundation, Créteil, France.,Service de Psychiatrie de l'Adulte, CIC-1431 INSERM, CHU de Besançon, Laboratoire de Neurosciences, Université de Franche-Comté, Besancon, France
| | - P Courtet
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Montpellier, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France.,FondaMental Foundation, Créteil, France
| |
Collapse
|
55
|
Wang J, Hou Y, Zhang L, Liu M, Zhao J, Zhang Z, Ma Y, Hou W. Estrogen Attenuates Traumatic Brain Injury by Inhibiting the Activation of Microglia and Astrocyte-Mediated Neuroinflammatory Responses. Mol Neurobiol 2021; 58:1052-1061. [PMID: 33085047 DOI: 10.1007/s12035-020-02171-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI), which leads to high mortality and morbidity, is a prominent public health problem worldwide. Neuroinflammation involving microglia and astrocyte activation has been demonstrated to play critical role in the secondary injury induced by TBI. A1 astrocytes, which are induced by activated microglia, can directly kill neurons by secreting neurotoxic complement C3. Estrogen has been proved to possess neuroprotective effects, but the effect and underlying mechanism of estrogen on TBI-induced neuroinflammatory injury remain largely unclear. In this study, we constructed an adult male mouse model of TBI and immediately after injury treated the mice with 17β-estradiol (E2) (100 μg/kg, once every day via intraperitoneal injection) for 3 days. We found that E2 treatment significantly alleviated TBI-induced neurological deficits, neuronal injuries, and brain edema and significantly inhibited Iba1 and GFAP expression, which are markers of microglia and astrocyte activation, respectively. E2 treatment also significantly inhibited TLR4 and NF-κB protein expression, and significantly reduced the expression of the proinflammatory factors IL-1β, IL-6, and TNF-α. Moreover, E2 treatment significantly decreased the number of complement C3d/GFAP-positive cells and complement C3d protein expression. Taking these results together, we concluded that E2 treatment dramatically alleviates TBI neuroinflammatory injury by inhibiting TLR4/NF-κB pathway-mediated microglia and astrocyte activation and neuroinflammation and reducing A1-phenotype neurotoxic astrocyte activation. Our findings indicate that E2 treatment may be a potential therapy strategy for TBI-induced neuroinflammation injury.
Collapse
Affiliation(s)
- Jin Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China
| | - Yushu Hou
- Department of Anesthesiology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710001, China
| | - Lixia Zhang
- Department of Burn and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Min Liu
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, China
| | - Jianshuai Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China
| | - Zhen Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China
| | - Yulong Ma
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, China.
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
56
|
Fibrinogen Interaction with Astrocyte ICAM-1 and PrP C Results in the Generation of ROS and Neuronal Death. Int J Mol Sci 2021; 22:ijms22052391. [PMID: 33673626 PMCID: PMC7957521 DOI: 10.3390/ijms22052391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022] Open
Abstract
Many neuroinflammatory diseases, like traumatic brain injury (TBI), are associated with an elevated level of fibrinogen and short-term memory (STM) impairment. We found that during TBI, extravasated fibrinogen deposited in vasculo-astrocyte interfaces, which was associated with neurodegeneration and STM reduction. The mechanisms of this fibrinogen-astrocyte interaction and its functional role in neurodegeneration are still unclear. Cultured mouse brain astrocytes were treated with fibrinogen in the presence or absence of function-blocking antibody or peptide against its astrocyte receptors intercellular adhesion molecule-1 (ICAM-1) or cellular prion protein (PrPC), respectively. Fibrinogen interactions with astrocytic ICAM-1 and PrPC were characterized. The expression of pro-inflammatory markers, generations of reactive oxygen species (ROS) and nitric oxide (NO) in astrocytes, and neuronal death caused by astrocyte-conditioned medium were assessed. Data showed a strong association between fibrinogen and astrocytic ICAM-1 or PrPC, overexpression of pro-inflammatory cytokines and overproduction of ROS and NO, resulting in neuronal apoptosis and death. These effects were reduced by blocking the function of astrocytic ICAM-1 and PrPC, suggesting that fibrinogen association with its astrocytic receptors induce the release of pro-inflammatory cytokines, resulting in oxidative stress, and ultimately neuronal death. This can be a mechanism of neurodegeneration and the resultant STM reduction seen during TBI.
Collapse
|
57
|
Sharma S, Tiarks G, Haight J, Bassuk AG. Neuropathophysiological Mechanisms and Treatment Strategies for Post-traumatic Epilepsy. Front Mol Neurosci 2021; 14:612073. [PMID: 33708071 PMCID: PMC7940684 DOI: 10.3389/fnmol.2021.612073] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death in young adults and a risk factor for acquired epilepsy. Severe TBI, after a period of time, causes numerous neuropsychiatric and neurodegenerative problems with varying comorbidities; and brain homeostasis may never be restored. As a consequence of disrupted equilibrium, neuropathological changes such as circuit remodeling, reorganization of neural networks, changes in structural and functional plasticity, predisposition to synchronized activity, and post-translational modification of synaptic proteins may begin to dominate the brain. These pathological changes, over the course of time, contribute to conditions like Alzheimer disease, dementia, anxiety disorders, and post-traumatic epilepsy (PTE). PTE is one of the most common, devastating complications of TBI; and of those affected by a severe TBI, more than 50% develop PTE. The etiopathology and mechanisms of PTE are either unknown or poorly understood, which makes treatment challenging. Although anti-epileptic drugs (AEDs) are used as preventive strategies to manage TBI, control acute seizures and prevent development of PTE, their efficacy in PTE remains controversial. In this review, we discuss novel mechanisms and risk factors underlying PTE. We also discuss dysfunctions of neurovascular unit, cell-specific neuroinflammatory mediators and immune response factors that are vital for epileptogenesis after TBI. Finally, we describe current and novel treatments and management strategies for preventing PTE.
Collapse
Affiliation(s)
- Shaunik Sharma
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Grant Tiarks
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Joseph Haight
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Alexander G Bassuk
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
58
|
Xu XJ, Yang MS, Zhang B, Niu F, Dong JQ, Liu BY. Glucose metabolism: A link between traumatic brain injury and Alzheimer's disease. Chin J Traumatol 2021; 24:5-10. [PMID: 33358332 PMCID: PMC7878452 DOI: 10.1016/j.cjtee.2020.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI), a growing public health problem, is a leading cause of death and disability worldwide, although its prevention measures and clinical cares are substantially improved. Increasing evidence shows that TBI may increase the risk of mood disorders and neurodegenerative diseases, including Alzheimer's disease (AD). However, the complex relationship between TBI and AD remains elusive. Metabolic dysfunction has been the common pathology in both TBI and AD. On the one hand, TBI perturbs the glucose metabolism of the brain, and causes energy crisis and subsequent hyperglycolysis. On the other hand, glucose deprivation promotes amyloidogenesis via β-site APP cleaving enzyme-1 dependent mechanism, and triggers tau pathology and synaptic function. Recent findings suggest that TBI might facilitate Alzheimer's pathogenesis by altering metabolism, which provides clues to metabolic link between TBI and AD. In this review, we will explore how TBI-induced metabolic changes contribute to the development of AD.
Collapse
Affiliation(s)
- Xiao-Jian Xu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Meng-Shi Yang
- Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Bin Zhang
- Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Fei Niu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Jin-Qian Dong
- Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Bai-Yun Liu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China,Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China,Nerve Injury and Repair Center of Beijing Institute for Brain Disorders, Beijing, 100070, China,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China,Corresponding author. Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
59
|
Jia Y, Wang G, Ye Y, Kang E, Chen H, Guo Z, He X. Niche Cells Crosstalk In Neuroinflammation After Traumatic Brain Injury. Int J Biol Sci 2021; 17:368-378. [PMID: 33390856 PMCID: PMC7757042 DOI: 10.7150/ijbs.52169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is recognized as the disease with high morbidity and disability around world in spite of the work ongoing in neural protection. Due to heterogeneity among the patients, it's still hard to acquire satisfying achievements in clinic. Neuroinflammation, which exists since primary injury occurs, with elusive duality, appear to be of significance from recovery of injury to neurogenesis. In recent years, studied have revealed that communication in neurogenic niche is more than “cell to cell” communication, and study on NSCs represent it as central role in the progress of neural regeneration. Hence, the neuroinflammation-affecting crosstalk after TBI, and clarifying definitive role of NSCs in the course of regeneration is a promising subject for researchers, for its great potential in overcoming the frustrating status quo in clinic, promoting welfare of TBI patient.
Collapse
Affiliation(s)
- Yibin Jia
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Guanyi Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Yuqing Ye
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an 710032, China.,Department of Neurosurgery, PLA 163rd Hospital (Second Affiliated Hospital of Hunan Normal University), Changsha 410000, China
| | - Enming Kang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Huijun Chen
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Zishuo Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Xiaosheng He
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an 710032, China
| |
Collapse
|
60
|
Effect of low-intensity motor balance and coordination exercise on cognitive functions, hippocampal Aβ deposition, neuronal loss, neuroinflammation, and oxidative stress in a mouse model of Alzheimer's disease. Exp Neurol 2021; 337:113590. [PMID: 33388314 DOI: 10.1016/j.expneurol.2020.113590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 11/21/2022]
Abstract
It is well known that physical exercise reduces the risk of Alzheimer's disease (AD) and age-related cognitive decline. However, its mechanisms are still not fully understood. This study aimed to investigate the effect of aging and rotarod exercise (Ex) on cognitive function and AD pathogenesis in the hippocampus using senescence-accelerated mice prone 8 (SAMP8). Cognitive functions clearly declined at 9-months of age. Amyloid-beta (Aβ) deposition, neuronal loss, and glia activation-induced neuroinflammation increased with aging. The rotarod Ex prevented the decline of cognitive functions corresponding to the suppression of Aβ deposition, neuroinflammation, neuronal loss, inducible nitric oxide synthase (NOS) activities, and neuronal NOS activities. In addition, the rotarod Ex suppressed proinflammatory M1 phenotype microglia and A1 phenotype astrocytes. Our findings suggest that low-intensity motor balance and coordination exercise prevented age-related cognitive decline in the early stage of AD progression, possibly through the suppression of hippocampal Aβ deposition, neuronal loss, oxidative stress, and neuroinflammation, including reduced M1 and A1 phenotypes microglia and astrocytes.
Collapse
|
61
|
Du RW, Bu WG. Simvastatin Prevents Neurodegeneration in the MPTP Mouse Model of Parkinson's Disease via Inhibition of A1 Reactive Astrocytes. Neuroimmunomodulation 2021; 28:82-89. [PMID: 33735898 DOI: 10.1159/000513678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/09/2020] [Indexed: 11/19/2022] Open
Abstract
Emerging evidence indicates that A1 reactive astrocytes play crucial roles in the pathogenesis of Parkinson's disease (PD). Thus, development of agents that could inhibit the formation of A1 reactive astrocytes could be used to treat PD. Simvastatin has been touted as a potential neuroprotective agent for neurologic disorders such as PD, but the specific underlying mechanism remains unclear. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD and primary astrocytes/neurons were prepared to investigate the effects of simvastatin on PD and its underlying mechanisms in vitro and in vivo. We show that simvastatin protects against the loss of dopamine neurons and behavioral deficits in the MPTP mouse model of PD. We also found that simvastatin suppressed the expression of A1 astrocytic specific markers in vivo and in vitro. In addition, simvastatin alleviated neuron death induced by A1 astrocytes. Our findings reveal that simvastatin is neuroprotective via the prevention of conversion of astrocytes to an A1 neurotoxic phenotype. In light of simvastatin favorable properties, it should be evaluated in the treatment of PD and related neurologic disorders characterized by A1 reactive astrocytes.
Collapse
Affiliation(s)
- Ren-Wei Du
- Department of Neurology, Chaoyang Hospital, Huainan, China,
| | - Wen-Guang Bu
- Department of Neurology, Chaoyang Hospital, Huainan, China
| |
Collapse
|
62
|
Intranigral Administration of β-Sitosterol- β-D-Glucoside Elicits Neurotoxic A1 Astrocyte Reactivity and Chronic Neuroinflammation in the Rat Substantia Nigra. J Immunol Res 2020; 2020:5907591. [PMID: 33282962 PMCID: PMC7685831 DOI: 10.1155/2020/5907591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic consumption of β-sitosterol-β-D-glucoside (BSSG), a neurotoxin contained in cycad seeds, leads to Parkinson's disease in humans and rodents. Here, we explored whether a single intranigral administration of BSSG triggers neuroinflammation and neurotoxic A1 reactive astrocytes besides dopaminergic neurodegeneration. We injected 6 μg BSSG/1 μL DMSO or vehicle into the left substantia nigra and immunostained with antibodies against tyrosine hydroxylase (TH) together with markers of microglia (OX42), astrocytes (GFAP, S100β, C3), and leukocytes (CD45). We also measured nitric oxide (NO), lipid peroxidation (LPX), and proinflammatory cytokines (TNF-α, IL-1β, IL-6). The Evans blue assay was used to explore the blood-brain barrier (BBB) permeability. We found that BSSG activates NO production on days 15 and 30 and LPX on day 120. Throughout the study, high levels of TNF-α were present in BSSG-treated animals, whereas IL-1β was induced until day 60 and IL-6 until day 30. Immunoreactivity of activated microglia (899.0 ± 80.20%) and reactive astrocytes (651.50 ± 11.28%) progressively increased until day 30 and then decreased to remain 251.2 ± 48.8% (microglia) and 91.02 ± 39.8 (astrocytes) higher over controls on day 120. C3(+) cells were also GFAP and S100β immunoreactive, showing they were neurotoxic A1 reactive astrocytes. BBB remained permeable until day 15 when immune cell infiltration was maximum. TH immunoreactivity progressively declined, reaching 83.6 ± 1.8% reduction on day 120. Our data show that BSSG acute administration causes chronic neuroinflammation mediated by activated microglia, neurotoxic A1 reactive astrocytes, and infiltrated immune cells. The severe neuroinflammation might trigger Parkinson's disease in BSSG intoxication.
Collapse
|
63
|
Eyolfson E, Khan A, Mychasiuk R, Lohman AW. Microglia dynamics in adolescent traumatic brain injury. J Neuroinflammation 2020; 17:326. [PMID: 33121516 PMCID: PMC7597018 DOI: 10.1186/s12974-020-01994-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Repetitive, mild traumatic brain injuries (RmTBIs) are increasingly common in adolescents and encompass one of the largest neurological health concerns in the world. Adolescence is a critical period for brain development where RmTBIs can substantially impact neurodevelopmental trajectories and life-long neurological health. Our current understanding of RmTBI pathophysiology suggests key roles for neuroinflammation in negatively regulating neural health and function. Microglia, the brain’s resident immune population, play important roles in brain development by regulating neuronal number, and synapse formation and elimination. In response to injury, microglia activate to inflammatory phenotypes that may detract from these normal homeostatic, physiological, and developmental roles. To date, however, little is known regarding the impact of RmTBIs on microglia function during adolescent brain development. This review details key concepts surrounding RmTBI pathophysiology, adolescent brain development, and microglia dynamics in the developing brain and in response to injury, in an effort to formulate a hypothesis on how the intersection of these processes may modify long-term trajectories.
Collapse
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada
| | - Asher Khan
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada.,Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Alexander W Lohman
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada. .,Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.
| |
Collapse
|
64
|
Huber-Lang MS, Ignatius A, Köhl J, Mannes M, Braun CK. Complement in trauma-Traumatised complement? Br J Pharmacol 2020; 178:2863-2879. [PMID: 32880897 DOI: 10.1111/bph.15245] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Physical trauma represents a major global burden. The trauma-induced response, including activation of the innate immune system, strives for regeneration but can also lead to post-traumatic complications. The complement cascade is rapidly activated by damaged tissue, hypoxia, exogenous proteases and others. Activated complement can sense, mark and clear both damaged tissue and pathogens. However, excessive and insufficient activation of complement can result in a dysfunctional immune and organ response. Similar to acute coagulopathy, complementopathy can develop with enhanced anaphylatoxin generation and an impairment of complement effector functions. Various remote organ effects are induced or modulated by complement activation. Frequently, established trauma treatments are double-edged. On one hand, they help stabilising haemodynamics and oxygen supply as well as injured organs and on the other hand, they also drive complement activation. Immunomodulatory approaches aim to reset trauma-induced disbalance of complement activation and thus may change surgical trauma management procedures to improve outcome. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Markus S Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institue of Orthopaedic Research and Biomechanics, University Hospital of Ulm, Ulm, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammatory Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Paediatrics and Adolescent Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
65
|
Tice C, McDevitt J, Langford D. Astrocytes, HIV and the Glymphatic System: A Disease of Disrupted Waste Management? Front Cell Infect Microbiol 2020; 10:523379. [PMID: 33134185 PMCID: PMC7550659 DOI: 10.3389/fcimb.2020.523379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
The discovery of the glial-lymphatic or glymphatic fluid clearance pathway in the rodent brain led researchers to search for a parallel system in humans and to question the implications of this pathway in neurodegenerative diseases. Magnetic resonance imaging studies revealed that several features of the glymphatic system may be present in humans. In both rodents and humans, this pathway promotes the exchange of interstitial fluid (ISF) and cerebrospinal fluid (CSF) through the arterial perivascular spaces into the brain parenchyma. This process is facilitated in part by aquaporin-4 (AQP4) water channels located primarily on astrocytic end feet that abut cerebral endothelial cells of the blood brain barrier. Decreased expression or mislocalization of AQP4 from astrocytic end feet results in decreased interstitial flow, thereby, promoting accumulation of extracellular waste products like hyperphosphorylated Tau (pTau). Accumulation of pTau is a neuropathological hallmark in Alzheimer's disease (AD) and is accompanied by mislocalization of APQ4 from astrocyte end feet to the cell body. HIV infection shares many neuropathological characteristics with AD. Similar to AD, HIV infection of the CNS contributes to abnormal aging with altered AQP4 localization, accumulation of pTau and chronic neuroinflammation. Up to 30% of people with HIV (PWH) suffer from HIV-associated neurocognitive disorders (HAND), and changes in AQP4 may be clinically important as a contributor to cognitive disturbances. In this review, we provide an overview and discussion of the potential contributions of NeuroHIV to glymphatic system functions by focusing on astrocytes and AQP4. Although HAND encompasses a wide range of neurocognitive impairments and levels of neuroinflammation vary among and within PWH, the potential contribution of disruption in AQP4 may be clinically important in some cases. In this review we discuss implications for possible AQP4 disruption on NeuroHIV disease trajectory and how HIV may influence AQP4 function.
Collapse
Affiliation(s)
- Caitlin Tice
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jane McDevitt
- Department of Kinesiology, College of Public Health at Temple University, Philadelphia, PA, United States
| | - Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
66
|
Arrais AC, Melo LHMF, Norrara B, Almeida MAB, Freire KF, Melo AMMF, Oliveira LCD, Lima FOV, Engelberth RCGJ, Cavalcante JDS, Araújo DPD, Guzen FP, Freire MAM, Cavalcanti JRLP. S100B protein: general characteristics and pathophysiological implications in the Central Nervous System. Int J Neurosci 2020; 132:313-321. [DOI: 10.1080/00207454.2020.1807979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ana Cristina Arrais
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Lívia Helena M. F. Melo
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Bianca Norrara
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Marina Abuquerque B. Almeida
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Kalina Fernandes Freire
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Acydalia Madruga M. F. Melo
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Lucidio Clebeson de Oliveira
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Francisca Overlânia Vieira Lima
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Rovena Clara G. J. Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jeferson de Souza Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Dayane Pessoa de Araújo
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Fausto Pierdoná Guzen
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Marco Aurelio M. Freire
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - José Rodolfo L. P. Cavalcanti
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil
| |
Collapse
|
67
|
Sulimai N, Lominadze D. Fibrinogen and Neuroinflammation During Traumatic Brain Injury. Mol Neurobiol 2020; 57:4692-4703. [PMID: 32776201 DOI: 10.1007/s12035-020-02012-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Many neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis, and traumatic brain injury (TBI) are associated with systemic inflammation. Inflammation itself results in increased blood content of fibrinogen (Fg), called hyperfibrinogenemia (HFg). Fg is not only considered an acute phase protein and a marker of inflammation, but has been shown that it can cause inflammatory responses. Fibrin deposits have been associated with memory reduction in neuroinflammatory diseases such as AD and TBI. Reduction in short-term memory has been seen during the most common form of TBI, mild-to-moderate TBI. Fibrin deposits have been found in brains of patients with mild-to-moderate TBI. The vast majority of the literature emphasizes the role of fibrin-activated microglia as the mediator in the neuroinflammation pathway. However, the recent discovery that astrocytes, which constitute approximately 30% of the cells in the mammalian central nervous system, manifest different reactive states warrants further investigations in the causative role of HFg in astrocyte-mediated neuroinflammation. Our previous study showed that Fg deposited in the vasculo-astrocyte interface-activated astrocytes. However, little is known of how Fg directly affects astrocytes and neurons. In this review, we summarize studies that show the effect of Fg on different types of cells in the vasculo-neuronal unit. We will also discuss the possible mechanism of HFg-induced neuroinflammation during TBI.
Collapse
Affiliation(s)
- Nurul Sulimai
- Departments of Surgery, University of South Florida Morsani College of Medicine, MDC-4024, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - David Lominadze
- Departments of Surgery, University of South Florida Morsani College of Medicine, MDC-4024, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA.
- Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
68
|
The Increased Densities, But Different Distributions, of Both C3 and S100A10 Immunopositive Astrocyte-Like Cells in Alzheimer's Disease Brains Suggest Possible Roles for Both A1 and A2 Astrocytes in the Disease Pathogenesis. Brain Sci 2020; 10:brainsci10080503. [PMID: 32751955 PMCID: PMC7463428 DOI: 10.3390/brainsci10080503] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022] Open
Abstract
There is increasing evidence of astrocyte dysfunction in the pathogenesis of Alzheimer’s disease (AD). Animal studies supported by human post-mortem work have demonstrated two main astrocyte types: the C3 immunopositive neurotoxic A1 astrocytes and the S100A10 immunopositive neuroprotective A2 astrocytes. A1 astrocytes predominate in AD, but the number of cases has been relatively small. We examined post-mortem brains from a larger cohort of AD cases and controls employing C3 and S100 immunohistochemistry to identify the astrocytic subtypes. There were a number of C3 immunopositive astrocyte-like cells (ASLCs) in the control cases, especially in the lower cerebral cortex and white matter. In AD this cell density appeared to be increased in the upper cerebral cortex but was similar to controls in other regions. The S100A10 showed minimal immunopositivity in the control cases in the cortex and white matter, but there was increased ASLC density in upper/lower cortex and white matter in AD compared to controls. In AD and control cases the numbers of C3 immunopositive ASLCs were greater than those for S100A10 ASLCs in all areas studied. It would appear that the relationship between A1 and A2 astrocytes and their possible role in the pathogenesis of AD is complex and requires more research.
Collapse
|
69
|
Role of Circular Ribonucleic Acids in the Treatment of Traumatic Brain and Spinal Cord Injury. Mol Neurobiol 2020; 57:4296-4304. [DOI: 10.1007/s12035-020-02027-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
|
70
|
Li T, Liu T, Chen X, Li L, Feng M, Zhang Y, Wan L, Zhang C, Yao W. Microglia induce the transformation of A1/A2 reactive astrocytes via the CXCR7/PI3K/Akt pathway in chronic post-surgical pain. J Neuroinflammation 2020; 17:211. [PMID: 32665021 PMCID: PMC7362409 DOI: 10.1186/s12974-020-01891-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Background Activated astrocytes play important roles in chronic post-surgical pain (CPSP). Recent studies have shown reactive astrocytes are classified into A1 and A2 phenotypes, but their precise roles in CPSP remain unknown. In this study, we investigated the roles of spinal cord A1 and A2 astrocytes and related mechanisms in CPSP. Methods We used a skin/muscle incision and retraction (SMIR) model to establish a rat CPSP model. Microglia, CXCR7, and the phosphoinositide 3-kinase/Akt (PI3K/Akt) signaling pathways were regulated by intrathecal injections of minocycline (a non-specific microglial inhibitor), AMD3100 (a CXCR7 agonist), and LY294002 (a specific PI3K inhibitor), respectively. Mechanical allodynia was detected with von Frey filaments. The changes in microglia, A1 astrocytes, A2 astrocytes, CXCR7, and PI3K/Akt signaling pathways were examined by enzyme-linked immunosorbent assay (ELISA), western blot, and immunofluorescence. Results Microglia were found to be activated, with an increase in interleukin-1 alpha (IL-1α), tumor necrosis factor alpha (TNFα), and complement component 1q (C1q) in the spinal cord at an early stage after SMIR. On day 14 after SMIR, spinal cord astrocytes were also activated; these were mainly of the A1 phenotype and less of the A2 phenotype. Intrathecal injection of minocycline relieved SMIR-induced mechanical allodynia and reverted the ratio of A1/A2 reactive astrocytes. The expression of CXCR7 and PI3K/Akt signaling was decreased after SMIR, while they were increased after treatment with minocycline. Furthermore, intrathecal injection of AMD3100 also relieved SMIR-induced mechanical allodynia, reverted the ratio of A1/A2 reactive astrocytes, and activated the PI3K/Akt signaling pathway, similar to the effects produced by minocycline. However, intrathecal injection of AMD3100 did not increase the analgesic effect of minocycline. Last, LY294002 inhibited the analgesic effect and A1/A2 transformation induced by minocycline and AMD3100 after SMIR. Conclusion Our results indicated that microglia induce the transformation of astrocytes to the A1 phenotype in the spinal cord via downregulation of the CXCR7/PI3K/Akt signaling pathway during CPSP. Reverting A1 reactive astrocytes to A2 may represent a new strategy for preventing CPSP.
Collapse
Affiliation(s)
- Ting Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Tongtong Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Xuhui Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Li Li
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei Province, People's Republic of China
| | - Miaomiao Feng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yue Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Li Wan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Chuanhan Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
71
|
Zhang ZW, Liang J, Yan JX, Ye YC, Wang JJ, Chen C, Sun HT, Chen F, Tu Y, Li XH. TBHQ improved neurological recovery after traumatic brain injury by inhibiting the overactivation of astrocytes. Brain Res 2020; 1739:146818. [PMID: 32275911 DOI: 10.1016/j.brainres.2020.146818] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/01/2023]
Abstract
Traumatic brain injury (TBI) is a major leading cause of death and long-term disability. Although astrocytes play a key role in neuroprotection after TBI in the early stage, the overactivation of astrocytes can lead to long-term functional deficits, and the underlying pathophysiological mechanisms remain unclear. In addition, it is unknown whether the nuclear factor erythroid 2-related factor2/haem oxygenase-1 (Nrf-2/HO-1) pathway could elicit a neuroprotective effect by decreasing astrocyte overactivation after TBI. We aimed to study the effects of tert-butylhydroquinone (TBHQ) in reducing astrocyte overactivation after TBI and explored the underlying mechanisms. We first established a controlled cortical impact (CCI) model in rats and performed Haematoxylin and eosin (H&E) staining to observe brain tissue damage. The cognitive function of rats was assessed by modified neurological severity scoring (mNSS) and Morris water maze (MWM) test. Astrocyte and microglia activation was detected by immunofluorescence staining. Oxidative stress conditions were investigated using Western blotting. An enzyme-linked immunosorbent assay (ELISA) was designed to assess the level of the proinflammatory factor tumour necrosis factor-alpha (TNF-α). Dihydroethidium (DHE) staining was used to detect reactive oxygen species (ROS). Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The results showed that the administration of TBHQ ameliorated motor function and cognitive deficits and decreased the lesion volume. In addition, TBHQ significantly decreased astrocyte overactivation, diminished the pro-inflammatory phenotype M1 and inflammatory cytokines production after TBI, increased Nrf-2 nuclear accumulation, and enhanced the levels of the Nrf-2 downstream antioxidative genes HO-1 and NADPH-quinone oxidoreductase-1 (NQO-1). Furthermore, TBHQ treatment alleviated apoptosis and neuronal death in the cerebral cortex. Overall, our data indicated that the upregulation of Nrf-2 expression could enhance neuroprotection and decrease astrocyte overactivation and might represent a new theoretical basis for treating TBI.
Collapse
Affiliation(s)
- Zhen-Wen Zhang
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China; Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China; Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Jun Liang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Jing-Xing Yan
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China; Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Yi-Chao Ye
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Jing-Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Chong Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Hong-Tao Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Feng Chen
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Yue Tu
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China.
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
72
|
Kempuraj D, Ahmed ME, Selvakumar GP, Thangavel R, Dhaliwal AS, Dubova I, Mentor S, Premkumar K, Saeed D, Zahoor H, Raikwar SP, Zaheer S, Iyer SS, Zaheer A. Brain Injury-Mediated Neuroinflammatory Response and Alzheimer's Disease. Neuroscientist 2020; 26:134-155. [PMID: 31092147 PMCID: PMC7274851 DOI: 10.1177/1073858419848293] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) is a major health problem in the United States, which affects about 1.7 million people each year. Glial cells, T-cells, and mast cells perform specific protective functions in different regions of the brain for the recovery of cognitive and motor functions after central nervous system (CNS) injuries including TBI. Chronic neuroinflammatory responses resulting in neuronal death and the accompanying stress following brain injury predisposes or accelerates the onset and progression of Alzheimer's disease (AD) in high-risk individuals. About 5.7 million Americans are currently living with AD. Immediately following brain injury, mast cells respond by releasing prestored and preactivated mediators and recruit immune cells to the CNS. Blood-brain barrier (BBB), tight junction and adherens junction proteins, neurovascular and gliovascular microstructural rearrangements, and dysfunction associated with increased trafficking of inflammatory mediators and inflammatory cells from the periphery across the BBB leads to increase in the chronic neuroinflammatory reactions following brain injury. In this review, we advance the hypothesis that neuroinflammatory responses resulting from mast cell activation along with the accompanying risk factors such as age, gender, food habits, emotional status, stress, allergic tendency, chronic inflammatory diseases, and certain drugs can accelerate brain injury-associated neuroinflammation, neurodegeneration, and AD pathogenesis.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mohammad Ejaz Ahmed
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Arshdeep S. Dhaliwal
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Iuliia Dubova
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Shireen Mentor
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Keerthivaas Premkumar
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Daniyal Saeed
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Haris Zahoor
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Sudhanshu P. Raikwar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Smita Zaheer
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Shankar S. Iyer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Asgar Zaheer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
73
|
Warnock A, Toomey LM, Wright AJ, Fisher K, Won Y, Anyaegbu C, Fitzgerald M. Damage Mechanisms to Oligodendrocytes and White Matter in Central Nervous System Injury: The Australian Context. J Neurotrauma 2020; 37:739-769. [DOI: 10.1089/neu.2019.6890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Lillian M. Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Alexander J. Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Katherine Fisher
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yerim Won
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
74
|
Li LZ, Huang YY, Yang ZH, Zhang SJ, Han ZP, Luo YM. Potential microglia-based interventions for stroke. CNS Neurosci Ther 2020; 26:288-296. [PMID: 32064759 PMCID: PMC7052807 DOI: 10.1111/cns.13291] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/10/2019] [Accepted: 01/16/2020] [Indexed: 12/17/2022] Open
Abstract
A large number of families worldwide suffer from the physical and mental burden posed by stroke. An increasing number of studies aimed at the prevention and treatment of stroke have been conducted. Specifically, manipulating the immune response to stroke is under intense investigation. Microglia are the principal immune cells in the brain and are the first line of defense against the pathophysiology induced by stroke. Increasing evidence has suggested that microglia play diverse roles that depend on dynamic interactions with neurons, astrocytes, and other neighboring cells both in the normal brain and under pathological conditions, including stroke. Moreover, there are dynamic alterations in microglial functions with respect to aging and sex differences in the human brain, which offer a deep understanding of the conditions of stroke patients of different ages and sex. Hence, we review the dynamic microglial reactions caused by aging, sex, and crosstalk with neighboring cells both in normal conditions and after stroke and relevant potential interventions.
Collapse
Affiliation(s)
- Ling-Zhi Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yu-You Huang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhen-Hong Yang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Si-Jia Zhang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zi-Ping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yu-Min Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
75
|
Innate Immunity: A Common Denominator between Neurodegenerative and Neuropsychiatric Diseases. Int J Mol Sci 2020; 21:ijms21031115. [PMID: 32046139 PMCID: PMC7036760 DOI: 10.3390/ijms21031115] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
The intricate relationships between innate immunity and brain diseases raise increased interest across the wide spectrum of neurodegenerative and neuropsychiatric disorders. Barriers, such as the blood–brain barrier, and innate immunity cells such as microglia, astrocytes, macrophages, and mast cells are involved in triggering disease events in these groups, through the action of many different cytokines. Chronic inflammation can lead to dysfunctions in large-scale brain networks. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are associated with a substrate of dysregulated immune responses that impair the central nervous system balance. Recent evidence suggests that similar phenomena are involved in psychiatric diseases, such as depression, schizophrenia, autism spectrum disorders, and post-traumatic stress disorder. The present review summarizes and discusses the main evidence linking the innate immunological response in neurodegenerative and psychiatric diseases, thus providing insights into how the responses of innate immunity represent a common denominator between diseases belonging to the neurological and psychiatric sphere. Improved knowledge of such immunological aspects could provide the framework for the future development of new diagnostic and therapeutic approaches.
Collapse
|
76
|
Cragnolini AB, Lampitella G, Virtuoso A, Viscovo I, Panetsos F, Papa M, Cirillo G. Regional brain susceptibility to neurodegeneration: what is the role of glial cells? Neural Regen Res 2020; 15:838-842. [PMID: 31719244 PMCID: PMC6990768 DOI: 10.4103/1673-5374.268897] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The main pathological feature of the neurodegenerative diseases is represented by neuronal death that represents the final step of a cascade of adverse/hostile events. Early in the neurodegenerative process, glial cells (including astrocytes, microglial cells, and oligodendrocytes) activate and trigger an insidious neuroinflammatory reaction, metabolic decay, blood brain barrier dysfunction and energy impairment, boosting neuronal death. How these mechanisms might induce selective neuronal death in specific brain areas are far from being elucidated. The last two decades of neurobiological studies have provided evidence of the main role of glial cells in most of the processes of the central nervous system, from development to synaptogenesis, neuronal homeostasis and integration into, highly specific neuro-glial networks. In this mini-review, we moved from in vitro and in vivo models of neurodegeneration to analyze the putative role of glial cells in the early mechanisms of neurodegeneration. We report changes of transcriptional, genetic, morphological, and metabolic activity in astrocytes and microglial cells in specific brain areas before neuronal degeneration, providing evidence in experimental models of neurodegenerative disorders, including Parkinson's and Alzheimer's diseases. Understanding these mechanisms might increase the insight of these processes and pave the way for new specific glia-targeted therapeutic strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Andrea Beatriz Cragnolini
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Giorgia Lampitella
- Human Anatomy and Laboratory of Morphology of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli, Naples, Italy
| | - Assunta Virtuoso
- Human Anatomy and Laboratory of Morphology of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli, Naples, Italy
| | - Immacolata Viscovo
- Human Anatomy and Laboratory of Morphology of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli, Naples, Italy
| | - Fivos Panetsos
- Neuro-computing & Neuro-robotics Research Group, Universidad Complutense de Madrid; Neural Plasticity Research Group, Instituto Investigación Sanitaria Hospital Clínico San Carlos, Madrid, Spain
| | - Michele Papa
- Human Anatomy and Laboratory of Morphology of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli, Naples, Italy
| | - Giovanni Cirillo
- Human Anatomy and Laboratory of Morphology of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
77
|
Charlton AJ, May C, Luikinga SJ, Burrows EL, Hyun Kim J, Lawrence AJ, Perry CJ. Chronic voluntary alcohol consumption causes persistent cognitive deficits and cortical cell loss in a rodent model. Sci Rep 2019; 9:18651. [PMID: 31819151 PMCID: PMC6901469 DOI: 10.1038/s41598-019-55095-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic alcohol use is associated with cognitive decline that impedes behavioral change during rehabilitation. Despite this, addiction therapy does not address cognitive deficits, and there is poor understanding regarding the mechanisms that underlie this decline. We established a rodent model of chronic voluntary alcohol use to measure ensuing cognitive effects and underlying pathology. Rats had intermittent access to alcohol or an isocaloric solution in their home cage under voluntary 2-bottle choice conditions. In Experiments 1 and 2 cognition was assessed using operant touchscreen chambers. We examined performance in a visual discrimination and reversal task (Experiment 1), and a 5-choice serial reaction time task (Experiment 2). For Experiment 3, rats were perfused immediately after cessation of alcohol access period, and volume, cell density and microglial populations were assessed in the prefrontal cortex and striatum. Volume was assessed using the Cavalieri probe, while cell and microglial counts were estimated using unbiased stereology with an optical fractionator. Alcohol-exposed and control rats showed comparable acquisition of pairwise discrimination; however, performance was impaired when contingencies were reversed indicating reduced behavioral flexibility. When tested in a 5-choice serial reaction time task alcohol-exposed rats showed increased compulsivity and increased attentional bias towards a reward associated cue. Consistent with these changes, we observed decreased cell density in the prefrontal cortex. These findings confirm a detrimental effect of chronic alcohol and establish a model of alcohol-induced cognitive decline following long-term voluntary intake that may be used for future intervention studies.
Collapse
Affiliation(s)
- Annai J Charlton
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Carlos May
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sophia J Luikinga
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Emma L Burrows
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jee Hyun Kim
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrew J Lawrence
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Christina J Perry
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
78
|
Jin Y, Yao Y, El-Ashram S, Tian J, Shen J, Ji Y. The Neurotropic Parasite Toxoplasma gondii Induces Astrocyte Polarization Through NFκB Pathway. Front Med (Lausanne) 2019; 6:267. [PMID: 31803748 PMCID: PMC6877604 DOI: 10.3389/fmed.2019.00267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/31/2019] [Indexed: 12/29/2022] Open
Abstract
Background:Toxoplasma gondii is a protozoan parasite that chronically infects nearly one-third of the world's human population. In immunosuppressed individuals and fetus, infection with T. gondii contributes to a series of devastating conditions, including toxoplasmic encephalitis (TE), which is characterized by neuron damage in the central nervous system (CNS). Astrocyte polarization is currently found in some neurodegenerative diseases, and A1 subtype of astrocyte leads to neuron apoptosis. However, little information has been available on the role of astrocyte polarization in TE. Methods: In the present study, we established a mouse model to study TE and detected A1 astrocyte in the brains of mice with TE. Expression level of A1 astrocyte-specific marker C3 was evaluated using indirect fluorescent assay (IFA) and Western blotting. Primary mouse astrocytes were incubated with different concentrations of T. gondii excreted-secreted antigens (TgESAs) in vitro. Expression level of C3 and A1 astrocyte-specific transcription levels were assessed using Western blotting and qRT-PCR, respectively. Bay11-7082 was used to study nuclear factor (NF) κB pathway in TgESA-induced astrocyte polarization. Results: In mice with TE, the proportion of A1 astrocyte (GFAP+C3+) increased significantly. The results of in vitro study showed that TgESAs induced astrocyte polarization to A1 subtype. Blocking of NFκB pathway by Bay11-7082 inhibited TgESA-induced astrocyte polarization. Conclusions: Our preliminary study showed the involvement of A1 astrocyte in the process of TE in mice, and TgESAs could trigger astrocyte to polarize to A1 subtype. These findings suggest a new mechanism underlying the neuropathogenesis induced by T. gondii infection.
Collapse
Affiliation(s)
- Yu Jin
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Yong Yao
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Saeed El-Ashram
- School of Life Science and Engineering, Foshan University, Foshan, China.,Faculty of Science, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Jiaming Tian
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Yongsheng Ji
- Anhui Provincial Laboratory of Microbiology and Parasitology, Laboratory of Tropical and Parasitic Diseases Control, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| |
Collapse
|
79
|
Xie Z, Yang Q, Song D, Quan Z, Qing H. Optogenetic manipulation of astrocytes from synapses to neuronal networks: A potential therapeutic strategy for neurodegenerative diseases. Glia 2019; 68:215-226. [PMID: 31400164 DOI: 10.1002/glia.23693] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
Astrocytes are the most widespread and heterogeneous glial cells in the central nervous system and key regulators for brain development. They are capable of receiving neurotransmitters produced by synaptic activities and regulating synaptic functions by releasing gliotransmitters as part of the tripartite synapse. In addition to communicating with neurons at synaptic levels, astrocytes can integrate into inhibitory neural networks to interact with neurons in neuronal circuits. Astrocytes are closely related to the pathogenesis and pathological processes of neurodegenerative diseases (NDs). Recently, optogenetics has now been applied to reveal the function of astrocytes in physiology and pathology. Herein, we discuss the possibility whether optogenetics could be used to control the release of gliotransmitters and regulate astrocytic membrane channels. Thus, the capability of modulating the bidirectional interactions between astrocytes and neurons in both synaptic and neuronal networks via optogenetics is evaluated. Furthermore, we discuss that manipulating astrocytes via optogenetics might be an effective way to investigate the potential therapeutic strategy for NDs.
Collapse
Affiliation(s)
- Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Qinghu Yang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China.,College of Life Sciences & Research Center for Resource Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
80
|
Hartmann K, Sepulveda-Falla D, Rose IVL, Madore C, Muth C, Matschke J, Butovsky O, Liddelow S, Glatzel M, Krasemann S. Complement 3 +-astrocytes are highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia. Acta Neuropathol Commun 2019; 7:83. [PMID: 31118110 PMCID: PMC6530067 DOI: 10.1186/s40478-019-0735-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/13/2019] [Indexed: 01/01/2023] Open
Abstract
Astrogliosis and activation of microglia are hallmarks of prion diseases in humans and animals. Both were viewed to be rather independent events in disease pathophysiology, with proinflammatory microglia considered to be the potential neurotoxic species at late disease stages. Recent investigations have provided substantial evidence that a proinflammatory microglial cytokine cocktail containing TNF-α, IL-1α and C1qa reprograms a subset of astrocytes to change their expression profile and phenotype, thus becoming neurotoxic (designated as A1-astrocytes). Knockout or antibody blockage of the three cytokines abolish formation of A1-astrocytes, therefore, this pathway is of high therapeutic interest in neurodegenerative diseases. Since astrocyte polarization profiles have never been investigated in prion diseases, we performed several analyses and could show that C3+-PrPSc-reactive-astrocytes, which may represent a subtype of A1-astrocytes, are highly abundant in prion disease mouse models and human prion diseases. To investigate their impact on prion disease pathophysiology and to evaluate their potential therapeutic targeting, we infected TNF-α, IL-1α, and C1qa Triple-KO mice (TKO-mice), which do not transit astrocytes into A1, with prions. Although formation of C3+-astrocytes was significantly reduced in prion infected Triple-KO-mice, this did not affect the amount of PrPSc deposition or titers of infectious prions. Detailed characterization of the astrocyte activation signature in thalamus tissue showed that astrocytes in prion diseases are highly activated, showing a mixed phenotype that is distinct from other neurodegenerative diseases and were therefore termed C3+-PrPSc-reactive-astrocytes. Unexpectedly, Triple-KO led to a significant acceleration of prion disease course. While pan-astrocyte and -microglia marker upregulation was unchanged compared to WT-brains, microglial homeostatic markers were lost early in disease in TKO-mice, pointing towards important functions of different glia cell types in prion diseases.
Collapse
|
81
|
Tremblay ME, Cookson MR, Civiero L. Glial phagocytic clearance in Parkinson's disease. Mol Neurodegener 2019; 14:16. [PMID: 30953527 PMCID: PMC6451240 DOI: 10.1186/s13024-019-0314-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/15/2019] [Indexed: 12/21/2022] Open
Abstract
An emerging picture suggests that glial cells' loss of beneficial roles or gain of toxic functions can contribute to neurodegenerative conditions. Among glial cells, microglia and astrocytes have been shown to play phagocytic roles by engulfing synapses, apoptotic cells, cell debris, and released toxic proteins. As pathogenic protein accumulation is a key feature in Parkinson's disease (PD), compromised phagocytic clearance might participate in PD pathogenesis. In contrast, enhanced, uncontrolled and potentially toxic glial clearance capacity could contribute to synaptic degeneration. Here, we summarize the current knowledge of the molecular mechanisms underlying microglial and astrocytic phagocytosis, focusing on the possible implication of phagocytic dysfunction in neuronal degeneration. Several endo-lysosomal proteins displaying genetic variants in PD are highly expressed by microglia and astrocytes. We also present the evidence that lysosomal defects can affect phagocytic clearance and discuss the therapeutic relevance of restoring or enhancing lysosomal function in PD.
Collapse
Affiliation(s)
- Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC Canada
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - Laura Civiero
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
82
|
Schiavone S, Neri M, Maffione AB, Frisoni P, Morgese MG, Trabace L, Turillazzi E. Increased iNOS and Nitrosative Stress in Dopaminergic Neurons of MDMA-Exposed Rats. Int J Mol Sci 2019; 20:E1242. [PMID: 30871034 PMCID: PMC6429174 DOI: 10.3390/ijms20051242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 12/29/2022] Open
Abstract
Several mechanisms underlying 3,4-Methylenedioxy-N-methylamphetamine (MDMA) neurotoxicity have been proposed, including neurochemical alterations and excitotoxicity mediated by reactive oxygen species (ROS), nitric oxide (NO), and reactive nitrogen species (RNS). However, ROS, NO, and RNS sources in the brain are not fully known. We aimed to investigate possible alterations in the expression of the ROS producer NOX enzymes (NOX2, NOX1, and NOX4), NO generators (iNOS, eNOS, and nNOS), markers of oxidative (8-hydroxy-2'-deoxyguanosine, 8OHdG), and nitrosative (3-nitrotyrosine, NT) stress, as well as the colocalization between cells positive for the dopamine transporter (DT1) and cells expressing the neuronal nuclei (NeuN) marker, in the frontal cortex of rats receiving saline or MDMA, sacrificed 6 h, 16 h, or 24 h after its administration. MDMA did not affect NOX2, NOX1, and NOX4 immunoreactivity, whereas iNOS expression was enhanced. The number of NT-positive cells was increased in MDMA-exposed animals, whereas no differences were detected in 8OHdG expression among experimental groups. MDMA and NT markers colocalized with DT1 positive cells. DT1 immunostaining was found in NeuN-positive stained cells. Virtually no colocalization was observed with microglia and astrocytes. Moreover, MDMA immunostaining was not found in NOX2-positive cells. Our results suggest that iNOS-derived nitrosative stress, but not NOX enzymes, may have a crucial role in the pathogenesis of MDMA-induced neurotoxicity, highlighting the specificity of different enzymatic systems in the development of neuropathological alterations induced by the abuse of this psychoactive compound.
Collapse
Affiliation(s)
- Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| | - Margherita Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44100 Ferrara, Italy.
| | - Angela Bruna Maffione
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| | - Paolo Frisoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara, 70, 44100 Ferrara, Italy.
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| | - Emanuela Turillazzi
- Section of Legal Medicine, Department of Surgical, Medical, Molecular and Critical Pathology, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|