51
|
Kumar K, Neelam K, Singh G, Mathan J, Ranjan A, Brar DS, Singh K. Production and cytological characterization of a synthetic amphiploid derived from a cross between Oryza sativa and Oryza punctata. Genome 2019; 62:705-714. [PMID: 31330117 DOI: 10.1139/gen-2019-0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oryza punctata Kotschy ex Steud. (BB, 2n = 24) is a wild species of rice that has many useful agronomic traits. An interspecific hybrid (AB, 2n = 24) was produced by crossing O. punctata and Oryza sativa variety Punjab Rice 122 (PR122, AA, 2n = 24) to broaden the narrow genetic base of cultivated rice. Cytological analysis of the pollen mother cells (PMCs) of the interspecific hybrids confirmed that they have 24 chromosomes. The F1 hybrids showed the presence of 19-20 univalents and 1-3 bivalents. The interspecific hybrid was treated with colchicine to produce a synthetic amphiploid (AABB, 2n = 48). Pollen fertility of the synthetic amphiploid was found to be greater than 50% and partial seed set was observed. Chromosome numbers in the PMCs of the synthetic amphiploid were 24II, showing normal pairing. Flow cytometric analysis also confirmed doubled genomic content in the synthetic amphiploid. Leaf morphological and anatomical studies of the synthetic amphiploid showed higher chlorophyll content and enlarged bundle sheath cells as compared with both of its parents. The synthetic amphiploid was backcrossed with PR122 to develop a series of addition and substitution lines for the transfer of useful genes from O. punctata with least linkage drag.
Collapse
Affiliation(s)
- Kishor Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.,Faculty Centre on Integrated Rural Development and Management, Ramakrishna Mission Vivekanada Educational and Research Institute, Narendrapur, Kolkata, 700103, India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Gurpreet Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Jyotirmaya Mathan
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Aashish Ranjan
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Darshan Singh Brar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Kuldeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.,ICAR-National Bureau of Plant Genetic Resources, PUSA, New Delhi, 110012, India
| |
Collapse
|
52
|
Yang M, Huang C, Wang M, Fan H, Wan S, Wang Y, He J, Guan R. Fine mapping of an up-curling leaf locus (BnUC1) in Brassica napus. BMC PLANT BIOLOGY 2019; 19:324. [PMID: 31324149 PMCID: PMC6642557 DOI: 10.1186/s12870-019-1938-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/11/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Leaf shape development research is important because leaf shapes such as moderate curling can help to improve light energy utilization efficiency. Leaf growth and development includes initiation of the leaf primordia and polar differentiation of the proximal-distal, adaxial-abaxial, and centrolateral axes. Changes in leaf adaxial-abaxial polarity formation, auxin synthesis and signaling pathways, and development of sclerenchyma and cuticle can cause abnormal leaf shapes such as up-curling leaf. Although many genes related to leaf shape development have been reported, the detailed mechanism of leaf development is still unclear. Here, we report an up-curling leaf mutant plant from our Brassica napus germplasm. We studied its inheritance, mapped the up-curling leaf locus BnUC1, built near-isogenic lines for the Bnuc1 mutant, and evaluated the effect of the dominant leaf curl locus on leaf photosynthetic efficiency and agronomic traits. RESULTS The up-curling trait was controlled by one dominant locus in a progeny population derived from NJAU5734 and Zhongshuang 11 (ZS11). This BnUC1 locus was mapped in an interval of 2732.549 kb on the A05 chromosome of B. napus using Illumina Brassica 60 K Bead Chip Array. To fine map BnUC1, we designed 201 simple sequence repeat (SSR) primers covering the mapping interval. Among them, 16 polymorphic primers that narrowed the mapping interval to 54.8 kb were detected using a BC6F2 family population with 654 individuals. We found six annotated genes in the mapping interval using the B. napus reference genome, including BnaA05g18250D and BnaA05g18290D, which bioinformatics and gene expression analyses predicted may be responsible for leaf up-curling. The up-curling leaf trait had negative effects on the agronomic traits of 30 randomly selected individuals from the BC6F2 population. The near-isogenic line of the up-curling leaf (ZS11-UC1) was constructed to evaluate the effect of BnUC1 on photosynthetic efficiency. The results indicated that the up-curling leaf trait locus was beneficial to improve the photosynthetic efficiency. CONCLUSIONS An up-curling leaf mutant Bnuc1 was controlled by one dominant locus BnUC1. This locus had positive effects on photosynthetic efficiency, negative effects on some agronomic traits, and may help to increase planting density in B. napus.
Collapse
Affiliation(s)
- Mao Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chengwei Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Mingming Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Fan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shubei Wan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yangming Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jianbo He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Rongzhan Guan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
53
|
Genome-wide association mapping of leaf mass traits in a Vietnamese rice landrace panel. PLoS One 2019; 14:e0219274. [PMID: 31283792 PMCID: PMC6613685 DOI: 10.1371/journal.pone.0219274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/19/2019] [Indexed: 11/19/2022] Open
Abstract
Leaf traits are often strongly correlated with yield, which poses a major challenge in rice breeding. In the present study, using a panel of Vietnamese rice landraces genotyped with 21,623 single-nucleotide polymorphism markers, a genome-wide association study (GWAS) was conducted for several leaf traits during the vegetative stage. Vietnamese landraces are often poorly represented in panels used for GWAS, even though they are adapted to contrasting agrosystems and can contain original, valuable genetic determinants. A panel of 180 rice varieties was grown in pots for four weeks with three replicates under nethouse conditions. Different leaf traits were measured on the second fully expanded leaf of the main tiller, which often plays a major role in determining the photosynthetic capacity of the plant. The leaf fresh weight, turgid weight and dry weight were measured; then, from these measurements, the relative tissue weight and leaf dry matter percentage were computed. The leaf dry matter percentage can be considered a proxy for the photosynthetic efficiency per unit leaf area, which contributes to yield. By a GWAS, thirteen QTLs associated with these leaf traits were identified. Eleven QTLs were identified for fresh weight, eleven for turgid weight, one for dry weight, one for relative tissue weight and one for leaf dry matter percentage. Eleven QTLs presented associations with several traits, suggesting that these traits share common genetic determinants, while one QTL was specific to leaf dry matter percentage and one QTL was specific to relative tissue weight. Interestingly, some of these QTLs colocalize with leaf- or yield-related QTLs previously identified using other material. Several genes within these QTLs with a known function in leaf development or physiology are reviewed.
Collapse
|
54
|
Mutations in the Rice OsCHR4 Gene, Encoding a CHD3 Family Chromatin Remodeler, Induce Narrow and Rolled Leaves with Increased Cuticular Wax. Int J Mol Sci 2019; 20:ijms20102567. [PMID: 31130602 PMCID: PMC6566577 DOI: 10.3390/ijms20102567] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022] Open
Abstract
Leaf blade width, curvature, and cuticular wax are important agronomic traits of rice. Here, we report the rice Oschr4-5 mutant characterized by pleiotropic phenotypes, including narrow and rolled leaves, enhanced cuticular wax deposition and reduced plant height and tiller number. The reduced leaf width is caused by a reduced number of longitudinal veins and increased auxin content. The cuticular wax content was significantly higher in the Oschr4-5 mutant, resulting in reduced water loss rate and enhanced drought tolerance. Molecular characterization reveals that a single-base deletion results in a frame-shift mutation from the second chromodomain of OsCHR4, a CHD3 (chromodomain helicase DNA-binding) family chromatin remodeler, in the Oschr4-5 mutant. Expressions of seven wax biosynthesis genes (GL1-4, WSL4, OsCER7, LACS2, LACS7, ROC4 and BDG) and four auxin biosynthesis genes (YUC2, YUC3, YUC5 and YUC6) was up-regulated in the Oschr4-5 mutant. Chromatin immunoprecipitation assays revealed that the transcriptionally active histone modification H3K4me3 was increased, whereas the repressive H3K27me3 was reduced in the upregulated genes in the Oschr4-5 mutant. Therefore, OsCHR4 regulates leaf morphogenesis and cuticle wax formation by epigenetic modulation of auxin and wax biosynthetic genes expression.
Collapse
|
55
|
Cal AJ, Sanciangco M, Rebolledo MC, Luquet D, Torres RO, McNally KL, Henry A. Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought. PLANT, CELL & ENVIRONMENT 2019; 42:1532-1544. [PMID: 30620079 PMCID: PMC6487826 DOI: 10.1111/pce.13514] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 05/20/2023]
Abstract
Soil drying causes leaf rolling in rice, but the relationship between leaf rolling and drought tolerance has historically confounded selection of drought-tolerant genotypes. In this study on tropical japonica and aus diversity panels (170-220 genotypes), the degree of leaf rolling under drought was more affected by leaf morphology than by stomatal conductance, leaf water status, or maintenance of shoot biomass and grain yield. A range of canopy temperature and leaf rolling (measured as change in normalized difference vegetation index [ΔNDVI]) combinations were observed among aus genotypes, indicating that some genotypes continued transpiration while rolled. Association mapping indicated colocation of genomic regions for leaf rolling score and ΔNDVI under drought with previously reported leaf rolling genes and gene networks related to leaf anatomy. The relatively subtle variation across these large diversity panels may explain the lack of agreement of this study with earlier reports that used small numbers of genotypes that were highly divergent in hydraulic traits driving leaf rolling differences. This study highlights the large range of physiological responses to drought among rice genotypes and emphasizes that drought response processes should be understood in detail before incorporating them into a varietal selection programme.
Collapse
Affiliation(s)
- Andrew J. Cal
- Strategic Innovation PlatformInternational Rice Research InstituteMetro Manila1301Philippines
| | - Millicent Sanciangco
- Strategic Innovation PlatformInternational Rice Research InstituteMetro Manila1301Philippines
| | - Maria Camila Rebolledo
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgroMontpellierFrance
- AgrobiodiversityInternational Center for Tropical AgricultureCaliAA6713Colombia
| | - Delphine Luquet
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgroMontpellierFrance
| | - Rolando O. Torres
- Strategic Innovation PlatformInternational Rice Research InstituteMetro Manila1301Philippines
| | - Kenneth L. McNally
- Strategic Innovation PlatformInternational Rice Research InstituteMetro Manila1301Philippines
| | - Amelia Henry
- Strategic Innovation PlatformInternational Rice Research InstituteMetro Manila1301Philippines
| |
Collapse
|
56
|
Fu X, Xu J, Zhou M, Chen M, Shen L, Li T, Zhu Y, Wang J, Hu J, Zhu L, Gao Z, Dong G, Guo L, Ren D, Chen G, Lin J, Qian Q, Zhang G. Enhanced Expression of QTL qLL9/DEP1 Facilitates the Improvement of Leaf Morphology and Grain Yield in Rice. Int J Mol Sci 2019; 20:E866. [PMID: 30781568 PMCID: PMC6412340 DOI: 10.3390/ijms20040866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/22/2023] Open
Abstract
In molecular breeding of super rice, it is essential to isolate the best quantitative trait loci (QTLs) and genes of leaf shape and explore yield potential using large germplasm collections and genetic populations. In this study, a recombinant inbred line (RIL) population was used, which was derived from a cross between the following parental lines: hybrid rice Chunyou84, that is, japonica maintainer line Chunjiang16B (CJ16); and indica restorer line Chunhui 84 (C84) with remarkable leaf morphological differences. QTLs mapping of leaf shape traits was analyzed at the heading stage under different environmental conditions in Hainan (HN) and Hangzhou (HZ). A major QTL qLL9 for leaf length was detected and its function was studied using a population derived from a single residual heterozygote (RH), which was identified in the original population. qLL9 was delimitated to a 16.17 kb region flanked by molecular markers C-1640 and C-1642, which contained three open reading frames (ORFs). We found that the candidate gene for qLL9 is allelic to DEP1 using quantitative real-time polymerase chain reaction (qRT-PCR), sequence comparison, and the clustered regularly interspaced short palindromic repeat-associated Cas9 nuclease (CRISPR/Cas9) genome editing techniques. To identify the effect of qLL9 on yield, leaf shape and grain traits were measured in near isogenic lines (NILs) NIL-qLL9CJ16 and NIL-qLL9C84, as well as a chromosome segment substitution line (CSSL) CSSL-qLL9KASA with a Kasalath introgressed segment covering qLL9 in the Wuyunjing (WYJ) 7 backgrounds. Our results showed that the flag leaf lengths of NIL-qLL9C84 and CSSL-qLL9KASA were significantly different from those of NIL-qLL9CJ16 and WYJ 7, respectively. Compared with NIL-qLL9CJ16, the spike length, grain size, and thousand-grain weight of NIL-qLL9C84 were significantly higher, resulting in a significant increase in yield of 15.08%. Exploring and pyramiding beneficial genes resembling qLL9C84 for super rice breeding could increase both the source (e.g., leaf length and leaf area) and the sink (e.g., yield traits). This study provides a foundation for future investigation of the molecular mechanisms underlying the source⁻sink balance and high-yield potential of rice, benefiting high-yield molecular design breeding for global food security.
Collapse
Affiliation(s)
- Xue Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Jing Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Mengyu Zhou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Minmin Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Lan Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Ting Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Yuchen Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Jiajia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Guang Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Jianrong Lin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
57
|
Cui X, Zhang Z, Wang Y, Wu J, Han X, Gu X, Lu T. TWI1 regulates cell-to-cell movement of OSH15 to control leaf cell fate. THE NEW PHYTOLOGIST 2019; 221:326-340. [PMID: 30151833 DOI: 10.1111/nph.15390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
Cell pattern formation in plant leaves has attracted much attention from both plant biologists and breeders. However, in rice, the molecular mechanism remains unclear. Here, we describe the isolation and functional characterization of TWISTED-LEAF1 (TWI1), a critical gene involved in the development of the mestome sheath, vascular bundle sheath, interveinal mesophyll and sclerenchyma in rice leaves. Mutant twi1 plants have twisted leaves which might be caused by the compromised development and disordered patterning of bundle sheath, sclerenchyma and interveinal mesophyll cells. Expression of TWI1 can functionally rescue these mutant phenotypes. TWI1 encodes a transcription factor binding protein that interacts with OSH15, a class I KNOTTED1-like homeobox (KNOX) transcription factor. The cell-to-cell trafficking of OSH15 is restricted through its interaction with TWI1. Knockout or knockdown of OSH15 in twi1 rescues the twisted leaf phenotype. These studies reveal a key factor controlling cell pattern formation in rice leaves.
Collapse
Affiliation(s)
- Xuean Cui
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanwei Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
58
|
Li P, Chang T, Chang S, Ouyang X, Qu M, Song Q, Xiao L, Xia S, Deng Q, Zhu XG. Systems model-guided rice yield improvements based on genes controlling source, sink, and flow. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1154-1180. [PMID: 30415497 DOI: 10.1111/jipb.12738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
A large number of genes related to source, sink, and flow have been identified after decades of research in plant genetics. Unfortunately, these genes have not been effectively utilized in modern crop breeding. This perspective paper aims to examine the reasons behind such a phenomenon and propose a strategy to resolve this situation. Specifically, we first systematically survey the currently cloned genes related to source, sink, and flow; then we discuss three factors hindering effective application of these identified genes, which include the lack of effective methods to identify limiting or critical steps in a signaling network, the misplacement of emphasis on properties, at the leaf, instead of the whole canopy level, and the non-linear complex interaction between source, sink, and flow. Finally, we propose the development of systems models of source, sink and flow, together with a detailed simulation of interactions between them and their surrounding environments, to guide effective use of the identified elements in modern rice breeding. These systems models will contribute directly to the definition of crop ideotype and also identification of critical features and parameters that limit the yield potential in current cultivars.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Phytochromes, Hunan Agriculture University, Changsha 410125, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Tiangen Chang
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| | - Shuoqi Chang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Xiang Ouyang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Mingnan Qu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| | - Qingfeng Song
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| | - Langtao Xiao
- State Key Laboratory of Hybrid Rice, Key Laboratory of Phytochromes, Hunan Agriculture University, Changsha 410125, China
| | - Shitou Xia
- State Key Laboratory of Hybrid Rice, Key Laboratory of Phytochromes, Hunan Agriculture University, Changsha 410125, China
| | - Qiyun Deng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence of Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai 200031, China
| |
Collapse
|
59
|
He P, Wang X, Zhang X, Jiang Y, Tian W, Zhang X, Li Y, Sun Y, Xie J, Ni J, He G, Sang X. Short and narrow flag leaf1, a GATA zinc finger domain-containing protein, regulates flag leaf size in rice (Oryza sativa). BMC PLANT BIOLOGY 2018; 18:273. [PMID: 30413183 PMCID: PMC6230254 DOI: 10.1186/s12870-018-1452-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 09/27/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND The flag leaf of rice (Oryza sativa L.) is an important determinant of plant type characteristics and grain yield. Identification of flag leaf mutants of rice is crucial to elucidate the molecular mechanism of flag-leaf development, and for exploitation of rice germplasm resources. RESULTS In this study, we describe a mutant designated short and narrow flag leaf 1 (snfl1). Histological analysis showed that the length of epidermal cells and number of longitudinal veins were decreased in the flag leaf of the snfl1 mutant. Map-based cloning indicated that a member of the GATA family of transcription factors is a candidate gene for SNFL1. A single-nucleotide transition at the last base in the single intron of snfl1 led to variation in alternative splicing and early termination of translation. Complemented transgenic plants harbouring the candidate SNFL1 gene rescued the snfl1 mutant. Analysis of RT-PCR and the SNFL1 promoter by means of a GUS fusion expression assay showed that abundance of SNFL1 transcripts was higher in the culm, leaf sheath, and root. Expression of the SNFL1-GFP fusion protein in rice protoplasts showed that SNFL1 was localized in nucleus. CONCLUSIONS We conclude that SNFL1 is an important regulator of leaf development, the identification of which might have important implications for future research on GATA transcription factors.
Collapse
Affiliation(s)
- Peilong He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiaowen Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiaobo Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yudong Jiang
- Key Laboratory of Southwest Rice Biology and Genetic Breeding, Institute of Rice and Sorghum, Sichuan Academy of Agricultural Sciences, Deyang, China
| | - Weijiang Tian
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiaoqiong Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yangyang Li
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ying Sun
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jia Xie
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jile Ni
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| | - Xianchun Sang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
60
|
Xu P, Ali A, Han B, Wu X. Current Advances in Molecular Basis and Mechanisms Regulating Leaf Morphology in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:1528. [PMID: 30405666 PMCID: PMC6206276 DOI: 10.3389/fpls.2018.01528] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/28/2018] [Indexed: 05/03/2023]
Abstract
Yield is majorly affected by photosynthetic efficiency. Leaves are essential structure for photosynthesis and their morphology especially size and shape in a plant canopy can affect the rate of transpiration, carbon fixation and photosynthesis. Leaf rolling and size are considered key agronomic traits in plant architecture that can subsidize yield parameters. In last era, a number of genes controlling leaf morphology have been molecularly characterized. Despite of several findings, our understanding toward molecular mechanism of leaf rolling and size are under-developed. Here, we proposed a model to apprehend the physiological basis of different genes organized in a complex fashion and govern the final phenotype of leaf morphology. According to this leaf rolling is mainly controlled by regulation of bulliform cells by SRL1, ROC5, OsRRK1, SLL2, CLD1, OsZHD1/2, and NRL1, structure and processes of sclerenchyma cells by SLL1 and SRL2, leaf polarity by ADL1, RFS and cuticle formation by CFL1, and CLD1. Many of above mentioned and several other genes interact in a complex manner in order to sustain cellular integrity and homeostasis for optimum leaf rolling. While, leaf size is synchronized by multifarious interaction of PLA1, PLA2, OsGASR1, and OsEXPA8 in cell division, NAL1, NAL9, NRL1, NRL2 in regulation of number of veins, OsCOW1, OsPIN1, OsARF19, OsOFP2, D1 and GID in regulation of phytohormones and HDT702 in epigenetic aspects. In this review, we curtailed recent advances engrossing regulation and functions of those genes that directly or indirectly can distress leaf rolling or size by encoding different types of proteins and genic expression. Moreover, this effort could be used further to develop comprehensive learning and directing our molecular breeding of rice.
Collapse
Affiliation(s)
- Peizhou Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Chengdu, China
| | - Asif Ali
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Chengdu, China
| | - Baolin Han
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Chengdu, China
| | - Xianjun Wu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Chengdu, China
| |
Collapse
|
61
|
Myśków B, Góralska M, Lenarczyk N, Czyczyło-Mysza I, Stojałowski S. Putative candidate genes responsible for leaf rolling in rye (Secale cereale L.). BMC Genet 2018; 19:57. [PMID: 30092756 PMCID: PMC6085706 DOI: 10.1186/s12863-018-0665-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/31/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Rolling of leaves (RL) is a phenomenon commonly found in grasses. Morphology of the leaf is an important agronomic trait in field crops especially in rice; therefore, majority of the rice breeders are interested in RL. There are only few studies with respect to RL of wheat and barley; however, the information regarding the genetic base of RL with respect to the shape of leaf in rye is lacking. To the best of our knowledge, this is the first study on the localization of loci controlling RL on high density consensus genetic map of rye. RESULTS Genotypic analysis led to the identification of 43 quantitative trait loci (QTLs) for RL, grouped into 28 intervals, which confirms the multigenic base of the trait stated for wheat and rice. Four stable QTLs were located on chromosomes 3R, 5R, and 7R. Co-localization of QTL for RL and for different morphological, biochemical and physiological traits may suggests pleiotropic effects of some QTLs. QTLs for RL were associated with QTLs for such morphological traits as: grain number and weight, spike number per plant, compactness of spike, and plant height. Two QTLs for RL were found to coincide with QTLs for drought tolerance (4R, 7R), two with QTLs for heading earliness (2R, 7R), one with α-amylase activity QTL (7R) and three for pre-harvest sprouting QTL (1R, 4R, 7R). The set of molecular markers strongly linked to RL was selected, and the putative candidate genes controlling the process of RL were identified. Twelve QTLs are considered as linked to candidate genes on the base of DArT sequences alignment, which is a new information for rye. CONCLUSIONS Our results expand the knowledge about the network of QTLs for different morphological, biochemical and physiological traits and can be a starting point to studies on particular genes controlling RL and other important agronomic traits (yield, earliness, pre-harvest sprouting, reaction to water deficit) and to appoint markers useful in marker assisted selection (MAS). A better knowledge of the rye genome and genes could both facilitate rye improvement itself and increase the efficiency of utilizing rye genes in wheat breeding.
Collapse
Affiliation(s)
- Beata Myśków
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Szczecin, ul. Słowackiego 17, 71-434, Szczecin, Poland.
| | - Magdalena Góralska
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Szczecin, ul. Słowackiego 17, 71-434, Szczecin, Poland
| | - Natalia Lenarczyk
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Szczecin, ul. Słowackiego 17, 71-434, Szczecin, Poland
| | - Ilona Czyczyło-Mysza
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Science, ul. Niezapominajek 21, 30-239, Cracow, Poland
| | - Stefan Stojałowski
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Szczecin, ul. Słowackiego 17, 71-434, Szczecin, Poland
| |
Collapse
|
62
|
Tang X, Gong R, Sun W, Zhang C, Yu S. Genetic dissection and validation of candidate genes for flag leaf size in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:801-815. [PMID: 29218376 DOI: 10.1007/s00122-017-3036-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/01/2017] [Indexed: 05/17/2023]
Abstract
Two major loci with functional candidate genes were identified and validated affecting flag leaf size, which offer desirable genes to improve leaf architecture and photosynthetic capacity in rice. Leaf size is a major determinant of plant architecture and yield potential in crops. However, the genetic and molecular mechanisms regulating leaf size remain largely elusive. In this study, quantitative trait loci (QTLs) for flag leaf length and flag leaf width in rice were detected with high-density single nucleotide polymorphism genotyping of a chromosomal segment substitution line (CSSL) population, in which each line carries one or a few chromosomal segments from the japonica cultivar Nipponbare in a common background of the indica variety Zhenshan 97. In total, 14 QTLs for flag leaf length and nine QTLs for flag leaf width were identified in the CSSL population. Among them, qFW4-2 for flag leaf width was mapped to a 37-kb interval, with the most likely candidate gene being the previously characterized NAL1. Another major QTL for both flag leaf width and length was delimited by substitution mapping to a small region of 13.5 kb that contains a single gene, Ghd7.1. Mutants of Ghd7.1 generated using CRISPR/CAS9 approach showed reduced leaf size. Allelic variation analyses also validated Ghd7.1 as a functional candidate gene for leaf size, photosynthetic capacity and other yield-related traits. These results provide useful genetic information for the improvement of leaf size and yield in rice breeding programs.
Collapse
Affiliation(s)
- Xinxin Tang
- National Key Laboratory of Crop Genetic Improvement, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rong Gong
- National Key Laboratory of Crop Genetic Improvement, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaopu Zhang
- National Key Laboratory of Crop Genetic Improvement, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Wuhan, 430070, China.
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
63
|
Alqudah AM, Youssef HM, Graner A, Schnurbusch T. Natural variation and genetic make-up of leaf blade area in spring barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:873-886. [PMID: 29350248 PMCID: PMC5852197 DOI: 10.1007/s00122-018-3053-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 01/04/2018] [Indexed: 05/02/2023]
Abstract
KEY MESSAGE GWAS analysis for leaf blade area (LA) revealed intriguing genomic regions associated with putatively novel QTL and known plant stature-related phytohormone and sugar-related genes. Despite long-standing studies in the morpho-physiological characters of leaf blade area (LA) in cereal crops, advanced genetic studies to explore its natural variation are lacking. The importance of modifying LA in improving cereal grain yield and the genes controlling leaf traits have been well studied in rice but not in temperate cereals. To better understand the natural genetic variation of LA at four developmental stages, main culm LA was measured from 215 worldwide spring barleys including 92 photoperiod-sensitive accessions [PHOTOPERIOD RESPONSE LOCUS 1 (Ppd-H1)] and 123 accessions with reduced photoperiod sensitivity (ppd-H1) locus under controlled greenhouse conditions (long-day; 16/8 h; ~ 20/~ 16 °C day/night). The LA of Ppd-H1-carrying accessions was always smaller than in ppd-H1-carrying accessions. We found that nine SNPs from the Ppd-H1 gene were present in the collection of which marker 9 (M9; G/T in the CCT-domain) showed the most significant and consistent effect on LA at all studied developmental stages. Genome-wide association scans (GWAS) showed that the accessions carrying the ppd-H1 allele T/M9 (late heading) possessed more genetic variation in LA than the Ppd-H1 group carrying G/M9 (early heading). Several QTL with major effects on LA variation were found close to plant stature-related heading time, phytohormone- and sugar-related genes. The results provide evidence that natural variation of LA is an important source for improving grain yield, adaptation and canopy architecture of temperate cereals.
Collapse
Affiliation(s)
- Ahmad M Alqudah
- HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, OT Gatersleben, 06466, Seeland, Germany.
| | - Helmy M Youssef
- HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, OT Gatersleben, 06466, Seeland, Germany
- Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Andreas Graner
- Research Group Genome Diversity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, OT Gatersleben, 06466, Seeland, Germany
| | - Thorsten Schnurbusch
- HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, OT Gatersleben, 06466, Seeland, Germany.
| |
Collapse
|
64
|
Yin C, Li H, Zhao Z, Wang Z, Liu S, Chen L, Liu X, Tian Y, Ma J, Xu L, Zhang D, Zhu S, Li D, Wan J, Wang J. Genetic dissection of top three leaf traits in rice using progenies from a japonica × indica cross. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:866-880. [PMID: 28875589 DOI: 10.1111/jipb.12597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/04/2017] [Indexed: 05/17/2023]
Abstract
The size of the top three leaves of rice plants is strongly associated with yield; thus, it is important to consider quantitative traits representing leaf size (e.g., length and width) when breeding novel rice varieties. It is challenging to measure such traits on a large scale in the field, and little is known about the genetic factors that determine the size of the top three leaves. In the present study, a population of recombinant inbred lines (RILs) and reciprocal single chromosomal segment substitution lines (SSSLs) derived from the progeny of a japonica Asominori × indica IR24 cross were grown under four diverse environmental conditions. Six morphological traits associated with leaf size were measured, namely length and flag leaf, length and flag, second and third leaves. In the RIL population, 49 QTLs were identified that clustered in 30 genomic region. Twenty-three of these QTLs were confirmed in the SSSL population. A comparison with previously reported genes/QTLs revealed eight novel genomic regions that contained uncharacterized ORFs associated with leaf size. The QTLs identified in this study can be used for marker-assisted breeding and for fine mapping of novel genetic elements controlling leaf size in rice.
Collapse
Affiliation(s)
- Changbin Yin
- The National Key Facility for Crop Gene Resources and Genetic Improvement, and Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huihui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, and Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiquan Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Shijia Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangming Chen
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunlu Tian
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Ma
- The National Key Facility for Crop Gene Resources and Genetic Improvement, and Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lidong Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Dashuang Zhang
- Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Susong Zhu
- Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Danting Li
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jianmin Wan
- The National Key Facility for Crop Gene Resources and Genetic Improvement, and Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiankang Wang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, and Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
65
|
Matsumoto H, Yasui Y, Kumamaru T, Hirano HY. Characterization of a half-pipe-like leaf1 mutant that exhibits a curled leaf phenotype. Genes Genet Syst 2017; 92:287-291. [DOI: 10.1266/ggs.17-00013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Hikari Matsumoto
- Department of Biological Sciences, School of Science, The University of Tokyo
| | - Yukiko Yasui
- Department of Biological Sciences, School of Science, The University of Tokyo
| | | | - Hiro-Yuki Hirano
- Department of Biological Sciences, School of Science, The University of Tokyo
| |
Collapse
|
66
|
Li WQ, Zhang MJ, Gan PF, Qiao L, Yang SQ, Miao H, Wang GF, Zhang MM, Liu WT, Li HF, Shi CH, Chen KM. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:904-923. [PMID: 28960566 DOI: 10.1111/tpj.13728] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/29/2017] [Accepted: 09/22/2017] [Indexed: 05/20/2023]
Abstract
Leaf rolling is considered as one of the most important agronomic traits in rice breeding. It has been previously reported that SEMI-ROLLED LEAF 1 (SRL1) modulates leaf rolling by regulating the formation of bulliform cells in rice (Oryza sativa); however, the regulatory mechanism underlying SRL1 has yet to be further elucidated. Here, we report the functional characterization of a novel leaf-rolling mutant, curled leaf and dwarf 1 (cld1), with multiple morphological defects. Map-based cloning revealed that CLD1 is allelic with SRL1, and loses function in cld1 through DNA methylation. CLD1/SRL1 encodes a glycophosphatidylinositol (GPI)-anchored membrane protein that modulates leaf rolling and other aspects of rice growth and development. The cld1 mutant exhibits significant decreases in cellulose and lignin contents in secondary cell walls of leaves, indicating that the loss of function of CLD1/SRL1 affects cell wall formation. Furthermore, the loss of CLD1/SRL1 function leads to defective leaf epidermis such as bulliform-like epidermal cells. The defects in leaf epidermis decrease the water-retaining capacity and lead to water deficits in cld1 leaves, which contribute to the main cause of leaf rolling. As a result of the more rapid water loss and lower water content in leaves, cld1 exhibits reduced drought tolerance. Accordingly, the loss of CLD1/SRL1 function causes abnormal expression of genes and proteins associated with cell wall formation, cuticle development and water stress. Taken together, these findings suggest that the functional roles of CLD1/SRL1 in leaf-rolling regulation are closely related to the maintenance of cell wall formation, epidermal integrity and water homeostasis.
Collapse
Affiliation(s)
- Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Min-Juan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng-Fei Gan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lei Qiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuai-Qi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hai Miao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gang-Feng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mao-Mao Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hai-Feng Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chun-Hai Shi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
67
|
Wang X, Wang F, Chen H, Liang X, Huang Y, Yi J. Comparative genomic hybridization and transcriptome sequencing reveal that two genes, OsI_14279 ( LOC_Os03g62620) and OsI_10794 ( LOC_Os03g14950) regulate the mutation in the γ- rl rice mutant. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:745-754. [PMID: 29158625 PMCID: PMC5671442 DOI: 10.1007/s12298-017-0460-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 05/27/2023]
Abstract
We previously established the genetic locus of the rolled-leaf mutant, γ-rl, to chromosome 3. In this study, we performed a comparative genomic hybridization (CGH) analysis to identify the genes responsible for the γ-rl mutant phenotype. This was combined with RNA transcriptome sequencing (RNA-seq) to analyze differences in the mRNA expression in seeds 12 h after germination. Using the reference genome of the "indica type" rice from GenBank, we created a chip with 386,000 high density DNA probes designed to target chromosome 3. The genomic DNA from γ-rl and Qinghuazhan (the wild-type) was used for hybridization against the chip to compare signal differences. We uncovered 49 regions with significant differences in hybridization signals including deletions and insertions. RNA-seq analysis between γ-rl and QHZ identified 1060 differentially expressed genes, which potentially regulate numerous biological activities. Moreover, we identified 72 annotated genes in the 49 regions discovered in CGH. Among these, 44 genes showed differential expression in RNA-seq. qRT-PCR validation of the candidate genes confirmed that seven of the 44 genes showed a significant change in their expression levels. Among these, four genes [OsI_10125 (LOC_Os03g06654), OsI_14045 (LOC_Os03g62490), OsI_14279 (LOC_Os03g62620) and OsI_14326 (LOC_Os03g63250)] were down regulated and three genes [(OsI_10794 (LOC_Os03g14950), OsI_11412 (LOC_Os03g21250) and OsI_14152 (LOC_Os03g61360)] were up regulated with a fold change ≥2.0 and a P value ≤ 0.01. Finally, we constructed transgenic plants to study the in vivo functions of these genes. RNAi knock down of LOC_Os03g62620 resulted in rolled-leaf, lower seed-setting and decreased seed growth phenotypes. Transgenic plants with LOC_Os03g14950 over-expression showed dwarf plants with a shortened leaf phenotype. Our results, LOC_Os03g62620 and LOC_Os03g14950 as the essential genes responsible for creating the γ-rl mutant phenotypes suggested that these genes may play crucial roles in regulating rice leaf development and seed growth.
Collapse
Affiliation(s)
- Xulong Wang
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Province, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Fanhua Wang
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Province, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Huiqiong Chen
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Province, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Xiaoyu Liang
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Province, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Yingmei Huang
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Province, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Jicai Yi
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Province, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
68
|
Thirulogachandar V, Alqudah AM, Koppolu R, Rutten T, Graner A, Hensel G, Kumlehn J, Bräutigam A, Sreenivasulu N, Schnurbusch T, Kuhlmann M. Leaf primordium size specifies leaf width and vein number among row-type classes in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:601-612. [PMID: 28482117 DOI: 10.1111/tpj.13590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 05/18/2023]
Abstract
Exploring genes with impact on yield-related phenotypes is the preceding step to accomplishing crop improvements while facing a growing world population. A genome-wide association scan on leaf blade area (LA) in a worldwide spring barley collection (Hordeum vulgare L.), including 125 two- and 93 six-rowed accessions, identified a gene encoding the homeobox transcription factor, Six-rowed spike 1 (VRS1). VRS1 was previously described as a key domestication gene affecting spike development. Its mutation converts two-rowed (wild-type VRS1, only central fertile spikelets) into six-rowed spikes (mutant vrs1, fully developed fertile central and lateral spikelets). Phenotypic analyses of mutant and wild-type leaves revealed that mutants had an increased leaf width with more longitudinal veins. The observed significant increase of LA and leaf nitrogen (%) during pre-anthesis development in vrs1 mutants also implies a link between wider leaf and grain number, which was validated from the association of vrs1 locus with wider leaf and grain number. Histological and gene expression analyses indicated that VRS1 might influence the size of leaf primordia by affecting cell proliferation of leaf primordial cells. This finding was supported by the transcriptome analysis of mutant and wild-type leaf primordia where in the mutant transcriptional activation of genes related to cell proliferation was detectable. Here we show that VRS1 has an independent role on barley leaf development which might influence the grain number.
Collapse
Affiliation(s)
- Venkatasubbu Thirulogachandar
- Independent Junior Research Group Abiotic Stress Genomics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
- HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Ahmad M Alqudah
- HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Ravi Koppolu
- HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Twan Rutten
- Research Group Structural Cell Biology, Department Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Andreas Graner
- Research Group Genome Diversity, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Goetz Hensel
- Research Group Plant Reproductive Biology, Department Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Jochen Kumlehn
- Research Group Plant Reproductive Biology, Department Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Andrea Bräutigam
- Research Group Network Analysis and Modeling, Department Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Nese Sreenivasulu
- Independent Junior Research Group Abiotic Stress Genomics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Thorsten Schnurbusch
- HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Markus Kuhlmann
- Independent Junior Research Group Abiotic Stress Genomics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstr. 3 06466 Stadt Seeland, OT Gatersleben, Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Hoher Weg 8, 06120, Halle (Saale), Germany
| |
Collapse
|
69
|
Zhu Q, Yu S, Chen G, Ke L, Pan D. Analysis of the differential gene and protein expression profile of the rolled leaf mutant of transgenic rice (Oryza sativa L.). PLoS One 2017; 12:e0181378. [PMID: 28723953 PMCID: PMC5517006 DOI: 10.1371/journal.pone.0181378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/29/2017] [Indexed: 11/18/2022] Open
Abstract
The importance of leaf rolling in rice (Oryza sativa L.) has been widely recognized. Although several studies have investigated rice leaf rolling and identified some related genes, knowledge of the molecular mechanism underlying rice leaf rolling, especially outward leaf rolling, is limited. Therefore, in this study, differential proteomics and gene expression profiling were used to analyze rolled leaf mutant of transgenic rice in order to investigate differentially expressed genes and proteins related to rice leaf rolling. To this end, 28 differentially expressed proteins related to rolling leaf traits were isolated and identified. Digital expression profiling detected 10 genes related to rice leaf rolling. Some of the proteins and genes detected are involved in lipid metabolism, which is related to the development of bulliform cells, such as phosphoinositide phospholipase C, Mgll gene, and At4g26790 gene. The “omics”-level techniques were useful for simultaneously isolating several proteins and genes related to rice leaf rolling. In addition, the results of the analysis of differentially expressed proteins and genes were closely consistent with those from a corresponding functional analysis of cellular mechanisms; our study findings might form the basis for further research on the molecular mechanisms underlying rice leaf rolling.
Collapse
Affiliation(s)
- Qiuqiang Zhu
- Department of Life Science, Fujian Agriculture and Forest University, Fuzhou, China
| | - Shuguang Yu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guanshui Chen
- Department of Life Science, Fujian Agriculture and Forest University, Fuzhou, China
| | - Lanlan Ke
- Department of Life Science, Fujian Agriculture and Forest University, Fuzhou, China
| | - Daren Pan
- Department of Life Science, Fujian Agriculture and Forest University, Fuzhou, China
- * E-mail:
| |
Collapse
|
70
|
Li Y, Yang T, Dai D, Hu Y, Guo X, Guo H. Evolution, gene expression profiling and 3D modeling of CSLD proteins in cotton. BMC PLANT BIOLOGY 2017; 17:119. [PMID: 28693426 PMCID: PMC5504666 DOI: 10.1186/s12870-017-1063-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/25/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Among CESA-like gene superfamily, the cellulose synthase-like D (CSLD) genes are most similar to cellulose synthase genes and have been reported to be involved in tip-growing cell and stem development. However, there has been no genome-wide characterization of this gene subfamily in cotton. We thus sought to analyze the evolution and functional characterization of CSLD proteins in cotton based on fully sequenced cotton genomes. RESULTS A total of 23 full-length CSLD proteins were identified in Gossypium raimondii, Gossypium arboreum and Gossypium hirsutum. The phylogenetic tree divided the CSLD proteins into five clades with strong support: CSLD1, CSLD2/3, CSLD4, CSLD5 and CSLD6. The total expression of GhCSLD genes was the highest in androecium & gynoecium (mostly contributed by CSLD1 and CSLD4) compared with other CSL genes. CSLD1 and CSLD4 were only highly expressed in androecium & gynoecium (A&G), and showed tissue-specific expression. The total expression of CSLD2/3, 5 and 6 was highest in the specific tissues. These results suggest that CSLD genes showed the different pattern of expression. Cotton CSLD proteins were subjected to different evolutionary pressures, and the CSLD1 and CSLD4 proteins exhibited episodic and long-term shift positive selection. The predicted three-dimensional structure of GrCSLD1 suggested that GrCSLD1 belongs to glycosyltransferase family 2. The amino acid residues under positive selection in the CSLD1 lineage are positioned in a region adjacent to the class-specific region (CSR), β1-strand and transmembrane helices (TMHs) in the GrCSLD1structure. CONCLUSION Our results characterized the CSLD proteins by an integrated approach containing phylogeny, transcriptional profiling and 3D modeling. The study added to the understanding about the importance of the CSLD family and provide a useful reference for selecting candidate genes and their associations with the biosynthesis of the cell wall in cotton.
Collapse
Affiliation(s)
- Yanpeng Li
- Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, No. 116, Huayuan Road, Zhengzhou, 450002 China
- Scientific Observing and Experimental Station of Crop Cultivation in Central Plain, Ministry of Agriculture, No. 116, Huayuan Road, Zhengzhou, 450002 China
| | - Tiegang Yang
- Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, No. 116, Huayuan Road, Zhengzhou, 450002 China
- Scientific Observing and Experimental Station of Crop Cultivation in Central Plain, Ministry of Agriculture, No. 116, Huayuan Road, Zhengzhou, 450002 China
| | - Dandan Dai
- Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, No. 116, Huayuan Road, Zhengzhou, 450002 China
- Scientific Observing and Experimental Station of Crop Cultivation in Central Plain, Ministry of Agriculture, No. 116, Huayuan Road, Zhengzhou, 450002 China
| | - Ying Hu
- Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, No. 116, Huayuan Road, Zhengzhou, 450002 China
- Scientific Observing and Experimental Station of Crop Cultivation in Central Plain, Ministry of Agriculture, No. 116, Huayuan Road, Zhengzhou, 450002 China
| | - Xiaoyang Guo
- Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, No. 116, Huayuan Road, Zhengzhou, 450002 China
- Scientific Observing and Experimental Station of Crop Cultivation in Central Plain, Ministry of Agriculture, No. 116, Huayuan Road, Zhengzhou, 450002 China
| | - Hongxia Guo
- Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, No. 116, Huayuan Road, Zhengzhou, 450002 China
- Scientific Observing and Experimental Station of Crop Cultivation in Central Plain, Ministry of Agriculture, No. 116, Huayuan Road, Zhengzhou, 450002 China
| |
Collapse
|
71
|
Li X, Wang X, Peng Y, Wei H, Zhu X, Chang S, Li M, Li T, Huang H. Quantitative descriptions of rice plant architecture and their application. PLoS One 2017; 12:e0177669. [PMID: 28545144 PMCID: PMC5435225 DOI: 10.1371/journal.pone.0177669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/01/2017] [Indexed: 11/18/2022] Open
Abstract
Plant architecture is an important agronomic trait, and improving plant architecture has attracted the attention of scientists for decades, particularly studies to create desirable plant architecture for high grain yields through breeding and culture practices. However, many important structural phenotypic traits still lack quantitative description and modeling on structural-functional relativity. This study defined new architecture indices (AIs) derived from the digitalized plant architecture using the virtual blade method. The influences of varieties and crop management on these indices and the influences of these indices on biomass accumulation were analyzed using field experiment data at two crop growth stages: early and late panicle initiation. The results indicated that the vertical architecture indices (LAI, PH, 90%-DRI, MDI, 90%-LI) were significantly influenced by variety, water, nitrogen management and the interaction of water and nitrogen, and compact architecture indices (H-CI, Q-CI, 90%-LI, 50%-LI) were significantly influenced by nitrogen management and the interaction of variety and water. Furthermore, there were certain trends in the influence of variety, water, and nitrogen management on AIs. Biomass accumulation has a positive linear correlation with vertical architecture indices and has a quadratic correlation with compact architecture indices, respectively. Furthermore, the combination of vertical and compact architecture indices is the indicator for evaluating the effects of plant architecture on biomass accumulation.
Collapse
Affiliation(s)
- Xumeng Li
- Agricultural mathematical modeling and data processing center, Hunan Agricultural University, Changsha, China
- International Rice Research Institute, Metro Manila, Philippines
- State Key Laboratory of Hybrid Rice, Changsha, China
- Hunan Agricultural University, Changsha, China
| | | | - Yulin Peng
- State Key Laboratory of Hybrid Rice, Changsha, China
| | - Hailin Wei
- Hunan Agricultural University, Changsha, China
| | - Xinguang Zhu
- State Key Laboratory of Hybrid Rice, Changsha, China
| | - Shuoqi Chang
- State Key Laboratory of Hybrid Rice, Changsha, China
| | - Ming Li
- Hunan Agricultural University, Changsha, China
| | - Tao Li
- International Rice Research Institute, Metro Manila, Philippines
- * E-mail: (TL); (HH)
| | - Huang Huang
- Hunan Agricultural University, Changsha, China
- * E-mail: (TL); (HH)
| |
Collapse
|
72
|
Li YY, Shen A, Xiong W, Sun QL, Luo Q, Song T, Li ZL, Luan WJ. Overexpression of OsHox32 Results in Pleiotropic Effects on Plant Type Architecture and Leaf Development in Rice. RICE (NEW YORK, N.Y.) 2016; 9:46. [PMID: 27624698 PMCID: PMC5021653 DOI: 10.1186/s12284-016-0118-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/06/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND The Class III homeodomain Leu zipper (HD-Zip III) gene family plays important roles in plant growth and development. Here, we analyze the function of OsHox32, an HD-Zip III family member, and show that it exhibits pleiotropic effects on regulating plant type architecture and leaf development in rice. RESULTS Transgenic lines overexpressing OsHox32 (OsHox32-OV) produce narrow leaves that roll towards the adaxial side. Histological analysis revealed a decreased number of bulliform cells in OsHox32-OV lines. In addition, the angle between the leaf and culm was reduced, resulting in an erect plant phenotype. The height of the plants was reduced, resulting in a semi-dwarf phenotype. In addition, the chlorophyll level was reduced, resulting in a decrease in the photosynthetic rate, but water use efficiency was significantly improved, presumably due to the rolled leaf phenotype. OsHox32 exhibited constitutive expression in different organs, with higher mRNA levels in the stem, leaf sheath, shoot apical meristems and young roots, suggesting a role in plant-type and leaf development. Moreover, OsHox32 mRNA levels were higher in light and lower in the dark under both long-day and short-day conditions, indicating that OsHox32 may be associated with light regulation. Photosynthesis-associated and chlorophyll biosynthesis-associated genes were down-regulated to result in the reduction of photosynthetic capacity in OsHox32-OV lines. mRNA level of six rice YABBY genes is up-regulated or down-regulated by OsHox32, suggesting that OsHox32 may regulate the architecture of plant type and leaf development by controlling the expression of YABBY genes in rice. In addition, OsHox32 mRNA level was induced by the phytohormones, indicating that OsHox32 may be involved in phytohormones regulatory pathways. CONCLUSIONS OsHox32, an HD-Zip III family member, plays pleiotropic effects on plant type architecture and leaf development in rice.
Collapse
Affiliation(s)
- Ying-ying Li
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People’s Republic of China
| | - Ao Shen
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People’s Republic of China
| | - Wei Xiong
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People’s Republic of China
| | - Qiong-lin Sun
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People’s Republic of China
| | - Qian Luo
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People’s Republic of China
| | - Ting Song
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People’s Republic of China
| | - Zheng-long Li
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People’s Republic of China
| | - Wei-jiang Luan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People’s Republic of China
| |
Collapse
|
73
|
Chatterjee J, Dionora J, Elmido-Mabilangan A, Wanchana S, Thakur V, Bandyopadhyay A, Brar DS, Quick WP. The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy. PLoS One 2016; 11:e0164532. [PMID: 27792743 PMCID: PMC5085062 DOI: 10.1371/journal.pone.0164532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/27/2016] [Indexed: 01/02/2023] Open
Abstract
Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the 'sativa leaf type' that we see today in domesticated species.
Collapse
Affiliation(s)
- Jolly Chatterjee
- C4 Rice Center, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Jacqueline Dionora
- C4 Rice Center, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Abigail Elmido-Mabilangan
- C4 Rice Center, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Samart Wanchana
- C4 Rice Center, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Vivek Thakur
- C4 Rice Center, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Anindya Bandyopadhyay
- C4 Rice Center, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Darshan S. Brar
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - William Paul Quick
- C4 Rice Center, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, DAPO BOX 7777, Metro Manila, Philippines
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
74
|
Wu Y, Luo L, Chen L, Tao X, Huang M, Wang H, Chen Z, Xiao W. Chromosome mapping, molecular cloning and expression analysis of a novel gene response for leaf width in rice. Biochem Biophys Res Commun 2016; 480:394-401. [PMID: 27771249 DOI: 10.1016/j.bbrc.2016.10.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 11/25/2022]
Abstract
Genetic analysis revealed that narrow leaf, small panicle, thin and slender stems as well as low fertility rate of an Indica rice variety were recessive traits and controlled by a single gene. Applying map-based cloning strategy, a novel narrow leaf gene, which was named nal11 was delimited to an interval of 58.3 kb between the InDel markers N10 and InD5016. There are 9 genes in the mapping interval, and only a heat shock DNAJ protein encode gene (Os07g09450) has a specific G to T SNP, which was occurred at the last base of the second exon of Os07g09450 in ZYX. 5' and 3' RACE result shown that there were two transcripts in NAL11, and the SNP in nal11 leads to a variable shear of mRNA. In addition, this type of mRNA alternative splicing together with a stop codon closely followed the SNP which caused termination of translation destroyed the DNAJ domain of nal11's product. These results suggested that the heat shock DNAJ gene was most likely to be the candidate gene of nal11. The results of RT-PCR and real-time PCR further verified that the SNP in the ZYX-nal11 gene affects mRNA splicing pattern. Phenotype of ZYX may be caused by a statistically significant reduction in the total number of small veins in leaf, size and number of small vascular bundles and cells in stems, similar to several previous reported mutations. The basic molecular information we provide here will be useful for further investigations of the physiological function of the heat shock DNAJ gene, which will be helpful in better understanding the role of the DNAJ family in regulation of plant type traits such as leaf width of rice.
Collapse
Affiliation(s)
- Yahui Wu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Lixin Luo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Likai Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Xingxing Tao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Ming Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Wuming Xiao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
75
|
Kubo FC, Yasui Y, Kumamaru T, Sato Y, Hirano HY. Genetic analysis of rice mutants responsible for narrow leaf phenotype and reduced vein number. Genes Genet Syst 2016; 91:235-240. [PMID: 27522959 DOI: 10.1266/ggs.16-00018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Leaves are a major site for photosynthesis and a key determinant of plant architecture. Rice produces thin and slender leaves, which consist of the leaf blade and leaf sheath separated by the lamina joint. Two types of vasculature, the large and small vascular bundles, run in parallel, together with a strong structure, the midrib. In this paper, we examined the function of four genes that regulate the width of the leaf blade and the vein number: NARROW LEAF1 (NAL1), NAL2, NAL3 and NAL7. We backcrossed original mutants of these genes with the standard wild-type rice, Taichung 65. We then compared the effect of each mutation on similar genetic backgrounds and examined genetic interactions of these genes. The nal1 single mutation and the nal2 nal3 double mutation showed a severe effect on leaf width, resulting in very narrow leaves. Although vein number was also reduced in the nal1 and nal2 nal3 mutants, the small vein number was more strongly reduced than the large vein number. In contrast, the nal7 mutation showed a milder effect on leaf width and vein number, and both the large and small veins were similarly affected. Thus, the genes responsible for narrow leaf phenotype seem to play distinct roles. The nal7 mutation showed additive effects on both leaf width and vein number, when combined with the nal1 single or the nal2 nal3 double mutation. In addition, observations of inner tissues revealed that cell differentiation was partially compromised in the nal2 nal3 nal7 mutant, consistent with the severe reduction in leaf width in this triple mutant.
Collapse
Affiliation(s)
- Fumika Clara Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | | | | | | | | |
Collapse
|
76
|
Zhang Q, Zheng T, Hoang L, Wang C, Nafisah, Joseph C, Zhang W, Xu J, Li Z. Joint Mapping and Allele Mining of the Rolled Leaf Trait in Rice (Oryza sativa L.). PLoS One 2016; 11:e0158246. [PMID: 27441398 PMCID: PMC4956317 DOI: 10.1371/journal.pone.0158246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/12/2016] [Indexed: 01/01/2023] Open
Abstract
The rolled leaf trait, long considered to be a key component of plant architecture, represents an important target trait for improving plant architecture at the population level. We therefore performed linkage mapping using a set of 262 highly variable RILs from two rice cultivars (Minghui 63 and 02428) with minor differences in leaf rolling index (LRI) in conjunction with GWAS mapping of a random subset of the 1127 germplasms from the 3K Rice Genomes Project (3K Rice). A total of seven main-effect loci were found to underlie the transgressive segregation of progenies from parents with minor differences in LRI. Five of these loci were previously identified and two (qRl7b and qRl9b) are newly reported with additional evidence from GWAS mapping for qRl7b. A total of 18 QTLs were identified by GWAS, including four newly identified QTLs. Six QTLs were confirmed by linkage mapping with the above RIL population, and 83.3% were found to be consistent with previously reported loci based on comparative mapping. We also performed allele mining with representative SNPs and identified the elite germplasms for the improvement of rolled leaf trait. Most favorable alleles at the detected loci were contributed by various 3K Rice germplasms. By a re-scanning of the candidate region with more saturated SNP markers, we dissected the region harboring gRl4-2 into three subregions, in which the average effect on LRI was 3.5% with a range from 2.4 to 4.1% in the third subregion, suggesting the presence of a new locus or loci within this region. The representative SNPs for favorable alleles in the reliable QTLs which were consistently identified in both bi-parental mapping and GWAS, such as qRl4, qRl5, qRl6, qRl7a, and qRl7b will be useful for future molecular breeding programs for ideal plant type in rice.
Collapse
Affiliation(s)
- Qiang Zhang
- Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing 100081, China
| | - Tianqing Zheng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing 100081, China
| | - Long Hoang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing 100081, China
| | - Chunchao Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing 100081, China
| | - Nafisah
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing 100081, China
| | - Charles Joseph
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing 100081, China
| | - Wenzhong Zhang
- Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing 100081, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Shenzhen Institute of Breeding & Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Beijing 100081, China
- Shenzhen Institute of Breeding & Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
77
|
OsLBD3-7 Overexpression Induced Adaxially Rolled Leaves in Rice. PLoS One 2016; 11:e0156413. [PMID: 27258066 PMCID: PMC4892467 DOI: 10.1371/journal.pone.0156413] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/13/2016] [Indexed: 01/25/2023] Open
Abstract
Appropriate leaf rolling enhances erect-leaf habits and photosynthetic efficiency, which consequently improves grain yield. Here, we reported the novel lateral organ boundaries domain (LBD) gene OsLBD3-7, which is involved in the regulation of leaf rolling. OsLBD3-7 works as a transcription activator and its protein is located on the plasma membrane and in the nucleus. Overexpression of OsLBD3-7 leads to narrow and adaxially rolled leaves. Microscopy of flag leaf cross-sections indicated that overexpression of OsLBD3-7 led to a decrease in both bulliform cell size and number. Transcriptional analysis showed that key genes that had been reported to be negative regulators of bulliform cell development were up-regulated in transgenic plants. These results indicated that OsLBD3-7 might acts as an upstream regulatory gene of bulliform cell development to regulate leaf rolling, which will give more insights on the leaf rolling regulation mechanism.
Collapse
|
78
|
Fabre D, Adriani DE, Dingkuhn M, Ishimaru T, Punzalan B, Lafarge T, Clément-Vidal A, Luquet D. The qTSN4 Effect on Flag Leaf Size, Photosynthesis and Panicle Size, Benefits to Plant Grain Production in Rice, Depending on Light Availability. FRONTIERS IN PLANT SCIENCE 2016; 7:623. [PMID: 27242827 PMCID: PMC4861770 DOI: 10.3389/fpls.2016.00623] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/22/2016] [Indexed: 05/20/2023]
Abstract
Increasing rice yield potential is essential to secure world food supply. The quantitative trait locus qTSN4 was reported to achieve yield increases by enhancing both source and sink capacity. Three greenhouse experiments and one field experiment in the Philippines were conducted to study near-isogenic lines (NILs) in two genetic backgrounds, subjected to treatments with restricted light resources through shading (greenhouse) or population density (field and greenhouse). A consistent promotion of flag leaf width, leaf area and panicle size in terms of spikelet number was observed in the presence of qTSN4, regardless of environment. However, grain production per plant was enhanced only in one greenhouse experiment. An in-depth study demonstrated that increased flag leaf size in the presence of qTSN4 was associated with increased photosynthetic rates, along with lower SLA and greater N content per leaf weight and per area. This was emphasized under low light situation as the qTSN4-NILs did not express shade acclimation traits in contrast with the recipient varieties. The authors conclude that qTSN4 is a promising subject for further physiological studies, particularly under limited radiation. However, the QTL alone may not be a reliable source of increased yield potential because its effects at the plant and population scale are prone to genotype × environment interactions and the increased panicle size is compensated by the adaptive plasticity of other morphological traits.
Collapse
Affiliation(s)
- Denis Fabre
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAPMontpellier, France
| | - Dewi E. Adriani
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAPMontpellier, France
| | - Michael Dingkuhn
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAPMontpellier, France
- Crop and Environment Science Division, International Rice Research InstituteLos Baños, Philippines
| | - Tsutomu Ishimaru
- Plant Breeding Genetics and Biotechnology, International Rice Research InstituteLos Baños, Philippines
| | - Bermenito Punzalan
- Crop and Environment Science Division, International Rice Research InstituteLos Baños, Philippines
| | - Tanguy Lafarge
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAPMontpellier, France
| | - Anne Clément-Vidal
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAPMontpellier, France
| | - Delphine Luquet
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAPMontpellier, France
| |
Collapse
|
79
|
Jöst M, Hensel G, Kappel C, Druka A, Sicard A, Hohmann U, Beier S, Himmelbach A, Waugh R, Kumlehn J, Stein N, Lenhard M. The INDETERMINATE DOMAIN Protein BROAD LEAF1 Limits Barley Leaf Width by Restricting Lateral Proliferation. Curr Biol 2016; 26:903-9. [PMID: 26996502 DOI: 10.1016/j.cub.2016.01.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/15/2015] [Accepted: 01/20/2016] [Indexed: 12/21/2022]
Abstract
Variation in the size, shape, and positioning of leaves as the major photosynthetic organs strongly impacts crop yield, and optimizing these aspects is a central aim of cereal breeding [1, 2]. Leaf growth in grasses is driven by cell proliferation and cell expansion in a basal growth zone [3]. Although several factors influencing final leaf size and shape have been identified from rice and maize [4-14], what limits grass leaf growth in the longitudinal or transverse directions during leaf development remains poorly understood. To identify factors involved in this process, we characterized the barley mutant broad leaf1 (blf1). Mutants form wider but slightly shorter leaves due to changes in the numbers of longitudinal cell files and of cells along the leaf length. These differences arise during primordia outgrowth because of more cell divisions in the width direction increasing the number of cell files. Positional cloning, analysis of independent alleles, and transgenic complementation confirm that BLF1 encodes a presumed transcriptional regulator of the INDETERMINATE DOMAIN family. In contrast to loss-of-function mutants, moderate overexpression of BLF1 decreases leaf width below wild-type levels. A functional BLF1-vYFP fusion protein expressed from the endogenous promoter shows a dynamic expression pattern in the shoot apical meristem and young leaf primordia. Thus, we propose that the BLF1 gene regulates barley leaf size by restricting cell proliferation in the leaf-width direction. Given the agronomic importance of canopy traits in cereals, identifying functionally different BLF1 alleles promises to allow for the generation of optimized cereal ideotypes.
Collapse
Affiliation(s)
- Moritz Jöst
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | - Götz Hensel
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Christian Kappel
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | - Arnis Druka
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Adrien Sicard
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | - Uwe Hohmann
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | - Sebastian Beier
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Axel Himmelbach
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Robbie Waugh
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Jochen Kumlehn
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Nils Stein
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Michael Lenhard
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
80
|
Zhang B, Ye W, Ren D, Tian P, Peng Y, Gao Y, Ruan B, Wang L, Zhang G, Guo L, Qian Q, Gao Z. Genetic analysis of flag leaf size and candidate genes determination of a major QTL for flag leaf width in rice. RICE (NEW YORK, N.Y.) 2015; 8:39. [PMID: 26054240 PMCID: PMC4883130 DOI: 10.1186/s12284-014-0039-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/16/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND Flag leaf is the most essential organ for photosynthesis in rice and its size plays an important role in rice breeding for ideal plant-type. Flag leaf size affect photosynthesis to a certain extent, thereby influencing rice production. Several genes controlling leaf size and shape have been identified with mutants. Although a number of quantitative trait loci (QTLs) for leaf size and shape have been detected on 12 chromosomes with different populations of rice, few of them were cloned. RESULTS The pair-wise correlation analysis was conducted on length, width and length-width ratio of the flag leaf, and yield per plant in the core recombinant inbred lines of Liang-You-Pei-Jiu (LYP9) developed in Hainan and Hangzhou. There were significant correlations among the three flag leaf size and shape traits. Interestingly, a positive correlation was found between flag leaf width and yield per plant. Based on the high-resolution linkage map we constructed before, 43 QTLs were detected for three flag leaf size and shape traits and yield per plant, among which 31 QTLs were unreported so far. Seven QTLs were identified common in two environments. And qFLW7.2, a new major QTL for flag leaf width, was fine mapped within 27.1 kb region on chromosome 7. Both qFLW7.2 and qPY7 were located in the interval of 45.30 ~ 53.34 cM on chromosome 7, which coincided with the relationship between yield per plant (PY) and flag leaf width (FLW). CONCLUSION qFLW7.2, which explained 14% of the phenotypic variation, increased flag leaf width with 93-11 allele. Two candidate genes were selected based on sequence variation and expression difference between two parents, which facilitated further QTL cloning and molecular breeding in super rice.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Tiyuchang Road 359, Hangzhou, 310006 China
| | - Weijun Ye
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Tiyuchang Road 359, Hangzhou, 310006 China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Tiyuchang Road 359, Hangzhou, 310006 China
| | - Peng Tian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Tiyuchang Road 359, Hangzhou, 310006 China
| | - Youlin Peng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Tiyuchang Road 359, Hangzhou, 310006 China
| | - Yang Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Tiyuchang Road 359, Hangzhou, 310006 China
| | - Banpu Ruan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Tiyuchang Road 359, Hangzhou, 310006 China
| | - Li Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Tiyuchang Road 359, Hangzhou, 310006 China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Tiyuchang Road 359, Hangzhou, 310006 China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Tiyuchang Road 359, Hangzhou, 310006 China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Tiyuchang Road 359, Hangzhou, 310006 China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Tiyuchang Road 359, Hangzhou, 310006 China
| |
Collapse
|
81
|
Zhao J, Qiu Z, Ruan B, Kang S, He L, Zhang S, Dong G, Hu J, Zeng D, Zhang G, Gao Z, Ren D, Hu X, Chen G, Guo L, Qian Q, Zhu L. Functional Inactivation of Putative Photosynthetic Electron Acceptor Ferredoxin C2 (FdC2) Induces Delayed Heading Date and Decreased Photosynthetic Rate in Rice. PLoS One 2015; 10:e0143361. [PMID: 26598971 PMCID: PMC4657970 DOI: 10.1371/journal.pone.0143361] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/03/2015] [Indexed: 11/19/2022] Open
Abstract
Ferredoxin (Fd) protein as unique electron acceptor, involved in a variety of fundamental metabolic and signaling processes, which is indispensable for plant growth. The molecular mechanisms of Fd such as regulation of electron partitioning, impact of photosynthetic rate and involvement in the carbon fixing remain elusive in rice. Here we reported a heading date delay and yellowish leaf 1 (hdy1) mutant derived from Japonica rice cultivar “Nipponbare” subjected to EMS treatment. In the paddy field, the hdy1 mutant appeared at a significantly late heading date and had yellow-green leaves during the whole growth stage. Further investigation indicated that the abnormal phenotype of hdy1 was connected with depressed pigment content and photosynthetic rate. Genetic analysis results showed that the hdy1 mutant phenotype was caused by a single recessive nuclear gene mutation. Map-based cloning revealed that OsHDY1 is located on chromosome 3 and encodes an ortholog of the AtFdC2 gene. Complementation and overexpression, transgenic plants exhibited the mutant phenotype including head date, leaf color and the transcription levels of the FdC2 were completely rescued by transformation with OsHDY1. Real-time PCR revealed that the expression product of OsHDY1 was detected in almost all of the organs except root, whereas highest expression levels were observed in seeding new leaves. The lower expression levels of HDY1 and content of iron were detected in hdy1 than WT’s. The FdC2::GFP was detected in the chloroplasts of rice. Real-time PCR results showed that the expression of many photosynthetic electron transfer related genes in hdy1 were higher than WT. Our results suggest that OsFdC2 plays an important role in photosynthetic rate and development of heading date by regulating electron transfer and chlorophyll content in rice.
Collapse
Affiliation(s)
- Juan Zhao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhennan Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Banpu Ruan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Shujing Kang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lei He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Sen Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xingming Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guang Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- * E-mail:
| |
Collapse
|
82
|
Identification of QTLs for agronomic traits in indica rice using an RIL population. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
83
|
Yang W, Guo Z, Huang C, Wang K, Jiang N, Feng H, Chen G, Liu Q, Xiong L. Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5605-15. [PMID: 25796084 PMCID: PMC4585412 DOI: 10.1093/jxb/erv100] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Leaves are the plant's solar panel and food factory, and leaf traits are always key issues to investigate in plant research. Traditional methods for leaf trait measurement are time-consuming. In this work, an engineering prototype has been established for high-throughput leaf scoring (HLS) of a large number of Oryza sativa accessions. The mean absolute per cent of errors in traditional measurements versus HLS were below 5% for leaf number, area, shape, and colour. Moreover, HLS can measure up to 30 leaves per minute. To demonstrate the usefulness of HLS in dissecting the genetic bases of leaf traits, a genome-wide association study (GWAS) was performed for 29 leaf traits related to leaf size, shape, and colour at three growth stages using HLS on a panel of 533 rice accessions. Nine associated loci contained known leaf-related genes, such as Nal1 for controlling the leaf width. In addition, a total of 73, 123, and 177 new loci were detected for traits associated with leaf size, colour, and shape, respectively. In summary, after evaluating the performance with a large number of rice accessions, the combination of GWAS and high-throughput leaf phenotyping (HLS) has proven a valuable strategy to identify the genetic loci controlling rice leaf traits.
Collapse
Affiliation(s)
- Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zilong Guo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chenglong Huang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ke Wang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ni Jiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Hui Feng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Guoxing Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qian Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
84
|
Zhang JJ, Wu SY, Jiang L, Wang JL, Zhang X, Guo XP, Wu CY, Wan JM. A detailed analysis of the leaf rolling mutant sll2 reveals complex nature in regulation of bulliform cell development in rice (Oryza sativa L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:437-48. [PMID: 25213398 DOI: 10.1111/plb.12255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/01/2014] [Indexed: 05/25/2023]
Abstract
Bulliform cells are large, thin-walled and highly vacuolated cells, and play an important role in controlling leaf rolling in response to drought and high temperature. However, the molecular mechanisms regulating bulliform cell development have not been well documented. Here, we report isolation and characterisation of a rice leaf-rolling mutant, named shallot-like 2 (sll2). The sll2 plants exhibit adaxially rolled leaves, starting from the sixth leaf stage, accompanied by increased photosynthesis and reduced plant height and tiller number. Histological analyses showed shrinkage of bulliform cells, resulting in inward-curved leaves. The mutant is recessive and revertible at a rate of 9%. The leaf rolling is caused by a T-DNA insertion. Cloning of the insertion using TAIL-PCR revealed that the T-DNA was inserted in the promoter region of LOC_Os07 g38664. Unexpectedly, the enhanced expression of LOC_Os07 g38664 by the 35S enhancer in the T-DNA is not responsible for the leaf rolling phenotype. Further, the enhancer also exerted a long-distance effect, including up-regulation of several bulliform cell-related genes. sll2 suppressed the outward leaf rolling of oul1 in the sll2oul1 double mutant. We conclude that leaf rolling in sll2 could be a result of the combined effect of multi-genes, implying a complex network in regulation of bulliform cell development.
Collapse
Affiliation(s)
- J-J Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
85
|
DNL1, encodes cellulose synthase-like D4, is a major QTL for plant height and leaf width in rice (Oryza sativa L.). Biochem Biophys Res Commun 2014; 457:133-40. [PMID: 25522878 DOI: 10.1016/j.bbrc.2014.12.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022]
Abstract
To better understand the genetic of rice agronomic traits, we selected two different rice germplasms in phenotypes, Xian80 and Suyunuo, to construct genetic population for QTL analysis. A total of 25 QTLs for six traits were found in a 175 F2 population. Major QTLs, qPH12,qLW12.2, qLL12 and qGW12.1, explaining 50.00%, 57.08%, 15.41% and 22.51% phenotypic variation for plant height, leaf width, leaf length and grain width, respectively, were located on the same interval of chromosome 12 flanking SSR markers RM519 and RM1103. In consideration of the great effects on plant height and leaf width, the locus was named DNL1 (Dwarf and Narrowed Leaf 1). Using a segregating population derived from F2 heterozygous individuals, a total of 1363 dwarfism and narrowed-leaf individuals was selected for screening recombinants. By high-resolution linkage analysis in 141 recombination events, DNL1 was narrowed to a 62.39kb region of InDel markers ID12M28 and HF43. The results of ORF analysis in target region and nucleotide sequence alignment indicated that DNL1 encodes cellulose synthase-like D4 protein, and a single nucleotide substitution (C2488T) in dnl1 result in decrease in plant height and leaf width. Bioinformatical analysis demonstrated that a conserved role for OsCSLD4 in the regulation of plant growth and development. Expression analysis for OsCSLDs showed OsCSLD4 highly expressed in roots, while other CSLD members had comparatively lower expression levels. However, no clear evidence about CSLD4/DNL1 expression was associated with its function.
Collapse
|
86
|
A new-nipponbare rice germplasm with high seed-setting rate. J Genet Genomics 2014; 41:549-52. [PMID: 25438699 DOI: 10.1016/j.jgg.2014.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 11/22/2022]
|
87
|
Li L, Xue X, Chen Z, Zhang Y, Ma Y, Pan C, Zhu J, Pan X, Zuo S. Isolation and characterization of rl (t), a gene that controls leaf rolling in rice. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0357-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
88
|
Zhang GH, Li SY, Wang L, Ye WJ, Zeng DL, Rao YC, Peng YL, Hu J, Yang YL, Xu J, Ren DY, Gao ZY, Zhu L, Dong GJ, Hu XM, Yan MX, Guo LB, Li CY, Qian Q. LSCHL4 from Japonica Cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11. MOLECULAR PLANT 2014; 7:1350-1364. [PMID: 24795339 PMCID: PMC4115278 DOI: 10.1093/mp/ssu055] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The basic premise of high yield in rice is to improve leaf photosynthetic efficiency and coordinate the source-sink relationship in rice plants. Quantitative trait loci (QTLs) related to morphological traits and chlorophyll content of rice leaves were detected at the stages of heading to maturity, and a major QTL (qLSCHL4) related to flag leaf shape and chlorophyll content was detected at both stages in recombinant inbred lines constructed using the indica rice cultivar 93-11 and the japonica rice cultivar Nipponbare. Map-based cloning and expression analysis showed that LSCHL4 is allelic to NAL1, a gene previously reported in narrow leaf mutant of rice. Overexpression lines transformed with vector carrying LSCHL4 from Nipponbare and a near-isogenic line of 93-11 (NIL-9311) had significantly increased leaf chlorophyll content, enlarged flag leaf size, and improved panicle type. The average yield of NIL-9311 was 18.70% higher than that of 93-11. These results indicate that LSCHL4 had a pleiotropic function. Exploring and pyramiding more high-yield alleles resembling LSCHL4 for super rice breeding provides an effective way to achieve new breakthroughs in raising rice yield and generate new ideas for solving the problem of global food safety.
Collapse
Affiliation(s)
- Guang-Heng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, Zhejiang, China
| | - Shu-Yu Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, Zhejiang, China
| | - Wei-Jun Ye
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, Zhejiang, China
| | - Da-Li Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, Zhejiang, China
| | - Yu-Chun Rao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, Zhejiang, China
| | - You-Lin Peng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, Zhejiang, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, Zhejiang, China
| | - Yao-Long Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, Zhejiang, China
| | - Jie Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, Zhejiang, China
| | - De-Yong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, Zhejiang, China
| | - Zhen-Yu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, Zhejiang, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, Zhejiang, China
| | - Guo-Jun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, Zhejiang, China
| | - Xing-Ming Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, Zhejiang, China
| | - Mei-Xian Yan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, Zhejiang, China
| | - Long-Biao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, Zhejiang, China
| | - Chuan-You Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
89
|
Zuo J, Li J. Molecular dissection of complex agronomic traits of rice: a team effort by Chinese scientists in recent years. Natl Sci Rev 2014. [DOI: 10.1093/nsr/nwt004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Rice is a staple food for more than half of the worldwide population and is also a model species for biological studies on monocotyledons. Through a team effort, Chinese scientists have made rapid and important progresses in rice biology in recent years. Here, we briefly review these advances, emphasizing on the regulatory mechanisms of the complex agronomic traits that affect rice yield and grain quality. Progresses in rice genome biology and genome evolution have also been summarized.
Collapse
Affiliation(s)
- Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
90
|
Yang C, Li D, Liu X, Ji C, Hao L, Zhao X, Li X, Chen C, Cheng Z, Zhu L. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2014; 14:158. [PMID: 24906444 PMCID: PMC4062502 DOI: 10.1186/1471-2229-14-158] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/27/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND The shape of grass leaves possesses great value in both agronomy and developmental biology research. Leaf rolling is one of the important traits in rice (Oryza sativa L.) breeding. MYB transcription factors are one of the largest gene families and have important roles in plant development, metabolism and stress responses. However, little is known about their functions in rice. RESULTS In this study, we report the functional characterization of a rice gene, OsMYB103L, which encodes an R2R3-MYB transcription factor. OsMYB103L was localized in the nucleus with transactivation activity. Overexpression of OsMYB103L in rice resulted in a rolled leaf phenotype. Further analyses showed that expression levels of several cellulose synthase genes (CESAs) were significantly increased, as was the cellulose content in OsMYB103L overexpressing lines. Knockdown of OsMYB103L by RNA interference led to a decreased level of cellulose content and reduced mechanical strength in leaves. Meanwhile, the expression levels of several CESA genes were decreased in these knockdown lines. CONCLUSIONS These findings suggest that OsMYB103L may target CESA genes for regulation of cellulose synthesis and could potentially be engineered for desirable leaf shape and mechanical strength in rice.
Collapse
Affiliation(s)
- Chunhua Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengjun Ji
- Department of Ecology, Peking University, Beijing 100871, China
| | - Lili Hao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianfeng Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaobing Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Caiyan Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
91
|
Xu Y, Wang Y, Long Q, Huang J, Wang Y, Zhou K, Zheng M, Sun J, Chen H, Chen S, Jiang L, Wang C, Wan J. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. PLANTA 2014; 239:803-16. [PMID: 24385091 DOI: 10.1007/s00425-013-2009-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/08/2013] [Indexed: 05/05/2023]
Abstract
Leaf rolling is receiving considerable attention as an important agronomic trait in rice (Oryza sativa L.). However, little has been known on the molecular mechanism of rice leaf rolling, especially the abaxial rolling. We identified a novel abaxially curled and drooping leaf-dominant mutant from a T₁ transgenic rice line. The abaxially curled leaf phenotypes, co-segregating with the inserted transferred DNA, were caused by overexpression of a zinc finger homeodomain class homeobox transcription factor (OsZHD1). OsZHD1 exhibited a constitutive expression pattern in wild-type plants and accumulated in the developing leaves and panicles. Artificial overexpression of OsZHD1 or its closest homolog OsZHD2 induced the abaxial leaf curling. Histological analysis indicated that both the increased number and the abnormal arrangement of bulliform cells in leaf were responsible for the abaxially curled leaves. We herein reported OsZHD1 with key roles in rice morphogenesis, especially in the modulating of leaf rolling, which provided a novel insight into the molecular mechanism of leaf development in rice.
Collapse
Affiliation(s)
- Yang Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Guo L, Gao Z, Qian Q. Application of resequencing to rice genomics, functional genomics and evolutionary analysis. RICE (NEW YORK, N.Y.) 2014; 7:4. [PMID: 25006357 PMCID: PMC4086445 DOI: 10.1186/s12284-014-0004-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 04/09/2014] [Indexed: 05/05/2023]
Abstract
Rice is a model system used for crop genomics studies. The completion of the rice genome draft sequences in 2002 not only accelerated functional genome studies, but also initiated a new era of resequencing rice genomes. Based on the reference genome in rice, next-generation sequencing (NGS) using the high-throughput sequencing system can efficiently accomplish whole genome resequencing of various genetic populations and diverse germplasm resources. Resequencing technology has been effectively utilized in evolutionary analysis, rice genomics and functional genomics studies. This technique is beneficial for both bridging the knowledge gap between genotype and phenotype and facilitating molecular breeding via gene design in rice. Here, we also discuss the limitation, application and future prospects of rice resequencing.
Collapse
Affiliation(s)
- Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| |
Collapse
|
93
|
Li W, Wu C, Hu G, Xing L, Qian W, Si H, Sun Z, Wang X, Fu Y, Liu W. Characterization and fine mapping of a novel rice narrow leaf mutant nal9. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1016-25. [PMID: 23945310 DOI: 10.1111/jipb.12098] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 06/22/2013] [Indexed: 05/09/2023]
Abstract
A narrow leaf mutant was isolated from transgenic rice (Oryza sativa L.) lines carrying a T-DNA insertion. The mutant is characterized by narrow leaves during its whole growth period, and was named nal9 (narrow leaf 9). The mutant also has other phenotypes, such as light green leaves at the seedling stage, reduced plant height, a small panicle and increased tillering. Genetic analysis revealed that the mutation is controlled by a single recessive gene. A hygromycin resistance assay showed that the mutation was not caused by T-DNA insertion, so a map-based cloning strategy was employed to isolate the nal9 gene. The mutant individuals from the F₂ generations of a cross between the nal9 mutant and Longtepu were used for mapping. With 24 F₂ mutants, the nal9 gene was preliminarily mapped near the marker RM156 on the chromosome 3. New INDEL markers were then designed based on the sequence differences between japonica and indica at the region near RM156. The nal9 gene was finally located in a 69.3 kb region between the markers V239B and V239G within BAC OJ1212_C05 by chromosome walking. Sequence and expression analysis showed that an ATP-dependent Clp protease proteolytic subunit gene (ClpP) was most likely to be the nal9 gene. Furthermore, the nal9 mutation was rescued by transformation of the ClpP cDNA driven by the 35S promoter. Accordingly, the ClpP gene was identified as the NAL9 gene. Our results provide a basis for functional studies of NAL9 in future work.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China; College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences. Proc Natl Acad Sci U S A 2013; 110:14492-7. [PMID: 23940322 DOI: 10.1073/pnas.1306579110] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The growing world population and shrinkage of arable land demand yield improvement of rice, one of the most important staple crops. To elucidate the genetic basis of yield and uncover its associated loci in rice, we resequenced the core recombinant inbred lines of Liang-You-Pei-Jiu, the widely cultivated super hybrid rice, and constructed a high-resolution linkage map. We detected 43 yield-associated quantitative trait loci, of which 20 are unique. Based on the high-density physical map, the genome sequences of paternal variety 93-11 and maternal cultivar PA64s of Liang-You-Pei-Jiu were significantly improved. The large recombinant inbred line population combined with plentiful high-quality single nucleotide polymorphisms and insertions/deletions between parental genomes allowed us to fine-map two quantitative trait loci, qSN8 and qSPB1, and to identify days to heading8 and lax panicle1 as candidate genes, respectively. The quantitative trait locus qSN8 was further confirmed to be days to heading8 by a complementation test. Our study provided an ideal platform for molecular breeding by targeting and dissecting yield-associated loci in rice.
Collapse
|
95
|
Cho SH, Yoo SC, Zhang H, Pandeya D, Koh HJ, Hwang JY, Kim GT, Paek NC. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. THE NEW PHYTOLOGIST 2013; 198:1071-1084. [PMID: 23551229 DOI: 10.1111/nph.12231] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 02/10/2013] [Indexed: 05/20/2023]
Abstract
· In order to understand the molecular genetic mechanisms of rice (Oryza sativa) organ development, we studied the narrow leaf2 narrow leaf3 (nal2 nal3; hereafter nal2/3) double mutant, which produces narrow-curly leaves, more tillers, fewer lateral roots, opened spikelets and narrow-thin grains. · We found that narrow-curly leaves resulted mainly from reduced lateral-axis outgrowth with fewer longitudinal veins and more, larger bulliform cells. Opened spikelets, possibly caused by marginal deformity in the lemma, gave rise to narrow-thin grains. · Map-based cloning revealed that NAL2 and NAL3 are paralogs that encode an identical OsWOX3A (OsNS) transcriptional activator, homologous to NARROW SHEATH1 (NS1) and NS2 in maize and PRESSED FLOWER in Arabidopsis. · OsWOX3A is expressed in the vascular tissues of various organs, where nal2/3 mutant phenotypes were displayed. Expression levels of several leaf development-associated genes were altered in nal2/3, and auxin transport-related genes were significantly changed, leading to pin mutant-like phenotypes such as more tillers and fewer lateral roots. OsWOX3A is involved in organ development in rice, lateral-axis outgrowth and vascular patterning in leaves, lemma and palea morphogenesis in spikelets, and development of tillers and lateral roots.
Collapse
Affiliation(s)
- Sung-Hwan Cho
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Soo-Cheul Yoo
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Haitao Zhang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Devendra Pandeya
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Ji-Young Hwang
- Department of Molecular Biotechnology, Dong-A University, Busan, 604-714, Korea
| | - Gyung-Tae Kim
- Department of Molecular Biotechnology, Dong-A University, Busan, 604-714, Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| |
Collapse
|
96
|
Ishiwata A, Ozawa M, Nagasaki H, Kato M, Noda Y, Yamaguchi T, Nosaka M, Shimizu-Sato S, Nagasaki A, Maekawa M, Hirano HY, Sato Y. Two WUSCHEL-related homeobox genes, narrow leaf2 and narrow leaf3, control leaf width in rice. PLANT & CELL PHYSIOLOGY 2013; 54:779-92. [PMID: 23420902 DOI: 10.1093/pcp/pct032] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Leaf shape is one of the key determinants of plant architecture. Leaf shape also affects the amount of sunlight captured and influences photosynthetic efficiency; thus, it is an important agronomic trait in crop plants. Understanding the molecular mechanisms governing leaf shape is a central issue of plant developmental biology and agrobiotechnology. Here, we characterized the narrow-leaf phenotype of FL90, a linkage tester line of rice (Oryza sativa). Light and scanning electron microscopic analyses of FL90 leaves revealed defects in the development of marginal regions and a reduction in the number of longitudinal veins. The narrow-leaf phenotype of FL90 shows a two-factor recessive inheritance and is caused by the loss of function of two WUSCHEL-related homeobox genes, NAL2 and NAL3 (NAL2/3), which are duplicate genes orthologous to maize NS1 and NS2 and to Arabidopsis PRS. The overexpression of NAL2/3 in transgenic rice plants results in wider leaves containing increased numbers of veins, suggesting that NAL2/3 expression regulates leaf width. Thus, NAL2/3 can be used to modulate leaf shape and improve agronomic yield in crop plants.
Collapse
Affiliation(s)
- Aiko Ishiwata
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Yoshikawa T, Eiguchi M, Hibara KI, Ito JI, Nagato Y. Rice slender leaf 1 gene encodes cellulose synthase-like D4 and is specifically expressed in M-phase cells to regulate cell proliferation. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2049-61. [PMID: 23519729 PMCID: PMC3638827 DOI: 10.1093/jxb/ert060] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cellulose synthase-like (CSL) genes are predicted to catalyse the biosynthesis of non-cellulosic polysaccharides such as the β-D-glycan backbone of hemicelluloses and are classified into nine subfamilies (CSLA-CSLH and CSLJ). The CSLD subfamily is conserved in all land plants, and among the nine CSL subfamilies, it shows the highest sequence similarity to the cellulose synthase genes, suggesting that it plays fundamental roles in plant development. This study presents a detailed analysis of slender leaf 1 (sle1) mutants of rice that showed rolled and narrow leaf blades and a reduction in plant height. The narrow leaf blade of sle1 was caused by reduced cell proliferation beginning at the P3 primordial stage. In addition to the size reduction of organs, sle1 mutants exhibited serious developmental defects in pollen formation, anther dehiscence, stomata formation, and cell arrangement in various tissues. Map-based cloning revealed that SLE1 encodes the OsCSLD4 protein, which was identified previously from a narrow leaf and dwarf 1 mutant. In situ hybridization experiments showed that OsCSLD4 was expressed in a patchy pattern in developing organs. Double-target in situ hybridization and quantitative RT-PCR analyses revealed that SLE1 was expressed specifically during the M-phase of the cell cycle, and suggested that the cell-cycle regulation was altered in sle1 mutants. These results suggest that the OsCSLD4 protein plays a pivotal role in the M phase to regulate cell proliferation. Further study of OsCSLD4 is expected to yield new insight into the role of hemicelluloses in plant development.
Collapse
Affiliation(s)
- Takanori Yoshikawa
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
| | - Mitsugu Eiguchi
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411–8540, Japan
| | - Ken-Ichiro Hibara
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
| | - Jun-Ichi Ito
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
| | - Yasuo Nagato
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
- * To whom correspondence should be addressed.
| |
Collapse
|
98
|
Wang F, Tang Y, Miao R, Xu F, Lin T, He G, Sang X. Identification and gene mapping of a narrow and upper-albino leaf mutant in rice (Oryza sativa L.). CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
99
|
Xiang JJ, Zhang GH, Qian Q, Xue HW. Semi-rolled leaf1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. PLANT PHYSIOLOGY 2012; 159:1488-500. [PMID: 22715111 PMCID: PMC3425193 DOI: 10.1104/pp.112.199968] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Leaf rolling is an important agronomic trait in rice (Oryza sativa) breeding and moderate leaf rolling maintains the erectness of leaves and minimizes shadowing between leaves, leading to improved photosynthetic efficiency and grain yields. Although a few rolled-leaf mutants have been identified and some genes controlling leaf rolling have been isolated, the molecular mechanisms of leaf rolling still need to be elucidated. Here we report the isolation and characterization of SEMI-ROLLED LEAF1 (SRL1), a gene involved in the regulation of leaf rolling. Mutants srl1-1 (point mutation) and srl1-2 (transferred DNA insertion) exhibit adaxially rolled leaves due to the increased numbers of bulliform cells at the adaxial cell layers, which could be rescued by complementary expression of SRL1. SRL1 is expressed in various tissues and is expressed at low levels in bulliform cells. SRL1 protein is located at the plasma membrane and predicted to be a putative glycosylphosphatidylinositol-anchored protein. Moreover, analysis of the gene expression profile of cells that will become epidermal cells in wild type but probably bulliform cells in srl1-1 by laser-captured microdissection revealed that the expression of genes encoding vacuolar H(+)-ATPase (subunits A, B, C, and D) and H(+)-pyrophosphatase, which are increased during the formation of bulliform cells, were up-regulated in srl1-1. These results provide the transcript profile of rice leaf cells that will become bulliform cells and demonstrate that SRL1 regulates leaf rolling through inhibiting the formation of bulliform cells by negatively regulating the expression of genes encoding vacuolar H(+)-ATPase subunits and H(+)-pyrophosphatase, which will help to understand the mechanism regulating leaf rolling.
Collapse
|
100
|
Fang L, Zhao F, Cong Y, Sang X, Du Q, Wang D, Li Y, Ling Y, Yang Z, He G. Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:524-32. [PMID: 22329407 DOI: 10.1111/j.1467-7652.2012.00679.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
As an important agronomic trait, leaf rolling in rice (Oryza sativa L.) has attracted much attention from plant biologists and breeders. Moderate leaf rolling increases the amount of photosynthesis in cultivars and hence raises grain yield. Here, we describe the map-based cloning of the gene RL14, which was found to encode a 2OG-Fe (II) oxygenase of unknown function. rl14 mutant plants had incurved leaves because of the shrinkage of bulliform cells on the adaxial side. In addition, rl14 mutant plants displayed smaller stomatal complexes and decreased transpiration rates, as compared with the wild type. Defective development could be rescued functionally by the expression of wild-type RL14. RL14 was transcribed in sclerenchymatous cells in leaves that remained wrapped inside the sheath. In mature leaves, RL14 accumulated mainly in the mesophyll cells that surround the vasculature. Expression of genes related to secondary cell wall formation was affected in rl14-1 mutants, and cellulose and lignin content were altered in rl14-1 leaves. These results reveal that the RL14 gene affects water transport in leaves by affecting the composition of the secondary cell wall. This change in water transport results in water deficiency, which is the major reason for the abnormal shape of the bulliform cells.
Collapse
Affiliation(s)
- Likui Fang
- Rice Research Institute, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|