51
|
Naimo GD, Gelsomino L, Catalano S, Mauro L, Andò S. Interfering Role of ERα on Adiponectin Action in Breast Cancer. Front Endocrinol (Lausanne) 2020; 11:66. [PMID: 32132979 PMCID: PMC7041409 DOI: 10.3389/fendo.2020.00066] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity is characterized by an excess of adipose tissue, due to adipocyte hypertrophy and hyperplasia. Adipose tissue is an endocrine organ producing many bioactive molecules, called adipokines. During obesity, dysfunctional adipocytes alter adipokine secretion, contributing to pathophysiology of obesity-associated diseases, including metabolic syndrome, type 2-diabetes, cardiovascular diseases and many types of malignancies. Circulating adiponectin levels are inversely correlated with BMI, thus adiponectin concentrations are lower in obese than normal-weight subjects. Many clinical investigations highlight that low adiponectin levels represent a serious risk factor in breast carcinogenesis, and are associated with the development of more aggressive phenotype. A large-scale meta-analysis suggests that BMI was positively associated with breast cancer mortality in women with ERα-positive disease, regardless menopausal status. This suggests the importance of estrogen signaling contribution in breast tumorigenesis of obese patients. It has been largely demonstrated that adiponectin exerts a protective role in ERα-negative cells, promoting anti-proliferative and pro-apoptotic effects, while controversial data have been reported in ERα-positive cells. Indeed, emerging data provide evidences that adiponectin in obese patients behave as growth factor in ERα-positive breast cancer cells. This addresses how ERα signaling interference may enhance the potential inhibitory threshold of adiponectin in ERα-positive cells. Thus, we may reasonably speculate that the relatively low adiponectin concentrations could be still not adequate to elicit, in ERα-positive breast cancer cells, the same inhibitory effects observed in ERα-negative cells. In the present review we will focus on the molecular mechanisms through which adiponectin affects breast cancer cell behavior in relationship to ERα expression.
Collapse
Affiliation(s)
- Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
- *Correspondence: Loredana Mauro
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
- Health Center, University of Calabria, Arcavacata, Italy
- Sebastiano Andò
| |
Collapse
|
52
|
Effects of two types of energy restriction on methylation levels of adiponectin receptor 1 and leptin receptor overlapping transcript in a mouse mammary tumour virus-transforming growth factor- α breast cancer mouse model. Br J Nutr 2019; 125:1-9. [PMID: 31685042 DOI: 10.1017/s0007114519002757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The role of adiponectin and leptin signalling pathways has been suggested to play important roles in the protective effects of energy restriction (ER) on mammary tumour (MT) development. To study the effects of ER on the methylation levels in adiponectin receptor 1 (AdipoR1) and leptin receptor overlapping transcript (Leprot) genes using the pyrosequencing method in mammary fat pad tissue, mouse mammary tumour virus-transforming growth factor-α (MMTV-TGF-α) female mice were randomly assigned to ad libitum (AL), chronic ER (CER, 15 % ER) or intermittent ER (3 weeks AL and 1 week 60 % ER in cyclic periods) groups at 10 weeks of age until 82 weeks of age. The methylation levels of AdipoR1 in the CER group were higher than those in the AL group at week 49/50 (P < 0·05), while the levels of methylation for AdipoR1 and Leprot genes were similar among the other groups. Also, the methylation levels at CpG2 and CpG3 regions of the promoter region of the AdipoR1 gene in the CER group were three times higher (P < 0·05), while CpG1 island of Leprot methylation was significantly lower compared with the other groups (P < 0·05). Adiponectin and leptin gene expression levels were consistent with the methylation levels. We also observed a change with ageing in methylation levels of these genes. These results indicate that different types of ER modify methylation levels of AdipoR1 and Leprot in different ways and CER had a more significant effect on methylation levels of both genes. Epigenetic regulation of these genes may play important roles in the preventive effects of ER against MT development and ageing processes.
Collapse
|
53
|
Banh TH, Puchala SE, Cole RM, Andridge RR, Kiecolt-Glaser JK, Belury MA. Blood level of adiponectin is positively associated with lean mass in women without type 2 diabetes. Menopause 2019; 26:1311-1317. [PMID: 31688578 DOI: 10.1097/gme.0000000000001391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the relationship between blood levels of adiponectin and leptin with lean body and trunk adipose mass in women with and without type 2 diabetes mellitus (T2DM). METHODS This cross-sectional study analyzed baseline data from five previous clinical studies involving postmenopausal women (n = 95). Body composition was assessed by dual-energy x-ray absorptiometry, and appendicular lean mass was calculated based on body mass index (ALMBMI). Adipokines and cytokines were measured by enzyme-linked immunosorbent assay. Linear mixed-effect models with a random study effect were used to investigate the relationship between predictors (eg, adiponectin, leptin), outcomes (eg, ALMBMI, trunk adipose mass), and co-variables (T2DM status, age, interleukin-6, and C-reactive protein). RESULTS Postmenopausal women with T2DM had lower ALMBMI than those without T2DM. There was a positive association between blood adiponectin and ALMBMI in postmenopausal women without T2DM, but no association in those with T2DM. Blood leptin was negatively associated with ALMBMI for women regardless of T2DM diagnosis. Blood adiponectin was negatively associated, whereas blood leptin was positively associated with trunk adipose mass for the entire cohort. CONCLUSIONS T2DM status moderated the relationship between blood adiponectin and ALMBMI, where blood adiponectin was positively associated with ALMBMI in postmenopausal women without T2DM, but not those with T2DM. Dysregulated metabolism in T2DM may contribute to lower muscle mass in women with T2DM, but future research is required to elucidate this mechanistic link. The negative association between blood leptin and ALMBMI was a novel finding. Future studies will need to more clearly define the relationship between these variables.
Collapse
Affiliation(s)
- Taylor H Banh
- Program of Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH
| | - Sarah E Puchala
- Program of Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH
| | - Rachel M Cole
- Program of Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH
| | | | - Janice K Kiecolt-Glaser
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Martha A Belury
- Program of Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH
| |
Collapse
|
54
|
Li Y, Jin R, Li L, Hsu HH, You IC, Yoon HJ, Yoon KC. Therapeutic Effect of Topical Adiponectin-Derived Short Peptides Compared with Globular Adiponectin in Experimental Dry Eye and Alkali Burn. J Ocul Pharmacol Ther 2019; 36:88-96. [PMID: 31661350 DOI: 10.1089/jop.2018.0131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose: To evaluate the efficacy of adiponectin (APN)-derived short peptides (ADPs) 355 compared with globular APN in a mouse model of experimental dry eye (EDE) and corneal alkali burn. Methods: EDE and chemical burn were induced in C57BL/6 mice by desiccating stress and application of NaOH, respectively. Eye drops consisting of 0.01% globular APN, 0.01% ADPs, 0.1% ADPs, or balanced salt solution (BSS) were applied. Tear volume, tear film break-up time, and corneal staining scores were measured. Concentrations of interleukin (IL)-1β, interferon (IFN)-γ, IL-6, CXCL-9, and CXCL-10 using multiplex immunobead assay were evaluated, and flow cytometry were performed. Corneal epithelial defects and haze degree were analyzed, and enzyme-linked immunosorbent assay for IL-1β and transforming growth factor (TGF)-β levels were observed. Results: All treatment groups showed an improvement in clinical parameters and CD4+CCR5+ T cell and CD11b+ cell infiltrations in the conjunctiva (all P < 0.05). Both ADPs groups had significantly decreased concentrations of IL-1β, IFN-γ, IL-6, CXCL-9, and CXCL-10 in the conjunctiva than the EDE or BSS group. Significantly improved parameters of epithelial defect, degree of haze, and concentrations of IL-1β and TGF-β were observed in all treatment groups. However, no significant differences were noted in clinical or experimental parameters among treatment groups. Conclusion: Topical ADPs could effectively improve clinical signs and inflammation of ocular surface in the EDE or alkali burn, and its efficacy and potency were similar to those of globular APN.
Collapse
Affiliation(s)
- Ying Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Rujun Jin
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Lan Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Henry H Hsu
- Allysta Pharmaceuticals, Belmont, California
| | - In Cheon You
- Department of Ophthalmology, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Hyeon Jeong Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| |
Collapse
|
55
|
Corbi G, Polito R, Monaco ML, Cacciatore F, Scioli M, Ferrara N, Daniele A, Nigro E. Adiponectin Expression and Genotypes in Italian People with Severe Obesity Undergone a Hypocaloric Diet and Physical Exercise Program. Nutrients 2019; 11:nu11092195. [PMID: 31547312 PMCID: PMC6769478 DOI: 10.3390/nu11092195] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/16/2022] Open
Abstract
Adiponectin exerts positive effects on metabolic and inflammatory processes. Adiponectin levels and some single-nucleotide polymorphisms (SNPs) seem to be associated with obesity. Here, we investigated the effects of a 4-week Hypocaloric diet and Physical exercise Program (HPP) on 268 young people with severe obesity. We evaluated the relationship between adiponectin levels and anthropometric and biochemical parameters, at baseline and after a 4-week HPP. Finally, we investigated some adiponectin gene variants and their correlation to biochemical parameters. Adiponectin levels were statistically lower in people with severe obesity than in controls. At the end of the HPP, all the people with severe obesity showed a Body Mass Index (BMI) reduction with a statistically significant increase in adiponectin levels. Genotyping, the adiponectin gene demonstrated a significant difference in 3 polymorphisms within the people with severe obesity. Besides, c.11377C>G and c.11391G>A homozygous subjects experienced more advantages by HPP. Furthermore, c.268G>A heterozygous subjects showed an enhancement in lipid profile as well in adiponectin levels. The best predictor of the changes in adiponectin levels was represented by the c.268G>A WT allele. Our study confirmed that a 4-weeks HPP in people with severe obesity results in metabolic amelioration associated with a significant increase of adiponectin levels. Importantly, we found that a specific genetic background in the ADIPOQ gene can predispose toward a more significant weight loss.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Dipartimento di Medicina e Scienze della Salute, Università del Molise, 86100 Campobasso, Italy
| | - Rita Polito
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
- CEINGE-Biotecnologie Avanzate, 80131 Napoli, Italy
| | | | - Francesco Cacciatore
- Dipartimento di scienze mediche traslazionali, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Michelina Scioli
- Laboratorio della valutazione della complessità clinica, Istituti Clinici Scientifici Maugeri Spa SB, 82037 Telese, Italy
| | - Nicola Ferrara
- Dipartimento di scienze mediche traslazionali, Università di Napoli "Federico II", 80131 Napoli, Italy
- Laboratorio della valutazione della complessità clinica, Istituti Clinici Scientifici Maugeri Spa SB, 82037 Telese, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
- CEINGE-Biotecnologie Avanzate, 80131 Napoli, Italy.
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
- CEINGE-Biotecnologie Avanzate, 80131 Napoli, Italy
| |
Collapse
|
56
|
Idrizaj E, Garella R, Squecco R, Baccari MC. Adipocytes-released Peptides Involved in the Control of Gastrointestinal Motility. Curr Protein Pept Sci 2019; 20:614-629. [PMID: 30663565 DOI: 10.2174/1389203720666190121115356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
The present review focuses on adipocytes-released peptides known to be involved in the control of gastrointestinal motility, acting both centrally and peripherally. Thus, four peptides have been taken into account: leptin, adiponectin, nesfatin-1, and apelin. The discussion of the related physiological or pathophysiological roles, based on the most recent findings, is intended to underlie the close interactions among adipose tissue, central nervous system, and gastrointestinal tract. The better understanding of this complex network, as gastrointestinal motor responses represent peripheral signals involved in the regulation of food intake through the gut-brain axis, may also furnish a cue for the development of either novel therapeutic approaches in the treatment of obesity and eating disorders or potential diagnostic tools.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| |
Collapse
|
57
|
Pérez-López A, Valadés D, de Cos Blanco AI, García-Honduvilla N, Vázquez Martínez C. Circulating adiponectin expression is elevated and associated with the IL-15/IL-15Rα complex in obese physically active humans. J Sports Med Phys Fitness 2019; 59:1229-1237. [DOI: 10.23736/s0022-4707.18.09030-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
58
|
Increasing Adiponergic System Activity as a Potential Treatment for Depressive Disorders. Mol Neurobiol 2019; 56:7966-7976. [PMID: 31140056 PMCID: PMC6834732 DOI: 10.1007/s12035-019-01644-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/22/2022]
Abstract
Depression is the most devastating mental disorder and one of the leading contributors to the global medical burden. Current antidepressant prescriptions present drawbacks, including treatment resistance, delayed onset of treatment response, and side effects. The rapid and long-lasting antidepressant effect of ketamine has brought hope to treatment-resistant major depressive disorder patients. However, ketamine has undesirable addictive properties and is a drug of abuse. There is an urgent need, therefore, to develop novel pharmacological interventions that could be as effective as ketamine, but without its side effects. Adiponectin, a pleiotropic adipocyte-secreted hormone, has insulin-sensitizing and neurotrophic properties. It can cross the blood-brain barrier and target multiple brain regions where the adiponectin receptors are detected. Emerging evidence has suggested that adiponectin and the adiponectin receptor agonist, AdipoRon, could promote adult neurogenesis, dendritic and spine remodeling, and synaptic plasticity in the hippocampus, resulting in antidepressant effects in adult mice. By summarizing the most recent clinical and animal studies, this review provides a timely insight on how modulating the adiponergic system in the hippocampus could be a potential therapeutic target for an effective and fast-acting antidepressant response.
Collapse
|
59
|
Adiponectin, Obesity, and Cancer: Clash of the Bigwigs in Health and Disease. Int J Mol Sci 2019; 20:ijms20102519. [PMID: 31121868 PMCID: PMC6566909 DOI: 10.3390/ijms20102519] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
Adiponectin is one of the most important adipocytokines secreted by adipocytes and is called a “guardian angel adipocytokine” owing to its unique biological functions. Adiponectin inversely correlates with body fat mass and visceral adiposity. Identified independently by four different research groups, adiponectin has multiple names; Acrp30, apM1, GBP28, and AdipoQ. Adiponectin mediates its biological functions via three known receptors, AdipoR1, AdipoR2, and T-cadherin, which are distributed throughout the body. Biological functions of adiponectin are multifold ranging from anti-diabetic, anti-atherogenic, anti-inflammatory to anti-cancer. Lower adiponectin levels have been associated with metabolic syndrome, type 2 diabetes, insulin resistance, cardiovascular diseases, and hypertension. A plethora of experimental evidence supports the role of obesity and increased adiposity in multiple cancers including breast, liver, pancreatic, prostrate, ovarian, and colorectal cancers. Obesity mediates its effect on cancer progression via dysregulation of adipocytokines including increased production of oncogenic adipokine leptin along with decreased production of adiponectin. Multiple studies have shown the protective role of adiponectin in obesity-associated diseases and cancer. Adiponectin modulates multiple signaling pathways to exert its physiological and protective functions. Many studies over the years have shown the beneficial effect of adiponectin in cancer regression and put forth various innovative ways to increase adiponectin levels.
Collapse
|
60
|
Gelsomino L, Naimo GD, Catalano S, Mauro L, Andò S. The Emerging Role of Adiponectin in Female Malignancies. Int J Mol Sci 2019; 20:E2127. [PMID: 31052147 PMCID: PMC6539460 DOI: 10.3390/ijms20092127] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/20/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity, characterized by excess body weight, is now accepted as a hazardous health condition and an oncogenic factor. In different epidemiological studies obesity has been described as a risk factor in several malignancies. Some biological mechanisms that orchestrate obesity-cancer interaction have been discovered, although others are still not completely understood. The unbalanced secretion of biomolecules, called "adipokines", released by adipocytes strongly influences obesity-related cancer development. Among these adipokines, adiponectin exerts a critical role. Physiologically adiponectin governs glucose levels and lipid metabolism and is fundamental in the reproductive system. Low adiponectin circulating levels have been found in obese patients, in which its protective effects were lost. In this review, we summarize the epidemiological, in vivo and in vitro data in order to highlight how adiponectin may affect obesity-associated female cancers.
Collapse
Affiliation(s)
- Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
- Centro Sanitario, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende (CS), Italy.
| |
Collapse
|
61
|
Saeidi A, Jabbour G, Ahmadian M, Abbassi-Daloii A, Malekian F, Hackney AC, Saedmocheshi S, Basati G, Ben Abderrahman A, Zouhal H. Independent and Combined Effects of Antioxidant Supplementation and Circuit Resistance Training on Selected Adipokines in Postmenopausal Women. Front Physiol 2019; 10:484. [PMID: 31105587 PMCID: PMC6499001 DOI: 10.3389/fphys.2019.00484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/08/2019] [Indexed: 12/18/2022] Open
Abstract
We examined the effects of the independent and combined effects of Zataria Multiflora supplementation and circuit resistance training (CRT) on selected adipokines among postmenopausal women. Forty-eight postmenopausal women were divided into four groups: Exercise (EG, n = 12), Zataria Multiflora (ZMG, n = 12), exercise and Zataria Multiflora (ZMEG, n = 12), and control (CG, n = 12). Participants in experimental groups either performed CRT (3 sessions per week with intensity at 55% of one-repetition maximum) or supplemented with Zataria Multiflora (500 mg every day after breakfast with 100 ml of water), or their combination, for 8 weeks. Blood samples were collected at pre- and post-intervention for measuring selected adipokines, including visfatin, omentin-1, vaspin, FGF-21, adiponectin, leptin, and ghrelin. Our findings demonstrated that visfatin, vaspin, and leptin levels significantly decreased over the intervention period (all p < 0.05), with these values were lower in EG and ZMEG in comparison to CG at post-intervention (all p < 0.05). Visfatin and vaspin levels were also lower in ZMEG in comparison to EG at post-intervention (both p < 0.05). In contrast, omentin-1, ghrelin, adiponectin, and FGF21 significantly increased in EG and EMG (all p < 0.05) after CRT. These findings suggest that Zataria Multiflora supplementation by itself has little effect on measured adipokines; however, its combination with CRT produced noticeable effects on circulating levels of these adipokines, even more than CRT alone. Consequently, a combination of CRT and Zataria Multiflora supplementation may represent a potentially beneficial non-pharmacologic intervention on some selected adipokines in postmenopausal women.
Collapse
Affiliation(s)
- Ayoub Saeidi
- Exercise Biochemistry Division, Faculty of Physical Education and Sports Sciences, University of Mazandaran, Babolsar, Iran
| | - Georges Jabbour
- Sport Science Program, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mehdi Ahmadian
- Department of Physical Education and Sports Sciences, Islamic Azad University, Aliabad-e Katul, Iran
| | | | - Fatemeh Malekian
- Southern University Agricultural Land Grant Campus, Baton Rouge, LA, United States
| | - Anthony C. Hackney
- Department of Exercise & Sports Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Saber Saedmocheshi
- Exercise Physiology Division, Faculty of Sport Science, Birjand University, Birjand, Iran
| | - Gholam Basati
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Hassane Zouhal
- Movement Sports Science Laboratory, University of Rennes, Rennes, France
| |
Collapse
|
62
|
Li R, Du J, Yao Y, Yao G, Wang X. Adiponectin inhibits high glucose‐induced angiogenesis via inhibiting autophagy in RF/6A cells. J Cell Physiol 2019; 234:20566-20576. [PMID: 30982980 DOI: 10.1002/jcp.28659] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Rong Li
- Department of Ophthalmology The First Affiliated Hospital of Xi'an Medical University Xi'an Shaanxi People's Republic of China
| | - Junhui Du
- Department of Ophthalmology Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University Xi'an Shaanxi People's Republic of China
| | - Yang Yao
- Department of Central Laboratory The First Affiliated Hospital of Xi'an Medical University Xi'an Shaanxi People's Republic of China
| | - Guomin Yao
- Department of Ophthalmology The First Affiliated Hospital of Xi'an Medical University Xi'an Shaanxi People's Republic of China
| | - Xiaodi Wang
- Department of Ophthalmology The First Affiliated Hospital of Xi'an Medical University Xi'an Shaanxi People's Republic of China
| |
Collapse
|
63
|
Banh T, Snoke D, Cole RM, Angelotti A, Schnell PM, Belury MA. Higher tumor mass and lower adipose mass are associated with colon‑26 adenocarcinoma‑induced cachexia in male, female and ovariectomized mice. Oncol Rep 2019; 41:2909-2918. [PMID: 30896836 PMCID: PMC6448095 DOI: 10.3892/or.2019.7079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/19/2018] [Indexed: 01/05/2023] Open
Abstract
Cachexia is responsible for nearly 20% of all cancer‑related deaths, yet effective therapies to prevent or treat the disease are lacking. Clinical studies have shown that male patients lose weight at a faster rate than females. Additionally, an 'obesity paradox' may exist where excess adiposity may confer survival to patients with cancer cachexia. To further explore these phenomena, the aim of this study was to evaluate the role of changes of adipose tissue mass, sex status, and tumor mass on outcomes of male, female and ovariectomized (OVX) mice with C‑26 adenocarcinoma‑induced cachexia. We used EchoMRI to assess body composition and grip strength to measure muscle function. Body weights and food intake were measured daily. Mice were euthanized 19 days post‑-inoculation. Post‑necropsy, muscle fiber cross‑sectional areas were quantified and real‑time PCR was performed for genes relating to proteolysis. Survival curve, correlation and multiple linear regression analyses were performed to identify predictors of cachexia. Female and OVX tumor mice developed cachexia similarly to males, as evidenced by loss of skeletal and adipose masses, decreased grip strength, and increased proteolytic gene expression. Notably, female and OVX tumor mice had earlier onset of cachexia (≥5% weight loss) than male tumor mice. Larger tumor mass and lower adipose mass were the strongest predicting factors for increased severity of cachexia, regardless of sex or ovariectomy status. These results indicated that the impact of sex status may be subtle in comparison to the predictive effect of tumor and adipose mass in mice with C‑26‑induced cachexia.
Collapse
Affiliation(s)
- Taylor Banh
- Interdisciplinary PhD Program in Nutrition, The Graduate School, The Ohio State University, Columbus, OH 43201, USA
| | - Deena Snoke
- Interdisciplinary PhD Program in Nutrition, The Graduate School, The Ohio State University, Columbus, OH 43201, USA
| | - Rachel M Cole
- Interdisciplinary PhD Program in Nutrition, The Graduate School, The Ohio State University, Columbus, OH 43201, USA
| | - Austin Angelotti
- Interdisciplinary PhD Program in Nutrition, The Graduate School, The Ohio State University, Columbus, OH 43201, USA
| | - Patrick M Schnell
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH 43201, USA
| | - Martha A Belury
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH 43201, USA
| |
Collapse
|
64
|
Raghavan R, Fallin MD, Hong X, Wang G, Ji Y, Stuart EA, Paige D, Wang X. Cord and Early Childhood Plasma Adiponectin Levels and Autism Risk: A Prospective Birth Cohort Study. J Autism Dev Disord 2019; 49:173-184. [PMID: 30043356 DOI: 10.1007/s10803-018-3688-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Emerging research suggests that adiponectin, a cytokine produced by adipose tissue, may be implicated in ASD. In this prospective birth cohort study (n = 847), we assessed the association between cord, early childhood plasma adiponectin and the risk of developing ASD. ASD was defined based on ICD codes of physician diagnosis. Cord adiponectin levels were inversely associated with ASD risk (aOR 0.50; 95% CI 0.33, 0.77), independent of preterm birth, early childhood adiponectin and other known ASD risk factors. Early childhood adiponectin, assessed prior to ASD diagnosis, was associated with lower risk of ASD, which attenuated after adjusting for cord adiponectin, indicating the relative importance of cord adiponectin in ASD risk. Further research is warranted to confirm our findings and elucidate biological mechanisms.
Collapse
Affiliation(s)
- Ramkripa Raghavan
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities & Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - Yuelong Ji
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - Elizabeth A Stuart
- Wendy Klag Center for Autism and Developmental Disabilities & Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA.,Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA
| | - David Paige
- Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA. .,Department of Pediatrics, Johns Hopkins University School of Medicine, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA.
| |
Collapse
|
65
|
Jiang J, Fan Y, Zhang W, Shen Y, Liu T, Yao M, Gu J, Tu H, Gan Y. Adiponectin Suppresses Human Pancreatic Cancer Growth through Attenuating the β-Catenin Signaling Pathway. Int J Biol Sci 2019; 15:253-264. [PMID: 30745818 PMCID: PMC6367542 DOI: 10.7150/ijbs.27420] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Adipokines are emerging as a link between obesity and obesity-related cancers, including pancreatic cancer. Adiponectin is an abundant adipokine with pleiotropic beneficial roles in metabolic disorders. Low adiponectin levels are commonly observed in human obesity and have been associated with increased pancreatic cancer risk in prospective epidemiologic studies. Here, we investigated the direct effect of adiponectin on human pancreatic cancer in vitro and in vivo. Our results showed that adiponectin treatment significantly inhibited the proliferation of human pancreatic cancer cells. Knockdown of adiponectin receptors completely eliminated the antiproliferation effect of adiponectin and markedly promoted the growth of human pancreatic cancer xenografts in nude mice. Further analysis revealed that adiponectin blocked the phosphorylation/inactivation of GSK-3β, suppressed the intracellular accumulation of β-catenin, reduced the expression of cyclin D1, and consequently caused cell cycle accumulation at the G0-G1 phase in pancreatic cancer cells. Adiponectin-mediated attenuation of cell proliferation was abrogated by the GSK-3β inhibitor. In addition, a microarray analysis revealed that adiponectin also downregulated the expression of TCF7L2, a coactivator of β-catenin, at the transcriptional level in pancreatic cancer cells. These results indicated that the protective role of adiponectin against human pancreatic cancer might be attributed to its attenuating effect on the β-catenin signaling pathway. Taken together, our findings support a causal link between hypoadiponectinemia and increased pancreatic cancer risk, and suggest that activating adiponectin signaling could be a novel therapeutic strategy for obesity-related pancreatic cancer.
Collapse
Affiliation(s)
- Jinghui Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China
| | - Yingchao Fan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China
| | - Wei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China
| | - Yuling Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, China
| | - Tingting Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China
| |
Collapse
|
66
|
Otvos L. Potential Adiponectin Receptor Response Modifier Therapeutics. Front Endocrinol (Lausanne) 2019; 10:539. [PMID: 31456747 PMCID: PMC6700268 DOI: 10.3389/fendo.2019.00539] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
Many human diseases may benefit from adiponectin replacement therapy, but due to pharmacological disadvantages of the intact protein, druggable options focus on peptidic, and small molecule agonists of the adiponectin receptor. Peptide-based adiponectin replacement drug leads are derived from, or resemble, the active site of globular adiponectin. ADP355, the first-in-class such peptide, exhibits low nanomolar cellular activities, and clinically acceptable efficacies in a series of fibrotic and inflammation-derived diseases. The advantage of small molecule therapies, spearheaded by AdipoRon, is oral availability and extension of utility to a series of metabolic conditions. It is exactly the difficulties in the reliability and readout of the in vitro measures and the wealth of in vivo models that make comparison of the various drug classes complicated, if not impossible. While only a fewer number of maladies could take advantage of adiponectin receptor antagonists, the limited number of these available can be very useful tools in target validation studies. Alternative approaches to direct adiponectin signaling control use upstream adiponectin production inducing therapies but currently these offer relatively limited success compared to direct receptor agonists.
Collapse
Affiliation(s)
- Laszlo Otvos
- OLPE LLC, Audubon, PA, United States
- Allysta Pharmaceuticals, San Mateo, CA, United States
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
- *Correspondence: Laszlo Otvos Jr.
| |
Collapse
|
67
|
Letra L, Rodrigues T, Matafome P, Santana I, Seiça R. Adiponectin and sporadic Alzheimer's disease: Clinical and molecular links. Front Neuroendocrinol 2019; 52:1-11. [PMID: 29038028 DOI: 10.1016/j.yfrne.2017.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/05/2017] [Accepted: 10/10/2017] [Indexed: 01/21/2023]
Abstract
Obesity has been consistently associated with Alzheimer's disease (AD) though the exact mechanisms by which it influences cognition are still elusive and subject of current research. Adiponectin, the most abundant adipokine in circulation, is inversely correlated with adipose tissue dysfunction and seems to be a central player in this association. In fact, different signalling pathways are shared by adiponectin and proteins involved in AD pathophysiology and considerable amount of evidence supports its direct and indirect influence on β-amyloid and tau aggregates formation. In this paper we present a critical review of cellular, animal and clinical studies which have contributed to a more thorough understanding of the extent to which adiponectin influences the risk of developing AD as well as its progression. Finally, the effect of acetylcholinesterase inhibitors on circulating adiponectin levels, possible therapeutic applications and future research strategies are also discussed.
Collapse
Affiliation(s)
- Liliana Letra
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Neurology Department, Centro Hospitalar do Baixo Vouga - Aveiro, Av. Artur Ravara, 3814-501 Aveiro, Portugal.
| | - Tiago Rodrigues
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Paulo Matafome
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, 3000-075 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Raquel Seiça
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
68
|
Bamford NJ, Potter SJ, Baskerville CL, Harris PA, Bailey SR. Influence of dietary restriction and low-intensity exercise on weight loss and insulin sensitivity in obese equids. J Vet Intern Med 2018; 33:280-286. [PMID: 30520164 PMCID: PMC6335535 DOI: 10.1111/jvim.15374] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022] Open
Abstract
Background The importance of including exercise with dietary modification for the management of obese equids is not clearly understood. Objectives To evaluate the effect of a practical low‐intensity exercise regimen, in addition to dietary restriction, on indices of insulin sensitivity (SI) and plasma adipokine concentrations in obese equids. Animals Twenty‐four obese (body condition score [BCS] ≥ 7/9) horses and ponies. Methods Over a 12‐week period, animals received either dietary restriction only (DIET) or dietary restriction plus low‐intensity exercise (DIET+EX). All animals were provided with a restricted ration of grass hay at 1.25% body weight (BW) on a dry matter basis, providing 82.5% estimated digestible energy requirements. The DIET+EX group undertook low‐intensity exercise 5 days per week on an automated horse walker. Before and after weight loss, total body fat mass (TBFM) was determined, indices of SI were calculated using minimal model analysis of a frequently sampled IV glucose tolerance test, and adipokines plus inflammatory biomarkers were measured using validated assays. Results Decreases in BCS, BW, and TBFM were similar between groups (all P > .05). After weight loss, animals in both groups had decreased basal insulin and leptin concentrations, and increased adiponectin concentrations (all P < .001). Furthermore, animals in the DIET+EX group had significantly improved SI and decreased serum amyloid A concentrations relative to animals in the DIET group (both P = .01). Conclusions and Clinical Importance Regular low‐intensity exercise provided additional health benefits compared with dietary restriction alone in this population of obese equids.
Collapse
Affiliation(s)
- Nicholas J Bamford
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Samantha J Potter
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Courtnay L Baskerville
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Patricia A Harris
- Equine Studies Group, WALTHAM Centre for Pet Nutrition, Melton Mowbray, Leicestershire, United Kingdom
| | - Simon R Bailey
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
69
|
Spyrou N, Avgerinos KI, Mantzoros CS, Dalamaga M. Classic and Novel Adipocytokines at the Intersection of Obesity and Cancer: Diagnostic and Therapeutic Strategies. Curr Obes Rep 2018; 7:260-275. [PMID: 30145771 DOI: 10.1007/s13679-018-0318-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW In this review, we investigate the role of classic and novel adipocytokines in cancer pathogenesis synopsizing the mechanisms underlying the association between adipocytokines and malignancy. Special emphasis is given on novel adipocytokines as new evidence is emerging regarding their entanglement in neoplastic development. RECENT FINDINGS Recent data have emphasized the role of the triad of overweight/obesity, insulin resistance and adipocytokines in cancer. In the setting of obesity, classic and novel adipocytokines present independent and joint effects on activation of major intracellular signaling pathways implicated in cell proliferation, expansion, survival, adhesion, invasion, and metastasis. Until now, more than 15 adipocytokines have been associated with cancer, and this list continues to expand. While the plethora of circulating pro-inflammatory adipocytokines, such as leptin, resistin, extracellular nicotinamide phosphoribosyl transferase, and chemerin are elevated in malignancies, some adipocytokines such as adiponectin and omentin-1 are generally decreased in cancers and are considered protective against carcinogenesis. Elucidating the intertwining of inflammation, cellular bioenergetics, and adiposopathy is significant for the development of preventive, diagnostic, and therapeutic strategies against cancer. Novel more effective and safe adipocytokine-centered therapeutic interventions may pave the way for targeted oncotherapy.
Collapse
Affiliation(s)
- Nikolaos Spyrou
- 251 Airforce General Hospital, Kanellopoulou 3, 11525, Athens, Greece
| | | | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Section of Endocrinology, VA Boston Healthcare System, Boston, MA, USA
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece.
| |
Collapse
|
70
|
Ott R, Stupin JH, Melchior K, Schellong K, Ziska T, Dudenhausen JW, Henrich W, Rancourt RC, Plagemann A. Alterations of adiponectin gene expression and DNA methylation in adipose tissues and blood cells are associated with gestational diabetes and neonatal outcome. Clin Epigenetics 2018; 10:131. [PMID: 30355290 PMCID: PMC6201547 DOI: 10.1186/s13148-018-0567-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/14/2018] [Indexed: 12/12/2022] Open
Abstract
Background Adiponectin critically contributes to metabolic homeostasis, especially by insulin-sensitizing action. Gestational diabetes mellitus (GDM) is characterized by insulin resistance leading to materno-fetal hyperglycemia and detrimental birth outcomes. By investigating paired subcutaneous (SAT) and visceral adipose tissue (VAT) as well as blood (cell) samples of GDM-affected (n = 25) vs. matched control (n = 30) mother-child dyads of the prospective “EaCH” cohort study, we addressed whether alterations of adiponectin plasma, mRNA, and DNA methylation levels are associated with GDM and offspring characteristics. Results Hypoadiponectinemia was present in women with GDM, even after adjustment for body mass index (BMI). This was accompanied by significantly decreased mRNA levels in both SAT and VAT (P < 0.05), independent of BMI. Maternal plasma adiponectin showed inverse relations with glucose and homeostatic model assessment of insulin resistance (both P < 0.01). In parallel to reduced mRNA expression in GDM, significant (P < 0.05) yet small alterations in locus-specific DNA methylation were observed in maternal fat (~ 2%) and blood cells (~ 1%). While newborn adiponectin levels were similar between groups, DNA methylation in GDM offspring was variously altered (~ 1–4%; P < 0.05). Conclusions Reduced adiponectin seems to be a pathogenic co-factor in GDM, even independent of BMI, affecting materno-fetal metabolism. While altered maternal DNA methylation patterns appear rather marginally involved, functional, diagnostic, and/or predictive implications of cord blood DNA methylation should be further evaluated. Electronic supplementary material The online version of this article (10.1186/s13148-018-0567-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raffael Ott
- Division of 'Experimental Obstetrics,' Clinic of Obstetrics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jens H Stupin
- Clinic of Obstetrics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Berlin, Germany
| | - Kerstin Melchior
- Division of 'Experimental Obstetrics,' Clinic of Obstetrics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Karen Schellong
- Division of 'Experimental Obstetrics,' Clinic of Obstetrics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Thomas Ziska
- Division of 'Experimental Obstetrics,' Clinic of Obstetrics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Joachim W Dudenhausen
- Clinic of Obstetrics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Berlin, Germany
| | - Wolfgang Henrich
- Clinic of Obstetrics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Berlin, Germany
| | - Rebecca C Rancourt
- Division of 'Experimental Obstetrics,' Clinic of Obstetrics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Andreas Plagemann
- Division of 'Experimental Obstetrics,' Clinic of Obstetrics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
71
|
Bussey CE, Withers SB, Saxton SN, Bodagh N, Aldous RG, Heagerty AM. β 3 -Adrenoceptor stimulation of perivascular adipocytes leads to increased fat cell-derived NO and vascular relaxation in small arteries. Br J Pharmacol 2018; 175:3685-3698. [PMID: 29980164 PMCID: PMC6109217 DOI: 10.1111/bph.14433] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 05/04/2018] [Accepted: 06/19/2018] [Indexed: 01/13/2023] Open
Abstract
Background and Purpose In response to noradrenaline, healthy perivascular adipose tissue (PVAT) exerts an anticontractile effect on adjacent small arterial tissue. Organ bath solution transfer experiments have demonstrated the release of PVAT‐derived relaxing factors that mediate this function. The present studies were designed to investigate the mechanism responsible for the noradrenaline‐induced PVAT anticontractile effect. Experimental Approach In vitro rat small arterial contractile function was assessed using wire myography in the presence and absence of PVAT and the effects of sympathomimetic stimulation on the PVAT environment explored using Western blotting and assays of organ bath buffer. Key Results PVAT elicited an anticontractile effect in response to noradrenaline but not phenylephrine stimulation. In arteries surrounded by intact PVAT, the β3‐adrenoceptor agonist, CL‐316243, reduced the vasoconstrictor effect of phenylephrine but not noradrenaline. Kv7 channel inhibition using XE 991 reversed the noradrenaline‐induced anticontractile effect in exogenously applied PVAT studies. Adrenergic stimulation of PVAT with noradrenaline and CL‐316243, but not phenylephrine, was associated with increased adipocyte‐derived NO production, and the contractile response to noradrenaline was augmented following incubation of exogenous PVAT with L‐NMMA. PVAT from eNOS−/− mice had no anticontractile effect. Assays of adipocyte cAMP demonstrated an increase with noradrenaline stimulation implicating Gαs signalling in this process. Conclusions and Implications We have shown that adipocyte‐located β3‐adrenoceptor stimulation leads to activation of Gαs signalling pathways with increased cAMP and the release of adipocyte‐derived NO. This process is dependent upon Kv7 channel function. We conclude that adipocyte‐derived NO plays a central role in anticontractile activity when rodent PVAT is stimulated by noradrenaline.
Collapse
Affiliation(s)
- Charlotte E Bussey
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Sarah B Withers
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK.,Environment and Life Sciences, University of Salford, Salford, UK
| | - Sophie N Saxton
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Neil Bodagh
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Robert G Aldous
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Anthony M Heagerty
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
72
|
Zhao L, Chen S, Sherchan P, Ding Y, Zhao W, Guo Z, Yu J, Tang J, Zhang JH. Recombinant CTRP9 administration attenuates neuroinflammation via activating adiponectin receptor 1 after intracerebral hemorrhage in mice. J Neuroinflammation 2018; 15:215. [PMID: 30060752 PMCID: PMC6066941 DOI: 10.1186/s12974-018-1256-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/17/2018] [Indexed: 01/23/2023] Open
Abstract
Background Neuroinflammation is a crucial factor contributing to neurological injuries after intracerebral hemorrhage (ICH). C1q/TNF-related protein 9 (CTRP9), an agonist of adiponectin receptor 1 (AdipoR1), has recently been shown to reduce inflammatory responses in systemic diseases. The objective of this study was to investigate the protective role of CTRP9 against neuroinflammation after ICH in a mouse model and to explore the contribution of adenosine monophosphate-activated protein kinase (AMPK)/nuclear factor kappa B (NFκB) pathway in AdipoR1-mediated protection. Methods Adult male CD1 mice (n = 218) were randomly assigned to different groups for the study. ICH was induced via intrastriatal injection of bacterial collagenase. Recombinant CTRP9 (rCTRP9) was administered intranasally at 1 h after ICH. To elucidate the underlying mechanism, AdipoR1 small interfering ribonucleic acid (siRNA) and selective phosphorylated AMPK inhibitor Dorsomorphin were administered prior to rCTRP9 treatment. Brain edema, short- and long-term neurobehavior evaluation, blood glucose level, western blot, and immunofluorescence staining were performed. Results Endogenous CTRP9 and AdipoR1 expression was increased and peaked at 24 h after ICH. AdipoR1 was expressed by microglia, neurons, and astrocytes. Administration of rCTRP9 reduced brain edema, improved short- and long-term neurological function, enhanced the expression of AdipoR1 and p-AMPK, and decreased the expression of phosphorylated NFκB and inflammatory cytokines after ICH. The protective effects of rCTRP9 were abolished by administration of AdipoR1 siRNA and Dorsomorphin. Conclusions Our findings demonstrated that administration of rCTRP9 attenuated neuroinflammation through AdipoR1/AMPK/NFκB signaling pathway after ICH in mice, thereby reducing brain edema and improving neurological function after experimental ICH in mice. Therefore, CTRP9 may provide a potential therapeutic strategy to alleviate neuroinflammation in ICH patients. Electronic supplementary material The online version of this article (10.1186/s12974-018-1256-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lianhua Zhao
- Department of Neurology, Tianjin TEDA Hospital, Tianjin, China.,Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Shengpan Chen
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.,Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Wei Zhao
- Department of Neurology, Tianjin TEDA Hospital, Tianjin, China
| | - Zaiyu Guo
- Department of Neurology, Tianjin TEDA Hospital, Tianjin, China
| | - Jing Yu
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Loma Linda, CA, 92354, USA.
| |
Collapse
|
73
|
Karnati HK, Panigrahi MK, Li Y, Tweedie D, Greig NH. Adiponectin as a Potential Therapeutic Target for Prostate Cancer. Curr Pharm Des 2018; 23:4170-4179. [PMID: 28183249 DOI: 10.2174/1381612823666170208123553] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/14/2016] [Accepted: 02/02/2017] [Indexed: 02/07/2023]
Abstract
Adipokines are bioactive proteins that mediate proliferation, metabolism, inflammation, and angiogenesis. Adiponectin is an important adipokine that exerts multiple key functions via its anti-metabolic syndrome and anti-inflammatory properties. A number of adiponectin receptors, AdipoR1, AdipoR2 and T-cadherin, have been identified. Recent studies have suggested the involvement of adiponectin and receptors in several cancers, including prostate, breast, endometrial, brain, and colon cancer. Altered levels of adiponectin expression, or its interacting receptors, in cancers can lead to dysregulation of signaling pathways. Our current review describes the molecular mechanisms underlying the anti-tumorigenesis activity of adiponectin and the role of its receptors in prostate carcinogenesis, and provides perspectives of adiponectin-mediated signaling as a potential target for therapy.
Collapse
Affiliation(s)
- Hanuma Kumar Karnati
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224. United States
| | - Manas Kumar Panigrahi
- Department of Neurosurgery, Krishna Institute of Medical Sciences (KIMS), Hyderabad- 500003, Telangana. India
| | - Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224. United States
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224. United States
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224. United States
| |
Collapse
|
74
|
Employing proteomics to understand the effects of nutritional intervention in cancer treatment. Anal Bioanal Chem 2018; 410:6371-6386. [PMID: 29974151 DOI: 10.1007/s00216-018-1219-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 12/22/2022]
Abstract
Lifestyle optimizations are implementable changes that can have an impact on health and disease. Nutrition is a lifestyle optimization that has been shown to be of great importance in cancer initiation, progression, and metastasis. Dozens of clinical trials are currently in progress that focus on the nutritional modifications that cancer patients can make prior to and during medical care that increase the efficacy of treatment. In this review, we discuss various nutritional inventions for cancer patients and the analytical approaches to characterize the downstream molecular effects. We first begin by briefly explaining the many different forms of nutritional intervention currently being used in cancer treatment as well as their motivating biology. The forms of nutrient modulation described in this review include calorie restriction, the different practices of fasting, and carbohydrate restriction. The review then shifts to explain how proteomics is used to determine biomarkers of cancer and how it can be utilized in the future to determine the metabolic phenotype of a tumor, and inform physicians if nutritional intervention should be recommended for a cancer patient. Nutrigenomics aims to understand the relationship of nutrients and gene expression and can be used to understand the downstream molecular effects of nutrition restriction, partially through proteomic analysis. Proteomics is just beginning to be used as cancer diagnostic and predictive tools. However, these approaches have not been used to their full potential to understand nutritional intervention in cancer. Graphical abstract ᅟ.
Collapse
|
75
|
Palin MF, Farmer C, Duarte CRA. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Adipokines affect mammary growth and function in farm animals. J Anim Sci 2018; 95:5689-5700. [PMID: 29293788 DOI: 10.2527/jas2017.1777] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The essential role of mammary fat pads in mammary growth and morphogenesis was the first indication that biologically active molecules, secreted from adipocytes or other stromal cells, could regulate endocrine cues for growth and function of the mammary gland. The presence of leptin and adiponectin receptors in mammary tissues suggested that locally produced or circulating adipokines could affect mammary growth and function. Herein, we present the current knowledge on the role of adipokines in mammary cell proliferation and differentiation and in lactogenesis and galactopoiesis in farm animals. We also address the role of milk adipokines in the neonate. Accumulating evidence suggests that adipokines could act as metabolic sensors, regulating mammary growth and function in periods of metabolic adaptations such as late pregnancy and early lactation. Indeed, different experiments reported that adiponectin and leptin expression varies according to physiological stages and nutritional status of the animal. The current review also demonstrates that adipokines, such as leptin and adiponectin, are important regulators of the action of lactogenic hormones in the mammary gland. Findings also suggest important roles for adipokines in growth and intestinal maturation of the neonate.
Collapse
|
76
|
Singh A, Choubey M, Bora P, Krishna A. Adiponectin and Chemerin: Contrary Adipokines in Regulating Reproduction and Metabolic Disorders. Reprod Sci 2018; 25:1462-1473. [DOI: 10.1177/1933719118770547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anusha Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mayank Choubey
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Puran Bora
- Department of Ophthalmology, Jones Eye Institute, Pat & Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Amitabh Krishna
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
77
|
Abstract
STUDY DESIGN Given the results of previous in vitro investigations of the expression patterns of adiponectin and its receptors in healthy and degenerated intervertebral discs (IVDs), we studied the effects of adiponectin on tumor necrosis factor-alpha (TNF-α) production in degenerated nucleus pulposus (NP) cells and analyzed the association between adiponectin levels in IVD tissues and IVD Pfirrmann grades. OBJECTIVE The aim of this study was to investigate the potential role of adiponectin in the pathogenesis of IVD degeneration. SUMMARY OF BACKGROUND DATA Adiponectin has been reported to be involved in physiologic and pathologic processes associated with bone and cartilage diseases. However, the expression profiles of adiponectin and its receptors in human IVD tissues and the function of adiponectin in the pathogenesis of IVD degeneration remain unknown. METHODS Real-time polymerase chain reaction, immunohistochemistry, and western blotting were performed to examine the expression levels of adiponectin, adiponectin receptors, and TNF-α in IVD tissues and isolated NP cells. The effects of adiponectin on TNF-α production in degenerated NP cells were detected by enzyme linked immunosorbent assay. RESULTS Adiponectin expression levels were downregulated, while adiponectin receptor 1 (adipoR1) and adipoR2 expression levels were upregulated in degenerated IVD tissues and degenerated NP cells compared with those in healthy IVD tissues and healthy NP cells. Moreover, we confirmed that TNF-α production by degenerated NP cells was downregulated by adiponectin administration in a dose- and time-dependent manner. Furthermore, our data showed that adiponectin levels in degenerated IVD tissues were inversely correlated with IVD Pfirrmann grades. CONCLUSION These results indicated that adiponectin may play an anti-inflammatory role with respect to the maintenance of IVD homeostasis by downregulating TNF-α production. LEVEL OF EVIDENCE N/A.
Collapse
|
78
|
Mauro L, Naimo GD, Gelsomino L, Malivindi R, Bruno L, Pellegrino M, Tarallo R, Memoli D, Weisz A, Panno ML, Andò S. Uncoupling effects of estrogen receptor α on LKB1/AMPK interaction upon adiponectin exposure in breast cancer. FASEB J 2018. [PMID: 29513571 DOI: 10.1096/fj.201701315r] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adipose tissue is a metabolic and endocrine organ that secretes bioactive molecules called adipocytokines. Among these, adiponectin has a crucial role in obesity-associated breast cancer. The key molecule of adiponectin signaling is AMPK, which is mainly activated by liver kinase B1 (LKB1). Here, we demonstrated that estrogen receptor-α (ERα)/LKB1 interaction may negatively interfere with the LKB1 capability to phosphorylate AMPK and inhibit its downstream signaling TSC2/mTOR/p70S6k. In adiponectin-treated MCF-7 cells, AMPK signaling was not working, resulting in its downstream target acetyl-CoA carboxylase (ACC) being still active. In contrast, in MDA-MB-231 cells, AMPK and ACC phosphorylation was enhanced by adiponectin, inhibiting lipogenesis and cell growth. Upon adiponectin, ERα signaling switched the energy balance of breast cancer cells toward a lipogenic phenotype. Therefore, adiponectin played an inhibitory role on ERα-negative cell growth and progression in vitro and in vivo. In contrast, low adiponectin levels, similar to those circulating in obese patients, acted on ERα-positive cells as a growth factor, stimulating proliferation. The latter effect was blunted in vivo by high adiponectin concentration. All this may have translational relevance, addressing how the handling of adiponectin, as a therapeutic tool in breast cancer treatment, needs to be carefully considered in ERα-positive obese patients, where circulating levels of this adipocytokine are relatively low. In other words, in ERα-positive breast cancer obese patients, higher adiponectin doses should be administered with respect to ERα-negative breast cancer, also opportunely combined with antiestrogen therapy. -Mauro, L., Naimo, G. D., Gelsomino, L., Malivindi, R., Bruno, L., Pellegrino, M., Tarallo, R., Memoli, D., Weisz, A., Panno, M. L., Andò, S. Uncoupling effects of estrogen receptor α on LKB1/AMPK interaction upon adiponectin exposure in breast cancer.
Collapse
Affiliation(s)
- Loredana Mauro
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, Rende, Italy
| | | | - Luca Gelsomino
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rocco Malivindi
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Leonardo Bruno
- Department of Biology, Ecology, and Earth Sciences, University of Calabria, Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, Baronissi, Italy
| | - Domenico Memoli
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, Baronissi, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, Baronissi, Italy
| | - Maria Luisa Panno
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
79
|
MarElia CB, Kuehl MN, Shemwell TA, Alman AC, Burkhardt BR. Circulating PANDER concentration is associated with increased HbA1c and fasting blood glucose in Type 2 diabetic subjects. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2018; 11:26-30. [PMID: 29686968 PMCID: PMC5910510 DOI: 10.1016/j.jcte.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/05/2023]
Abstract
PANcreatic-DERived factor (PANDER) is a novel hormone regulating glucose levels. Fasting PANDER levels were measured in T2D and non-T2D matched subjects from U.S. Associations between PANDER and other hormones or metabolic parameters were examined. PANDER was associated with increased HbA1c and fasting blood glucose in T2D subjects. PANDER was not associated with adiponectin, HOMA-β and HOMA-IR.
Aim PANcreatic-DERived factor (PANDER, FAM3B) is a novel hormone that regulates glucose levels via interaction with both the endocrine pancreas and liver. Prior studies examining PANDER were primarily conducted in murine models or in vitro but little is known regarding the circulating concentration of PANDER in humans, especially with regard to the association of type 2 diabetes (T2D) or overall glycemic regulation. To address this limitation, we performed a cross-sectional analysis of circulating serum PANDER concentration in association with other hormones that serve as either markers of insulin resistance (insulin and adiponectin) or to metabolic parameters of glycemic control such as fasting HbA1c and blood glucose (FBG). Methods Fasting serum was obtained from a commercial biorepository from 300 de-identified adult subjects with 150 T2D and non-T2D adult subjects collected from a population within the United States, respectively, matched on gender, age group and race/ethnicity. Concentration of PANDER, insulin and adiponectin were measured for all samples as determined by commercial ELISA. Metadata was provided for each subject including demography, anthropometry, and cigarette and alcohol use. In addition, fasting blood glucose (FBG) and HbA1c were available on T2D subjects. Results Multiple linear regression analyses were performed to examine the relationships between circulating log PANDER concentration on HbA1c, fasting glucose, log insulin, log HOMA-β and log HOMA-IR among T2D subjects and for insulin and adiponectin in non-T2D subjects. A significant linear association was identified between PANDER with fasting HbA1c (β 0.832 ± SE 0.22, p = 0.0003) and FBG (β 20.66 ± SE 7.43, p = 0.006) within T2D subjects. However, insulin, HOMA-β, HOMA-IR and adiponectin (p > 0.05) were not found to be linearly associated with PANDER concentration. Conclusion Within T2D subjects, PANDER is modestly linearly associated with increased HbA1c and FBG in a US population. In addition, highest circulating PANDER levels were measured in T2D subjects with HbA1c above 9.9. No association was identified with PANDER and insulin resistance or pancreatic β-cell function in T2D subjects.
Collapse
Affiliation(s)
- Catherine B MarElia
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| | - Melanie N Kuehl
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| | - Tiffany A Shemwell
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| | - Amy C Alman
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL 33612, United States
| | - Brant R Burkhardt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| |
Collapse
|
80
|
Tilija Pun N, Park PH. Adiponectin inhibits inflammatory cytokines production by Beclin-1 phosphorylation and B-cell lymphoma 2 mRNA destabilization: role for autophagy induction. Br J Pharmacol 2018; 175:1066-1084. [PMID: 29333604 DOI: 10.1111/bph.14144] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/24/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Adiponectin potently suppresses inflammatory mediator production. Autophagy is known to play a critical role in the modulation of inflammatory responses by adiponectin. However, the underlying mechanisms are not clearly understood. Interaction between Beclin-1 and B-cell lymphoma 2 (Bcl-2) is a critical event in autophagy induction. We examined the effects of globular adiponectin (gAcrp) on the Beclin-1/Bcl-2 association and its underlying mechanisms. EXPERIMENTAL APPROACH The effect of gAcrp on the interaction between Beclin-1 and Bcl-2 was examined by immunoprecipitation followed by Western blotting. To elucidate the underlying mechanisms, we determined the effects of gAcrp on Beclin-1 phosphorylation and Bcl-2 mRNA stability, and investigated their role in the suppression of inflammatory mediators using pharmacological inhibitors and transient target gene knockdown. KEY RESULTS Globular adiponectin disrupted the association between Beclin-1 and Bcl-2 and increased Beclin-1 phosphorylation at Thr119 , critical residue for binding with Bcl-2, via a death-associated protein kinase-1 (DAPK1)-dependent mechanism. Moreover, gAcrp reduced Bcl-2 expression via Bcl-2 mRNA destabilization, without significantly affecting Bcl-2 promoter activity and protein degradation, which was mediated by tristetraprolin (TTP) induction. Finally, DAPK1 and TTP were shown to play key roles in gAcrp-induced autophagosome formation and suppression of LPS-stimulated TNF-α and IL-1β expression. CONCLUSION AND IMPLICATIONS Beclin-1 phosphorylation and Bcl-2 mRNA destabilization mediated by DAPK1 and TTP are crucial events leading to autophagy and the suppression of inflammatory cytokine production by gAcrp. These results provide novel mechanisms underlying adiponectin's modulation of inflammatory responses. DAPK and TTP are potential therapeutic targets for the management of inflammation.
Collapse
Affiliation(s)
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| |
Collapse
|
81
|
Carvalho RF, Atta AM, de Oliveira IS, Santos TPS, Santos JPA, Schinoni MI, de Sousa-Atta MLB. Adiponectin levels and insulin resistance among patients with chronic hepatitis C. Acta Trop 2018; 178:258-263. [PMID: 29217381 DOI: 10.1016/j.actatropica.2017.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis C virus (HCV) infection is associated with insulin resistance (IR), rapid disease progression, and decreased virological response to antiviral treatment. In addition, obesity is a risk factor for chronic hepatitis C evolution and is associated with IR. As adiponectin is an adipokine that is associated with obesity and IR, this study aimed to investigate serum levels of adiponectin among patients with HCV infection and IR. Thirty-three patients with untreated HCV infection underwent testing of serum adiponectin levels (capture ELISA) and were compared to 30 healthy subjects with similar body mass indexes (BMI). Data were also obtained for several homeostatic model assessment (HOMA) indexes: HOMA-IR, HOMA-β, and HOMA-adiponectin. Patients with HCV infection had higher adiponectin levels, which predominantly were observed among women. Hyperadiponectinemia was not associated with high BMI. Patients with HCV infection had higher HOMA-IR and HOMA-β values, although no difference was observed for HOMA-adiponectin. Patients with HCV infection and overweight/obese status had higher HOMA-IR values, although no association was observed for adiponectin levels. Hyperadiponectinemia and IR were not influenced by HCV load or liver fibrosis. The predictors of IR were BMI, glycemia, and serum levels of insulin and non-high-density lipoprotein cholesterol, but not adiponectin levels. Thus, patients with chronic hepatitis C have significant metabolic alterations (hyperadiponectinemia and high HOMA-IR values) that are independent of HCV viremia and liver fibrosis. Among these patients, HOMA-IR but not HOMA-adiponectin was appropriate for diagnosing IR.
Collapse
|
82
|
Kyrou I, Tsantarlioti O, Panagiotakos DB, Tsigos C, Georgousopoulou E, Chrysohoou C, Skoumas I, Tousoulis D, Stefanadis C, Pitsavos C. Adiponectin circulating levels and 10-year (2002-2012) cardiovascular disease incidence: the ATTICA Study. Endocrine 2017; 58:542-552. [PMID: 29039145 DOI: 10.1007/s12020-017-1434-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/20/2017] [Indexed: 01/23/2023]
Abstract
PURPOSE Adiponectin is an adipokine with anti-inflammatory and cardiovascular-protective properties. Existing epidemiological evidence is conflicting on the exact relationship between adiponectin and long-term cardiovascular disease (CVD) risk. Our aim was to prospectively assess whether circulating adiponectin is associated with long-term incident CVD. METHODS A population-based, prospective study in adults (>18 years) without previous CVD history (ATTICA study). Circulating total adiponectin levels were measured at baseline (2001-2002) in a sub-sample (n = 531; women/men: 222/309; age: 40 ± 11 years) of the ATTICA cohort and complete 10-year follow-up data were available in 366 of these participants (women/men: 154/212; age: 40 ± 12 years). RESULTS After adjusting for multiple factors, including age, sex, body mass index, waist circumference, smoking, physical activity, Mediterranean diet adherence, hypertension, diabetes, and hypercholesterolemia, our logistic regression analysis indicates that an increase in circulating total adiponectin levels by 1 unit was associated with 36% lower CVD risk (relative risk [RR]: 0.64, 95% confidence interval [CI] 0.42-0.96; p = 0.03). Further adjusting for interleukin-6 plasma levels had no significant impact (RR: 0.60, 95% CI 0.38-0.94; p = 0.03), while additional adjustment for circulating C-reactive protein (CRP) modestly attenuated this association (RR: 0.63, 95% CI 0.40-0.99; p = 0.046). CONCLUSIONS In our study, elevated circulating total adiponectin levels were associated with lower 10-year CVD risk in adults without previous CVD, independently of other established CVD risk factors. This association appeared to be modestly attenuated by CRP, yet was not mediated by interleukin-6 which is the main endocrine/circulating pro-inflammatory cytokine.
Collapse
Affiliation(s)
- Ioannis Kyrou
- Department of Science of Dietetics and Nutrition, School of Health Science and Education, Harokopio University, Athens, Greece
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK
- Translational & Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- WISDEM, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - Olga Tsantarlioti
- Department of Science of Dietetics and Nutrition, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Demosthenes B Panagiotakos
- Department of Science of Dietetics and Nutrition, School of Health Science and Education, Harokopio University, Athens, Greece.
| | - Constantine Tsigos
- Department of Science of Dietetics and Nutrition, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Ekavi Georgousopoulou
- Department of Science of Dietetics and Nutrition, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Christina Chrysohoou
- First Cardiology Clinic, School of Medicine, University of Athens, Athens, Greece
| | - Ioannis Skoumas
- First Cardiology Clinic, School of Medicine, University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- First Cardiology Clinic, School of Medicine, University of Athens, Athens, Greece
| | | | - Christos Pitsavos
- First Cardiology Clinic, School of Medicine, University of Athens, Athens, Greece
| |
Collapse
|
83
|
Shin HY, Park S, Lee JW. Positive association between the changes in chemerin and adiponectin levels after weight reduction. Endocr Res 2017; 42:287-295. [PMID: 28323510 DOI: 10.1080/07435800.2017.1300808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Adiponectin and chemerin have been reported their associations with insulin resistance and chronic inflammation. However, the relationship between adiponectin and chemerin themselves has not been fully elucidated. Therefore, we investigated the effects of changes in adiponectin and chemerin levels after a weight intervention. MATERIALS AND METHODS We recruited 136 healthy overweight or obese subjects from 2006 to 2009 and provided all participants lifestyle modification therapy with diet consultations over 16 weeks. We assigned the participants to take orlistat or sibutramine or to a no prescription group. We analyzed the data using paired t-tests, Pearson's partial correlation analysis, and stepwise multiple linear regression analysis. RESULTS ∆ in chemerin was positively correlated with ∆ in adiponectin (r = 0.29, p < 0.01), and these trends were similar in the insulin-resistant (r = 0.35, p = 0.03) and insulin-sensitive (r = 0.27, p < 0.01) groups. In multiple regression analyses, Δadiponectin, ΔQUICKI (quantitative insulin-sensitivity check index), Δglucose, and ΔDBP were significantly associated with Δchemerin in the insulin-resistant group, and initial chemerin level, ΔQUICKI, ΔBMI (body mass index), and taking orlistat were associated with Δchemerin in the insulin-sensitive group. CONCLUSIONS Changes in chemerin levels were positively associated with changes in adiponectin levels. The association between these changes might be related to chemerin's dual inflammatory and anti-inflammatory effects or insulin resistance and insulin sensitivity enhancing effects, depending on the metabolic conditions. Additional studies are needed to clarify the mechanisms that underlie the effects of adiponectin and chemerin.
Collapse
Affiliation(s)
- Hyun-Young Shin
- a Department of Family Medicine, Myongji Hospital, Seonam University, College of Medicine , Gyeonggi-do Republic of Korea
| | - Sohee Park
- b Department of Biostatistics, Graduate School of Public Health, Yonsei University , Seoul , Korea
| | - Ji Won Lee
- c Department of Family Medicine, Gangnam Severance Hospital, University College of Medicine , Seoul , Korea
| |
Collapse
|
84
|
Darabi H, Ostovar A, Raeisi A, Kalantarhormozi MR, Assadi M, Akbarzadeh S, Momeni S, Dobaradaran S, Vahdat K, Nabipour I. The correlation between insulin-like growth factor 1 (IGF-1) and novel adipocytokines in postmenopausal women: A population-based study. Endocr Res 2017; 42:191-197. [PMID: 28287842 DOI: 10.1080/07435800.2017.1292523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The adipocytokines and insulin-like growth factor 1 (IGF-1) are involved in insulin resistance, the cardiometabolic syndrome, and atherosclerosis. Therefore, investigating the relationship between circulating levels of the novel adipocytokines and IGF-1 is worthwhile. The correlation between IGF-1, visfatin, and omentin-1 has not been adequately investigated. In a population-based study, 324 postmenopausal women were randomly selected. Circulating IGF-1, visfatin, omentin-1, adiponectin, and high-sensitivity C-reactive protein (hs-CRP) levels were measured with the highly specific enzyme-linked immunosorbent assay method. In multiple regression analyses adjusted for alkaline phosphatase, osteocalcin, and hs-CRP, circulating IGF-1 was significantly correlated with visfatin levels (standardized β coefficient [β] = 0.13, partial correlation coefficient [r] = 0.12, p = 0.028). The significant positive correlation between serum IGF-1 and visfatin levels remained after additional adjustments for age and BMI (β = 0.12, r = 0.12, p = 0.025), metabolic syndrome (β = 0.13, r = 0.12, p = 0.021), and type 2 diabetes mellitus (β = 0.13, r = 0.12, p = 0.026). No significant correlations were found between IGF-1, adiponectin, and omentin-1. There is a significant correlation between serum IGF-1 and visfatin levels in postmenopausal women beyond metabolic syndrome, type 2 diabetes, bone formation markers, and hs-CRP levels. The observed correlation between higher circulating IGF-1 and the higher visfatin levels might be a physiological compensation and adaptation to protect against visfatin-induced proinflammatory effects.
Collapse
Affiliation(s)
- Hossein Darabi
- a Department of Endocrine Disorders, The Persian Gulf Tropical Medicine Research Centre , The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences , Bushehr , Iran
| | - Afshin Ostovar
- a Department of Endocrine Disorders, The Persian Gulf Tropical Medicine Research Centre , The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences , Bushehr , Iran
| | - Alireza Raeisi
- a Department of Endocrine Disorders, The Persian Gulf Tropical Medicine Research Centre , The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences , Bushehr , Iran
| | - Mohammad Reza Kalantarhormozi
- a Department of Endocrine Disorders, The Persian Gulf Tropical Medicine Research Centre , The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences , Bushehr , Iran
| | - Majid Assadi
- b The Persian Gulf Nuclear Medicine Research Centre, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences , Bushehr , Iran
| | - Samad Akbarzadeh
- a Department of Endocrine Disorders, The Persian Gulf Tropical Medicine Research Centre , The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences , Bushehr , Iran
| | - Safieh Momeni
- c Department of Biochemistry, The Persian Gulf Marine Biotechnology Research Centre , The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences , Bushehr , Iran
| | - Sina Dobaradaran
- c Department of Biochemistry, The Persian Gulf Marine Biotechnology Research Centre , The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences , Bushehr , Iran
| | - Katayoun Vahdat
- a Department of Endocrine Disorders, The Persian Gulf Tropical Medicine Research Centre , The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences , Bushehr , Iran
| | - Iraj Nabipour
- a Department of Endocrine Disorders, The Persian Gulf Tropical Medicine Research Centre , The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences , Bushehr , Iran
| |
Collapse
|
85
|
Rak A, Mellouk N, Froment P, Dupont J. Adiponectin and resistin: potential metabolic signals affecting hypothalamo-pituitary gonadal axis in females and males of different species. Reproduction 2017; 153:R215-R226. [DOI: 10.1530/rep-17-0002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 12/14/2022]
Abstract
Adipokines, including adiponectin and resistin, are cytokines produced mainly by the adipose tissue. They play a significant role in metabolic functions that regulate the insulin sensitivity and inflammation. Alterations in adiponectin and resistin plasma levels, or their expression in metabolic and gonadal tissues, are observed in some metabolic pathologies, such as obesity. Several studies have shown that these two hormones and the receptors for adiponectin, AdipoR1 and AdipoR2 are present in various reproductive tissues in both sexes of different species. Thus, these adipokines could be metabolic signals that partially explain infertility related to obesity, such as polycystic ovary syndrome (PCOS). Species and gender differences in plasma levels, tissue or cell distribution and hormonal regulation have been reported for resistin and adiponectin. Furthermore, until now, it has been unclear whether adiponectin and resistin act directly or indirectly on the hypothalamo–pituitary–gonadal axis. The objective of this review was to summarise the latest findings and particularly the species and gender differences of adiponectin and resistin on female and male reproduction known to date, based on the hypothalamo–pituitary–gonadal axis.
Collapse
|
86
|
Adiponectin Is Involved in Connective Tissue Growth Factor-Induced Proliferation, Migration and Overproduction of the Extracellular Matrix in Keloid Fibroblasts. Int J Mol Sci 2017; 18:ijms18051044. [PMID: 28498357 PMCID: PMC5454956 DOI: 10.3390/ijms18051044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
Adiponectin, an adipocyte-derived hormone, exerts pleiotropic biological effects on metabolism, inflammation, vascular homeostasis, apoptosis and immunity. Recently, adiponectin has been suggested to attenuate the progression of human dermal fibrosis. Connective tissue growth factor (CTGF) is induced in keloids and is thought to be participated in the formation of keloid fibrosis. However, the roles played by adiponectin in keloids remain unclear. In this study, we explored the effects of adiponectin on CTGF-induced cell proliferation, migration and the deposition of extracellular matrix (ECM) and their associated intracellular signalling pathways in keloid fibroblasts (KFs). We also explored possible mechanisms of keloid pathogenesis. Primary fibroblast cultures were established from foreskin biopsies and skin biopsies from patients with keloids. The expression of adiponectin and adiponectin receptors (adipoRs) was evaluated by reverse transcription-PCR (RT-PCR), quantitative real-time RT-PCR, immunofluorescence staining, and immunohistochemical analysis. Next, KFs and normal dermal fibroblasts (NFs) were treated with CTGF in the presence or absence of adiponectin. A cell counting kit-8 (CCK-8) and the Transwell assay were used to examine cell proliferation and migration. The level of the collagen I, fibronectin (FN) and α-smooth muscle actin (α-SMA) mRNAs and proteins were determined by quantitative real-time RT-PCR and western blotting. The effects of RNA interference (RNAi) targeting the adipoR genes were detected. Phosphorylation of adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase-protein kinase (PI3K-Akt) were examined by western blotting to further investigate the signalling pathways. Furthermore, inhibitors of signal transduction pathways were investigated. The expression levels of adiponectin and adipoRs were significantly decreased in keloids compared with those in normal skin tissue. Adiponectin suppressed the CTGF-induced KFs, but not NFs, proliferation, migration and ECM production. Moreover, adiponectin inhibited the phosphorylation of AMPK, p38 and extracellular-regulated kinase (ERK), but not that of Jun N-terminal kinase (JNK) or Akt, in CTGF-treated KFs. The activity of adiponectin-mediated signalling pathways was attenuated by small interfering RNAs (siRNAs) targeting adipoR1 (but not siRNAs targeting adipoR2, T-cadherin or calreticulin), AMPK (Compound C), p38 (SB203580) inhibitors, and mitogen-activated protein kinase kinase (MEK) inhibitor (PD98059). Based on our results, adiponectin suppresses CTGF-induced KFs proliferation, migration and ECM overproduction. One of the underlying mechanisms is the activation of the adipoR1, AMPK, p38, and ERK signalling pathways. Therefore, adiponectin may play an important role in the progression of keloids, suggesting a potential novel target for keloid treatment.
Collapse
|
87
|
Ruscica M, Baragetti A, Catapano AL, Norata GD. Translating the biology of adipokines in atherosclerosis and cardiovascular diseases: Gaps and open questions. Nutr Metab Cardiovasc Dis 2017; 27:379-395. [PMID: 28237179 DOI: 10.1016/j.numecd.2016.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/10/2023]
Abstract
AIM Critically discuss the available data, to identify the current gaps and to provide key concepts that will help clinicians in translating the biology of adipokines in the context of atherosclerosis and cardio-metabolic diseases. DATA SYNTHESIS Adipose tissue is nowadays recognized as an active endocrine organ, a function related to the ability to secrete adipokines (such as leptin and adiponectin) and pro-inflammatory cytokines (tumor necrosis factor alpha and resistin). Studies in vitro and in animal models have observed that obesity status presents a chronic low-grade inflammation as the consequence of the immune cells infiltrating the adipose tissue as well as adipocytes. This inflammatory signature is often related to the presence of cardiovascular diseases, including atherosclerosis and thrombosis. These links are less clear in humans, where the role of adipokines as prognostic marker and/or player in cardiovascular diseases is not as clear as that observed in experimental models. Moreover, plasma adipokine levels might reflect a condition of adipokine-resistance in which adipokine redundancy occurs. The investigation of the cardio-metabolic phenotype of carriers of single nucleotide polymorphisms affecting the levels or function of a specific adipokine might help determine their relevance in humans. Thus, the aim of the present review is to critically discuss the available data, identify the current gaps and provide key concepts that will help clinicians translate the biology of adipokines in the context of atherosclerosis and cardio-metabolic diseases.
Collapse
Affiliation(s)
- M Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - A Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; SISA Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy
| | - A L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCCS Multimedica Hospital, Sesto San Giovanni, Milan, Italy
| | - G D Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; SISA Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
88
|
De Koster J, Urh C, Hostens M, Van den Broeck W, Sauerwein H, Opsomer G. Relationship between serum adiponectin concentration, body condition score, and peripheral tissue insulin response of dairy cows during the dry period. Domest Anim Endocrinol 2017; 59:100-104. [PMID: 28063290 DOI: 10.1016/j.domaniend.2016.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/23/2016] [Accepted: 12/03/2016] [Indexed: 12/18/2022]
Abstract
The aim of the present study was to describe the relationship between serum adiponectin concentration and peripheral tissue insulin response in dairy cows with a variable body condition score (BCS) during the dry period. Cows were selected at the beginning of the dry period based on BCS (BCS <3.75, n = 4; BCS >3.75, n = 5). Animals were followed from the beginning of the dry period by weekly blood sampling and assessment of BCS and backfat thickness. Weekly blood samples were analyzed for adiponectin concentration using a bovine specific ELISA. Hyperinsulinemic euglycemic clamp tests were performed at the end of the dry period to measure peripheral tissue insulin response. Insulin dose response curves were established for both glucose and fatty acid metabolism. Regression analysis revealed that the serum concentrations of adiponectin dropped at the end of the dry period (P < 0.05) and were negatively associated with BCS (P < 0.05). At the level of the glucose metabolism, serum concentrations of adiponectin were positively correlated with insulin responsiveness (reflecting the maximal effect of insulin; r = 0.76, P < 0.05), but not with insulin sensitivity (reflecting the insulin concentration needed to achieve halfmaximal effect; r = -0.54, P = 0.13). At the level of the fatty acid metabolism, greater adiponectin concentrations were negatively correlated with lower NEFA levels during the HEC test reflecting the insulin responsiveness of the NEFA metabolism (r = -0.61, P = 0.08), whereas there was no association with the insulin sensitivity of the NEFA metabolism (r = -0.16, P = 0.67). In conclusion, serum concentrations of adiponectin were negatively associated with the BCS of dairy cows during the dry period and positively associated with insulin responsiveness of the glucose and fatty acid metabolism.
Collapse
Affiliation(s)
- J De Koster
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - C Urh
- Institute for Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - M Hostens
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - W Van den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - H Sauerwein
- Institute for Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - G Opsomer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
89
|
Vailati-Riboni M, Farina G, Batistel F, Heiser A, Mitchell MD, Crookenden MA, Walker CG, Kay JK, Meier S, Roche JR, Loor JJ. Far-off and close-up dry matter intake modulate indicators of immunometabolic adaptations to lactation in subcutaneous adipose tissue of pasture-based transition dairy cows. J Dairy Sci 2017; 100:2334-2350. [PMID: 28088407 DOI: 10.3168/jds.2016-11790] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022]
Abstract
The common practice of increasing dietary energy density during the close-up dry period (last ∼3 wk prepartum) has been recently associated with a higher incidence of metabolic disorders after calving. Despite these reports, over-feeding of metabolizable energy (ME) during the far-off, nonlactating period is a common management policy aimed at achieving optimum calving body condition score (BCS) in pasture-based systems, as cows are generally thinner than total mixed ration cows at the end of lactation. Our hypothesis was that both far-off and close-up overfeeding influence the peripartum adipose tissue changes associated with energy balance and inflammatory state. Sixty mid-lactation, grazing dairy cows of mixed age and breed were randomly allocated to 1 of 2 groups that were managed through late lactation to achieve a low and high BCS (approximately 4.25 and 5.0 on a 10-point scale) at dry-off. The low BCS cows were then overfed ME to ensure that they achieved the same BCS as the higher BCS group by calving. Within each rate of BCS gain treatment, cows were offered 65, 90, or 120% of their pre-calving ME requirements for 3 wk pre-calving in a 2 × 3 factorial arrangement of treatments (i.e., 10 cows/treatment). Subcutaneous adipose tissue was collected via biopsy at -1, 1, and 4 wk relative to parturition. Quantitative PCR was used to measure mRNA and microRNA expression of targets related to adipogenesis and inflammation. Cows overfed in the far-off period had increased expression of miR-143 and miR-378 prepartum (-1 wk) indicating greater adipogenesis, consistent with their rapid gain in BCS following dry-off. Furthermore, the lower postpartum expression of IL6, TNF, TLR4, TLR9, and miR-145, and a higher abundance of miR-99a indicated lower body fat mobilization in early lactation in the same group. In the close-up period, feeding either 65 or 120% of ME requirements caused changes in FASN, IL1B, IL6R, TLR9, and the microRNA miR-143, miR-155, and miR-378. Their respective expression patterns indicate a tentative negative-feedback mechanism in metabolically compromised, feed-restricted cows, and a possible immune-related stimulation of lipolysis in apparently static adipocytes in overfed cows. Data from cows fed 90% of ME requirements indicate the existence of a balance between lipolytic (inflammatory-related) and anti-lipolytic signals, to prime the mobilization machinery in light of imminent lactation. Overall, results indicate that far-off dry cow nutrition influences peripartum adipose tissue metabolism, with neither strategy negatively affecting the physiological adaptation to lactation. Furthermore, to ensure a favorable transition, cows should be subjected to a small feed restriction in the close-up period, irrespective of far-off nutritional management.
Collapse
Affiliation(s)
- M Vailati-Riboni
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - G Farina
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Dipartimento di Scienze Veterinarie per la salute, la produzione animale e la sicurezza alimentare (VESPA), Università di Milano, Milan, Italy 20122
| | - F Batistel
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - A Heiser
- AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North, New Zealand 4442
| | - M D Mitchell
- University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital Campus, Herston, Queensland, Australia 4029
| | - M A Crookenden
- DairyNZ Limited, c/o University of Auckland, 3A Symonds St., Auckland, New Zealand 1010
| | - C G Walker
- DairyNZ Limited, c/o University of Auckland, 3A Symonds St., Auckland, New Zealand 1010
| | - J K Kay
- DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand 3240
| | - S Meier
- DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand 3240
| | - J R Roche
- DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand 3240
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
90
|
Sun X, Wu X, Duan Y, Liu G, Yu X, Zhang W. Family-Based Association Study of rs17300539 and rs12495941 Polymorphism in Adiponectin Gene and Polycystic Ovary Syndrome in a Chinese Population. Med Sci Monit 2017; 23:78-84. [PMID: 28060790 PMCID: PMC5238947 DOI: 10.12659/msm.901944] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Backgriond Polycystic ovary syndrome (PCOS) is a complex disease that has both genetic and environmental components. Adiponectin plays an important role in the regulation of insulin sensitivity and insulin resistance (IR) in PCOS. The aim of this study was to determine 2 single-nucleotide polymorphisms (SNPs) variants (rs12495941 and rs17300539) of the adiponectin gene (ADIPOQ) in polycystic ovary syndrome (PCOS) families. Material/Methods We recruited 197 PCOS probands, their biological parents, and 192 controls. Anthropometric variables, including hip circumference (HC) and waist circumference (WC), were measured in all subjects during their first visit to the outpatient department. Serum T, FBG, FINS, TC, TG, LDL, and HDL levels were measured. PCOS patients were divided into 2 groups based on BMI: group A (BMI <25 kg/m2) and group B (BMI ≥25 kg/m2). Parents of PCOS were accordingly categorized into group C and group D (fathers), and group E and group F (mothers). The associations among ADIPOQ rs12495941, rs17300539, and PCOS were analyzed using the transmission disequilibrium test (TDT). Results A significant association was found between SNP rs17300539 and PCOS in our Chinese population. The levels of TG and FINS and the genotype frequencies of rs17300539 are significantly different between overweight and lean PCOS. No significant association was detected for rs12495941. Conclusions TDT confirms that rs17300539 of ADIPOQ is strongly associated with the risk of PCOS in a Chinese Han population, but rs12495941 of ADIPOQ is not associated with the occurrence of PCOS.
Collapse
Affiliation(s)
- Xianchang Sun
- Department of Physiology, Taishan Medical University, Taian, Shandong, China (mainland)
| | - Xingguo Wu
- Department of Gynaecology, The Central Hospital of Taian, Taian, Shandong, China (mainland)
| | - Yunmin Duan
- Center for Reproductive Medicine, Affiliated Hospital of Taishan Medical University, Taian, Shandong, China (mainland)
| | - Guanghai Liu
- Department of Gynaecology, Affiliated Hospital of Taishan Medical University, Taian, Shandong, China (mainland)
| | - Xinyan Yu
- Center for Reproductive Medicine, The Central Hospital of Taian, Taian, Shandong, China (mainland)
| | - Wenjuan Zhang
- Center for Reproductive Medicine, Affiliated Hospital of Taishan Medical University, Taian, Shandong, China (mainland)
| |
Collapse
|
91
|
|
92
|
Wang Z, Li Z, Ye Y, Xie L, Li W. Oxidative Stress and Liver Cancer: Etiology and Therapeutic Targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7891574. [PMID: 27957239 PMCID: PMC5121466 DOI: 10.1155/2016/7891574] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/30/2016] [Accepted: 10/18/2016] [Indexed: 02/06/2023]
Abstract
Accumulating evidence has indicated that oxidative stress (OS) is associated with the development of hepatocellular carcinoma (HCC). However, the mechanisms remain largely unknown. Normally, OS occurs when the body receives any danger signal-from either an internal or external source-and further induces DNA oxidative damage and abnormal protein expression, placing the body into a state of vulnerability to the development of various diseases such as cancer. There are many factors involved in liver carcinogenesis, including hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, alcohol abuse, and nonalcoholic fatty liver disease (NAFLD). The relationship between OS and HCC has recently been attracting increasing attention. Therefore, elucidation of the impact of OS on the development of liver carcinogenesis is very important for the prevention and treatment of liver cancer. This review focuses mainly on the relationship between OS and the development of HCC from the perspective of cellular and molecular mechanisms and the etiology and therapeutic targets of HCC.
Collapse
Affiliation(s)
- Zhanpeng Wang
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zhuonan Li
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yanshuo Ye
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Lijuan Xie
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wei Li
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
93
|
Impact of statin therapy on plasma adiponectin concentrations: A systematic review and meta-analysis of 43 randomized controlled trial arms. Atherosclerosis 2016; 253:194-208. [DOI: 10.1016/j.atherosclerosis.2016.07.897] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 06/12/2016] [Accepted: 07/12/2016] [Indexed: 11/21/2022]
|
94
|
Different molecular signaling sustaining adiponectin action in breast cancer. Curr Opin Pharmacol 2016; 31:1-7. [PMID: 27552697 DOI: 10.1016/j.coph.2016.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/05/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
Obesity is defined as a chronic and excessive growth of adipose tissue. It is increasingly recognized as an oncogenic factor. Adipose tissue, originally thought as a passive depot for fat metabolism, is now identified as an endocrine organ, secreting a wide array of bioactive molecules known as adipocytokines, which act as key mediators in several obesity-associated diseases. Among these adipocytokines, adiponectin has been proposed as having a key role in the pathogenesis of cardiovascular disease and type 2 diabetes along with other diseases such as obesity-associated malignancies, including breast cancer. New insights into the molecular mechanisms linking adiponectin and mammary tumorigenesis could be useful to identify novel therapeutic approaches to be exploited, particularly in obese women.
Collapse
|
95
|
Lee Y, Yoshitsugu R, Kikuchi K, Joe GH, Tsuji M, Nose T, Shimizu H, Hara H, Minamida K, Miwa K, Ishizuka S. Combination of soya pulp and Bacillus coagulans lilac-01 improves intestinal bile acid metabolism without impairing the effects of prebiotics in rats fed a cholic acid-supplemented diet. Br J Nutr 2016; 116:603-10. [PMID: 27464459 DOI: 10.1017/s0007114516002270] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intestinal bacteria are involved in bile acid (BA) deconjugation and/or dehydroxylation and are responsible for the production of secondary BA. However, an increase in the production of secondary BA modulates the intestinal microbiota due to the bactericidal effects and promotes cancer risk in the liver and colon. The ingestion of Bacillus coagulans improves constipation via the activation of bowel movement to promote defaecation in humans, which may alter BA metabolism in the intestinal contents. BA secretion is promoted with high-fat diet consumption, and the ratio of cholic acid (CA):chenodeoxycholic acid in primary BA increases with ageing. The dietary supplementation of CA mimics the BA environment in diet-induced obesity and ageing. We investigated whether B. coagulans lilac-01 and soya pulp influence both BA metabolism and the maintenance of host health in CA-supplemented diet-fed rats. In CA-fed rats, soya pulp significantly increased the production of secondary BA such as deoxycholic acid and ω-muricholic acids, and soya pulp ingestion alleviated problems related to plasma adiponectin and gut permeability in rats fed the CA diet. The combination of B. coagulans and soya pulp successfully suppressed the increased production of secondary BA in CA-fed rats compared with soya pulp itself, without impairing the beneficial effects of soya pulp ingestion. In conclusion, it is possible that a combination of prebiotics and probiotics can be used to avoid an unnecessary increase in the production of secondary BA in the large intestine without impairing the beneficial functions of prebiotics.
Collapse
Affiliation(s)
- Yeonmi Lee
- 1Research Faculty of Agriculture,Hokkaido University,Sapporo 060-8589,Japan
| | - Reika Yoshitsugu
- 1Research Faculty of Agriculture,Hokkaido University,Sapporo 060-8589,Japan
| | - Keidai Kikuchi
- 1Research Faculty of Agriculture,Hokkaido University,Sapporo 060-8589,Japan
| | - Ga-Hyun Joe
- 1Research Faculty of Agriculture,Hokkaido University,Sapporo 060-8589,Japan
| | - Misaki Tsuji
- 1Research Faculty of Agriculture,Hokkaido University,Sapporo 060-8589,Japan
| | - Takuma Nose
- 1Research Faculty of Agriculture,Hokkaido University,Sapporo 060-8589,Japan
| | - Hidehisa Shimizu
- 1Research Faculty of Agriculture,Hokkaido University,Sapporo 060-8589,Japan
| | - Hiroshi Hara
- 1Research Faculty of Agriculture,Hokkaido University,Sapporo 060-8589,Japan
| | | | | | - Satoshi Ishizuka
- 1Research Faculty of Agriculture,Hokkaido University,Sapporo 060-8589,Japan
| |
Collapse
|
96
|
Robak O, Kuzmina Z, Winkler A, Kalhs P, Rabitsch W, Greinix H. Adiponectin and resistin in acute and chronic graft-vs-host disease patients undergoing allogeneic hematopoietic stem cell transplantation. Croat Med J 2016; 57:255-65. [PMID: 27374827 PMCID: PMC4937231 DOI: 10.3325/cmj.2016.57.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aim To investigate the association of adiponectin and resistin levels in patients undergoing hematopoietic stem cell transplantation (HSCT) with the clinical outcome, including the occurrence of acute and chronic graft-vs-host disease (GVHD), non-relapse mortality, and overall survival. Methods We prospectively collected serum samples from 40 patients undergoing either autologous (n = 12; 10 male) or allogeneic (n = 28; 11 male) HSCT for up to 12 months post HSCT and determined adiponectin and resistin serum concentrations using enzyme-linked immunosorbent assay. Results There were no significant differences in adiponectin levels (18.5 vs 9.3 µg/mL, P = 0.071) and adiponectin/BMI ratio (0.82 vs 0.39, P = 0.068) between patients with acute GVHD grades 2-4 and autologous controls. However, resistin values were significantly lower in patients with acute GVHD grades 2-4 than in autologous controls (4.6 vs 7.3 ng/mL, P = 0.030). Adiponectin levels were higher in patients with chronic GVHD (n = 17) than in autologous controls (13.5 vs 7.6 µg/mL, P = 0.051), but the difference was not significant. Adiponectin/BMI ratio was significantly higher in patients with chronic GVHD than in autologous controls (0.59 vs 0.25, P = 0.006). Patients dying from relapse also had significantly lower adiponectin levels (8.2 µg/mL) and adiponectin/BMI ratio (0.3) on admission than surviving allogeneic (15.8 µg/mL, P = 0.030 and 0.7, P = 0.004) and surviving autologous patients (19.2 µg/mL, P = 0.031 and 0.7, P = 0.021). Conclusion Adiponectin and resistin levels were altered in patients with acute and chronic GVHD compared to autologous controls and were associated with overall survival and relapse mortality in patients undergoing allogeneic HSCT.
Collapse
Affiliation(s)
- Oliver Robak
- Oliver Robak, Department of Internal Medicine I, Intensive Care Unit, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria,
| | | | | | | | | | | |
Collapse
|
97
|
Wang H, Wu J, Gu W, Wang B, Wan F, Dai B, Zhang H, Shi G, Shen Y, Zhu Y, Zhu Y, Ye D. Serum Adiponectin Level May be an Independent Predictor of Clear Cell Renal Cell Carcinoma. J Cancer 2016; 7:1340-6. [PMID: 27390609 PMCID: PMC4934042 DOI: 10.7150/jca.14716] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/24/2016] [Indexed: 11/10/2022] Open
Abstract
Objectives: To examine whether serum adiponectin or leptin level has the ability to differentiate clear cell renal cell carcinoma (ccRCC) from other subtypes of renal cell carcinoma (RCC) in a Chinese population. Patients and methods: We recruited 198 consecutive patients who were treated with radical or partial nephrectomy in our department from September 2011 to June 2013. Their histological types were all malignant, including clear cell, papillary, chromophobe and unclassified RCC. We also enrolled 86 people with no cancer or cancer-related diseases as normal controls. We measured patients' preoperative blood samples for plasma adiponectin and leptin concentrations using an enzyme-linked immunosorbent assay method. Statistical methods were used to analyze ccRCC and other subtypes as they relate to serum adiponectin/leptin level and other factors such as body mass index or visceral fat area. Results: In our database, normal controls had significantly higher circulating adiponectin (p < 0.001) and leptin levels (p < 0.001) than patients with RCC. Among the 198 RCC patients, 156 patients had ccRCC while 42 patients had other histological types. Serum adiponectin levels were lower in ccRCC patients than in non-clear-cell RCC patients (p = 0.004). However, the plasma leptin level was not differently distributed between ccRCC and non-ccRCC patients (p = 0.940). In multivariate analysis, we found that serum adiponectin level may be an independent predictor for discriminating ccRCC patients from others (p = 0.004). Furthermore, in the ccRCC subgroup, we observed that men with ccRCC had lower leptin (p < 0.001) and adiponectin (p = 0.002) levels, and diabetic patients had lower plasma adiponectin levels (p = 0.001). Conclusions: Lower plasma adiponectin concentration was related to an increased incidence of ccRCC and may act as an independent predictor for ccRCC. Our study may help define the process from obesity to adipose tissue, to cytokines and finally to ccRCC.
Collapse
Affiliation(s)
- Hongkai Wang
- 1. Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; 2. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai China
| | - Junlong Wu
- 1. Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; 2. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai China
| | - Weijie Gu
- 1. Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; 2. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai China
| | - Beihe Wang
- 1. Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; 2. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai China
| | - Fangning Wan
- 1. Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; 2. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai China
| | - Bo Dai
- 1. Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; 2. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai China
| | - Hailiang Zhang
- 1. Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; 2. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai China
| | - Guohai Shi
- 1. Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; 2. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai China
| | - Yijun Shen
- 1. Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; 2. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai China
| | - Yiping Zhu
- 1. Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; 2. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai China
| | - Yao Zhu
- 1. Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; 2. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai China
| | - Dingwei Ye
- 1. Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; 2. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai China
| |
Collapse
|
98
|
Han YH, Kee JY, Park J, Kim HL, Jeong MY, Kim DS, Jeon YD, Jung Y, Youn DH, Kang J, So HS, Park R, Lee JH, Shin S, Kim SJ, Um JY, Hong SH. Arctigenin Inhibits Adipogenesis by Inducing AMPK Activation and Reduces Weight Gain in High-Fat Diet-Induced Obese Mice. J Cell Biochem 2016; 117:2067-77. [PMID: 26852013 DOI: 10.1002/jcb.25509] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/04/2016] [Indexed: 01/03/2023]
Abstract
Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti-inflammation, anti-cancer, and antioxidant, there have been no reports on the anti-obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti-obesity effect and mediates the AMP-activated protein kinase (AMPK) pathway. We investigated the anti-adipogenic effect of ARC using 3T3-L1 pre-adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). In high-fat diet (HFD)-induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD-induced obese mice. ARC also inhibited the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down-modulation of adipogenesis-related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067-2077, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yo-Han Han
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Jinbong Park
- Department of Pharmacology, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hye-Lin Kim
- Department of Pharmacology, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Mi-Young Jeong
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea.,Department of Pharmacology, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Dae-Seung Kim
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Yong-Deok Jeon
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Yunu Jung
- Department of Pharmacology, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Dong-Hyun Youn
- Department of Pharmacology, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - JongWook Kang
- Department of Pharmacology, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hong-Seob So
- Center for Metabolic Function Regulation, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Raekil Park
- Center for Metabolic Function Regulation, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Jong-Hyun Lee
- College of Pharmacy, Dongduk Women's University, 60 Hwarang-ro 13-gil, Seongbuk-gu, Seoul, 02748, Republic of Korea
| | - Soyoung Shin
- Department of Pharmacy, College of Pharmacy, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Su-Jin Kim
- Department of Cosmeceutical Science, Daegu Hanny University, 1 Haanydaero, Gyeongsan-si, Gyeongsangbuk-Do, 38610, Republic of Korea
| | - Jae-Young Um
- Department of Pharmacology, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Seung-Heon Hong
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| |
Collapse
|
99
|
Comim FV, Gutierrez K, Bridi A, Bochi G, Chemeris R, Rigo ML, Dau AMP, Cezar AS, Moresco RN, Gonçalves PBD. Effects of Adiponectin Including Reduction of Androstenedione Secretion and Ovarian Oxidative Stress Parameters In Vivo. PLoS One 2016; 11:e0154453. [PMID: 27158926 PMCID: PMC4861339 DOI: 10.1371/journal.pone.0154453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/13/2016] [Indexed: 12/19/2022] Open
Abstract
Adiponectin is the most abundantly produced human adipokine with anti-inflammatory, anti-oxidative, and insulin-sensitizing properties. Evidence from in vitro studies has indicated that adiponectin has a potential role in reproduction because it reduces the production of androstenedione in bovine theca cells in vitro. However, this effect on androgen production has not yet been observed in vivo. The current study evaluated the effect of adiponectin on androstenedione secretion and oxidative stress parameters in a rodent model. Seven-week-old female Balb/c mice (n = 33), previously treated with equine gonadotropin chorionic, were assigned to one of four different treatments: Group 1, control (phosphate-buffered saline); Group 2, adiponectin 0.1 μg/mL; Group 3, adiponectin 1.0 μg/mL; Group 4, adiponectin 5.0 μg/mL. After 24 h, all animals were euthanized and androstenedione levels were measured in the serum while oxidative stress markers were quantified in whole ovary tissue. Female mice treated with adiponectin exhibited a significant reduction (about 60%) in serum androstenedione levels in comparison to controls. Androstenedione levels decreased from 0.78 ± 0.4 ng/mL (mean ± SD) in controls to 0.28 ± 0.06 ng/mL after adiponectin (5 μg/mL) treatment (P = 0.01). This change in androgen secretion after 24 hours of treatment was associated with a significant reduction in the expression of CYP11A1 and STAR (but not CYP17A1). In addition, ovarian AOPP product levels, a direct product of protein oxidation, decreased significantly in adiponectin-treated mice (5 μg/mL); AOPP (mean ± SD) decreased to 4.3 ± 2.1 μmol/L in comparison with that of the controls (11.5 ± 1.7 μmol/L; P = 0.0003). Our results demonstrated for the first time that acute treatment with adiponectin reduced the levels of a direct oxidative stress marker in the ovary as well as decreased androstenedione serum levels in vivo after 24 h.
Collapse
Affiliation(s)
- Fabio V. Comim
- Department of Clinical Medicine, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
- Laboratory of Biotechnology and Animal Reproduction (BioRep), Federal University of Santa Maria (UFSM), Santa Maria, Brazil
- * E-mail:
| | - Karina Gutierrez
- Laboratory of Biotechnology and Animal Reproduction (BioRep), Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Alessandra Bridi
- Laboratory of Biotechnology and Animal Reproduction (BioRep), Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Guilherme Bochi
- Laboratory of Clinical Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Raisa Chemeris
- Laboratory of Biotechnology and Animal Reproduction (BioRep), Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Melânia L. Rigo
- Laboratory of Biotechnology and Animal Reproduction (BioRep), Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Andressa Minussi P. Dau
- Laboratory of Biotechnology and Animal Reproduction (BioRep), Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Alfredo S. Cezar
- Laboratory of Biotechnology and Animal Reproduction (BioRep), Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Rafael Noal Moresco
- Laboratory of Clinical Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Paulo Bayard Dias Gonçalves
- Laboratory of Biotechnology and Animal Reproduction (BioRep), Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| |
Collapse
|
100
|
Abstract
Adiponectin (APN), an adipokine produced by adipocytes, has been shown to have a critical role in the pathogenesis of obesity-associated malignancies. Through its receptor interactions, APN may exert its anti-carcinogenic effects including regulating cell survival, apoptosis and metastasis via a plethora of signalling pathways. Despite the strong evidence supporting this notion, some work may indicate otherwise. Our review addresses all controversies critically. On the whole, hypoadiponectinaemia is associated with increased risk of several malignancies and poor prognosis. In addition, various genetic polymorphisms may predispose individuals to increased risk of obesity-associated malignancies. We also provide an updated summary on therapeutic interventions to increase APN levels that are of key interest in this field. To date efforts to manipulate APN levels have been promising, but much work remains to be done.
Collapse
Affiliation(s)
- Arnav Katira
- UCL Medical School, UCL Faculty of Medical Science, University College London, London WC1E 6BT, UK
| | - Peng H Tan
- UCL Medical School, UCL Faculty of Medical Science, University College London, London WC1E 6BT, UK; Breast Unit, Whittington Health, London N19 5NF, UK
| |
Collapse
|