51
|
Ying GX, Huang C, Jiang ZH, Liu X, Jing NH, Zhou CF. Up-regulation of cystatin C expression in the murine hippocampus following perforant path transections. Neuroscience 2002; 112:289-98. [PMID: 12044447 DOI: 10.1016/s0306-4522(02)00083-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cystatins are endogenous cysteine protease inhibitors that modulate the turnover of intracellular and extracellular proteins. These inhibitors are strongly implicated in a variety of pathological processes such as tumor metastasis and many degenerating CNS disorders. Here we report the expression of cystatin C, a major cysteine protease inhibitor of mammalian animals, in the murine hippocampus at 3, 7, 15 and 30 days following perforant path transections. Northern blot analysis showed that cystatin C transcripts were up-regulated in a transient manner with a significant increase at 7 and 15 days post-lesion (219% and 185% of control, respectively) in the rat hippocampus after entorhinal deafferentation. In situ hybridization and immunohistochemistry confirmed the time-dependent up-regulation of both cystatin C mRNA and protein expressions in a mouse model which initiated at 3 days post-lesion, reached maximal levels 7-15 days post-lesion, and remained slightly elevated by day 30 post-lesion. The modulation of cystatin C expression was observed to occur specifically in the entorhinally denervated zones: the stratum lacunosum-moleculare of the hippocampus and the outer molecular layer of the dentate gyrus. Double labeling by either a combination of in situ hybridization for cystatin C with immunohistochemistry for glial fibrillary acidic protein or double immunofluorescence staining for both proteins in mouse hippocampus at 7 and 15 days post-lesion revealed that most cystatin C-expressing cells are astrocytes. From these results we suggest that the spatiotemporal up-regulation of cystatin C in the hippocampus is induced by entorhinal deafferentation and that cystatin C may be involved in the astroglia-mediated neural plasticity events in the hippocampus following perforant path transections.
Collapse
Affiliation(s)
- G-X Ying
- Key Laboratory of Neurobiology, Shanghai Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
52
|
Higgins GA, Enderlin M, Fimbel R, Haman M, Grottick AJ, Soriano M, Richards JG, Kemp JA, Gill R. Donepezil reverses a mnemonic deficit produced by scopolamine but not by perforant path lesion or transient cerebral ischaemia. Eur J Neurosci 2002; 15:1827-40. [PMID: 12081663 DOI: 10.1046/j.1460-9568.2002.02018.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of these studies were threefold. Firstly, to further characterize the effect of perforant path transection on a test of short-term memory: delayed matching (or nonmatching)-to-position [D(N)MTP]. Secondly, to evaluate the effect of a transient cerebral ischaemia in the same task. Both surgical procedures were chosen as they produce a CNS lesion similar to that described in Alzheimer's Disease (AD). Thirdly, the effect of the acetylcholinesterase inhibitor, donepezil (Aricept(R), E2020), on the resulting cognitive impairment was studied. Perforant path transection produced a robust, delay-dependent impairment of choice accuracy in rats performing either a delayed matching- or nonmatching-to-position task. Sample latency was also reduced following lesion, yet the lesion-induced impairment was not affected by increasing the response requirement at the sample stage. An 11-min period of transient ischaemia (two-vessel occlusion model) resulted in almost complete loss of hippocampal CA1 pyramidal cells and a delay-dependent impairment in DMTP performance. However, unlike perforant path lesions, this deficit was unstable and declined in magnitude over the experimental period. Increasing the delay interval restored this deficit. Donepezil, at doses that robustly attenuated a scopolamine (0.06 mg/kg s.c.)-induced DMTP accuracy impairment in naïve, unoperated rats, had no effect against either lesion-induced impairment. The results are considered in terms of the effectiveness of acetylcholinesterase inhibitors in noncholinergic-based preclinical cognitive models.
Collapse
Affiliation(s)
- G A Higgins
- PRBN, F. Hoffmann La-Roche AG., Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Low levels of estrogen significantly diminish axonal sprouting after entorhinal cortex lesions in the mouse. J Neurosci 2002. [PMID: 12019328 DOI: 10.1523/jneurosci.22-10-04095.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study tested the hypothesis that estrogen enhances axonal sprouting in the hippocampal formation in the female mouse. The entorhinal cortex was unilaterally lesioned with ibotenic acid in control mice and in ovariectomized mice that were treated with a high dose of, a moderate dose of, or zero estrogen supplementation pellets. Four weeks later the density of staining for synaptophysin immunoreactivity and acetylcholinesterase (AChE) histochemistry was measured in the molecular layer of the dentate gyrus. In control mice, lesions of the lateral part of the entorhinal cortex increased synaptophysin and acetylcholinesterase staining (i.e., indicative of axonal sprouting) in the outer one-third of the molecular layer of the dentate gyrus. Mice receiving high and moderate estrogen supplementation displayed the same sprouting response; however, in ovariectomized mice the sprouting response was significantly reduced (to nearly nothing). Thus, in ovariectomized compared with control mice the lesion-induced sprouting response is severely blunted, and this effect is reversed by estrogen supplementation. Together, these findings suggest that estrogen plays a prominent role in promoting neuronal plasticity and remodeling in the dentate gyrus.
Collapse
|
54
|
Kadish I, Pradier L, van Groen T. Transgenic mice expressing the human presenilin 1 gene demonstrate enhanced hippocampal reorganization following entorhinal cortex lesions. Brain Res Bull 2002; 57:587-94. [PMID: 11927360 DOI: 10.1016/s0361-9230(01)00751-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have examined the effects of the presence of the mutated human presenilin 1 gene (M146L; hps1*) on lesion-induced sprouting in the hippocampus of the mouse (C57/CBA). The entorhinal cortex was unilaterally lesioned with ibotenic acid in adult, male mice. Four weeks later the subsequent axonal sprouting in the dentate gyrus was analysed, by measuring the density of the synaptophysin immunocytochemical staining in the termination area of the entorhinal cortex axons. The data demonstrate that mice expressing either the human presenilin 1 gene (hps1) or the hps1* gene display a significantly increased density of immunocytochemical staining for synaptophysin, indicative of axonal sprouting, compared to the control mice. No (or a very small) sprouting response is observed in mice expressing the normal mouse ps1 gene. Taken together, these data indicate that the presence of a human ps1 gene, normal or with an Alzheimer's disease mutation, leads to enhanced plasticity in the mouse brain.
Collapse
Affiliation(s)
- Inga Kadish
- Department of Neuroscience and Neurology, University of Kuopio, FIN 70211 Kuopio, Finland
| | | | | |
Collapse
|
55
|
Ying G, Huang C, Jing N, Zhou C. Identification of differentially expressed genes in the denervated rat hippocampus by cDNA arrays. Neurosci Lett 2001; 306:121-5. [PMID: 11403972 DOI: 10.1016/s0304-3940(01)01882-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To elucidate the molecular mechanism underlying the physiological responses to injury in the central nervous system, gene expression profiles in rodent hippocampus following perforant path transection were investigated using cDNA array hybridization. Of the 8000 arrayed clones, 47 exhibited differential expression by >3-fold difference in the denervated hippocampus from control, with 15 up-regulated and 22 down-regulated. They can be functionally assigned into several classes, among which the most prominent are those coding proteins involved in macromolecules synthesis and processing. Northern blot analysis verified the validation of the aforementioned array data. These results throw some new light on the physiological responses of the hippocampus to entorhinal deafferentation at molecular level.
Collapse
Affiliation(s)
- G Ying
- Laboratory of Neurobiology, Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, 200031, P.R., Shanghai, China
| | | | | | | |
Collapse
|
56
|
Davachi L, Goldman-Rakic PS. Primate rhinal cortex participates in both visual recognition and working memory tasks: functional mapping with 2-DG. J Neurophysiol 2001; 85:2590-601. [PMID: 11387403 DOI: 10.1152/jn.2001.85.6.2590] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rhinal cortex in the medial temporal lobe has been implicated in object recognition memory tasks and indeed is considered to be the critical node in a visual memory network. Previous studies using the 2-deoxyglucose method have shown that thalamic and hippocampal structures thought to be involved in visual recognition memory are also engaged by spatial and object working memory tasks in the nonhuman primate. Networks engaged in memory processing can be recognized by analysis of patterns of activation accompanying performance of specifically designed tasks. In the present study, we compared metabolic activation of the entorhinal and perirhinal cortex during the performance of three working memory tasks [delayed response (DR), delayed alternation (DA), and delayed object alternation (DOA)] to that induced by a standard recognition memory task [delayed match-to-sample (DMS)] and a sensorimotor control task in rhesus monkeys. A region-of-interest analysis revealed elevated local cerebral glucose utilization in the perirhinal cortex in animals performing the DA, DOA, and DMS tasks, and animals performing the DMS task were distinct in showing a strong focus of activation in the lateral perirhinal cortex. No significant differences were evident between groups performing memory and control tasks in the entorhinal cortex. These findings suggest that the perirhinal cortex may play a much broader role in memory processing than has been previously thought, encompassing explicit working memory as well as recognition memory.
Collapse
Affiliation(s)
- L Davachi
- Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06511, USA.
| | | |
Collapse
|
57
|
Hein C, Horváth E, Kugler P. Glutamate transporter expression in astrocytes of the rat dentate gyrus following lesion of the entorhinal cortex. Eur J Neurosci 2001; 13:1839-48. [PMID: 11403677 DOI: 10.1046/j.0953-816x.2001.01559.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The glutamate transporters GLT-1 and GLAST localized in astrocytes are essential in limiting transmitter signalling and restricting harmful receptor overstimulation. To show changes in the expression of both transporters following lesion of the entorhinal cortex (and degeneration of the glutamatergic tractus perforans), quantitative microscopic in situ hybridization (ISH) using alkaline-phosphatase-labelled oligonucleotide probes was applied to the outer molecular layer of the hippocampal dentate gyrus of rats (termination field of the tractus perforans). Four groups of rats were studied: sham-operated controls, and animals 3, 14 and 60 days following unilateral electrolytic lesion of the entorhinal cortex. The postlesional shrinkage of the terminal field of the perforant path, ipsilateral to the lesion side, was determined and considered in the evaluation of quantitative ISH data. Statistical analysis revealed that ipsilateral to the lesion side there was a significant decrease of the GLT-1 mRNA at every postlesional time-point and of the GLAST mRNA at 14 and 60 days postlesion. The maximal decrease was approximately 45% for GLT-1 and approximately 35% for GLAST. In the terminal field of the perforant path contralateral to the lesion side, no significant changes of ISH labelling were measured. The results were complemented by immunocytochemical data achieved using antibodies against synthetic GLT-1 and GLAST peptides. In accordance with ISH results, there was an obvious decrease of GLT-1 and GLAST immunostaining in the terminal field of the perforant path ipsilateral to the lesion side. From these data we conclude that, following a lesioning of the entorhinal cortex, the loss of glutamatergic synapses in the terminal field of the perforant path resulted in a strong downregulation of glutamate transporters in astrocytes. The decrease of synaptically released glutamate or of other neuronal factors could be involved in this downregulation.
Collapse
Affiliation(s)
- C Hein
- Institute of Anatomy, University of Würzburg, Koellikerstrasse 6, D-97070 Würzburg, Germany; Pharma Research CNS, Bayer AG, Aprather Weg 18a, D-42096 Wuppertal, Germany
| | | | | |
Collapse
|
58
|
Gerrikagoitia I, García Del Caño G, Martínez-Millán L. Changes of the cholinergic input to the superior colliculus following enucleation in neonatal and adult rats. Brain Res 2001; 898:61-72. [PMID: 11292449 DOI: 10.1016/s0006-8993(01)02142-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of neonatal and adult enucleation on the adult pattern of cholinergic inputs to the rat superior colliculus (SC) was analysed. In the superficial layers immunohistochemical labelling revealed that choline acetyltransferase (ChAT) was predominantly confined to single boutons which were almost continuously distributed throughout the rostrocaudal and lateromedial axes. In these layers a higher density of boutons was observed in the stratum zonale (SZ) and lower stratum griseum superficiale (SGSl) than in the upper stratum griseum superficiale (SGS(u)) and stratum opticum (SO). In intermediate collicular layers ChAT-immunostaining was mainly found in axonal profiles which were arranged in a patchy fashion. Neonatal enucleation caused a drastic increase in bouton density in the SZ, SGS(u) and SGSl. The density of boutons was particularly high in the SGS(u), giving the appearance of an almost homogeneous distribution of boutons from the collicular surface down to the upper limit of SO. Visual deafferentiation at the adult stage was followed by an increase in the bouton density exclusively in the SZ. Neonatal enucleation produced a dorsoventral enlargement of the region containing patches of ChAT staining which was slightly greater following adult deafferentiation. The results described here show that after visual deafferentiation an increase in ChAT innervation to superficial and intermediate collicular layers occurs, providing new information regarding plasticity in the visual system. In view of previous data on cholinergic function in the central nervous system, such an increase could compensate for the loss of retinal excitatory input by facilitating neuronal responses in the SC.
Collapse
Affiliation(s)
- I Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine, University of the Basque Country, 48940-Leioa, Bizkaia, Spain
| | | | | |
Collapse
|
59
|
Bechmann I, Peter S, Beyer M, Gimsa U, Nitsch R. Presence of B‐7.2 (CD86) and lack of B7‐1 (CD80) on myelin‐phagocytosing MHC‐II positive rat microglia are associated with nondestructive immunity in vivo. FASEB J 2001. [DOI: 10.1096/fsb2fj000563fje] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ingo Bechmann
- Institute of Anatomy, Department of Cell and Neurobiology Humboldt‐University Hospital Charité 10098 Berlin Germany
| | - Susanne Peter
- Institute of Anatomy, Department of Cell and Neurobiology Humboldt‐University Hospital Charité 10098 Berlin Germany
| | - Martin Beyer
- Clinic of Neurology, Department of Clinical Neuroimmunology Humboldt‐University Hospital Charité 10098 Berlin Germany
| | - Ulrike Gimsa
- Clinic of Neurology, Department of Clinical Neuroimmunology Humboldt‐University Hospital Charité 10098 Berlin Germany
| | - Robert Nitsch
- Institute of Anatomy, Department of Cell and Neurobiology Humboldt‐University Hospital Charité 10098 Berlin Germany
| |
Collapse
|
60
|
Haas CA, Deller T, Krsnik Z, Tielsch A, Woods A, Frotscher M. Entorhinal cortex lesion does not alter reelin messenger RNA expression in the dentate gyrus of young and adult rats. Neuroscience 2000; 97:25-31. [PMID: 10877665 DOI: 10.1016/s0306-4522(00)00007-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The extracellular matrix protein reelin plays an important role in neuronal pattern formation and axonal collateralization during the development of the central nervous system. With the concept that reelin might also be important for axonal growth in the injured nervous system we investigated whether reelin is re-expressed in areas of collateral sprouting after brain injury. The expression of reelin messenger RNA was studied in the denervated fascia dentata of adult rats one, four, seven and 14 days following entorhinal cortex lesion. In adult control animals, in situ hybridization histochemistry with digoxigenin-labeled reelin riboprobes revealed reelin messenger RNA expression in neurons located in the outer molecular layer and beneath the granule cell layer of the dentate gyrus. After entorhinal cortex lesion, this expression pattern did not change during the whole post-lesional time period investigated despite a strong glial activation and reactive sprouting in the outer molecular layer of the dentate gyrus as visualized by immunohistochemistry for glial fibrillary acidic protein and acetylcholinesterase histochemistry, respectively. The expression of reelin messenger RNA was also unaffected by entorhinal cortex lesion in the dentate gyrus of young animals (postnatal day seven), where an even stronger sprouting response occurs.
Collapse
Affiliation(s)
- C A Haas
- Institute of Anatomy, University of Freiburg, P.O. Box 111, D-79001, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
61
|
Thon N, Haas CA, Rauch U, Merten T, Fässler R, Frotscher M, Deller T. The chondroitin sulphate proteoglycan brevican is upregulated by astrocytes after entorhinal cortex lesions in adult rats. Eur J Neurosci 2000; 12:2547-58. [PMID: 10947829 DOI: 10.1046/j.1460-9568.2000.00109.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chondroitin sulphate proteoglycan brevican is one of the most abundant extracellular matrix molecules in the adult rat brain. It is primarily synthesized by astrocytes and is believed to influence astroglial motility during development and under certain pathological conditions. In order to study a potential role of brevican in the glial reaction after brain injury, its expression was analysed following entorhinal cortex lesion in rats (12 h, 1, 2, 4, 10, 14 and 28 days and 6 months post lesion). In situ hybridization and immunohistochemistry were employed to study brevican mRNA and protein, respectively, in the denervated outer molecular layer of the fascia dentata and at the lesion site. In both regions brevican mRNA was upregulated between 1 and 4 days post lesion. The combination of in situ hybridization with immunohistochemistry for glial fibrillary acidic protein demonstrated that many brevican mRNA-expressing cells are astrocytes. In the denervated zone of the fascia dentata, immunostaining for brevican was increased by 4 days, reached a maximum by 4 weeks and remained detectable up to 6 months post lesion. Electron microscopic immunocytochemistry showed that brevican is a component of the extracellular matrix compartment. At the lesion site a similar time course of brevican upregulation was observed. These data demonstrate that brevican is upregulated in areas of brain damage as well as in areas denervated by a lesion. They suggest a role of brevican in reactive gliosis and are compatible with the hypothesis that brevican is involved in the synaptic reorganization of denervated brain areas.
Collapse
Affiliation(s)
- N Thon
- Institute of Anatomy, University of Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
62
|
Bechmann I, Nitsch R. Involvement of non-neuronal cells in entorhinal-hippocampal reorganization following lesions. Ann N Y Acad Sci 2000; 911:192-206. [PMID: 10911875 DOI: 10.1111/j.1749-6632.2000.tb06727.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Entorhinal lesion leads to anterograde degeneration of perforant path fibers in their main hippocampal termination zones. Subsequently, remaining fibers sprout and form new synapses on the denervated dendrites. This degeneration and reorganization is accompanied by sequential changes in glial morphology and function. Within a few hours following the lesion, amoeboid microglia migrate into the zone of denervation. Some hours later, signs of activation can be seen on astrocytes in the zone of denervation, where both cell types proliferate and remain in an activated state for more than two weeks. These activated glial cells might be involved in lesion-induced plasticity in at least two ways: (1) by releasing cytokines and growth factors which regulate layer-specific sprouting and (2) by phagocytosis of axonal debris, because myelin sheaths act as obstacles for sprouting fibers in the central nervous system. Whereas direct evidence for the former is still missing, the latter was investigated using phagocytosis-dependent labeling techniques. Both microglial cells and astrocytes incorporate axonal debris. Phagocytosing microglial cells develop the immune phenotype of antigen-presenting cells, whereas astrocytes strongly express FasL (CD95L), which induces apoptosis of activated lymphocytes. Thus, the interaction of glial cells with immune cells might be another, previously underestimated, aspect of reorganization following entorhinal lesion.
Collapse
Affiliation(s)
- I Bechmann
- Department of Cell and Neurobiology, Humboldt-University Hospital Charité, Berlin, Germany
| | | |
Collapse
|
63
|
Savaskan NE, Eyüpoglu IY, Bräuer AU, Plaschke M, Ninnemann O, Nitsch R, Skutella T. Entorhinal cortex lesion studied with the novel dye fluoro-jade. Brain Res 2000; 864:44-51. [PMID: 10793185 DOI: 10.1016/s0006-8993(00)02148-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We used the fluorescent dye Fluoro-Jade, capable of selectively staining degenerating neurons and their processes, in order to analyze degenerative effects of transecting the hippocampus from its main input, the entorhinal cortex in vivo and in organotypical hippocampal slice culture. Degenerating fibers stained with Fluoro-Jade were present as early as 1 day postlesion in the outer molecular layer of the dentate gyrus and could be detected up to 30 days postlesion. However, the intensity of the Fluoro-Jade staining in the outer molecular layer faded from postlesional day 20 onward. Punctate staining, various cells and neural processes became visible in this area suggesting that degenerating processes were phagocytosed by microglial cells or astrocytes. We conclude that Fluoro-Jade is an early and sensitive marker for studying degenerating neurites in the hippocampal system.
Collapse
Affiliation(s)
- N E Savaskan
- Department of Cell and Neurobiology, Institute of Anatomy, Humboldt-University Hospital Charité, Philippstr. 12, 10115, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
64
|
Jensen MB, Poulsen FR, Finsen B. Axonal sprouting regulates myelin basic protein gene expression in denervated mouse hippocampus. Int J Dev Neurosci 2000; 18:221-35. [PMID: 10715577 DOI: 10.1016/s0736-5748(99)00091-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The regulation of oligodendrocyte gene expression and myelination in vivo in the normal and injured adult CNS is still poorly understood. We have analyzed the effects of axotomy-induced axonal sprouting and microglial activation, on oligodendrocyte myelin basic protein (MBP) gene expression from 2 to 35 days after transection of the entorhino-hippocampal perforant path axonal projection. In situ hybridization analysis showed that anterograde axonal and terminal degeneration lead to upregulated oligodendrocyte MBP mRNA expression starting between day 2 and day 4, in (1) the deep part of stratum radiatum of CA3 and the dentate hilus, which display axonal sprouting but no degenerative changes or microglial activation, and (2) the outer part of the molecular layer of the fascia dentata, and in stratum moleculare of CA3 and stratum lacunosum-moleculare of CA1, areas that display dense anterograde axonal and terminal degeneration, myelin degenerative changes, microglial activation and axotomi-induced axonal sprouting. Oligodendrocyte MBP mRNA expression reached maximum in both these areas at day 7. MBP gene transcription remained constant in stratum radiatum, stratum pyramidale and stratum oriens of CA1, areas that were unaffected by perforant path transection. These results provide strong evidence that oligodendrocyte MBP gene expression can be regulated by axonal sprouting independently of microglial activation in the injured adult CNS.
Collapse
Affiliation(s)
- M B Jensen
- Department of Anatomy, Institute of Medical Biology, University of Southern Denmark/Odense University, Winslowparken 21, 5000, DK-Odense C, Denmark.
| | | | | |
Collapse
|
65
|
Finsen B, Jensen MB, Lomholt ND, Hegelund IV, Poulsen FR, Owens T. Axotomy-induced glial reactions in normal and cytokine transgenic mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 468:157-71. [PMID: 10635027 DOI: 10.1007/978-1-4615-4685-6_13] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- B Finsen
- Department of Anatomy and Cell Biology, Odense University, Denmark
| | | | | | | | | | | |
Collapse
|
66
|
Entorhinal cortex lesion in adult rats induces the expression of the neuronal chondroitin sulfate proteoglycan neurocan in reactive astrocytes. J Neurosci 1999. [PMID: 10559403 DOI: 10.1523/jneurosci.19-22-09953.1999] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The chondroitin sulfate proteoglycan neurocan is a major component of brain extracellular matrix during development. Neurocan is primarily synthesized by neurons and has the ability to interact with cell adhesion molecules involved in the regulation of cell migration and axonal growth. Within the first weeks postnatally, neurocan expression is strongly downregulated. To test whether neurocan is reexpressed in areas of axonal growth (sprouting) after brain injury, the time course of neurocan expression was analyzed in the denervated fascia dentata of the rat after entorhinal cortex lesion (12 hr; 1, 2, 4, and 10 d; 2 and 4 weeks; and 6 months after lesion). In the denervated zone, immunohistochemistry revealed neurocan-positive astrocytes by 2 d after lesion and a diffuse labeling of the extracellular matrix at all later time points. Electron microscopy confirmed the deposition of neurocan in the extracellular matrix compartment. In situ hybridization demonstrated a strong upregulation of neurocan mRNA within the denervated outer molecular layer 1 and 4 d after lesion. The combination of in situ hybridization with immunohistochemistry for glial fibrillary acidic protein demonstrated that the neurocan mRNA-expressing cells are astrocytes. These data demonstrate that neurocan is reexpressed in the injured brain. In contrast to the situation during development, astrocytes, but not neurons, express neurocan and enrich the extracellular matrix with this molecule. Similar to the situation during development, neurocan is expressed in an area of active axon growth, and it is suggested that neurocan acts to maintain the boundaries of the denervated fascia dentata after entorhinal cortex lesion.
Collapse
|
67
|
Meguro K, Blaizot X, Kondoh Y, Le Mestric C, Baron JC, Chavoix C. Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer's disease. Brain 1999; 122 ( Pt 8):1519-31. [PMID: 10430835 DOI: 10.1093/brain/122.8.1519] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Temporoparietal glucose hypometabolism, neuronal loss in the basal forebrain cholinergic structures and preferential accumulation of neurofibrillary tangles in the rhinal cortex (i.e. in the entorhinal and perirhinal cortices) are three early characteristics of Alzheimer's disease. Based on studies of the effects of neurotoxic lesions in baboons, we previously concluded that damage to the cholinergic structures plays, at best, a marginal role in the association neocortex hypometabolism of Alzheimer's disease. In the present study, we have assessed the remote metabolic effects of bilateral neurotoxic lesions of both entorhinal and perirhinal cortices. Using coronal PET coregistered with MRI, the cerebral metabolic rate for glucose (CMR(glc)) was measured before surgery and sequentially for 2-3 months afterward (around days 30, 45 and 80). Compared with sham-operated baboons, the lesioned animals showed a significant and long-lasting CMR(glc) decline in a small set of brain regions, especially in the inferior parietal, posterior temporal, posterior cingulate and associative occipital cortices, as well as in the posterior hippocampal region, all of which also exhibit glucose hypometabolism in Alzheimer's disease. Remarkably, the degree of CMR(glc) decline in four of these regions significantly correlated with the severity of histologically determined damage in the rhinal cortex, strongly supporting the specificity of the observed metabolic effects. There were also differences between the metabolic pattern observed in the lesioned animals and that classically reported in Alzheimer's disease; for instance, the hypometabolism we found in the stratum has not been reported in early Alzheimer's disease, although this structure can be affected in late stages of the disease and has direct anatomical connections with the rhinal cortex. Nevertheless, this study shows for the first time that the temporoparietal and hippocampal hypometabolism found in Alzheimer's disease may partly result from neuroanatomical disconnection with the rhinal cortex. This, in turn, further strengthens the hypothesis that neuronal damage and dysfunction in the rhinal cortices play a major role in the expression of Alzheimer's disease.
Collapse
Affiliation(s)
- K Meguro
- INSERM U320 and CEA LRA 10V, Centre Cyceron, University of Caen, France
| | | | | | | | | | | |
Collapse
|
68
|
Woods AG, Poulsen FR, Gall CM. Dexamethasone selectively suppresses microglial trophic responses to hippocampal deafferentation. Neuroscience 1999; 91:1277-89. [PMID: 10391435 DOI: 10.1016/s0306-4522(98)00685-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hippocampal deafferentation increases the expression of insulin-like growth factor-1 by microglia, and of ciliary neurotrophic factor and basic fibroblast growth factor by astroglia in fields and periods of reactive axonal growth. Glucocorticoids attenuate lesion-induced hippocampal sprouting, possibly by reducing trophic signals that stimulate growth. With an interest in this hypothesis, the present studies evaluated the influence of systemic treatment with the synthetic glucocorticoid dexamethasone on entorhinal lesion-induced increases in neurotrophic factor expression in young adult rat hippocampus. Daily dexamethasone injections almost completely blocked increases in insulin-like growth factor-1 messenger RNA content, but did not perturb increases in ciliary neurotrophic factor or basic fibroblast growth factor messenger RNA content, in the deafferented dentate gyrus molecular layer. To determine if the suppression of insulin-like growth factor-1 expression was secondary to a general inhibition of microglial responses, and to identify the time period of glucocorticoid sensitivity, additional rats were prepared to evaluate the effects of semi-chronic (i.e. daily) and single dexamethasone injections on microglial proliferation, ED-1 immunoreactivity (a marker of microglial reactivity) and insulin-like growth factor-1 messenger RNA expression. Semi-chronic dexamethasone treatment attenuated all three measures of deafferentation-induced microglial reactivity. However, a single dexamethasone injection given two (but not one or three) days postlesion inhibited deafferentation-induced increases in insulin-like growth factor-1 messenger RNA content, without having significant effects on other measures. These results demonstrate that dexamethasone treatment preferentially suppresses microglial, as opposed to astroglial, trophic responses to deafferentation, and suggest that glucocorticoids attenuate reactive axonal sprouting by inhibiting the microglial production of insulin-like growth factor-1.
Collapse
Affiliation(s)
- A G Woods
- Department of Anatomy and Neurobiology, University of California, Irvine, 92697-1275, USA
| | | | | |
Collapse
|
69
|
Harrison PS, Henderson Z. Quantitative evidence for increase in galanin-immunoreactive terminals in the hippocampal formation following entorhinal cortex lesions in the adult rat. Neurosci Lett 1999; 266:41-4. [PMID: 10336179 DOI: 10.1016/s0304-3940(99)00247-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The projection from the entorhinal cortex to the dentate gyrus and hippocampus is severely affected in Alzheimer's disease and there is a depletion of cholinergic terminals but an upregulation of the neuropeptide galanin, which inhibits the release of acetylcholine. Evidence for changes to galanin-immunoreactive terminals in the hippocampal formation was therefore examined after unilateral entorhinal cortex lesions in the adult rat. An increase in the density of galanin-immunoreactive terminals on the lesioned side was evident in the stratum lacunosum moleculare of the hippocampus and the outer molecular layer of the dentate gyrus at 17 days post-lesion, and it increased gradually until the last time point examined, at 40 days post-lesion. Thus we demonstrate that there is an increase in galanin-immunoreactive terminals in the hippocampal formation following entorhinal cortex lesions.
Collapse
Affiliation(s)
- P S Harrison
- School of Biomedical Sciences, University of Leeds, UK
| | | |
Collapse
|
70
|
Abstract
To investigate the molecular mechanisms of cholinergic sprouting in the hippocampus after removal of entorhinal cortical inputs, we evaluated trophic factor gene expression in the denervated hippocampus. Despite the proposed role for nerve growth factor (NGF) in this sprouting, we observed no change in NGF mRNA or protein at several postlesion time points. In contrast, FGF-2 mRNA was increased within 16 hr. FGF-2 immunoreactivity was localized within GFAP-positive hypertrophic astrocytes distributed specifically within the denervated outer molecular layer after the lesion. To address the functional significance of this increase in FGF-2, we assessed the magnitude of cholinergic sprouting in animals receiving chronic intracerebroventricular infusions of neutralizing antibodies specific for FGF-2 and compared it with that observed in lesioned animals receiving infusate controls. Animals given FGF-2 antibodies displayed a marked reduction in cholinergic sprouting as compared with controls. In fact, many of these animals exhibited virtually no sprouting at all despite histological verification of complete lesions. These results suggest that endogenous FGF-2 promotes cholinergic axonal sprouting in the injured adult brain. Furthermore, immunocytochemical localization of receptors for FGF-2 (i.e., FGFR1) on projecting basal forebrain cholinergic neurons suggests that FGF-2 acts directly on these neurons to induce the lesion-induced sprouting response.
Collapse
|
71
|
Pouzet B, Welzl H, Gubler MK, Broersen L, Veenman CL, Feldon J, Rawlins JN, Yee BK. The effects of NMDA-induced retrohippocampal lesions on performance of four spatial memory tasks known to be sensitive to hippocampal damage in the rat. Eur J Neurosci 1999; 11:123-40. [PMID: 9987017 DOI: 10.1046/j.1460-9568.1999.00413.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Four separate cohorts of rats were employed to examine the effects of cytotoxic retrohippocampal lesions in four spatial memory tasks which are known to be sensitive to direct hippocampal damage and/or fornix-fimbria lesions in the rat. Selective retrohippocampal lesions were made by means of multiple intracerebral infusions of NMDA centred on the entorhinal cortex bilaterally. Cell damage typically extended from the lateral entorhinal area to the distal ventral subiculum. Experiment 1 demonstrated that retrohippocampal lesions spared the acquisition of a reference memory task in the Morris water maze, in which the animals learned to escape from the water by swimming to a submerged platform in a fixed location. In the subsequent transfer test, when the escape platform was removed, rats with retrohippocampal lesions tended to spend less time searching in the appropriate quadrant compared to controls. Experiment 2 demonstrated that the lesions also spared the acquisition of a working memory version of the water maze task in which the location of the escape platform was varied between days. In experiment 3, both reference and working memory were assessed using an eight-arm radial maze in which the same four arms were constantly baited between trials. In the initial acquisition, reference memory but not working memory was affected by the lesions. During subsequent reversal learning in which previously baited arms were now no longer baited and vice versa, lesioned animals made significantly more reference memory errors as well as working memory errors. In experiment 4, spatial working memory was assessed in a delayed matching-to-position task conducted in a two-lever operant chamber. There was no evidence for any impairment in rats with retrohippocampal lesions in this task. The present study demonstrated that unlike direct hippocampal damage, retrohippocampal cell loss did not lead to a general impairment in spatial learning, implying that the integrity of the retrohippocampus and/or its interconnection with the hippocampal formation is not critical for normal hippocampal-dependent spatial learning and memory. This outcome is surprising for a number of current hippocampal theories, and suggests that other cortical as well as subcortical inputs to the hippocampus might be of more importance, and further raises the question regarding the functional significance of the retrohippocampal region.
Collapse
Affiliation(s)
- B Pouzet
- Laboratory of Behavioural Biology and Functional Toxicology, Institute of Toxicology, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Rathbone M, Middlemiss P, Gysbers J, Diamond J, Holmes M, Pertens E, Juurlink B, Glasky A, Ritzmann R, Glasky M, Crocker C, Ramirez J, Lorenzen A, Fein T, Schulze E, Schwabe U, Ciccarelli R, Di Iorio P, Caciagli F. Physiology and pharmacology of natural and synthetic nonadenine-based purines in the nervous system. Drug Dev Res 1998. [DOI: 10.1002/(sici)1098-2299(199811/12)45:3/4<356::aid-ddr36>3.0.co;2-c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
73
|
Rouse ST, Gilmor ML, Levey AI. Differential presynaptic and postsynaptic expression of m1-m4 muscarinic acetylcholine receptors at the perforant pathway/granule cell synapse. Neuroscience 1998; 86:221-32. [PMID: 9692756 DOI: 10.1016/s0306-4522(97)00681-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A family of muscarinic acetylcholine receptor proteins mediates diverse pre- and postsynaptic functions in the hippocampus. However the roles of individual receptors are not understood. The present study identified the pre- and postsynaptic muscarinic acetylcholine receptors at the perforant pathway synapses in rat brain using a combination of lesioning, immunocytochemistry and electron microscopic techniques. Entorhinal cortex lesions resulted in lamina-specific reductions of m2, m3, and m4 immunoreactivity in parallel with the degeneration of the medial and lateral perforant pathway terminals in the middle and outer thirds of the molecular layer, respectively. In contrast, granule cell lesions selectively reduced m1 and m3 receptors consistent with degeneration of postsynaptic dendrites. Direct visualization of m1-m4 by electron microscopic immunocytochemistry confirmed their differential pre- and postsynaptic localizations. Together, these findings provide strong evidence for both redundancy and spatial selectivity of presynaptic (m2, m3 and m4) and postsynaptic (m1 and m3) muscarinic acetylcholine receptors at the perforant pathway synapse.
Collapse
Affiliation(s)
- S T Rouse
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
74
|
Yee BK, Rawlins JN. A comparison between the effects of medial septal lesions and entorhinal cortex lesions on performance of nonspatial working memory tasks and reversal learning. Behav Brain Res 1998; 94:281-300. [PMID: 9722279 DOI: 10.1016/s0166-4328(97)00163-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rats with either electrolytic medial septal lesions or cytotoxic entorhinal lesions were compared to unoperated controls on a series of delayed matching-to-sample (DMS) tasks. A DMS trial consisted of two runs. In the first (information) run, the subject was familiarized with a sample discriminandum. In the second (choice) run, the subject was required to discriminate the sample discriminandum from a novel one. When a set of 20 discrete complex objects were used as discriminanda and each discriminandum was used once per day, neither lesions impaired choice accuracy. However, when a single pair of simple discriminanda was employed and re-used between trials within a day, rats with medial septal lesions were severely impaired whereas rats with entorhinal lesions performed at a level comparable to unoperated controls. Next, proactive interference was demonstrated by the introduction of an extra run prior to the information run. When this extra (pre-information) run required the subjects to visit the (eventual) negative discriminandum such that correct choice had to be guided by relative familiarity judgement, choice performance was reduced. Neither lesion group was selectively affected by this manipulation. But when the relative reinforcement history of the pre-information run and the information run was manipulated, such that a correct response required the subject to approach a discriminandum that had recently been non-rewarded, rats with entorhinal lesions were selectively impaired. The effect of delay was demonstrated when a 20-s interval was imposed between information run and choice run. This reduced overall choice accuracy, and this effect appeared to be more pronounced in both lesion groups, although not significantly so. Finally, neither lesion affected the acquisition of a simple discrimination task, but reversal learning was selectively enhanced in the entorhinal lesion group.
Collapse
Affiliation(s)
- B K Yee
- Department of Experimental Psychology, University of Oxford, UK.
| | | |
Collapse
|
75
|
Turner DA, Buhl EH, Hailer NP, Nitsch R. Morphological features of the entorhinal-hippocampal connection. Prog Neurobiol 1998; 55:537-62. [PMID: 9670217 DOI: 10.1016/s0301-0082(98)00019-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The goal of this review in an overview of the structural elements of the entorhinal-hippocampal connection. The development of the dendrites of hippocampal neurons will be outlined in relation to afferent pathway specificity and the mature dendritic structure compared. Interneurons will be contrasted to pyramidal cells in terms of processing of physiological signals and convergence and divergence in control of hippocampal circuits. Mechanisms of axonal guidance and target recognition, target structures, the involvement of receptor distribution on hippocampal dendrites and the involvement of non-neuronal cellular elements in the establishment of specific connections will be presented. Mechanisms relevant for the maintenance of shape and morphological specializations of hippocampal dendrites will be reviewed. One of the significant contexts in which to view these structural elements is the degree of plasticity in which they participate, during development and origination of dendrites, mature synaptic plasticity and after lesions, when the cells must continue to maintain and reconstitute function, to remain part of the circuitry in the hippocampus. This review will be presented in four main sections: (1) interneurons-development, role in synchronizing influence and hippocampal network functioning; (2) principal cells in CA1, CA3 and dentate gyrus regions-their development, function in terms of synaptic integration, differentiating structure and alterations with lesions; (3) glia and glia/neuronal interactions-response to lesions and developmental guidance mechanisms; and (4) network and circuit aspects of hippocampal morphology and functioning. Finally, the interwoven role of these various elements participating in hippocampal network function will be discussed.
Collapse
Affiliation(s)
- D A Turner
- Neurosurgery and Neurobiology, Duke University Medical Center 27710, USA.
| | | | | | | |
Collapse
|
76
|
Henderson Z, Harrison PS, Jagger E, Beeby JH. Density of choline acetyltransferase-immunoreactive terminals in the rat dentate gyrus after entorhinal cortex lesions: a quantitative light microscope study. Exp Neurol 1998; 152:50-63. [PMID: 9682012 DOI: 10.1006/exnr.1998.6833] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lesion of the entorhinal cortex in the adult rat is a model for Alzheimer's disease and produces a marked increase in acetylcholinesterase (AChE) activity in the outer molecular layer (OML) of the dentate gyrus. This has been attributed to the sprouting of cholinergic axons terminals in response to denervation of the OML. The aim of this study was to investigate the density changes of cholinergic terminals in the OML at the light microscope level by using choline acetyltransferase (ChAT) immunohistochemistry and quantitative analysis. The results showed that between days 10 and 33 after an entorhinal cortex lesion, there was a measurable increase in the density of ChAT-positive boutons in the OML of the ipsilateral dentate gyrus (x1.2-1.6 of contralateral). However, when shrinkage of the ipsilateral OML (x0.5-0.75 of contralateral) was taken into account, the apparent increase in ChAT terminal density was entirely accounted for by shrinkage of the OML. Thus ChAT immunohistochemistry at the light microscope level provides no positive evidence for a proliferation of cholinergic terminals in the entorhinal cortex lesion model. This is in agreement with previous biochemical assays that have shown no change of total ChAT activity in the dentate gyrus after entorhinal cortex lesions.
Collapse
Affiliation(s)
- Z Henderson
- Department of Physiology, Worsley Medical and Dental Building, Leeds, LS2 9NQ, United Kingdom
| | | | | | | |
Collapse
|
77
|
Anderson R, Barnes JC, Bliss TV, Cain DP, Cambon K, Davies HA, Errington ML, Fellows LA, Gray RA, Hoh T, Stewart M, Large CH, Higgins GA. Behavioural, physiological and morphological analysis of a line of apolipoprotein E knockout mouse. Neuroscience 1998; 85:93-110. [PMID: 9607706 DOI: 10.1016/s0306-4522(97)00598-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Using apolipoprotein E knockout mice derived from the Maeda source [Piedrahita J. A. et al. (1992) Proc. natn. Acad Sci. US.A. 89, 4471 4475], we have studied the influence of apolipoprotein E gene deletion on normal CNS function by neurological tests and water maze learning, hippocampal ultrastructure assessed by quantitative immunocytochemistry and electron microscopy, CNS plasticity, i.e. hippocampal long-term potentiation and amygdaloid kindling, and CNS repair, i.e. synaptic recovery in the hippocampus following deafferentation. In each study there was little difference between the apolipoprotein E knockout mice and wild-type controls of similar age and genetic background. Apolipoprotein E knockout mice aged eight months demonstrated accurate spatial learning and normal neurological function. Synaptophysin and microtubule-associated protein 2 immunohistochemistry and electron microscopic analysis of these animals revealed that the hippocampal synaptic and dendritic densities were similar between genotypes. The induction and maintenance of kindled seizures and hippocampal long-term potentiation were indistinguishable between groups. Finally, unilateral entorhinal cortex lesions produced a marked loss of hippocampal synaptophysin immunoreactivity in both groups and a marked up-regulation of apolipoprotein E in the wild-type group. Both apolipoprotein E knockout and wild-type groups showed immunohistochemical evidence of reactive synaptogenesis, although the apolipoprotein E knockout group may have initially shown greater synaptic loss. It is suggested that either apolipoprotein E is of no importance in the maintenance of synaptic integrity and in processes of CNS plasticity and repair, or more likely, alternative (apolipo)proteins may compensate for the loss of apolipoprotein E in the knockout animals.
Collapse
Affiliation(s)
- R Anderson
- Neuroscience Unit, Glaxo Wellcome Research and Development, Medicines, Research Centre, Stevenage, Herts, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Wirth S, Ferry B, Di Scala G. Facilitation of olfactory recognition by lateral entorhinal cortex lesion in rats. Behav Brain Res 1998; 91:49-59. [PMID: 9578439 DOI: 10.1016/s0166-4328(97)00102-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An original olfactory recognition task was developed in order to examine the effect of lateral entorhinal cortex (LEC) lesion on olfactory mnesic processes. The task was based on the spontaneous exploratory behavior of rats toward odor sources. It consisted of a learning phase during which an odor was presented twice and in a recognition test, during which the same odor plus a new one was presented. The time rats spent sniffing the odor sources was measured. Olfactory recognition was identified by a short investigatory duration for the familiar odor as compared to a normal investigatory duration for the new odor during the test. The first three experiments aimed to validate the procedure. Experiment 1 was designed to show the decay of investigatory behavior caused by repeated exposure of the rats to one odor. Experiment 2 showed that normal rats display recognition when a short (5 or 40 min) pre-test delay was used, but not when a long pre-test delay (120 min) was used. Experiment 3 showed that FG7142, a well-known promnesic drug, enhanced the performance of the rats in this test as it allowed recognition at longer pre-test delays. The last experiment aimed at testing the effects of aspirative lesion of the LEC. Therefore, LEC-lesioned and sham-lesioned rats were submitted to variable pre-test delays. The experiment showed that an entorhinal lesion did not produce an impairment, but on the contrary facilitated olfactory recognition, as lesioned rats displayed recognition for delays at which sham-operated rats did not. These results show that LEC lesion apparently prolongs the duration of the olfactory mnesic trace. This effect might result from a modification of the functioning of structures innervated by the LEC. In this regard, it is noteworthy that LEC lesion produced a sprouting of septo-hippocampal fibers in the dentate gyrus of the hippocampus as assessed by acetylcholinesterase staining. Although the functional significance of this regrowth is not fully understood, the possible role of this sprouting should be considered.
Collapse
Affiliation(s)
- S Wirth
- Laboratoire de Neurosciences Comportementales et Cognitives, URA 1939 CNRS, Strasbourg, France.
| | | | | |
Collapse
|
79
|
Kirkby DL, Higgins GA. Characterization of perforant path lesions in rodent models of memory and attention. Eur J Neurosci 1998; 10:823-38. [PMID: 9753151 DOI: 10.1046/j.1460-9568.1998.00087.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Early stage Alzheimer's disease (AD) pathology is associated with neurodegeneration of systems within the temporal cortex, e.g. the entorhinal cortex, perforant pathway and hippocampus. The perforant pathway provides the major neuronal input to the hippocampus from the entorhinal cortex and thus relays multimodal sensory information derived from cortical zones into the hippocampus. The earliest symptoms of AD include cognitive impairments, e.g. deficits in short-term memory and attention. Consequently, we have investigated the effect of bilateral knife cut lesions to the perforant path on cognition in rats using models measuring primarily short-term memory (operant delayed match to position task), attention (serial five-choice reaction time task) and spatial learning (Morris water maze). Rats receiving bilateral perforant path lesions showed normal neurological function and a mild hyperactivity. The lesion produced little effect on attention assessed using the five-choice task. In contrast, animals with equivalent lesions showed a robust delay-dependent deficit in the delayed match to position task. Spatial learning in the water maze task was also severely impaired. The delay-dependent deficit in the match to position task was not reversed by tacrine (3 mg/kg) pretreatment. The present data support a selective impairment of cognitive function following perforant path lesions that was confined to mnemonic rather than attentional processing. These findings complement primate and human studies identifying a critical role of the perforant pathway and associated temporal lobe structures in declarative memory. Degeneration of the perforant pathway is likely to contribute to the mnemonic deficits characteristic of early AD. The failure of tacrine to ameliorate these deficits may be relevant to an emerging clinical literature suggesting that cholinomimetic therapies improve attentional rather than mnemonic function in AD.
Collapse
Affiliation(s)
- D L Kirkby
- Neuroscience Unit, GlaxoWellcome Medicines Research Centre, Stevenage, Herts
| | | |
Collapse
|
80
|
Deller T, Haas CA, Naumann T, Joester A, Faissner A, Frotscher M. Up-regulation of astrocyte-derived tenascin-C correlates with neurite outgrowth in the rat dentate gyrus after unilateral entorhinal cortex lesion. Neuroscience 1997; 81:829-46. [PMID: 9316032 DOI: 10.1016/s0306-4522(97)00194-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The extracellular matrix protein tenascin-C has been implicated in the regulation of axonal growth. Using unilateral entorhinal cortex lesions, which induce a massive sprouting response in the denervated outer molecular layer of the rat fascia dentata, the role of tenascin-C for axonal growth was investigated in vivo. Monoclonal antibodies against the neurite outgrowth and anti-adhesive domains of the molecule were employed. Immunostaining was increased throughout the denervated outer molecular layer by day 2, reached a maximum around day 10, and was back to control levels by four weeks post lesion. Growth cone deflecting as well as neurite outgrowth promoting isoforms of tenascin-C were up-regulated after the lesion. Using electron microscopy, single intensely tenascin-C immunoreactive cells were identified as reactive astrocytes that phagocytose degenerated terminals. In situ hybridization histochemistry for tenascin-C messenger RNA revealed numerous cellular profiles in the denervated outer molecular layer of the ipsilateral and contralateral dentate gyrus two days post lesion. Tenascin-C messenger RNA-positive cells in the outer molecular layer were identified as astrocytes using double-labelling for tenascin-C messenger RNA and glial fibrillary acidic protein immunohistochemistry. Thus, a tenascin-C-rich substrate is present in the outer molecular layer during the time of sprouting and a sharp boundary is formed against the inner molecular layer. This pattern may contribute to the layer-specific sprouting response of surviving afferents after entorhinal lesion. Neurite outgrowth may be promoted within the denervated zone, whereas axons trying to grow into the denervated outer molecular layer, for example from the inner molecular layer, would be deflected by a tenascin-C-rich barrier.
Collapse
Affiliation(s)
- T Deller
- Institute of Anatomy, University of Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
81
|
Deller T, Frotscher M. Lesion-induced plasticity of central neurons: sprouting of single fibres in the rat hippocampus after unilateral entorhinal cortex lesion. Prog Neurobiol 1997; 53:687-727. [PMID: 9447617 DOI: 10.1016/s0301-0082(97)00044-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In response to a central nervous system trauma surviving neurons reorganize their connections and form new synapses that replace those lost by the lesion. A well established in vivo system for the analysis of this lesion-induced plasticity is the reorganization of the fascia dentata following unilateral entorhinal cortex lesions in rats. After general considerations of neuronal reorganization following a central nervous system trauma, this review focuses on the sprouting of single fibres in the rat hippocampus after entorhinal lesion and the molecular factors which may regulate this process. First, the connectivity of the fascia dentata in control animals is reviewed and previously unknown commissural fibers to the outer molecular layer and entorhinal fibres to the inner molecular layer are characterized. Second, sprouting of commissural and crossed entorhinal fibres after entorhinal cortex lesion is described. Single fibres sprout by forming additional collaterals, axonal extensions, boutons, and tangle-like axon formations. It is pointed out that the sprouting after entorhinal lesion mainly involves unlesioned fibre systems terminating within the layer of fibre degeneration and is therefore layer-specific. Third, molecular changes associated with axonal growth and synapse formation are considered. In this context, the role of adhesion molecules, glial cells, and neurotrophic factors for the sprouting process are discussed. Finally, an involvement of sprouting processes in the formation of neuritic plaques in Alzheimer's disease is reviewed and discussed with regard to the axonal tangle-like formations observed after entorhinal cortex lesion.
Collapse
Affiliation(s)
- T Deller
- Institute of Anatomy, University of Freiburg, Germany.
| | | |
Collapse
|
82
|
Förster E, Naumann T, Deller T, Straube A, Nitsch R, Frotscher M. Cholinergic sprouting in the rat fascia dentata after entorhinal lesion is not linked to early changes in neurotrophin messenger RNA expression. Neuroscience 1997; 80:731-9. [PMID: 9276489 DOI: 10.1016/s0306-4522(97)00054-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
After unilateral entorhinal cortex lesion cholinergic septohippocampal fibres sprout in the denervated fascia dentata. This process is dependent on neurotrophin changes following the lesion. Thus, there is an up-regulation of nerve growth factor and brain-derived neurotrophic factor messenger RNA expression in the denervated granule cells which is detectable 4 h postlesion and returns to control levels by 24 h. Here, using a competitive polymerase chain reaction and in situ hybridization, a transient neurotropin messenger RNA increase could be demonstrated bilaterally following unilateral electrolytic entorhinal cortex lesion. Treatment of the animals with the N-methyl-D-aspartate receptor antagonist dizocilpine maleate blocked this messenger RNA increase, suggesting an involvement of this receptor type in the neurotrophin changes. However, in spite of this blockade, the typical cholinergic sprouting response as visualized with acetylcholinesterase histochemistry was present in animals four weeks after entorhinal cortex lesion. These data suggest that brief initial changes in neurotrophin messenger RNA expression in dentate granule cells are not responsible for the induction of the cholinergic sprouting. Changes in neurotrophin messenger RNA expression occurring immediately postlesion may be linked to glutamate release from entorhinal terminals resulting from the electrolytic lesion of the projection cells in the entorhinal cortex. We hypothesize that later changes in neurotrophin expression, for example in glial cells, are more likely to be related to the cholinergic sprouting process.
Collapse
Affiliation(s)
- E Förster
- Institute of Anatomy, University of Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
83
|
Conner JM, Varon S. Developmental profile of NGF immunoreactivity in the rat brain: a possible role of NGF in the establishment of cholinergic terminal fields in the hippocampus and cortex. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 101:67-79. [PMID: 9263581 DOI: 10.1016/s0165-3806(97)00051-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the current investigation, we have examined the developmental profile of nerve growth factor immunoreactivity (NGF-ir) in the postnatal rat. During the first 3 weeks after birth, NGF-ir was observed within the hippocampal mossy fiber region, where it persists throughout adulthood and appeared transiently within three additional zones-the dentate gyrus supragranular zone, the tenia tecta/intermediate lateral septum, and the cingulate/retrosplenial cortex. In all cases, the appearance of NGF-ir progressed in a rostrocaudal pattern over time. A strong correlation was seen between the pattern of NGF-ir and cholinergic innervation in the dentate gyrus supragranular zone, both spatially and temporally, suggesting that NGF may direct the innervation of cholinergic afferents to this region. A spatial correlation was also observed between NGF-ir and cholinergic innervation within the retrosplenial cortex and tenia tecta. With our current techniques, however, we were unable to determine at what point during development the adult-like pattern of cholinergic terminal innervation in these regions occurred and, thus, were not able establish a temporal correlation in these regions. Within the cingulate cortex, there was no evidence suggesting that the developmental appearance of NGF-ir in this region was associated with a specific enhancement of cholinergic innervation. Thus, the results of the current investigation clearly identify the presence of transiently occurring zones of NGF-ir during postnatal CNS development, although defining their exact functional role will require additional investigation.
Collapse
Affiliation(s)
- J M Conner
- Department of Biology, University of California, San Diego, La Jolla 92093, USA.
| | | |
Collapse
|
84
|
Kelley MS, Steward O. Injury-induced physiological events that may modulate gene expression in neurons and glia. Rev Neurosci 1997; 8:147-77. [PMID: 9548230 DOI: 10.1515/revneuro.1997.8.3-4.147] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Damage to the brain triggers a host of reactive responses in neurons and glia which are seen at sites of focal injury as well as at sites that are at a distance from the injury. Although many of these responses have been studied extensively, the signals that initiate the different responses have not been fully characterized, and it is still not understood how focal injury affects neurons and glia in distant sites. The present review summarizes recent findings that suggest that physiological events that occur at the time of the injury or during the early postlesion period can play an important and variable role in modulating neuronal and glial responses to injury. We focus on the events that occur in the hippocampal formation following unilateral lesions of the entorhinal cortex - a model system that has been used extensively for studies of cellular responses following focal brain injury. This lesion destroys the cells of origin of a massive excitatory projection to the dentate gyrus and hippocampus proper. Over time, the denervated neurons in the hippocampal formation are almost completely reinnervated as a result of local sprouting of systems that survive the lesion. Thus, this model system has been useful for studying cellular responses to both denervation and reinnervation. We summarize the information that this injury triggers physiological events that can strongly modulate gene expression in neurons and glia, including episodes of spreading depression that occur at the time of the injury, seizures that occur during the early postlesion period, the loss of afferent drive which leads to decreases in postsynaptic activity, and the restoration of activity that occurs in conjunction with reinnervation. We describe recent studies which suggest that some of these physiological events occur to a variable extent in different animals, especially the episodes of spreading depression and the recurrent seizures. Thus, the spatial pattern and temporal dynamics of altered gene expression following this "model" experimental injury may vary from animal to animal. The fact that physiological events strongly modulate the reactive changes in gene expression that occur following injury has important implications for understanding the sequelae of injury, and offers new opportunities for experimental and therapeutic interventions that may improve cellular repair, regeneration, and recovery of function.
Collapse
Affiliation(s)
- M S Kelley
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | |
Collapse
|
85
|
Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 1997; 42:85-94. [PMID: 9225689 DOI: 10.1002/ana.410420114] [Citation(s) in RCA: 1187] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study investigated cerebral glucose metabolism in very early Alzheimer's disease, before a clinical diagnosis of probable Alzheimer's disease is possible, using [18F]fluorodeoxyglucose positron emission tomography. First, 66 patients with probable Alzheimer's disease with a spectrum of dementia severity (Mini-Mental State Examination score, 0-23) were recruited and studied. Cortical metabolic activity was analyzed topographically using three-dimensional stereotactic surface projections. Regression analysis was performed for each brain pixel to predict metabolic patterns of very early disease. Predictions were tested prospectively in a group of 8 patients who complained only of memory impairment without general cognitive decline (Mini-Mental State Examination score, 25 +/- 1) at the time of scanning but whose condition later progressed to probable Alzheimer's disease. Both results were compared to cerebral metabolic activity in 22 age-similar normal control subjects. Prediction and analysis of actual patients consistently indicated marked metabolic reduction (21-22%) in the posterior cingulate cortex and cinguloparietal transitional area in patients with very early Alzheimer's disease. Mean metabolic reduction in the posterior cingulate cortex was significantly greater than that in the lateral neocortices or parahippocampal cortex. The result suggests a functional importance for the posterior cingulate cortex in impairment of learning and memory, which is a feature of very early Alzheimer's disease.
Collapse
Affiliation(s)
- S Minoshima
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109-0028, USA
| | | | | | | | | | | |
Collapse
|
86
|
Bechmann I, Nitsch R. Astrocytes and microglial cells incorporate degenerating fibers following entorhinal lesion: a light, confocal, and electron microscopical study using a phagocytosis-dependent labeling technique. Glia 1997; 20:145-54. [PMID: 9179599 DOI: 10.1002/(sici)1098-1136(199706)20:2<145::aid-glia6>3.0.co;2-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Entorhinal lesion leads to anterograde degeneration of perforant path fibers in their main termination zone in the outer molecular layers of the dentate gyrus. Concomitantly, astrocytes become hypertrophic, and microglial cells alter their phenotype, suggesting participation in anterograde degeneration. This study analyzes the involvement of these lesion-induced activated glial cells in the process of phagocytosis of degenerated axonal debris. We established a phagocytosis-dependent labeling technique that allows for direct and simultaneous visualization of both labeled incorporated axonal debris and incorporating glial cells. Stereotaxic application of small crystals of the biotin- and rhodamine-conjugated dextran amine Mini Ruby (MR) into the entorhinal cortex led to strong and stable axonal staining of perforant path axons. Following entorhinal lesion, labeled terminals and fibers condensed and formed small granules. Incorporation of these rhodamine-fluorescent granules resulted in a phagocytosis-dependent cell labeling. During the first 3 days, we were able to identify these cells as microglia by using double-fluorescence and confocal microscopy. The first unequivocally double-labeled astrocytes were found 6 days post lesion (dpl). Whereas in all stages a subpopulation of microglial cells remained devoid of MR-labeled granules, all astrocytes in the middle molecular layer were double-labeled after long survival times (20 dpl). On the ultrastructural level, labeled granules appeared to be perforant path axons containing the tracer. Both terminals and myelinated fibers could be seen inside the cytoplasm of microglial cells and astrocytes. Thus, anterograde degeneration is a sufficient stimulus to induce axon incorporation by both astrocytes and a subpopulation of microglial cells.
Collapse
Affiliation(s)
- I Bechmann
- Department of Cell and Neurobiology, Humboldt University Hospital Charité, Berlin, Germany
| | | |
Collapse
|
87
|
Naumann T, Deller T, Bender R, Frotscher M. 192 IgG-saporin-induced loss of cholinergic neurons in the septum abolishes cholinergic sprouting after unilateral entorhinal lesion in the rat. Eur J Neurosci 1997; 9:1304-13. [PMID: 9215714 DOI: 10.1111/j.1460-9568.1997.tb01485.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
After unilateral lesion of the entorhinal cortex, cholinergic septohippocampal fibres are believed to sprout in the denervated outer molecular layer of the rat dentate gyrus. This cholinergic sprouting has been demonstrated by acetylcholinesterase (AChE) histochemistry, a method said selectively to label cholinergic septohippocampal fibres in the hippocampus. However, a recent report has questioned this concept, suggesting that AChE may not be an adequate marker to monitor cholinergic sprouting and that other, non-cholinergic axons sprouting after entorhinal cortex lesion cause the dense AChE-positive band in the denervated outer molecular layer. In order to determine the contribution of cholinergic septohippocampal fibres to the dense AChE band appearing after entorhinal cortex lesion, the neurotoxin 192 IgG-saporin, known to destroy cholinergic neurons in the basal forebrain selectively, was used. Rats received bilateral injections of 192 IgG-saporin into the lateral ventricles 3 weeks before entorhinal cortex lesion, simultaneously with entorhinal cortex lesion, or 8 weeks after entorhinal cortex lesion. Immunocytochemistry for choline acetyltransferase (ChAT) and in situ hybridization for ChAT mRNA demonstrated the loss of cholinergic neurons in the medial septum and diagonal band after 192 IgG-saporin treatment. The cholinergic sprouting response in the molecular layer, as visualized with AChE histochemistry, was abolished in all animals treated with immunotoxin. These data indicate that the dense AChE band forming after entorhinal cortex lesion represents the sprouting of cholinergic septohippocampal fibres.
Collapse
Affiliation(s)
- T Naumann
- Institute of Anatomy, University of Freiburg, Germany
| | | | | | | |
Collapse
|
88
|
Hardman R, Evans DJ, Fellows L, Hayes B, Rupniak HT, Barnes JC, Higgins GA. Evidence for recovery of spatial learning following entorhinal cortex lesions in mice. Brain Res 1997; 758:187-200. [PMID: 9203548 DOI: 10.1016/s0006-8993(97)00223-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The influence of entorhinal cortex lesions on behaviour and concommitant changes in synaptophysin immunoreactivity (IR) in the denervated dentate gyrus was assessed. Male, C57/B6 mice received either bilateral (BI), unilateral (UNI), or no lesion (SHAM) to the entorhinal cortex. At various stages post-lesion the animals were evaluated in tests to examine neurological and cognitive (spatial and cued learning, Morris water maze) function. UNI lesioned animals from 6-36 days post-lesion showed no neurological nor marked cued learning deficit, yet a profound spatial learning deficit. However by 70 days post-lesion, spatial learning ability was clearly evident. In contrast, BI lesioned animals showed severe spatial learning deficits throughout the test period (6-70 days), cued learning was also impaired. In parallel groups of UNI lesioned mice, 6-36 days post-lesion there was a marked reduction (-40%) in synaptophysin IR in the dentate gyrus molecular layer. However by 70 days post-lesion a clear increase in this measure was noted. Changes in the expression of the growth associated protein, GAP43, were also noted over this period. Taken together, the present results suggest some recovery of spatial learning following unilateral entorhinal cortex lesions in mice. This behavioural recovery of a hippocampally dependant task may be associated with a recovery of function related to the synaptic remodelling and elevation of synapse number in the denervated hippocampus, as evidenced by changes in synaptophysin and GAP43 IR.
Collapse
Affiliation(s)
- R Hardman
- Neuroscience Unit, Glaxo Wellcome Medicines Research Centre, Stevenage, Hertfordshire, UK
| | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
Partial removal of layer-specific afferents of the hippocampus is said to induce sprouting of intact fibers from neighboring layers that invade the zone of the degenerating axons. However, recent in vivo and in vitro studies using sensitive anterograde tracers have failed to demonstrate sprouting across laminar boundaries. Sprouting does occur; but, it mainly involves unlesioned fiber systems terminating within the layer of fiber degeneration in addition to the degenerating afferents. These findings point to rigid laminar cues attracting certain fiber systems while repelling others in normal development and after partial deafferentation.
Collapse
Affiliation(s)
- M Frotscher
- Anatomisches Institut der Albert-Ludwigs-Universität Freiburg, Germany
| | | | | |
Collapse
|
90
|
Jucker M, D'Amato F, Mondadori C, Mohajeri H, Magyar J, Bartsch U, Schachner M. Expression of the neural adhesion molecule L1 in the deafferented dentate gyrus. Neuroscience 1996; 75:703-15. [PMID: 8951867 DOI: 10.1016/0306-4522(96)00276-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Expression of the neural adhesion molecule L1 and its potential involvement in axonal sprouting were examined in the deafferented rat dentate gyrus. We focused on the dentate gyrus because of its well-defined cytoarchitecture and well-characterized neuronal degeneration and sprouting response following entorhinal cortex lesions. In the molecular layer of the dentate gyrus, a trilaminar staining pattern was observed, with the middle molecular layer exhibiting slightly denser immunolabeling compared to both inner and outer molecular layers. Two to 12 days after a unilateral entorhinal cortex lesion, a progressive loss of L1 immunolabeling was noted in the ipsilateral middle and outer molecular layers, followed by a substantial reappearance of immunostaining 65 days after lesion incidence. The width of the immunostained ipsilateral inner molecular layer revealed a progressive widening and by postlesion day 65 occupied about 50% of the total width of the molecular layer. Immunoelectron microscopy localized L1 to the surface of unmyelinated axons in both normal and deafferented dentate gyrus. In situ hybridization revealed L1 messenger RNA confined to neurons throughout the hippocampal formation, but did not indicate changes in L1 messenger RNA levels in the hippocampus, dentate gyrus, entorhinal cortex or basal forebrain in response to unilateral entorhinal cortex lesions. Changes in L1 immunolabeling in the deafferented dentate gyrus corresponded in a spatial and temporal manner to changes of the synaptic marker synaptophysin and axonal marker phosphorylated tau. Results of the present study are most consistent with the view that L1 is expressed on reinnervating fibers after they make synaptic contacts with other structures. Thus, L1 appears to be involved in the maturation and stabilization of reinnervating fibers and consequently may play an important role in the repair process of the lesioned adult CNS.
Collapse
Affiliation(s)
- M Jucker
- Department of Neurobiology, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
91
|
Shi B, Stanfield BB. Differential sprouting responses in axonal fiber systems in the dentate gyrus following lesions of the perforant path in WLDs mutant mice. Brain Res 1996; 740:89-101. [PMID: 8973802 DOI: 10.1016/s0006-8993(96)00849-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Axons in both peripheral nerves and central fiber pathways undergo very slow Wallerian degeneration in Wlds mutant mice. It has recently been shown that in Wlds mutant mice there is a delay in the intensification of acetylcholinesterase histochemical staining in the molecular layer of the dentate gyrus following lesions of the entorhinal cortex. Thus, it appears that delayed post-lesion reactive sprouting is associated with the delayed degeneration of cut central axons in this mutant. We have studied the time course of changes in the septohippocampal and the hippocampal commissural projections following interruption of perforant path in Wlds mutant mice and in normal (C57BL/6J) mice using the anterograde tracer, wheat germ agglutinin conjugated horseradish peroxidase. In normal mice, changes in the distribution of labeled septal and commissural axons indicative of sprouting are seen in the dentate molecular layer as early as 3 days post-lesion. The earliest survival time at which similar changes are found in Wlds mutant mice is seven days post-lesion, when an increase in the density of labeled septal axons begins in the outer molecular layer. The delay in the sprouting of commissural axons in the mutant is even longer. Changes in the distribution of labeled commissural axons in the dentate gyrus of Wlds mutant mice are first seen 12 days post-lesion. These results confirm that post-lesion reactive axonal sprouting can be delayed in the central nervous system of Wlds mutant mice. In addition, our results indicate that the extent of this delay may differ among axonal fiber systems. These findings are consistent with the notion that various central axonal systems may respond differentially to sprouting cues and are reminiscent of differences found in the regenerating response exhibited by sensory and motor axons in the Wlds mutant after peripheral nerve cuts.
Collapse
Affiliation(s)
- B Shi
- Laboratory of Neurophysiology, National Institute of Mental Health, NIH Animal Center, Poolesville, MD 20837, USA
| | | |
Collapse
|
92
|
Ueki A, Miwa C, Oohara K, Miyoshi K. Histological evidence for cholinergic alteration in the hippocampus following entorhinal cortex lesion. J Neurol Sci 1996; 142:7-11. [PMID: 8902712 DOI: 10.1016/0022-510x(96)00113-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The initial stage of Alzheimer's disease is characterized by neuropathological alteration in the entorhinal cortex. To model one aspect of the neurodegeneration observed and to investigate anatomical changes of the hippocampus associated with unilateral entorhinal cortex lesion, excitotoxin ibotenic acid was used to produce selective unilateral neuronal loss in rat entorhinal cortex. Histological and morphometrical analyses confirmed excitotoxic lesion of the entorhinal cortex after 3 months and showed a decrease of acetylcholineste-rase-stained fibers in the stratum moleculare of the dentate gyrus and the stratum radiatum of the CA3 field. This study demonstrates the importance of the entorhinal cortex in the hippocampal cholinergic function which appears to be important to memory and learning, and raises the possibility that memory deficit in Alzheimer's disease may be associated with partial neuronal loss in the entorhinal cortex.
Collapse
Affiliation(s)
- A Ueki
- Department of Neuropsychiatry, Hyogo College of Medicine, Japan
| | | | | | | |
Collapse
|
93
|
Woolf NJ. Global and serial neurons form A hierarchically arranged interface proposed to underlie memory and cognition. Neuroscience 1996; 74:625-51. [PMID: 8884762 DOI: 10.1016/0306-4522(96)00163-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It is hypothesized that the cholinergic and monoaminergic neurons of the brain from a global network. What is meant by a global network is that these neurons operate as a unified whole, generating widespread patterns of activity in concert with particular electroencephalographic states, moods and cognitive gestalts. Apart from cholinergic and monoaminergic global systems, most other mammalian neurons relay sensory information about the external and internal milieu to serially ordered loci. These "serial" neurons are neurochemically distinct from global neurons and commonly use small molecule amino acid neurotransmitters such as glutamate or aspartate. Viewing the circuitry of the mammalian brain within the global-serial dichotomy leads to a number of novel interpretations and predictions. Global systems seem to be capable of transforming incoming sensory data into cognitive-related activity patterns. A comparative examination of global and serial systems anatomy, development and physiology reveals how global systems might turn sensation into mentation. An important step in this process is the permanent encoding of memory. Global neurons are particularly plastic, as are the neurons receiving global inputs. Global afferents appear to be capable of reorganizing synapses on recipient serial cells, thus leading to enhanced responding to a signal, in a particular context and state of arousal.
Collapse
Affiliation(s)
- N J Woolf
- Department of Psychology, University of California, Los Angeles 90095-1563, USA
| |
Collapse
|
94
|
Frotscher M, Deller T, Heimrich B, Förster E, Haas C, Naumann T. Survival, regeneration and sprouting of central neurons: the rat septohippocampal projection as a model. Ann Anat 1996; 178:311-5. [PMID: 8817036 DOI: 10.1016/s0940-9602(96)80080-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The septohippocampal projection was used to study the survival following axotomy, axonal regeneration, and sprouting of a defined group of central neurons. Septohippocampal projection neurons in adult rats were axotomized by bilateral lesions of the fimbria-fornix. Using prelabeling prior to axotomy, intracellular staining, electron microscopy, and immunocytochemical and in situ hybridization techniques, we were able to demonstrate that the majority of septohippocampal neurons survived after axotomy. At least in young postnatal rats, these axotomized neurons have the capacity to regenerate an axonal process that reinnervates its appropriate target tissue, the hippocampus. We demonstrated this by axotomizing young septohippocampal neurons and co-culturing them with sections of hippocampus. Septohippocampal neurons appear to retain their capacity for axonal growth in adulthood, since they are able to sprout within hippocampal layers partially denervated by removing entorhinal afferents. In this paradigm the terminals of septohippocampal neurons themselves were not lesioned. Our results point to a previously underestimated capacity of septohippocampal neurons for survival following axotomy, regeneration, and sprouting.
Collapse
Affiliation(s)
- M Frotscher
- Institute of Anatomy, University of Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
95
|
Deller T, Nitsch R, Frotscher M. Layer-specific sprouting of commissural fibres to the rat fascia dentata after unilateral entorhinal cortex lesion: a Phaseolus vulgaris leucoagglutinin tracing study. Neuroscience 1996; 71:651-60. [PMID: 8867038 DOI: 10.1016/0306-4522(95)00475-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
After unilateral entorhinal cortex lesion commissural fibres to the inner molecular layer of the rat fascia dentata are said to sprout into the former termination zone of entorhinal afferents. This sprouting process has not yet been demonstrated at the level of individual fibres. In the present study, Phaseolus vulgaris leucoagglutinin tracing was used to analyse the commissural projection to the inner molecular layer in rats with longstanding entorhinal cortex lesions. In comparison with controls, the commissural fibre plexus in the inner molecular layer had expanded by 20-45 microns outwards on the side of the entorhinal lesion. Unexpectedly, only a small number of axons arising from the bulk of commissural fibres in the inner molecular layer left the main fibre plexus and entered the outer molecular layer. Thus, there was still a clearly recognizable border between the Phaseolus vulgaris leucoagglutinin-labelled commissural fibre plexus in the inner molecular layer and the unstained outer molecular layer. The few commissural axons invading the outer molecular layer rarely branched but formed multiple en passant boutons, and occasionally exhibited growth cones. The data indicate that only few commissural fibres appear to be able to sprout beyond the border of their appropriate layer suggesting that the characteristic laminar specificity of hippocampal afferents is largely retained following deafferentation.
Collapse
Affiliation(s)
- T Deller
- Institute of Anatomy, University of Freiburg, Germany
| | | | | |
Collapse
|
96
|
Beck T, Weber M, Horváth E, Wree A. Functional cerebral activity during regeneration from entorhinal lesions in the rat. J Cereb Blood Flow Metab 1996; 16:342-52. [PMID: 8594068 DOI: 10.1097/00004647-199603000-00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The consequences of an unilateral electrolytic entorhinal lesion on the functional activity in all major anatomically defined brain regions were evaluated in the rat. The 14C-2 deoxyglucose method served as a tool to quantify alterations of local cerebral glucose utilization (LCGU) ipsilateral and contralateral to the lesion at 4 days, 2 weeks, or 3 months after stereotaxic surgery. Apart from a few minor increases in the contralateral hemisphere, the predominant pattern consisted of reductions in the range of 10-40% in the ipsilateral hemisphere. Ipsilaterally, in extrahippocampal areas, LCGU had regained control levels at 2 weeks postlesion in contrast to hippocampal regions, where reductions were more pronounced than in other brain areas and partially persisted for up to 3 months. Interestingly, the termination zones of entorhinal fibers in the dentate gyrus did not regain control levels within 3 months. We conclude from the data that functional recovery of denervated primary target areas does not occur within 3 months after entorhinal lesions and that altered functional activity may be found beyond the primary target areas predominantly during the acute recovery period after the lesion. The data suggest that sprouting fibers do not reestablish a fully functional neuronal network during the recovery period.
Collapse
Affiliation(s)
- T Beck
- Anatomisches Institut der Universität Rostock, Germany
| | | | | | | |
Collapse
|
97
|
Deller T, Frotscher M, Nitsch R. Sprouting of crossed entorhinodentate fibers after a unilateral entorhinal lesion: anterograde tracing of fiber reorganization with Phaseolus vulgaris-leucoagglutinin (PHAL). J Comp Neurol 1996; 365:42-55. [PMID: 8821440 DOI: 10.1002/(sici)1096-9861(19960129)365:1<42::aid-cne4>3.0.co;2-j] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fibers from the contralateral entorhinal cortex (EC) to the dentate gyrus partially replace the input lost after an ipsilateral EC lesion. To study the morphology and course of single sprouted crossed entorhinodentate fibers, the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHAL) was used. Rats that survived for 4 to 8 weeks after a unilateral entorhinal lesion received PHAL deposits into the entorhinal cortex contralateral to the lesion. Control animals received a similar PHAL deposit. Single PHAL-labeled fibers in the molecular layer of the contralateral (EC lesion) fascia dentata were drawn with a camera lucida, and an axon-branching index (branch points/100 microns axon length) was calculated for these crossed entorhinodentate fibers in controls and operated animals. In animals with EC lesions, the density of PHAL-labeled crossed entorhinodentate fibers had increased remarkably. Single crossed entorhinodentate axons showed significantly more axon branch points in experimental than in control animals. In addition, some axon segments displayed high densities of small axonal extensions. Frequently, tanglelike structures were observed in the denervated outer molecular layer. These tangles consisted of one or more PHAL-labeled axons that intertwined and formed an axon tangle filled completely with branches, extensions, and boutons. Our data indicate that crossed EC fibers sprout by forming additional collaterals, axonal extensions, and tangles. Abnormal neurite formations are a characteristic feature of plaques in Alzheimer's disease. Future studies must be done to show whether or not there is a close relationship between axonal tangles and plaques in Alzheimer's disease, which, like the present lesion paradigm, severely affects entorhinal projection neurons.
Collapse
Affiliation(s)
- T Deller
- Institute of Anatomy, University of Freiburg, Germany
| | | | | |
Collapse
|
98
|
Basal Forebrain Cholinergic Lesions and Complete Transection of Septal–Hippocampal Pathway. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1043-9471(96)80099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
99
|
Soares HD, Sinson GP, McIntosh TK. Fetal hippocampal transplants attenuate CA3 pyramidal cell death resulting from fluid percussion brain injury in the rat. J Neurotrauma 1995; 12:1059-67. [PMID: 8742134 DOI: 10.1089/neu.1995.12.1059] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transplantation of fetal neural tissue has been demonstrated to prevent neuronal loss in a number of CNS injury models including spinal cord contusion. However, no studies have examined the neuroprotective role of fetal transplants in models of traumatic brain injury. The present study examined the ability of fetal neural grafts to attenuate neuronal loss resulting from lateral fluid percussion (FP) brain injury in the rat. Lateral FP in the rat elicits a focal contusion within the parietal/temporal cortex and induces cell death in a subset of hippocampal CA3 pyramidal neurons. To examine potential neuroprotective effects of fetal neural grafts, either E16 fetal hippocampus, E16 fetal cortex, or sterile lactated Ringers was stereotaxically transplanted directly into contused cortex 2 days after FP brain injury. The effects of fetal transplants upon adjacent injured hippocampal CA3 regions were then assessed at 4 weeks after grafting utilizing quantitative image analysis. Both fetal cortex and hippocampal grafts survived within contused cortex. Fetal hippocampal grafts significantly attenuated CA3 cell death resulting from lateral fluid percussion, while fetal cortical transplants induced a small, but nonsignificant, amelioration of CA3 pyramidal loss. Thus, neuroprotection by fetal grafts appeared to be tissue specific with hippocampal, but not cortical, fetal transplants significantly reducing posttraumatic CA3 loss. In summary, fetal neural transplantation can ameliorate hippocampal cell death following experimental brain injury.
Collapse
Affiliation(s)
- H D Soares
- Roche Institute of Molecular Biology, Nutley, New Jersey 07110-1199, USA
| | | | | |
Collapse
|
100
|
Abstract
Apolipoprotein E (apoE) has been studied extensively with regard to its role in plasma lipoprotein lipid transport. A role for apoE in the transport of membrane cholesterol and phospholipid in the central and peripheral nervous system has also been studied. Entorhinal cortex-lesioned rats have been used extensively to examine the molecular mechanisms associated with deafferentation and reinnervation in the CNS; studies of the role of apoE in this process using this animal model are described. In all human populations examined, three common apoE isoforms, apoE2, apoE3 and apoE4, result from multiple alleles epsilon 2, epsilon 3 and epsilon 4 at a single apoE genetic locus. These isoforms impart well-characterized functional differences in plasma lipoprotein transport, which are reviewed herein. Also discussed are less well-studied possible apoE-isoform specific differences in central nervous system function. These are currently of critical importance due to numerous recent studies showing an association of epsilon 4 with increased risk for Alzheimer's disease. Diverse hypotheses as to the molecular basis for this association, as well as the supporting experimental evidence, are reviewed.
Collapse
Affiliation(s)
- J Poirier
- Department of Psychiatry, McGill University, Montreal, Canada
| | | | | |
Collapse
|