51
|
Li Y, Zhang GN, Feng GZ, Lv JY, Fang XP, Zhao C, Che L, Lan YX, Zhang YG. Effects of replacing alfalfa hay with malt sprouts and corn stover on milk production and nitrogen partitioning in dairy cows. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
52
|
Lactation performance, nitrogen utilization, and profitability in dairy cows fed fermented total mixed ration containing wet corn gluten feed and corn stover in combination replacing a portion of alfalfa hay. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
53
|
Wood CM, Pelster B, Braz-Mota S, Val AL. Gills versus kidney for ionoregulation in the obligate air-breathing Arapaima gigas, a fish with a kidney in its air-breathing organ. J Exp Biol 2020; 223:jeb232694. [PMID: 32895323 DOI: 10.1242/jeb.232694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022]
Abstract
In Arapaima gigas, an obligate air-breather endemic to ion-poor Amazonian waters, a large complex kidney runs through the air-breathing organ (ABO). Previous indirect evidence suggested that the kidney, relative to the small gills, may be exceptionally important in ionoregulation and nitrogen (N) waste excretion, with support of kidney function by direct O2 supply from the airspace. We tested these ideas by continuous urine collection and gill flux measurements in ∼700 g fish. ATPase activities were many-fold greater in kidney than gills. In normoxia, gill Na+ influx and efflux were in balance, with net losses of Cl- and K+ Urine flow rate (UFR, ∼11 ml kg-1 h-1) and urinary ions (< 0.2 mmol l-1) were exceptional, with [urine]:[plasma] ratios of 0.02-0.002 for K+, Na+, and Cl-, indicating strong reabsorption with negligible urinary ion losses. Urinary [ammonia] was very high (10 mmol l-1, [urine]:[plasma] ∼17) indicating strong secretion. The kidney accounted for 21-24% of N excretion, with ammonia dominating (95%) over urea-N through both routes. High urinary [ammonia] was coupled to high urinary [HCO3-]. Aerial hypoxia (15.3 kPa) and aerial hyperoxia (>40.9 kPa) had no effects on UFR, but both inhibited branchial Na+ influx, revealing novel aspects of the osmorespiratory compromise. Aquatic hypoxia (4.1 kPa), but not aquatic hyperoxia (>40.9 kPa), inhibited gill Na+ influx, UFR and branchial and urinary ammonia excretion. We conclude that the kidney is more important than gills in ionoregulation, and is significant in N excretion. Although not definitive, our results do not indicate direct O2 supply from the ABO for kidney function.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
| | - Bernd Pelster
- Institute of Zoology, University of Innsbruck, Innsbruck A-6020, Austria
- Center for Molecular Biosciences, University Innsbruck, Innsbruck A-6020, Austria
| | - Susana Braz-Mota
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus 69080-971, Brazil
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus 69080-971, Brazil
| |
Collapse
|
54
|
Abstract
Recent increases in global urea usage, including its incorporation in slow-release fertilizers commonly used in lawn care in Florida, have the potential to alter the form and amount of nitrogen inputs to coastal waters. This shift may, in turn, impact phytoplankton community diversity and nutrient cycling processes. An autonomous water quality monitoring and sampling platform containing meteorological and water quality instrumentation, including urea and phycocyanin sensors, was deployed between June and November of 2009 in Sarasota Bay, Florida. This shallow, lagoonal bay is characterized by extensive and growing urban and suburban development and limited tidal exchange and freshwater inputs. During the monitoring period, three high-biomass (up to 40 µg chlorophyll-a·L−1) phytoplankton blooms dominated by picocyanobacteria or picoeukaryotes were observed. Each bloom was preceded by elevated (up to 20 μM) urea concentrations. The geolocation of these three parameters suggests that “finger canals” lining the shore of Sarasota Bay were the source of urea pulses and there is a direct link between localized urea inputs and downstream picoplankton blooms. Furthermore, high frequency sampling is required to detect the response of plankton communities to pulsed events.
Collapse
|
55
|
Aburatani N, Takagi W, Wong MKS, Kadota M, Kuraku S, Tokunaga K, Kofuji K, Saito K, Godo W, Sakamoto T, Hyodo S. Facilitated NaCl Uptake in the Highly Developed Bundle of the Nephron in Japanese Red Stingray Hemitrygon akajei Revealed by Comparative Anatomy and Molecular Mapping. Zoolog Sci 2020; 37:458-466. [PMID: 32972087 DOI: 10.2108/zs200038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/08/2020] [Indexed: 11/17/2022]
Abstract
Batoidea (rays and skates) is a monophyletic subgroup of elasmobranchs that diverged from the common ancestor with Selachii (sharks) about 270 Mya. A larger number of batoids can adapt to low-salinity environments, in contrast to sharks, which are mostly stenohaline marine species. Among osmoregulatory organs of elasmobranchs, the kidney is known to be dedicated to urea retention in ureosmotic cartilaginous fishes. However, we know little regarding urea reabsorbing mechanisms in the kidney of batoids. Here, we performed physiological and histological investigations on the nephrons in the red stingray (Hemitrygon akajei) and two shark species. We found that the urine/plasma ratios of salt and urea concentrations in the stingray are significantly lower than those in cloudy catshark (Scyliorhinus torazame) under natural seawater, indicating that the kidney of stingray more strongly reabsorbs these osmolytes. By comparing the three-dimensional images of nephrons between stingray and banded houndshark (Triakis scyllium), we showed that the tubular bundle of stingray has a more compact configuration. In the compact tubular bundle of stingray kidney, the distal diluting tubule was highly developed and frequently coiled around the proximal and collecting tubules. Furthermore, co-expression of NKAα1 (Na+/K +-ATPase) and NKCC2 (Na+- K+-2Cl- cotransporter 2) mRNAs was prominent in the coiled diluting segment. These findings imply that NaCl reabsorption is greatly facilitated in the stingray kidney, resulting in a higher reabsorption rate of urea. Lowering the loss of osmolytes in the glomerular filtrate is likely favorable to the adaptability of batoids to a wide range of environmental salinity.
Collapse
Affiliation(s)
- Naotaka Aburatani
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Japan,
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Japan,
| | - Marty Kwok-Sing Wong
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics, Kobe 650-0047, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics, Kobe 650-0047, Japan
| | | | - Kazuya Kofuji
- Ibaraki Prefectural Oarai Aquarium, Oarai 311-1301, Japan
| | - Kazuhiro Saito
- Ushimado Marine Institute, Faculty of Science,Okayama University, Ushimado 701-4303, Japan
| | - Waichiro Godo
- Ushimado Marine Institute, Faculty of Science,Okayama University, Ushimado 701-4303, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science,Okayama University, Ushimado 701-4303, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Japan
| |
Collapse
|
56
|
Sunga J, Wilson JM, Wilkie MP. Functional re-organization of the gills of metamorphosing sea lamprey (Petromyzon marinus): preparation for a blood diet and the freshwater to seawater transition. J Comp Physiol B 2020; 190:701-715. [PMID: 32852575 DOI: 10.1007/s00360-020-01305-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/31/2020] [Accepted: 06/18/2020] [Indexed: 11/28/2022]
Abstract
Sea lamprey (Petromyzon marinus) begin life as filter-feeding larvae (ammocoetes) before undergoing a complex metamorphosis into parasitic juveniles, which migrate to the sea where they feed on the blood of large-bodied fishes. The greater protein intake during this phase results in marked increases in the production of nitrogenous wastes (N-waste), which are excreted primarily via the gills. However, it is unknown how gill structure and function change during metamorphosis and how it is related to modes of ammonia excretion, nor do we have a good understanding of how the sea lamprey's transition from fresh water (FW) to sea water (SW) affects patterns and mechanisms of N-waste excretion in relation to ionoregulation. Using immunohistochemistry, we related changes in the gill structure of larval, metamorphosing, and juvenile sea lampreys to their patterns of ammonia excretion (Jamm) and urea excretion (Jurea) in FW, and following FW to artificial seawater (ASW) transfer. Rates of Jamm and Jurea were low in larval sea lamprey and increased in feeding juvenile, parasitic sea lamprey. In freshwater-dwelling ammocoetes, immunohistochemical analysis revealed that Rhesus glycoprotein C-like protein (Rhcg-like) was diffusely distributed on the lamellar epithelium, but following metamorphosis, Rhcg-like protein was restricted to SW mitochondrion-rich cells (MRCs; ionocytes) between the gill lamellae. Notably, these interlamellar Rhcg-like proteins co-localized with Na+/K+-ATPase (NKA), which increased in expression and activity by almost tenfold during metamorphosis. The distribution of V-type H+-ATPase (V-ATPase) on the lamellae decreased following metamorphosis, indicating it may have a more important role in acid-base regulation and Na+ uptake in FW, compared to SW. We conclude that the re-organization of the sea lamprey gill during metamorphosis not only plays a critical role in allowing them to cope with greater salinity following the FW-SW transition, but that it simultaneously reflects fundamental changes in methods used to excrete ammonia.
Collapse
Affiliation(s)
- Julia Sunga
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Jonathan M Wilson
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Michael P Wilkie
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
57
|
Chen C, Zhu X, Wen X, Zhou Y, Zhou L, Li H, Tao L, Li Q, Du S, Liu T, Yan D, Xie C, Zou Y, Wang Y, Chen R, Huo J, Li Y, Cheng J, Su H, Zhao X, Cheng W, Liu Q, Lin H, Luo J, Chen J, Dong M, Cheng K, Li C, Wang S. Coupling N 2 and CO 2 in H 2O to synthesize urea under ambient conditions. Nat Chem 2020; 12:717-724. [PMID: 32541948 DOI: 10.1038/s41557-020-0481-9] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 05/01/2020] [Indexed: 12/16/2022]
Abstract
The use of nitrogen fertilizers has been estimated to have supported 27% of the world's population over the past century. Urea (CO(NH2)2) is conventionally synthesized through two consecutive industrial processes, N2 + H2 → NH3 followed by NH3 + CO2 → urea. Both reactions operate under harsh conditions and consume more than 2% of the world's energy. Urea synthesis consumes approximately 80% of the NH3 produced globally. Here we directly coupled N2 and CO2 in H2O to produce urea under ambient conditions. The process was carried out using an electrocatalyst consisting of PdCu alloy nanoparticles on TiO2 nanosheets. This coupling reaction occurs through the formation of C-N bonds via the thermodynamically spontaneous reaction between *N=N* and CO. Products were identified and quantified using isotope labelling and the mechanism investigated using isotope-labelled operando synchrotron-radiation Fourier transform infrared spectroscopy. A high rate of urea formation of 3.36 mmol g-1 h-1 and corresponding Faradic efficiency of 8.92% were measured at -0.4 V versus reversible hydrogen electrode.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Xiaorong Zhu
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Xiaojian Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China
| | - Yangyang Zhou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Ling Zhou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Hao Li
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Li Tao
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Qiling Li
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Shiqian Du
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Tingting Liu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Dafeng Yan
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Chao Xie
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Yuqin Zou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Yanyong Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Ru Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Jia Huo
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Yafei Li
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China.
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P. R. China.
| | - Hui Su
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P. R. China
| | - Xu Zhao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P. R. China
| | - Weiren Cheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P. R. China.
| | - Hongzhen Lin
- i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, P. R. China
| | - Jun Luo
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Center for Electron Microscopy, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, P. R. China
| | - Jun Chen
- Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW, Australia.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China.
| |
Collapse
|
58
|
The effects of digesting a urea-rich meal on North Pacific spiny dogfish (Squalus acanthias suckleyi). Comp Biochem Physiol A Mol Integr Physiol 2020; 249:110775. [PMID: 32717287 DOI: 10.1016/j.cbpa.2020.110775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 12/27/2022]
Abstract
Marine elasmobranchs are nitrogen-limited owing to the requirement of nitrogen for both somatic growth and urea-based osmoregulation, and due to the loss of urea across the gills and kidney as nitrogenous waste. In this study we used in vitro stomach and intestinal gut sacs to investigate the effects of consuming a urea-rich meal (700 mM within a 2% body-mass ration of food-slurry) on nitrogen movement across the gastrointestinal (GI) tract of North Pacific spiny dogfish (Squalus acanthias suckleyi). Plasma urea concentrations did not differ between fasted (359 ± 19 mM), urea-poor fed (340 ± 16 mM), and urea-rich fed (332 ± 24 mM) dogfish. Interestingly, in vitro gut sacs of urea-rich fed dogfish showed no net urea absorption from the lumen over 3 h incubation, which contrasts previously published data on urea-poor fed dogfish that absorb urea from the lumen. In addition, ammonium (NH4+) concentration within the gut sac intestinal lumen significantly increased from 0.62 to 4.35 mM over 3 h. This is likely due to a combination of tissue production and microbial urease activity in the intestine. The overall results highlight the ability of S. a. suckleyi to regulate and maintain internal nitrogen concentrations despite the addition of excess dietary urea.
Collapse
|
59
|
Weinrauch AM, Folkerts EJ, Blewett TA, Bucking C, Anderson WG. Impacts of low salinity exposure and antibiotic application on gut transport activity in the Pacific spiny dogfish, Squalus acanthias suckleyi. J Comp Physiol B 2020; 190:535-545. [PMID: 32617717 DOI: 10.1007/s00360-020-01291-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/03/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022]
Abstract
The role of the marine elasmobranch gastrointestinal tract in nitrogen-recycling and osmotic homeostasis has become increasingly apparent, with the gut microbial community likely playing a significant role converting urea, an important osmolyte in elasmobranchs, into ammonia. The Pacific spiny dogfish can experience and tolerate reduced environmental salinities, yet how this environmental challenge may affect the microbiome, and consequently nitrogen transport across the gut, is as of yet unknown. In the present study, excised gut sac preparations were made from dogfish acclimated to the following: full-strength seawater (C), low salinity for 7 days (LS), and after acute transfer of LS-acclimated fish to full-strength SW for 6 h (AT). Significantly reduced microbial derived urease activity was observed in the mucosal saline of gut sac preparations from the LS (by 81%) and AT (by 89%) treatments relative to the C treatment. Microbial derived cellulase activity from mucosal saline samples tended to follow similar patterns. To further ensure an effective decrease in the spiral valve microbial population, an antibiotic cocktail was applied to the mucosal saline used for in vitro measurements of ion, water, and nitrogen flux in these gut sac preparations. This caused a further 57-61% decrease in the mucosal saline urease activity of the C and LS treatments. Overall, we observed relatively little flux across the stomach for all measured parameters aside from water movement, which switched from a net efflux in control fish to a net influx in acutely transferred fish, indicative of drinking. While no significant differences were observed in terms of nitrogen flux (urea or ammonia), we tended to see the accumulation of ammonia in the spiral valve lumen and a switch from efflux to influx of urea in control versus acutely transferred fish. The increased ammonia production likely occurs as a result of heightened metabolism in a challenging environment, while the retention and acquisition of urea is suggestive of nitrogen scavenging under nitrogen-limiting conditions.
Collapse
Affiliation(s)
- Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada. .,Bamfield Marine Sciences Centre, Bamfield, BC, V0R 1B0, Canada.
| | - Erik J Folkerts
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.,Bamfield Marine Sciences Centre, Bamfield, BC, V0R 1B0, Canada
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.,Bamfield Marine Sciences Centre, Bamfield, BC, V0R 1B0, Canada
| | - Carol Bucking
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.,Bamfield Marine Sciences Centre, Bamfield, BC, V0R 1B0, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.,Bamfield Marine Sciences Centre, Bamfield, BC, V0R 1B0, Canada
| |
Collapse
|
60
|
Pelster B, Wood CM, Braz-Mota S, Val AL. Gills and air-breathing organ in O 2 uptake, CO 2 excretion, N-waste excretion, and ionoregulation in small and large pirarucu (Arapaima gigas). J Comp Physiol B 2020; 190:569-583. [PMID: 32529591 DOI: 10.1007/s00360-020-01286-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/15/2020] [Accepted: 05/29/2020] [Indexed: 01/11/2023]
Abstract
In the pirarucu (Arapaima gigas), gill surface area and thus gas exchange capacity of the gills are reduced with proceeding development. It, therefore, is expected that A. gigas, starting as a water breather, progressively turns into an obligate air-breathing fish using an air-breathing organ (ABO) for gas exchange. We assessed the air-breathing activity, O2 and CO2 exchange into air and water, ammonia-N and urea-N excretion, ion flux rates, and activities of ion transport ATPases in large versus small pirarucu. We found that even very young A. gigas (4-6 g, 2-3 weeks post-hatch) with extensive gills are air-breathers (18.1 breaths*h-1) and cover most (63%) of their O2 requirements from the air whereas 600-700-g animals (about 3-4 months post-hatch), with reduced gills, obtain 75% of their O2 from the air (10.8 breaths*h-1). Accordingly, the reduction in gill surface area hardly affected O2 uptake, but development had a significant effect on aerial CO2 excretion, which was very low (3%) in small fish and increased to 12% in larger fish, yielding a hyper-allometric scaling coefficient (1.12) in contrast to 0.82-0.84 for aquatic and total CO2 excretion. Mass-specific ammonia excretion decreased in approximate proportion to mass-specific O2 consumption as the fish grew, but urea-N excretion dropped from 18% (at 4-6 g) to 8% (at 600-700 g) of total N-excretion; scaling coefficients for all these parameters were 0.70-0.80. Mass-specific sodium influx and efflux rates, as well as potassium net loss rates, departed from this pattern, being greater in larger fish; hyper-allometric scaling coefficients were > 1.0. Gill V-type H+ ATPase activities were greater than Na+, K+-ATPase activities, but levels were generally low and comparable in large and small fish, and similar activities were detected in the ABO. A. gigas is a carnivorous fish throughout its lifecycle, and, despite fasting, protein oxidation accounted for the major portion (61-82%) of aerobic metabolism in both large and small animals. ABO PO2 and PCO2 (measured in 600-700-g fish) were quite variable, and aerial hypoxia resulted in lower ABO PO2 values. Under normoxic conditions, a positive correlation between breath volume and ABP PO2 was detected, and on average with a single breath more than 50% of the ABO volume was exchanged. ABO PCO2 values were in the range of 1.95-3.89 kPa, close to previously recorded blood PCO2 levels. Aerial hypoxia (PO2 down to 12.65 kPa) did not increase either air-breathing frequency or breath volume.
Collapse
Affiliation(s)
- Bernd Pelster
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | - Susana Braz-Mota
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| |
Collapse
|
61
|
Guo H, Lin W, Wu X, Wang L, Zhang D, Li L, Li D, Tang R, Yang L, Qiu Y. Survival strategies of Wuchang bream (Megalobrama amblycephala) juveniles for chronic ammonia exposure: Antioxidant defense and the synthesis of urea and glutamine. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108707. [PMID: 31953219 DOI: 10.1016/j.cbpc.2020.108707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/20/2019] [Accepted: 01/11/2020] [Indexed: 12/19/2022]
Abstract
This study aimed to explore how Wuchang bream (Megalobrama amblycephala) survive and defend against the toxicity of ambient total ammonia nitrogen (0, 5, 10, 20 and 30 mg/L TA-N) during 30-day exposure. As a result, hepatic malondialdehyde and protein carbonylation as well as histopathological alterations increased with increasing TA-N level, which suggested that chronic ammonia exposure caused oxidative stress and damage in the liver of fish. Meanwhile, the activities of hepatic total superoxide dismutase (T-SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glucose 6-phosphate dehydrogenase (G6PD) as well as the mRNA expression of Cu/Zn sod, cat, gpx and g6pd were elevated significantly along with significant reduction of glutathione (GSH) and nicotinamide adenine dinucleotide phosphate (NADPH) (P < 0.05). These results indicated that hepatic antioxidant responses were activated to alleviate oxidative damages induced by ammonia, in which lower-concentration ammonia only initiate SOD-CAT-GR-G6PDH defense and higher ammonia activated the SOD-CAT-GPx-GSH-GR-G6PDH antioxidant response. In addition, significant increases of serum urea and hepatic ammonia, urea, glutamine, arginase as well as glutamine synthetase were detected with the increase of TA-N (P < 0.05), while serum ammonia levels kept stable (P > 0.05). The present findings further revealed that ammonia could be detoxified directly into glutamine and urea in Wuchang bream to cope with ammonia exposure. In conclusion, under chronic ammonia exposure, enhanced hepatic antioxidant responses as well as increased urea and glutamine synthesis worked in combination to allow Megalobrama amblycephala to defend against environmental ammonia toxicity.
Collapse
Affiliation(s)
- Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xueyang Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lingkai Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dandan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China.
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China
| | - Liping Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuming Qiu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
62
|
Goodrich HR, Bayley M, Birgersson L, Davison WG, Johannsson OE, Kim AB, Le My P, Tinh TH, Thanh PN, Thanh HDT, Wood CM. Understanding the gastrointestinal physiology and responses to feeding in air-breathing Anabantiform fishes. JOURNAL OF FISH BIOLOGY 2020; 96:986-1003. [PMID: 32060920 DOI: 10.1111/jfb.14288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/16/2019] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
The Mekong Delta is host to a large number of freshwater species, including a unique group of facultative air-breathing Anabantiforms. Of these, the striped snakehead (Channa striata), the climbing perch (Anabas testudineus), the giant gourami (Osphronemus goramy) and the snakeskin gourami (Trichogaster pectoralis) are major contributors to aquaculture production in Vietnam. The gastrointestinal responses to feeding in these four species are detailed here. Relative intestinal length was lowest in the snakehead, indicating carnivory, and 5.5-fold greater in the snakeskin, indicating herbivory; climbing perch and giant gourami were intermediate, indicating omnivory. N-waste excretion (ammonia-N + urea-N) was greatest in the carnivorous snakehead and least in the herbivorous snakeskin, whereas the opposite trend was observed for net K+ excretion. Similarly, the more carnivorous species had a greater stomach acidity than the more herbivorous species. Measurements of acid-base flux to water indicated that the greatest postprandial alkaline tide occurred in the snakehead and a potential acidic tide in the snakeskin. Additional findings of interest were high levels of both PCO2 (up to 40 mmHg) and HCO3 - (up to 33 mM) in the intestinal chyme of all four of these air-breathing species. Using in vitro gut sac preparations of the climbing perch, it was shown that the intestinal net absorption of fluid, Na+ and HCO3 - was upregulated by feeding but not net Cl- uptake, glucose uptake or K+ secretion. Upregulated net absorption of HCO3 - suggests that the high chyme (HCO3 - ) does not result from secretion by the intestinal epithelium. The possibility of ventilatory control of PCO2 to regulate postprandial acid-base balance in these air-breathing fish is discussed.
Collapse
Affiliation(s)
- Harriet R Goodrich
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
- College of Life and Environmental Sciences, The University of Exeter, Exeter, Devon, UK
| | - Mark Bayley
- Department of Bioscience, Zoophysiology Aarhus University, Aarhus, Denmark
| | - Lina Birgersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - William G Davison
- College of Life and Environmental Sciences, The University of Exeter, Exeter, Devon, UK
| | - Ora E Johannsson
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Anne B Kim
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Phuong Le My
- Department of Agriculture, Bac Lieu University, Bac Lieu, Vietnam
| | - Tran H Tinh
- Aquaculture and Fisheries, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Phuong N Thanh
- College of Aquaculture and Fisheries, Can Tho University, Cần Thơ, Vietnam
| | - Huong Do Thi Thanh
- College of Aquaculture and Fisheries, Can Tho University, Cần Thơ, Vietnam
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
63
|
Bockus AB, LaBreck CJ, Camberg JL, Collie JS, Seibel BA. Thermal Range and Physiological Tolerance Mechanisms in Two Shark Species from the Northwest Atlantic. THE BIOLOGICAL BULLETIN 2020; 238:131-144. [PMID: 32412839 DOI: 10.1086/708718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spiny dogfish (Squalus acanthias) and smoothhound (Mustelus canis) sharks in the northwest Atlantic undergo seasonal migrations driven by changes in water temperature. However, the recognized thermal habitats of these regional populations are poorly described. Here, we report the thermal range, catch frequency with bottom temperature, and catch frequency with time of year for both shark species in Narragansett Bay, Rhode Island. Additionally, we describe levels of two thermal stress response indicators, heat-shock protein 70 and trimethylamine N-oxide, with an experimental increase in water temperature from 15 °C to 21 °C. Our results show that S. acanthias can be found in this region year-round and co-occurs with M. canis from June to November. Further, adult S. acanthias routinely inhabits colder waters than M. canis (highest catch frequencies at bottom temperatures of 10 °C and 21 °C, respectively), but both exhibit similar upper thermal ranges in this region (bottom temperatures of 22-23 °C). Additionally, acute exposure to a 6 °C increase in water temperature for 72 hours leads to a nearly threefold increase in heat-shock protein 70 levels in S. acanthias but not M. canis. Therefore, these species display differences in their thermal tolerance and stress response with experimental exposure to 21 °C, a common summer temperature in Narragansett Bay. Further, in temperature-stressed S. acanthias there is no accumulation of trimethylamine N-oxide. At the whole-organism level, elasmobranchs' trimethylamine N-oxide regulatory capacity may be limited by other factors. Alternatively, elasmobranchs may not rely on trimethylamine N-oxide as a primary thermal protective mechanism under the conditions tested. Findings from this study are in contrast with previous research conducted with elasmobranch cells in vitro that showed accumulation of trimethylamine N-oxide after thermal stress and subsequent suppression of the heat-shock protein 70 response.
Collapse
|
64
|
Ren H, Bai H, Su X, Pang J, Li X, Wu S, Cao Y, Cai C, Yao J. Decreased amylolytic microbes of the hindgut and increased blood glucose implied improved starch utilization in the small intestine by feeding rumen-protected leucine in dairy calves. J Dairy Sci 2020; 103:4218-4235. [PMID: 32113753 DOI: 10.3168/jds.2019-17194] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/18/2019] [Indexed: 12/27/2022]
Abstract
Starch digestion in the small intestine in ruminants is relatively lower compared with that in monogastric animals, likely due to low pancreatic α-amylase secretion. Previous studies suggested that leucine could increase pancreatic α-amylase secretion in the small intestine of heifers cannulated with abomasal, duodenal, and ileal catheters. However, the surgical procedures probably have an effect on pancreatic function. Thus, we used rumen-protected leucine (RP-Leu) to explore its effect on small intestinal digestion of starch in calves without any surgery in 3 experiments. The first experiment was to explore whether RP-Leu could improve post-ruminal starch digestion in 5-mo-old calves (158 ± 19 kg body weight ± standard deviation). We found that RP-Leu did not affect rumen fermentation profile or whole-tract starch digestibility, but it increased blood glucose concentration and fecal pH and decreased fecal propionate molar proportion. Additionally, RP-Leu increased fibrolytic genera Ruminiclostridium and Pseudobutyrivibrio and decreased the amylolytic genus of Faecalibacterium. The second experiment compared RP-Leu and rumen-protected lysine (RP-Lys) for their effects on post-ruminal starch digestion in 6-mo-old calves (201 ± 24 kg body weight). The responses of blood glucose concentration, fecal pH, fecal propionate proportion, and starch digestibility to RP-Leu supplementation were similar to those observed in experiment 1. Cellulolytic family Ruminococcaceae and Bacteroidales BS11 gut group tended to be increased by RP-Leu. In contrast, RP-Lys showed no significant influence on the above measurements. The third experiment determined the interaction between RP-Leu and rumen-escape starch (RES) on the small intestinal digestion of starch in 8-mo-old calves (289 ± 26 kg body weight). An interaction between RP-Leu and RES levels was observed in fecal butyrate concentration and the relative abundance of family Bacteroidaceae, and genera Ruminococcaceae UCG-005 and Bacteroides. We found that RP-Leu tended to increase the abundance of fecal Firmicutes and decrease Spirochaetae. In conclusion, RP-Leu, but not RP-Lys, increased blood glucose concentration and decreased the amount of starch fermented in the hindgut in a RES dose-dependent manner, suggesting that RP-Leu might stimulate starch digestion in the small intestine.
Collapse
Affiliation(s)
- Hao Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Hanxun Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaodong Su
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jie Pang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaoyong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
| |
Collapse
|
65
|
Ngu L, Winters JN, Nguyen K, Ramos KE, DeLateur NA, Makowski L, Whitford PC, Ondrechen MJ, Beuning PJ. Probing remote residues important for catalysis in Escherichia coli ornithine transcarbamoylase. PLoS One 2020; 15:e0228487. [PMID: 32027716 PMCID: PMC7004355 DOI: 10.1371/journal.pone.0228487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding how enzymes achieve their tremendous catalytic power is a major question in biochemistry. Greater understanding is also needed for enzyme engineering applications. In many cases, enzyme efficiency and specificity depend on residues not in direct contact with the substrate, termed remote residues. This work focuses on Escherichia coli ornithine transcarbamoylase (OTC), which plays a central role in amino acid metabolism. OTC has been reported to undergo an induced-fit conformational change upon binding its first substrate, carbamoyl phosphate (CP), and several residues important for activity have been identified. Using computational methods based on the computed chemical properties from theoretical titration curves, sequence-based scores derived from evolutionary history, and protein surface topology, residues important for catalytic activity were predicted. The roles of these residues in OTC activity were tested by constructing mutations at predicted positions, followed by steady-state kinetics assays and substrate binding studies with the variants. First-layer mutations R57A and D231A, second-layer mutation H272L, and third-layer mutation E299Q, result in 57- to 450-fold reductions in kcat/KM with respect to CP and 44- to 580-fold reductions with respect to ornithine. Second-layer mutations D140N and Y160S also reduce activity with respect to ornithine. Most variants had decreased stability relative to wild-type OTC, with variants H272L, H272N, and E299Q having the greatest decreases. Variants H272L, E299Q, and R57A also show compromised CP binding. In addition to direct effects on catalytic activity, effects on overall protein stability and substrate binding were observed that reveal the intricacies of how these residues contribute to catalysis.
Collapse
Affiliation(s)
- Lisa Ngu
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - Jenifer N. Winters
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - Kien Nguyen
- Department of Physics, Northeastern University, Boston, MA, United States of America
| | - Kevin E. Ramos
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - Nicholas A. DeLateur
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - Lee Makowski
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, United States of America
- Department of Bioengineering, Northeastern University, Boston, MA, United States of America
| | - Paul C. Whitford
- Department of Physics, Northeastern University, Boston, MA, United States of America
| | - Mary Jo Ondrechen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, United States of America
- * E-mail: (MJO); (PJB)
| | - Penny J. Beuning
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, United States of America
- * E-mail: (MJO); (PJB)
| |
Collapse
|
66
|
Zhu W, Xu W, Wei C, Zhang Z, Jiang C, Chen X. Effects of Decreasing Dietary Crude Protein Level on Growth Performance, Nutrient Digestion, Serum Metabolites, and Nitrogen Utilization in Growing Goat Kids ( Capra hircus). Animals (Basel) 2020; 10:ani10010151. [PMID: 31963340 PMCID: PMC7023173 DOI: 10.3390/ani10010151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Reducing the dietary protein content could potentially reduce losses of nitrogen from ruminant farms and mitigate pressure on the protein ingredient supply. However, there is little information in the literature on the effect of low-protein diets in growing Anhui white goat kids. We demonstrated that decreasing the dietary crude protein level in Anhui white goat kids affected growth performance, improved nitrogen utilization, and reduced environmental nitrogen pollution. The key finding of this study was that a diet containing 13.4% crude protein supplied adequate protein to improve nitrogen utilization in white goat kids without any adverse effect on growth performance. Abstract The effects of decreasing dietary crude protein (CP) level on growth performance, nutrient digestion, serum metabolites, and nitrogen utilization in growing goat kids were investigated in the current study. Thirty-six male Anhui white goat kids were randomly assigned to one of three CP content diets: 14.8% (control), 13.4%, and 12.0% of dry matter, respectively. Diets were isoenergetic. The experiment lasted for 14 weeks, with the first two weeks being for adaptation. Results showed that the low-CP diet decreased average daily gain, feed efficiency, digestibility of dry matter, organic matter, crude protein, and fiber. No significant changes were observed in dry-matter intake. With a decrease in dietary CP level, fecal nitrogen excretion (% of nitrogen intake) increased linearly, whereas CP intake, blood urea nitrogen, urinary nitrogen excretion (% of nitrogen intake), and total nitrogen excretion (% of nitrogen intake) decreased. Serum glucose concentration decreased, while concentrations of low-density lipoproteins and non-esterified fatty acids increased with the low-CP diet. In conclusion, decreasing the dietary CP level decreased goats’ nitrogen excretion, but with restrictive effects on growth performance. A diet containing 13.4% CP is optimal for reducing nitrogen excretion without any adverse effect on growth performance of Anhui white goat kids. This concentration is 1.4% points lower than the NRC recommendations and thus is also environmentally beneficial on the input side because it decreases the use of feed (soy) protein.
Collapse
Affiliation(s)
- Wen Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.Z.); (W.X.); (C.W.); (Z.Z.)
| | - Wei Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.Z.); (W.X.); (C.W.); (Z.Z.)
| | - Congcong Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.Z.); (W.X.); (C.W.); (Z.Z.)
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.Z.); (W.X.); (C.W.); (Z.Z.)
| | - Chunchao Jiang
- Luan Lvjie Animal Husbandry Co., Ltd., Luan 237000, China;
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.Z.); (W.X.); (C.W.); (Z.Z.)
- Correspondence:
| |
Collapse
|
67
|
G DP, Souza-Bastos LR, Giacomin M, Dolatto RG, Baika LM, Grassi MT, Ostrensky A, Wood CM. Acute exposure to the water-soluble fraction of gasoline (WSF G) affects oxygen consumption, nitrogenous-waste and Mg excretion, and activates anaerobic metabolism in the goldfish Carassius auratus. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108590. [PMID: 31404698 DOI: 10.1016/j.cbpc.2019.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/26/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
Contamination of aquatic environments by petroleum and its products (e.g. gasoline) is a hazard for aquatic organisms as a result of the potential toxicity of monocyclic aromatic hydrocarbons (BTEX) and polycyclic aromatic hydrocarbons (PAH). Our goal was to evaluate the acute effects of the water-soluble fraction of gasoline (WSFG) on nitrogen excretion, osmoregulation, and metabolism of goldfish Carassius auratus. We first chemically characterized the WSFG and then tested its effects on these physiological aspects of C. auratus, in several different exposure scenarios (0, 0.25, 5, 10 and 25% of WSFG). The WSFG contained high concentrations BTEX (toluene 70% and benzene 17%) relative to PAH (<1%), and low levels of several metals (Al, Fe, Zn, Sr). Routine O2 uptake rate (MO2) of goldfish was inhibited by exposure to 5% WSFG, and during post-exposure recovery, MO2 increased in a dose-dependent fashion. Ammonia excretion was not affected by exposure to WSFG, but urea-N excretion increased progressively with the WSFG concentration. The same pattern of dose/response was observed for net Mg2+ loss rates and steadily increasing plasma lactate concentrations. Loss rates of Na+, Ca2+, K+ and Cl-, and plasma concentrations of Mg2+ and urea-N were not significantly altered. We propose that acute exposure to WSFG inhibits aerobic metabolism and activates anaerobic metabolism, breaking down ATP such that bound Mg2+ is liberated and the purine ring component is metabolized to urea-N, both of which are subsequently excreted.
Collapse
Affiliation(s)
- Dal Pont G
- Integrated Group for Aquaculture and Environmental Studies, Dept. of Animal Science, Federal University of Paraná, Curitiba, P.R. 83035-050, Brazil; Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba, PR ZIP 80035-050, Brazil; Department of Zoology, University of British Columbia, Vancouver, BC ZIP V6T 1Z4, Canada.
| | - Luciana Rodrigues Souza-Bastos
- Integrated Group for Aquaculture and Environmental Studies, Dept. of Animal Science, Federal University of Paraná, Curitiba, P.R. 83035-050, Brazil; Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba, PR ZIP 80035-050, Brazil; Institute of Technology for Development - Lactec, Curitiba, PR ZIP 81531-980, Brazil.
| | - Marina Giacomin
- Department of Zoology, University of British Columbia, Vancouver, BC ZIP V6T 1Z4, Canada.
| | - Rafael Garrett Dolatto
- Grupo de Química Ambiental (GQA), Dept. of Chemistry, Federal University of Paraná, PO Box 19032, Curitiba, PR ZIP 81531-970, Brazil
| | - Loana Mara Baika
- Grupo de Química Ambiental (GQA), Dept. of Chemistry, Federal University of Paraná, PO Box 19032, Curitiba, PR ZIP 81531-970, Brazil
| | - Marco Tadeu Grassi
- Grupo de Química Ambiental (GQA), Dept. of Chemistry, Federal University of Paraná, PO Box 19032, Curitiba, PR ZIP 81531-970, Brazil.
| | - Antonio Ostrensky
- Integrated Group for Aquaculture and Environmental Studies, Dept. of Animal Science, Federal University of Paraná, Curitiba, P.R. 83035-050, Brazil.
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC ZIP V6T 1Z4, Canada.
| |
Collapse
|
68
|
Retinol Saturase Knock-Out Mice are Characterized by Impaired Clearance of Apoptotic Cells and Develop Mild Autoimmunity. Biomolecules 2019; 9:biom9110737. [PMID: 31766264 PMCID: PMC6920856 DOI: 10.3390/biom9110737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
Apoptosis and the proper clearance of apoptotic cells play a central role in maintaining tissue homeostasis. Previous work in our laboratory has shown that when a high number of cells enters apoptosis in a tissue, the macrophages that engulf them produce retinoids to enhance their own phagocytic capacity by upregulating several phagocytic genes. Our data indicated that these retinoids might be dihydroretinoids, which are products of the retinol saturase (RetSat) pathway. In the present study, the efferocytosis of RetSat-null mice was investigated. We show that among the retinoid-sensitive phagocytic genes, only transglutaminase 2 responded in macrophages and in differentiating monocytes to dihydroretinol. Administration of dihydroretinol did not affect the expression of the tested genes differently between differentiating wild type and RetSat-null monocytes, despite the fact that the expression of RetSat was induced. However, in the absence of RetSat, the expression of numerous differentiation-related genes was altered. Among these, impaired production of MFG-E8, a protein that bridges apoptotic cells to the αvβ3/β5 integrin receptors of macrophages, resulted in impaired efferocytosis, very likely causing the development of mild autoimmunity in aged female mice. Our data indicate that RetSat affects monocyte/macrophage differentiation independently of its capability to produce dihydroretinol at this stage.
Collapse
|
69
|
Cartolano MC, Chng Y, McDonald MD. Do reproductive hormones control Gulf toadfish pulsatile urea excretion? Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110561. [PMID: 31499168 DOI: 10.1016/j.cbpa.2019.110561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/14/2019] [Accepted: 08/30/2019] [Indexed: 01/04/2023]
Abstract
Gulf toadfish (Opsanus beta) can excrete the majority of their nitrogenous waste as urea in distinct pulses across their gill. Urea pulses are controlled by cortisol and serotonin (5-HT) and are believed to contain chemical signals that may communicate reproductive and/or social status. The objectives of this study were to determine if reproductive hormones are involved in controlling pulsatile urea excretion, and if toadfish respond to prostaglandins as a chemical signal. Specifically, 11-ketotestosterone (11-KT), estradiol (E2), and the teleost pheromone prostaglandin E2 (PGE2) were investigated. Castration during breeding season did not affect pulsatile urea excretion but serial injections of 11-KT outside of breeding season did result in a 48% reduction in urea pulse size in fish of both sexes. Injections of E2 and PGE2, on the other hand, did not alter urea excretion patterns. Toadfish also did not pulse urea in response to waterborne exposure of PGE2 suggesting that this compound does not serve as a toadfish pheromone alone. Toadfish have significantly higher plasma 5-HT during breeding season compared to the months following breeding season. Future research should focus on the composition of the chemical signal in toadfish and the potential importance of seasonal changes in plasma 5-HT in toadfish pulsatile urea excretion and teleost reproduction in general.
Collapse
Affiliation(s)
- Maria C Cartolano
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
| | - Yi Chng
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| |
Collapse
|
70
|
Morin G, Guiraut C, Perez Marcogliese M, Mohamed I, Lavoie JC. Glutathione Supplementation of Parenteral Nutrition Prevents Oxidative Stress and Sustains Protein Synthesis in Guinea Pig Model. Nutrients 2019; 11:nu11092063. [PMID: 31484318 PMCID: PMC6770543 DOI: 10.3390/nu11092063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 11/30/2022] Open
Abstract
Peroxides contaminating parenteral nutrition (PN) limit the use of methionine as a precursor of cysteine. Thus, PN causes a cysteine deficiency, characterized by low levels of glutathione, the main molecule used in peroxide detoxification, and limited growth in individuals receiving long-term PN compared to the average population. We hypothesize that glutathione supplementation in PN can be used as a pro-cysteine that improves glutathione levels and protein synthesis and reduces oxidative stress caused by PN. One-month-old guinea pigs (7–8 per group) were used to compare glutathione-enriched to a non-enriched PN, animals on enteral nutrition were used as a reference. PN: Dextrose, amino acids (Primene), lipid emulsion (Intralipid), multivitamins, electrolytes; five-day infusion. Glutathione (GSH, GSSG, redox potential) and the incorporation of radioactive leucine into the protein fraction (protein synthesis index) were measured in the blood, lungs, liver, and gastrocnemius muscle. Data were analysed by ANOVA; p < 0.05 was considered significant. The addition of glutathione to PN prevented the PN-induced oxidative stress in the lungs and muscles and supported protein synthesis in liver and muscles. The results potentially support the recommendation to add glutathione to the PN and demonstrate that glutathione could act as a biologically available cysteine precursor.
Collapse
Affiliation(s)
- Guillaume Morin
- Department of Nutrition, Université de Montréal, 2405 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Clémence Guiraut
- Department of Nutrition, Université de Montréal, 2405 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
- CHU Sainte-Justine Research Centre, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Marisol Perez Marcogliese
- CHU Sainte-Justine Research Centre, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Ibrahim Mohamed
- Department of Nutrition, Université de Montréal, 2405 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
- CHU Sainte-Justine Research Centre, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
- Department of Pediatrics-Neonatology, CHU Sainte-Justine, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Jean-Claude Lavoie
- Department of Nutrition, Université de Montréal, 2405 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada.
- CHU Sainte-Justine Research Centre, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| |
Collapse
|
71
|
Eom J, Giacomin M, Clifford AM, Goss GG, Wood CM. Ventilatory sensitivity to ammonia in the Pacific hagfish ( Eptatretus stoutii), a representative of the oldest extant connection to the ancestral vertebrates. ACTA ACUST UNITED AC 2019; 222:jeb.199794. [PMID: 31221739 DOI: 10.1242/jeb.199794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/16/2019] [Indexed: 12/30/2022]
Abstract
Ventilatory sensitivity to ammonia occurs in teleosts, elasmobranchs and mammals. Here, we investigated whether the response is also present in hagfish. Ventilatory parameters (nostril flow, pressure amplitude, velar frequency and ventilatory index, the last representing the product of pressure amplitude and frequency), together with blood and water chemistry, were measured in hagfish exposed to either high environmental ammonia (HEA) in the external sea water or internal ammonia loading by intra-vascular injection. HEA exposure (10 mmol l-1 NH4HCO3 or 10 mmol l-1 NH4Cl) caused a persistent hyperventilation by 3 h, but further detailed analysis of the NH4HCO3 response showed that initially (within 5 min) there was a marked decrease in ventilation (80% reduction in ventilatory index and nostril flow), followed by a later 3-fold increase, by which time plasma total ammonia concentration had increased 11-fold. Thus, hyperventilation in HEA appeared to be an indirect response to internal ammonia elevation, rather than a direct response to external ammonia. HEA-mediated increases in oxygen consumption also occurred. Responses to NH4HCO3 were greater than those to NH4Cl, reflecting greater increases over time in water pH and P NH3 in the former. Hagfish also exhibited hyperventilation in response to direct injection of isotonic NH4HCO3 or NH4Cl solutions into the caudal sinus. In all cases where hyperventilation occurred, plasma total ammonia and P NH3 levels increased significantly, while blood acid-base status remained unchanged, indicating specific responses to internal ammonia elevation. The sensitivity of breathing to ammonia arose very early in vertebrate evolution.
Collapse
Affiliation(s)
- Junho Eom
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada V0R 1B0 .,Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Marina Giacomin
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada V0R 1B0.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Alexander M Clifford
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada V0R 1B0.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Greg G Goss
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada V0R 1B0.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Chris M Wood
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada V0R 1B0.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
72
|
Cartolano MC, Gancel HN, Lonthair J, Wood CM, McDonald MD. Pulsatile urea excretion in Gulf toadfish: the role of circulating serotonin and additional 5-HT receptor subtypes. J Comp Physiol B 2019; 189:537-548. [DOI: 10.1007/s00360-019-01223-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/28/2019] [Accepted: 06/24/2019] [Indexed: 11/28/2022]
|
73
|
Migliaccio O, Pinsino A, Maffioli E, Smith AM, Agnisola C, Matranga V, Nonnis S, Tedeschi G, Byrne M, Gambi MC, Palumbo A. Living in future ocean acidification, physiological adaptive responses of the immune system of sea urchins resident at a CO 2 vent system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:938-950. [PMID: 30981169 DOI: 10.1016/j.scitotenv.2019.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/20/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The effects of ocean acidification, a major anthropogenic impact on marine life, have been mainly investigated in laboratory/mesocosm experiments. We used the CO2 vents at Ischia as a natural laboratory to study the long-term effects of ocean acidification on the sea urchin Paracentrotus lividus population resident in low-pH (7.8 ± 0.2) compared to that at two control sites (pH 8.02 ± 0.00; 8.02 ± 0.01). The novelty of the present study is the analysis of the sea urchin immune cells, the sentinels of environmental stress responses, by a wide-ranging approach, including cell morphology, biochemistry and proteomics. Immune cell proteomics showed that 311 proteins were differentially expressed in urchins across sites with a general shift towards antioxidant processes in the vent urchins. The vent urchin immune cells showed higher levels of total antioxidant capacity, up-regulation of phagosome and microsomal proteins, enzymes of ammonium metabolism, amino-acid degradation, and modulation of carbon metabolism proteins. Lipid-hydroperoxides and nitric oxide levels were not different in urchins from the different sites. No differences in the coelomic fluid pH, immune cell composition, animal respiration, nitrogen excretion and skeletal mineralogy were observed. Our results reveal the phenotypic plasticity of the immune system of sea urchins adapted to life at vent site, under conditions commensurate with near-future ocean acidification projections.
Collapse
Affiliation(s)
- Oriana Migliaccio
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Annalisa Pinsino
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Elisa Maffioli
- DIMEVET - Section of Biochemistry, University of Milan, Milan, Italy
| | - Abigail M Smith
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Valeria Matranga
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Simona Nonnis
- DIMEVET - Section of Biochemistry, University of Milan, Milan, Italy
| | | | - Maria Byrne
- School of Medical and Science and School of Life and Environmental Science, University of Sydney, Sydney, Australia
| | - Maria Cristina Gambi
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (Villa Dohrn-Benthic Ecology Center), Ischia, Naples, Italy
| | - Anna Palumbo
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy.
| |
Collapse
|
74
|
Sadauskas-Henrique H, Wood CM, Souza-Bastos LR, Duarte RM, Smith DS, Val AL. Does dissolved organic carbon from Amazon black water (Brazil) help a native species, the tambaqui Colossoma macropomum to maintain ionic homeostasis in acidic water? JOURNAL OF FISH BIOLOGY 2019; 94:595-605. [PMID: 30811601 DOI: 10.1111/jfb.13943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
To assess how the quality and properties of the natural dissolved organic carbon (DOC) could drive different effects on gill physiology, we analysed the ionoregulatory responses of a native Amazonian fish species, the tambaqui Colossoma macropomum, to the presence of dissolved organic carbon (DOC; 10 mg l-1 ) at both pH 7.0 and pH 4.0 in ion-poor water. The DOC was isolated from black water from São Gabriel da Cachoeira (SGC) in the upper Rio Negro of the Amazon (Brazil) that earlier been shown to protect a non-native species, zebrafish Danio rerio against low pH under similar conditions. Transepithelial potential (TEP), net flux rates of Na+ , Cl- and ammonia and their concentrations in plasma and Na+ , K+ ATPase; v-type H+ ATPase and carbonic anhydrase activities in gills were measured. The presence of DOC had negligible effects at pH 7.0 apart from lowering the TEP, but it prevented the depolarization of TEP that occurred at pH 4.0 in the absence of DOC. However, contrary to our initial hypothesis, SGC DOC was not protective against the effects of low pH. Colossoma macropomum exposed to SGC DOC at pH 4.0 experienced greater net Na+ and Cl- losses, decreases of Na+ and Cl- concentrations in plasma and elevated plasma ammonia levels and excretion rates, relative to those exposed in the absence of DOC. Species-specific differences and changes in DOC properties during storage are discussed as possible factors influencing the effectiveness of SGC DOC in ameliorating the effects of the acid exposure.
Collapse
Affiliation(s)
- Helen Sadauskas-Henrique
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research, Manaus, Brazil
- Santa Cecília University (Unisanta), Santos, Brazil
| | - Chris M Wood
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research, Manaus, Brazil
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Luciana R Souza-Bastos
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research, Manaus, Brazil
- Institute of Technology for Development - Lactec Institutes, Curitiba, Brazil
| | - Rafael M Duarte
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research, Manaus, Brazil
- Biosciences Institute, São Paulo State University - UNESP, São Vicente, Brazil
| | - Donald S Smith
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Canada
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research, Manaus, Brazil
| |
Collapse
|
75
|
Singh NK, Naira VR, Maiti SK. Production of biodiesel by autotrophic Chlorella pyrenoidosa in a sintered disc lab scale bubble column photobioreactor under natural sunlight. Prep Biochem Biotechnol 2019; 49:255-269. [DOI: 10.1080/10826068.2018.1536991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Navodit K. Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Venkateswara R. Naira
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Soumen K. Maiti
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
76
|
Ferreira MS, Wood CM, Harter TS, Dal Pont G, Val AL, Matthews PGD. Metabolic fuel use after feeding in the zebrafish ( Danio rerio): a respirometric analysis. ACTA ACUST UNITED AC 2019; 222:jeb.194217. [PMID: 30573666 DOI: 10.1242/jeb.194217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/18/2018] [Indexed: 01/17/2023]
Abstract
We used respirometric theory and a new respirometry apparatus to assess, for the first time, the sequential oxidation of the major metabolic fuels during the post-prandial period (10 h) in adult zebrafish fed with commercial pellets (51% protein, 2.12% ration). Compared with a fasted group, fed fish presented peak increases of oxygen consumption (78%), and carbon dioxide (80%) and nitrogen excretion rates (338%) at 7-8 h, and rates remained elevated at 10 h. The respiratory quotient increased slightly (0.89 to 0.97) whereas the nitrogen quotient increased greatly (0.072 to 0.140), representing peak amino acid/protein usage (52%) at this time. After 48-h fasting, endogenous carbohydrate and lipid were the major fuels, but in the first few hours after feeding, carbohydrate oxidation increased greatly, fueling the first part of the post-prandial specific dynamic action, whereas increased protein/amino acid usage predominated from 6 h onwards. Excess dietary protein/amino acids were preferentially metabolized for energy production.
Collapse
Affiliation(s)
- Marcio S Ferreira
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia (INPA), 69.067-375 Manaus, Brasil
| | - Chris M Wood
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia (INPA), 69.067-375 Manaus, Brasil.,Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Till S Harter
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Giorgi Dal Pont
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4.,Grupo Integrado de Aquicultura e Estudos Ambientais, Universidade Federal do Paraná (UFPR), 80.060-000 Curitiba, Brasil
| | - Adalberto L Val
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia (INPA), 69.067-375 Manaus, Brasil
| | - Philip G D Matthews
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4
| |
Collapse
|
77
|
Wood CM, Liew HJ, De Boeck G, Hoogenboom JL, Anderson WG. Nitrogen handling in the elasmobranch gut: a role for microbial urease. ACTA ACUST UNITED AC 2019; 222:jeb.194787. [PMID: 30530835 DOI: 10.1242/jeb.194787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/03/2018] [Indexed: 11/20/2022]
Abstract
Ureotelic elasmobranchs require nitrogen for both protein growth and urea-based osmoregulation, and therefore are probably nitrogen-limited in nature. Mechanisms exist for retaining and/or scavenging nitrogen in the gills, kidney, rectal gland and gut, but as yet, the latter are not well characterized. Intestinal sac preparations of the Pacific spiny dogfish shark (Squalus acanthias suckleyi) incubated in vitro strongly reabsorbed urea from the lumen after feeding, but mucosal fluid ammonia concentrations increased with incubation time. Phloretin (0.25 mmol l-1, which blocked urea reabsorption) greatly increased the rate of ammonia accumulation in the lumen. A sensitive [14C]urea-based assay was developed to examine the potential role of microbial urease in this ammonia production. Urease activity was detected in chyme/intestinal fluid and intestinal epithelial tissue of both fed and fasted sharks. Urease was not present in gall-bladder bile. Urease activities were highly variable among animals, but generally greater in chyme than in epithelia, and greater in fed than in fasted sharks. Comparable urease activities were found in chyme and epithelia of the Pacific spotted ratfish (Hydrolagus colliei), a ureotelic holocephalan, but were much lower in ammonotelic teleosts. Urease activity in dogfish chyme was inhibited by acetohydroxamic acid (1 mmol l-1) and by boiling. Treatment of dogfish gut sac preparations with acetohydroxamic acid blocked ammonia production, changing net ammonia accumulation into net ammonia absorption. We propose that microbial urease plays an important role in nitrogen handling in the elasmobranch intestine, allowing some urea-N to be converted to ammonia, which is then reabsorbed for amino acid synthesis or reconversion to urea.
Collapse
Affiliation(s)
- Chris M Wood
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC V0R 1B0, Canada .,Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
| | - Hon Jung Liew
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC V0R 1B0, Canada.,Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Gudrun De Boeck
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC V0R 1B0, Canada.,Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - J Lisa Hoogenboom
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC V0R 1B0, Canada.,Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - W Gary Anderson
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC V0R 1B0, Canada.,Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| |
Collapse
|
78
|
Egnew N, Renukdas N, Ramena Y, Yadav AK, Kelly AM, Lochmann RT, Sinha AK. Physiological insights into largemouth bass (Micropterus salmoides) survival during long-term exposure to high environmental ammonia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:72-82. [PMID: 30530206 DOI: 10.1016/j.aquatox.2018.11.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Waterborne ammonia is an environmental pollutant that is toxic to all aquatic animals. However, ammonia induced toxicity as well as compensatory mechanisms to defend against high environmental ammonia (HEA) are not well documented at present for largemouth bass (Micropterus salmoides), a high value fish for culture and sport fisheries in the United States. To provide primary information on the sensitivity of this species to ammonia toxicity, a 96 h-LC50 test was conducted. Thereafter, responses at physiological, ion-regulatory and transcript levels were determined to get insights into the underlying adaptive strategies to ammonia toxicity. For this purpose, fish were progressively exposed to HEA (8.31 mg/L representing 25% of 96 h-LC50) for 3, 7, 14, 21 and 28 days. Temporal effects of HEA on oxygen consumption rate (MO2), ammonia and urea dynamics, plasma ions (Na+, Cl- and K+), branchial Na+/K+-ATPase (NKA) and H+-ATPase activity, muscle water content (MWC), energy store (glycogen, lipid and protein) as well as branchial mRNA expression of Rhesus (Rh) glycoproteins were assessed. Probit analysis showed that 96 h-LC50 of (total) ammonia (as NH4HCO3) at 25 °C and pH 7.8 was 33.24 mg/L. Results from sub-lethal end-points shows that ammonia excretion rate (Jamm) was strongly inhibited after 7 days of HEA, but was unaffected at 3, 14 and 21 days. At 28 days fish were able to increase Jamm efficiently and concurrently, plasma ammonia re-established to the basal level. Urea production was increased as evidenced by a considerable elevation of plasma urea, but urea excretion rate remained unaltered. Expression of Rhcg isoform (Rhcg2) mRNA was up-regulated in parallel with restored or increased Jamm, suggesting its ammonia excreting role in largemouth bass. Exposure to HEA also displayed pronounced augmentations in NKA activity, exemplified by a rise in plasma [Na+]. Furthermore, [K+], [Cl-] and MWC homeostasis were disrupted followed by recovery to the control levels. H+-ATPase activity was elevated but NKA did not appear to function preferentially as a Na+/NH4+-ATPase. From 14 days onwards MO2 was depressed, potentially an attempt towards minimizing catabolism. Glycogen content in liver and muscle were temporarily depleted, whereas a remarkable increment in protein was evident at the last exposure period. Overall, these data suggest that ammonia induced toxicity can disturb several biological processes in largemouth bass, however, it can adapt to the long-term sub-lethal ammonia concentrations by activating various components of ammonia excretory, ion-regulatory and metabolic pathways.
Collapse
Affiliation(s)
- Nathan Egnew
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA.
| | - Nilima Renukdas
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA
| | - Yathish Ramena
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA; Great Salt Lake Brine Shrimp Cooperative, Inc., 1750 W 2450 S, Ogden, 84401, UT, USA
| | - Amit K Yadav
- Aquaculture Research Institute, Department of Animal and Veterinary Science, University of Idaho, Moscow, 83844, ID, USA
| | - Anita M Kelly
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA
| | - Rebecca T Lochmann
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA
| | - Amit Kumar Sinha
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA.
| |
Collapse
|
79
|
Cartolano MC, Tullis-Joyce P, Kubicki K, McDonald MD. Do Gulf Toadfish Use Pulsatile Urea Excretion to Chemically Communicate Reproductive Status? Physiol Biochem Zool 2019; 92:125-139. [PMID: 30657409 DOI: 10.1086/701497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gulf toadfish (Opsanus beta) are exceptionally capable of switching from excreting ammonia as their primary nitrogenous waste to excreting predominantly urea in distinct pulses across the gill. Previous studies suggest that these urea pulses may be used for intraspecific chemical communication. To determine whether pulsatile urea excretion communicates reproductive status, toadfish were sexed using ultrasound and delivered conspecific-conditioned seawater (CC-SW) that previously housed a conspecific of the opposite sex, a conspecific chemical alarm cue (avoidance control), or a prey cue (attraction control). Swim behavior, attraction to or avoidance of the cues, and changes in the pattern of pulsatile urea excretion were monitored during and after delivery. Gulf toadfish did not spend more time in zones that were delivered CC-SW or prey cue. However, male toadfish spent significantly more time swimming after the delivery of female cues than control seawater (SW). In contrast, toadfish did not appear to have an immediate avoidance response to the conspecific alarm cue. Additionally, significantly more toadfish pulsed within 7 h of CC-SW and prey cue delivery compared to control SW, and pulse frequency was 1.6 times greater in response to CC-SW than control SW. These results, in combination with increased urea production and excretion the during breeding season, suggest that toadfish may use pulsatile urea excretion to communicate with conspecifics when exposed to chemosensory cues from the opposite sex.
Collapse
|
80
|
Amador MHB, McDonald MD. The serotonin transporter and nonselective transporters are involved in peripheral serotonin uptake in the Gulf toadfish, Opsanus beta. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1154-R1166. [PMID: 30303705 DOI: 10.1152/ajpregu.00137.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In mammals, circulating serotonin [5-hydroxytryptamine (5-HT)] is sequestered by platelets via the 5-HT transporter (SERT) to prevent unintended signaling by this potent signaling molecule. Teleost fish appear to lack a similar circulating storage pool, although the diverse effects of 5-HT in teleosts likely necessitate an alternative method of tight regulation, such as uptake by peripheral tissues. Here, a 5-HT radiotracer was used to explore the 5-HT uptake capacity of peripheral tissues in the Gulf toadfish, Opsanus beta, and to elucidate the primary excretion routes of 5-HT and its metabolites. Pharmacological inhibition of SERT and other transporters enabled assessment of the SERT dependence of peripheral 5-HT uptake and excretion. The results indicated a rapid and substantial uptake of 5-HT by the heart atrium, heart ventricle, and gill that was at least partly SERT dependent. The results also supported the presence of a partial blood-brain barrier that prevented rapid changes in brain 5-HT content despite fluctuating plasma 5-HT concentrations. The renal pathway appeared to be the dominant excretory route for 5-HT and its metabolites over shorter time frames (up to ~30 min), but hepatic excretion was substantial over several hours. SERT inhibition ultimately reduced the excretion of 5-HT and its metabolites by urinary, biliary, and/or intestinal pathways. In addition, branchial excretion of 5-HT and its metabolites could not be ruled out. In summary, this study reveals that the toadfish heart and gill play active roles in regulating circulating 5-HT and yields important insights into the control of peripheral 5-HT in this teleost fish.
Collapse
Affiliation(s)
- Molly H B Amador
- Rosenstiel School of Marine and Atmospheric Science, University of Miami , Miami, Florida
| | - M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami , Miami, Florida
| |
Collapse
|
81
|
LI HQ, WANG C, JIANG BW, ZHOU YX, MAO HL. Effect of conjugated linoleic acid addition on growth performance, digestion and metabolism of stabling Tan sheep. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i11.85075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
82
|
Armstrong CT, Erdner DL, McClelland JW, Sanderson MP, Anderson DM, Gobler CJ, Smith JL. Impact of nitrogen chemical form on the isotope signature and toxicity of a marine dinoflagellate. MARINE ECOLOGY PROGRESS SERIES 2018; 602:63-76. [PMID: 31762524 PMCID: PMC6874107 DOI: 10.3354/meps12619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite a global interest in the relationship between harmful algal blooms (HABs) and eutrophication, the impact of natural versus anthropogenic nutrient sources on species composition or toxicity of HABs remains unclear. Stable isotopes are used to identify and track nitrogen (N) sources to water bodies, and thus can be used to ascertain the N source(s) used by the phytoplankton in those systems. To focus this tool for a particular species, the fundamental patterns of N isotope fractionation by that organism must first be understood. While literature is available describing N isotope fractionation by diatoms and coccolithophores, data are lacking regarding dinoflagellates. Here we investigated the effects of N chemical form on isotope fractionation (Δ) and toxin content using isolates of the autotrophic dinoflagellate, Alexandrium catenella, in single-N and mixed-N experiments. Growth of A. catenella exclusively on nitrate (NO3 -), ammonium (NH4 +), or urea, resulted in Δ of 2.7±1.4‰, 29±9.3‰, or 0.3±0.1‰, respectively, with the lowest cellular toxicity reported during urea utilization. Cells initially utilized NH4 + and urea when exposed to mixed-N medium, and only utilized NO3 - after NH4 + decreased below 2-4 μM. This pattern of N preference was similar across all N treatments, suggesting that there is no effect of preconditioning on N chemical preference by A. catenella. In NO3 - and urea-rich environments, the δ15N of Alexandrium catenella would resemble the source(s) of N utilized, supporting this tool's utility as a tracer of N source(s) facilitating bloom formation, however, caution is advisable in NH4 + rich environments where the large Δ value could lead to misinterpretation of the signal.
Collapse
Affiliation(s)
- C Taylor Armstrong
- Virginia Institute of Marine Science, Gloucester Point, VA 23062 USA , ,
| | - Deana L Erdner
- University of Texas-Marine Science Institute, Port Aransas, TX 78373 USA ,
| | - James W McClelland
- University of Texas-Marine Science Institute, Port Aransas, TX 78373 USA ,
| | - Marta P Sanderson
- Virginia Institute of Marine Science, Gloucester Point, VA 23062 USA , ,
| | | | | | - Juliette L Smith
- Virginia Institute of Marine Science, Gloucester Point, VA 23062 USA , ,
| |
Collapse
|
83
|
Livingston MD, Bhargav VV, Turko AJ, Wilson JM, Wright PA. Widespread use of emersion and cutaneous ammonia excretion in Aplocheiloid killifishes. Proc Biol Sci 2018; 285:rspb.2018.1496. [PMID: 30111602 DOI: 10.1098/rspb.2018.1496] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/17/2018] [Indexed: 11/12/2022] Open
Abstract
The invasion of land required amphibious fishes to evolve new strategies to avoid toxic ammonia accumulation in the absence of water flow over the gills. We investigated amphibious behaviour and nitrogen excretion strategies in six phylogenetically diverse Aplocheiloid killifishes (Anablepsoides hartii, Cynodonichthys hildebrandi, Rivulus cylindraceus, Kryptolebias marmoratus, Fundulopanchax gardneri, and Aplocheilus lineatus) in order to determine if a common strategy evolved. All species voluntarily emersed (left water) over several days, and also in response to environmental stressors (low O2, high temperature). All species were ammoniotelic in water and released gaseous ammonia (NH3 volatilization) during air exposure as the primary route for nitrogen excretion. Metabolic depression, urea synthesis, and/or ammonia accumulation during air exposure were not common strategies used by these species. Immunostaining revealed the presence of ammonia-transporting Rhesus proteins (Rhcg1 and Rhcg2) in the skin of all six species, indicating a shared mechanism for ammonia volatilization. We also found Rhcg in the skin of several other fully aquatic fishes, implying that cutaneous ammonia excretion is not exclusive to amphibious fishes. Overall, our results demonstrate that similar nitrogen excretion strategies while out of water were used by all killifish species tested; possibly the result of shared ancestral amphibious traits, phenotypic convergence, or a combination of both.
Collapse
Affiliation(s)
- Michael D Livingston
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Vikram V Bhargav
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Andy J Turko
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Jonathan M Wilson
- Department of Biology, Wilfrid Laurier University, ON, Canada N2 L 3C5
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
84
|
Fehsenfeld S, Wood CM. Section-specific expression of acid-base and ammonia transporters in the kidney tubules of the goldfish Carassius auratus and their responses to feeding. Am J Physiol Renal Physiol 2018; 315:F1565-F1582. [PMID: 30089033 DOI: 10.1152/ajprenal.00510.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In teleost fishes, renal contributions to acid-base and ammonia regulation are often neglected compared with the gills. In goldfish, increased renal acid excretion in response to feeding was indicated by increased urine ammonia and inorganic phosphate concentrations and decreased urine pH. By microdissecting the kidney tubules and performing quantitative real-time PCR and/or immunohistochemistry, we profiled the section-specific expression of glutamate dehydrogenase (GDH), glutamine synthetase (GS), Na+/H+-exchanger 3 (NHE3), carbonic anhydrase II (CAIIa), V-H+-ATPase subunit 1b, Cl-/ HCO3- -exchanger 1 (AE1), Na+/ HCO3- -cotransporter 1 (NBC1), Na+/K+-ATPase subunit 1α, and Rhesus-proteins Rhbg, Rhcg1a, and Rhcg1b. Here, we show for the first time that 1) the proximal tubule appears to be the major site for ammoniagenesis, 2) epithelial transporters are differentially expressed along the renal tubule, and 3) a potential feeding-related "acidic tide" results in the differential regulation of epithelial transporters, resembling the mammalian renal response to a metabolic acidosis. Specifically, GDH and NHE3 mRNAs were upregulated and GS downregulated in the proximal tubule upon feeding, suggesting this section as a major site for ammoniagenesis and acid secretion. The distal tubule may play a major role in renal ammonia secretion, with feeding-induced upregulation of mRNA and protein for apical NHE3, cytoplasmic CAIIa, universal Rhcg1a and apical Rhcg1b, and downregulation of basolateral Rhbg and AE1. Changes in mRNA expression of the Wolffian ducts and bladder suggest supporting roles in fine-tuning urine composition. The present study verifies an important renal contribution to acid-base balance and emphasizes that studies looking at the whole kidney may overlook key section-specific responses.
Collapse
Affiliation(s)
- Sandra Fehsenfeld
- University of British Columbia, Department of Zoology , Vancouver , Canada
| | - Chris M Wood
- University of British Columbia, Department of Zoology , Vancouver , Canada
| |
Collapse
|
85
|
SINGH KK, MAITY SB, MAITY A. Effect of nano zinc oxide on zinc bioavailability and blood biochemical changes in pre-ruminant lambs. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i7.81461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
86
|
Biscéré T, Ferrier-Pagès C, Grover R, Gilbert A, Rottier C, Wright A, Payri C, Houlbrèque F. Enhancement of coral calcification via the interplay of nickel and urease. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:247-256. [PMID: 29803165 DOI: 10.1016/j.aquatox.2018.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Corals are the main reef builders through the formation of calcium carbonate skeletons. In recent decades, coral calcification has however been impacted by many global (climate change) and local stressors (such as destructive fishing practices and changes in water quality). In this particular context, it is crucial to identify and characterize the various factors that promote coral calcification. We thus performed the first investigation of the effect of nickel and urea enrichment on the calcification rates of three coral species. These two factors may indeed interact with calcification through the activity of urease, which catalyzes the hydrolysis of urea to produce inorganic carbon and ammonia that are involved in the calcification process. Experiments were performed with the asymbiotic coral Dendrophyllia arbuscula and, to further assess if urea and/or nickel has an indirect link with calcification through photosynthesis, results were compared with those obtained with two symbiotic corals, Acropora muricata and Pocillopora damicornis, for which we also measured photosynthetic rates. Ambient and enriched nickel (0.12 and 3.50 μg L-1) combined with ambient and enriched urea concentrations (0.26 and 5.52 μmol L-1) were tested during 4 weeks in aquaria. We demonstrate in the study that a nickel enrichment alone or combined with a urea enrichment strongly stimulated urea uptake rates of the three tested species. In addition, this enhancement of urea uptake and hydrolysis significantly increased the long-term calcification rates (i.e. growth) of the three coral species investigated, inducing a 1.49-fold to 1.64-fold increase, respectively for D. arbuscula and P. damicornis. Since calcification was greatly enhanced by nickel in the asymbiotic coral species - i.e. in absence of photosynthesis - we concluded that the effect of increased urease activity on calcification was mainly direct. According to our results, it can be assumed that corals in some fringing reefs, benefiting from seawater enriched in nickel may have advantages and might be able to use urea more effectively as a carbon and nitrogen source. It can also be suggested that urea, for which hotspots are regularly measured in reef waters may alleviate the negative consequences of thermal stress on corals.
Collapse
Affiliation(s)
- T Biscéré
- IRD, ENTROPIE (UMR 9220), BP A5, 98848 Nouméa Cedex, New Caledonia; Ginger Soproner, BP 3583, 98846 Nouméa Cedex, New Caledonia.
| | - C Ferrier-Pagès
- Centre Scientifique de Monaco, Ecophysiology Team, 8 quai Antoine 1er, 98000 Monaco, France
| | - R Grover
- Centre Scientifique de Monaco, Ecophysiology Team, 8 quai Antoine 1er, 98000 Monaco, France
| | - A Gilbert
- Ginger Soproner, BP 3583, 98846 Nouméa Cedex, New Caledonia
| | - C Rottier
- Centre Scientifique de Monaco, Ecophysiology Team, 8 quai Antoine 1er, 98000 Monaco, France
| | - A Wright
- Koniambo Nickel SAS, BP679, 98860 Koné Cedex, New Caledonia
| | - C Payri
- IRD, ENTROPIE (UMR 9220), BP A5, 98848 Nouméa Cedex, New Caledonia
| | - F Houlbrèque
- IRD, ENTROPIE (UMR 9220), BP A5, 98848 Nouméa Cedex, New Caledonia
| |
Collapse
|
87
|
Santos-Santos JH, Culbert BM, Standen EM. Kinematic performance and muscle activation patterns during post-freeze locomotion in the Wood Frog ( Rana sylvatica). CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wood Frogs (Rana sylvatica LeConte, 1825 = Lithobates sylvaticus (LeConte, 1825)) exhibit one of the most extreme freeze tolerance responses found in vertebrates. While extensive work is continuing to resolve the physiological mechanisms involved, few have studied the effects of freezing on locomotor performance. The ability to mount an appropriate locomotor response is vital, as locomotion can affect both survivorship and reproductive success. To investigate how the biomechanical processes during locomotion are altered following freezing, stroke cycle timings and kinematic performance were measured prior to and immediately following a freeze–thaw cycle. Additionally, the effects of cooling rate (0.3 versus 0.8 °C/h) were also assessed. While jumping and swimming performance were both reduced post-freeze, the effects were more pronounced during swimming, with observed reductions in velocity and distance travelled. Interestingly, these changes occurred largely independent of cooling rate. Altered stroke cycle timings and highly variable muscle activation/deactivation patterns suggest an impairment in muscle function as frogs continued to recover from the effects of freezing. This was supported by the physiology of frogs post-freeze, specifically, the persistence of elevated glucose levels in muscles important during locomotion. Collectively, these findings suggest that reductions in locomotor performance observed immediately following a freeze–thaw cycle are driven by alterations in muscle function.
Collapse
Affiliation(s)
- Javier H. Santos-Santos
- Department of Animal Biology, University of Barcelona, Avenida Diagonal 645, 08028, Barcelona, Spain
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales - CSIC, Calle Jose Gutierrez Abascal 2, 28006, Madrid, Spain
| | - Brett M. Culbert
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Emily M. Standen
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
88
|
Physiological protective action of dissolved organic carbon on ion regulation and nitrogenous waste excretion of zebrafish (Danio rerio) exposed to low pH in ion-poor water. J Comp Physiol B 2018; 188:793-807. [DOI: 10.1007/s00360-018-1169-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/25/2022]
|
89
|
Giacomin M, Vilarinho GC, Castro KF, Ferreira M, Duarte RM, Wood CM, Val AL. Physiological impacts and bioaccumulation of dietary Cu and Cd in a model teleost: The Amazonian tambaqui (Colossoma macropomum). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:30-45. [PMID: 29604500 DOI: 10.1016/j.aquatox.2018.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
Increasing anthropogenic activities in the Amazon have led to elevated metals in the aquatic environment. Since fish are the main source of animal protein for the Amazonian population, understanding metal bioaccumulation patterns and physiological impacts is of critical importance. Juvenile tambaqui, a local model species, were exposed to chronic dietary Cu (essential, 500 μg Cu/g food) and Cd (non-essential, 500 μg Cd/g food). Fish were sampled at 10-14, 18-20 and 33-36 days of exposure and the following parameters were analyzed: growth, voluntary food consumption, conversion efficiency, tissue-specific metal bioaccumulation, ammonia and urea-N excretion, O2 consumption, Pcrit, hypoxia tolerance, nitrogen quotient, major blood plasma ions and metabolites, gill and gut enzyme activities, and in vitro gut fluid transport. The results indicate no ionoregulatory impacts of either of the metal-contaminated diets at gill, gut, or plasma levels, and no differences in plasma cortisol or lactate. The Cd diet appeared to have suppressed feeding, though overall tank growth was not affected. Bioaccumulation of both metals was observed. Distinct tissue-specific and time-specific patterns were seen. Metal burdens in the edible white muscle remained low. Overall, physiological impacts of the Cu diet were minimal. However dietary Cd increased hypoxia tolerance, as evidenced by decreased Pcrit, increased time to loss of equilibrium, a lack of plasma glucose elevation, decreased plasma ethanol, and decreased NQ during hypoxia. Blood O2 transport characteristics (P50, Bohr coefficient, hemoglobin, hematocrit) were unaffected, suggesting that tissue level changes in metabolism accounted for the greater hypoxia tolerance in tambaqui fed with a Cd-contaminated diet.
Collapse
Affiliation(s)
- Marina Giacomin
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Gisele C Vilarinho
- Laboratory of Ecophysiology and Molecular Evolution, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil.
| | - Katia F Castro
- Laboratory of Ecophysiology and Molecular Evolution, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil.
| | - Márcio Ferreira
- Laboratory of Ecophysiology and Molecular Evolution, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil.
| | - Rafael M Duarte
- Laboratory of Ecophysiology and Molecular Evolution, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil; São Paulo State University (UNESP), Institute of Biosciences, São Vicente, SP, Brazil.
| | - Chris M Wood
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada; Rosenstiel School of Marine and Atmospheric Science, University of Miami, FL 33149, USA.
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil.
| |
Collapse
|
90
|
Salame C, Eaton S, Grimble G, Davenport A. Protein Losses and Urea Nitrogen Underestimate Total Nitrogen Losses in Peritoneal Dialysis and Hemodialysis Patients. J Ren Nutr 2018; 28:317-323. [PMID: 29709365 DOI: 10.1053/j.jrn.2018.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/02/2017] [Accepted: 01/29/2018] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE Muscle wasting is associated with increased mortality and is commonly reported in dialysis patients. Hemodialysis (HD) and peritoneal dialysis (PD) treatments lead to protein losses in effluent dialysate. We wished to determine whether changes in current dialysis practice had increased therapy-associated nitrogen losses. DESIGN Cross-sectional cohort study. METHODS Measurement of total protein, urea and total nitrogen in effluent dialysate from 24-hour collections from PD patients, and during haemodiafiltration (HDF) and haemodialysis (HD) sessions. SUBJECTS One hundred eight adult dialysis patients. INTERVENTION Peritoneal dialysis, high-flux haemodialysis and haemodiafiltration. MAIN OUTCOME MEASURE Total nitrogen and protein losses. RESULTS Dialysate protein losses were measured in 68 PD and 40 HD patients. Sessional losses of urea (13.9 [9.2-21.1] vs. 4.8 [2.8-7.8] g); protein (8.6 [7.2-11.1] vs. 6.7 [3.9-11.1] g); and nitrogen (11.5 [8.7-17.7] vs. 4.9 [2.6-9.5] g) were all greater for HD than PD, P < .001. Protein-derived nitrogen was 71.9 (54.4-110.4) g for HD and 30.8 (16.1-59.6) g for PD. Weekly protein losses were lower with HD 25.9 (21.5-33.4) versus 46.6 (27-77.6) g/week, but nitrogen losses were similar. We found no difference between high-flux HD and HDF: urea (13.5 [8.8-20.6] vs. 15.3 [10.5-25.5] g); protein (8.8 [7.3-12.2] vs. 7.6 [5.8-9.0] g); and total nitrogen (11.6 [8.3-17.3] vs. 10.8 [8.9-22.5] g). Urea nitrogen (UN) only accounted for 45.1 (38.3-51.0)% PD and 63.0 (55.3-62.4)% HD of total nitrogen losses. CONCLUSION Although sessional losses of protein and UN were greater with HD, weekly losses were similar between modalities. We found no differences between HD and HDF. However, total nitrogen losses were much greater than the combination of protein and UN, suggesting greater nutritional losses with dialysis than previously reported.
Collapse
Affiliation(s)
- Clara Salame
- UCL Division of Medicine, University College London, London, United Kingdom
| | - Simon Eaton
- Development Biology and Cancer Programme, Great Ormond Street Institute of Child Health London, University College London, London, United Kingdom
| | - George Grimble
- UCL Institute for Liver and Digestive Health, Division of Medicine, University College London, London, United Kingdom
| | - Andrew Davenport
- UCL Centre for Nephrology, Royal Free Hospital, University College London, London, United Kingdom.
| |
Collapse
|
91
|
CHAURASIA RK, VIDYARTHI VK. Variation in α-amino nitrogen, NEFA, urea and THI in mithun calves at various altitudes. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i4.78871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A comparative study on variation in α-amino nitrogen, NEFA, urea and THI at various altitudes in mithun calves was carried out at Medziphema farm at an altitude of 300 MSL (A1) and Porba farm at altitude of 2100 MSL(A2) Nagaland, India. The mithuns of either sex were selected and blood was collected at weekly interval. The values for α-amino nitrogen (mg/dl), NEFA (mg/l), Urea (mg/dl) and THI at A1 and A2 altitudes were 2.81±0.54 and 17.71±0.56; 22.16±1.95 and 31.25±1.63; 21.65±0.7 and 11.29±0.71; 72.01±0.32 and 63.47±0.31, respectively. The values obtained for α-amino nitrogen, NEFA, urea and THI differed significantly between the two altitudes. It was concluded that there was significant variation in α-amino nitrogen, NEFA, urea and THI at various altitudes in mithun calves.
Collapse
|
92
|
Wei Z, Zhang B, Liu J. Effects of the dietary nonfiber carbohydrate content on lactation performance, rumen fermentation, and nitrogen utilization in mid-lactation dairy cows receiving corn stover. J Anim Sci Biotechnol 2018; 9:20. [PMID: 29564120 PMCID: PMC5850920 DOI: 10.1186/s40104-018-0239-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/22/2018] [Indexed: 12/04/2022] Open
Abstract
Background Corn stover (CS) is an abundant source of feed for livestock in China. However, it is low in nutritional value that we have been seeking technologies to improve. Previous studies show that non-fiber carbohydrate (NFC) might limit the utilization of a CS diet by lactating dairy cows. Thus, this study was conducted to investigate the lactation performance and rumen fermentation characteristics in lactating cows consuming CS with two contents of NFC compared to an alfalfa hay-containing diet. Twelve Holstein cows were used in a replicated 3 × 3 Latin square design with three dietary treatments: (1) low-NFC diet (NFC = 35.6%, L-NFC), (2) high-NFC diet (NFC = 40.1%, H-NFC), and (3) alfalfa hay diet (NFC = 38.9%, AH). Results Intake of DM was lower for cows fed H-NFC compared to L-NFC and AH, while the milk yield was higher in AH than in H-NFC and L-NFC (P < 0.01). The feed efficiency (milk yield/DM intake, 1.15 vs. 1.08, P < 0.01) were greater for cows fed H-NFC than L-NFC. The contents of milk protein and lactose were not different among the groups (P > 0.11), but milk fat content was higher for cows fed H-NFC and L-NFC compared to AH (P < 0.01). The rumen ammonia nitrogen concentration and the concentrations of urea nitrogen in blood and milk were lower for cows fed H-NFC and AH compared to L-NFC (P < 0.05). The concentrations of rumen propionate and total volatile fatty acids were different among groups (P < 0.05) with higher concentration for cows fed AH compared to H-NFC and L-NFC, and acetate concentration tended to be different among groups (P = 0.06). Conclusions From the results obtained in this study, it was inferred that the increased NFC content in a diet containing corn stover can improve the feed efficiency and benefit the nitrogen conversion.
Collapse
Affiliation(s)
- Zihai Wei
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| | - Baoxin Zhang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| | - Jianxin Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| |
Collapse
|
93
|
Sowndhar Rajan B, Manivasagam S, Dhanusu S, Chandrasekar N, Krishna K, Kalaiarasu LP, Babu AA, Vellaichamy E. Diet with high content of advanced glycation end products induces systemic inflammation and weight gain in experimental mice: Protective role of curcumin and gallic acid. Food Chem Toxicol 2018; 114:237-245. [PMID: 29432842 DOI: 10.1016/j.fct.2018.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/04/2018] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
Abstract
The present study was aimed to investigate the effect of diet derived AGEs (dAGEs) on the circulatory levels of pro-inflammatory cytokines, chemokines and to evaluate the protective efficacy of natural anti-oxidants curcumin (CU) and gallic acid (GA) respectively against the dAGEs-induced systemic inflammation in experimental Swiss albino mice. The experimental mice were fed with dAGEs in the presence and absence of CU and GA for 6 months. The levels of 40 circulatory pro-inflammatory cytokines and chemokines were evaluated using Proteome-Cytokine Array kit. In addition, serum levels of N-ɛCML, CRP and HbA1c were estimated by ELISA method. Among the sixteen pro- and anti-inflammatory cytokines analysed, five (IL-16, IL-1α, ICAM, TIMP-1 and C5a) were found to be highly expressed (3.5-fold) and eleven cytokines were moderately expressed (2-fold) in dAGEs fed mice. In case of chemokines, three (BLC, SDF-1 and MCP-1) were found to be highly expressed (4-fold) and ten showed moderate expression (2-fold) as compared with basal diet fed mice. Interestingly, CU or GA co-treatment normalized the levels of circulatory pro- and anti-inflammatory cytokines, chemokines, N-ɛCML, CRP and HbA1c levels. Together, the present study suggests that dAGEs are positively associated with the development of systemic inflammation in experimental mice.
Collapse
Affiliation(s)
- Boopathi Sowndhar Rajan
- Peptide Research and Molecular Cardiology Lab, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Senthamizharasi Manivasagam
- Peptide Research and Molecular Cardiology Lab, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Suresh Dhanusu
- Peptide Research and Molecular Cardiology Lab, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Navvi Chandrasekar
- Peptide Research and Molecular Cardiology Lab, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Kalaiselvi Krishna
- Peptide Research and Molecular Cardiology Lab, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Lakshmi Priya Kalaiarasu
- Peptide Research and Molecular Cardiology Lab, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Aadhil Ashwaq Babu
- Peptide Research and Molecular Cardiology Lab, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Elangovan Vellaichamy
- Peptide Research and Molecular Cardiology Lab, Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India.
| |
Collapse
|
94
|
Damania A, Kumar A, Teotia AK, Kimura H, Kamihira M, Ijima H, Sarin SK, Kumar A. Decellularized Liver Matrix-Modified Cryogel Scaffolds as Potential Hepatocyte Carriers in Bioartificial Liver Support Systems and Implantable Liver Constructs. ACS APPLIED MATERIALS & INTERFACES 2018; 10:114-126. [PMID: 29210278 DOI: 10.1021/acsami.7b13727] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent progress in the use of decellularized organ scaffolds as regenerative matrices for tissue engineering holds great promise in addressing the issue of donor organ shortage. Decellularization preserves the mechanical integrity, composition, and microvasculature critical for zonation of hepatocytes in the liver. Earlier studies have reported the possibility of repopulating decellularized matrices with hepatic cell lines or stem cells to improve liver regeneration. In this work, we study the versatility of the decellularized liver matrix as a substrate coating of three-dimensional cryogel scaffolds. The coated cryogels were analyzed for their ability to maintain hepatic cell growth and functionality in vitro, which was found to be significantly better than the uncoated cryogel scaffolds. The decellularized liver matrix-coated cryogel scaffolds were evaluated for their potential application as a cell-loaded bioreactor for bioartificial liver support and as an implantable liver construct. Extracorporeal connection of the coated cryogel bioreactor to a liver failure model showed improvement in liver function parameters. Additionally, offline clinical evaluation of the bioreactor using patient-derived liver failure plasma showed its efficacy in improving liver failure conditions by approximately 30-60%. Furthermore, implantation of the decellularized matrix-coated cryogel showed complete integration with the native tissue as confirmed by hematoxylin and eosin staining of tissue sections. HepG2 cells and primary human hepatocytes seeded in the coated cryogel scaffolds implanted in the liver failure model maintained functionality in terms of albumin synthesis and cytochrome P450 activity post 2 weeks of implantation. In addition, a 20-60% improvement in liver function parameters was observed post implantation. These results, put together, suggest a possibility of using the decellularized matrix-coated cryogel scaffolds for liver tissue engineering applications.
Collapse
Affiliation(s)
- Apeksha Damania
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur-208016 Uttar Pradesh, India
| | - Anupam Kumar
- Institute of Liver and Biliary Sciences , Vasant Kunj, New Delhi 110070, India
| | - Arun K Teotia
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur-208016 Uttar Pradesh, India
| | - Haruna Kimura
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University , Fukuoka 8190395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University , Fukuoka 8190395, Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University , Fukuoka 8190395, Japan
| | - Shiv Kumar Sarin
- Institute of Liver and Biliary Sciences , Vasant Kunj, New Delhi 110070, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur-208016 Uttar Pradesh, India
| |
Collapse
|
95
|
Bockus AB, Seibel BA. Synthetic capacity does not predict elasmobranchs' ability to maintain trimethylamine oxide without a dietary contribution. Comp Biochem Physiol A Mol Integr Physiol 2017; 217:35-42. [PMID: 29248570 DOI: 10.1016/j.cbpa.2017.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
Abstract
Trimethylamine oxide (TMAO) is an organic osmolyte and universal protein stabilizer. Its role as a cytoprotectant is particularly important in ureosmotic elasmobranchs that accumulate high levels of urea, a macromolecular perturbant. Feeding is a key component in the turnover and maintenance of these nitrogenous compounds. However, previous studies examining TMAO regulation have been largely completed using starved individuals, when nitrogen balance is altered. Here, under fed conditions, we test the importance of dietary TMAO on long-term maintenance in three elasmobranch species with differing endogenous synthetic capacities. Smoothhounds (Mustelus canis), spiny dogfish (Squalus acanthias), and little skates (Leucoraja erinacea) exhibited species- and tissue-specific differences in their ability to conserve TMAO when fed a low TMAO diet for 56days. Smoothhounds, a species with the capacity for endogenous production, exhibited a decrease in muscle TMAO. Spiny dogfish and little skates, species with no reported ability for synthesis, exhibited decreases in plasma and liver TMAO, respectively. Our findings are contrary to previous starvation studies demonstrating constant levels of TMAO for up to 56days in elasmobranchs. Further, the previously reported synthetic capacity of these species did not correlate with their ability to conserve TMAO and cannot be used to predict a species reliance on dietary contributions for prolonged maintenance. It is possible that all species rely to a degree on absorption of TMAO from the diet or that alternate synthetic or regulatory pathways play a larger role than previously thought.
Collapse
Affiliation(s)
- Abigail B Bockus
- Department of Biological Sciences, College of the Environmental and Life Sciences, University of Rhode Island, 120 Flagg Rd., Kingston, RI 02881, USA.
| | - Brad A Seibel
- Department of Biological Sciences, College of the Environmental and Life Sciences, University of Rhode Island, 120 Flagg Rd., Kingston, RI 02881, USA.
| |
Collapse
|
96
|
Cartolano MC, Amador MHB, Tzaneva V, Milsom WK, McDonald MD. Extrinsic nerves are not involved in branchial 5-HT dynamics or pulsatile urea excretion in Gulf toadfish, Opsanus beta. Comp Biochem Physiol A Mol Integr Physiol 2017; 214:58-65. [PMID: 28887162 DOI: 10.1016/j.cbpa.2017.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 10/18/2022]
Abstract
Gulf toadfish (Opsanus beta) can switch from continuously excreting ammonia as their primary nitrogenous waste to excreting predominantly urea in distinct pulses. Previous studies have shown that the neurotransmitter serotonin (5-HT) is involved in controlling this process, but it is unknown if 5-HT availability is under central nervous control or if the 5-HT signal originates from a peripheral source. Following up on a previous study, cranial nerves IX (glossopharyngeal) and X (vagus) were sectioned to further characterize their role in controlling pulsatile urea excretion and 5-HT release within the gill. In contrast to an earlier study, nerve sectioning did not result in a change in urea pulse frequency. Total urea excretion, average pulse size, total nitrogen excretion, and percent ureotely were reduced the first day post-surgery in nerve-sectioned fish but recovered by 72h post-surgery. Nerve sectioning also had no effect on toadfish urea transporter (tUT), 5-HT transporter (SERT), or 5-HT2A receptor mRNA expression or 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) abundance in the gill, all of which were found consistently across the three gill arches except 5-HIAA, which was undetectable in the first gill arch. Our findings indicate that the central nervous system does not directly control pulsatile urea excretion or local changes in gill 5-HT and 5-HIAA abundance.
Collapse
Affiliation(s)
- Maria C Cartolano
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
| | - Molly H B Amador
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Velislava Tzaneva
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| |
Collapse
|
97
|
Wood CM, Gonzalez RJ, Ferreira MS, Braz-Mota S, Val AL. The physiology of the Tambaqui (Colossoma macropomum) at pH 8.0. J Comp Physiol B 2017; 188:393-408. [DOI: 10.1007/s00360-017-1137-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/05/2017] [Accepted: 11/17/2017] [Indexed: 12/20/2022]
|
98
|
Giacomin M, Schulte PM, Wood CM. Differential Effects of Temperature on Oxygen Consumption and Branchial Fluxes of Urea, Ammonia, and Water in the Dogfish Shark (Squalus acanthias suckleyi). Physiol Biochem Zool 2017; 90:627-637. [DOI: 10.1086/694296] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
99
|
Wu Q, Cui K, Lin J, Zhu Y, Xu Y. Urea production by yeasts other than Saccharomyces in food fermentation. FEMS Yeast Res 2017; 17:4411803. [PMID: 29040547 DOI: 10.1093/femsyr/fox072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/26/2017] [Indexed: 11/15/2022] Open
Abstract
Urea is an important intermediate in the synthesis of carcinogenic ethyl carbamate in various food fermentations. Identifying urea-producing microorganisms can help control or reduce ethyl carbamate production. Using Chinese liquor fermentation as a model system, we identified the yeasts responsible for urea production. Urea production was positively correlated to the yeast population (R = 0.523, P = 0.045), and using high-throughput sequencing, we identified 26 yeast species. Partial least squares regression and correlation analysis indicated that Wickerhamomyces anomalus was the most important yeast to produce urea (variable importance plot = 1.927; R = 0.719, P = 0.002). Besides, we found that in W. anomalus the CAR1 gene (responsible for urea production) was 67% identical to that of Saccharomyces cerevisiae. Wickerhamomyces anomalus produced more urea (910.0 μg L-1) than S. cerevisiae (300.1 μg L-1). Moreover, urea production increased to 1261.2 μg L-1 when the two yeasts were co-cultured in a simulated fermentation, where the transcription activity of the CAR1 gene increased by 140% in W. anomalus and decreased by 40% in S. cerevisiae. Our findings confirm that a yeast other than Saccharomyces, namely W. anomalus, contributes more to urea formation in a simulated sorghum fermentation. These findings provide the basis for strategies to control or reduce ethyl carbamate formation.
Collapse
Affiliation(s)
- Qun Wu
- State Key Laboratory of Food Science and Technology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Centre of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kaixiang Cui
- State Key Laboratory of Food Science and Technology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Centre of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianchun Lin
- State Key Laboratory of Food Science and Technology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Centre of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yang Zhu
- Bioprocess Engineering, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, Netherlands
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, Synergetic Innovation Centre of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
100
|
Wang B, Tu Y, Zhao S, Hao Y, Liu J, Liu F, Xiong B, Jiang L. Effect of tea saponins on milk performance, milk fatty acids, and immune function in dairy cow. J Dairy Sci 2017; 100:8043-8052. [DOI: 10.3168/jds.2016-12425] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/28/2017] [Indexed: 11/19/2022]
|