51
|
Lockyer S, Aguirre M, Durrant L, Pot B, Suzuki K. The role of probiotics on the roadmap to a healthy microbiota: a symposium report. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2020; 1:e2. [PMID: 39296722 PMCID: PMC11406418 DOI: 10.1017/gmb.2020.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 09/21/2024]
Abstract
The ninth International Yakult Symposium was held in Ghent, Belgium in April 2018. Keynote lectures were from Professor Wijmenga on using biobanks to understand the relationship between the gut microbiota and health; and Professor Hill on phage-probiotic interactions. Session one included talks from Professor Plӧsch on epigenetic programming by nutritional and environmental factors; Professor Wilmes on the use of "omics" methodologies in microbiome research and Professor Rescigno on the gut vascular barrier. Session two explored the evidence behind Lactobacillus casei Shirota with Dr Nanno explaining the plasticity in immunomodulation that enables the strain to balance immune functions; Dr Macnaughtan outlining its potential therapeutic use in cirrhosis and Professor Nishida detailing effects in subjects under stress. The third session saw Professor Marchesi describing that both the host genes and the gut microbiota can play a role in cancer; Professor Bergheim highlighting crosstalk between the gut and the liver and Professor Cani describing the relationship between the gut microbiota and the endocrine system. The final session explored probiotic mechanisms, with Professor Lebeer dissecting the challenges in conducting mechanistic studies; Professor Wehkamp describing the mucosal defence system and Professor Van de Wiele detailing methods for modelling the gut microbiota in vitro.
Collapse
Affiliation(s)
| | | | | | - Bruno Pot
- Yakult Europe B.V., Almere, The Netherlands
| | | |
Collapse
|
52
|
Gao B, Emami A, Nath S, Schnabl B. Microbial Products and Metabolites Contributing to Alcohol-Related Liver Disease. Mol Nutr Food Res 2020; 65:e2000023. [PMID: 32583604 DOI: 10.1002/mnfr.202000023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/01/2020] [Indexed: 02/06/2023]
Abstract
As a serious public health concern, alcohol-related liver disease is associated with dysregulations in the intestinal barrier function and the gut microbiota. The liver and gut communicate via the gut-liver axis, through which microbial products and metabolites translocate to the liver. Here, the current knowledge of various microbial products and metabolites which contribute to the alcohol-related liver diseases, including bile acids, indole-3-acetic acid, butyrate, long-chain fatty acids, endotoxin, cytolysin, β-glucan, and candidalysin is reviewed. Some of these might serve as therapeutic targets for alcohol-related liver disease.
Collapse
Affiliation(s)
- Bei Gao
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Atoosa Emami
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shilpa Nath
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, 92093, USA
| |
Collapse
|
53
|
Changes in the Intestinal Microbiome during a Multispecies Probiotic Intervention in Compensated Cirrhosis. Nutrients 2020; 12:nu12061874. [PMID: 32585997 PMCID: PMC7353185 DOI: 10.3390/nu12061874] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Probiotics have been used in trials to therapeutically modulate the gut microbiome and have shown beneficial effects in cirrhosis. However, their effect on the microbiome of cirrhosis patients is not fully understood yet. Here, we tested the effects of a multispecies probiotic on microbiome composition in compensated cirrhosis. The gut microbiome composition of 58 patients with compensated cirrhosis from a randomized controlled trial who received a daily dose of multispecies probiotics or placebo for six months was analysed by 16S rRNA gene sequencing. Microbiome composition of patients who received probiotics was enriched with probiotic strains and the abundance of Faecalibacterium prausnitzii, Syntrophococcus sucromutans, Bacteroides vulgatus, Alistipes shahii and a Prevotella species was increased in the probiotic group compared to the placebo group. Patients who had microbiome changes in response to probiotic treatment also showed a significant increase in neopterin and a significant decrease in faecal zonulin levels after intervention, which was not observed in placebo-treated patients or patients with unchanged microbiome compositions. In conclusion, multispecies probiotics may enrich the microbiome of compensated cirrhotic patients with probiotic bacteria during a six-month intervention and beneficially change the residential microbiome and gut barrier function.
Collapse
|
54
|
Choi BR, Cho IJ, Jung SJ, Kim JK, Park SM, Lee DG, Ku SK, Park KM. Lemon balm and dandelion leaf extract synergistically alleviate ethanol-induced hepatotoxicity by enhancing antioxidant and anti-inflammatory activity. J Food Biochem 2020; 44:e13232. [PMID: 32497278 DOI: 10.1111/jfbc.13232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/28/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022]
Abstract
We investigated the effect of a 2:1 (w/w) mixture of lemon balm and dandelion extracts (LD) on ethanol (EtOH)-mediated liver injury and explored the underlying mechanisms. Administration of LD synergistically reduced relative liver weight and decreased the levels of serum biomarkers of hepatic injury. Histopathological and biochemical analyses indicated that LD synergistically attenuated hepatic accumulation of triacylglycerides (TGs) and restored the levels of mRNAs related to fatty acid metabolism. In addition, LD significantly reduced EtOH-induced hepatic oxidative stress by attenuating the reduction in levels of nuclear factor E2-related factor 2 (Nrf2) mRNA and enhancing antioxidant activity. Moreover, LD decreased the EtOH-mediated increase in levels of hepatic tumor necrosis factor-α (TNF-α) mRNA. In vitro, LD significantly scavenged free radicals, increased cell viability against tert-butylhydroperoxide (tBHP), and transactivated Nrf2 target genes in HepG2 cells. Furthermore, LD decreased levels of pro-inflammatory mediators in lipopolysaccharide-stimulated Raw264.7 cells. Therefore, LD shows promise for preventing EtOH-mediated liver injury. PRACTICAL APPLICATIONS: There were no approved therapeutic agents for preventing and/or treating alcoholic liver diseases. In this study, a 2:1 (w/w) mixture of lemon balm and dandelion leaf extract (DL) synergistically ameliorated EtOH-induced hepatic injury by inhibiting lipid accumulation, oxidative stress, and inflammation. Our findings will enable the development of a novel food supplement for the prevention or treatment of alcohol-mediated liver injury.
Collapse
Affiliation(s)
- Beom-Rak Choi
- Department of Foodscience and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea.,Nutracore Co., Ltd, Suwon, Republic of Korea
| | - Il Je Cho
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Su-Jin Jung
- Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jae Kwang Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Sang Mi Park
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Dae Geon Lee
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Ki-Moon Park
- Department of Foodscience and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
55
|
Bluemel S, Wang L, Kuelbs C, Moncera K, Torralba M, Singh H, Fouts DE, Schnabl B. Intestinal and hepatic microbiota changes associated with chronic ethanol administration in mice. Gut Microbes 2020; 11:265-275. [PMID: 30982395 PMCID: PMC7524386 DOI: 10.1080/19490976.2019.1595300] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/31/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Alcohol-induced liver disease is closely related to translocation of bacterial products and bacteria from the intestine to the liver. However, it is not known whether bacterial translocation to the liver depends on certain intestinal microbiota changes that would predispose bacteria to translocate to the liver. In this study, we investigated the microbiota in the jejunum, ileum, cecum, feces and liver of mice subjected to chronic ethanol feeding using a Lieber DeCarli diet model of chronic ethanol feeding for 8 weeks. We demonstrate that chronic ethanol administration changes alpha diversity in the ileum and the liver and leads to compositional changes especially in the ileum. This is largely driven by an increase in gram-negative phyla - the source of endotoxins. Moreover, gram-negative Prevotella not only increased in the mucus layer of the ileum but also in liver samples. These results suggest that bacterial translocation to the liver might be associated with microbiota changes in the distal gastrointestinal tract.
Collapse
Affiliation(s)
- Sena Bluemel
- Department of Medicine, University of California San Diego, La Jolla, USA
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Lirui Wang
- Department of Medicine, University of California San Diego, La Jolla, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, USA
| | - Claire Kuelbs
- Rockville Campus, J. Craig Venter Institute, Rockville, USA
| | - Kelvin Moncera
- Rockville Campus, J. Craig Venter Institute, Rockville, USA
| | | | - Harinder Singh
- Rockville Campus, J. Craig Venter Institute, Rockville, USA
| | | | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, USA
| |
Collapse
|
56
|
Giuffrè M, Campigotto M, Campisciano G, Comar M, Crocè LS. A story of liver and gut microbes: how does the intestinal flora affect liver disease? A review of the literature. Am J Physiol Gastrointest Liver Physiol 2020; 318:G889-G906. [PMID: 32146836 DOI: 10.1152/ajpgi.00161.2019] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Each individual is endowed with a unique gut microbiota (GM) footprint that mediates numerous host-related physiological functions, such as nutrient metabolism, maintenance of the structural integrity of the gut mucosal barrier, immunomodulation, and protection against microbial pathogens. Because of increased scientific interest in the GM, its central role in the pathophysiology of many intestinal and extraintestinal conditions has been recognized. Given the close relationship between the gastrointestinal tract and the liver, many pathological processes have been investigated in the light of a microbial-centered hypothesis of hepatic damage. In this review we introduce to neophytes the vast world of gut microbes, including prevalent bacterial distribution in healthy individuals, how the microbiota is commonly analyzed, and the current knowledge of the role of GM in liver disease pathophysiology. Also, we highlight the potentials and downsides of GM-based therapy.
Collapse
Affiliation(s)
- Mauro Giuffrè
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy
| | - Michele Campigotto
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy
| | - Giuseppina Campisciano
- Istituto di Ricovero e Cura a Carattere Scientifico Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Manola Comar
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Lory Saveria Crocè
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Italy.,Clinica Patologie del Fegato, Azienda Sanitaria Universitaria Integrata di Trieste, Italy.,Fondazione Italiana Fegato, Trieste, Italy
| |
Collapse
|
57
|
Gandhi CR. Pro- and Anti-fibrogenic Functions of Gram-Negative Bacterial Lipopolysaccharide in the Liver. Front Med (Lausanne) 2020; 7:130. [PMID: 32373617 PMCID: PMC7186417 DOI: 10.3389/fmed.2020.00130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Extensive research performed over several decades has identified cells participating in the initiation and progression of fibrosis, and the numerous underlying inter- and intra-cellular signaling pathways. However, liver fibrosis continues to be a major clinical challenge as the precise targets of treatment are still elusive. Activation of physiologically quiescent perisinusoidal hepatic stellate cells (HSCs) to a myofibroblastic proliferating, contractile and fibrogenic phenotype is a critical event in the pathogenesis of chronic liver disease. Thus, elucidation of the mechanisms of the reversal to quiescence or inhibition of activated HSCs, and/or their elimination via apoptosis has been the focus of intense investigation. Lipopolysaccharide (LPS), a gut-resident Gram-negative bacterial endotoxin, is a powerful pro-inflammatory molecule implicated in hepatic injury, inflammation and fibrosis. In both acute and chronic liver injury, portal venous levels of LPS are elevated due to increased intestinal permeability. LPS, via CD14 and Toll-like receptor 4 (TLR4) and its adapter molecules, stimulates macrophages, neutrophils and several other cell types to produce inflammatory mediators as well as factors that can activate HSCs and stimulate their fibrogenic activity. LPS also stimulates synthesis of pro- and anti-inflammatory cytokines/chemokines, growth mediators and molecules of immune regulation by HSCs. However, LPS was found to arrest proliferation of activated HSCs and to convert them into non-fibrogenic phenotype. Interestingly, LPS can elicit responses in HSCs independent of CD14 and TLR4. Identifying and/or developing non-inflammatory but anti-fibrogenic mimetics of LPS could be relevant for treating liver fibrosis.
Collapse
Affiliation(s)
- Chandrashekhar R Gandhi
- Divisions of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Cincinnati VA Medical Center, Cincinnati, OH, United States
| |
Collapse
|
58
|
Panyod S, Wu WK, Lu KH, Liu CT, Chu YL, Ho CT, Hsiao WLW, Lai YS, Chen WC, Lin YE, Lin SH, Wu MS, Sheen LY. Allicin Modifies the Composition and Function of the Gut Microbiota in Alcoholic Hepatic Steatosis Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3088-3098. [PMID: 32050766 DOI: 10.1021/acs.jafc.9b07555] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The intestinal microbiome plays an important role in the pathogenesis of liver diseases. Alcohol intake induces gut microbiota dysbiosis and alters its function. This study investigated the antibiotic effect of allicin in mice with hepatic steatosis. Male C57BL/6 mice were administered an ethanol diet supplemented with allicin (5 and 20 mg/(kg bw day)) for 4 weeks. Allicin modified the gut microbiota composition. Cecal microbiota exhibited a positive correlation with alcohol and hepatic triacylglycerol, but were suppressed with allicin. Ethanol diet with 5 mg of allicin induced a lower intestinal permeability compared to the ethanol diet alone. Allicin mediated the lipopolysaccharide (LPS)-CD14-toll-like receptor 4 (TLR4)-induced hepatic inflammation pathway by reducing LPS, CD14, TLR4, and pro-inflammatory cytokines-tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. However, hepatic inflammation primarily resulted from alcohol toxicity rather than LPS production in the gut. The prediction of functional profiles from metagenomic 16S ribosomal RNA (rRNA) data revealed different functional profiles in each group. The predicted aldehyde dehydrogenase tended to increase in alcoholic mice administered allicin. The predicted LPS-related pathway and LPS biosynthesis protein results exhibited a similar trend as plasma LPS levels. Thus, alcohol and allicin intake shapes the gut microbiota and its functional profile and improves the CD14-TLR4 pathway to alleviate inflammation in the liver.
Collapse
Affiliation(s)
- Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Kai Wu
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Bei-Hu Branch, Taipei 10800, Taiwan
| | - Kuan-Hung Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Ting Liu
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| | - Yung-Lin Chu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Wen-Luan Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yi-Syuan Lai
- Department of Hospitality Management, Yu Da University of Science and Technology, Miaoli 36143, Taiwan
| | - Wei-Cheng Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-En Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Shi-Hang Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Center for Food and Biomolecules, National Taiwan University, Taipei 10617, Taiwan
- National Center for Food Safety Education and Research, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
59
|
Nagasaki A, Sakamoto S, Chea C, Ishida E, Furusho H, Fujii M, Takata T, Miyauchi M. Odontogenic infection by Porphyromonas gingivalis exacerbates fibrosis in NASH via hepatic stellate cell activation. Sci Rep 2020; 10:4134. [PMID: 32139740 PMCID: PMC7058079 DOI: 10.1038/s41598-020-60904-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/18/2020] [Indexed: 11/20/2022] Open
Abstract
Odontogenic infection of Porphyromonas gingivalis (P.g.), a major periodontal pathogen, exacerbates pathological progression of non-alcoholic steatohepatitis (NASH). In this study, we aimed to clarify the detailed mechanism in which P.g. induced hepatic stellate cells (HSCs; key effector cells in liver fibrosis) activation. In the liver of high fat diet-induced NASH mouse model with P.g. odontogenic infection, immunolocalization of P.g. was detected. The number of hepatic crown-like structure, which was macrophage aggregation and related to liver fibrosis, was drastically increased and fibrosis area was also increased through upregulating immunoexpression of Phosphorylated Smad2 (key signaling molecule of TGF-β1) and Galectin-3. P.g.-secreted trypsin-like enzyme [gingipain; an activator of protease-activated receptor 2 (PAR2)] stimulated HSC proliferation and differentiation through Smad and ERK signaling induced by TGF-β1 produced from HSCs with P.g.-infection. Further, Galectin-3 produced from HSCs with P.g. infection and P.g.-derived LPS/lipoprotein stimulation stabilized TGFβ-receptor II resulting in increasing sensitivity for TGF-β1, finally leading to HSC differentiation via activating Smad and ERK signaling. In addition to them, hepatocytes (main component cells of liver) contributed to HSC activation through TGF-β1 and Galectin-3 production in paracrine manner. Collectively, P.g.-odontogenic infection exacerbates fibrosis of NASH by HSC activation through TGF-β1 and Gal-3 production from HSCs and hepatocytes.
Collapse
Affiliation(s)
- Atsuhiro Nagasaki
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinnichi Sakamoto
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chanbora Chea
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eri Ishida
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hisako Furusho
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Makiko Fujii
- Department of Global Dental Medicine & Molecular Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
- Tokuyama University, Tokuyama, Japan.
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
60
|
Méndez-Sánchez N, Valencia-Rodriguez A, Vera-Barajas A, Abenavoli L, Scarpellini E, Ponciano-Rodriguez G, Wang DQH. The mechanism of dysbiosis in alcoholic liver disease leading to liver cancer. ACTA ACUST UNITED AC 2020; 6. [PMID: 32582865 PMCID: PMC7313221 DOI: 10.20517/2394-5079.2019.29] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, alcoholic liver disease (ALD) is one of the most prevalent chronic liver diseases worldwide, representing one of the main etiologies of cirrhosis and hepatocellular carcinoma (HCC). Although we do not know the exact mechanisms by which only a selected group of patients with ALD progress to the final stage of HCC, the role of the gut microbiota within the progression to HCC has been intensively studied in recent years. To date, we know that alcohol-induced gut dysbiosis is an important feature of ALD with important repercussions on the severity of this disease. In essence, an increased metabolism of ethanol in the gut induced by an excessive alcohol consumption promotes gut dysfunction and bacterial overgrowth, setting a leaky gut. This causes the translocation of bacteria, endotoxins, and ethanol metabolites across the enterohepatic circulation reaching the liver, where the recognition of the pathogen-associated molecular patterns via specific Toll-like receptors of liver cells will induce the activation of the nuclear factor kappa-B pathway, which releases pro-inflammatory cytokines and chemokines. In addition, the mitogenic activity of hepatocytes will be promoted and cellular apoptosis will be inhibited, resulting in the development of HCC. In this context, it is not surprising that microbiota-regulating drugs have proven effectiveness in prolonging the overall survival of patients with HCC, making attractive the implementation of these drugs as co-adjuvant for HCC treatment.
Collapse
Affiliation(s)
- Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico.,Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | | | - Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia" Viale Europa, Catanzaro 88100, Italy
| | - Emidio Scarpellini
- Clinical Nutrition Unit, and Internal Medicine Unit, "Madonna del Soccorso" General Hospital, Via Luciano Manara 7, San Benedetto del Tronto (AP) 63074, Italy
| | - Guadalupe Ponciano-Rodriguez
- Public Health Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
61
|
Lee JE, Ha JS, Park HY, Lee E. Alteration of gut microbiota composition by short-term low-dose alcohol intake is restored by fermented rice liquor in mice. Food Res Int 2020; 128:108800. [DOI: 10.1016/j.foodres.2019.108800] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
|
62
|
Seo B, Jeon K, Moon S, Lee K, Kim WK, Jeong H, Cha KH, Lim MY, Kang W, Kweon MN, Sung J, Kim W, Park JH, Ko G. Roseburia spp. Abundance Associates with Alcohol Consumption in Humans and Its Administration Ameliorates Alcoholic Fatty Liver in Mice. Cell Host Microbe 2020; 27:25-40.e6. [DOI: 10.1016/j.chom.2019.11.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 07/25/2019] [Accepted: 11/06/2019] [Indexed: 02/08/2023]
|
63
|
Abstract
The gut microbiome is the natural intestinal inhabitant that has been recognized recently as a major player in the maintenance of human health and the pathophysiology of many diseases. Those commensals produce metabolites that have various effects on host biological functions. Therefore, alterations in the normal composition or diversity of microbiome have been implicated in various diseases, including liver cirrhosis and nonalcoholic fatty liver disease. Moreover, accumulating evidence suggests that progression of dysbiosis can be associated with worsening of liver disease. Here, we review the possible roles for gut microbiota in the development, progression, and complication of liver disease.
Collapse
Affiliation(s)
- Somaya A M Albhaisi
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
64
|
Abstract
Microbiome dysbiosis is strongly associated with alcoholic liver disease (ALD). Recent studies on comprehensive analyses of microbiome compositional and functional changes have begun to uncover the mechanistic relation between microbiome and the pathogenesis of ALD. Importantly, targeting the microbiome has become a potential strategy for the prevention and treatment of ALD. In this review, we summarize the clinical evidence of microbiome dysbiosis in ALD patients, and experimental advances in microbiome and metabolomic functional changes in animals with different species and genetic backgrounds in ALD. We also summarize the studies in humanized intestinal microbiome and fecal microbiota transplantation in mice. We introduce new developments in the studies on the role of the circulating bacterial microbiome, oral bacterial microbiome and fungal microbiome in the development of ALD. We highlight the potential mechanisms by which microbiome dysbiosis contributes to ALD, including short chain fatty acid changes, bile acid metabolism, intestinal barrier function, release of bacterial and fungal products, and inflammation. In addition, we summarize the recent developments targeting the microbiome in prevention and treatment of ALD, including dietary nutrient interference, herbal medicine, antibiotics, anti-fungal agents, probiotics, engineered bacterial therapy, fecal transplantation and oral hygiene. Although recent preclinical studies have advanced our understanding of the microbiome and ALD, clinical studies, especially prospective studies with large samples, are needed to better understand the cause-effect of microbiome dysbiosis in ALD. Identifying new precision-based strategies targeting the microbiome are expected to be developed as more effective therapies in ALD.
Collapse
|
65
|
Chen D, Le TH, Shahidipour H, Read SA, Ahlenstiel G. The Role of Gut-Derived Microbial Antigens on Liver Fibrosis Initiation and Progression. Cells 2019; 8:E1324. [PMID: 31717860 PMCID: PMC6912265 DOI: 10.3390/cells8111324] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Intestinal dysbiosis has recently become known as an important driver of gastrointestinal and liver disease. It remains poorly understood, however, how gastrointestinal microbes bypass the intestinal mucosa and enter systemic circulation to enact an inflammatory immune response. In the context of chronic liver disease (CLD), insults that drive hepatic inflammation and fibrogenesis (alcohol, fat) can drastically increase intestinal permeability, hence flooding the liver with gut-derived microbiota. Consequently, this may result in exacerbated liver inflammation and fibrosis through activation of liver-resident Kupffer and stellate cells by bacterial, viral, and fungal antigens transported to the liver via the portal vein. This review summarizes the current understanding of microbial translocation in CLD, the cell-specific hepatic response to intestinal antigens, and how this drives the development and progression of hepatic inflammation and fibrosis. Further, we reviewed current and future therapies targeting intestinal permeability and the associated, potentially harmful anti-microbial immune response with respect to their potential in terms of limiting the development and progression of liver fibrosis and end-stage cirrhosis.
Collapse
Affiliation(s)
- Dishen Chen
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
| | - Thanh H. Le
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
- School of Medicine, Western Sydney University, Campbelltown 2560, NSW, Australia
| | - Haleh Shahidipour
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
- Blacktown Medical School, Western Sydney University, Blacktown 2148, NSW, Australia
| | - Scott A. Read
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
- Blacktown Medical School, Western Sydney University, Blacktown 2148, NSW, Australia
| | - Golo Ahlenstiel
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead 2145, NSW, Australia; (D.C.); (T.H.L.); (H.S.)
- Blacktown Medical School, Western Sydney University, Blacktown 2148, NSW, Australia
- Blacktown Hospital, Blacktown 2148, NSW, Australia
| |
Collapse
|
66
|
Liu X, Zhao K, Yang X, Zhao Y. Gut Microbiota and Metabolome Response of Decaisnea insignis Seed Oil on Metabolism Disorder Induced by Excess Alcohol Consumption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10667-10677. [PMID: 31483636 DOI: 10.1021/acs.jafc.9b04792] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study investigated the modulatory effects of Decaisnea insignis seed oil (DISO), which was rich in palmitoleic acid (55.25%), palmitic acid (12.25%), and oleic acid (28.74%), on alcohol-induced metabolism disorder in mice. Fifty mice were orally administered with 38% alcohol (0.4 mL/day) and without or with DISO (3, 6, and 12 g/kg) for consecutive 12 weeks. DISO inhibited the alcohol-induced weight loss and liver function abnormality (p < 0.01) and shifted the profiles of cecal microbiome: elevating the abundance of Lactobacillus, Ruminoccoceae_UCG_004 (p < 0.05) and decreasing abundance of Parabacteroides (p < 0.05). This treatment also regulated metabolome response of amino acid and lipid metabolism in cecal content: upregulating 5-hydroxyindole-3-acetic acid (p < 0.05), 6-hydroxynicotinic acid, 5-methoxytryptamine, nicotinamide, and nicotinic acid (p < 0.1) and downregulating androsterone, tryptophan, and indole-3-acetamide (p < 0.05). DISO protected against alcoholic liver injury and gut microbiota dysbiosis by enriching the relative abundance of Lactobacillus, which was positively associated with the improvement of intestinal permeability and tryptophan metabolism.
Collapse
|
67
|
Alcohol or Gut Microbiota: Who Is the Guilty? Int J Mol Sci 2019; 20:ijms20184568. [PMID: 31540133 PMCID: PMC6770333 DOI: 10.3390/ijms20184568] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD), a disorder caused by excessive alcohol intake represents a global health care burden. ALD encompasses a broad spectrum of hepatic injuries including asymptomatic steatosis, alcoholic steatohepatitis (ASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The susceptibility of alcoholic patients to develop ALD is highly variable and its progression to more advanced stages is strongly influenced by several hits (i.e., amount and duration of alcohol abuse). Among them, the intestinal microbiota and its metabolites have been recently identified as paramount in ALD pathophysiology. Ethanol abuse triggers qualitative and quantitative modifications in intestinal flora taxonomic composition, mucosal inflammation, and intestinal barrier derangement. Intestinal hypermeability results in the translocation of viable pathogenic bacteria, Gram-negative microbial products, and pro-inflammatory luminal metabolites into the bloodstream, further corroborating the alcohol-induced liver damage. Thus, the premise of this review is to discuss the beneficial effect of gut microbiota modulation as a novel therapeutic approach in ALD management.
Collapse
|
68
|
Samuelson DR, Gu M, Shellito JE, Molina PE, Taylor CM, Luo M, Welsh DA. Intestinal Microbial Products From Alcohol-Fed Mice Contribute to Intestinal Permeability and Peripheral Immune Activation. Alcohol Clin Exp Res 2019; 43:2122-2133. [PMID: 31407808 DOI: 10.1111/acer.14176] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alcohol use causes significant disruption of intestinal microbial communities, yet exactly how these dysbiotic communities interact with the host is unclear. We sought to understand the role of microbial products associated with alcohol dysbiosis in mice on intestinal permeability and immune activation in an in vitro model system. METHODS Microbiota samples from binge-on-chronic alcohol-fed and pair-fed male and female mice were cultured in Gifu Anaerobic Broth for 24 hours under anaerobic conditions. Live/whole organisms were removed, and microbial products were collected and added to human peripheral blood mononuclear cells (PBMCs) or polarized C2BBe1 intestinal epithelial monolayers. Following stimulation, transepithelial electrical resistance (TEER) was measured using a volt/ohm meter and immune activation of PBMC was assessed via flow cytometry. RESULTS Microbial products from male and female alcohol-fed mice significantly decreased TEER (mean percentage change from baseline alcohol-fed 0.86 Ω/cm2 vs. pair-fed 1.10 Ω/cm2 ) compared to microbial products from control mice. Following ex vivo stimulation, immune activation of PBMC was assessed via flow cytometry. We found that microbial products from alcohol-fed mice significantly increased the percentage of CD38+ CD4+ (mean alcohol-fed 17.32% ± 0.683% standard deviation (SD) vs. mean pair-fed 14.2% ± 1.21% SD, p < 0.05) and CD8+ (mean alcohol-fed 20.28% ± 0.88% SD vs. mean pair-fed 12.58% ± 3.59% SD, p < 0.05) T cells. CONCLUSIONS Collectively, these data suggest that microbial products contribute to immune activation and intestinal permeability associated with alcohol dysbiosis. Further, utilization of these ex vivo microbial product assays will allow us to rapidly assess the impact of microbial products on intestinal permeability and immune activation and to identify probiotic therapies to ameliorate these defects.
Collapse
Affiliation(s)
- Derrick R Samuelson
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Min Gu
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Judd E Shellito
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - David A Welsh
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
69
|
Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol Res 2019; 148:104403. [PMID: 31425750 DOI: 10.1016/j.phrs.2019.104403] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 01/07/2023]
Abstract
The gut microbiota and its short chain fatty acid (SCFA) metabolites have been established to play an important protective role against neurodegenerative diseases. Our previous study demonstrated that cerebral ischemic stroke triggers dysfunctional gut microbiota and increased intestinal permeability. In this study, we aimed to clarify the mechanism by which gut microbiota and SCFAs can treat cerebral ischemic stroke in rat middle cerebral artery occlusion models and use the information to develop new therapies. Our results show that oral administration of non-absorbable antibiotics reduced neurological impairment and the cerebral infarct volume, relieved cerebral edemas, and decreased blood lipid levels by altering the gut microbiota. We also found that ischemic stroke decreased intestinal levels of SCFAs. And that transplanting fecal microbiota rich in these metabolites was an effective means of treating the condition. Compared with other SCFAs, butyric acid showed the highest negative correlation with ischemic stroke. Supplementation with butyric acid treated models of ischemic stroke effectively by remodeling the gut microbiota, enriching the beneficial Lactobacillus, and repairing the leaky gut. In conclusion, interfering with the gut microbiota by transplanting fecal bacteria rich in SCFAs and supplementing with butyric acid were found to be effective treatments for cerebral ischemic stroke.
Collapse
|
70
|
Probiotics for Alleviating Alcoholic Liver Injury. Gastroenterol Res Pract 2019; 2019:9097276. [PMID: 31263495 PMCID: PMC6556793 DOI: 10.1155/2019/9097276] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/18/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023] Open
Abstract
Many animal experiments and clinical trials showed that probiotics are effective for the treatment of alcoholic liver disease. Alcohol disrupts the composition of intestinal flora; probiotics modulate the gut microbiota and reverse alcohol-associated intestinal barrier dysfunction by decreasing intestinal mucosal permeability and preventing intestinal bacteria from translocating. Probiotics enhance immune responses and reduce the levels of alcohol-induced inflammatory cytokines and reactive oxygen species (ROS) production in the liver and intestine. Probiotics also increase fatty acid β-oxidation and reduce lipogenesis, combating alcohol-induced hepatic steatosis. In this review, we summarize the current knowledge regarding the mechanism of action of probiotics for reducing the effects of alcoholic liver disease.
Collapse
|
71
|
Role of Gut Microbiota in Hepatocarcinogenesis. Microorganisms 2019; 7:microorganisms7050121. [PMID: 31060311 PMCID: PMC6560397 DOI: 10.3390/microorganisms7050121] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the leading causes of death worldwide, has a causal nexus with liver injury, inflammation, and regeneration that accumulates over decades. Observations from recent studies have accounted for the involvement of the gut–liver axis in the pathophysiological mechanism responsible for HCC. The human intestine nurtures a diversified colony of microorganisms residing in the host ecosystem. The intestinal barrier is critical for conserving the normal physiology of the gut microbiome. Therefore, a rupture of this barrier or dysbiosis can cause the intestinal microbiome to serve as the main source of portal-vein endotoxins, such as lipopolysaccharide, in the progression of hepatic diseases. Indeed, increased bacterial translocation is a key sign of HCC. Considering the limited number of clinical studies on HCC with respect to the microbiome, we focus on clinical as well as animal studies involving the gut microbiota, with the current understandings of the mechanism by which the intestinal dysbiosis promotes hepatocarcinogenesis. Future research might offer mechanistic insights into the specific phyla targeting the leaky gut, as well as microbial dysbiosis, and their metabolites, which represent key pathways that drive HCC-promoting microbiome-mediated liver inflammation and fibrosis, thereby restoring the gut barrier function.
Collapse
|
72
|
Feng R, Chen JH, Liu CH, Xia FB, Xiao Z, Zhang X, Wan JB. A combination of Pueraria lobata and Silybum marianum protects against alcoholic liver disease in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152824. [PMID: 30836218 DOI: 10.1016/j.phymed.2019.152824] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Excess alcohol exposure leads to alcoholic liver disease (ALD). Pueraria lobata (PUE) and Silybum marianum (SIL) are two well-known hepatoprotective herbal remedies with various activities. The possible effect of combination of PUE and SIL on ALD has not been elucidated yet. PURPOSE We aimed to demonstrate that the combination of PUE and SIL prevents against alcoholic liver injury in mice using a model of chronic-plus-single-binge ethanol feeding. STUDY DESIGN Male C57BL/6 mice were randomly divided into five groups (n = 8-10), namely the control group (CON), ethanol-induced liver injury group (ETH), 150 mg/kg PUE treated group (PUE), 60 mg/kg SIL treated group (SIL), 210 mg/kg PUE+SIL treatment group (PUE+SIL). Except control group, all animals were fed a modified Lieber-DeCarli ethanol liquid diet for 10 days. While, control group received Lieber-DeCarli control diet containing isocaloric maltose dextrin substituted for ethanol. On day 11, the mice orally received a single dose of 31.5% (v/v) ethanol (5 g/kg BW) or an isocaloric maltose solution. RESULTS Ethanol exposure caused liver injury, as demonstrated by remarkably increased plasma parameters, histopathological changes, the increased lipid accumulation, oxidative stress and inflammation in liver. These alterations were ameliorated by the treatments of PUE, SIL and PUE+SIL. While, the PUE+SIL treatment showed the most effective protection, which was associated with reducing alcohol-induced hepatic steatosis via upregulating LKB1/AMPK/ACC signaling, and inhibiting hepatic inflammation via LPS-triggered TLR4-mediated NF-κB signaling pathway. Our results also indicated that the hepatoprotective effects of SIL+PUE might mainly attribute to the protection of SIL and PUE alone in alcohol-induced hepatic steatosis and hepatic inflammation, respectively. CONCLUSION These findings also suggest that the combination of PUE and SIL has a potential to be developed as a functional food for the management of ALD.
Collapse
Affiliation(s)
- Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Jie-Hua Chen
- Nutrition and Health Research Centre, By-Health Co. LTD, Guangzhou, China
| | - Cong-Hui Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Fang-Bo Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Zeyu Xiao
- Translational Medicine Collaborative Innovation Center, Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuguang Zhang
- Nutrition and Health Research Centre, By-Health Co. LTD, Guangzhou, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
73
|
Hartmann P, Chu H, Duan Y, Schnabl B. Gut microbiota in liver disease: too much is harmful, nothing at all is not helpful either. Am J Physiol Gastrointest Liver Physiol 2019; 316:G563-G573. [PMID: 30767680 PMCID: PMC6580239 DOI: 10.1152/ajpgi.00370.2018] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/31/2023]
Abstract
The intestinal microbiome plays a major role in the pathogenesis of liver disease, with a hallmark event being dysbiosis, or an imbalance of pathobionts and beneficial bacteria with the associated deleterious effects on their host. Reducing the number of intestinal bacteria with antibiotic treatment is generally advantageous in experimental liver diseases. Complete absence of intestinal microbiota as in germ-free rodents can be protective in autoimmune hepatitis and hepatic tumors induced by chemicals, or it can exacerbate disease as in acute toxic liver injury and liver fibrosis/cirrhosis. In alcoholic liver disease, nonalcoholic fatty liver disease, and autoimmune cholangiopathies, germ-free status can be associated with worsened or improved hepatic phenotype depending on the experimental model and type of rodent. Some of the unexpected outcomes can be explained by the limitations of rodents raised in a germ-free environment including a deficient immune system and an altered metabolism of lipids, cholesterol, xenobiotics/toxins, and bile acids. Given these limitations and to advance understanding of the interactions between host and intestinal microbiota, simplified model systems such as humanized gnotobiotic mice, or gnotobiotic mice monoassociated with a single bacterial strain or colonized with a defined set of microbes, are unique and useful models for investigation of liver disease in a complex ecosystem.
Collapse
Affiliation(s)
- Phillipp Hartmann
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Yi Duan
- Department of Medicine, University of California, San Diego, La Jolla, California
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, California
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
74
|
Suppression of Gut Bacterial Translocation Ameliorates Vascular Calcification through Inhibiting Toll-Like Receptor 9-Mediated BMP-2 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3415682. [PMID: 31007833 PMCID: PMC6441534 DOI: 10.1155/2019/3415682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
Aims Vascular calcification (VC) is a primary risk factor for cardiovascular mortality in chronic renal failure (CRF) patients; thus, effective therapeutic targets are urgently needed to be explored. Here, we identified the role of intestinal bacterial translocation in CRF-related VC. Methods and Results Antibiotic supplementation by oral gavage significantly suppressed intestinal bacterial translocation, CRF-related VC, and aortic osteogenic gene and Toll-like receptor (TLR) gene expression in CRF rats. Furthermore, TLR4 and TLR9 activation in vascular smooth muscle cells (VSMCs) aggravated inorganic phosphate- (Pi-) induced calcification. TLR9 inhibition, but not TLR4 inhibition, by both a pharmacological inhibitor and genetic methods could significantly reduce CRF rats' serum or CRF-induced VC. Interestingly, bone morphogenic protein-2 (BMP-2) levels were increased in the aorta and sera from CRF rats. Increased BMP-2 levels were also observed in VSMCs treated with TLR9 agonist, which was blocked by NF-κB inhibition. Both siRNA knockdown of BMP-2 and NF-κB inhibitor significantly blocked TLR9 agonist-induced VSMC calcification. Conclusions Gut bacterial translocation inhibited by oral antibiotic significantly reduces CRF-related VC through inhibition of TLR9/NF-κB/BMP-2 signaling.
Collapse
|
75
|
Joung JY, Cho JH, Kim YH, Choi SH, Son CG. A literature review for the mechanisms of stress-induced liver injury. Brain Behav 2019; 9:e01235. [PMID: 30761781 PMCID: PMC6422711 DOI: 10.1002/brb3.1235] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Experimental studies and clinical observations have shown that stress can damage hepatic tissue both directly and indirectly. Many studies have partially revealed the contributors of stress-induced liver injury; however, the whole process has not yet been uncovered. This review aims to summarize the mechanisms that have been proposed to be involved. METHODS A literature search was conducted using PubMed (http://www.ncbi.nlm.nih.gov/pubmed) in its entirety up to March 2018, and analyzed the animal-derived mechanistic studies on stress-induced liver injury. RESULTS The liver is the organ that meets and filters a mass of alien material, and then maintains immune tolerance under physiological conditions. Under stress conditions, however, immune tolerance is interrupted, which results in the induction of inflammation in the liver. Contributors to this process can be categorized as follows: hypoxia-reoxygenation, over-activation of Kupffer cells and oxidative stress, influx of gut-derived lipopolysaccharide and norepinephrine, and over-production of stress hormones and activation of the sympathetic nerve. CONCLUSIONS Psychological stress is associated with a variety of pathological conditions resulting in liver injury through multiple systems, including the sympathetic nervous and adrenocortical system. Mechanistic understanding of this phenomenon is important for the clinical practice of managing patients with hepatic disorders and should be explored further in the future.
Collapse
Affiliation(s)
- Jin-Yong Joung
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, Daejeon, Korea
| | - Jung-Hyo Cho
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, Daejeon, Korea
| | - Yun-Hee Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, Korea
| | - Seung-Hoon Choi
- Department of Life Convergence, Graduate School of Dankook University, Yongin, Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, Daejeon, Korea
| |
Collapse
|
76
|
Tolefree JA, Garcia AJ, Farrell J, Meadows V, Kennedy L, Hargrove L, Demieville J, Francis N, Mirabel J, Francis H. Alcoholic liver disease and mast cells: What's your gut got to do with it? LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
77
|
Sarin SK, Pande A, Schnabl B. Microbiome as a therapeutic target in alcohol-related liver disease. J Hepatol 2019; 70:260-272. [PMID: 30658727 DOI: 10.1016/j.jhep.2018.10.019] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/23/2018] [Indexed: 02/08/2023]
Abstract
Alcohol-related liver disease is associated with significant changes in gut microbial composition. The transmissibility of ethanol-induced liver disease has been demonstrated using faecal microbiota transfer in preclinical models. This technique has also led to improved survival in patients with severe alcoholic hepatitis, suggesting that changes in the composition and function of the gut microbiota are causatively linked to alcohol-related liver disease. A major mechanism by which gut microbiota influence the development of alcohol-related liver disease is through a leaky intestinal barrier. This permits translocation of viable bacteria and microbial products to the liver, where they induce and promote inflammation, as well as contribute to hepatocyte death and the fibrotic response. In addition, gut dysbiosis is associated with changes in the metabolic function of the intestinal microbiota, bile acid composition and circulation, immune dysregulation during onset and progression of alcohol-related liver disease. Findings from preclinical and human studies will be used to demonstrate how alcohol causes intestinal pathology and contributes to alcohol-related liver disease and how the latter is self-perpetuating. Additionally, we summarise the effects of untargeted treatment approaches on the gut microbiota, such as diet, probiotics, antibiotics and faecal microbial transplantation in alcohol-related liver disease. We further discuss how targeted approaches can restore intestinal homeostasis and improve alcohol-related liver disease. These approaches are likely to add to the therapeutic options for alcohol-related liver disease independently or in conjunction with steroids.
Collapse
Affiliation(s)
- Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Apurva Pande
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
78
|
Jiang JW, Chen XH, Ren Z, Zheng SS. Gut microbial dysbiosis associates hepatocellular carcinoma via the gut-liver axis. Hepatobiliary Pancreat Dis Int 2019; 18:19-27. [PMID: 30527903 DOI: 10.1016/j.hbpd.2018.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world. Gut microbiota has been demonstrated to play a critical role in liver inflammation, chronic fibrosis, liver cirrhosis, and HCC development through the gut-liver axis. DATA SOURCES Recently there have been several innovative studies investigating gut microbial dysbiosis-mediated enhancement of HCC through the gut-liver axis. Literatures from January 1998 to January 2018 were searched in the PubMed database using the keywords "gut microbiota" and "hepatocellular carcinoma" or "liver cancer", and the results of experimental and clinical studies were analyzed. RESULTS Gut microbial dysbiosis accompanies the progression of alcoholic liver disease, non-alcoholic fatty liver disease and liver cirrhosis, and promotes HCC progression in an experimental mouse model. The immune system and key factors such as Toll-like receptor 4 are involved in the process. There is evidence for gut microbial dysbiosis in hepatitis virus-related HCC patients. CONCLUSIONS Gut microbial dysbiosis is closely associated with hepatic inflammation disease and HCC through the gut-liver axis. With the enhanced understanding of the interactions between gut microbiota and liver through the gut-liver axis, new treatment strategies for HCC are being developed.
Collapse
Affiliation(s)
- Jian-Wen Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China; Health Management Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin-Hua Chen
- Department of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Zhigang Ren
- Department of Infectious Disease, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
79
|
Abstract
Apart from the classic knowledge that ethanol mediates its hepatotoxicity through its metabolism to acetaldehyde, a well-known hepatotoxic molecule, recent research has elucidated several key mechanisms that potentiate ethanol's damage to the liver parenchyma, such as generation of free radicals, activation of Kupffer cells, and alterations to the human bacterial and fungal microbiome. Genetic studies have suggested the role of PNPLA3 and TM6SF2 gene mutations in the progression of alcoholic liver disease.
Collapse
Affiliation(s)
- Themistoklis Kourkoumpetis
- Department of Gastroenterology, Baylor College of Medicine, 6620 Main Street, Suite 1450, Houston, TX 77030, USA
| | - Gagan Sood
- Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, 6620 Main Street, Suite 1450, Houston, TX 77030, USA.
| |
Collapse
|
80
|
Wang M, Ma LJ, Yang Y, Xiao Z, Wan JB. n-3 Polyunsaturated fatty acids for the management of alcoholic liver disease: A critical review. Crit Rev Food Sci Nutr 2018; 59:S116-S129. [PMID: 30580553 DOI: 10.1080/10408398.2018.1544542] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Excess alcohol exposure leads to alcoholic liver disease (ALD), a predominant cause of liver-related morbidity and mortality worldwide. In the past decade, increasing attention has been paid to understand the association between n-3 polyunsaturated fatty acids (n-3 PUFAs) and ALD. In this review, we summarize the metabolism of n-3 PUFAs, animal model of ALD, and the findings from recent studies determining the role of n-3 PUFAs in ALD as a possible treatment. The animal models of acute ethanol exposure, chronic ethanol exposure and chronic-plus-single binge ethanol feeding have been widely used to explore the impact of n-3 PUFAs. Although the results of studies regarding the role of n-3 PUFAs in ALD have been inconsistent or controversial, increasing evidence has demonstrated that n-3 PUFAs may be useful in alleviating alcoholic steatosis and alcohol-induced liver injury through multiple mechanisms, including decreased de novo lipogenesis and lipid mobilization from adipose tissue, enhanced mitochondrial fatty acid β-oxidation, reduced hepatic inflammation and oxidative stress, and promoted intestinal homeostasis, positively suggesting that n-3 PUFAs might be promising for the management of ALD. The oxidation of n-3 PUFAs ex vivo in an experimental diet was rarely considered in most n-3 PUFA-related studies, likely contributing to the inconsistent results. Thus, the role of n-3 PUFAs in ALD deserves greater research efforts and remains to be evaluated in randomized, placebo-controlled clinic trial. ABBREVIATION AA arachidonic acid ACC acetyl-CoA carboxylase ACLY ATP-citrate lyase ACO acyl-CoA oxidase ALA α-linolenic acid ALD alcoholic liver disease ALP alkaline phosphatase ALT alanine aminotransferase AMPK AMP-activated protein kinase AST aspartate aminotransferase ATGL adipose triglyceride lipase cAMP cyclic adenosine 3',5'-monophosphate COX cyclooxygenases CPT1 carnitine palmitoyltransferase 1 CYP2E1 cytochrome P450 2E1 DGAT2 diacylglycerol acyltransferase 2 DGLA dihomo-γ-linolenic acid DHA docosahexaenoic acid DPA docosapentaenoic acid DTA docosatetraenoic acid EPA eicosapentaenoic acid ER endoplasmic reticulum ETA eicosatetraenoic acid FAS fatty acid synthase FATPs fatty acid transporter proteins GLA,γ linolenic acid GPR120 G protein-coupled receptor 120 GSH glutathione; H&E haematoxylin-eosin; HO-1 heme oxygenase-1; HSL hormone-sensitive lipase; IL-6 interleukin-6 iNOS nitric oxide synthase LA linoleic acid LBP lipopolysaccharide binding protein LOX lipoxygenases LXR liver X receptor LXREs LXR response elements MCP-1 monocyte chemotactic protein-1 MTP microsomal triglyceride transfer protein MUFA monounsaturated fatty acids MyD88 myeloid differentiation factor 88 n-3 PUFAs omega-3 polyunsaturated fatty acid NAFLD nonalcoholic fatty liver disease NASH nonalcoholic steatohepatitis NF-κB transcription factor nuclear factor κB PDE3B phosphodiesterase 3B PPAR peroxisome proliferator-activated receptor ROS reactive oxygen species RXR retinoid X receptor SCD-1 stearyl CoA desaturase-1 SDA stearidonic acid SFA saturated fatty acids SIRT1 sirtuin 1 SOD superoxide dismutase SREBP sterol regulatory element-binding protein TB total bilirubin TC total cholesterol TG triacylglycerol TLR4 Toll-like receptor-4 TNF-α tumor necrosis factor-α VLDLR very low-density lipoprotein receptor WT wild type; ZO-1 zonula occludens-1.
Collapse
Affiliation(s)
- Meng Wang
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , China.,b Center for Drug Innovation and Discovery, College of Life Science, Hebei Normal University , Shijiazhuang , Hebei , China
| | - Li-Juan Ma
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Yan Yang
- c Department of Nutrition, School of Public Health , Sun Yat-Sen University , Guangzhou , China
| | - Zeyu Xiao
- d Collaborative Translational Medicine Collaborative Innovation Center, Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Bo Wan
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macao , China
| |
Collapse
|
81
|
Ohashi K, Pimienta M, Seki E. Alcoholic liver disease: A current molecular and clinical perspective. LIVER RESEARCH 2018; 2:161-172. [PMID: 31214376 PMCID: PMC6581514 DOI: 10.1016/j.livres.2018.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heavy alcohol use is the cause of alcoholic liver disease (ALD). The ALD spectrum ranges from alcoholic steatosis to steatohepatitis, fibrosis, and cirrhosis. In Western countries, approximately 50% of cirrhosis-related deaths are due to alcohol use. While alcoholic cirrhosis is no longer considered a completely irreversible condition, no effective anti-fibrotic therapies are currently available. Another significant clinical aspect of ALD is alcoholic hepatitis (AH). AH is an acute inflammatory condition that is often comorbid with cirrhosis, and severe AH has a high mortality rate. Therapeutic options for ALD are limited. The established treatment for AH is corticosteroids, which improve short-term survival but do not affect long-term survival. Liver transplantation is a curative treatment option for alcoholic cirrhosis and AH, but patients must abstain from alcohol use for 6 months to qualify. Additional effective therapies are needed. The molecular mechanisms underlying ALD are complex and have not been fully elucidated. Various molecules, signaling pathways, and crosstalk between multiple hepatic and extrahepatic cells contribute to ALD progression. This review highlights established and emerging concepts in ALD clinicopathology, their underlying molecular mechanisms, and current and future ALD treatment options.
Collapse
Affiliation(s)
- Koichiro Ohashi
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael Pimienta
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA,University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA,University of California San Diego, School of Medicine, La Jolla, CA, USA,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Department of Medicine, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA,Corresponding author. Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA., (E. Seki)
| |
Collapse
|
82
|
Konturek PC, Harsch IA, Konturek K, Schink M, Zopf Y. [Gut-liver axis: How intestinal bacteria affect the liver]. MMW Fortschr Med 2018; 160:11-15. [PMID: 30367438 DOI: 10.1007/s15006-018-1051-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Liver and intestine are in close contact with each other. The risk of damage to the liver increases, when the intestinal barrier is damaged ("leaky gut") . METHOD The review article describes how intestinal bacteria influence the pathogenesis of chronic liver diseases and what treatment options are available. RESULTS AND CONCLUSIONS Intestinal dysbiosis plays an important role in the development of chronic liver diseases such as alcoholic liver disease, nonalcoholic fatty liver disease, primary biliary cholangitis, primary sclerosing cholangitis, and cirrhosis. Intestinal microbial modulating therapy with probiotics, prebiotics or synbiotics shows positive effects. The more precise meaning of this therapeutic approach needs to be clarified in further studies.
Collapse
Affiliation(s)
- Peter C Konturek
- Klinik für Innere Medizin II, Thüringen-Kliniken Saalfeld, Saalfeld, Deutschland.
- Klinik für Innere Medizin II, Thüringen-Kliniken, "Georgius Agricola" GmbH, Rainweg 68, 07318, Saalfeld/Saale, Deutschland.
| | - Igor A Harsch
- Klinik für Innere Medizin II, Thüringen-Kliniken Saalfeld, Saalfeld, Deutschland
| | - Kathrin Konturek
- Hector-Center, Medizinische Klinik I, FAU Erlangen-Nürnberg, Erlangen-Nürnberg, Deutschland
| | - Monic Schink
- Hector-Center, Medizinische Klinik I, FAU Erlangen-Nürnberg, Erlangen-Nürnberg, Deutschland
| | - Yurdagül Zopf
- Hector-Center, Medizinische Klinik I, FAU Erlangen-Nürnberg, Erlangen-Nürnberg, Deutschland
| |
Collapse
|
83
|
Lowe PP, Gyongyosi B, Satishchandran A, Iracheta-Vellve A, Cho Y, Ambade A, Szabo G. Reduced gut microbiome protects from alcohol-induced neuroinflammation and alters intestinal and brain inflammasome expression. J Neuroinflammation 2018; 15:298. [PMID: 30368255 PMCID: PMC6203993 DOI: 10.1186/s12974-018-1328-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022] Open
Abstract
Background The end-organ effects of alcohol span throughout the entire body, from the gastrointestinal tract to the central nervous system (CNS). In the intestine, alcohol use changes the microbiome composition and increases gut permeability allowing translocation of microbial components into the circulation. Gut-derived pathogen-associated signals initiate inflammatory responses in the liver and possibly elsewhere in the body. Because previous studies showed that the gut microbiome contributes to alcohol-induced liver disease, we hypothesized that antibiotic administration to reduce the gut microbiome would attenuate alcohol-induced inflammation in the brain and small intestine (SI). Methods Six- to 8-week-old C57BL/6J female mice were fed alcohol in a liquid diet or a calorie-matched control diet for 10 days with an acute alcohol binge or sugar on the final day (acute-on-chronic alcohol administration). Some mice were treated with oral antibiotics daily to diminish the gut microbiome. We compared serum levels of TNFα, IL-6, and IL-1β by ELISA; expression of cytokines Tnfα, Mcp1, Hmgb1, Il-17, Il-23, Il-6, and Cox2; and inflammasome components Il-1β, Il-18, Casp1, Asc, and Nlrp3 in the CNS and SI by qRT-PCR. Microglial morphology was analyzed using immunohistochemical IBA1 staining in the cortex and hippocampus. Results Antibiotics dramatically reduced the gut microbiome load in both alcohol- and pair-fed mice. Alcohol-induced neuroinflammation and increase in SI cytokine expression were attenuated in mice with antibiotic treatment. Acute-on-chronic alcohol did not induce serum TNFα, IL-6, and IL-1β. Alcohol feeding significantly increased the expression of proinflammatory cytokines such as Tnfα, Mcp1, Hmgb1, Il-17, and Il-23 in the brain and intestine. Reduction in the gut bacterial load, as a result of antibiotic treatment, attenuated the expression of all of these alcohol-induced proinflammatory cytokines in both the brain and SI. Alcohol feeding resulted in microglia activation and morphologic changes in the cortex and hippocampus characterized by a reactive phenotype. These alcohol-induced changes were abrogated following an antibiotic-induced reduction in the gut microbiome. Unexpectedly, antibiotic treatment increased the mRNA expression of some inflammasome components in both the brain and intestine. Conclusions Our data show for the first time that the acute-on-chronic alcohol administration in mice induces both neuroinflammation and intestinal inflammation and that reduction in the intestinal bacterial load can attenuate alcohol-associated CNS and gut inflammation. Gut microbiome-derived signals contribute to neuroinflammation in acute-on-chronic alcohol exposure.
Collapse
Affiliation(s)
- Patrick P Lowe
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Benedek Gyongyosi
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Abhishek Satishchandran
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Arvin Iracheta-Vellve
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Yeonhee Cho
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Aditya Ambade
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
84
|
Shao T, Zhao C, Li F, Gu Z, Liu L, Zhang L, Wang Y, He L, Liu Y, Liu Q, Chen Y, Donde H, Wang R, Jala VR, Barve S, Chen SY, Zhang X, Chen Y, McClain CJ, Feng W. Intestinal HIF-1α deletion exacerbates alcoholic liver disease by inducing intestinal dysbiosis and barrier dysfunction. J Hepatol 2018; 69:886-895. [PMID: 29803899 PMCID: PMC6615474 DOI: 10.1016/j.jhep.2018.05.021] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Alcoholic liver disease (ALD) is characterized by gut dysbiosis and increased gut permeability. Hypoxia inducible factor 1α (HIF-1α) has been implicated in transcriptional regulation of intestinal barrier integrity and inflammation. We aimed to test the hypothesis that HIF-1α plays a critical role in gut microbiota homeostasis and the maintenance of intestinal barrier integrity in a mouse model of ALD. METHODS Wild-type (WT) and intestinal epithelial-specific Hif1a knockout mice (IEhif1α-/-) were pair-fed modified Lieber-DeCarli liquid diet containing 5% (w/v) alcohol or isocaloric maltose dextrin for 24 days. Serum levels of alanine aminotransferase and endotoxin were determined. Fecal microbiota were assessed. Liver steatosis and injury, and intestinal barrier integrity were evaluated. RESULTS Alcohol feeding increased serum levels of alanine aminotransferase and lipopolysaccharide, hepatic triglyceride concentration, and liver injury in the WT mice. These deleterious effects were exaggerated in IEhif1α-/- mice. Alcohol exposure resulted in greater reduction of the expression of intestinal epithelial tight junction proteins, claudin-1 and occludin, in IEhif1α-/- mice. In addition, cathelicidin-related antimicrobial peptide and intestinal trefoil factor were further decreased by alcohol in IEhif1α-/- mice. Metagenomic analysis showed increased gut dysbiosis and significantly decreased Firmicutes/Bacteroidetes ratio in IEhif1α-/- mice compared to the WT mice exposed to alcohol. An increased abundance of Akkermansia and a decreased level of Lactobacillus in IEhif1α-/- mice were also observed. Non-absorbable antibiotic treatment reversed the liver steatosis in both WT and IEhif1α-/- mice. CONCLUSION Intestinal HIF-1α is essential for the adaptative response to alcohol-induced changes in intestinal microbiota and barrier function associated with elevated endotoxemia and hepatic steatosis and injury. LAY SUMMARY Alcohol consumption alters gut microbiota and multiple intestinal barrier protecting factors that are regulated by intestinal hypoxia-inducible factor 1α (HIF-1α). Absence of intestinal HIF-1α exacerbates gut leakiness leading to an increased translocation of bacteria and bacterial products to the liver, consequently causing alcoholic liver disease. Intestinal specific upregulation of HIF-1α could be developed as a novel approach for the treatment of alcoholic liver disease.
Collapse
Affiliation(s)
- Tuo Shao
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA,First Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Cuiqing Zhao
- Department of Medicine, University of Louisville, Louisville, KY, USA,Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Fengyuan Li
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Zelin Gu
- Department of Medicine, University of Louisville, Louisville, KY, USA,College of Food Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Limimg Liu
- Department of Medicine, University of Louisville, Louisville, KY, USA,Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Lihua Zhang
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Yuhua Wang
- College of Food Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Yunhuan Liu
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Qi Liu
- Department of Medicine, University of Louisville, Louisville, KY, USA,Second Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Yiping Chen
- Second Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Hridgandh Donde
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Rui Wang
- First Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Venkatakrishna R. Jala
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Shirish Barve
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Yongping Chen
- First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Craig J. McClain
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA,Robley Rex Louisville VAMC, Louisville, KY, USA,Corresponding authors: Department of Medicine, University of Louisville, 505 S. Hancock Street CTR517, Louisville, KY, United State, 40202. Tel.: +1 502 852 2912; fax: +1 502 852 8927; , or or
| | - Wenke Feng
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA; Department of Medicine, University of Louisville, Louisville, KY, USA; First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
85
|
Hydes TJ, Meredith P, Schmidt PE, Smith GB, Prytherch DR, Aspinall RJ. National Early Warning Score Accurately Discriminates the Risk of Serious Adverse Events in Patients With Liver Disease. Clin Gastroenterol Hepatol 2018; 16:1657-1666.e10. [PMID: 29277622 DOI: 10.1016/j.cgh.2017.12.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/06/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The National Early Warning Score (NEWS) is used to identify deteriorating adult hospital inpatients. However, it includes physiological parameters frequently altered in patients with cirrhosis. We aimed to assess the performance of the NEWS in acute and chronic liver diseases. METHODS We collected vital signs, recorded in real time, from completed consecutive admissions of patients 16 years or older to a large acute-care hospital in Southern England, from January 1, 2010, through October 31, 2014. Using International Classification of Diseases, 10th revision, codes, we categorized patients as having primary liver disease, secondary liver disease, or none. For patients with liver disease, 2 analysis groups were developed: the first was based on clinical group (such as acute or chronic, alcohol-induced, or associated with portal hypertension), and the second was based on a summary of liver-related, hospital-level mortality indicator diagnoses. For each, we compared the abilities of the NEWS and 34 other early warning scores to discriminate 24-hour mortality, cardiac arrest, or unanticipated admission to the intensive care unit using the area under the receiver operating characteristic (AUROC) curve and early warning score efficiency curve analyses. RESULTS The NEWS identified patients with primary, nonprimary, and no diagnoses of liver disease with AUROC values of 0.873 (95% CI, 0.860-0.886), 0.898 (95% CI, 0.891-0.905), and 0.879 (95% CI, 0.877-0.881), respectively. High AUROC values were also obtained for all clinical subgroups; the NEWS identified patients with alcohol-related liver disease with an AUROC value of 0.927 (95% CI, 0.912-0.941). The NEWS identified patients with liver diseases with higher AUROC values than other early warning scoring systems. CONCLUSIONS The NEWS accurately discriminates patients at risk of death, admission to the intensive care unit, or cardiac arrest within a 24-hour period for a range of liver-related diagnoses. Its widespread use provides a ready-made, easy-to-use option for identifying patients with liver disease who require early assessment and intervention, without the need to modify parameters, weightings, or escalation criteria.
Collapse
Affiliation(s)
- Theresa J Hydes
- Department of Gastroenterology and Hepatology, Portsmouth Hospitals Trust, Queen Alexandra Hospital, Portsmouth, United Kingdom
| | - Paul Meredith
- Clinical Outcomes Research Group, Research and Innovation, Portsmouth Hospitals Trust, Queen Alexandra Hospital, Portsmouth, United Kingdom
| | - Paul E Schmidt
- Clinical Outcomes Research Group, Research and Innovation, Portsmouth Hospitals Trust, Queen Alexandra Hospital, Portsmouth, United Kingdom; Acute Medicine, Portsmouth Hospitals Trust, Queen Alexandra Hospital, Portsmouth, United Kingdom
| | - Gary B Smith
- Clinical Outcomes Research Group, Research and Innovation, Portsmouth Hospitals Trust, Queen Alexandra Hospital, Portsmouth, United Kingdom; Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, United Kingdom
| | - David R Prytherch
- Clinical Outcomes Research Group, Research and Innovation, Portsmouth Hospitals Trust, Queen Alexandra Hospital, Portsmouth, United Kingdom; Centre for Healthcare Modelling and Informatics, University of Portsmouth, Portsmouth, United Kingdom
| | - Richard J Aspinall
- Department of Gastroenterology and Hepatology, Portsmouth Hospitals Trust, Queen Alexandra Hospital, Portsmouth, United Kingdom.
| |
Collapse
|
86
|
Konturek PC, Harsch IA, Konturek K, Schink M, Konturek T, Neurath MF, Zopf Y. Gut⁻Liver Axis: How Do Gut Bacteria Influence the Liver? Med Sci (Basel) 2018; 6:medsci6030079. [PMID: 30227645 PMCID: PMC6165386 DOI: 10.3390/medsci6030079] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic liver diseases are a major cause of morbidity and mortality worldwide. Recently, gut dysbiosis was identified as an important factor in the pathogenesis of liver diseases. The relationship between gut microbiota and the liver is still not well understood; however, dysfunction of the gut mucosal barrier ("leaky gut") and increased bacterial translocation into the liver via the gut⁻liver axis probably play crucial roles in liver disease development and progression. The liver is an important immunological organ, and, after exposure to gut-derived bacteria via portal circulation, it responds with activation of the innate and adaptive immune system, leading to hepatic injury. A better understanding of the pathophysiological links among gut dysbiosis, the integrity of the gut barrier, and the hepatic immune response to gut-derived factors is essential for the development of new therapies to treat chronic liver diseases.
Collapse
Affiliation(s)
- Peter Christopher Konturek
- Department of Internal Medicine 2nd, Thuringia-Clinic Saalfeld, Teaching Hospital of the University of Jena, 68, D-07318 Jena, Germany.
| | - Igor Alexander Harsch
- Department of Internal Medicine 2nd, Thuringia-Clinic Saalfeld, Teaching Hospital of the University of Jena, 68, D-07318 Jena, Germany.
| | - Kathrin Konturek
- Department of Internal Medicine 2nd, Thuringia-Clinic Saalfeld, Teaching Hospital of the University of Jena, 68, D-07318 Jena, Germany.
| | - Monic Schink
- 1st Department of Internal Medicine, University Erlangen-Nuremberg, 91054 Erlangen, Germany.
| | - Thomas Konturek
- Department of Medicine, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA.
| | - Markus F Neurath
- 1st Department of Internal Medicine, University Erlangen-Nuremberg, 91054 Erlangen, Germany.
| | - Yurdaguel Zopf
- 1st Department of Internal Medicine, University Erlangen-Nuremberg, 91054 Erlangen, Germany.
| |
Collapse
|
87
|
Zhao N, Guo FF, Xie KQ, Zeng T. Targeting Nrf-2 is a promising intervention approach for the prevention of ethanol-induced liver disease. Cell Mol Life Sci 2018; 75:3143-3157. [PMID: 29947925 PMCID: PMC11105722 DOI: 10.1007/s00018-018-2852-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/18/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) remains to be a worldwide health problem. It is generally accepted that oxidative stress plays critical roles in the pathogenesis of ALD, and antioxidant therapy represents a logical strategy for the prevention and treatment of ALD. Nuclear factor erythroid-derived 2-like 2 (NFE2L2 or Nrf-2) is essential for the antioxidant responsive element (ARE)-mediated induction of endogenous antioxidant enzymes such as heme oxygenase 1 (HO-1) and glutamate-cysteine ligase [GCL, the rate-limiting enzyme in the synthesis of glutathione (GSH)]. Activation of Nrf-2 pathway by genetic manipulation or pharmacological agents has been demonstrated to provide protection against ALD, which suggests that targeting Nrf-2 may be a promising approach for the prevention and treatment of ALD. Herein, we review the relevant literature about the potential hepatoprotective roles of Nrf-2 activation against ALD.
Collapse
Affiliation(s)
- Ning Zhao
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Ke-Qin Xie
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
88
|
Orio L, Antón M, Rodríguez-Rojo IC, Correas Á, García-Bueno B, Corral M, de Fonseca FR, García-Moreno LM, Maestú F, Cadaveira F. Young alcohol binge drinkers have elevated blood endotoxin, peripheral inflammation and low cortisol levels: neuropsychological correlations in women. Addict Biol 2018; 23:1130-1144. [PMID: 28840951 DOI: 10.1111/adb.12543] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 12/24/2022]
Abstract
Alcohol binge drinking is a pattern of heavy alcohol consumption that is increasingly practiced by adolescents and young adults. Evidence indicates that alcohol binges induce peripheral inflammation and an exacerbated neuroimmune response that may participate in alcohol-induced cognitive/behavioral dysfunctions. Here, we recruited 20-year-old male and female university students who were identified as binge drinkers for at least 2 years. Compared with controls, young alcohol binge drinkers had elevated levels of blood endotoxin and upregulated markers of the toll-like receptor 4/NF-κB inflammatory pathway in peripheral blood mononuclear cells, together with pro-inflammatory cytokine/chemokine release, oxidative stress and lipid peroxidation. These changes positively correlate with the estimated blood alcohol levels achieved during alcohol binge intoxication and negatively correlate with the time elapsed from the last alcohol consumption. The immune/inflammatory changes were more prominent in female drinkers, who showed elevated levels of alcohol danger-associated molecules, such as high mobility group box 1, indicating that there are sex-related differences in the peripheral inflammatory response to alcohol. In contrast, cortisol levels were decreased in alcohol binge drinkers. Finally, higher levels of inflammatory markers, mainly monocyte chemoattractant protein-1, as well as LPS, high mobility group box 1, toll-like receptor 4, IL-6 and ciclooxygenase-2, correlated with worse scores on episodic memory and executive functioning tasks in female binge drinkers but not in male binge drinkers. These results emphasize possible risky consequences of alcohol use in binge episodes during young adulthood and call attention to sex-related differences in the alcohol-induced immune/inflammatory and neurocognitive responses.
Collapse
Affiliation(s)
- Laura Orio
- Department of Psychobiology, Faculty of Psychology; Complutense University (UCM); Madrid Spain
- Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII); Madrid Spain
| | - María Antón
- Department of Psychobiology, Faculty of Psychology; Complutense University (UCM); Madrid Spain
| | - Inmaculada Concepción Rodríguez-Rojo
- Laboratory of Cognitive and Computational Neuroscience; Centre of Biomedical Technology (CTB); Madrid Spain
- Department of Basic Psychology II, Faculty of Psychology; UCM; Madrid Spain
| | - Ángeles Correas
- Laboratory of Cognitive and Computational Neuroscience; Centre of Biomedical Technology (CTB); Madrid Spain
- Department of Basic Psychology II, Faculty of Psychology; UCM; Madrid Spain
| | - Borja García-Bueno
- Department of Pharmacology, Faculty of Medicine; UCM and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); Madrid Spain
| | - Monserrat Corral
- Department of Clinical Psychology and Psychobiology; University of Santiago de Compostela; Galicia Spain
| | - Fernando Rodríguez de Fonseca
- Department of Psychobiology, Faculty of Psychology; Complutense University (UCM); Madrid Spain
- Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII); Madrid Spain
- Instituto de Investigación Biomédica (IBIMA); Málaga Spain
| | | | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience; Centre of Biomedical Technology (CTB); Madrid Spain
- Department of Basic Psychology II, Faculty of Psychology; UCM; Madrid Spain
| | - Fernando Cadaveira
- Department of Clinical Psychology and Psychobiology; University of Santiago de Compostela; Galicia Spain
| |
Collapse
|
89
|
Seitz HK, Bataller R, Cortez-Pinto H, Gao B, Gual A, Lackner C, Mathurin P, Mueller S, Szabo G, Tsukamoto H. Alcoholic liver disease. Nat Rev Dis Primers 2018; 4:16. [PMID: 30115921 DOI: 10.1038/s41572-018-0014-7] [Citation(s) in RCA: 756] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) is the most prevalent type of chronic liver disease worldwide. ALD can progress from alcoholic fatty liver (AFL) to alcoholic steatohepatitis (ASH), which is characterized by hepatic inflammation. Chronic ASH can eventually lead to fibrosis and cirrhosis and in some cases hepatocellular cancer (HCC). In addition, severe ASH (with or without cirrhosis) can lead to alcoholic hepatitis, which is an acute clinical presentation of ALD that is associated with liver failure and high mortality. Most individuals consuming >40 g of alcohol per day develop AFL; however, only a subset of individuals will develop more advanced disease. Genetic, epigenetic and non-genetic factors might explain the considerable interindividual variation in ALD phenotype. The pathogenesis of ALD includes hepatic steatosis, oxidative stress, acetaldehyde-mediated toxicity and cytokine and chemokine-induced inflammation. Diagnosis of ALD involves assessing patients for alcohol use disorder and signs of advanced liver disease. The degree of AFL and liver fibrosis can be determined by ultrasonography, transient elastography, MRI, measurement of serum biomarkers and liver biopsy histology. Alcohol abstinence achieved by psychosomatic intervention is the best treatment for all stages of ALD. In the case of advanced disease such as cirrhosis or HCC, liver transplantation may be required. Thus, new therapies are urgently needed.
Collapse
Affiliation(s)
- Helmut K Seitz
- Centre of Alcohol Research (CAR),, University of Heidelberg, Heidelberg and Department of Medicine, Salem Medical Center, Heidelberg, Germany.
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Helena Cortez-Pinto
- Departmento de Gastroenterologia, CHLN, Laboratorio de Nutricão, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Antoni Gual
- Addiction Unit, Neuroscience Institute Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Philippe Mathurin
- Service des Maladies de l'Appareil Digestif, Universite Lille 2 and INSERM U795, Lille, France
| | - Sebastian Mueller
- Centre of Alcohol Research (CAR),, University of Heidelberg, Heidelberg and Department of Medicine, Salem Medical Center, Heidelberg, Germany
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hidekazu Tsukamoto
- University of Southern California Keck School of Medicine and Greater Los Angeles VA Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
90
|
Niu GC, Liu L, Zheng L, Zhang H, Shih DQ, Zhang X. Mesenchymal stem cell transplantation improves chronic colitis-associated complications through inhibiting the activity of toll-like receptor-4 in mice. BMC Gastroenterol 2018; 18:127. [PMID: 30103680 PMCID: PMC6090774 DOI: 10.1186/s12876-018-0850-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 07/23/2018] [Indexed: 01/22/2023] Open
Abstract
Background A variety of extra-intestinal manifestations (EIMs), including hepatobiliary complications, are associated with inflammatory bowel disease (IBD). Mesenchymal stem cells (MSCs) have been shown to play a potential role in the therapy of IBD. This study was designed to investigate the effect and mechanism of MSCs on chronic colitis-associated hepatobiliary complications using mouse chronic colitis models induced by dextran sulfate sodium (DSS). Methods DSS-induced mouse chronic colitis models were established and treated with MSCs. Severity of colitis was evaluated by disease activity index (DAI), body weight (BW), colon length and histopathology. Serum lipopolysaccharide (LPS) levels were detected by limulus amebocyte lysate test (LAL-test). Histology and liver function of the mice were checked correspondingly. Serum LPS levels and bacterial translocation of mesenteric lymph nodes (MLN) were detected. Pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1β (IL-1β), interleukin-17A (IL-17A), Toll receptor 4 (TLR4), TNF receptor-associated factor 6 (TRAF6) and nuclear factor kappa B (NF-κB) were detected by immunohistochemical staining, western blot analysis and real-time PCR, respectively. Results The DSS-induced chronic colitis model was characterized by reduced BW, high DAI, worsened histologic inflammation, and high levels of LPS and E. coli. Liver histopathological lesions, impaired liver function, enhanced proteins and mRNA levels of TNF-α, IFN-γ, IL-1β, IL-17A, TLR4, TRAF6 and NF-κB were observed after DSS administration. MSCs transplantation markedly ameliorated the pathology of colon and liver by reduction of LPS levels and proteins and mRNA expressions of TNF-α, IFN-γ, IL-1β, IL-17A, TLR4, TRAF6 and NF-κB. Conclusions MSCs can improve chronic colitis-associated hepatobiliary complications, probably by inhibition of enterogenous endotoxemia and hepatic inflammation through LPS/TLR4 pathway. MSCs may represent a novel therapeutic approach for chronic colitis-associated hepatobiliary complications.
Collapse
Affiliation(s)
- Guo Chao Niu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No.80 Huanghe Avenue, Shijiazhuang, Hebei, 050035, People's Republic of China.,Hebei Key Laboratory of Gastroenterology, Shijiazhuang, People's Republic of China.,Hebei Institute of Gastroenterology, Shijiazhuang, People's Republic of China
| | - Lei Liu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No.80 Huanghe Avenue, Shijiazhuang, Hebei, 050035, People's Republic of China.,Hebei Key Laboratory of Gastroenterology, Shijiazhuang, People's Republic of China.,Hebei Institute of Gastroenterology, Shijiazhuang, People's Republic of China
| | - Libo Zheng
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No.80 Huanghe Avenue, Shijiazhuang, Hebei, 050035, People's Republic of China.,Hebei Key Laboratory of Gastroenterology, Shijiazhuang, People's Republic of China.,Hebei Institute of Gastroenterology, Shijiazhuang, People's Republic of China
| | - Hong Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No.80 Huanghe Avenue, Shijiazhuang, Hebei, 050035, People's Republic of China.,Hebei Key Laboratory of Gastroenterology, Shijiazhuang, People's Republic of China.,Hebei Institute of Gastroenterology, Shijiazhuang, People's Republic of China
| | - David Q Shih
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaolan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No.80 Huanghe Avenue, Shijiazhuang, Hebei, 050035, People's Republic of China. .,Hebei Key Laboratory of Gastroenterology, Shijiazhuang, People's Republic of China. .,Hebei Institute of Gastroenterology, Shijiazhuang, People's Republic of China.
| |
Collapse
|
91
|
Luo L, Zhou Z, Xue J, Wang Y, Zhang J, Cai X, Liu Y, Yang F. Bletilla striata polysaccharide has a protective effect on intestinal epithelial barrier disruption in TAA-induced cirrhotic rats. Exp Ther Med 2018; 16:1715-1722. [PMID: 30186392 PMCID: PMC6122099 DOI: 10.3892/etm.2018.6430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
It has been reported that intestinal epithelial barrier dysfunction serves an important role in the development of liver cirrhosis. However, at present there is no satisfactory treatment for intestinal mucosal lesions and ulcers associated with cirrhosis. The aim of the present study was to investigate the effect of Bletilla striata polysaccharide (BSP) on intestinal epithelial barrier disruption in rats with thioacetamide (TAA)-induced liver cirrhosis. Rats were randomly divided into 5 groups (n=10): BSP low dosage (15 mg/kg), BSP middle dosage (30 mg/kg), BSP high dosage (60 mg/kg), experiment and control groups. All groups except control group were administered with TAA (200 mg/kg/day) to induce liver cirrhosis. Following modeling, rats in the low, middle and high-dose BSP groups received BSP. ELISA kits were used to measure the endotoxin, alanine transaminase (ALT) and aspartate transaminase (AST) levels in the portal vein, while interleukin (IL)-6 and tumor necrosis factor (TNF)-α expression in the ileal tissue was measured. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to detect the expression of zonula occludens (ZO)-1 and occludin mRNA and protein, respectively. Intestinal epithelial tissue pathology was detected using hematoxylin-eosin (HE) staining. Immunohistochemistry was performed to assess the expression of ZO-1 and occludin in intestinal epithelial tissues. Following treatment with BSP, ALT, AST and endotoxin levels in the portal vein, as well as IL-6 and TNF-α expression in ileal tissues, were significantly decreased compared with model group (P<0.05 or 0.01). Furthermore, BSP treatment upregulated the expression of ZO-1 and occludin mRNA and protein compared with the model group (P<0.05 or 0.01) and cytoplasmic staining for these proteins was increased. The degree of intestinal epithelial tissue pathological damage was significantly reduced in the BSP groups. In conclusion, BSP is able to reduce endotoxin levels, inhibit the inflammatory cytokines IL-6 and TNF-α and elevate expression of ZO-1 and occludin at tight junctions. Together, these results suggest a novel protective agent for the restoration of intestinal epithelial barrier disruption.
Collapse
Affiliation(s)
- Lei Luo
- Department of Gastroenterology, The Second People's Hospital of Yichang, Yichang, Hubei 443000, P.R. China
| | - Zhang Zhou
- Department of Anesthesia, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Juan Xue
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese and Western Medicine, Wuhan, Hubei 430015, P.R. China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Juan Zhang
- Department of Pulmonary Diseases, Jingmen City Hospital of Traditional Chinese Medicine, Jingmen, Hubei 448000, P.R. China
| | - Xin Cai
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, Hubei 430060, P.R. China
| | - Yuqing Liu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, Hubei 430060, P.R. China
| | - Fan Yang
- Department of Hepatology, Hubei Provincial Hospital of Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
92
|
Wahlström A. Outside the liver box: The gut microbiota as pivotal modulator of liver diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1865:912-919. [PMID: 31007175 DOI: 10.1016/j.bbadis.2018.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
The gut microbiota affects host physiology and has evolved as an important contributor to health and disease. Gut and liver are closely connected and communicate via the portal vein and the biliary system so the liver is constantly exposed to gut-derived bacterial products and metabolites. The intestinal barrier is important for maintaining physical and functional separation between microbes in the gut and the interior of the host and disruption of the barrier function can lead to bacterial translocation and increased leakage of bacterial metabolites. Liver diseases have been associated with dysbiotic changes in the gut microbiota and impaired gut barrier integrity, thus a future strategy to treat liver disease may be to target the gut microbiota and thereby restore the gut barrier function. This review will summarize and discuss studies that have shown a link between the gut microbiota and liver disease with the main focus on non-alcoholic fatty liver disease and alcoholic liver disease.
Collapse
Affiliation(s)
- Annika Wahlström
- Sahlgrenska Academy, Institute of Medicine, Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, S-413 45 Gothenburg, Sweden.
| |
Collapse
|
93
|
Hartmann P, Hochrath K, Horvath A, Chen P, Seebauer CT, Llorente C, Wang L, Alnouti Y, Fouts DE, Stärkel P, Loomba R, Coulter S, Liddle C, Yu RT, Ling L, Rossi SJ, DePaoli AM, Downes M, Evans RM, Brenner DA, Schnabl B. Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology 2018; 67:2150-2166. [PMID: 29159825 PMCID: PMC5962369 DOI: 10.1002/hep.29676] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 10/28/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED Alcoholic liver disease (ALD) is associated with changes in the intestinal microbiota. Functional consequences of alcohol-associated dysbiosis are largely unknown. The aim of this study was to identify a mechanism of how changes in the intestinal microbiota contribute to ALD. Metagenomic sequencing of intestinal contents demonstrated that chronic ethanol feeding in mice is associated with an over-representation of bacterial genomic DNA encoding choloylglycine hydrolase, which deconjugates bile acids in the intestine. Bile acid analysis confirmed an increased amount of unconjugated bile acids in the small intestine after ethanol administration. Mediated by a lower farnesoid X receptor (FXR) activity in enterocytes, lower fibroblast growth factor (FGF)-15 protein secretion was associated with increased hepatic cytochrome P450 enzyme (Cyp)-7a1 protein expression and circulating bile acid levels. Depletion of the commensal microbiota with nonabsorbable antibiotics attenuated hepatic Cyp7a1 expression and reduced ALD in mice, suggesting that increased bile acid synthesis is dependent on gut bacteria. To restore intestinal FXR activity, we used a pharmacological intervention with the intestine-restricted FXR agonist fexaramine, which protected mice from ethanol-induced liver injury. Whereas bile acid metabolism was only minimally altered, fexaramine treatment stabilized the gut barrier and significantly modulated hepatic genes involved in lipid metabolism. To link the beneficial metabolic effect to FGF15, a nontumorigenic FGF19 variant-a human FGF15 ortholog-was overexpressed in mice using adeno-associated viruses. FGF19 treatment showed similarly beneficial metabolic effects and ameliorated alcoholic steatohepatitis. CONCLUSION Taken together, alcohol-associated metagenomic changes result in alterations of bile acid profiles. Targeted interventions improve bile acid-FXR-FGF15 signaling by modulation of hepatic Cyp7a1 and lipid metabolism, and reduce ethanol-induced liver disease in mice. (Hepatology 2018;67:2150-2166).
Collapse
Affiliation(s)
- Phillipp Hartmann
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Katrin Hochrath
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Angela Horvath
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Gastroenterology and Hepatology, Medical University of Graz, Graz Austria
| | - Peng Chen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Lirui Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Peter Stärkel
- St. Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Rohit Loomba
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sally Coulter
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Australia
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Lei Ling
- NGM Biopharmaceuticals, Inc., South San Francisco, CA, USA
| | | | | | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - David A. Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
94
|
Chen EB, Cason C, Gilbert JA, Ho KJ. Current State of Knowledge on Implications of Gut Microbiome for Surgical Conditions. J Gastrointest Surg 2018; 22:1112-1123. [PMID: 29623674 PMCID: PMC5966332 DOI: 10.1007/s11605-018-3755-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
Abstract
The role of the microbiome in human health has become a central tenant of current medical research, infiltrating a diverse disciplinary base whereby microbiology, computer science, ecology, gastroenterology, immunology, neurophysiology and psychology, metabolism, and cardiovascular medicine all intersect. Traditionally, commensal gut microbiota have been assumed to play a significant role only in the metabolic processing of dietary nutrients and host metabolites, the fortification of gut epithelial barrier function, and the development of mucosal immunity. However, over the last 20 years, new technologies and renewed interest have uncovered a considerably broader influence of the microbiota on health maintenance and disease development, many of which are of particular relevance for surgeons. This article provides a broad overview of the current state of knowledge and a review of the technology that helped in their formation.
Collapse
Affiliation(s)
- Edmund B Chen
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cori Cason
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jack A Gilbert
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Karen J Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA.
| |
Collapse
|
95
|
Cassard AM, Ciocan D. Microbiota, a key player in alcoholic liver disease. Clin Mol Hepatol 2018; 24:100-107. [PMID: 29268595 PMCID: PMC6038939 DOI: 10.3350/cmh.2017.0067] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is a major cause of morbidity and mortality worldwide. Only 20% of heavy alcohol consumers develop alcoholic liver cirrhosis. The intestinal microbiota (IM) has been recently identified as a key player in the severity of liver injury in ALD. Common features of ALD include a decrease of gut epithelial tight junction protein expression, mucin production, and antimicrobial peptide levels. This disruption of the gut barrier, which is a prerequisite for ALD, leads to the passage of bacterial products into the blood stream (endotoxemia). Moreover, metabolites produced by bacteria, such as short chain fatty acids, volatile organic compounds (VOS), and bile acids (BA), are involved in ALD pathology. Probiotic treatment, IM transplantation, or the consumption of dietary fiber, such as pectin, which all alter the ratio of bacterial species, have been shown to improve liver injury in animal models of ALD and to be associated with an improvement in gut barrier function. Although the connections between the microbiota and the host in ALD are well established, the underlying mechanisms are still an active area of research. Targeting the microbiome through the use of prebiotic, probiotic, and postbiotic modalities could be an attractive new approach to manage ALD.
Collapse
Affiliation(s)
- Anne-Marie Cassard
- INSERM UMR996, Inflammation, Chemokines, and Immunopathology, Clamart, France
- Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| | - Dragos Ciocan
- INSERM UMR996, Inflammation, Chemokines, and Immunopathology, Clamart, France
- Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| |
Collapse
|
96
|
Rudzki L, Szulc A. "Immune Gate" of Psychopathology-The Role of Gut Derived Immune Activation in Major Psychiatric Disorders. Front Psychiatry 2018; 9:205. [PMID: 29896124 PMCID: PMC5987016 DOI: 10.3389/fpsyt.2018.00205] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
Interaction between the gastrointestinal tract (GI) and brain functions has recently become a topic of growing interest in psychiatric research. These multidirectional interactions take place in the so-called gut-brain axis or more precisely, the microbiota-gut-brain axis. The GI tract is the largest immune organ in the human body and is also the largest surface of contact with the external environment. Its functions and permeability are highly influenced by psychological stress, which are often a precipitating factor in the first episode, reoccurrence and/or deterioration of symptoms of psychiatric disorders. In recent literature there is growing evidence that increased intestinal permeability with subsequent immune activation has a major role in the pathophysiology of various psychiatric disorders. Numerous parameters measured in this context seem to be aftermaths of those mechanisms, yet at the same time they may be contributing factors for immune mediated psychopathology. For example, immune activation related to gut-derived bacterial lipopolysaccharides (LPS) or various food antigens and exorphins were reported in major depression, schizophrenia, bipolar disorder, alcoholism and autism. In this review the authors will summarize the evidence and roles of such parameters and their assessment in major psychiatric disorders.
Collapse
Affiliation(s)
- Leszek Rudzki
- Department of Psychiatry, Medical University of BialystokBialystok, Poland
- Three Towns Resource Centre, Saltcoats, United Kingdom
| | - Agata Szulc
- Department of Psychiatry, Medical University of WarsawWarsaw, Poland
| |
Collapse
|
97
|
Higuchi T, Moriyama M, Fukushima A, Matsumura H, Matsuoka S, Kanda T, Sugitani M, Tsunemi A, Ueno T, Fukuda N. Association of mRNA expression of iron metabolism-associated genes and progression of non-alcoholic steatohepatitis in rats. Oncotarget 2018; 9:26183-26194. [PMID: 29899851 PMCID: PMC5995254 DOI: 10.18632/oncotarget.25488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/09/2018] [Indexed: 02/07/2023] Open
Abstract
Background Excess iron is associated with non-alcoholic steatohepatitis (NASH). Results mRNA expression of duodenal cytochrome b, divalent metal transporter 1, ferroportin 1, hepcidin, hephaestin and transferrin receptor 1 in liver were higher in high fat, high cholesterol-containing diet (HFCD) group than in normal diet (ND) group. mRNA levels of divalent metal transporter 1 and transferrin receptor 1, which stimulate iron absorption and excretion, were enhanced in small intestine. Epithelial mucosa of small intestine in HFCD group was characterized by plasma cell and eosinophil infiltration and increased vacuoles. Iron absorption was enhanced in this NASH model in the context of chronic inflammation of small intestinal epithelial cells, consequences of intestinal epithelial cell impairment caused by HFCD. Iron is transported to hepatocytes via portal blood, and abnormalities in iron absorption and excretion occur in small intestine from changes in iron transporter expression, which also occurs in NASH liver. Knockdown of hepcidin antimicrobial peptide led to enhanced heavy chain of ferritin expression in human hepatocytes, indicating association between hepcidin production and iron storage in hepatocytes. Conclusions Iron-related transporters in liver and lower/upper portions of small intestine play critical roles in NASH development. Methods Expression of iron metabolism-related genes in liver and small intestine was analyzed in stroke-prone spontaneously hypertensive rats (SHR-SP), which develop NASH. Five-week-old SHR-SP fed ND or HFCD were examined. mRNA and protein levels of iron metabolism-related genes in liver and small intestine from 12- and 19-week-old rats were evaluated by real-time RT-PCR and immunohistochemistry or Western blot.
Collapse
Affiliation(s)
- Teruhisa Higuchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan
| | - Akiko Fukushima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan
| | - Hiroshi Matsumura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan
| | - Shunichi Matsuoka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan
| | - Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan
| | - Masahiko Sugitani
- Department of Pathology, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan
| | - Akiko Tsunemi
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan
| | - Takahiro Ueno
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan
| | - Noboru Fukuda
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan
| |
Collapse
|
98
|
Hepatocyte toll-like receptor 4 deficiency protects against alcohol-induced fatty liver disease. Mol Metab 2018; 14:121-129. [PMID: 29884546 PMCID: PMC6034037 DOI: 10.1016/j.molmet.2018.05.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Abstract
Objective Recent studies have suggested a critical role for toll-like receptor 4 (TLR4) in the development of alcoholic liver disease. As TLR4 is widely expressed throughout the body, it is unclear which TLR4-expressing cell types contribute to alcohol-induced liver damage. Methods We selectively ablated TLR4 in hepatocytes and myeloid cells. Male mice were fed a liquid diet containing either 5% alcohol or pair-fed a control diet for 4 weeks to examine chronic alcohol intake-induced liver damage and inflammation. In addition, mice were administered a single oral gavage of alcohol to investigate acute alcohol drinking-associated liver injury. Results We found that selective hepatocyte TLR4 deletion protected mice from chronic alcohol-induced liver injury and fatty liver. This result was in part due to decreased expression of endogenous lipogenic genes and enhanced expression of genes involved in fatty acid oxidation. In addition, mice lacking hepatocyte TLR4 exhibited reduced mRNA expression of inflammatory genes in white adipose tissue. Furthermore, in an acute alcohol binge model, hepatocyte TLR4 deficient mice had significantly decreased plasma alanine transaminase (ALT) levels and attenuated hepatic triglyceride content compared to their alcohol-gavaged control mice. In contrast, deleting TLR4 in myeloid cells did not affect the development of chronic-alcohol induced fatty liver, despite the finding that mice lacking myeloid cell TLR4 had significantly reduced circulating ALT concentrations. Conclusions These findings suggest that hepatocyte TLR4 plays an important role in regulating alcohol-induced liver damage and fatty liver disease. Hepatocyte TLR4 ablated mice were protected from both chronic and acute alcohol-induced hepatic triglyceride accumulation. Hepatocyte TLR4 ablated mice showed attenuated inflammation in the fat pad and the circulation after chronic alcohol intake. Loss of TLR4 in myeloid cells did not affect alcohol-induced development of fatty liver.
Collapse
|
99
|
Huang R, Li T, Ni J, Bai X, Gao Y, Li Y, Zhang P, Gong Y. Different Sex-Based Responses of Gut Microbiota During the Development of Hepatocellular Carcinoma in Liver-Specific Tsc1-Knockout Mice. Front Microbiol 2018; 9:1008. [PMID: 29867896 PMCID: PMC5964185 DOI: 10.3389/fmicb.2018.01008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Gut microbial dysbiosis is correlated with the development of hepatocellular carcinoma (HCC). Therefore, analyzing the changing patterns in gut microbiota during HCC development, especially before HCC occurrence, is essential for the diagnosis and prevention of HCC based on gut microbial composition. However, these changing patterns in HCC are poorly understood, especially considering the sex differences in HCC incidence and mortality. Here, with an aim to determine the relationship between gut microbiota and HCC development in both sexes, and to screen potential microbial biomarkers for HCC diagnosis, we studied the changing patterns in the gut microbiota from mice of both sexes with liver-specific knockout of Tsc1 (LTsc1KO) that spontaneously developed HCC by 9–10 months of age and compared them to the patterns observed in their wide-type Tsc1fl/fl cohorts using high-throughput sequencing. Using the LTsc1KO model, we were able to successfully exclude the continuing influence of diet on the gut microbiota. Based on gut microbial composition, the female LTsc1KO mice exhibited gut microbial disorder earlier than male LTsc1KO mice during the development of HCC. Our findings also indicated that the decrease in the relative abundance of anaerobic bacteria and the increase in the relative abundance of facultative anaerobic bacteria can be used as risk indexes of female HCC, but would be invalid for male HCC. Most of the changes in the gut bacteria were different between female and male LTsc1KO mice. In particular, the increased abundances of Allobaculum, Erysipelotrichaceae, Neisseriaceae, Sutterella, Burkholderiales, and Prevotella species have potential for use as risk indicators of female HCC, and the increased abundances of Paraprevotella, Paraprevotellaceae, and Prevotella can probably be applied as risk indicators of male HCC. These relationships between the gut microbiota and HCC discovered in the present study may serve as a platform for the identification of potential targets for the diagnosis and prevention of HCC in the future.
Collapse
Affiliation(s)
- Rong Huang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Ting Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jiajia Ni
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Yang Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Peng Zhang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Yan Gong
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| |
Collapse
|
100
|
Grander C, Adolph TE, Wieser V, Lowe P, Wrzosek L, Gyongyosi B, Ward DV, Grabherr F, Gerner RR, Pfister A, Enrich B, Ciocan D, Macheiner S, Mayr L, Drach M, Moser P, Moschen AR, Perlemuter G, Szabo G, Cassard AM, Tilg H. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 2018; 67:891-901. [PMID: 28550049 DOI: 10.1136/gutjnl-2016-313432] [Citation(s) in RCA: 432] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/11/2017] [Accepted: 04/15/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Alcoholic liver disease (ALD) is a global health problem with limited therapeutic options. Intestinal barrier integrity and the microbiota modulate susceptibility to ALD. Akkermansia muciniphila, a Gram-negative intestinal commensal, promotes barrier function partly by enhancing mucus production. The aim of this study was to investigate microbial alterations in ALD and to define the impact of A. muciniphila administration on the course of ALD. DESIGN The intestinal microbiota was analysed in an unbiased approach by 16S ribosomal DNA (rDNA) sequencing in a Lieber-DeCarli ALD mouse model, and faecal A. muciniphila abundance was determined in a cohort of patients with alcoholic steatohepatitis (ASH). The impact of A. muciniphila on the development of experimental acute and chronic ALD was determined in a preventive and therapeutic setting, and intestinal barrier integrity was analysed. RESULTS Patients with ASH exhibited a decreased abundance of faecal A. muciniphila when compared with healthy controls that indirectly correlated with hepatic disease severity. Ethanol feeding of wild-type mice resulted in a prominent decline in A. muciniphila abundance. Ethanol-induced intestinal A. muciniphila depletion could be restored by oral A. muciniphila supplementation. Furthermore, A. muciniphila administration when performed in a preventive setting decreased hepatic injury, steatosis and neutrophil infiltration. A. muciniphila also protected against ethanol-induced gut leakiness, enhanced mucus thickness and tight-junction expression. In already established ALD, A. muciniphila used therapeutically ameliorated hepatic injury and neutrophil infiltration. CONCLUSION Ethanol exposure diminishes intestinal A. muciniphila abundance in both mice and humans and can be recovered in experimental ALD by oral supplementation. A. muciniphila promotes intestinal barrier integrity and ameliorates experimental ALD. Our data suggest that patients with ALD might benefit from A. muciniphila supplementation.
Collapse
Affiliation(s)
- Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Verena Wieser
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Patrick Lowe
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Laura Wrzosek
- Department of Inflammation, Chemokines and Immunopathology, INSERM UMR996, Clamart, France
| | - Benedek Gyongyosi
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Doyle V Ward
- Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Romana R Gerner
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandra Pfister
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Barbara Enrich
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Dragos Ciocan
- Department of Inflammation, Chemokines and Immunopathology, INSERM UMR996, Clamart, France.,Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France.,AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - Sophie Macheiner
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Drach
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - Patrizia Moser
- Institute of Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Gabriel Perlemuter
- Department of Inflammation, Chemokines and Immunopathology, INSERM UMR996, Clamart, France.,Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France.,AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anne Marie Cassard
- Department of Inflammation, Chemokines and Immunopathology, INSERM UMR996, Clamart, France.,Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|