51
|
Aurelian L. Herpes simplex virus type 2 vaccines: new ground for optimism? CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2004; 11:437-45. [PMID: 15138167 PMCID: PMC404574 DOI: 10.1128/cdli.11.3.437-445.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of effective prophylactic and therapeutic vaccines against genital herpes has proven problematic. Difficulties are associated with the complexity of the virus life cycle (latency) and our relatively poor understanding of the mechanism of immune control of primary and recurrent disease. The types of effector cells and the mechanisms responsible for their activation and regulation are particularly important. Studies from my and other laboratories have shown that recurrent disease is prevented by virus-specific T helper 1 (Th1) cytokines (viz., gamma interferon) and activated innate immunity. Th2 cytokines (viz., interleukin-10 [IL-10]) and regulatory (suppressor) T cells downregulate this immune profile, thereby allowing unimpeded replication of reactivated virus and recurrent disease. Accordingly, an effective therapeutic vaccine must induce Th1 immunity and be defective in Th2 cytokine production, at least IL-10. These concepts are consistent with the findings of the most recent clinical trials, which indicate that (i) a herpes simplex virus type 2 (HSV-2) glycoprotein D (gD-2) vaccine formulated with a Th1-inducing adjuvant has prophylactic activity in HSV-2- and HSV-1-seronegative females, an activity attributed to the adjuvant function, and (ii) a growth-defective HSV-2 mutant (ICP10DeltaPK), which is deleted in the Th2-polarizing gene ICP10PK, induces Th1 immunity and has therapeutic activity in both genders. The ICP10DeltaPK vaccine prevents recurrent disease in 44% of treated subjects and reduces the frequency and severity of recurrences in the subjects that are not fully protected. Additional studies to evaluate these vaccines are warranted.
Collapse
Affiliation(s)
- L Aurelian
- Virology and Immunology Laboratories, Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| |
Collapse
|
52
|
Rajcáni J. Molecular mechanisms of virus spread and virion components as tools of virulence. A review. Acta Microbiol Immunol Hung 2004; 50:407-31. [PMID: 14750441 DOI: 10.1556/amicr.50.2003.4.8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite of differences in replication strategy among virus families, some basic principles have remained similar. Analogous mechanisms govern virus entry into cells and the use of enzymes which direct the replication of the virus genome. The function of many cell surface receptors (such as glycosoaminoglycans, glycoproteins, proteins) which interact with viral capsid proteins or envelope glycoproteins has recently been elucidated. The list of cellular receptors (Table I) is still far from being final. The capsid components, similarly as the envelope glycoproteins, may form specific pocket like sites, which interact with the cell surface receptors. Neutralizing antibodies usually react with antigenic domains adjacent to the receptor binding site(s) and hamper the close contact inevitable for virion attachment. In the case of more complex viruses, such as herpes simplex virus, different viral glycoproteins interact with several cellular receptors. At progressed phase of adsorption the virions are engulfed into endocytic vesicles and the virion fusion domain(s) become(s) activated. The outer capsid components of reoviruses which participate in adsorption and fusion may get activated already in the lumen of digestive tract, i.e. before their engulfment by resorptive epithelium cells. Activation of the hydrophobic fusion domain(s) is a further important step allowing to pass through the lipid bilayer when penetrating the cell membrane in order to reach the cytosol. Activation of the virion fusion domain is accomplished by a conformation change, which occurs at acid pH (influenza virus hemagglutinin, sigma 1 protein of the reovirus particle) and/or after protease treatment. The herpes simplex virus fusion factors (gD and gH) undergo conformation changes by a pH-independent mechanism triggered due to interaction with the cell surface receptor(s) and mediated by mutual interactions with the viral envelope glycoproteins. The virion capsid or envelope components participating in the entry and membrane fusion are not the only tools of virulence. The correct function of virus coded proteins, which participate in replication of the viral genome, and/or in the supply of necessary nucleotides, may be very essential. In the case of enteroviruses, which RNA interacts with ribosomes directly, the correct configuration of the non-coding viral RNA sequence is crucial for initiation of translation occurring in the absence of the classical "cap" structure.
Collapse
Affiliation(s)
- J Rajcáni
- Institute of Virology, Slovak Academy of Sciences, Bratislava and Institute of Microbiology, Jessenius Medical Faculty of Comenius University, Martin, Slovak Republic
| |
Collapse
|
53
|
Chen SH, Pearson A, Coen DM, Chen SH. Failure of thymidine kinase-negative herpes simplex virus to reactivate from latency following efficient establishment. J Virol 2004; 78:520-3. [PMID: 14671133 PMCID: PMC303395 DOI: 10.1128/jvi.78.1.520-523.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thymidine kinase-negative mutants of herpes simplex virus did not reactivate from latency in mouse trigeminal ganglia, even when their latent viral loads were comparable to those that permitted reactivation by wild-type virus. Thus, reduced establishment of latency does not suffice to account for the failure to reactivate.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China
| | | | | | | |
Collapse
|
54
|
Patrone M, Percivalle E, Secchi M, Fiorina L, Pedrali-Noy G, Zoppé M, Baldanti F, Hahn G, Koszinowski UH, Milanesi G, Gallina A. The human cytomegalovirus UL45 gene product is a late, virion-associated protein and influences virus growth at low multiplicities of infection. J Gen Virol 2003; 84:3359-3370. [PMID: 14645917 DOI: 10.1099/vir.0.19452-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes a protein related to the large (R1) subunit of ribonucleotide reductase (RR), but does not encode the corresponding small (R2) subunit. The R1 homologue, UL45, lacks many catalytic residues, and its impact on deoxyribonucleotide (dNTP) production remains unknown. Here, UL45 is shown to accumulate at late stages of infection and to be a virion tegument protein. To study UL45 function in its genome context, UL45 was disrupted by transposon insertion. The UL45-knockout (UL45-KO) mutant exhibited a growth defect in fibroblasts at a low m.o.i. and also a cell-to-cell spread defect. This did not result from a reduced dNTP supply because dNTP pools were unchanged in resting cells infected with the mutant virus. Irrespective of UL45 expression, all cellular RR subunits - S-phase RR subunits, and the p53-dependent p53R2 - were induced by infection. p53R2 was targeted to the infected cell nucleus, suggesting that HCMV diverts a mechanism normally activated by DNA damage response. Cells infected with the UL45-KO mutant were moderately sensitized to Fas-induced apoptosis relative to those infected with the parental virus. Together with the report on the UL45-KO endotheliotropic HCMV mutant (Hahn et al., J Virol 76, 9551-9555, 2002), these data suggest that UL45 does not share the prominent antiapototic role attributed to the mouse cytomegalovirus homologue M45 (Brune et al., Science 291, 303-305, 2001).
Collapse
Affiliation(s)
- Marco Patrone
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Elena Percivalle
- Servizio di Virologia, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Massimiliano Secchi
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Loretta Fiorina
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Guido Pedrali-Noy
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Monica Zoppé
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Fausto Baldanti
- Servizio di Virologia, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gabriele Hahn
- Max von Pettenkofer-Institut, Lehrstuhl für Virologie, LMU-München, München, Germany
| | - Ulrich H Koszinowski
- Max von Pettenkofer-Institut, Lehrstuhl für Virologie, LMU-München, München, Germany
| | - Gabriele Milanesi
- Department of Medicine and Surgery, San Paolo Hospital, University of Milano, via A. di Rudinı ` 8, I-20142 Milano, Italy
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Andrea Gallina
- Department of Medicine and Surgery, San Paolo Hospital, University of Milano, via A. di Rudinı ` 8, I-20142 Milano, Italy
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| |
Collapse
|
55
|
Villarreal EC. Current and potential therapies for the treatment of herpes-virus infections. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2003; 60:263-307. [PMID: 12790345 DOI: 10.1007/978-3-0348-8012-1_8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human herpesviruses are found worldwide and are among the most frequent causes of viral infections in immunocompetent as well as in immunocompromised patients. During the past decade and a half a better understanding of the replication and disease-causing state of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), varicella zoster virus (VZV), and human cytomegalovirus (HCMV) has been achieved due in part to the development of potent antiviral compounds that target these viruses. While some of these antiviral therapies are considered safe and efficacious (acyclovir, penciclovir), some have toxicities associated with them (ganciclovir and foscarnet). In addition, the increased and prolonged use of these compounds in the clinical setting, especially for the treatment of immunocompromised patients, has led to the emergence of viral resistance against most of these drugs. While resistance is not a serious issue for immunocompetent individuals, it is a real concern for immunocompromised patients, especially those with AIDS and the ones that have undergone organ transplantation. All the currently approved treatments target the viral DNA polymerase. It is clear that new drugs that are more efficacious than the present ones, are not toxic, and target a different viral function would be of great use especially for immunocompromised patients. Here, an overview is provided of the diseases caused by the herpesviruses as well as the replication strategy of the better studied members of this family for which treatments are available. We also discuss the various drugs that have been approved for the treatment of some herpesviruses in terms of structure, mechanism of action, and development of resistance. Finally, we present a discussion of viral targets other than the DNA polymerase, for which new antiviral compounds are being considered.
Collapse
Affiliation(s)
- Elcira C Villarreal
- Eli Lilly and Company, Lilly Centre for Women's Health, Indianapolis, IN 46285, USA.
| |
Collapse
|
56
|
Abstract
In immunocompetent patients, HSV is controlled rapidly by the human host's immune system, and recurrent lesions are small and short lived. When treated with antiviral agents, these patients rarely develop resistance to these drugs. In contrast immunocompromised patients might not be able to control HSV infection. Thus, frequent and severe reactivations are often seen and might lead to fatal herpetic encephalitis or disseminated HSV infection. Treatment in these patients is limited because immunocompromised hosts often develop severe herpes disease refractory to antiviral drug therapy. It is therefore imperative that physicians develop regimens to deal with both receptive and refractory HSV disease. The following treatment protocol (modified from Balfour and colleagues) might serve as a guide until further investigation of new drugs is performed. In all patients standard oral ACV therapy should be initiated at a dose of 200 mg orally, five times a day for the first 3 to 5 days. Prior to treatment, cultures the lesions should be obtained to verify HSV etiology. If the response is poor, the dose of oral ACV should be increased to 800 mg five times a day. If no response seen after 5 to 7 days, it is unlikely that the lesion will respond to intravenous ACV (or chemically and structurally related drugs such as VCV or famciclovir), so an alternative regimen must be assigned. First, repeat cultures for vital, fungal, and bacterial pathogens must be performed. In addition, ACV susceptibility studies should be ordered, if available. If the mucocutaneous lesion is accessible for topical treatment, TFT (as ophthalmic solution) should be applied to the area three to four times a day until the lesion is completely healed. If the lesion is inaccessible or if the response to TFT is poor, therapy with intravenous foscarnet should be given for 10 days or until complete resolution of the lesions. The dosage of foscarnet should be 40 milligrams per kilogram three times per day or 60 milligrams per kilogram twice daily. If foscarnet fails to achieve clinical clearing, consideration should be given to use of intravenous cidofovir (or application of compounded 1% to 3% topical cidofovir ointment). Vidarabine is reserved for situations in which all of these therapies fail. If lesions reoccur in the same location following clearing, the patient should started on high-dose oral ACV (800 mg, five times daily) or intravenous foscarnet (40 mg/kg tid or 60 mg/kg bid) as soon as possible. When lesions occur in a different location, the patient should be treated initially with standard doses of oral ACV (200 mg, five times daily) and the above protocol should be followed should there be clinical failure. In the future, new treatment options for patients with documented HSV resistance will be important in reducing the clinical impact of HSV.
Collapse
Affiliation(s)
- Suneel Chilukuri
- Department of Dermatology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
57
|
Langelier Y, Bergeron S, Chabaud S, Lippens J, Guilbault C, Sasseville AMJ, Denis S, Mosser DD, Massie B. The R1 subunit of herpes simplex virus ribonucleotide reductase protects cells against apoptosis at, or upstream of, caspase-8 activation. J Gen Virol 2002; 83:2779-2789. [PMID: 12388814 DOI: 10.1099/0022-1317-83-11-2779] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The R1 subunit of herpes simplex virus (HSV) ribonucleotide reductase, which in addition to its C-terminal reductase domain possesses a unique N-terminal domain of about 400 amino acids, is thought to have an additional, as yet unknown, function. Here, we report that the full-length HSV-2 R1 has an anti-apoptotic function able to protect cells against death triggered by expression of R1(Delta2-357), an HSV-2 R1 subunit with its first 357 amino acids deleted. We further substantiate the R1 anti-apoptotic activity by showing that its accumulation at low level could completely block apoptosis induced by TNF-receptor family triggering. Activation of caspase-8 induced either by TNF or by Fas ligand expression was prevented by the R1 protein. As HSV R1 did not inhibit cell death mediated by several agents acting via the mitochondrial pathway (Bax overexpression, etoposide, staurosporine and menadione), it is proposed that it functions to interrupt specifically death receptor-mediated signalling at, or upstream of, caspase-8 activation. The N-terminal domain on its own did not exhibit anti-apoptotic activity, suggesting that both domains of R1 or part(s) of them are necessary for this new function. Evidence for the importance of HSV R1 in protecting HSV-infected cells against cytokine-induced apoptosis was obtained with the HSV-1 R1 deletion mutants ICP6Delta and hrR3. These results show that, in addition to its ribonucleotide reductase function, which is essential for virus reactivation, HSV R1 could contribute to virus propagation by preventing apoptosis induced by the immune system.
Collapse
Affiliation(s)
- Yves Langelier
- Département de microbiologie et immunologie de l'Université de Montréal, Montréal, Québec, Canada2
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - Stéphane Bergeron
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - Stéphane Chabaud
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - Julie Lippens
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - Claire Guilbault
- Institut de recherche en biotechnologie, 6100 ave Royalmount, Montréal, CanadaH4P 2R23
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - A Marie-Josée Sasseville
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - Stéphan Denis
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - Dick D Mosser
- Institut de recherche en biotechnologie, 6100 ave Royalmount, Montréal, CanadaH4P 2R23
| | - Bernard Massie
- INRS-IAF Université du Québec, Laval, Québec, CanadaH7N 4Z34
- Institut de recherche en biotechnologie, 6100 ave Royalmount, Montréal, CanadaH4P 2R23
- Département de microbiologie et immunologie de l'Université de Montréal, Montréal, Québec, Canada2
| |
Collapse
|
58
|
Pawlik TM, Nakamura H, Mullen JT, Kasuya H, Yoon SS, Chandrasekhar S, Chiocca EA, Tanabe KK. Prodrug bioactivation and oncolysis of diffuse liver metastases by a herpes simplex virus 1 mutant that expresses the CYP2B1 transgene. Cancer 2002; 95:1171-81. [PMID: 12209705 DOI: 10.1002/cncr.10776] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Herpes simplex virus 1 (HSV-1) infection of cancer cells results in viral replication with cell destruction and liberation of progeny virion that infect adjacent tumor cells. rRp450 is a novel replication-conditional HSV-1 mutant that expresses both the endogenous herpes viral thymidine kinase gene and the rat p450 CYP2B1 transgene; p450 bioactivates such cancer prodrugs as cyclophosphamide. METHODS Viral cytotoxicity and replication assays were performed in colon carcinoma cells as well as primary human hepatocytes. For in vivo studies, diffuse liver metastases were generated by inoculating MC26 cells into the portal system of BALB/c mice. Mice were treated with control media, rRp450, or rRp450 plus cyclophosphamide. RESULTS Cytopathic effects induced by rRp450 replication in colon carcinoma cells were equivalent to those induced by wild type HSV-1 in vitro. Assays developed to separate cytotoxicity mediated by viral replication from cytotoxicity mediated by chemotherapy confirmed that HSV-1 thymidine kinase bioactivates ganciclovir and CYP2B1 bioactivates cyclophosphamide in rRp450-infected cells. rRp450 mediated cytotoxicity in the presence of cyclophosphamide was increased by 21% to 30% above that achieved by viral replication alone. Cyclophosphamide bioactivation produced bystander killing of colon carcinoma cells but not hepatocytes. In contrast to these effects of cyclophosphamide, rRp450 mediated cytotoxicity was reduced in the presence of ganciclovir. These findings are explained by further experiments showing that bioactivation of cyclophosphamide only minimally affected HSV-1 replication in colon carcinoma cells, whereas bioactivation of ganciclovir markedly attenuated HSV-1 replication. In vivo studies revealed a substantial decrease in hepatic tumor burden in all rRp450-treated animals compared to controls. The addition of cyclophosphamide augmented rRp450's in vivo anti-neoplastic effect. CONCLUSIONS The rRp450 mutant HSV-1 is highly oncolytic against colon carcinoma cells both in vitro and in vivo. rRp450 displays preferential replication in colon carcinoma cells compared to normal hepatocytes. Activation of cyclophosphamide by the p450 transgene augmented the anti-neoplastic effects of rRp450 without simultaneously decreasing viral replication. Oncolysis induced by HSV-1 replication combined with cyclophosphamide prodrug activation warrants further investigation as a potential therapy for colon carcinoma liver metastases.
Collapse
Affiliation(s)
- Timothy M Pawlik
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston 02114-2696, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Summers BC, Leib DA. Herpes simplex virus type 1 origins of DNA replication play no role in the regulation of flanking promoters. J Virol 2002; 76:7020-9. [PMID: 12072502 PMCID: PMC136320 DOI: 10.1128/jvi.76.14.7020-7029.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) exhibits altered gene regulation in neuronal compared to nonneuronal tissues. It has been hypothesized that initiation of DNA synthesis at the viral origins of replication (oriS and oriL) is a critical step in the upregulation of transcriptional activity of flanking divergent promoters, thereby increasing productive gene expression in neurons. Notably, oriS is flanked by the immediate-early (IE) ICP4 and ICP22/47 promoters, and oriL is flanked by the early (E) UL29 and UL30 promoters. To test this hypothesis further, a series of constructs were generated in which these promoters were placed upstream of luciferase genes. In addition, DNA replication origins were deleted in the context of these promoter constructs. All cassettes were recombined into the viral genome of HSV type 1 strain KOS at a site distal to its native origins. Recombinant reporter expression was monitored in vitro and in vivo to determine the role of viral origins of DNA replication in the regulation of their flanking promoters. Reporter gene expression was unaffected by the presence or absence of oriS or oriL, with the exception of a twofold increase in ICP22/47 promoter activity in the absence of oriS. DNA synthesis inhibitors resulted in a decrease of both IE- and E-promoter activity in primary cells but not continuous cell cultures. Reporter activity was readily assayed in vivo during acute infection and reactivation from latency and was also sensitive to DNA synthesis inhibitors. In all assays, reporter gene expression was unaffected by the presence or absence of either oriS or oriL. These data support the requirement of DNA synthesis for full viral gene expression in vivo but suggest that the origin elements play no role in the regulation of their flanking promoters.
Collapse
Affiliation(s)
- Bretton C Summers
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
60
|
Abstract
Herpes Simplex Viruses type 1 (HSV-1) and 2 (HSV-2) cause central nervous system (CNS) disease ranging from benign aseptic meningitis to fatal encephalitis. In adults, CNS infection with HSV-2 is most often associated with aseptic meningitis while HSV-1 frequently produces severe, focal encephalitis associated with high mortality and morbidity. Recent studies suggested that the distinct neurological outcome of CNS infection with the two viruses may be due to their distinct modulation of apoptotic cell death: HSV-1 triggers neuronal apoptosis, while HSV-2 is neuroprotective. Apoptosis also occurs in the etiology of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Down's syndrome, and determines the loss of specific neuronal populations and the decline in cognitive functions. Notwithstanding, the therapy of these disorders may rely on the use of replication-defective HSV-1 vectors to deliver anti-apoptotic transgenes to the CNS. However, the recent discovery of a neuroprotective activity innate to the HSV-2 genome (the ICP10 PK gene) suggests that: i) ICP10 PK may constitute a novel therapeutic approach by targeting both the apoptotic cell death and the cognitive decline, and ii) HSV-2 may be more suitable than HSV-1 as a vector for targeting neuronal disease.
Collapse
|
61
|
Villarreal EC. Current and potential therapies for the treatment of herpesvirus infections. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2001; Spec No:185-228. [PMID: 11548208 DOI: 10.1007/978-3-0348-7784-8_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Human herpesviruses are found worldwide and are among the most frequent causes of viral infections in immunocompetent as well as in immunocompromised patients. During the past decade and a half a better understanding of the replication and disease causing state of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), varicella-zoster virus (VZV), and human cytomegalovirus (HCMV) has been achieved due in part to the development of potent antiviral compounds that target these viruses. While some of these antiviral therapies are considered safe and efficacious (acyclovir, penciclovir), some have toxicities associated with them (ganciclovir and foscarnet). In addition, the increased and prolonged use of these compounds in the clinical setting, especially for the treatment of immunocompromised patients, has led to the emergence of viral resistance against most of these drugs. While resistance is not a serious issue for immunocompetent individuals, it is a real concern for immunocompromised patients, especially those with AIDS and the ones that have undergone organ transplantation. All the currently approved treatments target the viral DNA polymerase. It is clear that new drugs that are more efficacious than the present ones, are not toxic, and target a different viral function would be of great use especially for immunocompromised patients. Here, we provide an overview of the diseases caused by the herpesviruses as well as the replication strategy of the better studiedmembers of this family for which treatments are available. We also discuss the various drugs that have been approved for the treatment of some herpesviruses in terms of structure, mechanism of action, and development of resistance. Finally, we present a discussion of viral targets other than the DNA polymerase, for which new antiviral compounds are being considered.
Collapse
Affiliation(s)
- E C Villarreal
- Eli Lilly and Company, Infectious Diseases Research, Lilly Research Laboratories, Indianapolis, IN 46285, USA.
| |
Collapse
|
62
|
Thompson RL, Sawtell NM. Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J Virol 2001; 75:6660-75. [PMID: 11413333 PMCID: PMC114389 DOI: 10.1128/jvi.75.14.6660-6675.2001] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A complex interaction has evolved between the host's peripheral nervous system (PNS) and herpes simplex virus type 1 (HSV-1). Sensory neurons are permissive for viral replication, yet the virus can also enter a latent state in these cells. The interplay of viral and neuronal signals that regulate the switch between the viral lytic and latent states is not understood. The latency-associated transcript (LAT) regulates the establishment of the latent state and is required for >65% of the latent infections established by HSV-1 (R. L. Thompson and N. M. Sawtell, J. Virol. 71:5432-5440, 1997). To further investigate how LAT functions, a 1.9-kb deletion that includes the entire LAT promoter and 827 bp of the 5' end of the primary LAT mRNA was introduced into strain 17syn+. The wild-type parent, three independently derived deletion mutants, and two independently derived genomically rescued variants of the mutants were analyzed in a mouse ocular model. The number of latent sites established in trigeminal ganglion (TG) neurons was determined using a single-cell quantitative PCR assay for the viral genome on purified TG neurons. It was found that the LAT null mutants established ~75% fewer latent infections than the number established by the parental strain or rescued variant. The reduced establishment phenotype of LAT null mutants was due at least in part to a dramatic increase in the loss of TG neurons in animals infected with the LAT mutants. Over half of the neurons in the TG were destroyed following infection with the LAT mutants, and this was significantly more than were lost following infection with wild type. This is the first demonstration that the HSV LAT locus prevents the destruction of sensory neurons. The death of these neurons did not appear to be the result of increased apoptosis as measured by a terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay. Animals latently infected with the LAT null mutants reactivated less frequently in vivo and this was consistent with the reduction in the number of neurons in which latency was established. Thus, one function of the LAT gene is to protect sensory neurons and enhance the establishment of latency in the PNS.
Collapse
Affiliation(s)
- R L Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, Ohio 45267-0524, USA.
| | | |
Collapse
|
63
|
Romeo AM, Christen L, Niles EG, Kosman DJ. Intracellular chelation of iron by bipyridyl inhibits DNA virus replication: ribonucleotide reductase maturation as a probe of intracellular iron pools. J Biol Chem 2001; 276:24301-8. [PMID: 11301321 DOI: 10.1074/jbc.m010806200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The efficient replication of large DNA viruses requires dNTPs supplied by a viral ribonucleotide reductase. Viral ribonucleotide reductase is an early gene product of both vaccinia and herpes simplex virus. For productive infection, the apoprotein must scavenge iron from the endogenous, labile iron pool(s). The membrane-permeant, intracellular Fe(2+) chelator, 2,2'-bipyridine (bipyridyl, BIP), is known to sequester iron from this pool. We show here that BIP strongly inhibits the replication of both vaccinia and herpes simplex virus, type 1. In a standard plaque assay, 50 microm BIP caused a 50% reduction in plaque-forming units with either virus. Strong inhibition was observed only when BIP was added within 3 h post-infection. This time dependence was observed also in regards to inhibition of viral late protein and DNA synthesis by BIP. BIP did not inhibit the activity of vaccinia ribonucleotide reductase (RR), its synthesis, nor its stability indicating that BIP blocked the activation of the apoprotein. In parallel with its inhibition of vaccinia RR activation, BIP treatment increased the RNA binding activity of the endogenous iron-response protein, IRP1, by 1.9-fold. The data indicate that the diiron prosthetic group in vaccinia RR is assembled from iron taken from the BIP-accessible, labile iron pool that is sampled also by ferritin and the iron-regulated protein found in the cytosol of mammalian cells.
Collapse
Affiliation(s)
- A M Romeo
- Departments of Biochemistry and Microbiology, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
64
|
Hong-Yan Z, Murata T, Goshima F, Takakuwa H, Koshizuka T, Yamauchi Y, Nishiyama Y. Identification and characterization of the UL24 gene product of herpes simplex virus type 2. Virus Genes 2001; 22:321-7. [PMID: 11450950 DOI: 10.1023/a:1011118424474] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The UL24 gene of herpes simplex virus type 2 (HSV-2) is predicted to encode a 281 amino acid protein with a molecular mass of 30.5 kDa. In this study, the HSV-2 UL24 gene product has been identified by using a rabbit polyclonal antiserum produced against a recombinant protein containing the full-length UL24 gene product of HSV-2 fused to glutathione-S-transferase. The antiserum reacted specifically with a 32 kDa protein in HSV-2 186-infected Vero cells and with 31 and 32 kDa proteins in UL24-expressing Cos-7 cells. Accumulation of UL24 protein to detectable levels required viral DNA synthesis, indicating that the protein was regulated as a late gene. UL24 protein was found to be associated with purified HSV-2 virions and C capsids. Indirect immunofluorescence analysis demonstrated that the UL24-specific fluorescence was detected in perinuclear regions of the cytoplasm and/or in the nucleus as small discrete granules from 9h post infection (hpi). Furthermore, the UL24 protein expressed singly was detected predominantly in the nucleus and slightly in the cytoplasm at 24 h after transfection, with branch-like cytoplasmic protruding structures. Strong nucleolus staining was visible in partial cells.
Collapse
Affiliation(s)
- Z Hong-Yan
- Laboratory of Virology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
65
|
Wachsman M, Kulka M, Smith CC, Aurelian L. A growth and latency compromised herpes simplex virus type 2 mutant (ICP10DeltaPK) has prophylactic and therapeutic protective activity in guinea pigs. Vaccine 2001; 19:1879-90. [PMID: 11228357 DOI: 10.1016/s0264-410x(00)00446-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A growth compromised herpes simplex virus type 2 (HSV-2) mutant which is deleted in the PK domain of the large subunit of ribonucleotide reductase (ICP10DeltaPK) protects from fatal HSV-2 challenge in the mouse model (Aurelian L, Kokuba H, Smith CC. Vaccine potential of a Herpes Simplex Virus type 2 mutant deleted in the PK domain of the large subunit of ribonucleotide reductase (ICP10). Vaccine 1999;17:1951-1963). Here we report the results of our studies with ICP10DeltaPK in the guinea pig model of recurrent HSV-2 disease. ICP10DeltaPK was also compromised for growth and disease causation in this model. It was not isolated from latently infected ganglia by explant co-cultivation. The proportions of latently infected ganglia were significantly lower for ICP10DeltaPK than HSV-2 [3/25 (12%) and 7/10 (70%), respectively]. Similar results were obtained for the levels of viral DNA (8 x 10(3) and 2 x 10(5) molecules/ganglion for ICP10DeltaPK and HSV-2, respectively]. ICP10DeltaPK immunization caused a significant (P< or = 0.001) decrease in the proportion of animals with primary [1/14 (6%) and 16/16 (100%) for ICP10DeltaPK and PBS, respectively) and recurrent [1/14 (6%) and 11/14 (79%) for ICP10DeltaPK and PBS, respectively) HSV-2 skin lesions. It also protected from genital HSV-2 disease [1/10 and 10/10 for ICP10DeltaPK and PBS, respectively] and decreased the severity of the lesions in both models. Quantitative PCR (Q-PCR) with primers that distinguish between HSV-2 and ICP10DeltaPK indicated that immunization reduced the proportion of ganglia positive for HSV-2 DNA [8/25 (32%) and 7/10 (70%) for ICP10DeltaPK and PBS, respectively) and its levels [3 x 10(3) and 2 x 10(5) molecules/ganglion for ICP10DeltaPK and PBS, respectively]. The proportion of HSV-2 infected animals with recurrent disease was also significantly (P < or = 0.001) decreased by immunization with ICP10DeltaPK [1/15 (7%) and 11/14 (79%) with recurrent disease for ICP10DeltaPK and PBS, respectively], suggesting that ICP10DeltaPK has prophylactic and therapeutic activity in the guinea pig.
Collapse
|
66
|
Villarreal EC. Current and potential therapies for the treatment of herpesvirus infections. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2001; 56:77-120. [PMID: 11417115 DOI: 10.1007/978-3-0348-8319-1_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Human herpesviruses are found worldwide and are among the most frequent causes of viral infections in immunocompetent as well as in immunocompromised patients. During the past decade and a half a better understanding of the replication and disease causing state of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), varicella-zoster virus (VZV), and human cytomegalovirus (HCMV) has been achieved due in part to the development of potent antiviral compounds that target these viruses. While some of these antiviral therapies are considered safe and efficacious (acyclovir, penciclovir), some have toxicities associated with them (ganciclovir and foscarnet). In addition, the increased and prolonged use of these compounds in the clinical setting, especially for the treatment of immunocompromised patients, has led to the emergence of viral resistance against most of these drugs. While resistance is not a serious issue for immunocompetent individuals, it is a real concern for immunocompromised patients, especially those with AIDS and the ones that have undergone organ transplantation. All the currently approved treatments target the viral DNA polymerase. It is clear that new drugs that are more efficacious than the present ones, are not toxic, and target a different viral function would be of great use especially for immunocompromised patients. Here, we provide an overview of the diseases caused by the herpesviruses as well as the replication strategy of the better studied members of this family for which treatments are available. We also discuss the various drugs that have been approved for the treatment of some herpesviruses in terms of structure, mechanism of action, and development of resistance. Finally, we present a discussion of viral targets other than the DNA polymerase, for which new antiviral compounds are being considered.
Collapse
Affiliation(s)
- E C Villarreal
- Eli Lilly and Company, Infectious Diseases Research, Drop Code 0438, Lilly Research Laboratories, Indianapolis, IN 46285, USA.
| |
Collapse
|
67
|
Lembo D, Gribaudo G, Hofer A, Riera L, Cornaglia M, Mondo A, Angeretti A, Gariglio M, Thelander L, Landolfo S. Expression of an altered ribonucleotide reductase activity associated with the replication of murine cytomegalovirus in quiescent fibroblasts. J Virol 2000; 74:11557-65. [PMID: 11090153 PMCID: PMC112436 DOI: 10.1128/jvi.74.24.11557-11565.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2000] [Accepted: 09/14/2000] [Indexed: 01/31/2023] Open
Abstract
Ribonucleotide reductase (RNR) is an essential enzyme for the de novo synthesis of both cellular and viral DNA and catalyzes the conversion of ribonucleoside diphosphates into the corresponding deoxyribonucleoside diphosphates. The enzyme consists of two nonidentical subunits, termed R1 and R2, whose expression is very low in resting cells and maximal in S-phase cells. Here we show that murine cytomegalovirus (MCMV) replication depends on ribonucleotide reduction since it is prevented by the RNR inhibitor hydroxyurea. MCMV infection of quiescent fibroblasts markedly induces both mRNA and protein corresponding to the cellular R2 subunit, whereas expression of the cellular R1 subunit does not appear to be up-regulated. The increase in R2 gene expression is due to an increase in gene transcription, since the activity of a reporter gene driven by the mouse R2 promoter is induced following virus infection. Cotransfection experiments revealed that expression of the viral immediate-early 1 protein was sufficient to mediate the increase in R2 promoter activity. It was found that the viral gene M45, encoding a putative homologue of the R1 subunit, is expressed 24 and 48 h after infection. Meanwhile, we observed an expansion of the deoxyribonucleoside triphosphate pool between 24 and 48 h after infection; however, neither CDP reduction nor viral replication was inhibited by treatment with 10 mM thymidine. These findings indicate the induction of an RNR activity with an altered allosteric regulation compared to the mouse RNR following MCMV infection and suggest that the virus R1 homologue may complex with the induced cellular R2 protein to reconstitute a new RNR activity.
Collapse
Affiliation(s)
- D Lembo
- Department of Public Health and Microbiology, University of Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Todo T, Feigenbaum F, Rabkin SD, Lakeman F, Newsome JT, Johnson PA, Mitchell E, Belliveau D, Ostrove JM, Martuza RL. Viral shedding and biodistribution of G207, a multimutated, conditionally replicating herpes simplex virus type 1, after intracerebral inoculation in aotus. Mol Ther 2000; 2:588-95. [PMID: 11124059 DOI: 10.1006/mthe.2000.0200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G207 is a multimutated, conditionally replicating herpes simplex virus type 1 (HSV-1) that is currently in clinical trial for patients with malignant glioma. G207 exhibits an efficient oncolytic activity in tumor cells, yet minimal toxicity in normal tissue when injected into the brains of HSV-susceptible mice or nonhuman primates. In this study, we evaluated the shedding and biodistribution of clinical-grade G207 after intracerebral inoculation (3 x 10(7) pfu) in four New World owl monkeys (Aotus nancymae). Using PCR analyses and viral cultures, neither infectious virus nor viral DNA was detected from tear, saliva, or vaginal secretion samples at any time point up to 1 month postinoculation. Analyses of tissues obtained at necropsy at 1 month from two of the four monkeys, plus one monkey inoculated with laboratory-grade G207 (10(9) pfu) 2 years earlier, showed the distribution of G207 DNA restricted to the brain, although infectious virus was not isolated. Histopathology revealed normal brain tissues including the sites of inoculation. A measurable increase of serum anti-HSV antibody titer was observed in all monkeys, as early as 21 days postinoculation. The results ascertain the safety of G207 in the brain and indicate that strict biohazard management may not be required for G207-treated patients.
Collapse
Affiliation(s)
- T Todo
- Molecular Neurosurgery Laboratory, Massachusetts General Hospital-East,Charlestow, District of Columbia, 20007, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Bolger G, Liuzzi M, Krogsrud R, Scouten E, McCollum R, Welchner E, Kempner E. Radiation inactivation of ribonucleotide reductase, an enzyme with a stable free radical. Biophys J 2000; 79:2155-61. [PMID: 11023919 PMCID: PMC1301105 DOI: 10.1016/s0006-3495(00)76463-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus ribonucleotide reductase (RR) is a tetrameric enzyme composed of two homodimers of large R1 and small R2 subunits with a tyrosyl free radical located on the small subunit. Irradiation of the holoenzyme yielded simple exponential decay curves and an estimated functional target size of 315 kDa. Western blot analysis of irradiated holoenzyme R1 and R2 yielded target sizes of 281 kDa and 57 kDa (approximately twice their expected size). Irradiation of free R1 and analysis by all methods yielded a single exponential decay with target sizes ranging from 128-153 kDa. For free R2, quantitation by enzyme activity and Western blot analyses yielded simple inactivation curves but considerably different target sizes of 223 kDa and 19 kDa, respectively; competition for radioligand binding in irradiated R2 subunits yielded two species, one with a target size of approximately 210 kDa and the other of approximately 20 kDa. These results are consistent with a model in which there is radiation energy transfer between the two monomers of both R1 and R2 only in the holoenzyme, a radiation-induced loss of free radical only in the isolated R2, and an alteration of the tertiary structure of R2.
Collapse
Affiliation(s)
- G Bolger
- Department of Biological Sciences, Boehringer Ingelheim (Canada) Limited, Bio-Méga Research Division, Laval, Québec H7S 2G5, Canada
| | | | | | | | | | | | | |
Collapse
|
70
|
Boldogköi Z, Braun A, Fodor I. Replication and virulence of early protein 0 and long latency transcript deficient mutants of the Aujeszky's disease (pseudorabies) virus. Microbes Infect 2000; 2:1321-8. [PMID: 11018448 DOI: 10.1016/s1286-4579(00)01285-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Early protein 0 (EP0)-deficient recombinant Aujeszky's disease viruses, Ka-ep0lac and Ba-ep0lac derived from strains Kaplan and Bartha, respectively, were constructed to explore the impact of the mutation on replication, virulence and latency of the virus. Inactivation of the EP0 gene resulted in a mutation of long latency transcript (Cheung et al., 1991) that is located on the complementary DNA strand of EP0 and immediate early protein (IE)175 genes. In infection of immortalized porcine kidney cells, the growth rate and yield of both EP0(-) mutant strains were significantly smaller than that of wild-type virus. Ka-ep0lac was found to be highly virulent, while Ba-ep0lac showed an attenuated phenotype in mice. PCR assay and immunohistochemistry showed that the Ba-ep0lac virus was able to establish latency in the mouse trigeminal ganglia. However, latent virus was not able to reactivate in explant reactivation assays. Accordingly, latent Ba-ep0lac has the potential to be exploited as vectors for the delivery of foreign genes to the nervous system.
Collapse
Affiliation(s)
- Z Boldogköi
- Laboratory of Molecular Virology, Agricultural Biotechnology Center, Gödöllö, 2100 Hungary
| | | | | |
Collapse
|
71
|
Aurelian L, Smith CC. Herpes simplex virus type 2 growth and latency reactivation by cocultivation are inhibited with antisense oligonucleotides complementary to the translation initiation site of the large subunit of ribonucleotide reductase (RR1). ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2000; 10:77-85. [PMID: 10805158 DOI: 10.1089/oli.1.2000.10.77] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antisense oligonucleotides complementary to the translation initiation site of the herpes simplex virus type 2 (HSV-2) large subunit of ribonucleotide reductase (RR1) were studied for their ability to inhibit RR1 expression, HSV-2 growth, and its reactivation from latently infected ganglia. The oligomers caused a significant decrease (90%-97% inhibition) in HSV-2 RR1 expression and inhibited HSV-2 growth, with IC50 and IC90 values of 0.11 and 1.0 microM, respectively. The titers of HSV-2 mutants that are respectively deleted in the PK (ICP10deltaPK) or RR (ICP10deltaRR) domains of RR1 were also significantly (500-20,000-fold) decreased, indicating that the antisense oligomers interfere with the independent contributions of the two RR1 functions (PK and RR) toward virus growth. Inhibition was sequence specific, as evidenced by the failure of a two-base mutant (RR1TImu) to inhibit protein expression and HSV-2 growth. Furthermore, the antisense oligomers inhibited HSV-2 reactivation by cocultivation of latently infected ganglia (0/8). Virus was reactivated from ganglia cultured without oligomers, in the presence of unrelated oligomers (6/8), or in the presence of the two-base mutant RR1TImu (5/8) (p < 0.007 by two-tailed Fisher exact test). HSV-2 growth was not inhibited by antisense oligonucleotides complementary to the splice junction of HSV-2 immediate-early (IE) pre-mRNA 4 and 5 (IE4,5SA) or the translation initiation site of IE mRNA 4 (IE4TI), although the respective HSV-1-specific oligomers inhibit HSV-1 growth.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antiviral Agents/pharmacology
- Chlorocebus aethiops
- Coculture Techniques
- DNA, Complementary/genetics
- DNA, Complementary/pharmacology
- DNA, Viral/pharmacology
- Growth Inhibitors/pharmacology
- HeLa Cells
- Herpesvirus 2, Human/drug effects
- Herpesvirus 2, Human/genetics
- Herpesvirus 2, Human/growth & development
- Herpesvirus 2, Human/physiology
- Humans
- Mice
- Oligonucleotides, Antisense/pharmacology
- Peptide Chain Initiation, Translational/drug effects
- Ribonucleotide Reductases/genetics
- Ribonucleotide Reductases/metabolism
- Tumor Cells, Cultured
- Vero Cells
- Virus Activation/drug effects
- Virus Activation/genetics
Collapse
Affiliation(s)
- L Aurelian
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, University of Maryland, Baltimore 21201, USA
| | | |
Collapse
|
72
|
Sundaresan P, Hunter WD, Martuza RL, Rabkin SD. Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation in mice. J Virol 2000; 74:3832-41. [PMID: 10729157 PMCID: PMC111891 DOI: 10.1128/jvi.74.8.3832-3841.2000] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) mutants that are attenuated for neurovirulence are being used for the treatment of cancer. We have examined the safety of G207, a multimutated replication-competent HSV-1 vector, in mice. BALB/c mice inoculated intracerebrally or intracerebroventricularly with 10(7) PFU of G207 survived for over 20 weeks with no apparent symptoms of disease. In contrast, over 80% of animals inoculated intracerebrally with 1.5 x 10(3) PFU of HSV-1 wild-type strain KOS and 50% of animals inoculated intracerebroventricularly with 10(4) PFU of wild-type strain F died within 10 days. Similarly, after intrahepatic inoculation of G207 (3 x 10(7) PFU) all animals survived for over 10 weeks, whereas no animals survived for even 1 week after inoculation with 10(6) PFU of KOS. After intracerebroventricular inoculation, LacZ expression was initially observed in the cells lining the ventricles and subarachnoid space; expression decreased until almost absent within 5 days postinfection, with no apparent loss of ependymal cells. G207 DNA could be detected by PCR in the brains of mice 8 weeks after intracerebral inoculation; however, no infectious virus could be detected after 2 days. As a model for latent HSV in the brain, we used survivors of an intracerebral inoculation of HSV-1 KOS at the 50% lethal dose. Inoculation of a high dose of G207 at the same stereotactic coordinates did not result in reactivation of detectable infectious virus or symptoms of disease. We conclude that G207 is safe at or above doses that were efficacious in mouse tumor studies.
Collapse
Affiliation(s)
- P Sundaresan
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Georgetown University Medical Center, Washington, D.C. 20007, USA
| | | | | | | |
Collapse
|
73
|
Thompson RL, Sawtell NM. Replication of herpes simplex virus type 1 within trigeminal ganglia is required for high frequency but not high viral genome copy number latency. J Virol 2000; 74:965-74. [PMID: 10623759 PMCID: PMC111617 DOI: 10.1128/jvi.74.2.965-974.2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The replication properties of a thymidine kinase-negative (TK(-)) mutant of herpes simplex virus type 1 (HSV-1) were exploited to examine the relative contributions of replication at the body surface and within trigeminal ganglia (TG) on the establishment of latent infections. The replication of a TK(-) mutant, 17/tBTK(-), was reduced by approximately 12-fold on the mouse cornea compared to the rescued isolate 17/tBRTK(+), and no replication of 17/tBTK(-) in the TG of these mice was detected. About 1.8% of the TG neurons of mice infected with 17/tBTK(-) harbored the latent viral genome compared to 23% of those infected with 17/tBRTK(+). In addition, the latent sites established by the TK(-) mutant contained fewer copies of the HSV-1 genome (average, 2.3/neuron versus 28/neuron). On the snout, sustained robust replication of 17tBTK(-) in the absence of significant replication within the TG resulted in a modest increase in the number of latent sites. Importantly, these latently infected neurons displayed a wild-type latent-genome copy number profile, with some neurons containing hundreds of copies of the TK(-) mutant genome. As expected, the replication of the TK(-) mutant appeared to be blocked prior to DNA replication in most ganglionic neurons in that (i) virus replication was severely restricted in ganglia, (ii) the number of neurons expressing HSV proteins was reduced 30-fold compared to the rescued isolate, (iii) cell-to-cell spread of virus was not detected within ganglia, and (iv) the proportion of infected neurons expressing late proteins was reduced by 89% compared to the rescued strain. These results demonstrate that the viral TK gene is required for the efficient establishment of latency. This requirement appears to be primarily for efficient replication within the ganglion, which leads to a sixfold increase in the number of latent sites established. Further, latent sites with high genome copy number can be established in the absence of significant virus genome replication in neurons. This suggests that neurons can be infected by many HSV virions and still enter the latent state.
Collapse
Affiliation(s)
- R L Thompson
- Department of Molecular Genetics, Microbiology, and Biochemistry, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0524, USA
| | | |
Collapse
|
74
|
Todo T, Rabkin SD, Chahlavi A, Martuza RL. Corticosteroid administration does not affect viral oncolytic activity, but inhibits antitumor immunity in replication-competent herpes simplex virus tumor therapy. Hum Gene Ther 1999; 10:2869-78. [PMID: 10584932 DOI: 10.1089/10430349950016591] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A multimutated, conditionally replicating herpes simplex virus type 1, G207, has been developed as an effective means of treating human malignant brain tumors. We have shown that intraneoplastic inoculation of G207 induces a specific and systemic antitumor immune response that plays an important role in the antitumor activity, in addition to the direct oncolytic action of G207. Since a large number of malignant brain tumor patients are treated with corticosteroids, it is important to evaluate whether the therapeutic efficacy of G207 is affected by corticosteroid-induced immunosuppression. For a tumor model, we used G207-permissive N18 murine neuroblastoma cells implanted subcutaneously in syngeneic A/J mice. Intraneoplastic inoculation of G207 (10(7) PFU) induced significant suppression of tumor growth whether or not dexamethasone (5 mg/kg) was given. When dexamethasone was given for an extensive time (16 days starting on day -2), all G207-treated mice showed tumor growth despite initial shrinkage, whereas in the saline group, four of eight of the G207-treated mice were cured. Dexamethasone administration significantly reduced serum neutralizing antibodies against G207 at 14 and 21 days after intraneoplastic G207 inoculation. However, there was no difference between the dexamethasone and saline groups in terms of the amount of infectious G207 isolated from tumors. Dexamethasone administration completely abolished G207-induced cytotoxic T lymphocyte activity against N18 cells. These results indicate that the oncolytic activity of G207 is retained under corticosteroid administration. However, intensive immunosuppression may diminish the long-term efficacy of G207 owing to suppression of tumor-specific cytotoxic T lymphocyte induction.
Collapse
Affiliation(s)
- T Todo
- Department of Neurosurgery, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | | | | | |
Collapse
|
75
|
Liu X, Brandt CR, Gabelt BT, Bryar PJ, Smith ME, Kaufman PL. Herpes simplex virus mediated gene transfer to primate ocular tissues. Exp Eye Res 1999; 69:385-95. [PMID: 10504272 DOI: 10.1006/exer.1999.0711] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We evaluated the feasibility of delivering a gene into monkey eyes using a replication-competent herpes simplex virus (HSV) type 1 ribonucleotide reductase mutant (hrR3) expressing the Escherichia coli lacZ gene. To determine the efficiency of in vitro HSV-mediated gene transfer, cultured human trabecular meshwork (HTM) and human ciliary muscle (HCM) cells were infected with hrR3 and beta-galactosidase activity was measured histochemically. Six cynomolgus monkey eyes received viral injections into the anterior chamber (2 x 10(7) pfu) and/or the vitreous (5 x 10(7) pfu), and the distribution of cells expressing lacZ was evaluated. In vitro, both cultured HTM and HCM cells displayed multiplicity-dependent beta-galactosidase activity. In vivo, intracameral and/or intravitreal injection resulted in transgene expression in TM cells and in non-pigmented ciliary epithelial cells (NPE), but not in CM cells. Transgene expression was also detected in retinal pigmented epithelial (RPE) cells and sporadic retinal ganglion cells (RGC) in eyes receiving virus intracamerally and intravitreally respectively. We observed significant inflammation in the anterior chamber, TM and CM in virus-injected eyes, along with mild vitritis and retinitis. This study demonstrates successful gene transfer using hrR3 as a vector in human ocular cells and in ocular tissues in living monkeys. Further investigation of the etiology of the inflammatory response, possible cytotoxicity, and limited duration of transgene expression is necessary in order to make this technique clinically applicable.
Collapse
Affiliation(s)
- X Liu
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792-3220, USA
| | | | | | | | | | | |
Collapse
|
76
|
Docherty JJ, Fu MM, Stiffler BS, Limperos RJ, Pokabla CM, DeLucia AL. Resveratrol inhibition of herpes simplex virus replication. Antiviral Res 1999; 43:145-55. [PMID: 10551373 DOI: 10.1016/s0166-3542(99)00042-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Resveratrol, a phytoalexin, was found to inhibit herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) replication in a dose-dependent, reversible manner. The observed reduction in virus yield was not caused by the direct inactivation of HSV by resveratrol nor inhibition of virus attachment to the cell. The chemical did, however, target an early event in the virus replication cycle since it was most effective when added within 1 h of cell infection, less effective if addition was delayed until 6 h post-infection and not effective if added 9 h post-infection. Resveratrol was also found to delay the cell cycle at S-G2-M interphase, inhibit reactivation of virus from latently-infected neurons and reduce the amount of ICP-4, a major immediate early viral regulatory protein, that is produced when compared to controls. These results suggest that a critical early event in the viral replication cycle, that has a compensatory cellular counterpart, is being adversely affected.
Collapse
Affiliation(s)
- J J Docherty
- Department of Microbiology and Immunology, Northeastern Ohio Universities College of Medicine, Rootstown 44272, USA.
| | | | | | | | | | | |
Collapse
|
77
|
Kooby DA, Carew JF, Halterman MW, Mack JE, Bertino JR, Blumgart LH, Federoff HJ, Fong Y. Oncolytic viral therapy for human colorectal cancer and liver metastases using a multi-mutated herpes simplex virus type-1 (G207). FASEB J 1999; 13:1325-34. [PMID: 10428757 DOI: 10.1096/fasebj.13.11.1325] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
G207 is a multi-mutated, replication-competent type-1 herpes simplex virus designed to target, infect, and lyse neurological tumors. This study examines the feasibility of using G207 in the treatment of human colorectal cancer and defines the biological determinants of its antitumor efficacy. This virus was tested on five human colorectal cancer cell lines in vitro to determine efficacy of infection and tumor cell kill. These results were correlated to measures of tumor cell proliferation. In vivo testing was performed through direct injections of G207 into xenografts of human colorectal cancer tumors grown in flanks of athymic rats. To evaluate an alternate method of administration, hepatic portal vein infusion of G207 was performed in a syngeneic model of liver metastases in Buffalo rats. Among the five cell lines tested, infection rates ranged between 10% and 90%, which correlated directly with S-phase fraction (8.6%-36.6%) and was proportional to response to G207 therapy in vitro (1%-93%). Direct injection of G207 into nude rat flank tumors suppressed tumor growth significantly vs. control (0.58 +/- 0.60 cm(3) vs. 9.16 +/- 3.70 cm(3), P<0. 0001). In vivo tumor suppression correlated with in vitro effect. In the syngeneic liver tumor model, portal infusion resulted in significant reduction in number of liver nodules (13 +/- 10 nodules in G207-treated livers vs. 80 +/- 30 nodules in control livers, P<0.05). G207 infects and kills human colorectal cancer cells efficiently. In vitro cytotoxicity assay and tumor S-phase fraction can be used to predict response to treatment in vivo. This antineoplastic agent can be delivered effectively by both direct tumor injection and regional vascular infusion. G207 should be investigated further as therapy for colorectal cancer and liver metastases.
Collapse
Affiliation(s)
- D A Kooby
- Department of Surgery and Department of Molecular Pharmacology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Hunter WD, Martuza RL, Feigenbaum F, Todo T, Mineta T, Yazaki T, Toda M, Newsome JT, Platenberg RC, Manz HJ, Rabkin SD. Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation of intracerebral injection in nonhuman primates. J Virol 1999; 73:6319-26. [PMID: 10400723 PMCID: PMC112710 DOI: 10.1128/jvi.73.8.6319-6326.1999] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/1999] [Accepted: 04/16/1999] [Indexed: 11/20/2022] Open
Abstract
This study examined the safety of intracerebral inoculation of G207, an attenuated, replication-competent herpes simplex virus type 1 (HSV-1) recombinant, in nonhuman primates. Sixteen New World owl monkeys (Aotus nancymae [karyotype 1, formerly believed to be A. trivirgatus]), known for their exquisite susceptibility to HSV-1 infection, were evaluated. Thirteen underwent intracerebral inoculation with G207 at doses of 10(7) or 10(9) PFU, two were vehicle inoculated, and one served as an infected wild-type control and received 10(3) PFU of HSV-1 strain F. HSV-1 strain F caused rapid mortality and symptoms consistent with HSV encephalitis, including fever, hemiparesis, meningitis, and hemorrhage in the basal ganglia. One year after G207 inoculation, seven of the animals were alive and exhibited no evidence of clinical complications. Three deaths resulted from nonneurologic causes unrelated to HSV infection, and three animals were sacrificed for histopathologic examination. Two animals were reinoculated with G207 (10(7) PFU) at the same stereotactic coordinates 1 year after the initial G207 inoculation. These animals were alive and healthy 2 years after the second inoculation. Cerebral magnetic resonance imaging studies performed both before and after G207 inoculation failed to reveal radiographic evidence of HSV-related sequelae. Despite the lack of outwardly observable HSV pathology, measurable increases in serum anti-HSV titers were detected. Histopathological examination of multiple organ tissues found no evidence of HSV-induced histopathology or dissemination. We conclude that intracerebral inoculation of up to 10(9) PFU of G207, well above the efficacious dose in mouse tumor studies, is safe and therefore appropriate for human clinical trials.
Collapse
Affiliation(s)
- W D Hunter
- Departments of Neurosurgery, Georgetown University Medical Center, Washington, D.C. 20007, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Yao F, Eriksson E. A novel anti-herpes simplex virus type 1-specific herpes simplex virus type 1 recombinant. Hum Gene Ther 1999; 10:1811-8. [PMID: 10446921 DOI: 10.1089/10430349950017491] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A recombinant herpes simplex virus (HSV) capable of inhibiting its own replication as well as the replication of wild-type virus would have greatly increased safety as a general purpose vector for in vivo gene transfer, antitumor therapy, and viral vaccine against HSV infection. By using a tetracycline repressor (tetR)-mediated HSV-1 viral replication switch [Yao and Eriksson (1999). Hum. Gene Ther. 10, 419-427], we have generated a novel anti-HSV-1-specific HSV-1 recombinant (CJ83193) that expresses a trans-dominant negative HSV-1 UL9 origin-binding protein, UL9-C535C. The de novo synthesis of CJ83193 can be suppressed by UL9-C535C by at least 1 x 10(6)-fold in non-tetR-expressing cells, and is subject to tetracycline regulation over a range of four to five orders of magnitude in a tetR-expressing osteosarcoma line. In particular, the UL9-C535C peptides expressed from the CJ83193 genome can inhibit the replication of wild-type HSV-1 by 100- to 200-fold in single-step growth assays. The construction of CJ83193 creates a new general strategy for developing recombinant viral vectors able to function as an intracellular therapy against wild-type viral infections.
Collapse
Affiliation(s)
- F Yao
- Brigham and Women's Hospital, and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
80
|
Leib DA, Harrison TE, Laslo KM, Machalek MA, Moorman NJ, Virgin HW. Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. J Exp Med 1999; 189:663-72. [PMID: 9989981 PMCID: PMC2192939 DOI: 10.1084/jem.189.4.663] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/1998] [Revised: 12/15/1998] [Indexed: 11/28/2022] Open
Abstract
Mechanisms responsible for neuroattenuation of herpes simplex virus (HSV) have been defined previously by studies of mutant viruses in cultured cells. The hypothesis that null mutations in host genes can override the attenuated phenotype of null mutations in certain viral genes was tested. Mutants such as those in infected cell protein (ICP) 0, thymidine kinase, ribonucleotide reductase, virion host shutoff, and ICP34.5 are reduced in their capacity to replicate in nondividing cells in culture and in vivo. The replication of these viruses was examined in eyes and trigeminal ganglia for 1-7 d after corneal inoculation in mice with null mutations (-/-) in interferon receptors (IFNR) for type I IFNs (IFN-alpha/betaR), type II IFN (IFN-gammaR), and both type I and type II IFNs (IFN-alpha/beta/gammaR). Viral titers in eyes and ganglia of IFN-gammaR-/- mice were not significantly different from congenic controls. However, in IFN-alpha/betaR-/- or IFN-alpha/beta/gammaR-/- mice, growth of all mutants, including those with significantly impaired growth in cell culture, was enhanced by up to 1,000-fold in eyes and trigeminal ganglia. Blepharitis and clinical signs of infection were evident in IFN-alpha/betaR-/- and IFN-alpha/beta/gammaR-/- but not control mice for all viruses. Also, IFNs were shown to significantly reduce productive infection of, and spread from intact, but not scarified, corneas. Particularly striking was restoration of near-normal trigeminal ganglion replication and neurovirulence of an ICP34.5 mutant in IFN-alpha/betaR-/- mice. These data show that IFNs play a major role in limiting mutant and wild-type HSV replication in the cornea and in the nervous system. In addition, the in vivo target of ICP34.5 may be host IFN responses. These experiments demonstrate an unsuspected role for host factors in defining the phenotypes of some HSV mutants in vivo. The phenotypes of mutant viruses therefore cannot be interpreted based solely upon studies in cell culture but must be considered carefully in the context of host factors that may define the in vivo phenotype.
Collapse
Affiliation(s)
- D A Leib
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | |
Collapse
|
81
|
Smith CC, Peng T, Kulka M, Aurelian L. The PK domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) is required for immediate-early gene expression and virus growth. J Virol 1998; 72:9131-41. [PMID: 9765459 PMCID: PMC110331 DOI: 10.1128/jvi.72.11.9131-9141.1998] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large subunit of herpes simplex virus (HSV) ribonucleotide reductase (RR), RR1, contains a unique amino-terminal domain which has serine/threonine protein kinase (PK) activity. To examine the role of the PK activity in virus replication, we studied an HSV type 2 (HSV-2) mutant with a deletion in the RR1 PK domain (ICP10DeltaPK). ICP10DeltaPK expressed a 95-kDa RR1 protein (p95) which was PK negative but retained the ability to complex with the small RR subunit, RR2. Its RR activity was similar to that of HSV-2. In dividing cells, onset of virus growth was delayed, with replication initiating at 10 to 15 h postinfection, depending on the multiplicity of infection. In addition to the delayed growth onset, virus replication was significantly impaired (1,000-fold lower titers) in nondividing cells, and plaque-forming ability was severely compromised. The RR1 protein expressed by a revertant virus [HSV-2(R)] was structurally and functionally similar to the wild-type protein, and the virus had wild-type growth and plaque-forming properties. The growth of the ICP10DeltaPK virus and its plaque-forming potential were restored to wild-type levels in cells that constitutively express ICP10. Immediate-early (IE) genes for ICP4, ICP27, and ICP22 were not expressed in Vero cells infected with ICP10DeltaPK early in infection or in the presence of cycloheximide, and the levels of ICP0 and p95 were significantly (three- to sevenfold) lower than those in HSV-2- or HSV-2(R)-infected cells. IE gene expression was similar to that of the wild-type virus in cells that constitutively express ICP10. The data indicate that ICP10 PK is required for early expression of the viral regulatory IE genes and, consequently, for timely initiation of the protein cascade and HSV-2 growth in cultured cells.
Collapse
Affiliation(s)
- C C Smith
- Virology/Immunology Laboratories, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
82
|
Desai P, DeLuca NA, Person S. Herpes simplex virus type 1 VP26 is not essential for replication in cell culture but influences production of infectious virus in the nervous system of infected mice. Virology 1998; 247:115-24. [PMID: 9683577 DOI: 10.1006/viro.1998.9230] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
VP26 is the smallest capsid protein of herpes simplex virus type 1 and is encoded by the UL35 open reading frame. It resides on the outer capsid surface, interacting with VP5 in a one to one stoichiometry in the hexons that comprise capsids. A null mutation in the gene encoding VP26 was generated and transferred into the KOS genome. Recombinant viruses were isolated on Vero cells, which indicated that the absence of VP26 was not required for growth of the virus in cell culture. This was confirmed by the characterization of the VP26 null mutant, designated K delta 26Z. The yield of virus from K delta 26Z-infected Vero cells was decreased only twofold relative to wild-type-infected cells, as judged by the burst size. All three types of capsids (A, B, and C) were observed after sedimentation analysis of K delta 26Z-infected cell extracts. These capsids were similar in composition to wild-type capsids except for the absence of VP26. The mouse ocular model was used to determine if VP26 played a major role in vivo. The yield of the mutant virus relative to wild-type virus was decreased twofold in the eye; however, the mutant virus yields were decreased 30- to 100-fold in the trigeminal ganglia. Reactivation of the mutant virus as determined by cocultivation assays was also reduced. To determine the effect of VP26 on capsid translocation, the VP26 null mutation was transferred into a virus specifiying a thymidine kinase mutation that by itself is transported to the trigeminal ganglia but whose DNA is not replicated in the ganglia. Using quantitative PCR assays the number of viral genomes detected in the ganglia was similar in the presence or the absence of VP26. Therefore, VP26 does not appear to aid in the translocation of the virus capsid from the mouse eye to the trigeminal ganglia but is important for infectious virus production in the ganglia.
Collapse
Affiliation(s)
- P Desai
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
83
|
Jordan R, Pepe J, Schaffer PA. Characterization of a nerve growth factor-inducible cellular activity that enhances herpes simplex virus type 1 gene expression and replication of an ICP0 null mutant in cells of neural lineage. J Virol 1998; 72:5373-82. [PMID: 9620991 PMCID: PMC110163 DOI: 10.1128/jvi.72.7.5373-5382.1998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) ICP0 is required for efficient viral gene expression during lytic infection, especially at low multiplicities. A series of cellular activities that can substitute for ICP0 has been identified, suggesting that when the activity of ICP0 is limiting, these activities can substitute for ICP0 to activate viral gene expression. The cellular activities may be especially important during reactivation of HSV from neuronal latency when viral gene expression is initiated in the absence of prior viral protein synthesis. Consistent with this hypothesis, we have identified an inducible activity in cells of neural lineage (PC12) that can complement the low-multiplicity growth phenotype of an ICP0 null mutant, n212. Pretreatment of PC12 cells with nerve growth factor (NGF) or fibroblast growth factor (FGF) prior to infection produced a 10- to 20-fold increase in the 24-h yield of n212 but only a 2- to 4-fold increase in the yield of wild-type virus relative to mock treatment. Slot blot analysis of nuclear DNA isolated from infected cells treated or mock treated with NGF indicated that NGF treatment does not significantly affect viral entry. The NGF-induced activity in PC12 cells was expressed transiently, with peak complementing activity observed when cells were treated with NGF 12 h prior to infection. Addition of NGF 3 h after infection had little effect on virus yield. The NGF-induced cellular activity was inhibited by pretreatment of PC12 cells with kinase inhibitors that have high specificity for kinases involved in NGF/FGF-dependent signal transduction. RNase protection assays demonstrated that the NGF-inducible PC12 cell activity, like that of ICP0, functions to increase the level of viral mRNA during low-multiplicity infection. These results suggest that activation of viral transcription by ICP0 and transcriptional activation of cellular genes by NGF and FGF utilize common signal transduction pathways in PC12 cells.
Collapse
Affiliation(s)
- R Jordan
- Division of Molecular Genetics, Dana-Farber Cancer Institute, and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
84
|
Duan J, Liuzzi M, Paris W, Lambert M, Lawetz C, Moss N, Jaramillo J, Gauthier J, Déziel R, Cordingley MG. Antiviral activity of a selective ribonucleotide reductase inhibitor against acyclovir-resistant herpes simplex virus type 1 in vivo. Antimicrob Agents Chemother 1998; 42:1629-35. [PMID: 9660995 PMCID: PMC105657 DOI: 10.1128/aac.42.7.1629] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The present study reports the activity of BILD 1633 SE against acyclovir (ACV)-resistant herpes simplex virus (HSV) infections in athymic nude (nu/nu) mice. BILD 1633 SE is a novel peptidomimetic inhibitor of HSV ribonucleotide reductase (RR). In vitro, it is more potent than ACV against several strains of wild-type as well as ACV-resistant HSV mutants. Its in vivo activity was tested against cutaneous viral infections in athymic nude mice infected with the ACV-resistant isolates HSV type 1 (HSV-1) dlsptk and PAAr5, which contain mutations in the viral thymidine kinase gene and the polymerase gene, respectively. Following cutaneous infection of athymic nude mice, both HSV-1 dlsptk and PAAr5 induced significant, reproducible, and persistent cutaneous lesions that lasted for more than 2 weeks. A 10-day treatment regimen with ACV given topically four times a day as a 5% cream or orally at up to 5 mg/ml in drinking water was partially effective against HSV-1 PAAr5 infection with a reduction of the area under the concentration-time curve (AUC) of 34 to 48%. The effects of ACV against HSV-1 dlsptk infection were not significant when it was administered topically and were only marginal when it was given in drinking water. Treatment under identical conditions with 5% topical BILD 1633 SE significantly reduced the cutaneous lesions caused by both HSV-1 dlsptk and PAAr5 infections. The effect of BILD 1633 SE against HSV-1 PAAr5 infections was more prominent and was inoculum and dose dependent, with AUC reductions of 96 and 67% against infections with 10(6) and 10(7) PFU per inoculation site, respectively. BILD 1633 SE also significantly decreased the lesions caused by HSV-1 dlsptk infection (28 to 51% AUC reduction). Combination therapy with topical BILD 1633 SE (5%) and ACV in drinking water (5 mg/ml) produced an antiviral effect against HSV-1 dlsptk and PAAr5 infections that was more than the sum of the effects of both drugs. This is the first report that a selective HSV RR subunit association inhibitor can be effective against ACV-resistant HSV infections in vivo.
Collapse
Affiliation(s)
- J Duan
- Bio-Méga Research Division, Boehringer Ingelheim (Canada) Ltd., Laval, Québec, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
O'Brien WJ, Narasimhan J, Guy J, Tom P, Taylor JL. The effects of interferon-alpha and acyclovir on herpes simplex virus type-1 ribonucleotide reductase. Antiviral Res 1998; 38:107-16. [PMID: 9707373 DOI: 10.1016/s0166-3542(98)00016-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herpes simplex virus-type 1 (HSV-1) encodes both the small (UL40) and large (UL39) subunits of the enzyme, ribonucleotide reductase. Treatment of HSV-1-infected cells with interferon-alpha (IFN-alpha) reduced the levels of both enzyme subunits. Reduced steady state levels of the large subunit were demonstrated by immunoblot using polyclonal antibody specific for the viral enzyme. Reduction in the amount of small subunit was shown by a reduction in the electron spin resonance signal derived from the iron-containing tyrosyl free-radical present in this subunit. Treatment of cells with 100 IU/ml of IFN-alpha decreased levels of both subunits resulting in a reduction in enzyme activity as measured by conversion of CDP to dCDP. The decrease in the amount of the large subunit was not due to a reduction in the level of its mRNA. The combination of IFN-alpha and ACV treatment of human cornea stromal cells did not result in a further reduction in amounts of ribonucleotide reductase relative to that detected with IFN-alpha alone. The IFN-alpha-induced reduction in ribonucleotide reductase activity is the likely cause of decreased levels of dGTP which we have previously demonstrated in IFN-alpha-treated, infected cells.
Collapse
Affiliation(s)
- W J O'Brien
- Department of Microbiology, Medical College of Wisconsin, Milwaukee 53266, USA
| | | | | | | | | |
Collapse
|
86
|
Willoughby K, Bennett M, Williams RA, McCracken C, Gaskell RM. Sequences of the ribonucleotide reductase-encoding genes of felid herpesvirus 1 and molecular phylogenetic analysis. Virus Genes 1998; 15:203-18. [PMID: 9482586 DOI: 10.1023/a:1007924419113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The felid herpesvirus 1 (FHV-1) genes encoding the two ribonucleotide reductase (RR) subunits (RR1, large subunit and RR2, small subunit) were cloned and their nucleotide (nt) sequence determined. The RR1 open reading frame (ORF) is 2358 nts long and is predicted to encode a protein of 786 amino acids (aa). In common with herpesviruses in the Varicellovirus genus of the alphaherpesvirus subfamily, FHV-1 RR1 lacks the N-terminal serine threonine protein kinase region present in herpes simplex virus (HSV)-1 and -2. FHV-1 RR1 has a predicted aa identity of 47-64% with other alphaherpesvirus RR1 peptides, falling to 26-29% for gammaherpesviruses. The RR2 ORF is 996 nts long, predicted to encode a protein of 332 aa and has aa identities of 64-70% with alphaherpesviruses and 38-39% with gammaherpesviruses. Molecular phylogenetic analysis groups FHV-1 with equid herpesviruses 1 and 4 (EHV 1 and 4), pseudorabies virus (PRV) and bovid herpesvirus 1 (BHV 1) within the genus Varicellovirus.
Collapse
Affiliation(s)
- K Willoughby
- Department of Veterinary Pathology, University of Liverpool Veterinary Field Station, Neston, South Wirral, UK
| | | | | | | | | |
Collapse
|
87
|
Jacobson JG, Chen SH, Cook WJ, Kramer MF, Coen DM. Importance of the herpes simplex virus UL24 gene for productive ganglionic infection in mice. Virology 1998; 242:161-9. [PMID: 9501052 DOI: 10.1006/viro.1997.9012] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The UL24 gene of herpes simplex virus overlaps the viral thymidine kinase (tk) gene. Most previous studies of UL24 have examined UL24 mutants that have also contained tk and sometimes other mutations. To address the importance of UL24 for viral replication in cell culture and in infections of a mammalian host, we constructed a mutant virus containing a UL24 nonsense mutation that does not affect TK activity and a second mutant that contains clustered point mutations in UL24 and a mutation in tk that does not by itself affect the ability of the virus to replicate acutely in mouse ganglia or to reactivate from latent infection following corneal inoculation of mice. Both mutant viruses replicated in cells in culture and in the mouse eye, albeit less efficiently than wild type or control viruses. Both mutants were much more severely impaired for acute replication in trigeminal ganglia and for reactivation from latency following explant of these ganglia. Viral DNA and latency-associated transcripts were present, albeit at lower levels in ganglia infected with the nonsense mutant. These results indicate that UL24 is especially important for productive infection of mouse sensory ganglia and may have implications for the behaviors of certain tk mutants in pathogenesis.
Collapse
Affiliation(s)
- J G Jacobson
- Program in Virology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
88
|
Kramer MF, Chen SH, Knipe DM, Coen DM. Accumulation of viral transcripts and DNA during establishment of latency by herpes simplex virus. J Virol 1998; 72:1177-85. [PMID: 9445016 PMCID: PMC124594 DOI: 10.1128/jvi.72.2.1177-1185.1998] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Latent infection of mice with wild-type herpes simplex virus is established during an acute phase of ganglionic infection in which there is abundant viral replication and productive-cycle gene expression. Thymidine kinase-negative mutants establish latent infections but are severely impaired for acute ganglionic replication and productive-cycle gene expression. Indeed, by in situ hybridization assays, acute infection by these mutants resembles latency. To assess events during establishment of latency by wild-type and thymidine kinase-negative viruses, we quantified specific viral nucleic acid sequences in mouse trigeminal ganglia during acute ganglionic infection by using sensitive PCR-based assays. Through 32 h postinfection, viral DNA and transcripts representative of the three kinetic classes of productive-cycle genes accumulated to comparable levels in wild-type- and mutant-infected ganglia. At 48 and 72 h, although latency-associated transcripts accumulated to comparable levels in ganglia infected with wild-type or mutant virus, levels of DNA accumulating in wild-type-infected ganglia exceeded those in mutant-infected ganglia by 2 to 3 orders of magnitude. Coincident with this increase in DNA, wild-type-infected ganglia exhibited abundant expression of productive-cycle genes and high titers of infectious progeny. Nevertheless, the levels of productive-cycle RNAs expressed by mutant virus during acute infection greatly exceeded those expressed by wild-type virus during latency. The results thus distinguish acute infection of ganglia by a replication-compromised mutant from latent infection and may have implications for mechanisms of latency.
Collapse
Affiliation(s)
- M F Kramer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
89
|
White PW. Understanding the molecular mechanism of viral resistance to peptidomimetic inhibitors of ribonucleotide reductase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1382:102-10. [PMID: 9507079 DOI: 10.1016/s0167-4838(97)00151-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Herpes simplex virus (HSV) encodes a ribonucleotide reductase which provides high levels of deoxynucleotides necessary for replication of viral DNA in infected cells. The enzyme is composed of two distinct subunits, R1 and R2, whose association is required for enzymatic activity. Compounds that mimic the C-terminal amino acids of the HSV ribnucleotide reductase R2 subunit inhibit the enzyme by preventing the association of R1 and R2. Moderate resistance to one of these inhibitors, BILD 733, has been generated in cell culture. This resistance is the result of two point mutations in R1, P1090L and A1091S. Here we report on the binding of additional peptidomimetic inhibitors with altered functional groups to these mutants. This study has made it possible, in the absence of a crystal structure for this enzyme, to define the molecular mechanism by which these two mutations cause the observed resistance. Mutation of proline 1090 to leucine causes a conformational shift in the R1 inhibitor binding site. Mutation of alanine 1091 to serine weakens a specific binding interaction with the hydrophobic carboxy terminus of both R2 and inhibitors. Potential limitations on the degree of viral resistance possible by each resistance mechanism are discussed.
Collapse
Affiliation(s)
- P W White
- Research Division of Boehringer Ingelheim Ltd., Laval, Qué., Canada
| |
Collapse
|
90
|
Abstract
The clinical manifestations of herpes simplex virus infection generally involve a mild and localized primary infection followed by asymptomatic (latent) infection interrupted sporadically by periods of recrudescence (reactivation) where virus replication and associated cytopathologic findings are manifest at the site of initial infection. During the latent phase of infection, viral genomes, but not infectious virus itself, can be detected in sensory and autonomic neurons. The process of latent infection and reactivation has been subject to continuing investigation in animal models and, more recently, in cultured cells. The initiation and maintenance of latent infection in neurons are apparently passive phenomena in that no virus gene products need be expressed or are required. Despite this, a single latency-associated transcript (LAT) encoded by DNA encompassing about 6% of the viral genome is expressed during latent infection in a minority of neurons containing viral DNA. This transcript is spliced, and the intron derived from this splicing is stably maintained in the nucleus of neurons expressing it. Reactivation, which can be induced by stress and assayed in several animal models, is facilitated by the expression of LAT. Although the mechanism of action of LAT-mediated facilitation of reactivation is not clear, all available evidence argues against its involving the expression of a protein. Rather, the most consistent models of action involve LAT expression playing a cis-acting role in a very early stage of the reactivation process.
Collapse
Affiliation(s)
- E K Wagner
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, USA.
| | | |
Collapse
|
91
|
Thompson RL, Sawtell NM. The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol 1997; 71:5432-40. [PMID: 9188615 PMCID: PMC191783 DOI: 10.1128/jvi.71.7.5432-5440.1997] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Herpes simplex virus type 1 establishes latent infections in sensory neurons. During latency only one locus, the latency-associated transcript (LAT), is abundantly transcribed. Several lines of evidence suggest that this locus is required for the efficient reactivation from latency in experimental models. However, it is not yet clear whether this is a direct effect on the reactivation process per se or, as we have suggested, an indirect effect resulting from a decreased efficiency of establishment of latent infections. In this report wild-type and genetically engineered viral mutants were analyzed in a mouse model using a recently developed approach to precisely quantify latently infected neurons. It was found that strain KOS/M established latent infections, as defined by the presence of the viral genome, in about 30% of the neurons. Thirty-three percent of the mice with this latent viral burden reactivated in vivo following hyperthermic stress. In contrast, mutants in which either the basal LAT promoter or the 5' end of the LAT gene was deleted established latency in only 10% of trigeminal neurons (P < 0.00001), and these mice were impaired for reactivation. Repair of the locus resulted in wild-type levels of establishment and reactivation, mapping this function to the LAT region. Finer mapping demonstrated that a 2.3-kb fragment that contains the major LAT transcripts was sufficient to promote efficient establishment and subsequent reactivation when expressed in the context of a foreign gene. Hyperthermic stress applied during the first 3 days postinfection resulted in greatly increased numbers of neurons harboring the latent viral genome. This approach was found to increase the level of establishment of LAT-null mutants to that normally achieved by wild-type KOS/M. These establishment-repaired mice reactivated with wild-type efficiency. Thus, the LAT gene serves to increase the number of neurons in which latency is established, and no direct role for the LAT locus in reactivation could be demonstrated.
Collapse
Affiliation(s)
- R L Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati School of Medicine, Ohio, USA
| | | |
Collapse
|
92
|
Zhu J, Aurelian L. AP-1 cis-response elements are involved in basal expression and Vmw110 transactivation of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). Virology 1997; 231:301-12. [PMID: 9168892 DOI: 10.1006/viro.1997.8522] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The promoter of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) has two AP-1 cis-response elements, respectively located at positions -62 and -94 relative to the transcription start site (Wymer et al., 1989. J. Virol. 63, 2773-2784). Chloramphenicol acetyl transferase (CAT) analysis with hybrid constructions of the CAT structural gene and the ICP10 promoter or its mutants and gel retardation studies were used to examine the role of the AP-1 cis-response elements in expression from the ICP10 promoter. Basal expression from the wild-type promoter was significantly (75-90%) reduced by mutation of the upstream or downstream AP-1 element. Mutation in the upstream AP-1 element also caused a 60% reduction in c-Jun-mediated activation. Activation was decreased 40% by mutation in the downstream AP-1 element and it was abrogated by mutation of both elements. Similar results were obtained for ACT-deleted mutants and mutants in which CT was mutated to AG. The trans-activation by Vmw110 was also reduced by mutation of the AP-1 elements (10- and 2-fold for the upstream and downstream element, respectively) and it was abrogated by mutation of both AP-1 elements. Mutation of nucleotides adjacent to the AP-1 cis-response elements had no effect on trans-activation. Gel retardation assays with a DNA probe representing the wild-type ICP10 promoter and nuclear extracts from HSV-1-infected cells identified one complex that was not seen with mock-infected cells or with cells infected with a Vmw110-deleted mutant. The complex was not seen when HSV-1-infected cells were reacted with an AP-1-mutant DNA probe, and its formation was competed by an AP-1 but not a mutant AP-1 oligonucleotide. The migration of this complex was retarded by c-Fos antibody, suggesting that both AP-1 and Vmw110 are involved in its formation. A mutant deleted in all sequences upstream of the TATA box was also activated by Vmw110, but this activation was only 2-fold lower than that seen for the wild type and significantly higher (10-fold) than that seen for the double AP-1 mutants. The data suggest that AP-1 elements play a crucial role in ICP10 gene expression/activation.
Collapse
Affiliation(s)
- J Zhu
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201, USA
| | | |
Collapse
|
93
|
Strelow L, Smith T, Leib D. The virion host shutoff function of herpes simplex virus type 1 plays a role in corneal invasion and functions independently of the cell cycle. Virology 1997; 231:28-34. [PMID: 9143299 DOI: 10.1006/viro.1997.8497] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A significant restriction was demonstrated in the ability of herpes simplex virus type 1 virion host shutoff (vhs) mutant viruses to invade the corneal epithelium. Viral replication and invasion was confined to the areas of the cornea which were scarified prior to infection. Differences between wild-type and vhs mutant replication in corneas in vivo were 100- to 1000-fold at all timepoints postinfection. Smaller but still significant growth restrictions were observed in cultured corneal cells. This difference between in vitro and in vivo is not likely to be due to differences in cell cycle status since vhs-induced RNA degradation can occur in both cycling and noncycling cells in vitro. The vhs function is therefore important for invasion of the cornea and secondarily the nervous system and is thereby required for efficient establishment of latency.
Collapse
Affiliation(s)
- L Strelow
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
94
|
Ramakrishnan R, Poliani PL, Levine M, Glorioso JC, Fink DJ. Detection of herpes simplex virus type 1 latency-associated transcript expression in trigeminal ganglia by in situ reverse transcriptase PCR. J Virol 1996; 70:6519-23. [PMID: 8709293 PMCID: PMC190691 DOI: 10.1128/jvi.70.9.6519-6523.1996] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
One of the defining characteristics of herpes simplex virus type 1 (HSV-1) infection is the ability of the virus to establish a lifelong latent state in neurons. We previously demonstrated (R. Ramakrishnan, A.J. Fink, G. Jiang, P. Desai, J. C. Glorioso, and M. Levine, J. Virol. 68:1864-1873, 1994) by in situ PCR that many more neurons contain viral genomes than are detected by in situ hybridization for HSV latency-associated transcripts (LATs). To determine whether all cells which contain genomes express LATs, we examined trigeminal ganglia for LATs 1 and 8 weeks after corneal scarification with ribonucleotide reductase-deficient HSV-1 by in situ reverse transcriptase PCR. The number of LAT-positive cells detected by in situ reverse transcriptase was substantially greater than the number of cells positive by in situ hybridization and appeared to be similar to the number of cells containing HSV genomes by in situ PCR and the number of ganglionic neurons that project to the cornea as detected by retrograde labeling with Fluorogold. These results demonstrate LAT expression in many neurons containing HSV-1 genomes.
Collapse
Affiliation(s)
- R Ramakrishnan
- Department of Neurology, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
95
|
Nelson JW, Zhu J, Smith CC, Kulka M, Aurelian L. ATP and SH3 binding sites in the protein kinase of the large subunit of herpes simplex virus type 2 of ribonucleotide reductase (ICP10). J Biol Chem 1996; 271:17021-7. [PMID: 8663276 DOI: 10.1074/jbc.271.29.17021] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) is a multifunctional protein. It consists of a ribonucleotide reductase and a serine/threonine protein kinase (PK) domain, which has three proline-rich motifs consistent with SH3-binding sites at positions 140, 149, and 396. We used site-directed mutagenesis to identify amino acids required for kinase activity and interaction with signaling proteins. Mutation of Lys176 or Lys259 reduced PK activity (5-8-fold) and binding of the 14C-labeled ATP analog rho-fluorosulfonylbenzoyl 5'-adenosine (FSBA) but did not abrogate them. Enzymatic activity and FSBA binding were abrogated by mutation of both Lys residues, suggesting that either one can bind ATP. Mutation of Glu209 (PK catalytic motif III) virtually abrogated kinase activity in the presence of Mg2+ or Mn2+ ions, suggesting that Glu209 functions in ion-dependent PK activity. ICP10 bound the adaptor protein Grb2 in vitro. Mutation of the ICP10 proline-rich motifs at positions 396 and 149 reduced Grb2 binding 20- and 2-fold, respectively. Binding was abrogated by mutation of both motifs. Grb2 binding to wild type ICP10 was competed by a peptide for the Grb2 C-terminal SH3 motif, indicating that it involves the Grb2 C-terminal SH3.
Collapse
Affiliation(s)
- J W Nelson
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
96
|
Brandt CR, Spencer B, Imesch P, Garneau M, Déziel R. Evaluation of a peptidomimetic ribonucleotide reductase inhibitor with a murine model of herpes simplex virus type 1 ocular disease. Antimicrob Agents Chemother 1996; 40:1078-84. [PMID: 8723444 PMCID: PMC163269 DOI: 10.1128/aac.40.5.1078] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The ribonucleotide reductase (RR) of herpes simplex virus type 1 (HSV-1) is an important virulence factor, being required for neurovirulence, ocular virulence, and reactivation from latency. The RR activity requires the association of two distinct homodimeric subunits, and the association of the subunits is inhibited in the presence of a peptide homologous to the carboxy terminus of the small subunit. A structural analog of the inhibitory peptide (BILD 1263) has been shown to inhibit the replication of HSV-1 at micromolar concentrations in vitro. We used a mouse model of HSV-1 ocular infection to determine the in vivo efficacy of topical BILD 1263. Treatment of HSV-1 KOS-infected mice resulted in significant reductions in the severity and incidence of stromal keratitis and corneal neovascularization. At higher concentrations (5%) BILD 1263 reduced the severity but not the incidence of blepharitis. Treatment with 5% BILD 1263 also reduced viral shedding from the cornea by 10- to 14-fold (P < 0.001). In uninfected mice treated with 5% BILD 1263, we found no evidence of corneal epithelial damage, conjunctivitis, or blepharitis, and histopathological studies revealed no changes in the corneas of these mice. These results show that the peptidomimetic RR inhibitor BILD 1263 is effective in preventing disease, has an antiviral effect in vivo, and has little or no toxicity.
Collapse
Affiliation(s)
- C R Brandt
- Department of Ophthalmology, University of Wisconsin Medical School, Madison 53706, USA.
| | | | | | | | | |
Collapse
|
97
|
Bonneau AM, Kibler P, White P, Bousquet C, Dansereau N, Cordingley MG. Resistance of herpes simplex virus type 1 to peptidomimetic ribonucleotide reductase inhibitors: selection and characterization of mutant isolates. J Virol 1996; 70:787-93. [PMID: 8551616 PMCID: PMC189880 DOI: 10.1128/jvi.70.2.787-793.1996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Herpes simplex virus (HSV) encodes its own ribonucleotide reductase (RR), which provides the high levels of deoxynucleoside triphosphates required for viral DNA replication in infected cells. HSV RR is composed of two distinct subunits, R1 and R2, whose association is required for enzymatic activity. Peptidomimetic inhibitors that mimic the C-terminal amino acids of R2 inhibit HSV RR by preventing the association of R1 and R2. These compounds are candidate antiviral therapeutic agents. Here we describe the in vitro selection of HSV type 1 KOS variants with three- to ninefold-decreased sensitivity to the RR inhibitor BILD 733. The resistant isolates have growth properties in vitro similar to those of wild-type KOS but are more sensitive to acyclovir, possibly as a consequence of functional impairment of their RRs. A single amino acid substitution in R1 (Ala-1091 to Ser) was associated with threefold resistance to BILD 733, whereas an additional substitution (Pro-1090 to Leu) was required for higher levels of resistance. These mutations were reintroduced into HSV type 1 KOS and shown to be sufficient to confer the resistance phenotype. Studies in vitro with RRs isolated from cells infected with these mutant viruses demonstrated that these RRs bind BILD 733 more weakly than the wild-type enzyme and are also functionally impaired, exhibiting an elevated dissociation constant (Kd) for R1-R2 subunit association and/or reduced activity (kcat). This work provides evidence that the C-terminal end of HSV R1 (residues 1090 and 1091) is involved in R2 binding interactions and demonstrates that resistance to subunit association inhibitors may be associated with compromised activity of the target enzyme.
Collapse
Affiliation(s)
- A M Bonneau
- Bio-Méga/Boehringer Ingelheim Research Inc., Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
98
|
Abstract
Sequence analysis within the long segment of the pseudorabies virus (PrV) genome identified an open reading frame of 804 bp whose deduced protein product of 268 amino acids exhibited homology to dUTPases of other herpesviruses. The gene was designated UL50 because of its colinearity with the homologous gene of herpes simplex virus type 1. An antiserum raised against a bacterially expressed fragment of PrV UL50 specifically detected a 33-kDa protein in lysates of infected cells, which is in agreement with the predicted molecular mass of the PrV UL50 protein. A UL50-negative PrV mutant (PrV UL50-) was constructed by the insertion of a beta-galactosidase expression cassette into the UL50 coding sequence. A corresponding rescuant (PrV UL50resc) was also isolated. The interruption of the UL50 gene led to the disappearance of the 33-kDa protein, whereas restoration of UL50 gene expression restored detection of the 33-kDa protein. Enzyme activity assays confirmed that UL50 of PrV codes for a dUTPase which copurifies with nuclei of infected cells. PrV UL50- replicated with an only slightly reduced efficiency in epithelial cells in culture compared with that of its parental wild-type virus strain. Our results thus demonstrate that UL50 of PrV encodes a protein of 33 kDa with dUTPase activity which copurifies with nuclei of infected cells and is dispensable for replication in cultured epithelial cells.
Collapse
Affiliation(s)
- A Jöns
- Institute of Molecular and Cellular Virology, Friedrich-Loeffler-Institutes, Insel Riems, Germany
| | | |
Collapse
|
99
|
Greenberg GR, Hilfinger JM. Regulation of synthesis of ribonucleotide reductase and relationship to DNA replication in various systems. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 53:345-95. [PMID: 8650308 DOI: 10.1016/s0079-6603(08)60150-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- G R Greenberg
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109, USA
| | | |
Collapse
|
100
|
Cress WD, Nevins JR. Use of the E2F transcription factor by DNA tumor virus regulatory proteins. Curr Top Microbiol Immunol 1996; 208:63-78. [PMID: 8575213 DOI: 10.1007/978-3-642-79910-5_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- W D Cress
- Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|