51
|
Kirvell SL, Esiri M, Francis PT. Down-regulation of vesicular glutamate transporters precedes cell loss and pathology in Alzheimer's disease. J Neurochem 2006; 98:939-50. [PMID: 16893425 DOI: 10.1111/j.1471-4159.2006.03935.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized pathologically by plaques, tangles, and cell and synapse loss. As glutamate is the principle excitatory neurotransmitter of the CNS, the glutamatergic system may play an important role in AD. An essential step in glutamate neurotransmission is the concentration of glutamate into synaptic vesicles before release from the presynaptic terminal. Recently a group of proteins responsible for uptake has been identified - the vesicular glutamate transporters (VGLUTs). The generation of antibodies has facilitated the study of glutamatergic neurones. Here, we used antibodies to the VGLUTs together with immunohistochemistry and western blotting to investigate the status of glutamatergic neurones in temporal, parietal and occipital cortices of patients with AD; these regions were chosen to represent severely, moderately and mildly affected regions at the end stage of the disease. There was no change in expression of the synaptic markers in relation to total protein in the temporal cortex, but a significant reduction in synaptophysin and VGLUT1 was found in both the parietal and occipital cortices. These changes were found to relate to the number of tangles in the temporal cortex. There were no correlations with either mental test score or behaviour syndromes, with the exception of depression.
Collapse
Affiliation(s)
- Sara L Kirvell
- Wolfson Centre for Age-Related Diseases, Kings College London, London, UK
| | | | | |
Collapse
|
52
|
Tannenberg RK, Scott HL, Tannenberg AEG, Dodd PR. Selective loss of synaptic proteins in Alzheimer's disease: evidence for an increased severity with APOE varepsilon4. Neurochem Int 2006; 49:631-9. [PMID: 16814428 DOI: 10.1016/j.neuint.2006.05.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 05/17/2006] [Accepted: 05/23/2006] [Indexed: 11/30/2022]
Abstract
A pathological feature of Alzheimer's disease (AD) is an area-specific neuronal loss that may be caused by excitotoxicity-related synaptic dysfunction. Relative expression levels of synaptophysin, dynamin I, complexins I and II, N-cadherin, and alphaCaMKII were analysed in human brain tissue from AD cases and controls in hippocampus, and inferior temporal and occipital cortices. Synaptophysin and dynamin I are presynaptic terminal proteins not specific to any neurotransmitter system whereas complexin II, N-cadherin, and alphaCaMKII are specific for excitatory synapses. Complexin I is a presynaptic protein localised to inhibitory synapses. There were no significant differences in synaptophysin, dynamin I, N-cadherin, or alphaCaMKII protein levels between AD cases and controls. The complexin proteins were both markedly lower in AD cases than in controls (P < 0.01). Cases were also categorised by APOE genotype. Averaged across areas there was a 36% lowering of presynaptic proteins in AD cases carrying at least one epsilon4 allele compared with in AD cases lacking the epsilon4 allele. We infer that synaptic protein level is not indicative of neuronal loss, but the synaptic dysfunction may result from the marked relative loss of the complexins in AD, and lower levels of presynaptic proteins in AD cases with the APOE epsilon4 allele.
Collapse
Affiliation(s)
- Rudi K Tannenberg
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane 4072, Queensland, Australia.
| | | | | | | |
Collapse
|
53
|
Counts SE, Nadeem M, Lad SP, Wuu J, Mufson EJ. Differential expression of synaptic proteins in the frontal and temporal cortex of elderly subjects with mild cognitive impairment. J Neuropathol Exp Neurol 2006; 65:592-601. [PMID: 16783169 DOI: 10.1097/00005072-200606000-00007] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Alterations in synaptic protein stoichiometry may contribute to neocortical synaptic dysfunction in Alzheimer disease (AD). Whether perturbations in synaptic protein expression occur during the earliest stages of cognitive decline remain unclear. We examined protein levels of synaptophysin (SYP), synaptotagmin (SYT), and drebrin (DRB) in 5 neocortical regions (anterior cingulate, superior frontal, superior temporal, inferior parietal, and visual) of people clinically diagnosed with no cognitive impairment (NCI), mild cognitive impairment (MCI), mild/moderate AD, or severe AD. Normalized SYP levels were decreased approximately 35% in the superior temporal and inferior parietal cortex in severe AD compared with NCI. SYT levels were unchanged across clinical diagnosis in the cortical regions. Levels of DRB, a dendritic spine plasticity marker, were reduced approximately 40% to 60% in all cortical regions in AD compared with NCI. DRB protein was also reduced approximately 35% in the superior temporal cortex of MCI subjects, and DRB and SYP levels in the superior temporal cortex correlated with Mini-Mental State Examination and Braak scores. In contrast, DRB levels in the superior frontal cortex increased approximately 30% in MCI subjects. The differential changes in DRB expression in the frontal and temporal cortex in MCI suggest a disparity of dendritic plasticity within these regions that may contribute to the early impairment of temporal cortical functions subserving memory and language compared with the relative preservation of frontal cortical executive function during the initial stages of cognitive decline.
Collapse
Affiliation(s)
- Scott E Counts
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Il 60612, USA
| | | | | | | | | |
Collapse
|
54
|
Liu HH, Payne HR, Wang B, Brady ST. Gender differences in response of hippocampus to chronic glucocorticoid stress: role of glutamate receptors. J Neurosci Res 2006; 83:775-86. [PMID: 16498614 DOI: 10.1002/jnr.20782] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glucocorticoids (GC) play critical roles in the pathophysiological reactions to environmental stress. In brain, morphological changes were examined in hippocampal CA3 neurons with 2 weeks of chronic elevation of GC in male and female mice. Molecular correlates and underlying mechanisms paralleling these morphologic changes in hippocampus were investigated. Although the hippocampal neurons in the CA3 area in male mice atrophy with chronically elevated GC, female mice show minimal morphological changes with comparable GC regimens. These sexual morphological differences correlate with differences in the postsynaptic dense protein (PSD95) as well as the spectrum of glutamate receptors induced by GC treatment in male and female mice, including NMDA, AMPA, and KA receptors. These findings suggest that synaptic receptor composition is adapted to the unique physiological requirements of males and females and illuminate underlying mechanisms of GC/stress responses in the brain.
Collapse
Affiliation(s)
- Howard H Liu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
55
|
Peña F, Gutiérrez-Lerma A, Quiroz-Baez R, Arias C. The role of beta-amyloid protein in synaptic function: implications for Alzheimer's disease therapy. Curr Neuropharmacol 2006; 4:149-63. [PMID: 18615129 PMCID: PMC2430670 DOI: 10.2174/157015906776359531] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 10/25/2005] [Accepted: 01/05/2006] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive and irreversible loss of memory and other cognitive functions. Substantial evidence based on genetic, neuropathological and biochemical data has established the central role of beta-amyloid protein (betaAP) in this pathology. Although the precise etiology of AD is not well understood yet, strong evidence for some of the molecular events that lead to progressive brain dysfunction and neurodegeneration in AD has been afforded by identification of biochemical pathways implicated in the generation of betaAP, development of transgenic models exhibiting progressive disease pathology and by data on the effects of betaAP at the neuronal network level. However, the mechanisms by which betaAP causes cognitive decline have not been determined, nor is it clear if the degree of dementia correlates in time with the degree of neuronal loss. Hence, it is of interest to understand the biochemical processes involved in the mechanisms of betaAP-induced neurotoxicity and the mechanisms involved in electrophysiological effects of this protein on different parameters of synaptic transmission and on neuronal firing properties. In this review we analyze recent evidence suggesting a complex role of betaAP in the molecular events that lead to progressive loss of function and eventually to neurodegeneration in AD as well as the therapeutic implications based on betaAP metabolism inhibition.
Collapse
Affiliation(s)
- F Peña
- Departamento de Farmacobiología, Cinvestav-Coapa, México D.F. 14330, México.
| | | | | | | |
Collapse
|
56
|
Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 2006; 25:5446-54. [PMID: 15930395 PMCID: PMC6725006 DOI: 10.1523/jneurosci.4637-04.2005] [Citation(s) in RCA: 374] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in the microtubule-associated protein tau gene have been linked to neurofibrillary tangle (NFT) formation in several neurodegenerative diseases known as tauopathies; however, no tau mutations occur in Alzheimer's disease, although this disease is also characterized by NFT formation and cell death. Importantly, the mechanism of tau-mediated neuronal death remains elusive. Aged mice expressing nonmutant human tau in the absence of mouse tau (htau mice) developed NFTs and extensive cell death. The mechanism of neuron death was investigated in htau mice, and surprisingly, the presence of tau filaments did not correlate directly with death within individual cells, suggesting that cell death can occur independently of NFT formation. Our observations show that the mechanism of neurodegeneration involved reexpression of cell-cycle proteins and DNA synthesis, indicating that nonmutant tau pathology and neurodegeneration may be linked via abnormal, incomplete cell-cycle reentry.
Collapse
Affiliation(s)
- Cathy Andorfer
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Jacobs EH, Williams RJ, Francis PT. Cyclin-dependent kinase 5, Munc18a and Munc18-interacting protein 1/X11α protein up-regulation in Alzheimer’s disease. Neuroscience 2006; 138:511-22. [PMID: 16413130 DOI: 10.1016/j.neuroscience.2005.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 11/11/2005] [Accepted: 11/15/2005] [Indexed: 12/01/2022]
Abstract
Besides formation of neurofibrillary tangles and neuron loss, the Alzheimer's disease brain is characterized by neuritic plaques consisting of beta-amyloid peptide deposits and impaired neurotransmission. The proteins Munc18a, Munc18-interacting protein 1 and Munc18-interacting protein 2 mediate exocytosis and decrease beta-amyloid peptide formation. Cyclin-dependent kinase 5 and its activator p35 disrupt Munc18a-syntaxin 1 binding, thereby promoting synaptic vesicle fusion during exocytosis. We investigated protein levels of the signaling pathway: p35, cyclin-dependent kinase 5, Munc18a, syntaxin 1A and 1B, Munc18-interacting protein 1 and Munc18-interacting protein 2 in Alzheimer's disease cortex and found that this pathway was up-regulated in the Alzheimer's disease parietal and occipital cortex. In the cortex of transgenic Tg2576 mice over-expressing human beta-amyloid precursor protein with the Swedish mutation known to lead to familial Alzheimer's disease, which have substantial levels of beta-amyloid peptide but lack neurofibrillary tangles and neuron loss, no alterations of protein levels were detected. These data suggest that the pathway is enhanced in dying or surviving neurons and might serve a protective role by compensating for decreased neurotransmission and decreasing beta-amyloid peptide levels early during the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- E H Jacobs
- Wolfson Centre for Age-Related Diseases, Guy's, King's and St Thomas' Schools of Biomedical Sciences, King's College London, St. Thomas Street, London SE1 1UL, UK.
| | | | | |
Collapse
|
58
|
Haroutunian V, Davies P, Vianna C, Buxbaum JD, Purohit DP. Tau protein abnormalities associated with the progression of alzheimer disease type dementia. Neurobiol Aging 2005; 28:1-7. [PMID: 16343696 DOI: 10.1016/j.neurobiolaging.2005.11.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 11/03/2005] [Accepted: 11/07/2005] [Indexed: 11/16/2022]
Abstract
The degree to which neurofibrillary tangles (NFT), the hallmark lesions of Alzheimer disease (AD), contribute to the development of the cognitive symptoms of AD has been debated. NFTs are comprised of abnormally phosphorylated and conformationally altered tau proteins. Conformational changes in tau have been proposed to be among the earliest neurobiological changes in AD. This study examined whether conformational changes detected by antibodies MC1 and TG3 represent early abnormalities in the disease process by assessing their presence at different stages of dementia in multiple brain regions. Postmortem specimens from several neocortical regions were examined for conformational changes in tau by ELISA in subjects [n=81] who died at different stages of cognitive impairment. Concentrations of conformationally altered tau increased with increasing dementia severity and the levels of MC1 immunoreactivity increased in the frontal cortex of mildly demented subjects before the appearance of NFT bearing neurons, suggesting that conformational alterations in tau occur early in the course of AD and its cognitive symptoms and may precede histologically identified NFTs.
Collapse
Affiliation(s)
- V Haroutunian
- Department of Psychiatry, The Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, United States.
| | | | | | | | | |
Collapse
|
59
|
Caicedo A, Espinosa-Heidmann DG, Hamasaki D, Piña Y, Cousins SW. Photoreceptor synapses degenerate early in experimental choroidal neovascularization. J Comp Neurol 2005; 483:263-77. [PMID: 15682400 DOI: 10.1002/cne.20413] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Severe visual loss in patients with age-related macular degeneration is associated with the development of choroidal neovascularization (CNV). The pathogenic mechanisms for CNV formation have been extensively investigated, but remarkably little research has addressed the mechanisms for dysfunction of the retina in CNV. Using laser-induced CNV in mice, we evaluated the mechanisms of retinal dysfunction. At 3 days, 1 week, 2 weeks, and 4 weeks after laser application, retinas under experimental CNV were characterized physiologically (ERG recordings, synaptic uptake of the exocytotic marker FM1-43, and light-induced translocation of transducin), histologically, and immunohistochemically. ERG amplitudes were reduced by 20% at 1 week after CNV. Depolarization-induced FM1-43 uptake in photoreceptor synapses was selectively reduced by 45% at 1 week after CNV. Although photoreceptor outer segments were shortened by 36%, light adaptation as measured by transducin translocation was mostly preserved. Early in CNV (3 days to 1 week), Muller cells demonstrated induction of c-fos and pERK expression. Also, the density of macrophage-like, F4/80 immunoreactive cells increased approximately 3-fold. Minimal photoreceptor death occurred during the first week, and was variable thereafter. At later times in CNV formation (> or =2 weeks), expression of photoreceptor synaptic markers was reduced in the outer plexiform layer, indicating loss of photoreceptor synaptic terminals. ERG amplitudes, synaptic uptake of FM1-43, and the induction of c-fos and pERK in Muller cells were altered within 1 week of experimental CNV, suggesting that during CNV formation, deficits in retinal function, in particular photoreceptor synaptic function, precede degeneration of photoreceptor terminals and photoreceptor cell death.
Collapse
Affiliation(s)
- Alejandro Caicedo
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, Florida 33136, USA.
| | | | | | | | | |
Collapse
|
60
|
Abstract
During the course of Alzheimer's disease (AD), neurons undergo extensive remodeling, contributing to the loss of function observed in the disease. Many brain regions in patients with AD show changes in axonal and dendritic fields, dystrophic neurites, synapse loss, and neuron loss. Accumulation of amyloid-beta protein, a pathological hallmark of the disease, contributes to many of these alterations of neuronal structure. Areas of the brain displaying a high degree of plasticity are particularly vulnerable to degeneration in Alzheimer's disease. This article describes neuronal changes that occur in AD, reviews evidence that amyloid-beta contributes to these changes, and finally discusses the recovery of amyloid-induced changes in the brains of transgenic mice, lending hope to the idea that therapeutic strategies which reduce amyloid-beta production will lead to functional recovery in patients with AD.
Collapse
Affiliation(s)
- Tara L Spires
- Department of Neurology, Alzheimer's Disease Research Laboratory, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | |
Collapse
|
61
|
Wang DS, Bennett DA, Mufson E, Cochran E, Dickson DW. Decreases in soluble alpha-synuclein in frontal cortex correlate with cognitive decline in the elderly. Neurosci Lett 2004; 359:104-8. [PMID: 15050722 DOI: 10.1016/j.neulet.2004.01.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 12/18/2003] [Accepted: 01/20/2004] [Indexed: 11/26/2022]
Abstract
Alpha-synuclein (ASN) is a presynaptic protein and major component of Lewy bodies. It is considered important in the pathogenesis of Alzheimer's disease (AD), but its relevance to progressive cognitive decline in aging is largely unknown. To address this issue, ASN immunoreactivity was measured in frontal cortex of elderly individuals with no cognitive impairment (NCI), mild cognitive impairment (MCI) and early AD using a Western blot technique and a polyclonal antibody to ASN. ASN immunoreactivity was significantly lower in AD than in MCI and NCI, but there was no difference between MCI and NCI. The ASN immunoreactivity correlated with CERAD diagnosis, as well as Mini-Mental State Exam (MMSE) score, global neuropsychologic z-score and some, but not all, frontal neuropsychology measures. Clinical correlations were stronger for ASN than synaptophysin immunoreactivity assessed in a similar manner. The correlation with MMSE was robust when NCI cases were considered separately, suggesting that decreases in soluble ASN may be an early feature of cognitive decline in aging and AD.
Collapse
Affiliation(s)
- Deng-Shun Wang
- Department of Pathology (Neuropathology), Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | |
Collapse
|
62
|
Ji Y, Gong Y, Gan W, Beach T, Holtzman DM, Wisniewski T. Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer's disease patients. Neuroscience 2004; 122:305-15. [PMID: 14614898 DOI: 10.1016/j.neuroscience.2003.08.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dendritic spines are postsynaptic sites of excitatory input in the mammalian nervous system. Apolipoprotein (apo) E participates in the transport of plasma lipids and in the redistribution of lipids among cells. A role for apoE is implicated in regeneration of synaptic circuitry after neural injury. The apoE4 allele is a major risk factor for late-onset familial and sporadic Alzheimer's disease (AD) and is associated with a poor outcome after brain injury. ApoE isoforms are suggested to have differential effects on neuronal repair mechanisms. In vitro studies have demonstrated the neurotrophic properties of apoE3 on neurite outgrowth. We have investigated the influence of apoE genotype on neuronal cell dendritic spine density in mice and in human postmortem tissue. In order to compare the morphology of neurons developing under different apoE conditions, gene gun labeling studies of dendritic spines of dentate gyrus (DG) granule cells of the hippocampus were carried out in wild-type (WT), human apoE3, human apoE4 expressing transgenic mice and apoE knockout (KO) mice; the same dendritic spine parameters were also assessed in human postmortem DG from individuals with and without the apoE4 gene. Quantitative analysis of dendritic spine length, morphology, and number was carried out on these mice at 3 weeks, 1 and 2 years of age. Human apoE3 and WT mice had a higher density of dendritic spines than human E4 and apoE KO mice in the 1 and 2 year age groups (P<0.0001), while at 3 weeks there were no differences between the groups. These age dependent differences in the effects of apoE isoforms on neuronal integrity may relate to the increased risk of dementia in aged individuals with the apoE4 allele. Significantly in human brain, apoE4 dose correlated inversely with dendritic spine density of DG neurons cell in the hippocampus of both AD (P=0.0008) and aged normal controls (P=0.0015). Our findings provide one potential explanation for the increased cognitive decline seen in aged and AD patients expressing apoE4.
Collapse
Affiliation(s)
- Y Ji
- Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
63
|
Sisó S, Ferrer I, Pumarola M. Abnormal synaptic protein expression in two Arabian horses with equine degenerative myeloencephalopathy. Vet J 2003; 166:238-43. [PMID: 14550734 DOI: 10.1016/s1090-0233(02)00302-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Numerous swollen neurons and multiple dystrophic axons were observed in the gracillis and cuneatus nuclei of two male Arabian horses, aged six and 12 months of age, with equine degenerative myeloencephalopathy. Swollen neurons and dystrophic axons showed synaptophysin, synaptosomal-associated protein of 25 kDa, syntaxin-1 and alpha-synuclein immunoreactivity. Moreover, dystrophic axons were strongly immunopositive against the ubiquitin protein and against the anti-phosphorylated 200 kDa neurofilament protein. Abnormal expression of integral synaptic vesicle, synaptic vesicle-associated presynaptic plasma membrane and cytosolic proteins, which participate in the trafficking, docking and fusion of the synaptic vesicle to the plasma membrane, suggest that severe disruption of axonal transport plays a crucial role in the pathogenesis of dystrophic axons in equine degenerative myeloencephalopathy (EDM).
Collapse
Affiliation(s)
- S Sisó
- Priocat Laboratory, Centre de Recerca en Sanitat Animal, Bellaterra Campus, Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
64
|
Hu L, Wong TP, Côté SL, Bell KFS, Cuello AC. The impact of Aβ-plaques on cortical cholinergic and non-cholinergic presynaptic boutons in alzheimer's disease-like transgenic mice. Neuroscience 2003; 121:421-32. [PMID: 14522000 DOI: 10.1016/s0306-4522(03)00394-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A previous study in our laboratory, involving early stage, amyloid pathology in 8-month-old transgenic mice, demonstrated a selective loss of cholinergic terminals in the cerebral and hippocampal cortices of doubly transgenic (APP(K670N,M671L)+PSl(M146L)) mice, an up-regulation in the single mutant APP(K670N,M671L) mice and no detectable change in the PSl(M146L) transgenics [J Neurosci 19 (1999) 2706]. The present study investigates the impact of amyloid plaques on synaptophysin and vesicular acetylcholine transporter (VAChT) immunoreactive bouton numbers in the frontal cortex of the three transgenic mouse models previously described. When compared as a whole, the frontal cortices of transgenic and control mice show no observable differences in the densities of synaptophysin-immunoreactive boutons. An individual comparison of layer V of the frontal cortex, however, shows a significant increase in density in transgenic models. Analysis of the cholinergic system alone shows significant alterations in the VAChT-immunoreactive bouton densities as evidenced by an increased density in the single (APP(K670N,M671L)) transgenics and a decreased density in the doubly transgenics (APP(K670N,M671L)+PSl(M146L)). In investigating the impact of plaque proximity on bouton density at early stages of the amyloid pathology in our doubly (APP(K670N,M671L)+PSl(M146L)) transgenic mouse line, we observed that plaque proximity reduced cholinergic pre-synaptic bouton density by 40%, and yet increased synaptophysin-immunoreactive pre-synaptic bouton density by 9.5%. Distance from plaques (up to 60 microm) seemed to have no effect on bouton density; however a significant inverse relationship was visible between plaque size and cholinergic pre-synaptic bouton density. Finally, the number of cholinergic dystrophic neurites surrounding the truly amyloid, Thioflavin-S(+) plaque core, was disproportionately large with respect to the incidence of cholinergic boutons within the total pre-synaptic bouton population. Confocal and electron microscopic observations confirmed the preferential infiltration of dystrophic cholinergic boutons into fibrillar amyloid aggregates. We therefore hypothesize that extracellular Abeta aggregation preferentially affects cholinergic terminations prior to progression onto other neurotransmitter systems. This is supported by the observable presence of non-cholinergic sprouting, which may be representative of impending neuritic degeneration.
Collapse
Affiliation(s)
- L Hu
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Quebec, Montreal, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
65
|
Bendiske J, Bahr BA. Lysosomal activation is a compensatory response against protein accumulation and associated synaptopathogenesis--an approach for slowing Alzheimer disease? J Neuropathol Exp Neurol 2003; 62:451-63. [PMID: 12769185 DOI: 10.1093/jnen/62.5.451] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous reports suggest that age-related lysosomal disturbances contribute to Alzheimer-type accumulations of protein species, blockage of axonal/dendritic transport, and synaptic decline. Here, we tested the hypothesis that lysosomal enzymes are upregulated as a compensatory response to pathogenic protein accumulation. In the hippocampal slice model, tau deposits and amyloidogenic fragments induced by the lysosomal inhibitor chloroquine were accompanied by disrupted microtubule integrity and by corresponding declines in postsynaptic glutamate receptors and the presynaptic marker synaptophysin. In the same slices, cathepsins B, D, and L, beta-glucuronidase, and elastase were upregulated by 70% to 135%. To address whether this selective activation of the lysosomal system represents compensatory signaling, N-Cbz-L-phenylalanyl-L-alanyl-diazomethylketone (PADK) was used to enhance the lysosome response, generating 4- to 8-fold increases in lysosomal enzymes. PADK-mediated lysosomal modulation was stable for weeks while synaptic components remained normal. When PADK and chloroquine were co-infused, chloroquine no longer increased cellular tau levels. To assess pre-existing pathology, chloroquine was applied for 6 days after which its removal resulted in continued degeneration. In contrast, enhancing lysosomal activation by replacing chloroquine after 6 days with PADK led to clearance of accumulated protein species and restored microtubule integrity. Transport processes lost during chloroquine exposure were consequently re-established, resulting in marked recovery of synaptic components. These data indicate that compensatory activation of lysosomes follows protein accumulation events, and that lysosomal modulation represents a novel approach for treating Alzheimer disease and other protein deposition diseases.
Collapse
Affiliation(s)
- Jennifer Bendiske
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Stors, Connecticut, USA
| | | |
Collapse
|
66
|
Yao PJ, Zhu M, Pyun EI, Brooks AI, Therianos S, Meyers VE, Coleman PD. Defects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer's disease. Neurobiol Dis 2003; 12:97-109. [PMID: 12667465 DOI: 10.1016/s0969-9961(02)00009-8] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Loss of synapses correlates with cognitive decline in Alzheimer's disease (AD). However, molecular mechanisms underlying the synaptic dysfunction and loss are not well understood. In this study, microarray analysis of brain tissues from five AD cases revealed a reduced expression of a group of related genes, all of which are involved in synaptic vesicle (SV) trafficking. By contrast, several synaptic genes with functions other than vesicle trafficking remained unchanged. Quantitative RT-PCR confirmed and expanded the microarray findings. Furthermore, immunoblotting showed that the protein level of at least one of these gene products, dynamin I, correlated with its reduced transcript. Immunhistochemical analysis exhibited an altered distribution of dynamin I immunolabeling in AD neurons. Microarray analysis of transgenic mice with mutated amyloid precursor protein showed that although the transcript levels for some of the SV trafficking-related genes are also decreased, the change in dynamin did not replicate the AD pattern. The results suggest a link among SV vesicle-trafficking pathways, synaptic malfunction, and AD pathogenesis.
Collapse
Affiliation(s)
- Pamela J Yao
- Department of Neurobiology & Anatomy, Center for Aging & Developmental Biology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
Ramon y Cajal proclaimed in 1928 that "once development was ended, the founts of growth and regeneration of the axons and dendrites dried up irrevocably. In the adult centers the nerve paths are something fixed, ended and immutable. Everything must die, nothing may be regenerated. It is for the science of the future to change, if possible, this harsh decree." (Ramon y Cajal, 1928). In large part, despite the extensive knowledge gained since then, the latter directive has not yet been achieved by 'modern' science. Although we know now that Ramon y Cajal's observation on CNS plasticity is largely true (for lower brain and primary cortical structures), there are mechanisms for recovery from CNS injury. These mechanisms, however, may contribute to the vulnerability to neurodegenerative disease. They may also be exploited therapeutically to help alleviate the suffering from neurodegenerative conditions.
Collapse
Affiliation(s)
- Bruce Teter
- Department of Medicine, University of California Los Angeles, California and Veteran's Affairs-Greater Los Angeles Healthcare System, Sepulveda, California 91343, USA
| | | |
Collapse
|
68
|
Chauhan NB, Siegel GJ. Reversal of amyloid beta toxicity in Alzheimer's disease model Tg2576 by intraventricular antiamyloid beta antibody. J Neurosci Res 2002; 69:10-23. [PMID: 12111811 DOI: 10.1002/jnr.10286] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There are considerable data on synaptic dysfunction in Alzheimer's disease (AD). However, the precise molecular basis for synaptotoxicity in AD is not known. We tested the hypothesis that amyloid beta (Abeta), as produced in Tg2576 mice overexpressing a mutant form of amyloid precursor protein, leads to changes in SNAP-25, a molecule required for Ca-sensitive neurotransmitter vesicle exocytosis. Anti-Abeta antibody was injected into the third ventricle (icv) of 10-month-old Tg2576 mice, preceding formation of plaques. Immunodensity of glial fibrillary acidic protein (GFAP) and SNAP-25 were quantitated in the hippocampus 1 month later. SNAP-25 was reduced by 96% in the inner molecular layer (SMi) of dentate gyrus, by 95% in the hilum, and by 75-76% in stratum lucidum (SL), stratum oriens (SO), and stratum radiatum (SR) of CA1-CA3 of the Tg2576 mice. GFAP was increased by more than 50-fold, specifically within the neuropil of CA1-CA3, and by twofold in portions of fimbria. One injection of 10 microg of anti-Abeta antibody into the third ventricle at 10 months completely prevented or restored changes in GFAP at 11 months of age. The restoration of SNAP-25 by anti-Abeta antibody compared with wild type was 69% in CA1-SO, 93% in CA1-SR, 85% in CA3-SL, 77% in SMi, and 60-73% in hilum. In addition, whereas control injections of saline or IgG produced greatly increased GFAP diffusely in the hippocampus of Tg2576 animals, there was no increase in GFAP after anti-Abeta injection, suggesting a synergistic interaction of nonspecific trauma with Abeta in the transgenic mice. This is the first report of depleted SNAP-25 immunoreactivity in Tg models and the first report of icv injection of anti-Abeta antibody in this model of AD. The largest reductions of the SNAP-25 are in hilum and SMi, so either reduction in the septal-hilum-SMi path is primary or reduction in this path begins at an earlier age than in CA3-CA1 fields. A single icv injection of anti-Abeta antibody is potent in reversing Abeta effects and, therefore, represents a suitable model for investigating early Abeta toxicity. In addition, intrathecal or icv antibody may be an efficient means of treating or preventing toxicity in AD, particularly under conditions of immune hyporesponsivity.
Collapse
Affiliation(s)
- Neelima B Chauhan
- Neurology Service, Edward Hines, Jr., VAH, Hines, Illinois 60141, USA.
| | | |
Collapse
|
69
|
Bendiske J, Caba E, Brown QB, Bahr BA. Intracellular deposition, microtubule destabilization, and transport failure: an "early" pathogenic cascade leading to synaptic decline. J Neuropathol Exp Neurol 2002; 61:640-50. [PMID: 12125743 DOI: 10.1093/jnen/61.7.640] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protein deposition is a common event in age-related neurological diseases that are characterized by neuronal dysfunction and eventual cell death. Here, cultured hippocampal slices were infused with the lysosomal disrupter chloroquine to examine the link between abnormal protein processing/deposition and early synaptopathogenesis. Tau species of 55 to 69 kDa increased over several days of treatment with chloroquine, while the protein and message levels of synaptic markers were selectively reduced. Neurons of subfields CA1, CA3, and dentate gyrus accumulated protein deposits recognized by antibodies against paired helical filaments and ubiquitin, and this was accompanied by tubulin fragmentation and deacetylation. The deposition filled the basal pole of pyramidal neurons, encompassing the area of the axon hillock and initial dendritic branching but without causing overt neuronal atrophy. Neurons containing the polar aggregates exhibited severely impaired transport along basal dendrites. Transport capability was also lost along apical dendrites, the opposite direction of deposited material in the basal pole; thus, perpetuating the problem beyond physical blockage must be the associated loss of microtubule integrity. These data indicate that transport failure forms a link between tau deposition and synaptic decline, thus shedding light on how protein aggregation events disrupt synaptic and cognitive functions before the ensuing cellular destruction.
Collapse
Affiliation(s)
- Jennifer Bendiske
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs 06269-2092, USA
| | | | | | | |
Collapse
|
70
|
Horvath KM, Hårtig W, Van der Veen R, Keijser JN, Mulder J, Ziegert M, Van der Zee EA, Harkany T, Luiten PGM. 17beta-estradiol enhances cortical cholinergic innervation and preserves synaptic density following excitotoxic lesions to the rat nucleus basalis magnocellularis. Neuroscience 2002; 110:489-504. [PMID: 11906788 DOI: 10.1016/s0306-4522(01)00560-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Estradiol exerts beneficial effects on neurodegenerative disorders associated with the decline of cognitive performance. The present study was designed to further investigate the effect of 17beta-estradiol on learning and memory, and to evaluate its neuroprotective action on cholinergic cells of the nucleus basalis magnocellularis, a neural substrate of cognitive performance. Female rats were ovariectomized at an age of 6 months. Three weeks later they received injections of either a mid-physiological dose of 17beta-estradiol or vehicle (oil), every other day for 2 weeks. The effect of estradiol on cognitive performance was tested in two associative learning paradigms. In the two-way active shock avoidance task estradiol-replaced animals learned significantly faster, while in the passive shock avoidance test no differences were observed between the experimental groups. Subsequent unilateral infusion of N-methyl-D-aspartate in the nucleus basalis magnocellularis resulted in a significant loss of cholinergic neurons concomitant with the loss of their fibers invading the somatosensory cortex. Estradiol treatment did not affect the total number of choline-acetyltransferase-immunoreactive neurons and their coexpression of the p75 low-affinity neurotrophin receptor either contralateral or ipsilateral to the lesion. In contrast, cholinergic fiber densities in estradiol-treated animals were greater both in the contralateral and ipsilateral somatosensory cortices as was detected by quantitative choline-acetyltransferase and vesicular acetylcholine transporter immunocytochemistry. However, estradiol treatment did not affect the lesion-induced relative percentage loss of cholinergic fibers. A significant decline of synaptophysin immunoreactivity paralleled the cholinergic damage in the somatosensory cortex of oil-treated animals, whereas an almost complete preservation of synaptic density was determined in estradiol-treated rats. Our results indicate that estradiol treatment enhances the cortical cholinergic innervation but has no rescuing effect on cholinergic nerve cells in the basal forebrain against excitotoxic damage. Nevertheless, estradiol may restore or maintain synaptic density in the cerebral cortex following cholinergic fiber loss. This estradiol effect may outweigh the lack of cellular protection on cholinergic cells at the functional level.
Collapse
Affiliation(s)
- K M Horvath
- Department of Molecular Neurobiology, Graduate School of Behavioural and Cognitive Neurosciences, University of Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
King DL, Arendash GW. Maintained synaptophysin immunoreactivity in Tg2576 transgenic mice during aging: correlations with cognitive impairment. Brain Res 2002; 926:58-68. [PMID: 11814407 DOI: 10.1016/s0006-8993(01)03294-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regional loss of synapses, particularly within the neocortex and hippocampus, is characteristic of Alzheimer's Disease (AD) and strongly correlated with extent of cognitive impairment. The Tg2576 transgenic mouse model of AD develops Abeta-containing neuritic plaques by 10-16 months of age and shows cognitive impairment in several tasks. In the present study, synaptophysin immunoreactivity (SYN-IR; a marker for synaptic terminals) was evaluated in the neocortex and hippocampus of behaviorally-tested Tg2576 transgenic (Tg+) mice aged 3, 9, 14, and 19 months of age. In control non-transgenic (Tg-) mice, SYN-IR in both neocortex and hippocampus tended to decrease with age, while SYN-IR in Tg+ mice was maintained with age. Thus, 19M Tg+ mice exhibited significantly greater synaptophysin immunostaining compared to 19M Tg- mice in both inner and outer neocortical regions, as well as in the dentate gyrus' outer molecular layer and polymorphic layer. Over all four age groups collectively, outer cortical SYN-IR was also greater in Tg+ compared to Tg- mice. Multiple factors could be responsible for maintained SYN-IR in aged Tg+ mice, including compensatory changes in synaptic morphology and staining of dystrophic neuritics associated with Abeta deposition. For all animals combined (Tg+ and Tg-), as well as for aged 19M animals alone, hippocampal SYN-IR was correlated with impaired acquisition and spatial reference memory in the Morris water maze task, suggestive that elevated hippocampal SYN-IR is a manifestation of pathophysiologic synaptic processing within the hippocampus. Also for 19M animals alone, hippocampal SYN-IR was highly correlated with impaired visible platform recognition, indicative that elevated SYN-IR is linked to visual agnosia. The results of this study are consistent with the premise that maintained SYN-IR in Tg2576 mice during aging is associated with impaired synaptic function, resulting in cognitive deficits.
Collapse
Affiliation(s)
- David L King
- Memory and Aging Research Laboratory, SCA 110, Department of Biology, University of South Florida, Tampa, FL 33620, USA
| | | |
Collapse
|
72
|
Arendt T. Alzheimer's disease as a disorder of mechanisms underlying structural brain self-organization. Neuroscience 2001; 102:723-65. [PMID: 11182240 DOI: 10.1016/s0306-4522(00)00516-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mental function has as its cerebral basis a specific dynamic structure. In particular, cortical and limbic areas involved in "higher brain functions" such as learning, memory, perception, self-awareness and consciousness continuously need to be self-adjusted even after development is completed. By this lifelong self-optimization process, the cognitive, behavioural and emotional reactivity of an individual is stepwise remodelled to meet the environmental demands. While the presence of rigid synaptic connections ensures the stability of the principal characteristics of function, the variable configuration of the flexible synaptic connections determines the unique, non-repeatable character of an experienced mental act. With the increasing need during evolution to organize brain structures of increasing complexity, this process of selective dynamic stabilization and destabilization of synaptic connections becomes more and more important. These mechanisms of structural stabilization and labilization underlying a lifelong synaptic remodelling according to experience, are accompanied, however, by increasing inherent possibilities of failure and may, thus, not only allow for the evolutionary acquisition of "higher brain function" but at the same time provide the basis for a variety of neuropsychiatric disorders. It is the objective of the present paper to outline the hypothesis that it might be the disturbance of structural brain self-organization which, based on both genetic and epigenetic information, constantly "creates" and "re-creates" the brain throughout life, that is the defect that underlies Alzheimer's disease (AD). This hypothesis is, in particular, based on the following lines of evidence. (1) AD is a synaptic disorder. (2) AD is associated with aberrant sprouting at both the presynaptic (axonal) and postsynaptic (dendritic) site. (3) The spatial and temporal distribution of AD pathology follows the pattern of structural neuroplasticity in adulthood, which is a developmental pattern. (4) AD pathology preferentially involves molecules critical for the regulation of modifications of synaptic connections, i.e. "morphoregulatory" molecules that are developmentally controlled, such as growth-inducing and growth-associated molecules, synaptic molecules, adhesion molecules, molecules involved in membrane turnover, cytoskeletal proteins, etc. (5) Life events that place an additional burden on the plastic capacity of the brain or that require a particularly high plastic capacity of the brain might trigger the onset of the disease or might stimulate a more rapid progression of the disease. In other words, they might increase the risk for AD in the sense that they determine when, not whether, one gets AD. (6) AD is associated with a reactivation of developmental programmes that are incompatible with a differentiated cellular background and, therefore, lead to neuronal death. From this hypothesis, it can be predicted that a therapeutic intervention into these pathogenetic mechanisms is a particular challenge as it potentially interferes with those mechanisms that at the same time provide the basis for "higher brain function".
Collapse
Affiliation(s)
- T Arendt
- Paul Flechsig Institute of Brain Research, Department of Neuroanatomy, University of Leipzig, Jahnallee 59, D-04109, Leipzig, Germany.
| |
Collapse
|
73
|
Scheff SW, Price DA, Sparks DL. Quantitative assessment of possible age-related change in synaptic numbers in the human frontal cortex. Neurobiol Aging 2001; 22:355-65. [PMID: 11378240 DOI: 10.1016/s0197-4580(01)00222-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate possible age-associated changes in human synaptic connectivity, superior-middle frontal cortex (Brodmann area 9) was evaluated with ultrastructural techniques. Short post mortem autopsy tissue was obtained from 37 cognitive normal individuals ranging in age from 20 to 89 years. A minimum of five subjects represented each decade of life. Synaptic volume density (Nv) was quantified in lamina III and V of the superior-middle frontal cortex employing the physical disector. The stereological assessment demonstrated maintenance of Nv in both lamina III and V of the frontal cortex. The lack of synaptic decline in the frontal cortex in neurologically normal individuals older than 65 years lends support to the idea that many stereotypic views of age-related changes in the CNS do not apply to all brain regions. It also suggests that synaptic loss observed in pathological conditions such as Alzheimer's disease, may be the result of the disease process and not a consequence of normal aging.
Collapse
Affiliation(s)
- S W Scheff
- Sanders-Brown Center on Aging, University of Kentucky, 800 South Limestone, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
74
|
Mucke L, Yu GQ, McConlogue L, Rockenstein EM, Abraham CR, Masliah E. Astroglial expression of human alpha(1)-antichymotrypsin enhances alzheimer-like pathology in amyloid protein precursor transgenic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:2003-10. [PMID: 11106573 PMCID: PMC1885780 DOI: 10.1016/s0002-9440(10)64839-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/08/2000] [Indexed: 01/10/2023]
Abstract
Proteases and their inhibitors play key roles in physiological and pathological processes. Cerebral amyloid plaques are a pathological hallmark of Alzheimer's disease (AD). They contain amyloid-ss (Ass) peptides in tight association with the serine protease inhibitor alpha(1)-antichymotrypsin.(1,2) However, it is unknown whether the increased expression of alpha(1)-antichymotrypsin found in AD brains counteracts or contributes to the disease. We used regulatory sequences of the glial fibrillary acidic protein gene(3) to express human alpha(1)-antichymotrypsin (hACT) in astrocytes of transgenic mice. These mice were crossed with transgenic mice that produce human amyloid protein precursors (hAPP) and Ass in neurons.(4,5) No amyloid plaques were found in transgenic mice expressing hACT alone, whereas hAPP transgenic mice and hAPP/hACT doubly transgenic mice developed typical AD-like amyloid plaques in the hippocampus and neocortex around 6 to 8 months of age. Co-expression of hAPP and hACT significantly increased the plaque burden at 7 to 8, 14, and 20 months. Both hAPP and hAPP/hACT mice showed significant decreases in synaptophysin-immunoreactive presynaptic terminals in the dentate gyrus, compared with nontransgenic littermates. Our results demonstrate that hACT acts as an amyloidogenic co-factor in vivo and suggest that the role of hACT in AD is pathogenic.
Collapse
Affiliation(s)
- L Mucke
- Gladstone Institute of Neurological Disease, Department of Neurology, and Neuroscience Program, University of California San Francisco, San Francisco, California, USA.
| | | | | | | | | | | |
Collapse
|
75
|
Martin-Ruiz CM, Piggott M, Gotti C, Lindstrom J, Mendelow AD, Siddique MS, Perry RH, Perry EK, Court JA. Alpha and beta nicotinic acetylcholine receptors subunits and synaptophysin in putamen from Parkinson's disease. Neuropharmacology 2000; 39:2830-9. [PMID: 11044753 DOI: 10.1016/s0028-3908(00)00110-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well established that nicotinic receptors in the mammalian striatum are involved in modulation of the release of several neurotransmitters, including dopamine. In addition, nicotinic receptors with high affinity for agonists have generally been found to be reduced in the striatum in Parkinson's disease. In the present study antibodies have been used to examine which subunits contribute to the striatal nicotinic receptor loss in Parkinson's disease, and whether the reduction in [(3)H]nicotine binding correlates with synaptic loss. Autopsy tissue from the putamen of 12 Parkinson's disease cases and 12 age-matched control subjects was analysed by immunoblotting using antibodies against recombinant peptides specific for alpha3, alpha4, alpha7, beta2 and beta4 nicotinic acetylcholine receptor (nAChR) subunits and the synaptic marker synaptophysin, in conjunction with assessment of [(3)H]nicotine binding by autoradiography. The data indicate that there is no loss of alpha3, alpha4, alpha7 and beta2 immunoreactivity in the putamen in Parkinson's disease, despite a highly significant reduction in [(3)H]nicotine binding. An intense signal of beta4 immunoreactivity was found in human dorsal root ganglia, but not in temporal cortex or putamen samples. Synaptophysin immunoreactivities were also similar in Parkinson's disease and control cases. These results suggest that the loss of nicotine binding in the putamen in Parkinson's disease may involve an nAChR subunit (e.g., alpha5 and/or alpha6) other than those investigated. Alternatively, the results could reflect impaired subunit assembly at the plasma membrane.
Collapse
Affiliation(s)
- C M Martin-Ruiz
- Joint MRC Newcastle University Centre Development for Clinical Brain Aging, MRC Building, Newcastle General Hospital, Westgate Road, NE4 6BE, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Giacchino J, Criado JR, Games D, Henriksen S. In vivo synaptic transmission in young and aged amyloid precursor protein transgenic mice. Brain Res 2000; 876:185-90. [PMID: 10973607 DOI: 10.1016/s0006-8993(00)02615-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration and cognitive impairment. We examined in vivo alterations in hippocampal neurotransmission in both young and aged PDAPP transgenic mice and nontransgenic littermates. We now report that in vivo abnormal neurotransmission in hippocampal circuits of PDAPP mice precedes beta deposition and neurodegeneration. These in vivo data provide the first evidence that dysfunction in hippocampal neuronal circuits may not be correlated with age-related extracellular beta plaque deposition.
Collapse
Affiliation(s)
- J Giacchino
- Department of Neuropharmacology (CVN-13), The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
77
|
Cambon K, Davies HA, Stewart MG. Synaptic loss is accompanied by an increase in synaptic area in the dentate gyrus of aged human apolipoprotein E4 transgenic mice. Neuroscience 2000; 97:685-92. [PMID: 10842013 DOI: 10.1016/s0306-4522(00)00065-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To investigate the relationship between the three isoforms of apolipoprotein E (E2, E3 and E4) and the integrity of the synaptic circuitry in the dentate gyrus of the hippocampus, we have estimated the synapse per neuron ratio and mean apposition zone area per synapse at the electron microscope level in the dentate gyrus of apolipoprotein E knockout and human apolipoprotein E transgenic mice aged six to 24months. During ageing, only in human apolipoprotein E4 mice was there a decrease in synapse per neuron ratio, accompanied by an increase in synaptic size. When these mice were compared with human apolipoprotein E2, apolipoprotein E knockout and wild-type mice at old age, they displayed the lowest synapse per neuron ratio, but similar apposition zone area. In contrast, as in our previous study, aged apolipoprotein E knockout mice did not show any sign of synaptic degeneration. The functional consequences of such morphological changes remain to be determined. However, if such age-related loss of synapses occurred in the brain of Alzheimer apolipoprotein E4 patients, they might be additive to pathological processes and could contribute to greater cognitive impairment.
Collapse
Affiliation(s)
- K Cambon
- The Open University, Department of Biological Sciences, Walton Hall, MK7 6AA, Milton Keynes, UK.
| | | | | |
Collapse
|
78
|
Bi X, Yong AP, Zhou J, Gall CM, Lynch G. Regionally selective changes in brain lysosomes occur in the transition from young adulthood to middle age in rats. Neuroscience 2000; 97:395-404. [PMID: 10799771 DOI: 10.1016/s0306-4522(00)00021-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The possibility that brain aging in rats exhibits regional variations of the type found in humans was studied using lysosomal chemistry as a marker. Age-related (two vs 12months; male Sprague-Dawley) differences in cathepsin D immunostaining were pronounced in the superficial layers of entorhinal cortex and in hippocampal field CA1, but not in neocortex and field CA3. Three changes were recorded: an increase in the intraneuronal area occupied by labeled lysosomes; clumping of immunopositive material within neurons; more intense cytoplasmic staining. Western blot analyses indicated that the increases involved the active forms of cathepsin D rather than their proenzyme. Shrinkage of cathepsin-D-positive neuronal cell bodies was observed in entorhinal cortex but not in neocortical sampling zones. Age-related lysosomal changes as seen with cathepsin B immunocytochemistry were considerably more subtle than those obtained with cathepsin D antibodies. In contrast, a set of glial and/or vascular elements located in a distal dendritic field of the middle-aged hippocampus was much more immunoreactive for cathepsin B than cathepsin D. The areas exhibiting sizeable changes in the present study are reported to be particularly vulnerable to aging in humans. The results thus suggest that aspects of brain aging common to mammals help shape neurosenescence patterns in humans.
Collapse
Affiliation(s)
- X Bi
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA 92697-3800, USA.
| | | | | | | | | |
Collapse
|
79
|
Abstract
Alzheimer's disease (AD), characterized by neuritic plaques and neurofibrillary tangles of the brain, is experienced by more and more elderly people in a form of senile dementia. Four genes are closely linked with AD and are located on chromosomes 21, 19, 14 and 1. Transgenic technology enables the development of animal models for research into this human disease. Recently reported transgenic AD mouse models, which express AD-related mutant human genes, develop some significant aspects of AD-like pathology. The specific role of these mice in representing different targets, the consequent pathology of AD and the availability of this increasingly popular tool for investigating new therapeutic strategies for AD are reviewed.
Collapse
Affiliation(s)
- P Yu
- General Toxicology I Unit, Istituto di Ricerche Biomediche 'A. Marxer' LCG RBM S.p.A, Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | | |
Collapse
|
80
|
Iwai A. Properties of NACP/alpha-synuclein and its role in Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:95-109. [PMID: 10899435 DOI: 10.1016/s0925-4439(00)00036-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The precursor of the non-amyloid beta/A4 protein (non-Abeta) component of Alzheimer's disease amyloid (NACP)/alpha-synuclein is the human homologue of alpha-synuclein, a member of a protein family which includes alpha-, beta- and gamma-synuclein. This protein is thought to be involved in neuronal plasticity because of its unique expression, mainly in the telencephalon during maturation. Consequently, disarrangement of NACP/alpha-synuclein might disrupt synaptic activity, resulting in memory disturbance. Previous studies have shown that damage to synaptic terminals is closely associated with global cognitive impairment and is an early event in the pathogenesis of Alzheimer's disease. Although the relationship between synaptic damage and amyloidogenesis is not clear, some proteins at the synaptic site have been implicated in both neuronal alteration and amyloid formation. Indeed, abnormal accumulation of both NACP/alpha-synuclein and Abeta precursor protein occurs at synapses of Alzheimer's patients. Other evidence suggests that NACP/alpha-synuclein is a component of the Lewy bodies found in patients with Parkinson's disease or dementia with Lewy bodies, and that a point mutation in this protein may be the cause of familial Parkinson's disease. Consequently, abnormal transport, metabolism or function of NACP/alpha-synuclein appears to impair synaptic function, which induces, at least in part, neuronal degeneration in several neurodegenerative diseases.
Collapse
Affiliation(s)
- A Iwai
- Neuroscience Research, Pharmacology Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan.
| |
Collapse
|
81
|
High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 2000. [PMID: 10818140 DOI: 10.1523/jneurosci.20-11-04050.2000] [Citation(s) in RCA: 1320] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amyloid plaques are a neuropathological hallmark of Alzheimer's disease (AD), but their relationship to neurodegeneration and dementia remains controversial. In contrast, there is a good correlation in AD between cognitive decline and loss of synaptophysin-immunoreactive (SYN-IR) presynaptic terminals in specific brain regions. We used expression-matched transgenic mouse lines to compare the effects of different human amyloid protein precursors (hAPP) and their products on plaque formation and SYN-IR presynaptic terminals. Four distinct minigenes were generated encoding wild-type hAPP or hAPP carrying mutations that alter the production of amyloidogenic Abeta peptides. The platelet-derived growth factor beta chain promoter was used to express these constructs in neurons. hAPP mutations associated with familial AD (FAD) increased cerebral Abeta(1-42) levels, whereas an experimental mutation of the beta-secretase cleavage site (671(M-->I)) eliminated production of human Abeta. High levels of Abeta(1-42) resulted in age-dependent formation of amyloid plaques in FAD-mutant hAPP mice but not in expression-matched wild-type hAPP mice. Yet, significant decreases in the density of SYN-IR presynaptic terminals were found in both groups of mice. Across mice from different transgenic lines, the density of SYN-IR presynaptic terminals correlated inversely with Abeta levels but not with hAPP levels or plaque load. We conclude that Abeta is synaptotoxic even in the absence of plaques and that high levels of Abeta(1-42) are insufficient to induce plaque formation in mice expressing wild-type hAPP. Our results support the emerging view that plaque-independent Abeta toxicity plays an important role in the development of synaptic deficits in AD and related conditions.
Collapse
|
82
|
Mukaetova-Ladinska EB, Hurt J, Jakes R, Xuereb J, Honer WG, Wischik CM. Alpha-synuclein inclusions in Alzheimer and Lewy body diseases. J Neuropathol Exp Neurol 2000; 59:408-17. [PMID: 10888371 DOI: 10.1093/jnen/59.5.408] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alpha-synuclein has assumed particular neuropathological interest in the light both of its identification as a non-beta-amyloid plaque constituent in Alzheimer disease (AD), and the recent association between dominant inheritance of Parkinson disease (PD) and 2 missense mutations at positions 30 and 53 of the synuclein protein. We report a systematic study of alpha-synuclein, tau, and ubiquitin immunoreactivity in representative neurodegenerative disorders of late life. The alpha-synuclein association with Lewy bodies is variable, peripheral, and is not stable with respect to proteases or acid treatment, whereas there is no association with Pick bodies. Stable patterns of immunoreactivity included neurites and a novel inclusion body. Although there is an overlap between the presence of Lewy bodies and stable alpha-synuclein immunoreactivity, this is seen only in the presence of concomitant neuropathological features of AD. The novel alpha-synuclein inclusion body identified in pyramidal cells of the medial temporal lobe in particular was found in AD and in the Lewy body variant of AD, and was associated neither with ubiquitin nor tau protein. The inclusion is therefore neither a Lewy body nor a PHF-core body, but may be confused with the Lewy body, particularly in the Lewy body variant of AD. Abnormal processing of alpha-synuclein leading to its deposition in the form of proteolytically stable deposits is a particular feature of the intermediate stages of AD.
Collapse
|
83
|
Hara J, Shankle WR, Musha T. Cortical atrophy in Alzheimer's disease unmasks electrically silent sulci and lowers EEG dipolarity. IEEE Trans Biomed Eng 1999; 46:905-10. [PMID: 10431454 DOI: 10.1109/10.775399] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) patients show lower dipolarity (goodness-of-fit) for dipole localizations of alpha or other dominant electroencephalography (EEG) frequency components in the occipital cortex. In the present study, we performed computer simulations to discover which of distributions of dipole activity lower dipolarity in a manner similar to that seen in severe AD. Dipolarity was estimated from simulations of various electric dipole generator configurations within the occipital cortex under conditions of widened cortical sulci (a severely demented AD case) or no sulcal widening (a normal subject). The cortical and scalp surfaces, derived from the subjects' MRI's, were assumed to be uniformly electrically conducting. Randomly placed, nonoverlapping lesions ranging from 1 to 4 mm2 per lesion were used in both the normal and AD models to simulate the electrical effect of neuropathological AD lesions. In both models, dipolarity decreased as total lesion size increased. However, the AD model showed lower dipolarity than the normal model for both individual lesion sizes and for larger total lesion sizes. The larger decline in dipolarity in the AD model appears to be due to sulcal widening which unmasks the effect of lesions buried within sulci. These simulations identify a possible mechanism explaining why sulcally-located neuropathological changes plus progressive cortical atrophy in AD brains (and presumably other cortical disorders producing atrophy) alter EEG patterns and dipolarity differently from normal cortex damaged by similar lesions.
Collapse
Affiliation(s)
- J Hara
- Bioinformatics Laboratory, Keio University, Kanagawa, Japan.
| | | | | |
Collapse
|
84
|
Kish SJ, Mastrogiacomo F, Guttman M, Furukawa Y, Taanman JW, Dozić S, Pandolfo M, Lamarche J, DiStefano L, Chang LJ. Decreased brain protein levels of cytochrome oxidase subunits in Alzheimer's disease and in hereditary spinocerebellar ataxia disorders: a nonspecific change? J Neurochem 1999; 72:700-7. [PMID: 9930743 DOI: 10.1046/j.1471-4159.1999.0720700.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Controversy exists as to the clinical importance, cause, and disease specificity of the cytochrome oxidase (CO) activity reduction observed in some patients with Alzheimer's disease (AD). Although it is assumed that the enzyme is present in normal amount in AD, no direct measurements of specific CO protein subunits have been conducted. We measured protein levels of CO subunits encoded by mitochondrial (COX I, COX II) and nuclear (COX IV, COX VIc) DNA in autopsied brain of patients with AD whom we previously reported had decreased cerebral cortical CO activity. To assess disease specificity, groups of patients with spinocerebellar ataxia type I and Friedreich's ataxia were also included. As compared with the controls, mean protein concentrations of all four CO subunits were significantly decreased (-19 to -47%) in temporal and parietal cortices in the AD group but were not significantly reduced (-12 to -17%) in occipital cortex. The magnitude of the reduction in protein levels of the CO subunits encoded by mitochondrial DNA (-42 to -47%) generally exceeded that encoded by nuclear DNA (-19 to -43%). In the spinocerebellar ataxia disorders, COX I and COX II levels were significantly decreased in cerebellar cortex (-22 to -32%) but were normal or close to normal in cerebral cortex, an area relatively unaffected by neurodegeneration. We conclude that protein levels of mitochondrial- and nuclear-encoded CO subunits are moderately reduced in degenerating but not in relatively spared brain areas in AD and that the decrease is not specific to this disorder. The simplest explanation for our findings is that CO is decreased in human brain disorders as a secondary event in brain areas having reduced neuronal activity or neuronal/synaptic elements consequent to the primary neurodegenerative process.
Collapse
Affiliation(s)
- S J Kish
- Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
|
86
|
Arima K, Uéda K, Sunohara N, Hirai S, Izumiyama Y, Tonozuka-Uehara H, Kawai M. Immunoelectron-microscopic demonstration of NACP/alpha-synuclein-epitopes on the filamentous component of Lewy bodies in Parkinson's disease and in dementia with Lewy bodies. Brain Res 1998; 808:93-100. [PMID: 9795161 DOI: 10.1016/s0006-8993(98)00734-3] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We examined brains from Parkinson's disease and from dementia with Lewy bodies (LBs) by using antibodies to NACP/alpha-synuclein. Immunohistochemically, all of the antibodies against the amino-terminal region, NAC domain, and carboxyl-terminal region of NACP labeled not only LBs, pale bodies (PBs), and dystrophic neurites, but also fine thread-like structures in the neuronal perikarya (perikaryal threads) in the hypothalamus and brainstem nuclei. On electron microscopy, immunoreactive products were found to label the 9 to 12 nm-thick filamentous component (LB-filaments) of LBs, PBs, and perikaryal threads. The NACP-immunoreactive perikaryal threads, consisting of small bundles of LB-filaments and randomly oriented LB-filaments, presumably represent an initial stage of LB- or PB-formation. The present study indicates that the entire molecule of NACP is involved in the neuronal filament-aggregating processes of LB disorders.
Collapse
Affiliation(s)
- K Arima
- Department of Ultrastructure and Histochemistry, Tokyo Institute of Psychiatry, 2-1-8 Kamikitazawa, Setagaya-ku, Tokyo 156-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
87
|
Bahr BA, Hoffman KB, Yang AJ, Hess US, Glabe CG, Lynch G. Amyloid ? protein is internalized selectively by hippocampal field CA1 and causes neurons to accumulate amyloidogenic carboxyterminal fragments of the amyloid precursor protein. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980720)397:1<139::aid-cne10>3.0.co;2-k] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
88
|
Wong TP, Campbell PM, Ribeiro-da-Silva A, Cuello AC. Synaptic numbers across cortical laminae and cognitive performance of the rat during ageing. Neuroscience 1998; 84:403-12. [PMID: 9539212 DOI: 10.1016/s0306-4522(97)00485-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, we have investigated the changes in the number of individual presynaptic boutons in the neocortex of rats and correlated them with cognitive performance. Brown Norway x Fischer 344 F1 hybrid rats, aged from one to 24 months, were used. Using synaptophysin as a marker for presynaptic boutons, we found that in the parietal II region of the neocortex an age-related decrease in the density of immunostained punctae representing presynaptic boutons occurred. Regression analysis showed that this decline in the number of presynaptic boutons correlates with ageing (r=0.495, P<0.05). Interestingly, we found that this age-related depletion of presynaptic boutons was more intense in the deeper cortical lamina, such as laminae V and VI (mean decrease of 18%), than in the superficial laminae (mean decrease of 8% in laminae I-IV). Using the Morris water maze test, we observed that young rats acquired the task at twice the speed of aged animals (48.9 +/- 9.0 s and 91.0 +/- 4.9 s for young and aged animals, respectively). Furthermore, at the end of the training period, the aged cohort still showed significantly higher escape latencies in the Morris water maze. The present findings support the concept that the decline in cognitive performances in ageing is related to the loss of synapses in the cerebral cortex.
Collapse
Affiliation(s)
- T P Wong
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
89
|
Heffernan JM, Eastwood SL, Nagy Z, Sanders MW, McDonald B, Harrison PJ. Temporal cortex synaptophysin mRNA is reduced in Alzheimer's disease and is negatively correlated with the severity of dementia. Exp Neurol 1998; 150:235-9. [PMID: 9527892 DOI: 10.1006/exnr.1997.6772] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We measured synaptophysin mRNA in neocortical tissue from 7 prospectively assessed, pathologically verified normal individuals, 17 subjects with Alzheimer's disease (AD), and 13 subjects with a non-AD dementia. In temporal cortex (Brodmann area 21), synaptophysin mRNA was decreased in AD and non-AD dementia groups compared to controls. The loss was also present relative to polyadenylated mRNA content. Synaptophysin mRNA signal correlated negatively with the degree of dementia and negatively with the pathological severity of AD. In occipital cortex (Brodmann area 17) there were no differences between groups nor clinicopathological correlations. These data extend the evidence for a regional synaptic pathology in AD which affects synaptic protein gene expression by temporal cortex neurons.
Collapse
Affiliation(s)
- J M Heffernan
- Department of Clinical Neurology (Neuropathology), Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, United Kingdom
| | | | | | | | | | | |
Collapse
|
90
|
Aronica E, Dickson DW, Kress Y, Morrison JH, Zukin RS. Non-plaque dystrophic dendrites in Alzheimer hippocampus: a new pathological structure revealed by glutamate receptor immunocytochemistry. Neuroscience 1998; 82:979-91. [PMID: 9466422 DOI: 10.1016/s0306-4522(97)00260-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease is a progressive dementia characterized by a pronounced neurodegeneration in the entorhinal cortex, hippocampal CA1, and subiculum. Excitatory amino acid receptor-mediated excitotoxicity is postulated to play a role in the neurodegeneration in Alzheimer's disease. The present study investigated immunocytochemical localization of excitatory amino acid receptor subunits in the hippocampus of twelve Alzheimer's disease and eleven controls, matched for age, sex and post mortem interval. Immunocytochemistry with antibodies specific for glutamate receptors GluR1, GluR2(4) (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid), GluR5/6/7 (kainate) and NR1 (N-methyl-D-aspartate) receptor subunits demonstrated that virtually all projection neurons in all subfields contained subunits from each receptor class. However, regional differences in immunoreactivity were apparent in Alzheimer's disease vs normal human brain. In the vulnerable regions (i.e. CA1) immunolabelling of GluR1, GluR2(4), GluR5/6/7 and NR1 was reduced, presumably due to cell loss. In contrast, GluR2(4) immunolabelling appeared to be increased in the inner portion of the molecular layer of the dentate gyrus. In addition to cellular labelling, GluR1, GluR2(4) and NR1 immunolabelling revealed a novel pathological structure in 12 of 12 Alzheimer's disease, but none of the control brains. The lesions were juxtacellular clusters of granular immunoreactivity in the neuropil of the pyramidal cell layer. Ultrastructural analysis revealed these to be cellular processes containing dense vesicles and flocculent material with immunolabelling localized to plasma and vesicular membranes. They were not specifically associated with amyloid fibrils and did not contain paired helical filaments and they were also distinct from granulovacuolar degeneration. Several structures contained Hirano body filaments indicating that the dystrophic processes were most likely dendritic in origin. Additional studies are needed to determine the pathogenesis of these lesions, which could provide an additional index of dendritic deterioration in Alzheimer's disease.
Collapse
Affiliation(s)
- E Aronica
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
91
|
Chapter 24 Neurodegenerative Alzheimer-like pathology in PDAPP 717V→F transgenic mice. PROGRESS IN BRAIN RESEARCH 1998. [DOI: 10.1016/s0079-6123(08)64025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
92
|
Honer WG, Falkai P, Young C, Wang T, Xie J, Bonner J, Hu L, Boulianne GL, Luo Z, Trimble WS. Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia. Neuroscience 1997; 78:99-110. [PMID: 9135092 DOI: 10.1016/s0306-4522(96)00489-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The neuronal organization and patterns of afferent innervation are abnormal in the cingulate cortex in schizophrenia, and associated changes in synaptic terminals could be present. A panel of monoclonal antibodies was defined with biochemical and fusion protein studies as detecting syntaxin (antibody SP6), synaptophysin (antibody SP4) and synaptosomal-associated protein-25 (antibody SP12). These antibodies and a polyclonal antibody reactive with neural cell adhesion molecule were used to investigate the cingulate cortex in schizophrenia. Immunocytochemistry indicated that syntaxin immunoreactivity had a considerably wider distribution than synaptophysin. Overall, multivariate analysis indicated increased synaptic terminal protein immunoreactivity in schizophrenia compared to controls (P=0.004). Controlled for age and post mortem interval, syntaxin immunoreactivity was significantly elevated in schizophrenia (P=0.004), and neural cell adhesion molecule immunoreactivity was also elevated (P=0.05). The neural cell adhesion molecule to synaptophysin ratio was increased (P=0.005), possibly indicating the presence of less mature synapses in schizophrenia. Elevated syntaxin immunoreactivity is consistent with increased glutamatergic afferents to the cingulate cortex in schizophrenia, and combined with the neural cell adhesion molecule to synaptophysin ratio results suggests that synaptic function in this region in schizophrenia may be abnormal.
Collapse
Affiliation(s)
- W G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Neurodegenerative Alzheimer-like Pathology in PDAPP 717V → F Transgenic Mice. CONNECTIONS, COGNITION AND ALZHEIMER’S DISEASE 1997. [DOI: 10.1007/978-3-642-60680-9_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
94
|
Calhoun ME, Jucker M, Martin LJ, Thinakaran G, Price DL, Mouton PR. Comparative evaluation of synaptophysin-based methods for quantification of synapses. JOURNAL OF NEUROCYTOLOGY 1996; 25:821-8. [PMID: 9023727 DOI: 10.1007/bf02284844] [Citation(s) in RCA: 226] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Development, ageing, and a variety of neurological disorders are characterized by selective alterations in specific populations of nerve cells which are, in turn, associated with changes in the numbers of synapses in the target fields of these neurons. To begin to delineate the significance of changes in synapses in development, ageing, and disease, it is first essential to quantify the number of synapses in defined regions of the CNS. In the past, investigators have used EM methods to assess synapse numbers or density, but these approaches are costly, labour intensive, and technically difficult, particularly in autopsy material. To begin to define reliable strategies useful for studies of both animals and humans, we used three techniques to measure synaptophysin-immunoreactivity in rat brain. The levels of synaptophysin protein were determined by Western blots of five hippocampal subregions; the intensity of synaptophysin-immunoreactivity in dentate gyrus and stratum oriens was determined by optical densitometry of immunocytochemically stained sections; and the total number of synaptophysin-immunoreactivity presynaptic boutons in dentate gyrus and stratum oriens was assessed by unbiased stereology. Each approach has advantages and disadvantages. Western blotting is the least time-consuming of the three methods and allows simultaneous processing of multiple samples. In systematically sampled histological sections, both densitometry and stereology allow precise definition of the region of interest, and the stereological optical dissector method allows quantitation of the numbers of synaptophysin-immunoreactive boutons. Stereology was the only method that clearly demonstrated greater synaptophysin-immunoreactivity in the dentate gyrus as compared to stratum oriens. The use of systematic sampling and the dissector technique offer a high degree of anatomical resolution (lacking in Western blot methods) and has quantitative advantage over the greyscale-based density approach. Thus, at present, stereology is the most useful method for estimating synaptic numbers in defined regions of the brain.
Collapse
Affiliation(s)
- M E Calhoun
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
95
|
Reproducible sampling regimen for specific cortical regions: application to speech-associated areas. J Neurosci Methods 1996. [DOI: 10.1016/0165-0270(96)00005-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
96
|
Nishi M, Whitaker-Azmitia PM, Azmitia EC. Enhanced synaptophysin immunoreactivity in rat hippocampal culture by 5-HT 1A agonist, S100b, and corticosteroid receptor agonists. Synapse 1996; 23:1-9. [PMID: 8723130 DOI: 10.1002/(sici)1098-2396(199605)23:1<1::aid-syn1>3.0.co;2-e] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Serotonin (5-HT) has been shown to modulate brain maturation during development and adult plasticity. This effect in the whole animal may be due to activation of 5-HT1A receptors and a corresponding increases in S100b and corticosterone. Synaptophysin, an integral protein of the synaptic vesicle membrane that correlates with synaptic density and neurotransmitter release, is reduced by depletion of 5-HT in the cortex and hippocampus of the adult rat. Injections of a 5-HT1A agonist or dexamethasone can reverse the loss of synaptophysin immunoreactivity (IR). In this study we used morphometric analysis of synaptophysin-IR to study the effects of the 5-HT1A agonist, ipsapirone, and the neuronal extension factor, S100b on hippocampal neurons grown in a serum and steroid free media. Both compounds increased the synaptophysin-IR at doses previously established to be highly specific. Ipsapirone (10(-9)M) was more effective on neuronal cell bodies staining and S100b (10 ng/ml) was more effective in increasing the number of synaptophysin-IR varicosities on neuronal processes. In addition both types of corticosteroid receptor agonists, at previously established specific doses, Ru28362 (10(-8) M) and aldosterone (10(-9) M) produced smaller increases compared to control groups in both the cell body staining and the number of varicosities. The effect of these differentiating factors on the expression of synaptophysin-IR suggests multiple regulation sites for producing and maintaining pre-synaptic elements in the brain.
Collapse
Affiliation(s)
- M Nishi
- Department of Biology, New York University, New York 10003, USA
| | | | | |
Collapse
|
97
|
Blennow K, Bogdanovic N, Alafuzoff I, Ekman R, Davidsson P. Synaptic pathology in Alzheimer's disease: relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the ApoE4 allele. J Neural Transm (Vienna) 1996; 103:603-18. [PMID: 8811505 DOI: 10.1007/bf01273157] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease (AD) is characterised by an increased number of senile plaques (SP) and neurofibrillary tangles (NFT) as compared with that found in non-demented individuals of the same age, and a marked degeneration and loss of synapses. One of the main risk-factors for the disorder is inheritance of the apolipoprotein E4 (ApoE4) allele. To further study the relation between these pathogenetic substrates for AD, we quantified the synaptic vesicle membrane protein rab3a in brain tissue from 19 patients with AD and 9 age-matched control subjects. Rab3a levels were reduced in AD, both in the hippocampus (60% of control level, p < 0.0001), and in the frontal cortex (68% of control level, p < 0.01), but not in the cerebellum (92% of control level). Within the AD group, lower rab3a levels were found both with increasing duration and severity of dementia. These findings further support that synaptic pathology is closely correlated to the clinical dementia in AD. In contrast, no significant correlations were found between SP counts and duration or severity of dementia, while higher NFT counts in the frontal cortex were found with increasing severity of dementia (r = 0.54, p < 0.05). There were no significant correlations between the rab3a level and SP or NFT counts, and by immunohistochemistry, reduced rab3a immunostaining was found throughout the neuropil in AD brain, without relation to SP or NFT. These findings suggest that the synaptic pathology in AD is not closely related to the presence of SP and NFT. No significant differences in rab3a levels were found in any brain region between AD patients possessing different numbers of the ApoE4 allele, suggesting that, although ApoE4 is A risk factor for earlier development of AD, the degree of synaptic pathology does not differ between patients with or without the ApoE4 allele.
Collapse
Affiliation(s)
- K Blennow
- Department of Clinical Neuroscience, Unit of Neurochemistry, University of Göteborg, Sweden
| | | | | | | | | |
Collapse
|
98
|
Jellinger KA. Structural basis of dementia in neurodegenerative disorders. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1996; 47:1-29. [PMID: 8841954 DOI: 10.1007/978-3-7091-6892-9_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Progressive dementia syndromes in adults are caused by a number of conditions associated with different structural lesions of the brain. In most clinical and autopsy series, senile dementia of the Alzheimer type is the most common cause of mental decline in the elderly accounting for up to 90%, whereas degenerative non-Alzheimer dementias range from 7 to 30% (mean 8-10%). They include a variety of disorders featured morphologically by neuron and synapse loss and gliosis, often associated with cytopathological changes involving specific cortical and subcortical circuits. These neuronal/glial inclusions and neuritic alterations show characteristic immunoreactions and ultrastructure indicating cytoskeletal mismetabolism. They are important diagnostic sign posts that, in addition to the distribution pattern of degenerative changes, indicate specific vulnerability of neuronal populations, but their pathogenic role and contribution to mental decline are still poorly understood. In some degenerative disorders no such cytopathological hallmarks have been observed; a small number is genetically determined. While in Alzheimer's disease (AD) mental decline is mainly related to synaptic and neuritic pathologies, other degenerative disorders show variable substrates of dementia involving different cortical and/or subcortical circuits which may or may not be superimposed by cortical Alzheimer lesions. In most demented patients with Lewy body disorders (Parkinson's disease, Lewy body dementia), they show similar distribution as in AD, while in Progressive Supranuclear Palsy (PSP), mainly prefrontal areas are involved. Lobar atrophies, increasingly apparent as causes of dementia, show fronto-temporal cortical neuron loss, spongiosis and gliosis with or without neuronal inclusions (Pick bodies) and ballooned cells, while dementing motor neuron disease and multisystem atrophies reveal ubiquitinated neuronal and oligodendroglial inclusions. There are overlaps or suggested relationships between some neurodegenerative disorders, e.g. between corticobasal degeneration, PSP and Pick's atrophy. In many of these disorders with involvement of the basal ganglia, degeneration of striatofrontal and hippocampo-cortical loops are important factors of mental decline which may be associated with isocortical neuronal degeneration and synapse loss or are superimposed by cortical AD pathology.
Collapse
Affiliation(s)
- K A Jellinger
- L. Boltzmann Institute of Clinical Neurobiology, Lainz-Hospital, Vienna, Austria
| |
Collapse
|
99
|
Okazaki T, Wang H, Masliah E, Cao M, Johnson SA, Sundsmo M, Saitoh T, Mori N. SCG10, a neuron-specific growth-associated protein in Alzheimer's disease. Neurobiol Aging 1995; 16:883-94. [PMID: 8622778 DOI: 10.1016/0197-4580(95)02001-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuronal growth-associated proteins (nGAPs) are markers of neuronal process outgrowth and are associated with both degenerative and sprouting responses in Alzheimer's disease (AD) brain. To study possible involvement of SCG10, an nGAP, in AD, we cloned human SCG10 cDNA and analyzed SCG-10 at mRNA and protein levels in control and AD brains. The deduced amino acid sequence of human SCG10 was 69% identical to stathmin, another nGAP. By in situ hybridization, both SCG10 and stathmin mRNAs were detected in selected neuronal populations in aged human brains. Quantitative analysis by RNase protection revealed that levels of neither SCG10 nor stathmin mRNAs were significantly altered in AD. Using an SCG10-specific antibody, Western blot analysis did not reveal any quantitative changes of SCG10 in AD. However, when the concentration of SCG10 protein was plotted against the number of tangles, a positive correlation was found. SCG10 levels did not correlate with plaque numbers. Furthermore, immunohistochemical study revealed that neuronal SCG10 protein accumulated in the cell bodies in AD-affected regions. Thus, SCG10 compartmentalization and metabolism may be altered in AD possibly due to mechanisms related to tangle formation in this disease.
Collapse
Affiliation(s)
- T Okazaki
- Division of Neurogerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles 90089-0191, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
The alteration of certain neuropeptide levels is a dramatic and consistent finding in the brains of AD patients. Levels of SS, which is normally present in high concentrations in cerebral cortex /75/, are consistently decreased in the neocortex, hippocampus and CSF of AD patients. In addition, decreased levels of SS correlate regionally with the distribution of neurofibrillary tangles in AD /47/. Most available evidence suggests that the subset of SS-containing neurons which lack NADPH diaphorase may be relatively vulnerable to degeneration in AD. CRF is another neuropeptide with frequently observed changes in AD. Levels of CRF, which is normally present in low concentrations in cortical structures /75/, are decreased in the neocortex and hippocampus of AD patients. However, levels of CRF in the CSF of AD patients are not consistently reduced, but this is likely a reflection of the relatively low levels of CRF normally present in cerebral cortex. Studies of deep gray structures in AD brains reveal elevated levels of GAL in the nucleus basalis. The ability of GAL to inhibit cholinergic neurotransmission has generated considerable interest, since degeneration of cholinergic neurons in the basal forebrain consistently occurs in AD. In addition, the presence of NADPH diaphorase in GAL-containing neurons may underlie the relative resistance of these neurons to degeneration. From the aforementioned studies, it appears that the neurons which are relatively resistant to neurodegeneration in AD contain NADPH diaphorase. It is hypothesized that the presence of NADPH diaphorase protects these neurons from neurotoxicity mediated by glutamate or nitric oxide. Although one recent study /147/ has reported an elevation of the microtubule-associated protein tau in the CSF of AD patients (and this could become a useful antemortem diagnostic tool for AD), no similar CSF abnormality has been found for any of the neuropeptides. Thus, the measurement of CSF neuropeptide levels presently remains unhelpful in the diagnosis and treatment of AD. Future research on neuropeptides and their potential roles in the pathogenesis, diagnosis, and treatment of AD will likely involve further development of pharmacological modulators of neuropeptide systems, together with the further study of brain neuropeptidases.
Collapse
Affiliation(s)
- L C Roeske
- Department of Neurology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|