51
|
van Royen N, Piek JJ, Schaper W, Fulton WF. A Critical Review of Clinical Arteriogenesis Research. J Am Coll Cardiol 2009; 55:17-25. [PMID: 20117358 DOI: 10.1016/j.jacc.2009.06.058] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/05/2009] [Accepted: 06/29/2009] [Indexed: 12/01/2022]
Affiliation(s)
- Niels van Royen
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | | | | | | |
Collapse
|
52
|
Abstract
Despite significant advances in medical, interventional, and surgical therapy for coronary and peripheral arterial disease, the burden of these illnesses remains high. To address this unmet need, the science of therapeutic angiogenesis has been evolving for almost two decades. Early preclinical studies and phase I clinical trials achieved promising results with growth factors administered as recombinant proteins or as single-agent gene therapies, and data accumulated through 10 years of clinical trials indicate that gene therapy has an acceptable safety profile. However, more rigorous phase II and phase III clinical trials have failed to unequivocally demonstrate that angiogenic agents are beneficial under the conditions and in the patients studied to date. Investigators have worked to understand the biology of the vascular system and to incorporate their findings into new treatments for patients with ischemic disease. Recent gene- and cell-therapy trials have demonstrated the bioactivity of several new agents and treatment strategies. Collectively, these observations have renewed interest in the mechanisms of angiogenesis and deepened our understanding of the complexity of vascular regeneration. Gene therapy that incorporates multiple growth factors, approaches that combine cell and gene therapy, and the administration of "master switch" agents that activate numerous downstream pathways are among the credible and plausible steps forward. In this review, we examine the clinical development of angiogenic gene therapy, summarize several of the lessons learned during the conduct of these trials, and suggest how this prior experience may guide the conduct of future preclinical investigations and clinical trials.
Collapse
Affiliation(s)
- Rajesh Gupta
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine and Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Jörn Tongers
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine and Northwestern Memorial Hospital, Chicago, IL 60611, USA
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Douglas W. Losordo
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine and Northwestern Memorial Hospital, Chicago, IL 60611, USA
| |
Collapse
|
53
|
Schgoer W, Theurl M, Jeschke J, Beer AGE, Albrecht K, Gander R, Rong S, Vasiljevic D, Egger M, Wolf AM, Frauscher S, Koller B, Tancevski I, Patsch JR, Schratzberger P, Piza-Katzer H, Ritsch A, Bahlmann FH, Fischer-Colbrie R, Wolf D, Kirchmair R. Gene therapy with the angiogenic cytokine secretoneurin induces therapeutic angiogenesis by a nitric oxide-dependent mechanism. Circ Res 2009; 105:994-1002. [PMID: 19797703 DOI: 10.1161/circresaha.109.199513] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The neuropeptide secretoneurin induces angiogenesis and postnatal vasculogenesis and is upregulated by hypoxia in skeletal muscle cells. OBJECTIVE We sought to investigate the effects of secretoneurin on therapeutic angiogenesis. METHODS AND RESULTS We generated a secretoneurin gene therapy vector. In the mouse hindlimb ischemia model secretoneurin gene therapy by intramuscular plasmid injection significantly increased secretoneurin content of injected muscles, improved functional parameters, reduced tissue necrosis, and restored blood perfusion. Increased muscular density of capillaries and arterioles/arteries demonstrates the capability of secretoneurin gene therapy to induce therapeutic angiogenesis and arteriogenesis. Furthermore, recruitment of endothelial progenitor cells was enhanced by secretoneurin gene therapy consistent with induction of postnatal vasculogenesis. Additionally, secretoneurin was able to activate nitric oxide synthase in endothelial cells and inhibition of nitric oxide inhibited secretoneurin-induced effects on chemotaxis and capillary tube formation in vitro. In vivo, secretoneurin induced nitric oxide production and inhibition of nitric oxide attenuated secretoneurin-induced effects on blood perfusion, angiogenesis, arteriogenesis, and vasculogenesis. Secretoneurin also induced upregulation of basic fibroblast growth factor and platelet-derived growth factor-B in endothelial cells. CONCLUSIONS In summary, our data indicate that gene therapy with secretoneurin induces therapeutic angiogenesis, arteriogenesis, and vasculogenesis in the hindlimb ischemia model by a nitric oxide-dependent mechanism.
Collapse
Affiliation(s)
- Wilfried Schgoer
- Department of Internal Medicine 1, Medical University of Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Vascular Regeneration by Repeated Infusions of Basic Fibroblast Growth Factor in a Rabbit Model of Hind-Limb Ischemia. AJR Am J Roentgenol 2009; 192:W306-10. [DOI: 10.2214/ajr.07.4013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
55
|
Lara-Hernández R, Lozano-Vilardell P, Cordobés-Gual J. [Novel therapies of non-revascularizing peripheral arterial occlusive disease: therapeutic angiogenesis]. Med Clin (Barc) 2009; 131:665-9. [PMID: 19087795 DOI: 10.1157/13128727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Critical limb ischemia is the end stage of peripheral arterial occlusive disease, with a deep impact in patient's quality of life. In some patients, there is no revascularizing treatment options, that determines major limb amputation in a high percentage of patients, not only for uncontrolled limb pain but also for complications of the trophic lesions. In the last years, several studies have shown the possibility to increase the perfusion in the ischemic tissue, by recombinant proteins, gene therapy or cellular therapy, all of them known as therapeutic angiogenesis. Several good results have been published but the way of treatment, doses and possible adverse effects still lack definitive conclusions. Randomized comparative studies should be carried out to determine the best treatment option.
Collapse
Affiliation(s)
- Raúl Lara-Hernández
- Servicio de Angiología y Cirugía Vascular. Hospital Universitario Arnau de Vilanova. Institut de Recerca Biomédica de Catalunya. Lleida. España.
| | | | | |
Collapse
|
56
|
Mullane EM, Dong Z, Sedgley CM, Hu JCC, Botero TM, Holland GR, Nör JE. Effects of VEGF and FGF2 on the revascularization of severed human dental pulps. J Dent Res 2009; 87:1144-8. [PMID: 19029083 DOI: 10.1177/154405910808701204] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The long-term outcome of replanted avulsed permanent teeth is frequently compromised by lack of revascularization, resulting in pulp necrosis. The purpose of this study was to evaluate the effects of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF-2) on the revascularization of severed human dental pulps. Tooth slices were prepared from non-carious human molars and treated with 0-50 ng/mL rhVEGF(165) or rhFGF-2 for 7 days in vitro. Both angiogenic factors enhanced pulp microvessel density compared with untreated controls (p < 0.05). Tooth slices were also treated with 0 or 50 ng/mL rhVEGF(165) for one hour prior to implantation into the subcutaneous space of immunodeficient mice. Treatment with rhVEGF(165) increased pulp microvessel density in vivo (p < 0.05). These results demonstrate that rhVEGF(165) enhanced neovascularization of severed human dental pulps and suggest that topical application of an angiogenic factor prior to replantation might be beneficial for the treatment of avulsed teeth.
Collapse
Affiliation(s)
- E M Mullane
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, 1011 N. University, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Angiogenesis is the biologic process of forming new blood vessels and is being investigated as an innovative therapeutic approach to help manage ischemic heart disease and peripheral vascular disease. Research studies have identified various angiogenic growth factors and progenitor cells that can enhance new blood vessel formation. This is Part II of an article that began publication in the July/August issue of Cardiology in Review. Preclinical investigations in animal models have explored the potential use of growth factors with and without progenitor cells to treat myocardial ischemia. The results of clinical trials with growth factor infusions and gene therapy techniques to enhance growth factor production have shown some promise, but therapeutic angiogenesis remains at an early stage of development.
Collapse
|
58
|
Lopez JJ, Simons M. Local Extravascular Growth Factor Delivery in Myocardial Ischemia. Drug Deliv 2008; 3:143-7. [DOI: 10.3109/10717549609029443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
59
|
Kalka C, Baumgartner I. Gene and stem cell therapy in peripheral arterial occlusive disease. Vasc Med 2008; 13:157-72. [DOI: 10.1177/1358863x08088616] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract Peripheral arterial occlusive disease (PAOD) is a manifestation of systemic atherosclerosis strongly associated with a high risk of cardiovascular morbidity and mortality. In a considerable proportion of patients with PAOD, revascularization either by endovascular means or by open surgery combined with best possible risk factor modification does not achieve limb salvage or relief of ischaemic rest pain. As a consequence, novel therapeutic strategies have been developed over the last two decades aiming to promote neovascularization and remodelling of collaterals. Gene and stem cell therapy are the main directions for clinical investigation concepts. For both, preclinical studies have shown promising results using a wide variety of genes encoding for growth factors and populations of adult stem cells, respectively. As a consequence, clinical trials have been performed applying gene and stem cell-based concepts. However, it has become apparent that a straightforward translation into humans is not possible. While several trials reported relief of symptoms and functional improvement, other trials did not confirm this early promise of efficacy. Ongoing clinical trials with an improved study design are needed to confirm the potential that gene and cell therapy may have and to prevent the gaps in our scientific knowledge that will jeopardize the establishment of angiogenic therapy as an additional medical treatment of PAOD. This review summarizes the experimental background and presents the current status of clinical applications and future perspectives of the therapeutic use of gene and cell therapy strategies for PAOD.
Collapse
Affiliation(s)
- C Kalka
- Division of Vascular Medicine, Swiss Cardiovascular Center, University Hospital of Bern, Switzerland
| | - Iris Baumgartner
- Division of Vascular Medicine, Swiss Cardiovascular Center, University Hospital of Bern, Switzerland
| |
Collapse
|
60
|
Paye JMD, Partovian C, Simons M. Journeys in Coronary Angiogenesis. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
61
|
Mizrahi N, Seliktar D, Kimmel E. Ultrasound-induced angiogenic response in endothelial cells. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:1818-29. [PMID: 17681676 DOI: 10.1016/j.ultrasmedbio.2007.05.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/02/2007] [Accepted: 05/11/2007] [Indexed: 05/16/2023]
Abstract
Mechanical forces are known to affect endothelial cell (EC) function and can promote the formation of mature, muscular arterioles and arteries (arteriogenesis). The present study explores the possible angiogenic role of ultrasonic irradiation on EC phenotype using an in-vitro approach. Therapeutic ultrasound (TUS) stimulation at 1-MHz frequency was applied to bovine aortic endothelial cells (BAECs) in 2-D monolayer cultures and 3-D spheroid cultures. An angiogenic EC phenotype was characterized by the proliferation rate, migration, sprouting and Flk-1 expression in response to ultrasound stimulation. Irradiation lasting as long as 30 min caused a down-regulation and redistribution of Flk-1, increased EC proliferation rates and enhanced migration and sprouting in the 3-D spheroid cultures. The ultrasound-mediated EC stimulation in monolayers may be attributed to stable cavitation and micro-streaming, which are induced by pulsating microbubbles near the EC surface. Three-dimensional EC spheroid cultures surrounded by a highly viscous gel phase also exhibited ultrasound-induced angiogenic characteristics, although microbubbles may not participate in this response because of the impeding medium. The described in-vitro influence of low-intensity ultrasound on angiogenic EC phenotype has implications for TUS as a safe and controlled noninvasive stimulus for vascular regeneration.
Collapse
Affiliation(s)
- Natalya Mizrahi
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
62
|
Abstract
Neovascularization can be categorized into two general processes: vasculogenesis and angiogenesis. Angiogenesis is the formation of new capillaries from pre-existing vessels, requiring growth factor driven recruitment, migration, proliferation, and differentiation of endothelial cells (ECs). Complex cell-cell and cell-extracellular matrix (ECM) interactions contribute to this process, leading finally to a network of tube-like formations of endothelial cells supported by surrounding mural cells. The study of angiogenesis has broad clinical implications in the fields of peripheral and coronary vascular disease, oncology, hematology, wound healing, dermatology, and ophthalmology, among others. As such, novel, clinically relevant models of angiogenesis in vitro are crucial to the understanding of angiogenic processes. We highlight some of the advances made in the development of these models, and discuss the importance of incorporating the three-dimensional cell-matrix and EC-mural cell interactions into these in vitro assays of angiogenesis. This review also discusses our own 3-D angiogenesis assay and some of the in vitro results from our lab as they relate to therapeutic neovascularization and tissue engineering of vascular grafts.
Collapse
Affiliation(s)
- Areck A Ucuzian
- Department of Surgery, Loyola University Medical Center, 2160 South First Ave, Maywood, Illinois 60153, USA
| | | |
Collapse
|
63
|
Padilla L, Krötzsch E, De La Garza AS, Figueroa S, Rodriguez-Trejo J, Avila G, Schalch P, Escotto I, Glennie G, Villegas F, Di Silvio M. Bone marrow mononuclear cells stimulate angiogenesis when transplanted into surgically induced fibrocollagenous tunnels: results from a canine ischemic hindlimb model. Microsurgery 2007; 27:91-7. [PMID: 17186521 DOI: 10.1002/micr.20289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Progenitor cell transplantation has been considered as a potential angiogenesis therapy for the ischemic hindlimb. In this work we performed an ischemic hindlimb model in dogs. We ligated the middle sacra and the external right iliac arteries. After 7 days, the femoral artery was ligated and removed, and three Silastic tubes were inserted into the gracilis muscle to create fibrocollagenous tunnels. After Silastic implantation, we administered saline or granulocyte colony stimulating factor (G-CSF) subcutaneously daily during 5 days. Fourteen days after device positioning we transplanted bone marrow mononuclear cells (BMMC) into the tunnels previously formed by Silastic tube reaction. Twenty-eight days later, contrasted angiographies were performed and angiographic scores were calculated. Also, vessels and endothelial cells and proliferating cells were identified by immunochemistry of muscle sections. Results demonstrated that BMMC transplantation enriched by G-CSF administration significantly stimulates angiogenesis in the ischemic hindlimb, and more than BMMC transplantation alone. Transplantation of progenitor cells in an appropriate extracellular matrix is a potential therapy for hindlimb ischemia.
Collapse
Affiliation(s)
- Luis Padilla
- Department of Microsurgery, Centro Médico Nacional "20 de Noviembre", I.S.S.S.T.E., Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Kollum M, Hoefer I, Schreiber R, Bode C, Hehrlein C. Systemic application of anti-ICAM-1 monoclonal antibodies to prevent restenosis in rabbits: an anti-inflammatory strategy. Coron Artery Dis 2007; 18:117-23. [PMID: 17301603 DOI: 10.1097/mca.0b013e328011c084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES After vascular intervention, cell adhesion molecules such as ICAM-1 and VCAM are fundamental in inflammatory processes. In particular, ICAM-1 expression is strongly associated with macrophage-rich areas in restenotic lesions. Therefore, we hypothesized an anti-restenotic effect by systemic application of anti-ICAM-1 monoclonal antibodies (mAb). METHODS Thirty two rabbits underwent balloon angioplasty and stent implantation either in the right or left iliac artery, Animals received either anti-ICAM mAb or saline solution as a control. Animals were sacrificed 7 (n=8) and 14 (n=8) days and tissue was analyzed for basic fibroblast growth factor (bFGF) and transforming growth factor beta (TGF-beta) expression. Sixteen animals were sacrificed 6 months following treatment and tissue was harvested for histomorphometric analysis. RESULTS After balloon injury, bFGF significantly increased from 7 to 14 days only in the control group and was significantly higher compared to the anti-ICAM group. At 14 days after stent implantation, controls showed a significant increase of both bFGF and TGF-beta, whereas the anti-ICAM group only showed a significant increase of TGF-beta. Histomorphometric analysis for neointimal growth did not show any differences between control and anti-ICAM groups either after balloon injury or after stent implantation at 6 months. CONCLUSION Administration of anti-ICAM-1 mAb following either balloon angioplasty or stent implantation results in a suppression of bFGF in the early phase of restenosis, whereas TGF-beta significantly increases from 7 to 14 days after stent implantation independent of anti-ICAM-1 mAb application. Therefore we conclude that anti-inflammatory strategies are able to interfere with growth factor expression after vascular injury.
Collapse
Affiliation(s)
- Marc Kollum
- Department of Cardiology and Angiology, University Clinic of Freiburg, Freiburg i. Br., Germany.
| | | | | | | | | |
Collapse
|
65
|
Chang CC, Hoying JB. Directed three-dimensional growth of microvascular cells and isolated microvessel fragments. Cell Transplant 2007; 15:533-40. [PMID: 17121164 DOI: 10.3727/000000006783981693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tissue engineering has promise as a means for repairing diseased and damaged tissues. A significant challenge in tissue construction relates to the constraints placed on tissue geometries resulting from diffusion limitations. An ability to incorporate a premade vasculature would overcome these difficulties and promote construct viability once implanted. Most in vitro microvascular fabrication strategies rely on surface-associated cell growth, manipulated cell monolayers, or random arrangement of cells within matrix materials. In contrast, we successfully suspended microvascular cells and isolated microvessel fragments within collagen and then microfluidically drove the mixtures into microfabricated network topologies. Developing within the 3D collagen matrix, patterned cells progressed into cord-like morphologies. These geometries were directed by the surrounding elastomer mold. With similar techniques, suspended fragments formed endothelial sprouts. By avoiding the addition of exogenous growth factors, we allowed constituent cells and fragments to autonomously develop within the constructs, providing a more physiologically relevant system for in vitro microvascular development. In addition, we present the first examples of directed endothelial cell sprouting from parent microvessel fragments. We believe this system may serve as a foundation for future in vivo fabrication of microvascular networks for tissue engineering applications.
Collapse
Affiliation(s)
- Carlos C Chang
- Biomedical Engineering Program, University of Arizona, Tucson, AZ 85724, USA
| | | |
Collapse
|
66
|
van Laar PJ, van Raamt AF, van der Grond J, Mali WPTM, van der Graaf Y, Hendrikse J. Increasing levels of TNFalpha are associated with increased brain perfusion. Atherosclerosis 2007; 196:449-454. [PMID: 17222850 DOI: 10.1016/j.atherosclerosis.2006.11.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 11/24/2006] [Accepted: 11/29/2006] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Recent reports of animal models have shown that growth factors have stimulating effect on brain perfusion via the development of blood vessels. However, studies on the effect of growth factors on brain perfusion in humans are lacking. The aim of our study was to prospectively investigate in humans the relation between growth factors and brain perfusion. METHODS We analyzed circulating levels of vascular endothelial growth factor (VEGF), granulocyte-macrophage colony-stimulating growth factor (GM-CSF), tumor necrosis factor alpha (TNFalpha) and basic fibroblast growth factor (bFGF) in 121 consecutive patients (99 men and 22 women, age 58+/-10 years) who were enrolled in a prospective cohort study of patients with symptomatic atherosclerotic disease. In all patients regional cerebral blood flow (rCBF; in mL/min/100g) measurements were performed with arterial spin labeling magnetic resonance imaging. Cerebrovascular risk factors were assessed by means of a questionnaire and physical, ultrasonographic and laboratory examination. RESULTS Increasing levels of TNFalpha were significantly associated with a higher rCBF (beta=7.0; 95% confidence interval 0.7; 13.9), independent of the presence of cerebrovascular risk factors. No significant association was found for VEGF, GM-CSF and bFGF. CONCLUSIONS Increasing levels of TNFalpha are associated with increased rCBF, independent of the presence of cerebrovascular risk factors.
Collapse
Affiliation(s)
- Peter Jan van Laar
- Department of Radiology, University Medical Center Utrecht, The Netherlands.
| | - A Fleur van Raamt
- Department of Radiology, University Medical Center Utrecht, The Netherlands; Julius Center for Health Science and Primary Care, University Medical Center Utrecht, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, University Medical Center Utrecht, The Netherlands; Department of Radiology, Leiden University Medical Center, The Netherlands
| | - Willem P T M Mali
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| | - Yolanda van der Graaf
- Julius Center for Health Science and Primary Care, University Medical Center Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
67
|
Yamada N, Li W, Ihaya A, Kimura T, Morioka K, Uesaka T, Takamori A, Handa M, Tanabe S, Tanaka K. Platelet-derived endothelial cell growth factor gene therapy for limb ischemia. J Vasc Surg 2006; 44:1322-8. [PMID: 17145437 DOI: 10.1016/j.jvs.2006.07.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 07/14/2006] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Platelet-derived endothelial cell growth factor (PD-ECGF) is identical to thymidine phosphorylase (TP), and it can induce angiogenesis, including arteriogenesis, in chronically ischemic canine myocardium. Because its effect on peripheral arterial disease has not been elucidated, we investigated whether overexpression of PD-ECGF/TP could ameliorate chronic limb ischemia in rabbits. METHODS Left femoral arteries were resected from 24 male rabbits. After 10 days, a plasmid vector containing human PD-ECGF/TP complimentary DNA was injected into 10 sites in the adductor muscles. Control groups received either the LacZ plasmid vector or saline vehicle only (n = 8 per group). Blood pressure was measured in the calf before surgery, at the onset of ischemia, 10 days later, and 20 and 30 days after gene transfer. Collateral vessel development and limb perfusion were assessed by angiography, and resected tissues underwent molecular and histologic examination. RESULTS In the PD-ECGF/TP group, human PD-ECGF/TP messenger RNA and protein were still detected at 30 days after treatment. Calf blood pressure decreased significantly after femoral artery resection in all three groups. It subsequently showed a greater increase in the PD-ECGF/TP group than in either control group, and the difference was significant at 20 days after treatment (PD-ECGF/TP, 97.4 +/- 7.4; LacZ, 58.6 +/- 6.9; saline, 41.3 +/- 3.6). Immunohistochemical staining demonstrated an increased ratio of capillaries and arterioles to muscle fibers in the PD-ECGF/TP group (2.14 +/- 0.13 and 1.51 +/- 0.06), but not in the LacZ group (1.39 +/- 0.04 and 0.71 +/- 0.05) or the saline group (1.34 +/- 0.05 and 0.71 +/- 0.04, P < .01). The angiographic score was higher in the PD-ECGF/TP group (0.96 +/- 0.08) than in the LacZ group (0.50 +/- 0.02) or saline group (0.51 +/- 0.03) at 30 days after gene transfer (P < .01). CONCLUSIONS This study demonstrated that PD-ECGF/TP gene transfer induced angiogenesis and decreased ischemia in a rabbit hindlimb model by promoting arteriogenesis, suggesting that targeting this gene may be a promising therapeutic strategy for peripheral vascular disease.
Collapse
Affiliation(s)
- Narihisa Yamada
- Second Department of Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Sasaki S, Inoguchi T, Muta K, Abe Y, Zhang M, Hiasa K, Egashira K, Sonoda N, Kobayashi K, Takayanagi R, Nawata H. Therapeutic angiogenesis by ex vivo expanded erythroid progenitor cells. Am J Physiol Heart Circ Physiol 2006; 292:H657-65. [PMID: 16997894 DOI: 10.1152/ajpheart.00343.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent reports have demonstrated that erythroid progenitor cells contain and secrete various angiogenic cytokines. Here, the impact of erythroid colony-forming cell (ECFC) implantation on therapeutic angiogenesis was investigated in murine models of hindlimb ischemia. During the in vitro differentiation, vascular endothelial growth factor (VEGF) secretion by ECFCs was observed from day 3 (burst-forming unit erythroid cells) to day 10 (erythroblasts). ECFCs from day 5 to day 7 (colony-forming unit erythroid cells) showed the highest VEGF productivity, and day 6 ECFCs were used for the experiments. ECFCs contained larger amounts of VEGF and fibroblast growth factor-2 (FGF-2) than peripheral blood mononuclear cells (PBMNCs). In tubule formation assays with human umbilical vein endothelial cells, ECFCs stimulated 1.5-fold more capillary growth than PBMNCs, and this effect was suppressed by antibodies against VEGF and FGF-2. Using an immunodeficient hindlimb ischemia model and laser-Doppler imaging, we evaluated the limb salvage rate and blood perfusion after intramuscular implantation of ECFCs. ECFC implantation increased both the salvage rate (38% vs. 0%, P < 0.05) and the blood perfusion (82.8% vs. 65.6%, P < 0.01). In addition, ECFCs implantation also significantly increased capillaries with recruitment of vascular smooth muscle cells and the capillary density was 1.6-fold higher than in the control group. Continuous production of human VEGF from ECFCs in the skeletal muscle was confirmed at least 7 days after the implantation. Implantation of ECFCs promoted angiogenesis in ischemic limbs by supplying angiogenic cytokines (VEGF and FGF-2), suggesting a possible novel strategy for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Shuji Sasaki
- Dept. of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu Univ., 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Luque Contreras D, Jiménez Estrada I, Martínez Fong D, Segura B, Guadarrama JC, Paniagua Sierra R, Vargas Robles H, Rios A, Escalante B. Hindlimb claudication reflects impaired nitric oxide-dependent revascularization after ischemia. Vascul Pharmacol 2006; 46:10-5. [PMID: 17011243 DOI: 10.1016/j.vph.2006.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 06/04/2006] [Accepted: 06/07/2006] [Indexed: 11/28/2022]
Abstract
Although vascular remodeling is important in preventing tissue damage and restoring muscle function, there is no evidence of a relationship between vascular remodeling and muscle function after peripheral vascular occlusion. Nitric oxide (NO) has been implicated in the process of vascular remodeling in hindlimb ischemia. Thus, development of alterations in hindlimb gait after ischemia may be associated with impaired nitric oxide-dependent, vascular blood flow recovery. We evaluated hindlimb gait as an index of ischemia-induced revascularization and tested the effects of NO synthase inhibition on both hindlimb blood flow and hindlimb gait locomotion. After 14 days of ischemia, the ischemic hindlimb showed no significant differences in gait locomotion compared to the sham-operated hindlimb. However, hindlimb ischemia drastically reduced hindlimb blood flow from 46+/-3 mL/min/100 g to 12+/-2 mL/min/100 g which reverted to 33+/-5 mL/min/100 g after 14 days of ischemia. eNOS mRNA expression levels at 3, 7, 14, and 28 days after initiation of ischemia, were increased by 50+/-5%, 100+/-10%, 140+/-8% and 270+/-12% respectively and eNOS protein expression levels at 7, 14, and 28 days, were increased by 28+/-3%, 62+/-6% and 80+/-16% respectively. However, eNOS inhibition caused by l-NAME treatment prevented blood flow recovery and correction of abnormal gait locomotion in rats. Thus, the duration of the stride-swing phase increased and the stride length decreased. The knee joint angle decreased during flexion and extension with eNOS inhibition. In conclusion, ischemia-induced revascularization is associated with recovery of both hindlimb blood flow and normal gait locomotion. Moreover, prevention of NO synthesis, a key messenger in ischemia-induced revascularization, is associated with impairment in hindlimb locomotion. Thus, gait locomotion represents a functional model that could be used to evaluate the degree of ischemia-induced revascularization.
Collapse
Affiliation(s)
- Diana Luque Contreras
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco, México City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Nakae M, Kamiya H, Naruse K, Horio N, Ito Y, Mizubayashi R, Hamada Y, Nakashima E, Akiyama N, Kobayashi Y, Watarai A, Kimura N, Horiguchi M, Tabata Y, Oiso Y, Nakamura J. Effects of basic fibroblast growth factor on experimental diabetic neuropathy in rats. Diabetes 2006; 55:1470-7. [PMID: 16644707 DOI: 10.2337/db05-1160] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Basic fibroblast growth factor (bFGF) stimulates angiogenesis and induces neural cell regeneration. We investigated the effects of bFGF on diabetic neuropathy in streptozotocin-induced diabetic rats. Diabetic rats were treated with human recombinant bFGF as follows: 1) intravenous administration, 2) intramuscular injection into thigh and soleus muscles with cross-linked gelatin hydrogel (CGH), and 3) intramuscular injection with saline. Ten or 30 days later, the motor nerve conduction velocity (MNCV) of the sciatic-tibial and caudal nerves, sensitivity to mechanical stimuli, sciatic nerve blood flow (SNBF), and retinal blood flow (RBF) were measured. Delayed MNCV in the sciatic-tibial and caudal nerves, hypoalgesia, and reduced SNBF in diabetic rats were all ameliorated by intravenous administration of bFGF after 10, but not 30, days. Intramuscular injection of bFGF with CGH also improved sciatic-tibial MNCV, hypoalgesia, and SNBF after 10 and 30 days, but caudal MNCV was not improved. However, intramuscular injection of bFGF with saline had no significant effects. bFGF did not significantly alter RBF in either normal or diabetic rats. These observations suggest that bFGF could have therapeutic value for diabetic neuropathy and that CGH could play important roles as a carrier of bFGF.
Collapse
Affiliation(s)
- Mika Nakae
- Division of Metabolic Diseases, Department of Internal Medicine, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Gene therapy is thought to be a promising method for the treatment of various diseases. One gene therapy strategy involves the manipulations on a process of formation of new vessels, commonly defined as angiogenesis. Angiogenic and antiangiogenic gene therapy is a new therapeutic approach to the treatment of cardiovascular and cancer patients, respectively. So far, preclinical and clinical studies are successfully focused mainly on the treatment of coronary artery and peripheral artery diseases. Plasmid vectors are often used in preparations in angiogenic gene therapy trials. The naked plasmid DNA effectively transfects the skeletal muscles or heart and successfully expresses angiogenic genes that are the result of new vessel formation and the improvement of the clinical state of patients. The clinical preliminary data, although very encouraging, need to be well discussed and further study surely continued. It is really possible that further development of molecular biology methods and advances in gene delivery systems will cause therapeutic angiogenesis as well as antiangiogenic methods to become a supplemental or alternative option to the conventional methods of treatment of angiogenic diseases.
Collapse
Affiliation(s)
- M Malecki
- Department of Cell Biology, Centre of Oncology, Maria Sklodowska-Curie Memorial Institute, Warsaw, Poland
| | | | | |
Collapse
|
72
|
|
73
|
Sheikh I, Tchekanov G, Krum D, Hare J, Djelmami-Hani M, Maddikunta R, Mortada ME, Karakozov P, Baibekov I, Hauck J, Bajwa T, Akhtar M, Chekanov V. Effect of electrical stimulation on arteriogenesis and angiogenesis after bilateral femoral artery excision in the rabbit hind-limb ischemia model. Vasc Endovascular Surg 2005; 39:257-65. [PMID: 15920655 DOI: 10.1177/153857440503900307] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of electrical stimulation (ES) on arteriogenesis (the opening of preexisting collaterals) and angiogenesis (formation of new capillaries) were studied after acute bilateral hind limb ischemia was induced via bilateral femoral artery excision in a rabbit model. The study evaluated the rabbit hind limbs' normal response to acute ischemia and to application of ES by calculating changes in arterial and capillary densities. Comparisons were made with our prior study, in which the femoral artery was unilaterally excised, as we attempted to expand on the topics of arteriogenesis and angiogenesis. Twelve adult New Zealand white rabbits were randomly assigned to 1 of 2 series. In Series 1, the control group, both femoral arteries were excised and no ES was applied. In Series 2, both femoral arteries were excised and ES was applied to the left limb. One lead was implanted into the left adductor muscle near the site of the excised left femoral artery (Series 2), and a stimulator (Thera, Medtronic, Inc, Minneapolis, MN) was implanted in a separate pocket. ES was applied at a rate of 3 V, 30 contractions per minute, beginning immediately after surgery and continuously for 1 month. Angiography was performed in all 12 rabbits 1 month after surgery to establish the anatomy of the collateral vessels and to demonstrate that the femoral artery stump continued to be an end artery. Contrast-opacified arteries (COAs) that crossed the grid's midline, and the total number of grid lines intersected by COAs, were tallied according to an established method. Capillary density was calculated as the number of capillaries per square millimeter of muscle. In Series 1, after 1 month, the number of COAs crossing the grid's midline was 4.5 +/-1.5 on the left and 4.8 +/-1.2 on the right side. In Series 2, the number of COAs crossing the grid's midline was 7.9 +/-1.8 on the left side (p<0.05 vs Series 1) and 5.9 +/-1.6 on the right side of the same rabbit (p=NS vs Series 1). In Series 1, 36.7 +/-5.4 and 30.5 +/-7.7 total intersections were crossed by COAs on the left and right sides, respectively. In Series 2, total grid intersections crossed by COAs were 48.4 +/-8.5 and 47.5 +/-9.1 in the left and right sides, respectively (p<0.001 vs series 1). Baseline capillary density before femoral artery excision was 180.2 +/-21.3/mm(2). The capillary densities on the left sides were 94.2 +/-19.1 and 264.5 +/-7.6 in Series 1 and 2, respectively (p<0.001). The right sides showed a similar pattern with capillary densities of 88.5 +/-37.2 and 135.8 +/-6.8 (p<0.05) in Series 1 and 2, respectively. When capillary density was compared on the left and right sides of the same rabbit in Series 2, a statistically significant increase was also found; 264.5 +/-7.6 vs 135.8 +/-6.8 (p<0.001) in the left and right sides, respectively. Comparisons of the effect of electrical stimulation and the body's normal physiologic response to acute ischemia revealed a significant increase in the opening of preexisting collaterals (arteriogenesis) and the promotion of capillary density (angiogenesis) with the use of electrical stimulation.
Collapse
Affiliation(s)
- Imran Sheikh
- Department of Cardiac Research, Aurora Sinai/St. Luke's Medical Centers, University of Wisconsin Medical School-Milwaukee Clinical Campus, Milwaukee, WI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Lin ZF, Li XK, Lin Y, Wu F, Liang LM, Fu XB. Protective effects of non-mitogenic human acidic fibroblast growth factor on hydrogen peroxide-induced damage to cardiomyocytes in vitro. World J Gastroenterol 2005; 11:5492-7. [PMID: 16222742 PMCID: PMC4320359 DOI: 10.3748/wjg.v11.i35.5492] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the protective effect of non-mitogenic human acidic fibroblast growth factor (FGF) on cardiac oxidative injury in vivo.
METHODS: Ventricular cardiomyocytes were isolated from 1- to 3-d-old neonatal SD mice and cultured in Dulbecco’s minimum essential medium supplemented with 15% fetal bovine serum under an atmosphere of 50 mL/L CO2-95% air at 37 °C, as well as assessed by immunocyto-chemical assay. We constructed the cardiomyocyte injury model by exposure to a certain concentration of H2O2. Cellular viability, superoxide dismutase (SOD) activity, leakage of maleic dialdehyde and anti-apoptosis effect were included to evaluate the cardiac protective effect of non-mitogenic human acidic FGF.
RESULTS: Over 50% of the cardiomyocytes beat spontaneously on the 2nd d of culture and synchronously beat after being cultured for 3 d. Forty-eight hours after plating was completed, the purity of such cultures was 95% myocytes, assessed by an immunocytochemical assay. Cellular viability dramatically decreased with the increasing of the concentration of H2O2. Non-mitogenic human acidic FGF showed significant resistance to the toxic effect of H2O2, significantly increased the cellular viability as well as the activity of SOD, and dramatically decreased the leakage of maleic dialdehyde as well as the cellular apoptosis rate.
CONCLUSION: Hydrogen peroxide shows strong cytotoxicity to the cultured cardiac myocytes, and non-mitogenic human acidic FGF shows strong cardio-protective effect when exposed to a certain concentration of H2O2.
Collapse
Affiliation(s)
- Zhuo-Feng Lin
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510632, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
75
|
Detillieux KA, Cattini PA, Kardami E. Beyond angiogenesis: the cardioprotective potential of fibroblast growth factor-2. Can J Physiol Pharmacol 2005; 82:1044-52. [PMID: 15644945 DOI: 10.1139/y04-126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the field of cardiovascular research, a number of independent approaches have been explored to protect the heart from acute and chronic ischemic damage. Fibroblast growth factor-2 (FGF-2) recently has received considerable attention with respect to its angiogenic potential. While therapeutic angiogenesis may serve to salvage chronically ischemic myocardium, more acute treatments are in demand to increase cardiac resistance to injury (preconditioning) and to guard against secondary injury after an acute ischemic insult. Here, we look beyond the angiogenic potential of FGF-2 and examine its acute cardioprotective activity as demonstrated under experimental conditions, both as an agent of a preconditioning-like response and for secondary injury prevention at the time of reperfusion. Factors to consider in moving to the clinical setting will be discussed, including issues of dosage, treatment duration, and routes of administration. Finally, issues of safety and clinical trial design will be considered. The prospect of such a multipotent growth factor having clinical usefulness opens the door to effective treatment of both acute and chronic ischemic heart disease, something well worth the attention of the cardiovascular community.
Collapse
Affiliation(s)
- Karen A Detillieux
- Department of Physiology, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba R3E 3J7, Canada.
| | | | | |
Collapse
|
76
|
Leong-Poi H, Christiansen J, Heppner P, Lewis CW, Klibanov AL, Kaul S, Lindner JR. Assessment of Endogenous and Therapeutic Arteriogenesis by Contrast Ultrasound Molecular Imaging of Integrin Expression. Circulation 2005; 111:3248-54. [PMID: 15956135 DOI: 10.1161/circulationaha.104.481515] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
We hypothesized that molecular imaging with contrast-enhanced ultrasound (CEU) and microbubbles targeted to endothelial integrins could be used to noninvasively assess early angiogenic responses to ischemia and growth factor therapy.
Methods and Results—
Hindlimb ischemia was produced in 48 rats by ligation of an iliac artery. Half of the animals received intramuscular sustained-release fibroblast growth factor-2 (FGF-2). Immediately after ligation and at subsequent intervals from 4 to 28 days, blood flow and oxygen tension in the proximal adductor muscles were measured by CEU perfusion imaging and phosphor quenching, respectively. Targeted CEU imaging of α
v
- and α
5
β
1
-integrin expression was performed with microbubbles bearing the disintegrin echistatin. Iliac artery ligation produced a 65% to 70% reduction in blood flow and oxygen tension. In untreated ischemic muscle, muscle flow and oxygen tension partially recovered by days 14 to 28. In these animals, signal from integrin-targeted microbubbles was intense and peaked before flow increase (days 4 to 7). In comparison to untreated animals, FGF-2–treated muscle had a greater rate and extent of blood flow recovery and greater signal intensity from integrin-targeted microbubbles, which peaked before maximal recovery of flow. On immunohistology, arteriolar but not capillary density increased in the ischemic limb after ligation, the rate and degree of which were greater in FGF-2–treated rats. Immunofluorescence demonstrated intense staining for α
v
in arterioles, the temporal course of which correlated with targeted imaging.
Conclusions—
Targeted CEU can be used to assess endogenous and therapeutic arteriogenesis before recovery of tissue perfusion. These results suggest that molecular imaging of integrin expression may be useful for evaluating proangiogenic therapies.
Collapse
Affiliation(s)
- Howard Leong-Poi
- Cardiovascular Imaging Center and Cardiovascular Division, University of Virginia School of Medicine, Charlottesville, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Fujita M, Ishihara M, Morimoto Y, Simizu M, Saito Y, Yura H, Matsui T, Takase B, Hattori H, Kanatani Y, Kikuchi M, Maehara T. Efficacy of Photocrosslinkable Chitosan Hydrogel Containing Fibroblast Growth Factor-2 in a Rabbit Model of Chronic Myocardial Infarction. J Surg Res 2005; 126:27-33. [PMID: 15916971 DOI: 10.1016/j.jss.2004.12.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 12/28/2004] [Accepted: 12/29/2004] [Indexed: 01/13/2023]
Abstract
BACKGROUND Therapeutic angiogenesis in ischemic myocardium has been shown to be an effective strategy to improve regional blood flow and myocardial function. However, no effective delivery system for growth factor administration is yet known to induce important therapeutic angiogenic responses in ischemic myocardium. MATERIALS AND METHODS FGF-2-incorporated chitosan (FGF-2/chitosan) hydrogels were immobilized on the surface of ischemic myocardium of rabbit models of chronic myocardial infarction by UV-irradiation. After 4 weeks, cardiac functional analyses by noradrenalin challenge and histopathological analyses were performed to evaluate the efficacy of a controlled release of FGF-2 from FGF-2/chitosan hydrogel immobilized on the surface of ischemic myocardium. RESULTS Significant improvement by application of FGF-2/chitosan hydrogels was found in systolic pressure at the left ventricle, +dp/dt maximum, and -dp/dt maximum during noradrenalin challenge at a dose of 1 microg/kg/min. Histological observations showed that a significantly larger amount of viable myocardium and CD 31 immunostained blood vessels were found in the FGF-2/chitosan hydrogel-applied group than only the chitosan-applied and control groups. CONCLUSIONS These preliminary results indicate that the controlled release of biologically active FGF-2 molecules from FGF-2/chitosan hydrogel induces angiogenesis and possibly collateral circulation in ischemic myocardium, thereby protecting the myocardium.
Collapse
Affiliation(s)
- Masanori Fujita
- Department of Medical Engineering, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Opie SR, Dib N. Local endovascular delivery, gene therapy, and cell transplantation for peripheral arterial disease. J Endovasc Ther 2005. [PMID: 15760251 DOI: 10.1583/04-1319.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Advances in catheter technology, gene identification, and cell biology may provide novel treatment options for patients with peripheral arterial disease (PAD) who are not candidates for standard revascularization procedures. Animal studies and recent results in human beings suggest that transfer of growth factors or regulatory genes and transplantation of progenitor cells may provide novel therapy options by inducing therapeutic angiogenesis or by inhibiting restenosis. This review will discuss the development of a variety of catheters for localized endovascular delivery, as well as the various cellular and genetic strategies that exist to restore blood flow to ischemic tissue and to reduce neointimal hyperplasia.
Collapse
Affiliation(s)
- Shaun R Opie
- Department of Cell and Gene Research, Arizona Heart Institute and Foundation, Phoenix, Arizona 85016, USA.
| | | |
Collapse
|
79
|
Komori M, Tomizawa Y, Takada K, Ozaki M. A Single Local Application of Recombinant Human Basic Fibroblast Growth Factor Accelerates Initial Angiogenesis During Wound Healing in Rabbit Ear Chamber. Anesth Analg 2005; 100:830-834. [PMID: 15728075 DOI: 10.1213/01.ane.0000144426.18235.5a] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Local angiogenic therapy with recombinant human basic fibroblast growth factor (rhbFGF) has been used to promote wound healing. To obtain useful information for the development of optimal angiogenic therapy, we chronologically evaluated the effects of a single local application of rhbFGF on angiogenesis in a rabbit ear chamber model of wound healing by observing the subcutaneous vessel bed intravitally. New vessel formation during wound healing was macroscopically and microscopically evaluated for 5 wk. Each rabbit ear chamber received a single dose of 6 microg rhbFGF (treatment B1: n = 13), 18 microg rhbFGF (treatment B2: n = 16), or physiological saline as control (n = 13). At 1 wk the newly vascularized area was significantly larger in groups B1 and B2 than in control. At 2 wk, the vascularized areas in groups B1, B2, and control were similar. At 5 wk, the percentage of rabbits with complete vascularization was significantly larger in group B1 than in control. Capillary density at 5 wk was similar among the three groups. These results suggest that locally applied rhbFGF accelerated angiogenesis during early wound healing in rabbits; however, this effect was transient and no increase in capillary density occurred at the completion of vascularization.
Collapse
Affiliation(s)
- Makiko Komori
- Departments of *Anesthesiology and †Cardiovascular Surgery, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | |
Collapse
|
80
|
Moyer JA, Wood A, Zaleska MM, Ay I, Finklestein SP, Protter AA. Basic fibroblast growth factor: a potential therapeutic agent for the treatment of acute neurodegenerative disorders and vascular insufficiency. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.8.11.1425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
81
|
Nakasa T, Ishida O, Sunagawa T, Nakamae A, Yasunaga Y, Agung M, Ochi M. Prefabrication of vascularized bone graft using a combination of fibroblast growth factor-2 and vascular bundle implantation into a novel interconnected porous calcium hydroxyapatite ceramic. J Biomed Mater Res A 2005; 75:350-5. [PMID: 16088890 DOI: 10.1002/jbm.a.30435] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of this study was to create a prefabricated vascularized bone graft using a novel interconnected porous calcium hydroxyapatite ceramic (IP-CHA) by combining vascular bundle implantation and basic fibroblast growth factor (FGF)-2 administration in a rabbit model. Twenty-four Japanese white rabbits were used. The saphenous artery and vein were passed through the hole of the IP-CHA. In an experimental group, 100 microg of FGF-2 was administered into the IP-CHA before implanting the vascular bundle. In the control group, the saline was administered into the IP-CHA before implanting the vascular bundle. Finally, the IP-CHA was placed subcutaneously in the medial thigh. Neovascularization from the vascular bundle was evaluated at 2 weeks after surgery, and osteogenesis was evaluated at 4 weeks. At 2 weeks, the length and density of newly formed vessels were significantly greater in the experimental group than in the control group. Histological evaluation showed osteoid deposition in the pores of the IP-CHA at 4 weeks in the experimental group, whereas no evidence of osteoid deposition was noted in the control group. This study showed the potential of creating a vascularized bone graft of a predetermined size and shape using a combination of FGF-2 and vascular bundle implantation in the IP-CHA.
Collapse
Affiliation(s)
- Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | | | | | |
Collapse
|
82
|
Hosaka A, Koyama H, Kushibiki T, Tabata Y, Nishiyama N, Miyata T, Shigematsu H, Takato T, Nagawa H. Gelatin Hydrogel Microspheres Enable Pinpoint Delivery of Basic Fibroblast Growth Factor for the Development of Functional Collateral Vessels. Circulation 2004; 110:3322-8. [PMID: 15520306 DOI: 10.1161/01.cir.0000147779.17602.18] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Various growth factors promote collateral vessel development and are regarded as promising for the treatment of vascular occlusive diseases. However, an efficacious delivery system for them has yet to be established. We devised a strategy to augment functional collateral vessels by using acidic gelatin hydrogel microspheres (AGHMs) incorporating basic fibroblast growth factor (bFGF). The aim of the present study was to investigate the hypothesis that by intra-arterial (IA) administration of bFGF-impregnated AGHMs, bFGF could be delivered from AGHMs trapped in distal small-diameter vessels and thereby induce functional collateral vessels with an assured blood supply through the process of arteriogenesis.
Methods and Results—
Various sizes of AGHMs (3 mg) incorporating
125
I-labeled bFGF were injected into the left internal iliac artery of a rabbit model of hindlimb ischemia. Less than 50% of radioactivity accumulated in the ischemic hindlimb after injection of AGHMs that were 10 μm in diameter, whereas ≈80% of radioactivity was counted in the ischemic limb after administration of 29- or 59-μm-diameter AGHMs. Calf blood pressure ratio and the ratio of regional blood flow of the bilateral hindlimbs immediately before and after IA administration of 29-μm–diameter AGHMs showed no significant change. Then we evaluated the function of the developed collateral vessels 28 days after IA administration of bFGF-impregnated, 29-μm-diameter AGHMs. IA administration of bFGF-impregnated AGHMs induced marked collateral vessel improvement compared with IA administration of phosphate buffered saline–treated AGHMs and intramuscular administration of bFGF-impregnated AGHMs.
Conclusions—
IA administration of bFGF-impregnated, 29-μm-diameter AGHMs strongly induced functional collateral vessels without worsening ischemia, indicating the possible therapeutic usefulness of this approach.
Collapse
Affiliation(s)
- Akihiro Hosaka
- Department of Vascular Regeneration, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Barandon L, Leroux L, Dufourcq P, Plagnol P, Deville C, Duplaa C, Couffinhal T. Gene Therapy for Chronic Peripheral Arterial Disease: What Role for the Vascular Surgeon? Ann Vasc Surg 2004; 18:758-65. [PMID: 15599638 DOI: 10.1007/s10016-004-0115-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The incidence of peripheral arterial disease is rising and despite advances in clinical management, many problems remain unsolved. Better knowledge of the mechanisms and consequences associated with chronic muscle ischemia has opened the way for development of new treatment strategies, including therapeutic angiogenesis. Therapeutic angiogenesis is a promising technique based on experimental studies showing that growth factors or genes able to increase capillary density can be used to reduce the impact of muscle ischemia and increase blood flow to ischemic tissue. Enthusiasm for this technique has prompted numerous clinical trials with encouraging results, but data are still inconclusive. Optimal indications for gene therapy must be defined and further experimental progress is needed to respond to ethical issues. Therapeutic angiogenesis should be viewed as an adjunct to rather than as a competitor of current surgical revascularization techniques.
Collapse
Affiliation(s)
- Laurent Barandon
- Department of Cardiovascular Surgery, Haut-Leveque Hospital, Pessac, France.
| | | | | | | | | | | | | |
Collapse
|
84
|
Prior BM, Lloyd PG, Ren J, Li H, Yang HT, Laughlin MH, Terjung RL. Time course of changes in collateral blood flow and isolated vessel size and gene expression after femoral artery occlusion in rats. Am J Physiol Heart Circ Physiol 2004; 287:H2434-47. [PMID: 15271665 DOI: 10.1152/ajpheart.00398.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objectives of this study were to assess the time course of enlargement and gene expression of a collateral vessel that enlarges following occlusion of the femoral artery and to relate these responses to the increases in collateral-dependent blood flow to the calf muscles in vivo. We employed exercise training to stimulate collateral vessel development. Rats were exercise trained or kept sedentary for various times of up to 25 days postbilateral occlusion (n=approximately 9/time point). Collateral blood flow to the calf muscles, determined with microspheres, increased modestly over the first few days to approximately 40 ml.min(-1).100 g(-1) in sedentary animals; the increase continued over time to approximately 80 ml.min(-1).100 g(-1) in the trained animals. Diameters of the isolated collateral vessels increased progressively over time, whereas an increased vessel compliance observed at low pressures was similar across time. These responses were greater in the trained animals. The time course of upregulation of vascular endothelial growth factor and placental growth factor, and particularly endothelial nitric oxide synthase and fms-like tyrosine kinase 1, mRNAs in the isolated collateral vessel implicates these factors as integral to the arteriogenic process. Collateral vessel enlargement and increased compliance at low pressures contribute to the enlarged circuit available for collateral blood flow. However, modulation of the functioning collateral vessel diameter, by smooth muscle tone, must occur to account for the observed increases in collateral blood flow measured in vivo.
Collapse
Affiliation(s)
- Barry M Prior
- Biomedical Sciences, E102 Vet Med Bldg., Univ. of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Collinson DJ, Donnelly R. Therapeutic Angiogenesis in Peripheral Arterial Disease: Can Biotechnology Produce an Effective Collateral Circulation? Eur J Vasc Endovasc Surg 2004; 28:9-23. [PMID: 15177227 DOI: 10.1016/j.ejvs.2004.03.021] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2004] [Indexed: 11/23/2022]
Abstract
The physiological processes of angiogenesis, vasculogenesis and arteriogenesis contribute to the growth of collateral vessels in response to obstructive arterial disease causing lower limb or myocardial ischaemia, but in clinical practice the endogenous angiogenic response is often suboptimal or impaired, e.g. by factors such as ageing, diabetes or drug therapies. Therapeutic angiogenesis is an application of biotechnology to stimulate new vessel formation via local administration of pro-angiogenic growth factors in the form of recombinant protein or gene therapy, or by implantation of endothelial progenitor cells that will synthesize multiple angiogenic cytokines. Numerous experimental and clinical studies have sought to establish 'proof of concept' for therapeutic angiogenesis in PAD and myocardial ischaemia using different treatment modalities, but the results have been inconsistent. This review summarises the mechanisms of angiogenesis and the results of recent trials evaluating the efficacy and safety of different gene therapy, recombinant protein and cellular-based treatment approaches to enhance collateral vessel formation.
Collapse
Affiliation(s)
- D J Collinson
- Centre for Integrated Systems Biology and Medicine, School of Medical and Surgical Sciences University of Nottingham, Nottingham, UK
| | | |
Collapse
|
86
|
Nishikage S, Koyama H, Miyata T, Ishii S, Hamada H, Shigematsu H. In vivo electroporation enhances plasmid-based gene transfer of basic fibroblast growth factor for the treatment of ischemic limb. J Surg Res 2004; 120:37-46. [PMID: 15172188 DOI: 10.1016/j.jss.2003.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Indexed: 11/22/2022]
Abstract
BACKGROUND Angiogenic therapy for ischemic tissues using angiogenic growth factors has been reported on an experimental and a clinical level. Electroporation enhances the efficiency of plasmid-based gene transfer in a variety of tissues. The purpose of this study was to evaluate the angiogenic effects of plasmid-based gene transfer using basic fibroblast growth factor (bFGF) in combination with electroporation. MATERIALS AND METHODS The transfection efficiency of in vivo electroporation in rabbit skeletal muscles was evaluated using pCAccluc+ encoding luciferase. To evaluate the angiogenic effects of bFGF gene in ischemic limb, we constructed a plasmid, pCAcchbFGFcs23, containing human bFGF cDNA fused with the secretory signal sequence of interleukin (IL)-2. Then, 500 microg of pCAcchbFGFcs23 or pCAZ3 (control plasmid) was injected into the ischemic thigh muscles in a rabbit model of hind limb ischemia with in vivo electroporation (bFGF-E(+) group and LacZ-E(+) group). Other sets of animals were injected with pCAcchbFGFcs23 (bFGF-E(-) group) or pCAZ3 (LacZ-E(-) group) without electroporation. Then 28 days later, calf blood pressure ratio, angiographic score, in vivo blood flow, and capillary density in the ischemic limb were measured. RESULTS Gene transfer efficiency increased markedly with the increase in voltage up to 100 V. Regarding angiogenic responses, calf blood pressure ratio, in vivo blood flow, and capillary density only in the bFGF-E(+) group were significantly higher than those in LacZ-E(-) group. Angiographic scores in the bFGF-E(+) and bFGF-E(-) groups were significantly higher than that in the LacZ-E(-) group. CONCLUSION These data suggest that in vivo electroporation enhances bFGF gene transfer for the treatment of ischemic limb muscles.
Collapse
Affiliation(s)
- Seiji Nishikage
- Department of Vascular Regeneration, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
87
|
Nakamae A, Sunagawa T, Ishida O, Suzuki O, Yasunaga Y, Hachisuka H, Ochi M. Acceleration of surgical angiogenesis in necrotic bone with a single injection of fibroblast growth factor-2 (FGF-2). J Orthop Res 2004; 22:509-13. [PMID: 15099628 DOI: 10.1016/j.orthres.2003.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 10/03/2003] [Indexed: 02/04/2023]
Abstract
The aim of this study was to accelerate angiogenesis in necrotic bone by combining vascular bundle implantation and fibroblast growth factor-2 (FGF-2) administration. Twenty-four Japanese white rabbits were evaluated in this study. A portion of a rabbit iliac crest bone was removed as a free bone graft and frozen in liquid nitrogen to ensure complete cellular necrosis. A narrow hole was created in the bone and the graft was placed in the proximal thigh. In group 1, FGF-2 was injected into the hole at a single dose of 100 microg, and the saphenous artery and its venae comitantes were passed through the hole of the bone. In group 2, injection of saline into the hole and the vascular bundle implantation was used as a control. Neovascularization around the vessel was evaluated at weeks 1 and 2 after surgery. Neovascularization was observed along the implanted vascular bundle in both groups. At both 1 and 2 weeks after surgery, the vessel density of group 1 was significantly higher than that of group 2. The average length of newly formed vessels of group 1 was also significantly longer than that of group 2 at both 1 and 2 weeks after surgery. Both the vessel density and length were greater in week 2 animals than week 1. A local single injection of FGF-2 improved surgical angiogenesis in necrotic bone in this study. As FGF-2 is recognized as a potent mitogen for a variety of mesenchymal cells, the combination of vascular bundle implantation and FGF-2 administration may contribute to the treatment of ischemic osteonecrosis.
Collapse
Affiliation(s)
- Atsuo Nakamae
- Department of Orthopaedic Surgery, Graduate School of Biomedical Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | |
Collapse
|
88
|
Waters RE, Terjung RL, Peters KG, Annex BH. Preclinical models of human peripheral arterial occlusive disease: implications for investigation of therapeutic agents. J Appl Physiol (1985) 2004; 97:773-80. [PMID: 15107408 DOI: 10.1152/japplphysiol.00107.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peripheral arterial occlusive disease (PAOD) is now recognized as a combination of clinical syndromes that are associated with significant morbidity and mortality. The primary pathophysiology of PAOD is impaired perfusion to the lower extremity. Effective pharmacotherapy designed to increase perfusion in PAOD is lacking, and revascularization options are suboptimal. New and more efficacious therapies that improve blood flow are definitely needed, and thus designing, describing, and validating these new therapies in preclinical PAOD models will be essential. This study describes the various preclinical PAOD models presently in use, correlates the models to human PAOD, and reviews the available end points that can be used to detect a response to therapy.
Collapse
Affiliation(s)
- Richard E Waters
- Division of Cardiology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Center, Durham, NC 27705, USA
| | | | | | | |
Collapse
|
89
|
Ishii S, Koyama H, Miyata T, Nishikage S, Hamada H, Miyatake SI, Shigematsu H. Appropriate control of ex vivo gene therapy delivering basic fibroblast growth factor promotes successful and safe development of collateral vessels in rabbit model of hind limb ischemia. J Vasc Surg 2004; 39:629-38. [PMID: 14981459 DOI: 10.1016/j.jvs.2003.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE In our previous study, adenovirus-mediated ex vivo gene transfer of basic fibroblast growth factor promoted significant collateral vessel development in a rabbit model of hind limb ischemia. The present study examined how to control the efficacy and safety of this gene therapy, and also evaluated the feasibility of repeat application of this procedure. METHODS Modified hFGF gene with the secretory signal sequence was adenovirally transferred to cultured autologous fibroblasts, and various numbers of the cells (2 x 10(5), 1 x 10(6), 5 x 10(6), or 2.5 x 10(7)) or vehicle was injected through the left internal iliac artery in rabbits in whom the left femoral artery had been excised 21 days previously. Twenty-eight days after cell administration, calf blood pressure ratio, angiographic score, blood flow in the internal iliac artery, and capillary density of muscle tissue were measured to analyze collateral vessel development and tissue perfusion in the ischemic limb. To assess delivery efficiency and viral contamination, the distribution of injected cells and the time course of blood anti-adenovirus antibody titer were examined in rabbits treated with various numbers of gene-transduced cells. In addition, animals received two injections, 21 days apart, of fibroblasts infected with adenovirus vector containing the luciferase gene, and luciferase expression was measured to evaluate whether the present therapy is repeatable. RESULTS At 28 days after cell administration, significant collateral vessel development without detectable side effects was observed in rabbits who received 5 x 10(6) or 2.5 x 10(7) cells, compared with those who received vehicle, and no significant development was detected in animals with fewer than 5 x 10(6) cells (P <.01 for calf blood pressure ratio and capillary density, P <.05 for angiographic score and maximum blood flow). There was no difference in collateral augmentation between rabbits with 5 x 10(6) and 2.5 x 10(7) cells. However, in animals with 2.5 x 10(7) cells a large number of injected cells accumulated in the lungs, anti-adenovirus antibody titer increased significantly, and calf blood pressure in the left hind limb of two rabbits decreased immediately after injection. Luciferase analysis showed very low gene expression after repeated administration. CONCLUSION These findings suggest that 5 x 10(6) is a suitable number of cells to induce appropriate collateral vessel development and minimize potential side effects of this procedure. Despite use of ex vivo gene transfer, repeat administration of the cells was not feasible. Clinical relevance Since the present study determined the appropriate conditions for effective and safe stimulation of collateral vessels, the clinical relevance of the ex vivo therapy might be carried forward. However, the findings raised another issue that should be resolved before clinical application; that is, the number of gene-transduced cells able to be injected was strictly limited. To estimate the therapeutic range of cell number in humans, additional experiments using large animals are desirable.
Collapse
Affiliation(s)
- Shigeyuki Ishii
- Department of Vascular Regeneration, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
90
|
Rissanen TT, Rutanen J, Ylä-Herttuala S. Gene Transfer for Therapeutic Vascular Growth in Myocardial and Peripheral Ischemia. ADVANCES IN GENETICS 2004; 52:117-64. [PMID: 15522734 DOI: 10.1016/s0065-2660(04)52004-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Therapeutic vascular growth in the treatment of peripheral and myocardial ischemia has not yet fulfilled its expectations in clinical trials. Randomized, double-blinded placebo-controlled trials have predominantly shown the safety and feasibility but not the clear-cut clinically relevant efficacy of angiogenic gene or recombinant growth factor therapy. It is likely that growth factor levels achieved with single injections of recombinant protein or naked plasmid DNA are too low to induce any relevant angiogenic effects. Also, the route of administration of gene transfer vectors has not been optimal in many cases leading to low gene-transfer efficacy. Animal experiments using intramuscular or intramyocardial injections of adenovirus encoding vascular endothelial growth factor (VEGF, VEGF-A), the mature form of VEGF-D, and fibroblast growth factors (FGF-1, -2, and -4) have shown high angiogenic efficacy. Adenoviral overexpression of VEGF receptor-2 ligands, VEGF-A and the mature form of VEGF-D, enlarge the preexisting capillaries in skeletal muscle and myocardium via nitric oxide(NO)-mediated mechanisms and via proliferation of both endothelial cells and pericytes, resulting in markedly increased tissue perfusion. VEGF also enhances collateral growth, which is probably secondary to increased peripheral capillary blood flow and shear stress. As a side effect of VEGF overexpression and rapid microvessel enlargement, vascular permeability increases and may result in substantial tissue edema and pericardial effusion in the heart. Because of the transient adenoviral gene expression, the majority of angiogenic effects and side effects return to baseline by 2 weeks after the gene transfer. In contrast, VEGF overexpression lasting over 4 weeks has been shown to induce the growth of a persistent vascular network in preclinical models. To improve efficacy, the choice of the vascular growth factor, gene transfer vector, and route of administration should be optimized in future clinical trials. This review is focused on these issues.
Collapse
Affiliation(s)
- Tuomas T Rissanen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute, Kuopio University, Kuopio, Finland
| | | | | |
Collapse
|
91
|
García MJ. Therapeutic Application of Ultrasound Contrast Agents. CONTRAST ECHOCARDIOGRAPHY IN CLINICAL PRACTICE 2004:263-286. [DOI: 10.1007/978-88-470-2125-9_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
92
|
Padilla L, Krötzsch E, Schalch P, Figueroa S, Miranda A, Rojas E, Esperante S, Villegas F, de la Garza AS, Di Silvio M. Administration of bone marrow cells into surgically induced fibrocollagenous tunnels induces angiogenesis in ischemic rat hindlimb model. Microsurgery 2003; 23:568-74. [PMID: 14705073 DOI: 10.1002/micr.10208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We established a comparative model of angiogenic induction in previously formed fibrocollagenous tunnels in rat inner thigh muscles. A unilateral hindlimb chronic ischemia model was performed in male Sprague-Dawley rats. A device was then inserted in the central portion of the inner thigh muscles. Vascularity in the ischemic limb was determined by means of an angiographic score, capillary/fiber ratio, and endothelial proliferation by histochemistry and immunohistochemistry. Autologous transplant of bone marrow, vascular endothelial growth factor (VEGF), or collagen-polyvinylpyrrolidone plus heparin induced significant vascularization of the ischemic hindlimb when compared to saline solution. However, the bone marrow group presented a higher angiographic score than the other two. No differences among groups were observed in capillary/fiber ratio or proliferation, except for the VEGF group, where capillary proliferating cells were significantly higher than in controls. Based on these results, bone marrow-derived progenitor cells may constitute a safe and viable alternative for the induction of therapeutic angiogenesis.
Collapse
MESH Headings
- Angiography
- Animals
- Biopsy, Needle
- Bone Marrow Cells
- Bone Marrow Transplantation/methods
- Disease Models, Animal
- Graft Survival
- Hindlimb/blood supply
- Immunohistochemistry
- Ischemia/diagnostic imaging
- Ischemia/pathology
- Ischemia/therapy
- Male
- Microscopy, Electron, Scanning
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/diagnostic imaging
- Muscle, Skeletal/ultrastructure
- Neovascularization, Physiologic/physiology
- Probability
- Rats
- Rats, Sprague-Dawley
- Sensitivity and Specificity
- Transplantation, Autologous
Collapse
Affiliation(s)
- Luis Padilla
- Department of Microsurgery and Experimental Surgery, Centro Médico Nacional 20 de Noviembre, I.S.S.SF.T.E., Mexico City, Mexico.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Lay IS, Hsieh CC, Chiu JH, Shiao MS, Lui WY, Wu CW. Salvianolic acid b enhances in vitro angiogenesis and improves skin flap survival in sprague-dawley rats1. J Surg Res 2003; 115:279-85. [PMID: 14697295 DOI: 10.1016/s0022-4804(03)00226-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Insufficient angiogenesis and microcirculatory intravascular clotting have been implicated in the pathophysiology of skin flap failure. Salvianolic acid B (Sal B), isolated from Salvia miltiorrhiza, has been reported to enhance angiogenesis in vitro. This study was aimed to determine the efficacy of Sal B on ischemia-reperfusion injury of the skin flap in Sprague-Dawley rats. Sal B was administered intraperitoneally 2 h before operation, and on the 2nd and 4th days after surgical elevation of an extended epigastric adipocutaneous flap (5 x 7 cm) in ketamine-anesthetized rats. Flap ischemia was achieved by ligating the right superficial epigastric artery and vein and clamping the left superficial epigastric artery and vein for 3 h and then released. Percentage of flap necrosis area (FNA) and plasma levels of aspartate aminotransferase, alanine aminotransferase, creatinine, and malondialdehyde were measured at 7 days after the operation. Animals were divided into six groups, including: vehicle, Sal B low dose (5 mg/kg), Sal B high dose (50 mg/kg) and each with [mesh(+)] or without mesh [mesh(-)] placement. In the three groups with mesh(+), FNA in control flaps was 53.7 +/- 6.9%, whereas low-dose and high-dose Sal B significantly improved flap survival with FNA 27.4 +/- 3.8% and 25.3 +/- 4.3%, respectively (P < 0.05, one-way ANOVA). In the three groups with mesh(-), control flaps were 35.9 +/- 4.5%, whereas high-dose Sal B also significantly improved flap survival with FNA 17.9 +/- 4.7% (P < 0.05, one-way ANOVA). There were no differences in aspartate aminotransferase, alanine aminotransferase, creatinine, or malondialdehyde between groups. We conclude that Sal B attenuates ischemia-reperfusion injury of skin flap, and provides therapeutic potential in reconstructive plastic surgery.
Collapse
Affiliation(s)
- Ing-Shiow Lay
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | | | | | | | | | | |
Collapse
|
94
|
Buckwalter JB, Curtis VC, Ruble SB, Valic Z, Hamann JJ, Coon RL, Mirhoseini M, Clifford PS. Laser revascularization of ischemic skeletal muscle. J Surg Res 2003; 115:257-64. [PMID: 14697292 DOI: 10.1016/s0022-4804(03)00283-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Clinical trials have shown that transmyocardial laser revascularization is an effective secondary treatment for ischemic heart disease patients. Laser revascularization may also provide an alternative method for treating peripheral vascular disease. METHODS The purpose of this study was to investigate the potential for laser revascularization in ischemic skeletal muscle. Eighteen rabbits (3-4 kg) were instrumented chronically with transit time ultrasound flowprobes on both common iliac arteries. All rabbits performed graded exercise tests on a treadmill where maximal blood flow was recorded. Unilateral hindlimb ischemia was produced by ligation of one femoral artery. At week 3 postligation, 10 rabbits received laser therapy and 8 underwent a sham surgery. In each of four muscles (gracilius, medialis, sartorius, and biceps femoris) 5 to 22 laser channels were created (average = 52 channels per leg). RESULTS At week 3 postligation the maximal blood flow of the ischemic limb for the treated group was 64 +/- 3 ml/min (mean +/- SEM) and at 6 weeks postlaser therapy maximal blood flow increased to 75 +/- 5 ml/min. The sham surgery group had a maximal blood flow of 58 +/- 4 ml/min at week 3 postligation and 66 +/- 3 ml/min at week 6 postsham surgery. CONCLUSION These results indicate that laser therapy does not induce angiogenesis and vascular remodeling in the ischemic hindlimb of a rabbit which exceeds that seen with a sham surgery.
Collapse
Affiliation(s)
- John B Buckwalter
- Department of Anesthesiology and Department of Physiology, Medical College of Wisconsin and VA Medical Center, Milwaukee, WI 53295, USA.
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Gerritsen ME, Tomlinson JE, Zlot C, Ziman M, Hwang S. Using gene expression profiling to identify the molecular basis of the synergistic actions of hepatocyte growth factor and vascular endothelial growth factor in human endothelial cells. Br J Pharmacol 2003; 140:595-610. [PMID: 14504135 PMCID: PMC1574080 DOI: 10.1038/sj.bjp.0705494] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocyte growth factor (HGF) and vascular endothelial cell growth factor (VEGF) are two potent endothelial mitogens with demonstrated angiogenic activities in animal models of therapeutic angiogenesis. Several recent studies suggest that these growth factors may act synergistically, although the mechanism of this interaction is not understood. Changes in the gene expression profile of human umbilical vein endothelial cells treated with HGF, VEGF or the combination of the two were analyzed with high-density oligonucleotide arrays, representing approximately 22000 genes. Notably, the genes significantly up- and downregulated by VEGF versus HGF exhibited very little overlap, indicating distinct signal transduction pathways. The combination of HGF and VEGF markedly increased the number of significantly up- and downregulated genes. At 4 h, the combination of the two growth factors induced a number of chemokine and cytokines and their receptors (IL-8, IL-6, IL-11, CCR6, CXCR1,CXC1 and IL17RC), numerous genes involved in growth factor signal transduction (egr-1, fosB, grb10, grb14,MAP2K3,MAP3K8, MAPKAP2,MPK3, DUSP4 and DUSP6), as well as a number of other growth factors (PDGFA, BMP2, Hb-EGF, FGF16, heuregulin beta 1, c-kit ligand, angiopoietin 2 and angiopoietin 4 and VEGFC). In addition, the VEGF receptors neuropilin-1 and flt-1 were also upregulated. At 24 h, a clear 'cell cycle' signature is noted, with the upregulated expression of various cell cycle control proteins and gene involved in the regulation of mitosis and mitotic spindle assembly. The receptor for HGF, c-met, is also upregulated. These data are consistent with the hypothesis that the combination of HGF and VEGF results in the cooperative upregulation of a number of different molecular pathways leading to a more robust proliferative response, that is, growth factor(s), receptors, molecules involved in growth factor signal transduction, as well as, at later time points, upregulation of the necessary cellular proteins required for cells to escape cell cycle arrest and enter the cell cycle.
Collapse
Affiliation(s)
- Mary E Gerritsen
- Department of Vascular Biology, Millennium Pharmaceuticals, South San Francisco, CA 94080, USA.
| | | | | | | | | |
Collapse
|
96
|
Srivastava S, Terjung RL, Yang HT. Basic fibroblast growth factor increases collateral blood flow in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2003; 285:H1190-7. [PMID: 12763749 DOI: 10.1152/ajpheart.00280.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemia-induced angiogenic response is reduced in spontaneously hypertensive rats (SHR). To study whether exogenous basic fibroblast growth factor (bFGF) infusion is effective in expanding collateral circulation in frankly hypertensive SHR, femoral arteries of male SHR (weighing approximately 250 g) were kept intact (nonoccluded control; n = 9) or occluded for 4h(n = 12) or for 16 days with vehicle (n = 14) or bFGF [0.5 (n = 17), 5.0 (n = 13), and 50.0 (n = 14) microg. kg-1. day-1 for 14 days] intraarterially. Maximal collateral-dependent blood flows (BF) to the hindlimbs were determined with 85Sr- and 141Ce-labeled microspheres during running at 20 and 25 m/min (15% grade). Preexercise heart rates (approximately 530 beats/min) and blood pressures (BP; approximately 200 mmHg) were similar across groups except in the high-dose bFGF group, where BP was reduced by approximately 12% (P < 0.05). Femoral artery occlusion for 4 h resulted in approximately 95% reduction of BF in calf muscles [199 +/- 18.7 (nonoccluded group) to 10 +/- 1.0 ml. min-1. 100 g-1; P < 0.001]. BF to calf muscles of the vehicle and low-dose bFGF (0.5 microg. kg-1. day-1) groups increased to 36 +/- 3.2 and 45 +/- 2.0 ml. min-1. 100 g-1, respectively (P < 0.001). bFGF infusion at 5.0 and 50.0 microg. kg-1. day-1 further increased (P < 0.001) BF to calf muscles (62 +/- 4.6 and 62 +/- 2.2 ml. min-1. 100 g-1, respectively). Our results show that bFGF can effectively increase BF in hypertensive rats. The reduced hypertension with high-dose bFGF suggests that a critical signal in arteriogenesis (nitric oxide bioavailability) may be restored. These findings suggest that the dulled endothelial nitric oxide synthase of SHR does not preempt collateral vessel remodeling.
Collapse
Affiliation(s)
- Sunita Srivastava
- Section of Vascular Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
97
|
Abstract
Stimulating new blood vessel growth in ischemic hearts or limbs is a hopeful new approach for patients with advanced vascular disease. This approach is based generally upon the hypothesis that sufficient exposure of a vascular bed to an angiogenic protein will stimulate neovascularization. Most angiogenic proteins have a markedly short serum half-life. To overcome this, researchers have turned to gene therapy to ensure continuous expression of angiogenic proteins and prolonged exposure in the targeted vascular beds. This field is still evolving, and although early clinical trial results suggest angiogenic gene therapy can be successful, many questions remain. As we continue to learn more about the complex interplay and coordinated action of the various factors involved in regulating angiogenesis, it is likely that strategies for therapeutic angiogenesis will continue to change. This review addresses the current state of angiogenic gene therapy, contrasts gene therapy with angiogenic protein delivery, describes early and recent clinical trial data, and discusses potential new directions in the field.
Collapse
Affiliation(s)
- Jennifer L Yeh
- Department of Medicine, Cardiovascular Gene Therapy Program, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
98
|
Roguin A, Avivi A, Nitecki S, Rubinstein I, Levy NS, Abassi ZA, Resnick MB, Lache O, Melamed-Frank M, Joel A, Hoffman A, Nevo E, Levy AP. Restoration of blood flow by using continuous perimuscular infiltration of plasmid DNA encoding subterranean mole rat Spalax ehrenbergi VEGF. Proc Natl Acad Sci U S A 2003; 100:4644-8. [PMID: 12672967 PMCID: PMC153609 DOI: 10.1073/pnas.0330833100] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The optimal vector, regulatory sequences, and method of delivery of angiogenic gene therapy are of considerable interest. The Spalax ehrenbergi superspecies live in subterranean burrows at low oxygen tensions and its tissues are highly vascularized. We tested whether continuous perimuscular administration of Spalax vascular endothelial growth factor (VEGF) DNA could increase tissue perfusion in a murine hindlimb ischemia model. Placebo or VEGF +/- internal ribosome entry site (IRES) was continuously administrated perimuscularly in the ischemic zone by using an infusion pump. None of the mice in the VEGF-treated group (>50 microg) developed visible necrosis vs. 33% of the placebo group. Microscopic necrosis was observed only in the placebo group. Spalax VEGF muscular infiltration resulted in a faster and more complete restoration of blood flow. The restoration of blood flow by VEGF was dose-dependent and more robust and rapid when using the VEGF-IRES elements. The flow restoration using continuous perimuscular infiltration was faster than single i.m. injections. Vessel density was higher in the VEGF and VEGF-IRES (-) groups compared with the placebo. Continuous perimuscular administration of angiogenic gene therapy offers a new approach to restore blood flow to an ischemic limb. Incorporation of an IRES element may assist in the expression of transgenes delivered to ischemic tissues. Further studies are needed to determine whether VEGF from the subterranean mole rat Spalax VEGF is superior to VEGF from other species. If so, 40 million years of Spalax evolution underground, including adaptive hypoxia tolerance, may prove important to human angiogenic gene therapy.
Collapse
Affiliation(s)
- Ariel Roguin
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, POB 9649, Haifa 31096, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Buckwalter JB, Curtis VC, Valic Z, Ruble SB, Clifford PS. Endogenous vascular remodeling in ischemic skeletal muscle: a role for nitric oxide. J Appl Physiol (1985) 2003; 94:935-40. [PMID: 12391140 DOI: 10.1152/japplphysiol.00378.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To test the hypothesis that nitric oxide (NO) production is essential for endogenous vascular remodeling in ischemic skeletal muscle, 22 New Zealand White rabbits were chronically instrumented with transit-time flow probes on the common iliac arteries and underwent femoral ligation to produce unilateral hindlimb ischemia. Iliac blood flow and arterial pressure were recorded at rest and during a graded exercise test. An osmotic pump connected to a femoral arterial catheter continuously delivered N-nitro-l-arginine methyl ester (a NO synthase inhibitor) or a control solution (N-nitro-d-arginine methyl ester or phenylephrine) to the ischemic limb over a 2-wk period. At 1, 3, and 6 wk after femoral ligation, maximal treadmill exercise blood flow in the ischemic limb was reduced compared with baseline in each group. However, maximal exercise blood flow was significantly (P < 0.05) lower in the l-NAME-treated group than in controls for the duration of the study: 48 +/- 4 vs. 60 +/- 5 ml/min at 6 wk. Consistent with the reduction in maximal blood flow response, the duration of voluntary exercise was also substantially (P < 0.05) shorter in the l-NAME-treated group: 539 +/- 67 vs. 889 +/- 87 s. Resting blood flow was unaffected by femoral ligation in either group. The results of this study show that endogenous vascular remodeling, which partially alleviated the initial deficit in blood flow, was interrupted by NO synthase inhibition. Therefore, we conclude that NO is essential for endogenous collateral development and angiogenesis in ischemic skeletal muscle in the rabbit.
Collapse
Affiliation(s)
- John B Buckwalter
- Department of Anesthesiology and Physiology, Medical College of Wisconsin, and Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295, USA.
| | | | | | | | | |
Collapse
|
100
|
Abstract
Despite continued advances in the prevention and treatment of coronary artery disease, there are still a large number of patients who are not candidates for the conventional revascularization techniques of balloon angioplasty and stenting, or coronary artery bypass grafting (CABG). Therapeutic angiogenesis, in the form of the administration of growth factor protein or gene therapy, has emerged as a promising new method of treatment for patients with coronary artery disease. The goal of this strategy is to promote the development of supplemental blood conduits that will act as endogenous bypass vessels. New vessel formation occurs through the processes of angiogenesis, vasculogenesis, and arteriogenesis, under the control of growth factors such as those that belong to the vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and angiopoeitin (Ang) families of molecules. Preclinical studies have suggested that such an approach is both feasible and effective; however many questions remain to be answered. This review will address the elements of pharmacologic revascularization, focusing on gene and protein-based therapy. The important growth factors, the vector (for gene therapy), routes of delivery, the desired therapeutic effect, and quantifiable clinical end points for trials of angiogenesis will all be addressed.
Collapse
Affiliation(s)
- Michael J B Kutryk
- Division of Cardiology, Terrence Donnelly Heart Center, St. Michael's Hospital, University of Toronto, Toronto M5B 1W8, Ontario, Canada.
| | | |
Collapse
|