51
|
Coelho AM, Queiroz IF, Lima WG, Talvani A, Perucci LO, Oliveira de Souza M, Costa DC. Temporal analysis of paracetamol-induced hepatotoxicity. Drug Chem Toxicol 2023; 46:472-481. [PMID: 35313777 DOI: 10.1080/01480545.2022.2052891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Paracetamol-induced hepatotoxicity (APAP) causes severe damage that may be irreversible. Understanding the evolution of liver injury caused by overdose of the drug is important to assist in the treatment. In the present study, we evaluated the acute intoxication by APAP (500 mg/kg) in periods of 3 and 12 hours in C57BL/6 mice through biochemical, histological, inflammatory parameters, and the redox status. The results showed that in the 3-hour period there was an increase in creatinine dosage and lipid peroxidation (TBARS) compared to the control group. In the period of 12 hours after APAP intoxication all parameters evaluated were altered; there was an increase of ALT, AST, and necrosis, besides the increase of redox status biomarkers as carbonylated protein, TBARS, and MMP-9. We also observed activation of the inflammasome pathway as well as a reduction in the regenerative capacity of hepatocytes with a decrease in binucleated liver cells. In cytochrome gene expression, the mRNA level increased in CYP2E1 isoenzyme and reduced CYP1A2 expression. This study indicated that early treatment is necessary to mitigate APAP-induced acute liver injury, and alternative therapies capable of controlling the progression of intoxication in the liver are needed.
Collapse
Affiliation(s)
- Aline Meireles Coelho
- Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Minas Gerais, Brazil
| | - Isabela Ferreira Queiroz
- Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Minas Gerais, Brazil
| | - Wanderson Geraldo Lima
- Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Minas Gerais, Brazil
| | - André Talvani
- Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Minas Gerais, Brazil
| | - Luiza Oliveira Perucci
- Center for Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Minas Gerais, Brazil
| | - Melina Oliveira de Souza
- Department of Food (DEALI), School of Nutrition, Universidade Federal de Ouro Preto (UFOP), Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Minas Gerais, Brazil
| |
Collapse
|
52
|
Jing X, Liu Y, Liu X, Wang XF, You C, Chang D, Zhang S. Nitrogen-doped carbon dots enhanced seedling growth and salt tolerance with distinct requirements of excitation light. RSC Adv 2023; 13:12114-12122. [PMID: 37082373 PMCID: PMC10111579 DOI: 10.1039/d3ra01514a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
Numerous nanomaterials with optical properties have demonstrated excellent capacities to enhance plant growth and stress tolerance. However, the corresponding mechanisms have only been partially characterized, especially the excitation-light dependencies of different actions. Here, nitrogen-doped carbon dots (N-CDs) were developed to explore the excitation-light dependence in N-CD-induced growth enhancement and salt tolerance. Compared to the control, N-CDs induced significant enhancements in Arabidopsis thaliana growth under excitation light, including fresh/dry weight of shoot (21.07% and 16.87%), chlorophyll content (9.17%), soluble sugar content (23.41%), leaf area (28.68%), total root length (34.07%) and root tip number (46.69%). In the absence of excitation light, N-CD-treated seedlings exhibited little differences in these parameters, except the enhancements in root length (24.51%) and root tip number (10.24%). On the other hand, N-CD-treatment could improve seedling salt tolerance with or without excitation light. Under salt stress (150 mM NaCl), in the presence of excitation light, the N-CDs treatment significantly increased shoot/root fresh weight and chlorophyll content by 43.29%, 50.66% and 22.59%, and reduced malondialdehyde (MDA) content and relative conductivity by 17.59% and 32.58% compared to the control group. In the absence of excitation light, significant enhancements in shoot/root fresh weight (34.22%, 32.60%) and chlorophyll content (10.45%), and obvious decreases in MDA content (28.84%) and relative conductivity (16.13%) were also found. These results indicated that N-CDs only induced growth enhancement under excitation light, but they improved salt tolerance with and without excitation light, suggesting that the two effects occurred via distinct signaling pathways. This study revealed the excitation-light dependencies of nanomaterial-involved agriculture applications, providing insight into designing more efficient nanomaterials in the future.
Collapse
Affiliation(s)
- Xiuli Jing
- State Key Laboratory of Crop Biology, Shandong Green Fertilizer Technology Innovation Center, Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University Taian Shandong China
| | - Yankai Liu
- State Key Laboratory of Crop Biology, Shandong Green Fertilizer Technology Innovation Center, Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University Taian Shandong China
| | - Xuzhe Liu
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University Taian Shandong China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Green Fertilizer Technology Innovation Center, Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University Taian Shandong China
| | - Chunxiang You
- State Key Laboratory of Crop Biology, Shandong Green Fertilizer Technology Innovation Center, Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University Taian Shandong China
| | - Dayong Chang
- Yantai Goodly Biological Technology Co., Ltd. Yantai Shandong China
| | - Shuai Zhang
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University Taian Shandong China
| |
Collapse
|
53
|
Wu J, Ge F, Zhu L, Liu N. Potential Toxic Mechanisms of Neonicotinoid Insecticides in Rice: Inhibiting Auxin-Mediated Signal Transduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4852-4862. [PMID: 36926880 DOI: 10.1021/acs.est.2c09352] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inappropriate application of pesticides not only causes sub-lethal effects on ecosystem service providers but also reduces crop yield and quality. As a xenobiotic signal molecule, pesticides may interact with signal transduction receptors in crops, resulting in oxidative damage and even metabolic perturbations. We discovered that three neonicotinoid insecticides (NIs), namely, imidacloprid, thiamethoxam, and clothianidin, at 0.06-0.12 kg ai/ha significantly inhibited the auxin signal pathway in rice leaves, thereby reducing the intracellular auxin (IAA) content. Molecular simulation further confirmed that NIs occupied the binding site where auxin transporter-like proteins 1 (LAX11) and 2 (LAX12), in which Thr253 and Asn66 of LAX11, as well as Thr244 and Asn57 of LAX12, were bound to the nitroguanidine of NIs via H-bonds. Meanwhile, Asn66 of LAX11 and Asn57 of LAX12 interacted with nitroguanidine via aromatic H-bonds. Moreover, phenylpropanoid biosynthesis was significantly disturbed because of the inhibited auxin signal pathway. Notably, peroxidase-coding genes were downregulated with a maximum value greater than 10-fold, resulting in decreased antioxidant metabolites flavone (37.82%) and lignin content (20.15%). Ultimately, rice biomass was reduced by up to 25.41% due to the decline in IAA content and antioxidant capacity. This study deeply explored the molecular mechanism of metabolic perturbations in crops stressed by pesticides, thus providing a scientific basis for pesticide environmental risk assessment and agricultural product safety.
Collapse
Affiliation(s)
- Jianjian Wu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
54
|
Epure A, Pârvu AE, Vlase L, Benedec D, Hanganu D, Oniga O, Vlase AM, Ielciu I, Toiu A, Oniga I. New Approaches on the Anti-Inflammatory and Cardioprotective Properties of Taraxacum officinale Tincture. Pharmaceuticals (Basel) 2023; 16:ph16030358. [PMID: 36986458 PMCID: PMC10053582 DOI: 10.3390/ph16030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The present research investigated the in vivo anti-inflammatory and cardioprotective activities, as well as the antioxidant potential of Taraxacum officinale tincture (TOT), in relation to the polyphenolic composition. Chromatographic and spectrophotometric techniques were used to determine the polyphenolic profile of TOT and the antioxidant activity was preliminarily assessed in vitro by DPPH• and FRAP spectrophotometric methods. The in vivo anti-inflammatory and cardioprotective activities were studied in rat turpentine-induced inflammation and in rat isoprenaline-induced myocardial infarction (MI) models. The main polyphenolic compound identified in TOT was cichoric acid. The oxidative stress determinations showed the capacity of the dandelion tincture not only to decrease the total oxidative stress (TOS), the oxidative stress index (OSI), and the total antioxidant capacity (TAC), but also the malondialdehide (MDA), thiols (SH), and nitrites/nitrates (NOx) levels both in inflammation and MI models. In addition, aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatin kinase-MB (CK-MB), and nuclear factor kappa B (NF-κB) parameters were decreased by the administration of the tincture. The results show that T. officinale could be considered a valuable source of natural compounds with important benefits in pathologies linked to oxidative stress.
Collapse
Affiliation(s)
- Alexandra Epure
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Alina E. Pârvu
- Department of Physiopathology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Daniela Benedec
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Anca Toiu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Ilioara Oniga
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
55
|
Elgarawany GE, Badawy AD, Hazzaa SM. Co Q10 improves vascular reactivity in male diabetic rats by enhancing insulin sensitivity and antioxidant effect. Arch Physiol Biochem 2023; 129:108-115. [PMID: 32718232 DOI: 10.1080/13813455.2020.1798465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress is the main player in the development of diabetic vascular complications. Co-Q10 is a natural antioxidant present in the body and in many foods. This study was designed to evaluate the effect of Co-Q10 administration to improve vascular complications and increase insulin sensitivity in diabetic rats. Fifty male rats were divided into five groups: control, diabetic untreated, diabetic insulin-treated, diabetic Co-Q10-treated, and diabetic combined-treated groups. After 8 weeks, blood pressure and vascular reactivity to NE and ACh, fasting glucose, insulin, C-peptide, MDA, TAC, HbA1c, and the HOMA-IR were measured. Diabetes increased fasting glucose, HbA1c, HOMA-IR, MDA, blood pressure, and decreased TAC and vascular reactivity. Ttreatment with insulin or Co-Q10 improved glycemic parameters and increasing antioxidant levels compared to diabetic group. Combined Co-Q10 with insulin was found to increase insulin sensitivity and decrease its resistance, which helps to decrease insulin doses in diabetic patients and reduce its side effects.
Collapse
Affiliation(s)
- Ghada E Elgarawany
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen El Kom, Egypt
- Department of Biomedical Science, Faculty of Medicine, Gulf Medical University, UAE
| | - Ahmed Desoky Badawy
- Department of Medical Physiology, Faculty of Medicine, 6 October University, 6 October City, Egypt
| | - Suzan M Hazzaa
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen El Kom, Egypt
| |
Collapse
|
56
|
Li H, Wang Y, Zhang J, Li X, Wang J, Yi S, Zhu W, Xu Y, Li J. Prediction of the freshness of horse mackerel (Trachurus japonicus) using E-nose, E-tongue, and colorimeter based on biochemical indexes analyzed during frozen storage of whole fish. Food Chem 2023; 402:134325. [DOI: 10.1016/j.foodchem.2022.134325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
|
57
|
Wang T, Huang L, Xia C, Zhou Y, Yao W, Zhang L, Huang F. Dietary supplementation with garcinol during late gestation alleviates disorders of bile acid metabolism and improves the performance of sows and newborn piglets. J Anim Sci 2023; 101:skad352. [PMID: 37819678 PMCID: PMC10630027 DOI: 10.1093/jas/skad352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
The present study was conducted to evaluate the effects of dietary garcinol supplementation during late gestation on bile acid metabolism and performance of sows. Sixty sows (Duroc × Yorkshire × Landrace; second- or third-parity; n = 20) with disorder of bile acid metabolism were randomly divided into three groups: control diet (CON; basal diet), basal diet with 200 mg garcinol (Low Gar), and basal diet with 600 mg garcinol (High Gar) per kg of feed. The body weight (BW); backfat thickness and litter size of the sows; and birth weight, weaning weight, and mortality of piglets were recorded. Sows' blood was collected for the measurements of hematological parameters and antioxidative and immune indexes, and indicators related to bile acid metabolism, respectively. The colostrum and fecal samples of the sows were also collected for analysis of colostrum composition and apparent total tract nutrient digestibility. Garcinol had no effect on the BW and backfat thickness of the sows but significantly decreased the mortality and number of weak litter (P < 0.05). Moreover, the white blood cell counts, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activity in the plasma of the sows were increased more significantly (P < 0.05) in the garcinol groups than that in the CON group, whereas the malondialdehyde (MDA) content was decreased (P < 0.05). Dietary supplementation with garcinol significantly reduced TBA concentrations (P < 0.05). The content of immunoglobulin A (IgA) and immunoglobulin G (IgG) in the plasma and in colostrum of sows were increased more significantly (P < 0.05) in the garcinol groups than that in the CON group. In addition, dry matter (DM), Ash, and EE in the colostrum were similar between groups (P > 0.05), whereas the garcinol significantly increased the crude protein (CP) in the colostrum. The apparent total tract nutrient digestibility was similar between treatments. Garcinol treatment induced a gradually decreased (P > 0.05) the expression of genes involved in BA synthesis (CYP7A1, CYP8B1), BA uptake (NTCP, OATP1A2), BA secretion (BSEP and MRP2), BA detoxification (SULT2A1), and BA efflux into the blood circulation (OSTβ). Collectively, this study indicates that sows fed with garcinol in late gestation showed relieved bile acid metabolism disorder and improved sows performance, antioxidative status, colostrum protein content, showing promise in natural plant extract nutrition for sows with disorder of bile acid metabolism.
Collapse
Affiliation(s)
- Tongxin Wang
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Huang
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changhong Xia
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Zhou
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China
| | - Weilei Yao
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liwen Zhang
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Feiruo Huang
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
58
|
Wang T, Yao W, Liu X, Bao Z, Lv C, Huang F. Dietary embelin supplementation during mid-to-late gestation improves performance and maternal-fetal glucose metabolism of pigs. J Anim Sci 2023; 101:skad010. [PMID: 36617266 PMCID: PMC10079812 DOI: 10.1093/jas/skad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023] Open
Abstract
This study aimed to evaluate the effects of dietary embelin supplementation during late gestation (from days 60 to 110) on performance and maternal-fetal glucose metabolism of pigs. Sixty sows (Duroc × Yorkshire × Landrace; parity = 1.68 ± 0.03; N = 20) were randomly divided into three gestation (day 60 of pregnancy) treatments, Control pigs (CON) were fed a basal diet, and the other animals were fed a basal diet supplemented with 200 or 600 mg/kg embelin per kg of feed. The body weight, backfat thickness and litter size of the sows, and birth weight and mortality of piglets were recorded. Sows' blood and piglets' umbilical cord blood were collected for the measurements of hematological parameters and anti-oxidative and immune indexes, and maternal-fetal glucose metabolism parameters, respectively. The colostrum and milk and fecal samples of the sows were also collected for analysis of milk composition and apparent total tract nutrient digestibility. Dietary embelin had no effect on the BW and backfat thickness of the sows but significantly increased the birth weight of piglets (P < 0.05) and decreased the mortality (P < 0.05). Moreover, the white blood cell counts (day 90), neutrophil count and mean cell hemoglobin (day 110), total anti-oxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) content of the sows were increased significantly (P < 0.05) in the embelin groups than that in the CON group, whereas the malondialdehyde (MDA) content was decreased (P < 0.05). Embelin significantly increased immunoglobulin A (IgA) and immunoglobulin G (IgG) content in plasma of piglets as well as those in colostrum and milk of sows than the CON treatment (P < 0.05). In addition, dry matter, ash, and ether extract in the colostrum were similar between groups (P > 0.05), whereas the embelin significantly increased the crude protein in the milk. The apparent total tract nutrient digestibility was similar between treatments (P > 0.05). The embelin treatment significantly increased the glucose levels and lactate dehydrogenase B (LDHB) activity in sows plasma, and decreased the lactate levels in both sows and fetuses plasma (P < 0.05). Collectively, this study indicates that sows fed with embelin in mid-to-late gestation showed improved maternal health and anti-oxidative status, milk protein content, and maternal-fetal glucose metabolism, showing promise in natural plant extract nutrition for sows.
Collapse
Affiliation(s)
- Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaomeng Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengxi Bao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenrui Lv
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
59
|
Topcu A, Saral S, Mercantepe T, Akyildiz K, Tumkaya L, Yilmaz A. The effects of apelin-13 against cisplatin-induced nephrotoxicity in rats. Drug Chem Toxicol 2023; 46:77-87. [PMID: 34894944 DOI: 10.1080/01480545.2021.2011309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Acute kidney injury (AKI) is observed in nearly 60% of patients undergoing cisplatin (CP) therapy. The aim of this study was to reveal the potential effects of apelin-13 (AP-13) in the prevention of CP-induced renal toxicity, together with its antioxidant and anti-inflammatory effect mechanisms. Four experimental groups were established. Group 1, the control group, received 0.9% saline solution alone intraperitoneally (IP). Group 2, the CP group, received CP IP at 5 mg/kg once weekly for four weeks for induction of nephrotoxicity. In Group 3, the CP + Apelin-13 (AP-13) group, AP-13 was prepared at 20 nmol kg/d in sterile pyrogen-free saline before injection every day for four weeks and administered IP. CP was administered IP at 5 mg/kg once weekly for four weeks for induction of nephrotoxicity. In Group 4, the AP-13 group, AP-13 was prepared at 20 nmol kg/d in sterile pyrogen-free 0.9% saline before injection every day for four weeks and administered IP. Thiobarbituric acid reactive substances (TBARS), thiol (-SH), interleukin-1 beta, cleaved caspase-3, 8-hydroxy 2-deoxyguanosine (8-OHdG), and nuclear factor kappa B (NF-κβ/p65) levels were then measured. Increased oxidative stress, inflammation, and apoptosis as a result of CP application activated the cascade. However, AP-13 administration reduced the oxidative stress increased by CIS with the determined antioxidant effect and reduced the damage by increasing total -SH levels. 8-OHdG and NF-κβ/p65, which were up-regulated by triggering oxidative stress and inflammation, were down-regulated through the antioxidant and anti-inflammatory effects of AP-13.
Collapse
Affiliation(s)
- Atilla Topcu
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Sinan Saral
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Kerimali Akyildiz
- Department of Medical Services and Techniques, Health Care Services Vocational School, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
60
|
Giri SS, Kim SG, Woo KJ, Jung WJ, Lee SB, Lee YM, Jo SJ, Hwang MH, Park J, Kim JH, V S, Park SC. Effects of Bougainvillea glabra leaf on growth, skin mucosal immune responses, and disease resistance in common carp Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108514. [PMID: 36596319 DOI: 10.1016/j.fsi.2022.108514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
This study evaluated the effects of Bougainvillea glabra (BG) leaf as a feed supplement on growth, skin mucosal immune parameters, serum oxidative stress, expression of immune-related genes, and susceptibility to pathogen infection in carp Cyprinus carpio. Diets containing four different BG concentrations (g kg-1), i.e., 0 g (basal diet), 20 g (BG20), 30 g (BG30), 40 g (BG40), and 50 g (BG50), were fed to the carp (average weight: 14.03 ± 0.81 g) for 8 weeks. Skin mucosal immunological and serum antioxidant parameters were examined 8 weeks post-feeding. Growth performance was significantly higher in BG40. Among the examined skin mucosal immune parameters, lysozyme (33.79 ± 0.98 U mL-1), protein (6.88 ± 0.37 mg mL-1), immunoglobulin (IgM; 5.34 ± 0.37 unit-mg mL-1), and protease activity (3.18 ± 0.36%) were significantly higher in BG40 than in the control; whereas, there was no significant effect on the alkaline phosphatase level. Among serum immune activity, activities of lysozyme, the alternative complement pathway, and IgM were significantly higher in BG40. Phagocytic, and superoxide dismutase (SOD) activities were higher (P < 0.05) in BG30-BG50. Serum ALT, AST, and MDA levels were lower in BG40 than in the control (P < 0.05). Intestinal enzymatic activities were enhanced in BG40 and BG50 (P < 0.05), except for lipase in BG50. Gene expression analysis revealed that the mRNA expressions of antioxidant genes (SOD, GPx, and Nrf2), an anti-inflammatory gene (IL-10), and IκBα were significantly upregulated in BG40. Conversely, the pro-inflammatory gene IL-1β and the signaling molecule NF-κB p65 were downregulated in BG40 and BG50, respectively. BG supplementation had no significant effect on TNF-α, TLR22, or HSP70 mRNA expressions. Moreover, fish in BG40 exhibited the highest relative post-challenge survival (67.74%) against Aeromonas hydrophila infection. These results suggested that dietary supplementation with BG leaves at 40 g/kg can significantly improve the growth performance, immune responses, and disease resistance of C. carpio. BG leaves are a promising food additive for carp in aquaculture.
Collapse
Affiliation(s)
- Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Kang Jeong Woo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Won Joon Jung
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Young Min Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Su Jin Jo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Mae Hyun Hwang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - JaeHong Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Sukumaran V
- Department of Zoology, Kundavai Nachiyar Government Arts College for Women (Autonomous), Thanjavur, 613007, Tamil Nadu, India
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
61
|
Kim KJ, Hwang ES, Kim MJ, Rha CS, Song MC, Maeng S, Park JH, Kim DO. Effects of Phenolic-Rich Pinus densiflora Extract on Learning, Memory, and Hippocampal Long-Term Potentiation in Scopolamine-Induced Amnesic Rats. Antioxidants (Basel) 2022; 11:antiox11122497. [PMID: 36552705 PMCID: PMC9774118 DOI: 10.3390/antiox11122497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease is the most common type of dementia with cognitive impairment. Various plant-derived phenolics are known to alleviate cognitive impairment in Alzheimer's disease by radical scavenging and strengthening synaptic plasticity activities. Here, we examined the cognition-improving effect of Pinus densiflora Sieb. et Zucc. bark extract (PBE). We identified and quantified phenolics in the PBE using a UHPLC-Orbitrap mass spectrometer. To evaluate the cognition-enhancing effects of PBE, scopolamine-induced amnesic Sprague-Dawley (SD) rats (5 weeks old) and ion channel antagonist-induced organotypic hippocampal slices of SD rats (7 days old) were used. Twenty-three phenolics were tentatively identified in PBE, 10 of which were quantified. Oral administration of PBE to the scopolamine-induced SD rats improved cognitive impairment in behavioral tests. PBE-fed SD rats showed significantly improved antioxidant indices (superoxide dismutase and catalase activities, and malondialdehyde content) and reduced acetylcholinesterase activity in hippocampal lysate compared with the scopolamine group. PBE increased the long-term potentiation (LTP) induction and rescued LTP from blockades by the muscarinic cholinergic receptor antagonist (scopolamine) and N-methyl-D-aspartate channel antagonist (2-amino-5-phosphonovaleric acid) in the organotypic hippocampal slices. These results suggest that polyphenol-rich PBE is applicable as a cognition-improving agent due to its antioxidant properties and enhancement of LTP induction.
Collapse
Affiliation(s)
- Kwan Joong Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun-Sang Hwang
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Min-Jeong Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Chan-Su Rha
- AMOREPACIFIC R&I Center, Yongin 17074, Republic of Korea
| | - Myoung Chong Song
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungho Maeng
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ji-Ho Park
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
- Correspondence: (J.-H.P.); (D.-O.K.); Tel.: +82-31-201-2916 (J.-H.P.); Tel.: +82-31-201-3796 (D.-O.K.)
| | - Dae-Ok Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- Correspondence: (J.-H.P.); (D.-O.K.); Tel.: +82-31-201-2916 (J.-H.P.); Tel.: +82-31-201-3796 (D.-O.K.)
| |
Collapse
|
62
|
Pires RA, Correia TML, Almeida AA, Coqueiro RDS, Machado M, Teles MF, Peixoto ÁS, Queiroz RF, Pereira R. Time-Course of Redox Status, Redox-Related, and Mitochondrial-Dynamics-Related Gene Expression after an Acute Bout of Different Physical Exercise Protocols. Life (Basel) 2022; 12:life12122113. [PMID: 36556478 PMCID: PMC9781780 DOI: 10.3390/life12122113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
We investigated the magnitude of exercise-induced changes in muscular bioenergetics, redox balance, mitochondrial function, and gene expression within 24 h after the exercise bouts performed with different intensities, durations, and execution modes (continuous or with intervals). Sixty-five male Swiss mice were divided into four groups: one control (n = 5) and three experimental groups (20 animals/group), submitted to a forced swimming bout with an additional load (% of animal weight): low-intensity continuous (LIC), high-intensity continuous (HIC), and high-intensity interval (HII). Five animals from each group were euthanized at 0 h, 6 h, 12 h, and 24 h postexercise. Gastrocnemius muscle was removed to analyze the expression of genes involved in mitochondrial biogenesis (Ppargc1a), fusion (Mfn2), fission (Dnm1L), and mitophagy (Park2), as well as inflammation (Nos2) and antioxidant defense (Nfe2l2, GPx1). Lipid peroxidation (TBARS), total peroxidase, glutathione peroxidase (GPx), and citrate synthase (CS) activity were also measured. Lactacidemia was measured from a blood sample obtained immediately postexercise. Lactacidemia was higher the higher the exercise intensity (LIC < HIC < HII), while the inverse was observed for TBARS levels. The CS activity was higher in the HII group than the other groups. The antioxidant activity was higher 24 h postexercise in all groups compared to the control and greater in the HII group than the LIC and HIC groups. The gene expression profile exhibited a particular profile for each exercise protocol, but with some similarities between the LIC and HII groups. Taken together, these results suggest that the intervals applied to high-intensity exercise seem to minimize the signs of oxidative damage and drive the mitochondrial dynamics to maintain the mitochondrial network, similar to low-intensity continuous exercise.
Collapse
Affiliation(s)
- Ramon Alves Pires
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
- Multicentric Postgraduate Program in Biochemistry and Molecular (Brazilian Society for Biochemistry and Molecular Biology), Universidade Estadual do Sudoeste da Bahia (UESB), Vitoria da Conquista, Jequie 45210-506, Brazil
| | - Thiago Macedo Lopes Correia
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
- Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Jequie 45210-506, Brazil
| | - Amanda Alves Almeida
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
- Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Jequie 45210-506, Brazil
| | - Raildo da Silva Coqueiro
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
| | - Marco Machado
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
- Fundação Universitária de Itaperuna (FUNITA), Itaperuna 28300-000, Brazil
- Laboratory of Physiology and Biokinetic, Faculty of Biological Sciences and Health, Universidade Iguaçu Campus V, Itaperuna 28300-000, Brazil
| | - Mauro Fernandes Teles
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
| | - Álbert Souza Peixoto
- Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo 05508-000, Brazil
| | - Raphael Ferreira Queiroz
- Multicentric Postgraduate Program in Biochemistry and Molecular (Brazilian Society for Biochemistry and Molecular Biology), Universidade Estadual do Sudoeste da Bahia (UESB), Vitoria da Conquista, Jequie 45210-506, Brazil
- Postgraduate Program in Biosciences, Universidade Federal da Bahia, Campus Anísio Teixeira, Vitória da Conquista 40110-100, Brazil
| | - Rafael Pereira
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
- Multicentric Postgraduate Program in Biochemistry and Molecular (Brazilian Society for Biochemistry and Molecular Biology), Universidade Estadual do Sudoeste da Bahia (UESB), Vitoria da Conquista, Jequie 45210-506, Brazil
- Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Jequie 45210-506, Brazil
- Correspondence:
| |
Collapse
|
63
|
Ghaniem S, Nassef E, Zaineldin AI, Bakr A, Hegazi S. A Comparison of the Beneficial Effects of Inorganic, Organic, and Elemental Nano-selenium on Nile Tilapia: Growth, Immunity, Oxidative Status, Gut Morphology, and Immune Gene Expression. Biol Trace Elem Res 2022; 200:5226-5241. [PMID: 35028868 DOI: 10.1007/s12011-021-03075-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/19/2021] [Indexed: 12/29/2022]
Abstract
This study investigates the effects of different sources of selenium (inorganic (SSE), organic (OSE), and elemental nano-selenium (NSE)) on the performance of Nile tilapia (Oreochromis niloticus). In total, 204 Nile tilapia fingerlings were randomly divided into 4 equal groups fed 1 of 4 diets: a control (adding no selenium) and 3 diets as selenium sources (1 mg/kg diet), After a 65-day feeding trial, the growth performance parameters of Nile tilapia were significantly enhanced by dietary selenium supplementation (P < 0.05), with the highest values recorded in the OSE- and NSE-supplemented groups. The selenium-supplemented groups had the highest packed-cell volume, hemoglobin, and red blood cell levels, with the highest values seen in the NSE-supplemented group (P < 0.05). Innate immune-related enzymes and immunoglobulin levels were significantly enhanced with selenium supplementation (P < 0.05); the NSE group demonstrated the highest significant levels of these enzyme activities (P < 0.05). In all selenium-supplemented groups, malondialdehyde levels were significantly and equally reduced (P < 0.05) compared with levels in the control. Bactericidal activity was only enhanced in the NSE group (P < 0.05) compared with other treatments. The expression of TNF-α and IL-Iβ genes was significantly upregulated in selenium-supplemented groups, with the highest expression in the OSE and NSE groups (P < 0.05). These findings support the importance of incorporating selenium in the diet of Nile tilapia. Furthermore, elementary nano-selenium is more effective than inorganic or organic selenium supplementation at improving Nile tilapia growth performance and overall health.
Collapse
Affiliation(s)
- Sameh Ghaniem
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Eldsokey Nassef
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Amr I Zaineldin
- Agriculture Research Center, Animal Health Research Institute (AHRI-DOKI), Kafrelsheikh, Egypt.
| | - Abdulnasser Bakr
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Sayed Hegazi
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
64
|
de Souza MA, Gomes MSC, da Silva AE, da Costa Rangel R, Braz GRF, Pedroza AA, Costa LAR, Batista-de-Oliveira-Hornsby M, Lagranha CJ, de Menezes Santos Bertozzo CC, de Melo MFFT, Soares JKB. Maternal safflower oil consumption improve reflex maturation, memory and reduces hippocampal oxidative stress in the offspring rats treated during pregnancy and lactation. J Affect Disord 2022; 318:33-39. [PMID: 36029874 DOI: 10.1016/j.jad.2022.08.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/23/2022] [Accepted: 08/21/2022] [Indexed: 10/15/2022]
Abstract
OBJECTIVE Evaluate the influence of maternal consumption of safflower oil on reflex maturation, memory and offspring hippocampal oxidative stress. METHODOLOGY Two groups were formed: control group (C), whose mothers received a standard diet, and Safflower group (SF), whose mothers received a normolipidic diet with safflower oil as lipid source. Treatment was given from the 14th day of gestation and throughout lactation. To evaluate newborn development, the reflex ontogeny indicators between the 1st and the 21st days of life were evaluated; to assess memory, from the 42nd day of life on these animals were examined on open field habituation and novel object recognition test. Following behavioral analysis, the animals were anesthetized and decapitated. Hippocampus was rapidly dissected. In the hippocampal tissues, we evaluated the levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione S transferase (GST) and reduced glutathione (GSH). RESULTS SF offspring showed delayed maturation of reflexes and improvement of novel object recognition in short-term and long-term (p < 0.05). Safflower oil decreases lipid peroxidation evaluated by MDA levels (p < 0.001) and increases antioxidant defenses as shown by SOD, CAT, GST and GSH levels (p < 0.05). In our study, the composition of flavonoids present in the oil was not evaluated. Furthermore, in a future study, the effect of maternal consumption on female offspring should be verified. CONCLUSION Maternal intake of safflower oil could: (1) change neonate reflex parameters, (2) promote improvement of cognitive development in adolescence (3) improve antioxidant enzymatic and non-enzymatic defenses in the hippocampus.
Collapse
Affiliation(s)
| | | | | | | | - Glauber Rudá F Braz
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Recife, Brazil
| | - Anderson Apolônio Pedroza
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Recife, Brazil
| | | | | | - Claudia J Lagranha
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | | | | | | |
Collapse
|
65
|
Effects of Irvingia gabonensis Extract on Metabolism, Antioxidants, Adipocytokines, Telomere Length, and Aerobic Capacity in Overweight/Obese Individuals. Nutrients 2022; 14:nu14214646. [PMID: 36364907 PMCID: PMC9656030 DOI: 10.3390/nu14214646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
We investigated the effects of Irvingia gabonensis (IG) kernel extract on the metabolism, adiposity indices, redox status, inflammation, adipocytokines, blood leukocyte relative telomere length (RTL), and aerobic capacity of overweight/obese individuals. All participants used the first 12-week phase to monitor body weight. They were then randomly divided into two groups: (1) 300 mg IG or (2) placebo (PLA). Both groups took one tablet per day for 12 weeks. The variables were measured before supplementation and after 3, 6, and 12 weeks of supplementation. RTL and aerobic capacity were measured before and after 12 weeks. Compared with the PLA, the IG increased plasma vitamin C after supplementation at 6 (p < 0.01) and 12 weeks (p < 0.05) and serum adiponectin after 3 weeks (p < 0.05). Compared with before supplementation, plasma malondialdehyde in the IG and serum leptin in the PLA were decreased after 12-week supplementation, without any differences between the groups. There were no differences between groups with respect to metabolism, inflammation, RTL, and aerobic capacity after the supplementation. We suggest that 12-week daily IG supplementation improved plasma vitamin C and adiponectin. The findings show the possible mechanism contributing to the effect of IG supplementation on a reduction in obesity-related complications.
Collapse
|
66
|
Yang X, Xia H, Li Y, Cheng Y, Wang Y, Xia Y, Yue Y, Cheng X, Chu Z. In vitro and Ex vivo Antioxidant Activity and Sustained Release Properties of Sinomenine-Loaded Liposomes-in-Hydrogel Biomaterials Simulating Cells-in-Extracellular Matrix. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221130699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sinomenine (SIN), a natural product, has been used to treat rheumatoid arthritis (RA) in China for thousands of years. SIN has been developed for the treatment of RA by way of tablets and injections, but both dosage forms have been associated with severe adverse reactions. Making SIN into liposomes-in-hydrogel biomaterials for external use has a good slow-release effect and can play an important role in avoiding the first-pass effect, gastrointestinal reaction, and increasing the local action time of drugs. SIN-loaded liposomes were formed by the thin-film dispersion method, then SIN-loaded liposomes-in-hydrogels were prepared by combining the SIN-L with hyaluronic acid (HA) hydrogels. In this paper, the basic characteristics, In vitro and Ex vivo release, and antioxidant activity of SIN-loaded liposomes-in-hydrogels were studied. The results showed that SIN-loaded liposomes-in-hydrogels have good sustained-release and antioxidant effects, and the preparation is expected to be a good biomaterial.
Collapse
Affiliation(s)
- Xinying Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yufan Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei, People's Republic of China
- School of life science, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Xiaoman Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Zhaoxing Chu
- Hefei Yigong Pharmaceutical Co., Ltd, Hefei, People's Republic of China
| |
Collapse
|
67
|
Telomere Length Is Correlated with Resting Metabolic Rate and Aerobic Capacity in Women: A Cross-Sectional Study. Int J Mol Sci 2022; 23:ijms232113336. [PMID: 36362129 PMCID: PMC9654753 DOI: 10.3390/ijms232113336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
This study investigated the associations between relative telomere length (RTL) and resting metabolic rate (RMR), resting fat oxidation (RFO), and aerobic capacity and whether oxidative stress and inflammation are the underlying mechanisms in sedentary women. We also aimed to determine whether the correlations depend on age and obesity. Sixty-eight normal weight and 66 obese women participated in this study. After adjustment for age, energy expenditure, energy intake, and education level, the RTL of all participants was negatively correlated with absolute RMR (RMRAB) and serum high-sensitivity C-reactive protein (hsCRP) concentration, and positively correlated with maximum oxygen consumption (V˙O2max) (all p < 0.05). After additional adjustment for adiposity indices and fat-free mass (FFM), RTL was positively correlated with plasma vitamin C concentration (p < 0.05). Furthermore, after adjustment for fasting blood glucose concentration, RTL was negatively correlated with age and positively correlated with V˙O2max (mL/kg FFM/min). We found that normal weight women had longer RTL than obese women (p < 0.001). We suggest that RTL is negatively correlated with RMRAB and positively correlated with aerobic capacity, possibly via antioxidant and anti-inflammatory mechanisms. Furthermore, age and obesity influenced the associations. We provide useful information for the management of promotion strategies for health-related physical fitness in women.
Collapse
|
68
|
Zhang Y, Xiao Y, Zhang Y, Dong Y, Liu Y, Liu L, Wan S, He J, Yu Y. Accumulation of Galactinol and ABA Is Involved in Exogenous EBR-Induced Drought Tolerance in Tea Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13391-13403. [PMID: 36218024 DOI: 10.1021/acs.jafc.2c04892] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Drought stress severely limits growth and causes losses in the yield of tea plants. Exogenous application of 24-epibrassinolide (EBR) positively regulates drought responses in various plants. However, whether EBR could contribute to drought resistance in tea plants and the underlying mechanisms has not been investigated. Here, we found that EBR application is beneficial for the drought tolerance of tea plants. The transcriptome results revealed that EBR could contribute to tea plant drought resistance by promoting galactinol and abscisic acid (ABA) biosynthesis gene expression. The content of galactinol was elevated by EBR and EBR-responsive CsDof1.1 positively regulated the expression of the galactinol synthase genes CsGolS2-1 and CsGolS2-2 to contribute to the accumulation of galactinol by directly binding to their promoters. Moreover, exogenous EBR was found to elevate the expression of genes related to ABA signal transduction and stomatal closure regulation, which resulted in the promotion of stomatal closure. In addition, EBR-responsive CsMYC2-2 is involved in ABA accumulation by binding to the promoters CsNCED1 and CsNCED2 to activate their expression. In summary, findings in this study provide knowledge into the transcriptional regulatory mechanism of EBR-induced drought resistance in tea plants.
Collapse
Affiliation(s)
- Yongheng Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yezi Xiao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingao Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Dong
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingqing Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lu Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Siqing Wan
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingyuan He
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
69
|
Apaijit K, Pakdeechote P, Maneesai P, Meephat S, Prasatthong P, Bunbupha S. Hesperidin alleviates vascular dysfunction and remodelling in high-fat/high-fructose diet-fed rats by modulating oxidative stress, inflammation, AdipoR1, and eNOS expression. Tissue Cell 2022; 78:101901. [DOI: 10.1016/j.tice.2022.101901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
|
70
|
Daroi PA, Dhage SN, Juvekar AR. p-Coumaric acid protects against D-galactose induced neurotoxicity by attenuating neuroinflammation and apoptosis in mice brain. Metab Brain Dis 2022; 37:2569-2579. [PMID: 35913570 DOI: 10.1007/s11011-022-01007-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/16/2022] [Indexed: 10/16/2022]
Abstract
D-galactose (D-gal) induced senescence in rodents is a widely used model for assessment of molecules affecting brain ageing. Chronic administration of D-gal causes neuroinflammation leading to cognitive deficit and memory impairment which represent Alzheimer's dementia. In present study, we investigated the neuroprotective effects of the natural phenol, p-Coumaric acid (PCA) and its underlying mechanism in the chronic D-gal treated mice. Subcutaneous administration of D-gal (150 mg/kg) to Swiss albino mice for 42 consecutive days resulted in cognitive impairment as observed in Morris water maize (MWM) and Y maze test, which was ameliorated by concurrent treatment with PCA (80 mg/kg, and 100 mg/kg, p.o.). Importantly, PCA treatment attenuated the D-gal induced oxidative stress and significantly inhibited acetylcholinesterase (AChE) activity in mice brain. Furthermore, PCA treatment significantly lowered levels of inflammatory marker nuclear factor kappa B (NFκB) and reduced levels of proapoptotic enzyme caspase3. We also observed that PCA treatment exhibited β-secretase enzyme (BACE1) inhibitory effect. However, our results revealed that PCA treatment failed to decrease the level of advanced glycation end products both in vitro and in vivo. Taken together, current study demonstrated the significant neuroprotective effect of PCA against D-gal induced oxidative stress, neuroinflammation, cognitive impairment and apoptosis.
Collapse
Affiliation(s)
- Pratibha Atul Daroi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra, India
| | - Shrikant Ninaji Dhage
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra, India
| | - Archana Ramesh Juvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra, India.
| |
Collapse
|
71
|
Gao H, Yu C, Liu R, Li X, Huang H, Wang X, Zhang C, Jiang N, Li X, Cheng S, Zhang H, Li B. The Glutathione S-Transferase PtGSTF1 Improves Biomass Production and Salt Tolerance through Regulating Xylem Cell Proliferation, Ion Homeostasis and Reactive Oxygen Species Scavenging in Poplar. Int J Mol Sci 2022; 23:ijms231911288. [PMID: 36232609 PMCID: PMC9569880 DOI: 10.3390/ijms231911288] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Glutathione S-transferases (GSTs) play an essential role in plant cell detoxification and secondary metabolism. However, their accurate functions in the growth and response to abiotic stress in woody plants are still largely unknown. In this work, a Phi class Glutathione S-transferase encoding gene PtGSTF1 was isolated from poplar (P. trichocarpa), and its biological functions in the regulation of biomass production and salt tolerance were investigated in transgenic poplar. PtGSTF1 was ubiquitously expressed in various tissues and organs, with a predominant expression in leaves and inducible expression by salt stress. Transgenic poplar overexpressing PtGSTF1 showed improved shoot growth, wood formation and improved salt tolerance, consistent with the increased xylem cell number and size under normal condition, and the optimized Na+ and K+ homeostasis and strengthened reactive oxygen species scavenging during salt stress. Further transcriptome analyses demonstrated that the expressions of genes related to hydrolase, cell wall modification, ion homeostasis and ROS scavenging were up- or down-regulated in transgenic plants. Our findings imply that PtGSTF1 improves both biomass production and salt tolerance through regulating hydrolase activity, cell wall modification, ion homeostasis and ROS scavenging in transgenic poplar, and that it can be considered as a useful gene candidate for the genetic breeding of new tree varieties with improved growth under salt stress conditions.
Collapse
Affiliation(s)
- Hongsheng Gao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Chunyan Yu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Ruichao Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Xiaoyan Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Huiqing Huang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Xueting Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Chao Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ning Jiang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Xiaofang Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuang Cheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- Correspondence: (H.Z.); (B.L.)
| | - Bei Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai 264025, China
- Correspondence: (H.Z.); (B.L.)
| |
Collapse
|
72
|
Yang GL, Zheng MM, Liao HM, Tan AJ, Feng D, Lv SM. Influence of cadmium and microplastics on physiological responses, ultrastructure and rhizosphere microbial community of duckweed. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114011. [PMID: 36007321 DOI: 10.1016/j.ecoenv.2022.114011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The combined contamination of heavy metals and microplastics is widespread in freshwater environments. However, there are few researches on their combined effects on aquatic plants. In this study, the effects of single and combined stress of 0.01 mg L-1 cadmium (Cd), 50 mg L-1 polyethylene and 50 mg L-1 polypropylene for 15 days on the physiological response, ultrastructure and rhizosphere microbial community of duckweed were investigated. The results showed that Cd and microplastics single or combined stress inhibited the growth of duckweed, shortened the root length and decreased the chlorophyll content. Compared with single Cd treatments, the combination of microplastics and Cd increased duckweed growth rate and increased superoxide dismutase activity and malondialdehyde content and reduced chloroplast structural damage, indicating that the combined stress could reduce the toxicity of heavy metals to duckweed. Through the study of rhizosphere microbial diversity, 1381 Operational Taxonomic Unit (OTUs) were identified and rich microbial communities were detected in the duckweed rhizosphere. Among them, the main microbial communities were Proteobacteria, Bacteroidetes, and Cyanobacteria. Compared with Cd single stress, the ACE and chao index of rhizosphere microbial community increased under combined stress, indicating that the diversity and abundance of microbial communities were improved after combined stress treatment. Our study revealed the effects of heavy metals and microplastics on aquatic plants, providing a theoretical basis for duckweed applications in complex water pollution.
Collapse
Affiliation(s)
- Gui-Li Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China.
| | - Meng-Meng Zheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Hai-Min Liao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Ai-Juan Tan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Dan Feng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Shi-Ming Lv
- College of Animal Science, Guizhou University, Guiyang 50025, Guizhou Province, China
| |
Collapse
|
73
|
Giri SS, Kim SG, Woo KJ, Jung WJ, Lee SB, Lee YM, Jo SJ, Kim JH, Park SC. Impact of dandelion polysaccharides on growth and immunity response in common carp Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2022; 128:371-379. [PMID: 35948263 DOI: 10.1016/j.fsi.2022.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Natural products have gained considerable attention for improving fish growth performance and immunity to enhance disease resistance. This study evaluated the effect of dandelion polysaccharides (DP) on skin mucosal immune parameters, immune-related gene expression, and susceptibility to pathogen challenge in the Common carp Cyprinus carpio. Diets containing four different concentrations of DP (g Kg-1):0 g [basal diet], 0.5 g [D1], 1.5 g [D2], 2.5 g [D3], and 4.0 g [D4] were fed to the carp (average weight: 13.92 ± 0.83 g) for eight weeks. Growth parameters were analyzed four and eight weeks after feeding. Immunological, hematological, and antioxidant parameters were examined eight weeks post-feeding. Growth performance was significantly higher on D3, with a final weight gain of 71.48 ± 1.57 g and a specific growth rate of 3.06 ± 0.12. Among hematological parameters examined, erythrocyte, hematocrit, and mean corpuscular volume (MCV) levels were significantly higher in D3. Skin mucosal immune parameters, such as lysozyme (31.04 ± 1.02 Unit mL-1), alkaline phosphatase (122.6 ± 3.8 IU L-1), and protein level (10.6 ± 0.74 mg mL-1) were significantly higher in D3, while peroxidase activity was higher in D4. Furthermore, SOD activity was higher in D2-D3, whereas catalase activity was higher in D2-D4 (P < 0.05) than in the control. Malondialdehyde level decreased significantly in D3 (5.43 ± 0.36 nmol mL-1); whereas, serum ALT and AST levels were significantly lower on D2-D4. Intestinal tight-junction-related genes ZO-1 and Claudin 7 were significantly higher in the DP-fed groups; however, DP had no significant effect on claudin 3. Occludin expression was higher (p < 0.05) on D3 only. Pro-inflammatory cytokines (IL-1β and TNF-α) and IFN-γ strongly upregulated in the head kidney at D3. Conversely, the expression of the anti-inflammatory cytokine interleukin-10, HSP70, and TOR were considerably downregulated in D3. Fish from D3 exhibited markedly higher relative post-challenge survival (66.67%) against Aeromonas hydrophila challenge. The results of the present study suggest that dietary supplements of DP at 2.5 g kg-1 can significantly improve the growth performance, skin mucosal, and serum antioxidant parameters, and strengthen the immunity of C. carpio. Therefore, DP is a promising food additive for carp aquaculture.
Collapse
Affiliation(s)
- Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Kang Jeong Woo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Won Joon Jung
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Young Min Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Su Jin Jo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, South Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
74
|
Kelley DP, Chaichi A, Duplooy A, Singh D, Gartia MR, Francis J. Labelfree mapping and profiling of altered lipid homeostasis in the rat hippocampus after traumatic stress: Role of oxidative homeostasis. Neurobiol Stress 2022; 20:100476. [PMID: 36032405 PMCID: PMC9403561 DOI: 10.1016/j.ynstr.2022.100476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative and lipid homeostasis are altered by stress and trauma and post-traumatic stress disorder (PTSD) is associated with alterations to lipid species in plasma. Stress-induced alterations to lipid oxidative and homeostasis may exacerbate PTSD pathology, but few preclinical investigations of stress-induced lipidomic changes in the brain exist. Currently available techniques for the quantification of lipid species in biological samples require tissue extraction and are limited in their ability to retrieve spatial information. Raman imaging can overcome this limitation through the quantification of lipid species in situ in minimally processed tissue slices. Here, we utilized a predator exposure and psychosocial stress (PE/PSS) model of traumatic stress to standardize Raman imaging of lipid species in the hippocampus using LC-MS based lipidomics and these data were confirmed with qRT-PCR measures of mRNA expression of relevant enzymes and transporters. Electron Paramagnetic Resonance Spectroscopy (EPR) was used to measure free radical production and an MDA assay to measure oxidized polyunsaturated fatty acids. We observed that PE/PSS is associated with increased cholesterol, altered lipid concentrations, increased free radical production and reduced oxidized polyunsaturated fats (PUFAs) in the hippocampus (HPC), indicating shifts in lipid and oxidative homeostasis in the HPC after traumatic stress.
Collapse
Affiliation(s)
- D. Parker Kelley
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, 70803, USA
| | - Ardalan Chaichi
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alexander Duplooy
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, 70803, USA
| | - Dhirendra Singh
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, 70803, USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Joseph Francis
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, 70803, USA
| |
Collapse
|
75
|
Coelho AM, Queiroz IF, Perucci LO, de Souza MO, Lima WG, Talvani A, Costa DC. Piperine as Therapeutic Agent in Paracetamol-Induced Hepatotoxicity in Mice. Pharmaceutics 2022; 14:1800. [PMID: 36145547 PMCID: PMC9504321 DOI: 10.3390/pharmaceutics14091800] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 12/16/2022] Open
Abstract
High doses of paracetamol (APAP) can cause irreversible liver damage. Piperine (P) inhibits cytochrome P450, which is involved in the metabolism of various xenobiotics, including paracetamol. We evaluated the hepatoprotective effects of piperine with or without N-acetylcysteine (NAC) in APAP-induced hepatotoxicity. The mice were treated with two doses of piperine (P20 or P40) and/or NAC at 2 h after administration of APAP. The NAC+P20 and NAC+P40 groups showed a reduced area of necrosis, MMP-9 activity, and Casp-1 expression. Furthermore, the NAC+P20 group was the only treatment that reduced alanine aminotransferase (ALT) and increased the levels of sulfhydryl groups (-SH). In the NAC+P40 group, NLRP-3 expression was reduced. Aspartate aminotransferase (AST), thiobarbituric acid-reactive substances (TBARS), and IL-1β expression decreased in the NAC, NAC+P20, and NAC+P40 groups compared to the APAP group. The liver necrosis area, TNF levels, carbonylated protein, and IL-18 expression decreased in the P40, NAC, NAC+P20, and NAC+P40 groups compared to the APAP group. The cytokine IL-6 was reduced in all treatments. Piperine can be used in combination with NAC to treat APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Aline Meireles Coelho
- Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
- Center for Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
| | - Isabela Ferreira Queiroz
- Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
| | - Luiza Oliveira Perucci
- Center for Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
| | - Melina Oliveira de Souza
- Department of Food (DEALI), School of Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
| | - Wanderson Geraldo Lima
- Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
- Center for Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
| | - André Talvani
- Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
| | - Daniela Caldeira Costa
- Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
- Center for Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
| |
Collapse
|
76
|
Ghodsian N, Yeandle A, Hock BD, Gieseg SP. CD36 down regulation by the macrophage antioxidant 7,8-dihydroneopterin through modulation of PPAR-γ activity. Free Radic Res 2022; 56:366-377. [PMID: 36017639 DOI: 10.1080/10715762.2022.2114904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
CD36 is the key scavenger receptor driving the formation of cholesterol loaded foam cells, the principal cellular component of atherosclerotic plaques. CD36 is down regulated by 7,8-dihydroneopterin, a potent superoxide and hypochlorite scavenging antioxidant generated by interferon-γ stimulated macrophages. 7,8-dihydroneopterin down regulates CD36 mRNA and protein levels so inhibiting macrophage foam cell formation in vitro.We examined the mechanism of 7,8-dihydroneopterin down regulation of CD36 by measuring CD36 and PPAR-γ levels by western blot analysis, in the monocyte-like U937 cells with a range of PPAR-γ stimulants and inhibitors. Lipoxygenase activity was measured by monitoring linoleic acid oxidation at 234 nm for diene formation.Between 100 and 200 μM, 7,8-dihydroneopterin decreased CD36 levels by 50% within 12 hours with levels dropping below 25% by 24 hours. CD36 levels returned to basal levels after 24 hours. Inhibition of protein synthesis by cycloheximide show 7,8-dihydroneopterin had no effect on CD36 degradation rates. PPAR-γ levels were not altered by the addition of 7,8-dihydroneopterin. MAP Kinase, P38 and NF-κB pathways inhibitors SP600125, PD98059, SB202190 and BAY 11-7082 respectively, did not restore the CD36 levels in the presence of 7,8-dihydroneopterin. The addition the lipophilic PPAR-γ activators rosiglitazone and azelaoyl-PAF prevented the CD36 down regulation by 7,8-dihydroneopterin. 7,8-dihydroneopterin inhibited soybean lipoxygenase and reduced U937 cell basal levels of cellular lipid oxides as measured by HPLC-TBARS analysis.The data shows 7,8-dihydroneopterin down regulates CD36 expression by decreasing the level of lipid oxide stimulation of PPAR-γ promotor activity, potentially through lipoxygenase inhibition.
Collapse
Affiliation(s)
- Nooshin Ghodsian
- Free Radical Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Anthony Yeandle
- Free Radical Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Barry D Hock
- Haematology Research Group, Christchurch Hospital, New Zealand
| | - Steven P Gieseg
- Free Radical Biochemistry, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Radiology, University of Otago Christchurch, New Zealand.,MARS Bioimaging Ltd., 29a Clyde Rd, Christchurch 8140, New Zealand
| |
Collapse
|
77
|
Chen S, Wu F, Yang C, Zhao C, Cheng N, Cao W, Zhao H. Alternative to Sugar, Honey Does Not Provoke Insulin Resistance in Rats Based on Lipid Profiles, Inflammation, and IRS/PI3K/AKT Signaling Pathways Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10194-10208. [PMID: 35971648 DOI: 10.1021/acs.jafc.2c03639] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Insulin resistance (IR) is the central link to metabolic syndrome (MS), and IR prevention has become the key to overcoming this worldwide public health problem. A diet rich in simple sugars is an important pathogenic factor in IR development. To investigate the effect of honey on IR compared to the sugar-water diet, we analyzed phenolics and oligosaccharides in jujube honey and rape honey based on LC-MS and silane derivatization/GC-MS. The effects of different diets on glucose and lipid profile, histopathology and IR-related mechanism pathways were analyzed and compared by equal sugar levels intervention of fructose, fructose + glucose and two kinds of unifloral honey (high-/low-dose) in rats. The results suggested that sugar-equivalent honey, which differs from sugar solution, especially 17.1 g/kg BW jujube honey rich in phenolics (1.971 mg/100 g of isoquercitrin) and oligosaccharides (2.18 g/100 g of turanose), suppressed IR via maintaining glucose (OGTT and ITT) and lipid (TC, TG, LDL-C, HDL-C, and NEFA) homeostasis, improving histological structural abnormalities of the liver, adipose and skeletal muscle, reducing oxidative stress (GSH-Px and MDA) and inflammation (IL-6 and TNF-α), modulating the NF-κB (NF-κB gene expression was down-regulated to 0.94) and IRS/PI3K/AKT signaling pathways (e.g., AKT and GLUT2 expression in liver increased by 4.56 and 13.37 times, respectively) as well as reshaping the gut microbiota. These revealed a potential nutritional contribution of substituting honey for simple sugar in the diet, providing a theoretical basis for controlling IR development via dietary modification and supplementation.
Collapse
Affiliation(s)
- Sinan Chen
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Fanhua Wu
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Chenchen Yang
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Cheng Zhao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Ni Cheng
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| |
Collapse
|
78
|
Nicolescu A, Babotă M, Ilea M, Dias MI, Calhelha RC, Gavrilaș L, Rocchetti G, Crișan G, Mocan A, Barros L, Pârvu AE. Potential therapeutic applications of infusions and hydroalcoholic extracts of Romanian glutinous sage ( Salvia glutinosa L.). Front Pharmacol 2022; 13:975800. [PMID: 36059937 PMCID: PMC9437640 DOI: 10.3389/fphar.2022.975800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Ethnopharmacological relevance: Salvia glutinosa, also known as the glutinous sage, has been used in Romanian folk medicine in the treatment of inflammation, injuries, and mild infections. However, there is no direct scientific evidence to demonstrate these activities. Aim of the Study: The present research was based on evaluating antioxidant, antiproliferative, and α-glucosidase inhibitory activity of S. glutinosa extracts, as well as the in vivo anti-inflammatory activity. Materials and Methods: Infusions and 70% (v:v) ethanol solution extracts of S. glutinosa stems and leaves, collected from two different locations in Romania, were prepared. Ten phenolic compounds were identified and quantified using the LC-DAD-ESI/MSn method, and total phenolic and flavonoid content, as well as in vitro antioxidant (DPPH, ABTS, and FRAP assays), antiproliferative, anti-inflammatory and alpha-glucosidase inhibitory activities were determined. A rat model of induced inflammation with turpentine oil was used for the examination of in vivo effects of the extracts, using diclofenac as an anti-inflammatory control. Results: The highest inhibitory α-glucosidase activity was determined to be IC50 = 0.546 mg/ml for the hydroalcoholic extract made with plant material collected on the road to Sighișoara. The highest cytotoxic activity against HepG2 cell line was determined to be GI50 = 131.68 ± 5.03 μg/ml, for the hydroalcoholic extract made with plant material from Sighișoara. In vivo administration of extract (200 mg lyophilized powder/ml) showed a significant reduction of NO production. Conclusion: Our findings indicate that S. glutinosa extracts exhibit antioxidant, α-glucosidase inhibitory activity, as well as a modest cytotoxic effect on HepG2 cell line. By in vivo administration, the extracts show anti-inflammatory and antioxidant activity, which correlates with the traditional use of the species. The environmental conditions seemed to induce important changes in the chemical composition and the bioactivity of the herbal preparations derived from S. glutinosa.
Collapse
Affiliation(s)
- Alexandru Nicolescu
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai Babotă
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria Ilea
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Laura Gavrilaș
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gianina Crișan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
79
|
Wen L, Liu T, Deng Z, Zhang Z, Wang Q, Wang W, Li W, Guo Y. Characterization of NAC transcription factor NtNAC028 as a regulator of leaf senescence and stress responses. FRONTIERS IN PLANT SCIENCE 2022; 13:941026. [PMID: 36046590 PMCID: PMC9421438 DOI: 10.3389/fpls.2022.941026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
NAC proteins constitute one of the largest transcription factor families and are involved in regulation of plant development and stress responses. Our previous transcriptome analyses of tobacco revealed a significant increase in the expression of NtNAC028 during leaf yellowing. In this study, we found that NtNAC028 was rapidly upregulated in response to high salinity, dehydration, and abscisic acid (ABA) stresses, suggesting a vital role of this gene in abiotic stress response. NtNAC028 loss-of-function tobacco plants generated via CRISPR-Cas9 showed delayed leaf senescence and increased tolerance to drought and salt stresses. Meanwhile NtNAC028 overexpression led to precocious leaf senescence and hypersensitivity to abiotic stresses in Arabidopsis, indicating that NtNAC028 functions as a positive regulator of natural leaf senescence and a negative regulator of stress tolerance. Furthermore, NtNAC028-overexpressing Arabidopsis plants showed lower antioxidant enzyme activities, higher reactive oxygen species (ROS), and H2O2 accumulation under high salinity, resulted in more severe oxidative damage after salt stress treatments. On the other hand, NtNAC028 mutation in tobacco resulted in upregulated expression of ROS-scavenging and abiotic stress-related genes, higher antioxidant enzyme activities, and enhanced tolerance against abiotic stresses, suggesting that NtNAC028 might act as a vital regulator for plant stress response likely by mediating ROS scavenging ability. Collectively, our results indicated that the NtNAC028 plays a key regulatory role in leaf senescence and response to multiple abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| |
Collapse
|
80
|
Almeida A, Correia T, Pires R, da Silva D, Coqueiro R, Machado M, de Magalhães A, Queiroz R, Soares T, Pereira R. Nephroprotective effect of exercise training in cisplatin-induced renal damage in mice: influence of training protocol. Braz J Med Biol Res 2022; 55:e12116. [PMID: 35976270 PMCID: PMC9377535 DOI: 10.1590/1414-431x2022e12116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022] Open
Abstract
Cisplatin is an effective antineoplastic agent, but its use is limited by its nephrotoxicity caused by the oxidative stress in tubular epithelium of nephrons. On the other hand, regular exercise provides beneficial adaptations in different tissues and organs. As with many drugs, dosing is extremely important to get the beneficial effects of exercise. Thus, we aimed to investigate the influence of exercise intensity and frequency on cisplatin-induced (20 mg/kg) renal damage in mice. Forty male Swiss mice were divided into five experimental groups (n=8 per group): 1) sedentary; 2) low-intensity forced swimming, three times per week; 3) high-intensity forced swimming, three times per week; 4) low-intensity forced swimming, five times per week; and 5) high-intensity forced swimming, five times per week. Body composition, renal structure, functional indicators (plasma urea), lipid peroxidation, antioxidant enzyme activity, expression of genes related to antioxidant defense, and inflammatory and apoptotic pathways were evaluated. Comparisons considered exercise intensity and frequency. High lipid peroxidation was observed in the sedentary group compared with trained mice, regardless of exercise intensity and frequency. Groups that trained three times per week showed more benefits, as reduced tubular necrosis, plasma urea, expression of CASP3 and Rela (NFkB subunit-p65) genes, and increased total glutathione peroxidase activity. No significant difference in Nfe2l2 (Nrf2) gene expression was observed between groups. Eight weeks of regular exercise training promoted nephroprotection against cisplatin-mediated oxidative injury. Exercise frequency was critical for nephroprotection.
Collapse
Affiliation(s)
- A.A. Almeida
- Núcelo de Pesquisa em Fisiologia Integrativa, Departamento de
Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA,
Brasil,Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas
(Sociedade Brasileira de Fisiologia), Universidade Federal da Bahia, Vitória da
Conquista, BA, Brasil
| | - T.M.L. Correia
- Núcelo de Pesquisa em Fisiologia Integrativa, Departamento de
Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA,
Brasil,Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas
(Sociedade Brasileira de Fisiologia), Universidade Federal da Bahia, Vitória da
Conquista, BA, Brasil
| | - R.A. Pires
- Núcelo de Pesquisa em Fisiologia Integrativa, Departamento de
Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA,
Brasil,Programa de Pós-Graduação Multicêntrico em Bioquímica e Biologia
Molecular (Sociedade Brasileira de Bioquímica e Biologia Molecular),
Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, BA,
Brasil
| | - D.A. da Silva
- Programa de Pós-Graduação em Biociências, Universidade Federal
da Bahia, Campus Anísio Teixeira, Vitória da Conquista, BA, Brasil
| | - R.S. Coqueiro
- Núcelo de Pesquisa em Fisiologia Integrativa, Departamento de
Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA,
Brasil
| | - M. Machado
- Fundação Universitária de Itaperuna, Itaperuna, RJ, Brasil,Laboratório de Fisiologia e Biocinética, Faculdade de Ciências
Biológicas e da Saúde, Universidade Iguaçu Campus V, Itaperuna, RJ, Brasil
| | - A.C.M. de Magalhães
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas
(Sociedade Brasileira de Fisiologia), Universidade Federal da Bahia, Vitória da
Conquista, BA, Brasil
| | - R.F. Queiroz
- Programa de Pós-Graduação Multicêntrico em Bioquímica e Biologia
Molecular (Sociedade Brasileira de Bioquímica e Biologia Molecular),
Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, BA,
Brasil
| | - T.J. Soares
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas
(Sociedade Brasileira de Fisiologia), Universidade Federal da Bahia, Vitória da
Conquista, BA, Brasil
| | - R. Pereira
- Núcelo de Pesquisa em Fisiologia Integrativa, Departamento de
Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA,
Brasil,Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas
(Sociedade Brasileira de Fisiologia), Universidade Federal da Bahia, Vitória da
Conquista, BA, Brasil,Programa de Pós-Graduação Multicêntrico em Bioquímica e Biologia
Molecular (Sociedade Brasileira de Bioquímica e Biologia Molecular),
Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, BA,
Brasil,Programa de Pós-Graduação em Enfermagem e Saúde, Universidade
Estadual do Sudoeste da Bahia, Jequié, BA, Brasil
| |
Collapse
|
81
|
El-Mancy EM, Elsherbini DMA, Al-Serwi RH, El-Sherbiny M, Ahmed Shaker G, Abdel-Moneim AMH, Enan ET, Elsherbiny NM. α-Lipoic Acid Protects against Cyclosporine A-Induced Hepatic Toxicity in Rats: Effect on Oxidative Stress, Inflammation, and Apoptosis. TOXICS 2022; 10:toxics10080442. [PMID: 36006121 PMCID: PMC9416703 DOI: 10.3390/toxics10080442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023]
Abstract
The clinical application of cyclosporine A (CsA) as an immunosuppressive agent is limited by its organ toxicity. We aimed to evaluate the effectiveness of α-lipoic acid against CsA-induced hepatotoxicity and to delineate the underlying molecular mechanisms. Male Wistar rats (n = 24, 8 per each group) received the vehicle, CsA (25 mg/kg) and/or ALA (100 mg/kg, p.o.) for 3 weeks. Biochemical markers of liver function (serum ALT, AST, ALP < GGT), oxidative stress (MDA, TAC, SOD, GSH, Nrf2/HO-1), inflammation (NF-κB, CD68, iNOS, NO, COX-2), and apoptosis (caspase-3) were assessed in serum and tissue. Liver histological analysis using H&E and Sirius red was performed. The development of liver injury in CsA-treated animals was indicated by elevated levels of liver enzymes, oxidants/antioxidants imbalance, inflammatory cells infiltration, up-regulated expression of inflammatory mediators, and apoptosis. These changes were associated with altered architecture of hepatic cells and fibrous connective tissue. ALA co-administration protected against CsA-induced liver damage and ameliorated biochemical changes and cellular injury. In conclusion, ALA demonstrated hepatoprotective potential against CsA-induced liver injury through combating oxidative stress, inflammation, and apoptosis, highlighting ALA as a valuable adjunct to CsA therapy.
Collapse
Affiliation(s)
- Eman M. El-Mancy
- Deanship of Common First Year, Jouf University, P.O. Box 2014, Sakaka 42421, Saudi Arabia;
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11511, Egypt
| | - Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O. Box 2014, Sakaka 42421, Saudi Arabia;
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
- Correspondence: (M.E.-S.); (N.M.E.)
| | - Gehan Ahmed Shaker
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (G.A.S.); (A.-M.H.A.-M.)
| | - Abdel-Moneim Hafez Abdel-Moneim
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (G.A.S.); (A.-M.H.A.-M.)
- Department of Medical Physiology, Faculty of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Eman T. Enan
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Nehal M. Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (M.E.-S.); (N.M.E.)
| |
Collapse
|
82
|
Chaihongsa N, Maneesai P, Sangartit W, Rattanakanokchai S, Potue P, Khamseekaew J, Bunbupha S, Pakdeechote P. Cardiorenal dysfunction and hypertrophy induced by renal artery occlusion are normalized by galangin treatment in rats. Biomed Pharmacother 2022; 152:113231. [PMID: 35687907 DOI: 10.1016/j.biopha.2022.113231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Galangin is a polyphenolic compound found in Alpinia officinarum and propolis. This study investigated the effect of galangin on blood pressure, the renin angiotensin system (RAS), cardiac and kidney alterations and oxidative stress in two-kidney one-clipped (2K-1C) hypertensive rats. Hypertension was induced in male Sprague Dawley rats (180-220 g), and the rats were given galangin (30 and 60 mg/kg) and losartan (10 mg/kg) for 4 weeks (n = 8/group). Galangin decreased hypertension and cardiac dysfunction and hypertrophy, which was related to the reducing circulation angiotensin converting enzyme (ACE) activity and angiotensin II concentration (p < 0.05). These effects were consistent with the reduced overexpression of angiotensin II receptor type 1 (AT1R), transforming growth factor beta 1 (TGF-β1) and collagen type I (Col I) protein in cardiac tissue (p < 0.05). Additionally, renal artery occlusion, procedure-induced kidney dysfunction and fibrosis were attenuated in the galangin-treated group. Galangin treatment normalized the overexpression of AT1R and NADPH oxidase 4 (Nox-4) protein and normalized the downregulation of nuclear factor-erythroid Factor 2-related Factor 2 (Nrf-2) and haem oxygenase 1 (HO-1) in 2K-1C rats (p < 0.05). Galangin exhibited antioxidative effects, as it reduced systemic and tissue oxidative stress markers and increased catalase activity in 2K-1C rats (p < 0.05). In conclusion, galangin attenuated hypertension, renin-angiotensin system activation, cardiorenal damage and oxidative stress induced by renal artery stenosis in rats. These effects might be associated with modulation of the expression of AT1R, TGF-β1 and Col I protein in the heart as well as AT1R/Nox-4 and Nrf-2/HO-1 protein in renal tissue in hypertensive rats.
Collapse
Affiliation(s)
- Nisita Chaihongsa
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | - Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Juthamas Khamseekaew
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand.
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
83
|
Olumegbon LT, Lawal AO, Oluyede DM, Adebimpe MO, Elekofehinti OO, I Umar H. Hesperetin protects against diesel exhaust particles-induced cardiovascular oxidative stress and inflammation in Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52574-52589. [PMID: 35262885 DOI: 10.1007/s11356-022-19494-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Air particulate matter exposure has been linked to cardiovascular and atherosclerosis as a result of increase oxidative stress and inflammatory response. This study aims to determine the effect of the use of hesperetin (HESP) as a therapeutic agent to mitigate the cardiovascular oxidative and pro-inflammatory effects of diesel exhaust particles in Wistar rats. DEP was collected from an Iveco cargo engine truck, and n-hexane fraction (hDEP) was obtained. Forty Wistar strains of male albino rats (6 weeks) were divided into 8 groups: control group received DMSO and CMC-Na; other groups received either n-hexane extract of DEP (0.064 or 0.640 mg/kg hDEP) or Standard Reference Material 2975 (0.064 mg/kg hSRM) in the presence or absence of 200 mg/kg HESP. Extracts were administered orally. Serum lipids, lipid peroxidation (LPO), conjugated dienes (CDs), and GSH levels were determined. Also, inflammatory cytokines, PCSK-9, LDL-receptor, and antioxidant genes expression were assessed by RT-PCR in both the heart and aorta. The molecular interaction of targeted proteins with HESP was assessed by the in silico approach. Extracts of DEP caused a significant (p < 0.001) increase in serum lipids but significantly decreased HDL-CHOL. It also increased CDs and MDA levels but decreased GSH levels. In addition, the particulate extracts caused a significant (p < 0.001) increase in pro-inflammatory genes expression in the heart and aorta but significantly decreased IL-10 and LDL-R gene expressions. Pre-treatment with hesperetin significantly reversed all these effects. This study shows that hesperetin has the ability to protect against DEP-induced oxidative stress and inflammation in the cardiovascular system.
Collapse
Affiliation(s)
- Lateefat T Olumegbon
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria.
| | - Akeem O Lawal
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Dare M Oluyede
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Monsurat O Adebimpe
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Olusola O Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Haruna I Umar
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| |
Collapse
|
84
|
Khalaf HA, Elsamanoudy AZ, Abo-Elkhair SM, Hassan FE, Mohie PM, Ghoneim FM. Endoplasmic reticulum stress and mitochondrial injury are critical molecular drivers of AlCl 3-induced testicular and epididymal distortion and dysfunction: protective role of taurine. Histochem Cell Biol 2022; 158:97-121. [PMID: 35511291 PMCID: PMC9247002 DOI: 10.1007/s00418-022-02111-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
Aluminum, the third most plentiful metal in the Earth's crust, has potential for human exposure and harm. Oxidative stress plays an essential role in producing male infertility by inducing defects in sperm functions. We aimed to investigate the role of endoplasmic reticulum (ER) stress and mitochondrial injury in the pathogenesis of aluminum chloride (AlCl3)-induced testicular and epididymal damage at the histological, biochemical, and molecular levels, and to assess the potential protective role of taurine. Forty-eight adult male albino rats were separated into four groups (12 in each): negative control, positive control, AlCl3, and AlCl3 plus taurine groups. Testes and epididymis were dissected. Histological and immunohistochemical (Bax and vimentin) studies were carried out. Gene expression of vimentin, PCNA, CHOP, Bcl-2, Bax, and XBP1 were investigated via quantitative real-time polymerase chain reaction (qRT-PCR), besides estimation of malondialdehyde (MDA) and total antioxidant capacity (TAC). Light and electron microscopic examinations of the testes and epididymis revealed pathological changes emphasizing both mitochondrial injury and ER stress in the AlCl3 group. Taurine-treated rats showed a noticeable improvement in the testicular and epididymal ultrastructure. Moreover, they exhibited increased gene expression of vimentin, Bcl-2, and PNCA accompanied by decreased CHOP, Bax, and XBP1 gene expression. In conclusion, male reproductive impairment is a significant hazard associated with AlCl3 exposure. Both ER stress and mitochondrial impairment are critical mechanisms of the deterioration in the testes and epididymis induced by AlCl3, but taurine can amend this.
Collapse
Affiliation(s)
- Hanaa A Khalaf
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ayman Z Elsamanoudy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah, 21465, Saudi Arabia
| | - Salwa M Abo-Elkhair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Fatma E Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Passant M Mohie
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Fatma M Ghoneim
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
85
|
Rezaei R, Gabriel AS, Wu G. Dietary supplementation with branched-chain amino acids enhances milk production by lactating sows and the growth of suckling piglets. J Anim Sci Biotechnol 2022; 13:65. [PMID: 35710489 PMCID: PMC9205058 DOI: 10.1186/s40104-022-00718-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background Under current dietary regimens, milk production by lactating sows is insufficient to sustain the maximal growth of their piglets. As precursors of glutamate and glutamine as well as substrates and activators of protein synthesis, branched-chain amino acids (BCAAs) have great potential for enhancing milk production by sows. Methods Thirty multiparous sows were assigned randomly into one of three groups: control (a corn- and soybean meal-based diet), the basal diet + 1.535% BCAAs; and the basal diet + 3.07% BCAAs. The ratio (g/g) among the supplemental L-isoleucine, L-leucine and L-valine was 1.00:2.56:1.23. Diets were made isonitrogenous by the addition of appropriate amounts of L-alanine. Lactating sows had free access to drinking water and their respective diets. The number of live-born piglets was standardized to 9 per sow at d 0 of lactation (the day of parturition). On d 3, 15 and 29 of lactation, body weights and milk consumption of piglets were measured, and blood samples were obtained from sows and piglets 2 h and 1 h after feeding and nursing, respectively. Results Feed intake did not differ among the three groups of sows. Concentrations of asparagine, glutamate, glutamine, citrulline, arginine, proline, BCAAs, and many other amino acids were greater (P < 0.05) in the plasma of BCAA-supplemented sows and their piglets than those in the control group. Compared with the control, dietary supplementation with 1.535% and 3.07% BCAAs increased (P < 0.05) concentrations of free and protein-bound BCAAs, glutamate plus glutamine, aspartate plus asparagine, and many other amino acids in milk; milk production by 14% and 21%, respectively; daily weight gains of piglets by 19% and 28%, respectively, while reducing preweaning mortality rates by 50% and 70%, respectively. Conclusion Dietary supplementation with up to 3.07% BCAAs enhanced milk production by lactating sows, and the growth and survival of their piglets.
Collapse
Affiliation(s)
- Reza Rezaei
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Ana San Gabriel
- Ajinomoto Co., Inc, 1-15-1 Kyobashi, Chuoku, Tokyo, 104-8315, Japan
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
86
|
Tisi A, Pulcini F, Carozza G, Mattei V, Flati V, Passacantando M, Antognelli C, Maccarone R, Delle Monache S. Antioxidant Properties of Cerium Oxide Nanoparticles Prevent Retinal Neovascular Alterations In Vitro and In Vivo. Antioxidants (Basel) 2022; 11:antiox11061133. [PMID: 35740031 PMCID: PMC9220105 DOI: 10.3390/antiox11061133] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigated whether cerium oxide nanoparticles (CeO2-NPs), a promising antioxidant nanomaterial, may contrast retinal vascular alterations induced by oxidative damage in vitro and in vivo. For the in vivo experiments, the light damage (LD) animal model of Age-Related Macular Degeneration (AMD) was used and the CeO2-NPs were intravitreally injected. CeO2-NPs significantly decreased vascular endothelial growth factor (VEGF) protein levels, reduced neovascularization in the deep retinal plexus, and inhibited choroidal sprouting into the photoreceptor layer. The in vitro experiments were performed on human retinal pigment epithelial (ARPE-19) cells challenged with H2O2; we demonstrated that CeO2-NPs reverted H2O2-induced oxidative stress-dependent effects on this cell model. We further investigated the RPE-endothelial cells interaction under oxidative stress conditions in the presence or absence of CeO2-NPs through two experimental paradigms: (i) treatment of human umbilical vein endothelial cells (HUVECs) with conditioned media from ARPE-19 cells, and (ii) coculture of ARPE-19 and HUVECs. In both experimental conditions, CeO2-NPs were able to revert the detrimental effect of H2O2 on angiogenesis in vitro by realigning the level of tubule formation to that of the control. Altogether, our results indicate, for the first time, that CeO2-NPs can counteract retinal neovascularization and may be a new therapeutic strategy for the treatment of wet AMD.
Collapse
Affiliation(s)
- Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.T.); (F.P.); (G.C.); (V.F.); (S.D.M.)
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.T.); (F.P.); (G.C.); (V.F.); (S.D.M.)
| | - Giulia Carozza
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.T.); (F.P.); (G.C.); (V.F.); (S.D.M.)
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy;
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.T.); (F.P.); (G.C.); (V.F.); (S.D.M.)
| | - Maurizio Passacantando
- Department of Physical and Chemical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Cinzia Antognelli
- Department of Medicine & Surgery, Bioscience and Medical Embryology Division, University of Perugia, 06129 Perugia, Italy
- Correspondence: (C.A.); (R.M.)
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.T.); (F.P.); (G.C.); (V.F.); (S.D.M.)
- Correspondence: (C.A.); (R.M.)
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.T.); (F.P.); (G.C.); (V.F.); (S.D.M.)
| |
Collapse
|
87
|
Shalaby A, Al-Gholam M, Elfiky S, Elgarawany G. Impact of High Aspartame and High Fructose Diet on Vascular Reactivity, Glucose Metabolism and Liver Structure in Diabetic Rats. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Diabetes mellitus is a chronic metabolic disorder, affected by fructose, and artificial sweeteners. Aspartame and fructose are popularly used, by diabetics, as substitutes to glucose.
AIM: This study evaluated the effect of high aspartame and fructose on vascular reactivity, glucose, and hepatic metabolism in diabetic rats.
MATERIALS AND METHODS: Forty-eight male rats were divided into six groups: Control, control-diabetic, aspartame, aspartame-diabetic, fructose, and fructose-diabetic. After 60 days, blood pressure, vascular reactivity to norepinephrine, Lipid profile, fasting glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), leptin, and Malondialdehyde (MDA) were measured.
RESULTS: High aspartame alone or with diabetes, decreased leptin, vascular reactivity, and increased triglyceride, cholesterol, MDA, and fasting blood glucose. Hepatic tissues showed dilated congested vessels, cellular infiltration, decreased Periodic Acid Schiff’s reaction, and increased collagenous fibers. High fructose decreased leptin, high-density lipoprotein, vascular reactivity, and increased cholesterol, Low-density lipoprotein, MDA, glucose, and HOMA-IR. Hepatic tissues showed more fatty infiltration, glycogen deposition, and increased collagenous-fibers. The condition became worse in diabetes-treated rats.
CONCLUSION: High aspartame and high fructose diet caused deleterious effects on diabetic rats by atherogenic, oxidative stress, vascular, glucose, and hepatic tissue metabolism impairment.
Collapse
|
88
|
Ramadan OI, Nasr M, El-Hay OMA, Hasan A, Abd-Allah EEE, Mahmoud ME, Abd-Allah FM, Abuamara TMM, Hablas MGA, Awad MMY, Diab M, Taha AM, Radwan MK, Abulkhair NH, Abdel-Hady AA. Potential Protective Effect of Zingiber officinale in Comparison to Rosuvastatin on High-fat diet-induced Non-alcoholic Fatty Liver Disease in Rats. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a common liver disease affecting nearly 25% of adults worldwide with related risk factors including obesity, metabolic, and inflammatory diseases. Many therapeutic remedies of natural or synthetic properties were used.
AIM: This study aimed to investigate and compare the effects of ginger/rosuvastatin (ROSU) on the liver of rats with induced NAFLD.
MATERIALS AND METHODS: Forty adult male albino rats were used in this study and divided into four equal subgroups, Group I, control received the standard rat chow diet and given normal saline (1 ml/kg/day), Group II, high-fat diet (HFD) group, Group III, received HFD+ ROSU (15 mg/kg/day), and Group IV, HFD+ Zingiber officinale (10% W/V) for 6 weeks. At the end of our experiment, the rats were sacrificed then blood samples were collected for biochemical analysis of lipid profiles and liver enzymes, liver specimen was prepared for light and electron microscopic examination, and measurement of tissue level of malondialdehyde.
RESULTS: NAFLD caused degenerative changes and lipid deposition in liver cells as evidenced by microscopic results and laboratory tests. Treatment with ginger/ROSU alleviated those changes.
CONCLUSION: Ginger and ROSU could ameliorate liver functions in NAFLD and ginger effect is superior to ROSU.
Collapse
|
89
|
Flaxseed Ethanol Extracts’ Antitumor, Antioxidant, and Anti-Inflammatory Potential. Antioxidants (Basel) 2022; 11:antiox11050892. [PMID: 35624757 PMCID: PMC9137875 DOI: 10.3390/antiox11050892] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
The antitumoral, antioxidant, and anti-inflammatory effects of flaxseed ethanol extract was screened. Phytochemical analysis was performed by measuring the total phenolic content and by HPLC-DAD-ESI MS. In vitro antiproliferative activity was appreciated by MMT test of four adenocarcinomas and two normal cell lines. In vitro, antioxidant activity was evaluated by DPPH, FRAP, H2O2, and NO scavenging tests. The in vivo growth inhibitory activity against Ehrlich ascites carcinoma (EAC) in female BALB/c mice was determined using the trypan blue test. In EAC mice serum and ascites total oxidative status, total antioxidant reactivity, oxidative stress index, malondialdehyde, total thiols, total nitrites, 3-nitrotyrosine, and NFkB were measured. The phytochemical analysis found an significant content of phenols, with lignans having the highest concentration. The extract had an significant in vitro antioxidant effect and different inhibitory effects on different cell lines. After treatment of EAC mice with flaxseeds extract, body weight, ascites volume and viable tumour cell count, serum and ascites oxidative stress, and inflammatory markers decreased significantly. The ethanol flaxseeds extract has potential antiproliferative activity against some ovary and endometrial malignant cells and EAC. This effect can be attributed to the phenols content, and its antioxidant and anti-inflammatory activity.
Collapse
|
90
|
Emam KK, Abdel Fattah ME, El Rayes SM, Hebishy MA, Dessouki AA. Assessment of Wheat Germ Oil Role in the Prevention of Induced Breast Cancer in Rats. ACS OMEGA 2022; 7:13942-13952. [PMID: 35559156 PMCID: PMC9089347 DOI: 10.1021/acsomega.2c00434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/04/2022] [Indexed: 05/27/2023]
Abstract
Breast cancer is the most predominant cause of death in women globally. The current study was performed to evaluate the possible protective role of wheat germ oil (WGO), wheat germ powder (WGP), and vitamin E (Vit E) against breast carcinoma induced by the environmental carcinogen 7,12-dimethylbenz[a]anthracene (DMBA) in Sprague Dawely albino rats. Eighty female rats were divided into eight groups, each of ten rats. All protective agents were taken 21 days prior to DMBA treatment. Group I served as the normal control. Group II received Vit E (100 mg/kg BW/d) by gavage. Group III was fed a 20% WGP enriched basal diet. Group IV received WGO (270 mg/kg BW/d) by gavage. Group V received DMBA (50 mg/kg body weight/subcutaneous injection). Group VI received Vit E + DMBA. Group VII received WGP + DMBA. Group VIII received WGO + DMBA. The investigation focused on bodyweights, complete blood picture (CBC), cancer antigen 15.3 (CA15.3), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and histopathological and immunohistochemical analyses. Results showed that all cancer protective agents significantly improved CBC parameters, proliferating cell nuclear antigen (PCNA), and the histopathology picture, with the best improvement in the WGO group. In addition, WGO, WGP, and Vit E decreased the CA15.3 and MDA levels and elevated both the SOD and CAT levels compared to the DMBA group. Consequently, supplementation with WGO, WGP, and Vit E protects against lipid peroxidation and oxidative stress and reduces breast cancer.
Collapse
Affiliation(s)
- Kholoud Khaled Emam
- Department
of Chemistry, Faculty of Sciences, Suez
Canal University, Ismailia, 41522, Egypt
| | | | - Samir Mohamed El Rayes
- Department
of Chemistry, Faculty of Sciences, Suez
Canal University, Ismailia, 41522, Egypt
| | | | - Amina Ali Dessouki
- Department
of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
91
|
Chera EI, Pop TI, Pop RM, Pârvu M, Uifălean A, Cătoi FA, Cecan AD, Mîrza CM, Achimaș-Cadariu P, Pârvu AE. Flaxseed Ethanol Extract Effect in Acute Experimental Inflammation. Medicina (B Aires) 2022; 58:medicina58050582. [PMID: 35629999 PMCID: PMC9146081 DOI: 10.3390/medicina58050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: Previous studies demonstrated antioxidant activities for flaxseed and flaxseed oil. The aim of the present study was to evaluate the prophylactic and therapeutic anti-inflammatory and antioxidant effects of flaxseed ethanol extract in acute experimental inflammation. Materials and Methods: The in vivo anti-inflammatory and antioxidant activity was evaluated on a turpentine-induced acute inflammation (6 mL/kg BW, i.m.) by measuring serum total oxidative status, total antioxidant reactivity, oxidative stress index, malondialdehyde, total thiols, total nitrites, 3-nitrotyrosine, and NFkB. The experiment was performed on nine groups (n = 5) of male rats: negative control; inflammation; three groups with seven days of flaxseed extract (100%, 50%, 25%) pretreatment followed by inflammation on day eight; three groups of inflammation followed by seven days of treatment with flaxseed extract (100%, 50%, 25%); inflammation followed by seven days of treatment with diclofenac (20 mg/kg BW). Results: Flaxseed extract anti-inflammatory activity was better in the therapeutic plan than in the prophylactic one, and consisted of NO, 3NT, and NF-κB reduction in a dose dependent way. ROS was reduced better in the therapeutic flaxseed extracts administration, and antioxidants were increased by the prophylactic flaxseed extracts administration. Both, ROS and antioxidants were influenced more by the total flaxseed extract, which was also more efficient than diclofenac. Conclusions: flaxseed extract prophylaxis has a useful antioxidant activity by increasing the antioxidants, and flaxseed extract therapy has anti-inflammatory and antioxidant activities by reducing NF-κB, RNS, and ROS.
Collapse
Affiliation(s)
- Elisabeta Ioana Chera
- Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (E.I.C.); (A.U.); (F.A.C.); (A.D.C.); (C.M.M.); (A.E.P.)
| | - Tiberia Ioana Pop
- Department of Technical and Soil Sciences, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400012 Cluj-Napoca, Romania
- Correspondence: (T.I.P.); (R.M.P.); Tel.: +40-736-477327 (T.I.P.); +40-746-692265 (R.M.P.)
| | - Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (T.I.P.); (R.M.P.); Tel.: +40-736-477327 (T.I.P.); +40-746-692265 (R.M.P.)
| | - Marcel Pârvu
- Faculty of Biology and Geology, Babeș-Bolyai University, 400012 Cluj-Napoca, Romania;
| | - Ana Uifălean
- Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (E.I.C.); (A.U.); (F.A.C.); (A.D.C.); (C.M.M.); (A.E.P.)
| | - Florinela Adriana Cătoi
- Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (E.I.C.); (A.U.); (F.A.C.); (A.D.C.); (C.M.M.); (A.E.P.)
| | - Andra Diana Cecan
- Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (E.I.C.); (A.U.); (F.A.C.); (A.D.C.); (C.M.M.); (A.E.P.)
| | - Camelia Manuela Mîrza
- Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (E.I.C.); (A.U.); (F.A.C.); (A.D.C.); (C.M.M.); (A.E.P.)
| | - Patriciu Achimaș-Cadariu
- Department of Oncology, University of Medicine and Pharmacy Iuliu Hațieganu, 400012 Cluj-Napoca, Romania;
| | - Alina Elena Pârvu
- Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (E.I.C.); (A.U.); (F.A.C.); (A.D.C.); (C.M.M.); (A.E.P.)
| |
Collapse
|
92
|
Topcu A, Kostakoglu U, Mercantepe T, Yilmaz HK, Tumkaya L, Uydu HA. The cardioprotective effects of perindopril in a model of polymicrobial sepsis: The role of radical oxygen species and the inflammation pathway. J Biochem Mol Toxicol 2022; 36:e23080. [PMID: 35417068 DOI: 10.1002/jbt.23080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/21/2022] [Accepted: 04/01/2022] [Indexed: 11/11/2022]
Abstract
Mortality rates associated with myocardial dysfunction due to sepsis and septic shock are generally high across the world. The present study focused on the antioxidant and anti-inflammatory effects of perindopril (PER) for the purpose of preventing the adverse effects of sepsis on the myocardium and developing new alternatives in treatment. The control group received only saline solution via the oral route for 4 days. The second group underwent cecal ligation puncture (CLP), and the third underwent CLP and received PER (2 mg/kg). Rats in the third group received 2 mg/kg PER per oral (p.o.) from 4 days before induction of sepsis. Thiobarbituric acid reactive species (TBARS), total thiol (-SH), interleukin-1 beta (IL-1β), IL-6, 8-hydroxy-2'-deoxyguanosine (8-OHdG), and nuclear factor kappa B (NF-κB/p65) levels increased in the CLP groups. In contrast, PER (2 mg/kg) decreased the levels of biochemical parameters other than total-SH and decreased 8-OHdG, NF-κB/p65 immunopositivity in rat heart tissues. The data from this study show that impairment of the oxidant/antioxidant balance and inflammatory cytokine levels in favor of inflammation in heart tissue under septic conditions results in severe tissue damage. PER administration before sepsis was shown to exhibit antioxidant and anti-inflammatory properties by reducing these effects. This in turn increased the importance of PER as new evidence of its protective effects in heart tissue.
Collapse
Affiliation(s)
- Atilla Topcu
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ugur Kostakoglu
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Hulya K Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Huseyin A Uydu
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
93
|
Ott EC, Cavinder CA, Wang S, Smith T, Lemley CO, Dinh TTN. Oxidative stress biomarkers and free amino acid concentrations in the blood plasma of moderately exercised horses indicate adaptive response to prolonged exercise training. J Anim Sci 2022; 100:6550158. [PMID: 35298640 PMCID: PMC9030216 DOI: 10.1093/jas/skac086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/15/2022] [Indexed: 11/12/2022] Open
Abstract
Oxidative stress caused by routine physical stressors may negatively impact the performance of equine athletes; thus, the present study identifies oxidative biomarkers in the blood plasma of exercising horses. Stock-type horses were subject to a standardized moderate-intensity exercise protocol 3 times per week for 8 wk. Exercise protocol followed NRC guidelines consisting of 30% walk, 55% trot, and 15% canter, with a target heart rate (HR) of 90 BPM. Blood plasma was collected in wk 1, 2, 7, and 8 immediately before and 0, 30, 60, and 90 min after exercise and analyzed for total antioxidant capacity (TAC), thiobarbituric acid reactive substance (TBARS), glutathione peroxidase activity (GPx), and superoxide dismutase activity (SOD). Data were analyzed as repeated measures with wk, d, time, and their interactions as fixed effects. The TAC on day 2 (0.40 mM Trolox) was 7.5% greater than on day 3 (P = 0.013). There were wk × d × time interactions for SOD, TBARS, and GPx (P < 0.001). The TBARS remained at pre-exercise baseline (d-1 wk-1; 2.7 µM malondialdehyde) for most collection times within weeks 1, 7, and 8 (P ≥ 0.058); however, TBARS increased by 0.24 to 0.41 µM on day 2 of week 2 post-exercise (P < 0.001) and remained similarly elevated on day 3 pre- and immediately post-exercise (P < 0.001). The GPx similarly remained at baseline (172.6 µM/min; P ≥ 0.621) but increased by 48.18 to 83.4 µM/min at most collection times on days 1 and 2 of week 2 (P ≤ 0.023). The SOD remained at baseline (167.2 U/ mL; P ≥ 0.055) until increasing by 11.28 to 15.61 U/mL at 30 min post-exercise on day 1, week 1 and at most collection times on day 3, week 8 (P ≤ 0.043). Amino acids with antioxidant properties such as Met, Tyr, and Trp drastically decreased from weeks 2 to 8 (P < 0.001). Met and Tyr also decreased from -60 to 90 min (P < 0.047), whereas there was no time effect on Trp concentration (P = 0.841). The current study indicates the time-dependent nature of oxidative stress concerning persistent stressors such as exercise.
Collapse
Affiliation(s)
- Elizabeth C Ott
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Clay A Cavinder
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Shangshang Wang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Trent Smith
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Caleb O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Thu T N Dinh
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
94
|
Prasartthong P, Pakdeechote P, Maneesai P, Meephat S, Rattanakanokchai S, Wunpathe C, Apaijit K, Bunbupha S. Imperatorin attenuates cardiac remodelling and dysfunction in high-fat/high-fructose diet-fed rats by modulating oxidative stress, inflammation, and Nrf-2 expression. Tissue Cell 2022; 75:101728. [DOI: 10.1016/j.tice.2021.101728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 12/23/2022]
|
95
|
Rezaei R, Gabriel AS, Wu G. Dietary supplementation with monosodium glutamate enhances milk production by lactating sows and the growth of suckling piglets. Amino Acids 2022; 54:1055-1068. [PMID: 35292855 DOI: 10.1007/s00726-022-03147-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
Abstract
This study was conducted to test the hypothesis that increasing dietary content of glutamate through addition of monosodium glutamate (MSG) enhances milk production by lactating sows and the growth of their offspring. Thirty multiparous sows (Landrace × Large White) were assigned randomly into one of three dietary groups: control (a corn- and soybean meal-based diet), the basal diet + 1% MSG, and the basal diet + 2% MSG. Diets were made isonitrogenous by the addition of appropriate amounts of L-alanine. Lactating sows had free access to drinking water and were fed twice daily their respective diets. The number of live-born piglets was standardized to 9 per sow at day 0 of lactation (the day of farrowing). On days 3, 15, and 29 of lactation, body weight and milk consumption of piglets were measured, and blood samples obtained from sows and piglets at 2 h and 1 h after feeding, respectively. Feed intake of sows did not differ (P > 0.05) among the three groups of sows. Concentrations of aspartate, glutamine, citrulline, arginine, tryptophan, proline, branched-chain amino acids, and glutamate were greater (P < 0.05) in the plasma of MSG-supplemented sows and their piglets than for controls. When compared with the control, dietary supplementation with 1-2% MSG increased (P < 0.05): concentrations of many free amino acids (including glutamate plus glutamine) and all protein-bound amino acids in milk; the milk intake of piglets by 14-25%; and daily weight gains of piglets by 23-44%. These results indicate that dietary supplementation with 1-2% MSG to lactating sows enhances milk production to support the growth of sow-reared piglets.
Collapse
Affiliation(s)
- Reza Rezaei
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Ana San Gabriel
- Ajinomoto Co., Inc, 1-15-1 Kyobashi, Chuoku, Tokyo, 104-8315, Japan
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
96
|
Ding C, Zhao Y, Zhang Q, Lin Y, Xue R, Chen C, Zeng R, Chen D, Song Y. Cadmium transfer between maize and soybean plants via common mycorrhizal networks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113273. [PMID: 35123184 DOI: 10.1016/j.ecoenv.2022.113273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
More than 80% terrestrial plants establish mutualistic symbiosis with soil-borne arbuscular mycorrhizal fungi (AMF). These fungi not only significantly improve plant nutrient acquisition and stress resistance, but also mitigate heavy metal phytotoxicity, Furthermore, the extraradical mycorrhizal mycelia can form common mycorrhizal networks (CMNs) that link roots of multiple plants in a community. Here we show that the networks mediate migration of heavy metal cadmium (Cd) from maize (Zea mays L.) to soybean (Glycine max (Linn.) Merr.) plants. CMNs between maize and soybean plants were established after inoculation of maize plants with AMF Funneliformis mosseae. Application of CdCl2 in maize plants led to 64.4% increase in the shoots and 48.2% increase in the roots in Cd content in CMNs-connected soybean plants compared to the control without Cd treatment in maize. Meanwhile, although the CMNs-connected soybean plants did not directly receive Cd supply, they upregulated transcriptional levels of Cd transport-related genes HATPase and RSTK 2.13- and 5.96-fold, respectively, induced activities of POD by 44.8% in the leaves, and increased MDA by 146.2% in the roots. Furthermore, Cd addition inhibited maize growth but mycorrhizal colonization improved plant performance in presence of Cd stress. This finding demonstrates that mycorrhizal networks mediate the transfer of Cd between plants of different species, suggesting a potential to use CMNs as a conduit to transfer toxic heavy metals from main food crops to heavy metal hyperaccumulators via intercropping.
Collapse
Affiliation(s)
- Chaohui Ding
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Yi Zhao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Qianrong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Fujian Key Laboratory of Vegetable Genetics and Breeding, Vegetable Research Center, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yibin Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Rongrong Xue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Chunyan Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Dongmei Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
| |
Collapse
|
97
|
Wei C, Jiao Q, Agathokleous E, Liu H, Li G, Zhang J, Fahad S, Jiang Y. Hormetic effects of zinc on growth and antioxidant defense system of wheat plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150992. [PMID: 34662623 DOI: 10.1016/j.scitotenv.2021.150992] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 05/03/2023]
Abstract
Although hormesis induced by heavy metals is a well-known phenomenon, the involved biological mechanisms are not fully understood. Zinc (Zn) is an essential micronutrient for wheat, an important crop contributing to food security as a main staple food; however, excessive Zn is detrimental to the growth of wheat. The aim of this study was to evaluate morphological and physiological responses of two wheat varieties exposed to a broad range of Zn concentrations (0-1000 μM) for 14 days. Hormesis was induced by Zn in both wheat varieties. Treatment with 10-100 μM Zn promoted biomass accumulation by enhancing the photosynthetic ability, the chlorophyll content and the activities of antioxidant enzymes. Increased root/shoot ratio suggested that shoot growth was severely inhibited when Zn concentration exceeded 300 μM by reducing photosynthetic ability and the content of photosynthetic pigments. Excessive Zn accumulation (Zn treatment of 300-1000 μM) in leaf and root induced membrane injuries through lipid peroxidation as malondialdehyde (MDA) content increased with increasing Zn concentration. The results show that MDA content was higher than other treatments by 16.1-151.1% and 15.0-88.3% (XN979) and 36.8-235.7% and 20.6-83.8% (BN207) in the leaves and roots under 1000 μM Zn treatment. To defend against Zn toxicity, ascorbate (AsA), glutathione (GSH), non-protein thiols (NPT) and phytochelatin (PC) content of both wheat varieties (except leaf GSH content of BN207) was increased, while, the activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and the content of soluble protein decreased by 300-1000 μM Zn. The results showed that AsA-GSH cycle and NPT and PC content of wheat seedlings play important roles in defending against Zn toxicity. This study contributes new insights into the physiological mechanisms underlying the hormetic response of wheat to Zn, which could be beneficial for optimizing plant health in changing environments and improving risk assessments.
Collapse
Affiliation(s)
- Chang Wei
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, PR China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Gezi Li
- National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Jingjing Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, College of Tropical Crops, Haikou 570228, PR China; Department of Agronomy, Faculty of Agricultural Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
98
|
Awad M, Ibrahim EDS, Osman EI, Elmenofy WH, Mahmoud AWM, Atia MAM, Moustafa MAM. Nano-insecticides against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae): Toxicity, development, enzyme activity, and DNA mutagenicity. PLoS One 2022; 17:e0254285. [PMID: 35113879 PMCID: PMC8812990 DOI: 10.1371/journal.pone.0254285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
Frequent applications of synthetic insecticides might cause environmental pollution due to the high residue. In addition, increasing insecticide resistance in many insect pests requires novel pest control methods. Nanotechnology could be a promising field of modern agriculture, and is receiving considerable attention in the development of novel nano-agrochemicals, such as nanoinsectticides and nanofertilizers. This study assessed the effects of the lethal and sublethal concentrations of chlorantraniliprole, thiocyclam, and their nano-forms on the development, reproductive activity, oxidative stress enzyme activity, and DNA changes in the black cutworm, Agrotis ipsilon, at the molecular level. The results revealed that A. ipsilon larvae were more susceptible to the nano-forms than the regular forms of both nano chlorine and sulfur within the chlorantraniliprole and thiocyclam insecticides, respectively, with higher toxicities than the regular forms (ca. 3.86, and ca.2.06-fold, respectively). Significant differences in biological parameters, including developmental time and reproductive activity (fecundity and hatchability percent) were also observed. Correspondingly, increases in oxidative stress enzyme activities were observed, as were mutagenic effects on the genomic DNA of A. ipsilon after application of the LC50 of the nano-forms of both insecticides compared to the control. These promising results could represent a crucial step toward developing efficient nanoinsecticides for sustainable control of A. ipsilon.
Collapse
Affiliation(s)
- Mona Awad
- Faculty of Agriculture, Department of Economic Entomology and Pesticides, Cairo University, Giza, Egypt
| | - El-Desoky S. Ibrahim
- Faculty of Agriculture, Department of Economic Entomology and Pesticides, Cairo University, Giza, Egypt
| | - Engy I. Osman
- Faculty of Agriculture, Department of Genetics, Cairo University, Giza, Egypt
| | - Wael H. Elmenofy
- Agricultural Genetic Engineering Research Institute, ARC, Giza, Egypt
| | - Abdel Wahab M. Mahmoud
- Faculty of Agriculture, Plant Physiology Section, Botany Department, Cairo University, Giza, Egypt
| | - Mohamed A. M. Atia
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Moataz A. M. Moustafa
- Faculty of Agriculture, Department of Economic Entomology and Pesticides, Cairo University, Giza, Egypt
| |
Collapse
|
99
|
Naseem S, Ismail H. In vitro and in vivo evaluations of antioxidative, anti-Alzheimer, antidiabetic and anticancer potentials of hydroponically and soil grown Lactuca sativa. BMC Complement Med Ther 2022; 22:30. [PMID: 35101010 PMCID: PMC8805276 DOI: 10.1186/s12906-022-03520-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lactuca sativa is an edible plant commonly used by local communities to manage diabetes and stomach problems. METHODS This work aimed to investigate the anti-oxidant, anticancer, antidiabetic and Anti-Alzheimer effects of hydroponically (HyL) and soil-grown (SoL) Lactuca sativa. Streptozotocin-induced diabetes and AlCl3-induced Alzheimer's disease model was used to evaluate the medicinal effects of Lactuca sativa. RESULTS HyL showed significant activity in lipid peroxidation assay, DPPH and DNA protection assay, while SoL extract showed moderated activity, respectively. A similar activity response was quantified for α-glucosidase, α-amylase, acetylcholinesterase and butyrylcholinesterase inhibition assays. The cytotoxic potential of HyL and SoL extracts against MCF7, and HePG2 cancer cell lines exhibited significant activity. HyL and SoL showed a substantial decrease in blood glucose levels in streptozotocin-induced diabetic rats. Diabetes-related liver/kidney biomarkers and anti-oxidant enzyme trends moved toward normal after HyL and SoL treatment. In Anti-Alzheimer's based Morris water and elevated plus maze tests, HyL and SoL displayed memory-enhancing response and anti-anxiety behaviour, respectively. HPLC quantification of dopamine and serotonin revealed a moderate but significant (p<0.05) increase in the level of these neurotransmitters in HyL and SoL groups. CONCLUSION Overall, the study revealed that hydroponic Lactuca sativa possesses the therapeutic potential to treat diseases like Alzheimer's and diabetes.
Collapse
Affiliation(s)
- Shahid Naseem
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, 50700 Pakistan
| | - Hammad Ismail
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, 50700 Pakistan
| |
Collapse
|
100
|
Khalaf MM, Hassan SM, Sayed AM, Abo-Youssef AM. Ameliorate impacts of scopoletin against vancomycin-induced intoxication in rat model through modulation of Keap1-Nrf2/HO-1 and IκBα-P65 NF-κB/P38 MAPK signaling pathways: Molecular study, molecular docking evidence and network pharmacology analysis. Int Immunopharmacol 2022; 102:108382. [PMID: 34848155 DOI: 10.1016/j.intimp.2021.108382] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
Nephrotoxicity is an indication for the damage of kidney-specific detoxification and excretion mechanisms by exogenous or endogenous toxicants. Exposure to vancomycin predominantly results in renal damage and losing the control of body homeostasis. Vancomycin-treated rats (200 mg/kg/once daily, for seven consecutive days, i.p.) revealed significant increase in serum pivotal kidney function, oxidative stress, and inflammatory biomarkers. Histologically, vancomycin showed diffuse acute tubular necrosis, denudation of epithelium and infiltration of inflammatory cells in the lining tubular epithelium in cortical portion. In the existing study, the conservative consequences of scopoletin against vancomycin nephrotoxicity was investigated centering on its capacity to alleviate oxidative strain and inflammation through streamlining nuclear factor (erythroid-derived-2) like 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling and prohibiting the nuclear factor kappa B (NF-κB)/mitogen-activated protein kinase (p38 MAPK) pathway. With respect to vancomycin group, scopoletin pretreatment (50 mg/kg/once daily, i.p.) efficiently reduced kidney function, oxidative stress biomarkers and inflammatory mediators. Moreover, histological and immunohistochemical examination of scopoletin-treated group showed remarkable improvement in histological structure and reduced vancomycin-induced renal expression of iNOS, NF-κB and p38 MAPK. In addition, scopoletin downregulated (Kelch Like ECH Associated Protein1) Keap1, P38MAPK and NF-κB expression levels while upregulated renal expression levels of regulatory protein (IκBα), Nrf2 and HO-1. Furthermore, molecular docking and network approach were constructed to study the prospect interaction between scopoletin and the targeted proteins that streamline oxidative stress and inflammatory pathways. The present investigations elucidated that scopoletin co-treatment with vancomycin may be a rational curative protocol for mitigation of vancomycin-induced renal intoxication.
Collapse
Affiliation(s)
- Marwa M Khalaf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Samar M Hassan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt.
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt.
| | - Amira M Abo-Youssef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|