51
|
Xu Y, Zhao L, Liu H, Sun B, Zhao X. Diagnostic value of miR-637 in patients with atherosclerosis and its predictive significance for the future cardiovascular events. Vascular 2020; 29:704-710. [PMID: 33283668 DOI: 10.1177/1708538120977297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objectives Atherosclerosis is a common vascular disease. MiR-637 has been demonstrated to be low-expressed in hypertensive patients, and atherosclerosis is closely related to hypertension. Therefore, this study speculated that miR-637 may play an important role in the development of atherosclerosis. In brief, this study examined the expression level of miR-637 in patients with atherosclerosis and further analyzed its clinical value in patients with atherosclerosis. Methods The expression level of miR-637 was detected in serum from 86 patients with atherosclerosis and 75 healthy controls by using quantitative reverse transcription-polymerase chain reaction. The receiver operating characteristic curve was used to assess the diagnostic value of miR-637 in atherosclerosis. Pearson’s correlation analysis was performed to evaluate the relationship between serum miR-637 and different clinical parameters. The prognostic value of miR-637 in atherosclerosis was analyzed by the Kaplan–Meier survival curve and multivariate cox regression analysis. Results Compared with healthy individuals, miR-637 was downregulated in the serum of atherosclerosis patients. The receiver operating characteristic curve suggested the high diagnostic value of miR-637 for atherosclerosis, with the AUC of 0.853, specificity of 77.9%, and sensitivity of 80.0%. The expression level of miR-637 was negatively correlated with CIMT (r = –0.8101, P < 0.0001) and CRP (r = –0.6154, P < 0.0001), respectively. Survival analysis indicated that miR-637 was also found to be an independent prognostic factor for atherosclerosis. Conclusions MiR-637 is a potential noninvasive diagnostic marker of atherosclerosis and has important predictive value for the occurrence of future cardiovascular events.
Collapse
Affiliation(s)
- Yuxia Xu
- Department of Emergency, Weifang Yidu Central Hospital, Weifang, China
| | - Lixiang Zhao
- Department of Emergency, Weifang People’s Hospital, Weifang, China
| | - Hai Liu
- Department of Cardiovascular Medicine, Weifang Yidu Central Hospital, Weifang, China
| | - Bin Sun
- Department of Emergency, Weifang Yidu Central Hospital, Weifang, China
| | - Xinxiang Zhao
- Department of Emergency, Weifang People’s Hospital, Weifang, China
| |
Collapse
|
52
|
Chen Z, Luo J, Li J, Kim G, Stewart A, Urban JF, Huang Y, Chen S, Wu LG, Chesler A, Trinchieri G, Li W, Wu C. Interleukin-33 Promotes Serotonin Release from Enterochromaffin Cells for Intestinal Homeostasis. Immunity 2020; 54:151-163.e6. [PMID: 33220232 DOI: 10.1016/j.immuni.2020.10.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/13/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
The gastrointestinal tract is known as the largest endocrine organ that encounters and integrates various immune stimulations and neuronal responses due to constant environmental challenges. Enterochromaffin (EC) cells, which function as chemosensors on the gut epithelium, are known to translate environmental cues into serotonin (5-HT) production, contributing to intestinal physiology. However, how immune signals participate in gut sensation and neuroendocrine response remains unclear. Interleukin-33 (IL-33) acts as an alarmin cytokine by alerting the system of potential environmental stresses. We here demonstrate that IL-33 induced instantaneous peristaltic movement and facilitated Trichuris muris expulsion. We found that IL-33 could be sensed by EC cells, inducing release of 5-HT. IL-33-mediated 5-HT release activated enteric neurons, subsequently promoting gut motility. Mechanistically, IL-33 triggered calcium influx via a non-canonical signaling pathway specifically in EC cells to induce 5-HT secretion. Our data establish an immune-neuroendocrine axis in calibrating rapid 5-HT release for intestinal homeostasis.
Collapse
Affiliation(s)
- Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Girak Kim
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Andy Stewart
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Joseph F Urban
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, MD, USA
| | - Yuefeng Huang
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Shan Chen
- Retinal Neurophysiology Section, National Eye Institute, NIH, Bethesda, MD, USA
| | - Ling-Gang Wu
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Alexander Chesler
- Sensory Cells and Circuits Section, National Center for Complementary and Integrative Health, NIH, Bethesda, MD, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, NIH, Bethesda, MD, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
53
|
Chandrasekaran A, Lee MY, Zhang X, Hasan S, Desta H, Tenenbaum SA, Melendez JA. Redox and mTOR-dependent regulation of plasma lamellar calcium influx controls the senescence-associated secretory phenotype. Exp Biol Med (Maywood) 2020; 245:1560-1570. [PMID: 32686475 PMCID: PMC7787549 DOI: 10.1177/1535370220943122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/27/2020] [Indexed: 12/18/2022] Open
Abstract
IMPACT STATEMENT Through its ability to evoke responses from cells in a paracrine fashion, the senescence-associated secretory phenotype (SASP) has been linked to numerous age-associated disease pathologies including tumor invasion, cardiovascular dysfunction, neuroinflammation, osteoarthritis, and renal disease. Strategies which limit the amplitude and duration of SASP serve to delay age-related degenerative decline. Here we demonstrate that the SASP regulation is linked to shifts in intracellular Ca2+ homeostasis and strategies which rescue redox-dependent calcium entry including enzymatic H2O2 scavenging, TRP modulation, or mTOR inhibition block SASP and TRPC6 gene expression. As Ca2+ is indispensable for secretion from both secretory and non-secretory cells, it is exciting to speculate that the expression of plasma lamellar TRP channels critical for the maintenance of intracellular Ca2+ homeostasis may be coordinately regulated with the SASP.
Collapse
Affiliation(s)
- Akshaya Chandrasekaran
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - May Y Lee
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Xuexin Zhang
- College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Shaheen Hasan
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Habben Desta
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Scott A Tenenbaum
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| |
Collapse
|
54
|
Martinotti S, Pellavio G, Patrone M, Laforenza U, Ranzato E. Manuka Honey Induces Apoptosis of Epithelial Cancer Cells through Aquaporin-3 and Calcium Signaling. Life (Basel) 2020; 10:life10110256. [PMID: 33120979 PMCID: PMC7692226 DOI: 10.3390/life10110256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
Honey is a natural product with a long use in traditional medicine and is well recognized to regulate different biological events. It is an important source of various biological or pharmacological molecules and, therefore, there is a strong interest to explore their properties. Evidence is growing that honey may have the potential to be an anticancer agent acting through several mechanisms. Here we observed for the first time in a cancer cell line a possible mechanism through which honey could induce an alteration in the intracellular reactive oxygen species and homeostatic balance of intracellular calcium concentration leading to cell death by apoptosis. This mechanism seems to be enhanced by manuka honey’s ability to maintain high H2O2 permeability through aquaporin-3.
Collapse
Affiliation(s)
- Simona Martinotti
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy; (S.M.); (M.P.)
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, piazza Sant’Eusebio 5, 13100 Vercelli, Italy
| | - Giorgia Pellavio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy; (G.P.); (U.L.)
| | - Mauro Patrone
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy; (S.M.); (M.P.)
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy; (G.P.); (U.L.)
| | - Elia Ranzato
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy; (S.M.); (M.P.)
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, piazza Sant’Eusebio 5, 13100 Vercelli, Italy
- Correspondence: ; Tel.: +39-0131-360260; Fax: +39-0131-360243
| |
Collapse
|
55
|
Korczak M, Kurowski P, Leśniak A, Grönbladh A, Filipowska A, Bujalska-Zadrożny M. GABA B receptor intracellular signaling: novel pathways for depressive disorder treatment? Eur J Pharmacol 2020; 885:173531. [PMID: 32871173 DOI: 10.1016/j.ejphar.2020.173531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Affecting over 320 million people around the world, depression has become a formidable challenge for modern medicine. In addition, an increasing number of studies cast doubt on the monoamine theory of depressive disorder and, worryingly, antidepressant medications only significantly benefit patients with severe depression. Thus, it is not surprising that researchers have shown an increased interest in new theories attempting to explain the pathogenesis of this disease. One example is the excitatory/inhibitory transmission imbalance theory. These abnormalities involve glutamate and γ-aminobutyric acid (GABA) signaling. Studies on GABAB receptors and their antagonists are particularly promising for the treatment of depressive disorders. In this paper, intracellular pathways controlled by GABAB receptors and their links to depression are described, including the impact of ketamine on GABAergic synaptic transmission.
Collapse
Affiliation(s)
- Maciej Korczak
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Kurowski
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland.
| | - Anna Leśniak
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland
| | - Alfhild Grönbladh
- The Beijer Laboratory, Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, The Uppsala University, Uppsala, Sweden
| | - Anna Filipowska
- Department of Biosensors and Processing of Biomedical Signals, The Silesian University of Technology, Zabrze, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
56
|
Ghosh A, Beyazcicek O, Davis ES, Onyenwoke RU, Tarran R. Cellular effects of nicotine salt-containing e-liquids. J Appl Toxicol 2020; 41:493-505. [PMID: 33034066 DOI: 10.1002/jat.4060] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022]
Abstract
"Pod-based" e-cigarettes such as JUUL are currently the most prevalent electronic nicotine delivery systems (ENDS) in the United States. JUUL-type ENDS utilize nicotine salts protonated with benzoic acid rather than freebase nicotine. However, limited information is available on the cellular effects of these products. Cytoplasmic Ca2+ is a universal second messenger that controls many cellular functions including cell growth and cell death. Of note, dysregulation of cell Ca2+ homeostasis has been linked with several disease processes including autoimmune disease and several types of cancer. We exposed HEK293T cells and THP-1 macrophage-like cells to different JUUL e-liquids. We evaluated their effects on cellular viability and Ca2+ signaling by measuring fluorescence from calcein-AM/propidium iodide and Fluo-4, respectively. E-liquid autofluorescence was used to look for e-liquid permeation into cells. To identify the mechanisms behind the Ca2+ responses, different inhibitors of Ca2+ channels and phospholipase C signaling were used. JUUL e-liquids caused significant cytotoxic effects, with "Mint" flavor being the most cytotoxic. The Mint flavored e-liquid also caused a significant elevation in cytoplasmic Ca2+ . Using autofluorescence, the permeation of JUUL e-liquids into live cells was confirmed, indicating that intracellular organelles are directly exposed to e-liquids. Further studies identified the endoplasmic reticulum as being the source of e-liquid-induced changes in cytoplasmic Ca2+ . Nicotine salt-based e-liquids cause cytotoxicity and elevate cytoplasmic Ca2+ , indicating that they can exert biological effects beyond what would be expected with nicotine alone. These effects are flavor-dependent, and we propose that flavored e-liquids be reassessed for potential lung toxicity.
Collapse
Affiliation(s)
- Arunava Ghosh
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ozge Beyazcicek
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eric S Davis
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rob U Onyenwoke
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
57
|
Johnstone A, Mobley W. Local TrkB signaling: themes in development and neural plasticity. Cell Tissue Res 2020; 382:101-111. [DOI: 10.1007/s00441-020-03278-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023]
|
58
|
Chen HY, Kelley RA, Li T, Swaroop A. Primary cilia biogenesis and associated retinal ciliopathies. Semin Cell Dev Biol 2020; 110:70-88. [PMID: 32747192 PMCID: PMC7855621 DOI: 10.1016/j.semcdb.2020.07.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022]
Abstract
The primary cilium is a ubiquitous microtubule-based organelle that senses external environment and modulates diverse signaling pathways in different cell types and tissues. The cilium originates from the mother centriole through a complex set of cellular events requiring hundreds of distinct components. Aberrant ciliogenesis or ciliary transport leads to a broad spectrum of clinical entities with overlapping yet highly variable phenotypes, collectively called ciliopathies, which include sensory defects and syndromic disorders with multi-organ pathologies. For efficient light detection, photoreceptors in the retina elaborate a modified cilium known as the outer segment, which is packed with membranous discs enriched for components of the phototransduction machinery. Retinopathy phenotype involves dysfunction and/or degeneration of the light sensing photoreceptors and is highly penetrant in ciliopathies. This review will discuss primary cilia biogenesis and ciliopathies, with a focus on the retina, and the role of CP110-CEP290-CC2D2A network. We will also explore how recent technologies can advance our understanding of cilia biology and discuss new paradigms for developing potential therapies of retinal ciliopathies.
Collapse
Affiliation(s)
- Holly Y Chen
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA.
| | - Ryan A Kelley
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Tiansen Li
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
59
|
Anand PK. Lipids, inflammasomes, metabolism, and disease. Immunol Rev 2020; 297:108-122. [PMID: 32562313 DOI: 10.1111/imr.12891] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022]
Abstract
Inflammasomes are multi-protein complexes that regulate the cleavage of cysteine protease caspase-1, secretion of inflammatory cytokines, and induction of inflammatory cell death, pyroptosis. Several members of the nod-like receptor family assemble inflammasome in response to specific ligands. An exception to this is the NLRP3 inflammasome which is activated by structurally diverse entities. Recent studies have suggested that NLRP3 might be a sensor of cellular homeostasis, and any perturbation in distinct metabolic pathways results in the activation of this inflammasome. Lipid metabolism is exceedingly important in maintaining cellular homeostasis, and it is recognized that cells and tissues undergo extensive lipid remodeling during activation and disease. Some lipids are involved in instigating chronic inflammatory diseases, and new studies have highlighted critical upstream roles for lipids, particularly cholesterol, in regulating inflammasome activation implying key functions for inflammasomes in diseases with defective lipid metabolism. The focus of this review is to highlight how lipids regulate inflammasome activation and how this leads to the progression of inflammatory diseases. The key roles of cholesterol metabolism in the activation of inflammasomes have been comprehensively discussed. Besides, the roles of oxysterols, fatty acids, phospholipids, and lipid second messengers are also summarized in the context of inflammasomes. The overriding theme is that lipid metabolism has numerous but complex functions in inflammasome activation. A detailed understanding of this area will help us develop therapeutic interventions for diseases where dysregulated lipid metabolism is the underlying cause.
Collapse
Affiliation(s)
- Paras K Anand
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
60
|
Wu Q, Finley SD. Mathematical Model Predicts Effective Strategies to Inhibit VEGF-eNOS Signaling. J Clin Med 2020; 9:jcm9051255. [PMID: 32357492 PMCID: PMC7287924 DOI: 10.3390/jcm9051255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
The endothelial nitric oxide synthase (eNOS) signaling pathway in endothelial cells has multiple physiological significances. It produces nitric oxide (NO), an important vasodilator, and enables a long-term proliferative response, contributing to angiogenesis. This signaling pathway is mediated by vascular endothelial growth factor (VEGF), a pro-angiogenic species that is often targeted to inhibit tumor angiogenesis. However, inhibiting VEGF-mediated eNOS signaling can lead to complications such as hypertension. Therefore, it is important to understand the dynamics of eNOS signaling in the context of angiogenesis inhibitors. Thrombospondin-1 (TSP1) is an important angiogenic inhibitor that, through interaction with its receptor CD47, has been shown to redundantly inhibit eNOS signaling. However, the exact mechanisms of TSP1's inhibitory effects on this pathway remain unclear. To address this knowledge gap, we established a molecular-detailed mechanistic model to describe VEGF-mediated eNOS signaling, and we used the model to identify the potential intracellular targets of TSP1. In addition, we applied the predictive model to investigate the effects of several approaches to selectively target eNOS signaling in cells experiencing high VEGF levels present in the tumor microenvironment. This work generates insights for pharmacologic targets and therapeutic strategies to inhibit tumor angiogenesis signaling while avoiding potential side effects in normal vasoregulation.
Collapse
Affiliation(s)
- Qianhui Wu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA;
| | - Stacey D. Finley
- Department of Biomedical Engineering, Mork Family Department of Chemical Engineering and Materials Science, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: ; Tel.: +1-213-740-8788
| |
Collapse
|
61
|
McCloskey AG, Miskelly MG, Moore CBT, Nesbit MA, Christie KA, Owolabi AI, Flatt PR, McKillop AM. CRISPR/Cas9 gene editing demonstrates metabolic importance of GPR55 in the modulation of GIP release and pancreatic beta cell function. Peptides 2020; 125:170251. [PMID: 31923454 DOI: 10.1016/j.peptides.2019.170251] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 12/28/2022]
Abstract
G-protein coupled receptor-55 (GPR55), an endocannabinoid receptor, is a novel anti-diabetic target. This study aimed to assess the metabolic functionality of GPR55 ligands using CRISPR/Cas9 gene editing to determine their regulatory role in beta cell function and incretin-secreting enteroendocrine cells. A clonal Gpr55 knockout beta cell line was generated by CRISPR/Cas9 gene editing to investigate insulin secretion and Gpr55 signalling. Acute effects of GPR55 agonists were investigated in high fat fed (HFD) diabetic HsdOla:TO (Swiss TO) mice. Atypical and endogenous endocannabinoid ligands (10-7-10-4M) stimulated insulin secretion (p < 0.05-0.001) in rodent (BRIN-BD11) and human (1.1B4) beta cells, with 2-2.7-fold (p < 0.001) increase demonstrated in BRIN-BD11 cells (10-4M). The insulinotropic effect of Abn-CBD (42 %), AM251 (30 %) and PEA (53 %) were impaired (p < 0.05) in Gpr55 knockout BRIN-BD11 cells, with the secretory effect of O-1602 completely abolished (p < 0.001). Gpr55 ablation abolished the release of intracellular Ca2+ upon treatment with O-1602, Abn-CBD and PEA. Upregulation of insulin mRNA by Abn-CBD and AM251 (1.7-3-fold; p < 0.01) was greatly diminished (p < 0.001) in Gpr55 null cells. Orally administered Abn-CBD and AM251 (0.1 μmol/kgBW) improved GIP (p < 0.05-p < 0.01), GLP-1 (p < 0.05-p < 0.001), glucose tolerance (p < 0.001) and circulating insulin (p < 0.05-p < 0.001) in HFD diabetic mice. Abn-CBD in combination therapy with DPP-IV inhibitor (Sitagliptin) resulted in greater improvement in glucose tolerance (p < 0.05) and insulin release (p < 0.05). Antagonism of Gpr55 in-vivo attenuated the glucoregulatory effects of Abn-CBD (p < 0.05). Conclusively, GPR55 agonists enhance insulin, GIP and GLP-1 release, thereby promoting GPR55 agonist monotherapy and combinational therapy as a novel approach for the treatment of type-2-diabetes.
Collapse
Affiliation(s)
- A G McCloskey
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland
| | - M G Miskelly
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland
| | - C B T Moore
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland
| | - M A Nesbit
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland
| | - K A Christie
- Center for Genomic Medicine, Massachusetts General Hospital & Harvard Medical School, 185 Cambridge St. Boston, MA 02115, USA
| | - A I Owolabi
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland
| | - P R Flatt
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland
| | - A M McKillop
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland.
| |
Collapse
|
62
|
Chen HL, Cheng JY, Yang YF, Li Y, Jiang XH, Yang L, Wu L, Shi M, Liu B, Duan J, Li X, Li QW. Phospholipase C inhibits apoptosis of porcine oocytes cultured in vitro. J Cell Biochem 2020; 121:3547-3559. [DOI: 10.1002/jcb.29636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 12/09/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Hua Li Chen
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Jian Yong Cheng
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - You Fu Yang
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Yuan Li
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Xiao Han Jiang
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Li Yang
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Lin Wu
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Meihong Shi
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Boyang Liu
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Jiaxin Duan
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Xiaoya Li
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| | - Qing Wang Li
- College of Animal Science and TechnologyNorthwest A&F UniversityYangling Shaanxi China
| |
Collapse
|
63
|
Sterea AM, El Hiani Y. The Role of Mitochondrial Calcium Signaling in the Pathophysiology of Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:747-770. [PMID: 31646533 DOI: 10.1007/978-3-030-12457-1_30] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pioneering work of Richard Altman on the presence of mitochondria in cells set in motion a field of research dedicated to uncovering the secrets of the mitochondria. Despite limitations in studying the structure and function of the mitochondria, advances in our understanding of this organelle prompted the development of potential treatments for various diseases, from neurodegenerative conditions to muscular dystrophy and cancer. As the powerhouses of the cell, the mitochondria represent the essence of cellular life and as such, a selective advantage for cancer cells. Much of the function of the mitochondria relies on Ca2+ homeostasis and the presence of effective Ca2+ signaling to maintain the balance between mitochondrial function and dysfunction and subsequently, cell survival. Ca2+ regulates the mitochondrial respiration rate which in turn increases ATP synthesis, but too much Ca2+ can also trigger the mitochondrial apoptosis pathway; however, cancer cells have evolved mechanisms to modulate mitochondrial Ca2+ influx and efflux in order to sustain their metabolic demand and ensure their survival. Therefore, targeting the mitochondrial Ca2+ signaling involved in the bioenergetic and apoptotic pathways could serve as potential approaches to treat cancer patients. This chapter will review the role of Ca2+ signaling in mediating the function of the mitochondria and its involvement in health and disease with special focus on the pathophysiology of cancer.
Collapse
Affiliation(s)
- Andra M Sterea
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Yassine El Hiani
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
64
|
Calcium Signaling and Gene Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:537-545. [DOI: 10.1007/978-3-030-12457-1_22] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
65
|
Synthesis and preclinical validation of novel P2Y1 receptor ligands as a potent anti-prostate cancer agent. Sci Rep 2019; 9:18938. [PMID: 31831761 PMCID: PMC6908675 DOI: 10.1038/s41598-019-55194-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Purinergic receptor is a potential drug target for neuropathic pain, Alzheimer disease, and prostate cancer. Focusing on the structure-based ligand discovery, docking analysis on the crystal structure of P2Y1 receptor (P2Y1R) with 923 derivatives of 1-indolinoalkyl 2-phenolic compound is performed to understand the molecular insights of the receptor. The structural model identified the top novel ligands, 426 (compound 1) and 636 (compound 2) having highest binding affinity with the docking score of -7.38 and -6.92. We have reported the interaction efficacy and the dynamics of P2Y1R protein with the ligands. The best hits synthesized were experimentally optimized as a potent P2Y1 agonists. These ligands exhibits anti-proliferative effect against the PC-3 and DU-145 cells (IC50 = 15 µM - 33 µM) with significant increase in the calcium level in dose- and time-dependent manner. Moreover, the activation of P2Y1R induced the apoptosis via Capase3/7 and ROS signaling pathway. Thus it is evidenced that the newly synthesized ligands, as a P2Y1R agonists could potentially act as a therapeutic drug for treating prostate cancer.
Collapse
|
66
|
Hoober JK, Eggink LL, Cote R. Stories From the Dendritic Cell Guardhouse. Front Immunol 2019; 10:2880. [PMID: 31921144 PMCID: PMC6919295 DOI: 10.3389/fimmu.2019.02880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
Phagocytic cells [dendritic cells (DCs), macrophages, monocytes, neutrophils, and mast cells] utilize C-type (Ca2+-dependent) lectin-like (CLEC) receptors to identify and internalize pathogens or danger signals. As monitors of environmental imbalances, CLEC receptors are particularly important in the function of DCs. Activation of the immune system requires, in sequence, presentation of antigen to the T cell receptor (TCR) by DCs, interaction of co-stimulatory factors such as CD40/80/86 on DCs with CD40L and CD28 on T cells, and production of IL-12 and/or IFN-α/β to amplify T cell differentiation and expansion. Without this sequence of events within an inflammatory environment, or in a different order, antigen-specific T cells become unresponsive, are deleted or become regulatory T cells. Thus, the mode by which CLEC receptors on DCs are engaged can either elicit activation of T cells to achieve an immune response or induce tolerance. This minireview illustrates these aspects with Dectin-1, DEC205, the mannose receptor and CLEC10A as examples.
Collapse
Affiliation(s)
| | | | - Robert Cote
- Susavion Biosciences, Inc., Tempe, AZ, United States
| |
Collapse
|
67
|
Ijomone OM, Aluko OM, Okoh COA, Martins AC, Aschner M. Role for calcium signaling in manganese neurotoxicity. J Trace Elem Med Biol 2019; 56:146-155. [PMID: 31470248 DOI: 10.1016/j.jtemb.2019.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Calcium is an essential macronutrient that is involved in many cellular processes. Homeostatic control of intracellular levels of calcium ions [Ca2+] is vital to maintaining cellular structure and function. Several signaling molecules are involved in regulating Ca2+ levels in cells and perturbation of calcium signaling processes is implicated in several neurodegenerative and neurologic conditions. Manganese [Mn] is a metal which is essential for basic physiological functions. However, overexposure to Mn from environmental contamination and workplace hazards is a global concern. Mn overexposure leads to its accumulation in several human organs particularly the brain. Mn accumulation in the brain results in a manganism, a Parkinsonian-like syndrome. Additionally, Mn is a risk factor for several neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. Mn neurotoxicity also affects several neurotransmitter systems including dopaminergic, cholinergic and GABAergic. The mechanisms of Mn neurotoxicity are still being elucidated. AIM The review will highlight a potential role for calcium signaling molecules in the mechanisms of Mn neurotoxicity. CONCLUSION Ca2+ regulation influences the neurodegenerative process and there is possible role for perturbed calcium signaling in Mn neurotoxicity. Mechanisms implicated in Mn-induced neurodegeneration include oxidative stress, generation of free radicals, and apoptosis. These are influenced by mitochondrial integrity which can be dependent on intracellular Ca2+ homeostasis. Nevertheless, further elucidation of the direct effects of calcium signaling dysfunction and calcium-binding proteins activities in Mn neurotoxicity is required.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro- Lab, Department of Human Anatomy, Federal University of Technology Akure, Ondo, Nigeria.
| | - Oritoke M Aluko
- Department of Physiology, Federal University of Technology Akure, Ondo, Nigeria
| | - Comfort O A Okoh
- The Neuro- Lab, Department of Human Anatomy, Federal University of Technology Akure, Ondo, Nigeria
| | - Airton Cunha Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
68
|
Wu Y, Chang YM, Stell AJ, Priestnall SL, Sharma E, Goulart MR, Gribben J, Xia D, Garden OA. Phenotypic characterisation of regulatory T cells in dogs reveals signature transcripts conserved in humans and mice. Sci Rep 2019; 9:13478. [PMID: 31530890 PMCID: PMC6748983 DOI: 10.1038/s41598-019-50065-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are a double-edged regulator of the immune system. Aberrations of Tregs correlate with pathogenesis of inflammatory, autoimmune and neoplastic disorders. Phenotypically and functionally distinct subsets of Tregs have been identified in humans and mice on the basis of their extensive portfolios of monoclonal antibodies (mAb) against Treg surface antigens. As an important veterinary species, dogs are increasingly recognised as an excellent model for many human diseases. However, insightful study of canine Tregs has been restrained by the limited availability of mAb. We therefore set out to characterise CD4+CD25high T cells isolated ex vivo from healthy dogs and showed that they possess a regulatory phenotype, function, and transcriptomic signature that resembles those of human and murine Tregs. By launching a cross-species comparison, we unveiled a conserved transcriptomic signature of Tregs and identified that transcript hip1 may have implications in Treg function.
Collapse
Affiliation(s)
- Ying Wu
- Royal Veterinary College, London, UK
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Michelle R Goulart
- Royal Veterinary College, London, UK
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - John Gribben
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Dong Xia
- Royal Veterinary College, London, UK
| | - Oliver A Garden
- Royal Veterinary College, London, UK.
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
69
|
Filippini A, D'Amore A, D'Alessio A. Calcium Mobilization in Endothelial Cell Functions. Int J Mol Sci 2019; 20:ijms20184525. [PMID: 31547344 PMCID: PMC6769945 DOI: 10.3390/ijms20184525] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelial cells (ECs) constitute the innermost layer that lines all blood vessels from the larger arteries and veins to the smallest capillaries, including the lymphatic vessels. Despite the histological classification of endothelium of a simple epithelium and its homogeneous morphological appearance throughout the vascular system, ECs, instead, are extremely heterogeneous both structurally and functionally. The different arrangement of cell junctions between ECs and the local organization of the basal membrane generate different type of endothelium with different permeability features and functions. Continuous, fenestrated and discontinuous endothelia are distributed based on the specific function carried out by the organs. It is thought that a large number ECs functions and their responses to extracellular cues depend on changes in intracellular concentrations of calcium ion ([Ca2+]i). The extremely complex calcium machinery includes plasma membrane bound channels as well as intracellular receptors distributed in distinct cytosolic compartments that act jointly to maintain a physiological [Ca2+]i, which is crucial for triggering many cellular mechanisms. Here, we first survey the overall notions related to intracellular Ca2+ mobilization and later highlight the involvement of this second messenger in crucial ECs functions with the aim at stimulating further investigation that link Ca2+ mobilization to ECs in health and disease.
Collapse
Affiliation(s)
- Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Antonella D'Amore
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Alessio D'Alessio
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "Agostino Gemelli", IRCCS, 00168 Rome, Italy.
| |
Collapse
|
70
|
Nam O, Park JM, Lee H, Jin E. De novo transcriptome profile of coccolithophorid alga Emiliania huxleyi CCMP371 at different calcium concentrations with proteome analysis. PLoS One 2019; 14:e0221938. [PMID: 31465514 PMCID: PMC6715215 DOI: 10.1371/journal.pone.0221938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
The haptophyte alga Emiliania huxleyi is the most abundant coccolithophore in the modern ocean and produces elaborate calcite crystals, called coccolith, in a separate intracellular compartment known as the coccolith vesicle. Despite the importance of biomineralization in coccolithophores, the molecular mechanism underlying it remains unclear. Understanding this precise machinery at the molecular level will provide the knowledge needed to enable further manipulation of biomineralization. In our previous study, altering the calcium concentration modified the calcifying ability of E. huxleyi CCMP371. Therefore in this study, we tested E. huxleyi cells acclimated to three different calcium concentrations (0, 0.1, and 10 mM). To understand the whole transcript profile at different calcium concentrations, RNA-sequencing was performed and used for de novo assembly and annotation. The differentially expressed genes (DEGs) among the three different calcium concentrations were analyzed. The functional classification by gene ontology (GO) revealed that 'intrinsic component of membrane' was the most enriched of the GO terms at the ambient calcium concentration (10 mM) compared with the limited calcium concentrations (0 and 0.1 mM). Moreover, the DEGs in those comparisons were enriched mainly in 'secondary metabolites biosynthesis, transport and catabolism' and 'signal transduction mechanisms' in the KOG clusters and 'processing in endoplasmic reticulum', and 'ABC transporters' in the KEGG pathways. Furthermore, metabolic pathways involved in protein synthesis were enriched among the differentially expressed proteins. The results of this study provide a molecular profile for understanding the expression of transcripts and proteins in E. huxleyi at different calcium concentrations, which will help to identify the detailed mechanism of its calcification.
Collapse
Affiliation(s)
- Onyou Nam
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Jong-Moon Park
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hookeun Lee
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
71
|
Building a synthetic mechanosensitive signaling pathway in compartmentalized artificial cells. Proc Natl Acad Sci U S A 2019; 116:16711-16716. [PMID: 31371493 DOI: 10.1073/pnas.1903500116] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To date, reconstitution of one of the fundamental methods of cell communication, the signaling pathway, has been unaddressed in the bottom-up construction of artificial cells (ACs). Such developments are needed to increase the functionality and biomimicry of ACs, accelerating their translation and application in biotechnology. Here, we report the construction of a de novo synthetic signaling pathway in microscale nested vesicles. Vesicle-cell models respond to external calcium signals through activation of an intracellular interaction between phospholipase A2 and a mechanosensitive channel present in the internal membranes, triggering content mixing between compartments and controlling cell fluorescence. Emulsion-based approaches to AC construction are therefore shown to be ideal for the quick design and testing of new signaling networks and can readily include synthetic molecules difficult to introduce to biological cells. This work represents a foundation for the engineering of multicompartment-spanning designer pathways that can be utilized to control downstream events inside an AC, leading to the assembly of micromachines capable of sensing and responding to changes in their local environment.
Collapse
|
72
|
Péterfi O, Boda F, Szabó Z, Ferencz E, Bába L. Hypotensive Snake Venom Components-A Mini-Review. Molecules 2019; 24:E2778. [PMID: 31370142 PMCID: PMC6695636 DOI: 10.3390/molecules24152778] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Hypertension is considered a major public health issue due to its high prevalence and subsequent risk of cardiovascular and kidney diseases. Thus, the search for new antihypertensive compounds remains of great interest. Snake venoms provide an abundant source of lead molecules that affect the cardiovascular system, which makes them prominent from a pharmaceutical perspective. Such snake venom components include bradykinin potentiating peptides (proline-rich oligopeptides), natriuretic peptides, phospholipases A2, serine-proteases and vascular endothelial growth factors. Some heparin binding hypotensive factors, three-finger toxins and 5' nucleotidases can also exert blood pressure lowering activity. Great advances have been made during the last decade regarding the understanding of the mechanism of action of these hypotensive proteins. Bradykinin potentiating peptides exert their action primarily by inhibiting the angiotensin-converting enzyme and increasing the effect of endogenous bradykinin. Snake venom phospholipases A2 are capable of reducing blood pressure through the production of arachidonic acid, a precursor of cyclooxygenase metabolites (prostaglandins or prostacyclin). Other snake venom proteins mimic the effects of endogenous kallikrein, natriuretic peptides or vascular endothelial growth factors. The aim of this work was to review the current state of knowledge regarding snake venom components with potential antihypertensive activity and their mechanisms of action.
Collapse
Affiliation(s)
- Orsolya Péterfi
- Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania
| | - Francisc Boda
- Department of Fundamental Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania.
| | - Zoltán Szabó
- Department of Specialty Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania
| | - Elek Ferencz
- Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania
| | - László Bába
- Department of Specialty Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania
| |
Collapse
|
73
|
Mwakalukwa R, Ashour A, Amen Y, Niwa Y, Tamrakar S, Miyamoto T, Shimizu K. Anti-allergic activity of polyphenolic compounds isolated from olive mill wastes. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
74
|
Saul S, Castelbou C, Fickentscher C, Demaurex N. Signaling and functional competency of neutrophils derived from bone-marrow cells expressing the ER-HOXB8 oncoprotein. J Leukoc Biol 2019; 106:1101-1115. [PMID: 31216372 DOI: 10.1002/jlb.2a0818-314r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 05/23/2019] [Accepted: 06/08/2019] [Indexed: 12/26/2022] Open
Abstract
Neutrophils play a central role in immunity and inflammation via their intrinsic ability to migrate into inflamed tissue, to phagocytose pathogens, and to kill bacterial and fungi by releasing large quantities of superoxide anions and lytic enzymes. The molecular pathways controlling neutrophil microbicidal functions are still unclear, because neutrophils have a short half-life and are resistant to genetic manipulation. Neutrophil-like cells (NLC) can be generated from myeloid progenitors conditionally immortalized with the ER-HoxB8 oncoprotein, but whether these cells can replace neutrophils in high-throughput functional assays is unclear. Here, we assess the ability of NLC derived from ER-HoxB8 progenitors to produce ROS and to perform chemotaxis and phagocytosis. We compare the Ca2+ responses and effector functions of NLC to primary murine neutrophils and document the molecular basis of their functional differences by mRNA profiling. Pro-inflammatory cytokines enhanced the expression by NLC of neutrophil surface markers and transcription factors. Ca2+ elevations evoked in NLC by agonists, adhesion receptors, and store depletion resembled the physiological responses recorded in primary neutrophils, but NLC expressed reduced amounts of Ca2+ signaling proteins and of chemotactic receptors. Unlike their myeloid progenitors, NLC produced H2 O2 when adhered to fibronectin, migrated toward chemotactic peptides, phagocytosed opsonized particles, and generated intracellular ROS. NLC phagocytosed as efficiently as primary neutrophils but produced 50 times less ROS and migrated less efficiently toward chemoattractant. Our data indicate that NLC can replace neutrophils to study Ca2+ signaling and phagocytosis, but that their incomplete granulocytic differentiation limits their use for chemotaxis and ROS production assays.
Collapse
Affiliation(s)
- Stephanie Saul
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Cyril Castelbou
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Céline Fickentscher
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
75
|
Rodríguez-Gil JE. Photostimulation and thermotaxis of sperm: Overview and practical implications in porcine reproduction. Theriogenology 2019; 137:8-14. [PMID: 31266655 DOI: 10.1016/j.theriogenology.2019.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The journey of mammalian sperm through the female genital tract requires the existence of a myriad of mechanisms that allow cells to reach the oviduct in a timely manner from the place of semen deposition. Several biochemical mechanisms such as signaling through molecules like bicarbonate, neurotransmitters or even glycosaminoglycanes are known and have been studied by several relevant groups worldwide. However, biophysical mechanisms for sperm transport are much less studied and understood. Thermotaxis, for example, is a powerful, physical signaling system that is known to direct sperm inside the female genital tract, although the intimate mechanisms by which this effect is launched are yet to be elucidated. This review is focuses on the analysis of thermotaxis and its possible relationship with another phenomenon that has been observed in sperm from a variety of species, namely photostimulation. An overall review on sperm thermotaxis and putative mechanism/s that can be involved in this phenomenon is developed, followed by a description of the most recent findings on the mechanisms underlying sperm photostimulation, highlighting its possible relationship with thermotactic mechanisms. Finally, an overview regarding some practical implications of the phototactic/thermotactic phenomenon has been included in order to evaluate the possible use of techniques based on these phenomena as tools for improving pig reproduction.
Collapse
Affiliation(s)
- Joan E Rodríguez-Gil
- Dept. Animal Medicine and Surgery, School of Veterinary Medicine, Autonomous University of Barcelona, E-08193, Bellaterra (Cerdanyola del Vallès), Spain.
| |
Collapse
|
76
|
A Monoallelic Two-Hit Mechanism in PLCD1 Explains the Genetic Pathogenesis of Hereditary Trichilemmal Cyst Formation. J Invest Dermatol 2019; 139:2154-2163.e5. [PMID: 31082376 DOI: 10.1016/j.jid.2019.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 01/25/2023]
Abstract
Trichilemmal cysts are common hair follicle-derived intradermal cysts. The trait shows an autosomal dominant mode of transmission with incomplete penetrance. Here, we describe the pathogenetic mechanism for the development of hereditary trichilemmal cysts. By whole-exome sequencing of DNA from the blood samples of 5 affected individuals and subsequent Sanger sequencing of a family cohort including 35 affected individuals, this study identified a combination of the Phospholipase C Delta 1 germline variants c.903A>G, p.(Pro301Pro) and c.1379C>T, p.(Ser460Leu) as a high-risk factor for trichilemmal cyst development. Allele-specific PCRs and cloning experiments showed that these two variants are present on the same allele. The analysis of tissue from several cysts revealed that an additional somatic Phospholipase C Delta 1 mutation on the same allele is required for cyst formation. In two different functional in vitro assays, this study showed that the protein function of the cyst-specific 1-phosphatidylinositol 4, 5-bisphosphate phosphodiesterase delta-1 protein variant is modified. This pathologic mechanism defines a monoallelic model of the two-hit mechanism proposed for tumor development and other hereditary cyst diseases.
Collapse
|
77
|
Zhou DR, Eid R, Miller KA, Boucher E, Mandato CA, Greenwood MT. Intracellular second messengers mediate stress inducible hormesis and Programmed Cell Death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:773-792. [DOI: 10.1016/j.bbamcr.2019.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
|
78
|
Arya AK, Bhadada SK, Singh P, Dahiya D, Kaur G, Sharma S, Saikia UN, Behera A, Rao SD, Bhasin M. Quantitative proteomics analysis of sporadic parathyroid adenoma tissue samples. J Endocrinol Invest 2019; 42:577-590. [PMID: 30284223 DOI: 10.1007/s40618-018-0958-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/19/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Molecular pathogenesis of parathyroid tumors is incompletely understood. Identification of novel molecules and understanding their role in parathyroid tumorigenesis by proteomics approach would be informative with potential clinical implications. METHOD Adenomatous (n = 5) and normal (n = 2) parathyroid tissue lysates were analyzed for protein profile by LC-MS/MS method and the proteins were classified using bioinformatics tools such as PANTHER and toppfun functional enrichment tool. Identified proteins were further validated by western blotting and qRT-PCR (n = 20). RESULT Comparative proteomics analysis revealed that a total of 206 proteins (74 upregulated and 132 downregulated) were differentially expressed (≥ twofold change) in adenomas. Bioinformatics analysis revealed that 48 proteins were associated with plasma membrane, 49 with macromolecular complex, 39 were cytoplasm, 38 were organelle related, 21 were cell junction and 10 were extracellular proteins. These proteins belonged to a diverse protein family such as enzymes, transcription factors, cell signalling, cell adhesion, cytoskeleton proteins, receptors, and calcium-binding proteins. The major biological processes predicted for the proteins were a cellular, metabolic and developmental process, cellular localization, and biological regulation. The differentially expressed proteins were found to be associated with MAPK, phospholipase C (PLC) and phosphatidylinositol (PI) signalling pathways, and with chromatin organization. Western blot and qRT-PCR analysis of three proteins (DNAJC2, ACO2, and PRDX2) validated the LC-MS/MS findings. CONCLUSION This exploratory study demonstrates the feasibility of proteomics approach in finding the dysregulated proteins in benign parathyroid adenomas, and our preliminary results suggest that MAPK, PLC and PI signalling pathways and chromatin organization are involved in parathyroid tumorigenesis.
Collapse
Affiliation(s)
- A K Arya
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Room No. 2, 4th Floor Block-F, Nehru Hospital, PGIMER, Chandigarh, 160012, India
| | - S K Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Room No. 2, 4th Floor Block-F, Nehru Hospital, PGIMER, Chandigarh, 160012, India.
| | - P Singh
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Room No. 2, 4th Floor Block-F, Nehru Hospital, PGIMER, Chandigarh, 160012, India
| | - D Dahiya
- Department of General Surgery, PGIMER, Chandigarh, India
| | - G Kaur
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Room No. 2, 4th Floor Block-F, Nehru Hospital, PGIMER, Chandigarh, 160012, India
| | - S Sharma
- Department of Biochemistry, PGIMER, Chandigarh, India
| | - U N Saikia
- Department of Histopathology, PGIMER, Chandigarh, India
| | - A Behera
- Department of General Surgery, PGIMER, Chandigarh, India
| | - S D Rao
- Bone and Mineral Research Laboratory, Henry Ford Hospital, Detroit, USA
| | - M Bhasin
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
79
|
Rawangwong A, Pidsaya A, Thoungseabyoun W, Tachow A, Sawatpanich T, Sakaew W, Yamasaki M, Watanabe M, Kondo H, Hipkaeo W. Localization of phospholipase C β3 in the major salivary glands of adult mice. Acta Histochem 2019; 121:484-490. [PMID: 31003695 DOI: 10.1016/j.acthis.2019.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 01/24/2023]
Abstract
Phospholipase C (PLC)β has a role in saliva secretion by controlling intracellular Ca2+via its product, IP3. The present study was attempted to localize PLCβ isoforms in mouse salivary glands in situ. A single major band was detected for PLCβ3 in immunoblots of the parotid and sublingual glands (PG, SLG), while no such band was seen in the submandibular gland (SMG). No bands were detected for PLCβ1 or 4 in the three glands. In immuno-light microscopy of PG and SLG, substantial immunoreactivity for PLCβ3 was seen in the cytoplasm including the plasmalemma of almost all ductal cells, while no distinct immunoreactivity was discerned in most acinar cells except for sublingual demilune cells. Numerous ductal cells exhibited higher immunoreactivity for PLCβ3 in their apical/supranuclear cell domain including the plasmalemma than in the basal/infranuclear domain, indicating an apico-basal polarity. In immuno-gold electron microscopy of PG ducts and SLG ducts and demilunes, most gold particles were found in association with plasma membranes as well as various intracellular membranes, most of which formed small oblong or flattened vesicles and vacuoles. A few particles were seen without association with any membranous structures. The present finding supports the previous physio-pharmacological result that Ca2+-signaling proteins as well as initial intracellular Ca2+ changes occur in the apical cell domain including the plasma membranes of the exocrine cells.
Collapse
|
80
|
Zou ZG, Rios FJ, Montezano AC, Touyz RM. TRPM7, Magnesium, and Signaling. Int J Mol Sci 2019; 20:E1877. [PMID: 30995736 PMCID: PMC6515203 DOI: 10.3390/ijms20081877] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed chanzyme that possesses an ion channel permeable to the divalent cations Mg2+, Ca2+, and Zn2+, and an α-kinase that phosphorylates downstream substrates. TRPM7 and its homologue TRPM6 have been implicated in a variety of cellular functions and is critically associated with intracellular signaling, including receptor tyrosine kinase (RTK)-mediated pathways. Emerging evidence indicates that growth factors, such as EGF and VEGF, signal through their RTKs, which regulate activity of TRPM6 and TRPM7. TRPM6 is primarily an epithelial-associated channel, while TRPM7 is more ubiquitous. In this review we focus on TRPM7 and its association with growth factors, RTKs, and downstream kinase signaling. We also highlight how interplay between TRPM7, Mg2+ and signaling kinases influences cell function in physiological and pathological conditions, such as cancer and preeclampsia.
Collapse
Affiliation(s)
- Zhi-Guo Zou
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
81
|
Chamoun M, Jacques D, Bkaily G. Extracellular and intracellular tumor necrosis factor alpha modulates cytosolic and nuclear calcium in human cardiovascular cells 1. Can J Physiol Pharmacol 2019; 97:820-828. [PMID: 30897335 DOI: 10.1139/cjpp-2019-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tumor necrosis factor alpha (TNFα) and its type 1 receptor (TNFR1) are implicated in several autoimmune diseases, including rheumatoid arthritis, and are associated with complications at the cardiovascular level. Using human cardiomyocytes, vascular smooth muscle, vascular endothelial, and endocardial endothelial cells coupled to indirect immunofluorescence, our results showed the presence of TNFR1 at the levels of the plasma membrane (including the cytosol) and mostly at the level of the nuclear membranes (including the nucleoplasm). The distribution of the receptor is different between cell types; however, the density is significantly higher at the nuclear level in all 4 cell types. The density of the receptor was the highest in contractile cells including the cardiomyocytes and vascular smooth muscle cells, compared with endothelial cells including endocardial endothelial and vascular endothelial cells. Using the Ca2+ probe Fluo-3 coupled to quantitative confocal microscopy, our results showed that the cytokine induced a sustained Ca2+ increase in both the cytosol and nucleoplasm of all 4 cell types. This increase was more significant at the nuclear level, mainly in endothelial cells. Our results demonstrated the presence of TNFR1 at both the cell and nuclear membranes of cardiovascular cells, and that its activation modulated both cytosolic and nuclear Ca2+.
Collapse
Affiliation(s)
- Marc Chamoun
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Danielle Jacques
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Ghassan Bkaily
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
82
|
Abstract
Cancer metastasis is the second leading cause of death in the United States. Despite its morbidity, metastasis is an inefficient process that few cells can survive. However, cancer cells can overcome these metastatic barriers via cellular responses to microenvironmental cues, such as through mechanotransduction. This review focuses on the mechanosensitive ion channels TRPV4 and P2X7, and their roles in metastasis, as both channels have been shown to significantly affect tumor cell dissemination. Upon activation, these channels help form tumor neovasculature, promote transendothelial migration, and increase cell motility. Conversely, they have also been linked to forms of cancer cell death dependent upon levels of activation, implying the complex functionality of mechanosensitive ion channels. Understanding the roles of TRPV4, P2X7 and other mechanosensitive ion channels in these processes may reveal new possible drug targets that modify channel function to reduce a tumor's metastatic potential.
Collapse
|
83
|
Semyanov A. Spatiotemporal pattern of calcium activity in astrocytic network. Cell Calcium 2019; 78:15-25. [DOI: 10.1016/j.ceca.2018.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/16/2018] [Accepted: 12/16/2018] [Indexed: 12/22/2022]
|
84
|
Lipid transporter TMEM24/C2CD2L is a Ca 2+-regulated component of ER-plasma membrane contacts in mammalian neurons. Proc Natl Acad Sci U S A 2019; 116:5775-5784. [PMID: 30819882 DOI: 10.1073/pnas.1820156116] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Close appositions between the endoplasmic reticulum (ER) and the plasma membrane (PM) are a general feature of all cells and are abundant in neurons. A function of these appositions is lipid transport between the two adjacent bilayers via tethering proteins that also contain lipid transport modules. However, little is known about the properties and dynamics of these proteins in neurons. Here we focused on TMEM24/C2CD2L, an ER-localized SMP domain containing phospholipid transporter expressed at high levels in the brain, previously shown to be a component of ER-PM contacts in pancreatic β-cells. TMEM24 is enriched in neurons versus glial cells and its levels increase in parallel with neuronal differentiation. It populates ER-PM contacts in resting neurons, but elevations of cytosolic Ca2+ mediated by experimental manipulations or spontaneous activity induce its transient redistribution throughout the entire ER. Dissociation of TMEM24 from the plasma membrane is mediated by phosphorylation of an array of sites in the C-terminal region of the protein. These sites are only partially conserved in C2CD2, the paralogue of TMEM24 primarily expressed in nonneuronal tissues, which correspondingly display a much lower sensitivity to Ca2+ elevations. ER-PM contacts in neurons are also sites where Kv2 (the major delayed rectifier K+ channels in brain) and other PM and ER ion channels are concentrated, raising the possibility of a regulatory feedback mechanism between neuronal excitability and lipid exchange between the ER and the PM.
Collapse
|
85
|
Calcium Imaging of Store-Operated Calcium (Ca 2+) Entry (SOCE) in HEK293 Cells Using Fura-2. Methods Mol Biol 2019; 1925:163-172. [PMID: 30674026 DOI: 10.1007/978-1-4939-9018-4_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The store-operated calcium (Ca2+) entry (SOCE) pathway is an essential Ca2+ signaling pathway in non-excitable cells that serve many physiological functions. SOCE is mediated through the plasma membrane (PM) protein, Orai1, and the endoplasmic reticulum protein, stromal interaction molecule 1 (STIM1). One of the most well-established methods to study SOCE is using the Ca2+-sensing dye, fura-2. Here we describe a detailed protocol on how to use fura-2 to study Ca2+ signaling from SOCE in human embryonic kidney (HEK) cells.
Collapse
|
86
|
Organic chemicals from diesel exhaust particles affects intracellular calcium, inflammation and β-adrenoceptors in endothelial cells. Toxicol Lett 2018; 302:18-27. [PMID: 30503853 DOI: 10.1016/j.toxlet.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/14/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022]
Abstract
Exposure to diesel exhaust particles (DEP) may contribute to endothelial dysfunction and cardiovascular disease. DEP, extractable organic material from DEP (DEP-EOM) and certain PAHs seem to trigger [Ca2+]i increase as well as inflammation via GPCRs like βARs and PAR-2. In the present study we explored the involvement of βARs and PAR-2 in effects of DEP-EOM on [Ca2+]i and expression of inflammation-associated genes in the endothelial cell-line HMEC-1. We exposed the human microvascular endothelial cell line HMEC-1 to DEP-EOM fractionated by sequential extraction with solvents of increasing polarity: n-hexane (n-Hex-EOM), dichloromethane (DCM-EOM), methanol (Methanol-EOM) and water (Water-EOM). While Methanol-EOM and Water-EOM had no marked effects, n-Hex-EOM and DCM-EOM enhanced [Ca2+]i (2-3 times baseline) and expression of inflammation-associated genes (IL-1α, IL-1β, COX-2 and CXCL8; 2-15 times baseline) in HMEC-1. The expression of βARs (60-80% of baseline) and βAR-inhibitor carazolol suppressed the increase in [Ca2+]i induced by both n-Hex- and DCM-EOM. Carazolol as well as the Ca2+-channel inhibitor SKF-96365 reduced the DCM-EOM-induced pro-inflammatory gene-expression. Overexpression of βARs increased DCM-EOM-induced [Ca2+]i responses in HEK293 cells, while βAR-overexpression suppressed [Ca2+]i responses from n-Hex-EOM. Furthermore, the PAR-2-inhibitor ENMD-1068 attenuated [Ca2+]i responses to DCM-EOM, but not n-Hex-EOM in HMEC-1. The results suggest that βAR and PAR-2 are partially involved in effects of complex mixtures of chemicals extracted from DEP on calcium signalling and inflammation-associated genes in the HMEC-1 endothelial cell-line.
Collapse
|
87
|
Paroha R, Chaurasiya SK, Chourasia R. Phospholipase C‐γ2 promotes intracellular survival of mycobacteria. J Cell Biochem 2018; 120:5062-5071. [DOI: 10.1002/jcb.27783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Ruchi Paroha
- Host‐Pathogen Interaction and Signal Transduction Laboratory, Department of Microbiology, School of Biological Sciences, Dr. Hari Singh Gour University Sagar India
| | - Shivendra K. Chaurasiya
- Host‐Pathogen Interaction and Signal Transduction Laboratory, Department of Microbiology, School of Biological Sciences, Dr. Hari Singh Gour University Sagar India
| | - Rashmi Chourasia
- Department of Chemistry, School of Chemical Sciences, Dr. Hari Singh Gour University Sagar India
| |
Collapse
|
88
|
Endocannabinoid and nitric oxide systems of the hypothalamic paraventricular nucleus mediate effects of NPY on energy expenditure. Mol Metab 2018; 18:120-133. [PMID: 30274714 PMCID: PMC6308028 DOI: 10.1016/j.molmet.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 12/27/2022] Open
Abstract
Objective Neuropeptide Y (NPY) is one of the most potent orexigenic peptides. The hypothalamic paraventricular nucleus (PVN) is a major locus where NPY exerts its effects on energy homeostasis. We investigated how NPY exerts its effect within the PVN. Methods Patch clamp electrophysiology and Ca2+ imaging were used to understand the involvement of Ca2+ signaling and retrograde transmitter systems in the mediation of NPY induced effects in the PVN. Immuno-electron microscopy were performed to elucidate the subcellular localization of the elements of nitric oxide (NO) system in the parvocellular PVN. In vivo metabolic profiling was performed to understand the role of the endocannabinoid and NO systems of the PVN in the mediation of NPY induced changes of energy homeostasis. Results We demonstrated that NPY inhibits synaptic inputs of parvocellular neurons in the PVN by activating endocannabinoid and NO retrograde transmitter systems via mobilization of Ca2+ from the endoplasmic reticulum, suggesting that NPY gates the synaptic inputs of parvocellular neurons in the PVN to prevent the influence of non-feeding-related inputs. While intraPVN administered NPY regulates food intake and locomotor activity via NO signaling, the endocannabinoid system of the PVN selectively mediates NPY-induced decrease in energy expenditure. Conclusion Thus, within the PVN, NPY stimulates the release of endocannabinoids and NO via Ca2+-influx from the endoplasmic reticulum. Both transmitter systems appear to have unique roles in the mediation of the NPY-induced regulation of energy homeostasis, suggesting that NPY regulates food intake, energy expenditure, and locomotor activity through different neuronal networks of this nucleus. NPY increases the intracellular Ca2+ level of PVN neurons by mobilizing the Ca2+ from ER. NPY inhibits the input of these neurons by endocannabinoids and NO. IntraPVN administered NPY regulates food intake and locomotor activity via NO signaling. IntraPVN administered NPY regulates energy expenditure via the endocannabinoid system. NPY regulates the energy expenditure and food intake via different neuronal networks of the PVN.
Collapse
|
89
|
Zuccolo E, Laforenza U, Negri S, Botta L, Berra-Romani R, Faris P, Scarpellino G, Forcaia G, Pellavio G, Sancini G, Moccia F. Muscarinic M5 receptors trigger acetylcholine-induced Ca 2+ signals and nitric oxide release in human brain microvascular endothelial cells. J Cell Physiol 2018; 234:4540-4562. [PMID: 30191989 DOI: 10.1002/jcp.27234] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Abstract
Basal forebrain neurons control cerebral blood flow (CBF) by releasing acetylcholine (Ach), which binds to endothelial muscarinic receptors to induce nitric (NO) release and vasodilation in intraparenchymal arterioles. Nevertheless, the mechanism whereby Ach stimulates human brain microvascular endothelial cells to produce NO is still unknown. Herein, we sought to assess whether Ach stimulates NO production in a Ca2+ -dependent manner in hCMEC/D3 cells, a widespread model of human brain microvascular endothelial cells. Ach induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+ ]i ) that was prevented by the genetic blockade of M5 muscarinic receptors (M5-mAchRs), which was the only mAchR isoform coupled to phospholipase Cβ (PLCβ) present in hCMEC/D3 cells. A comprehensive real-time polymerase chain reaction analysis revealed the expression of the transcripts encoding for type 3 inositol-1,4,5-trisphosphate receptors (InsP3 R3), two-pore channels 1 and 2 (TPC1-2), Stim2, Orai1-3. Pharmacological manipulation showed that the Ca2+ response to Ach was mediated by InsP3 R3, TPC1-2, and store-operated Ca2+ entry (SOCE). Ach-induced NO release, in turn, was inhibited in cells deficient of M5-mAchRs. Likewise, Ach failed to increase NO levels in the presence of l-NAME, a selective NOS inhibitor, or BAPTA, a membrane-permeant intracellular Ca2+ buffer. Moreover, the pharmacological blockade of the Ca2+ response to Ach also inhibited the accompanying NO production. These data demonstrate for the first time that synaptically released Ach may trigger NO release in human brain microvascular endothelial cells by stimulating a Ca2+ signal via M5-mAchRs.
Collapse
Affiliation(s)
- Estella Zuccolo
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, Pavia, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Laura Botta
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Pawan Faris
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy.,Department of Biology, College of Science, Salahaddin University, Erbil, Iraq
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Greta Forcaia
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Giorgia Pellavio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, Pavia, Italy
| | - Giulio Sancini
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| |
Collapse
|
90
|
Trebak M, Putney JW. ORAI Calcium Channels. Physiology (Bethesda) 2018; 32:332-342. [PMID: 28615316 DOI: 10.1152/physiol.00011.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/17/2022] Open
Abstract
In this review article, we discuss the different gene products and translational variants of ORAI proteins and their contribution to the makeup of different native calcium-conducting channels with distinct compositions and modes of activation. We also review the different modes of regulation of these distinct calcium channels and their impact on downstream cellular signaling controlling important physiological functions.
Collapse
Affiliation(s)
- Mohamed Trebak
- The Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | - James W Putney
- The National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
91
|
Abstract
Lam and Chesler highlight the recent discovery of a G protein–coupled receptor involved in detecting mechanical shear stress.
Collapse
Affiliation(s)
- Ruby M Lam
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD.,Brown-National Institutes of Health Graduate Partnerships Program, Brown University, Providence, RI
| | - Alexander T Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD
| |
Collapse
|
92
|
Brinchmann BC, Le Ferrec E, Podechard N, Lagadic-Gossmann D, Shoji KF, Penna A, Kukowski K, Kubátová A, Holme JA, Øvrevik J. Lipophilic Chemicals from Diesel Exhaust Particles Trigger Calcium Response in Human Endothelial Cells via Aryl Hydrocarbon Receptor Non-Genomic Signalling. Int J Mol Sci 2018; 19:E1429. [PMID: 29748474 PMCID: PMC5983734 DOI: 10.3390/ijms19051429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022] Open
Abstract
Exposure to diesel exhaust particles (DEPs) affects endothelial function and may contribute to the development of atherosclerosis and vasomotor dysfunction. As intracellular calcium concentration [Ca2+]i is considered important in myoendothelial signalling, we explored the effects of extractable organic matter from DEPs (DEP-EOM) on [Ca2+]i and membrane microstructure in endothelial cells. DEP-EOM of increasing polarity was obtained by pressurized sequential extraction of DEPs with n-hexane (n-Hex-EOM), dichloromethane (DCM-EOM), methanol, and water. Chemical analysis revealed that the majority of organic matter was extracted by the n-Hex- and DCM-EOM, with polycyclic aromatic hydrocarbons primarily occurring in n-Hex-EOM. The concentration of calcium was measured in human microvascular endothelial cells (HMEC-1) using micro-spectrofluorometry. The lipophilic n-Hex-EOM and DCM-EOM, but not the more polar methanol- and water-soluble extracts, induced rapid [Ca2+]i increases in HMEC-1. n-Hex-EOM triggered [Ca2+]i increase from intracellular stores, followed by extracellular calcium influx consistent with store operated calcium entry (SOCE). By contrast, the less lipophilic DCM-EOM triggered [Ca2+]i increase via extracellular influx alone, resembling receptor operated calcium entry (ROCE). Both extracts increased [Ca2+]i via aryl hydrocarbon receptor (AhR) non-genomic signalling, verified by pharmacological inhibition and RNA-interference. Moreover, DCM-EOM appeared to induce an AhR-dependent reduction in the global plasma membrane order, as visualized by confocal fluorescence microscopy. DCM-EOM-triggered [Ca2+]i increase and membrane alterations were attenuated by the membrane stabilizing lipid cholesterol. In conclusion, lipophilic constituents of DEPs extracted by n-hexane and DCM seem to induce rapid AhR-dependent [Ca2+]i increase in HMEC-1 endothelial cells, possibly involving both ROCE and SOCE-mediated mechanisms. The semi-lipophilic fraction extracted by DCM also caused an AhR-dependent reduction in global membrane order, which appeared to be connected to the [Ca2+]i increase.
Collapse
Affiliation(s)
- Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
- Division of Laboratory Medicine, Faculty of Medicine, University of Oslo, N-0315 Oslo, Norway.
| | - Eric Le Ferrec
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Normand Podechard
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Dominique Lagadic-Gossmann
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Kenji F Shoji
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Aubin Penna
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Klara Kukowski
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA.
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA.
| | - Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
| |
Collapse
|
93
|
Soto C, Bergado G, Blanco R, Griñán T, Rodríguez H, Ros U, Pazos F, Lanio ME, Hernández AM, Álvarez C. Sticholysin II-mediated cytotoxicity involves the activation of regulated intracellular responses that anticipates cell death. Biochimie 2018; 148:18-35. [DOI: 10.1016/j.biochi.2018.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/07/2018] [Indexed: 12/12/2022]
|
94
|
Sperm-borne phospholipase C zeta-1 ensures monospermic fertilization in mice. Sci Rep 2018; 8:1315. [PMID: 29358633 PMCID: PMC5778054 DOI: 10.1038/s41598-018-19497-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/03/2018] [Indexed: 12/23/2022] Open
Abstract
Sperm entry in mammalian oocytes triggers intracellular Ca2+ oscillations that initiate resumption of the meiotic cell cycle and subsequent activations. Here, we show that phospholipase C zeta 1 (PLCζ1) is the long-sought sperm-borne oocyte activation factor (SOAF). Plcz1 gene knockout (KO) mouse spermatozoa fail to induce Ca2+ changes in intracytoplasmic sperm injection (ICSI). In contrast to ICSI, Plcz1 KO spermatozoa induced atypical patterns of Ca2+ changes in normal fertilizations, and most of the fertilized oocytes ceased development at the 1–2-cell stage because of oocyte activation failure or polyspermy. We further discovered that both zona pellucida block to polyspermy (ZPBP) and plasma membrane block to polyspermy (PMBP) were delayed in oocytes fertilized with Plcz1 KO spermatozoa. With the observation that polyspermy is rare in astacin-like metalloendopeptidase (Astl) KO female oocytes that lack ZPBP, we conclude that PMPB plays more critical role than ZPBP in vivo. Finally, we obtained healthy pups from male mice carrying human infertile PLCZ1 mutation by single sperm ICSI supplemented with Plcz1 mRNA injection. These results suggest that mammalian spermatozoa have a primitive oocyte activation mechanism and that PLCζ1 is a SOAF that ensures oocyte activation steps for monospermic fertilization in mammals.
Collapse
|
95
|
Binsaleh NK, Wigley CA, Whitehead KA, van Rensburg M, Reynisson J, Pilkington LI, Barker D, Jones S, Dempsey-Hibbert NC. Thieno[2,3-b]pyridine derivatives are potent anti-platelet drugs, inhibiting platelet activation, aggregation and showing synergy with aspirin. Eur J Med Chem 2017; 143:1997-2004. [PMID: 29129512 DOI: 10.1016/j.ejmech.2017.11.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 10/19/2017] [Accepted: 11/04/2017] [Indexed: 11/19/2022]
Abstract
Drugs which inhibit platelet function are commonly used to prevent blood clot formation in patients with Acute Coronary Syndromes (ACS) or those at risk of stroke. The thieno[3,2-c]pyridine class of therapeutic agents, of which clopidogrel is the most commonly used, target the P2Y12 receptor, and are often used in combination with acetylsalicylic acid (ASA). Six thieno[2,3-b]pyridine were assessed for in vitro anti-platelet activity; all derivatives showed effects on both platelet activation and aggregation, and showed synergy with ASA. Some compounds demonstrated greater activity when compared to clopidogrel. These compounds, therefore, represent potential novel P2Y12 inhibitors for improved treatment for patients.
Collapse
Affiliation(s)
- Naif K Binsaleh
- School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Catherine A Wigley
- School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Kathryn A Whitehead
- School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| | | | | | - Lisa I Pilkington
- School of Chemical Sciences, The University of Auckland, New Zealand
| | - David Barker
- School of Chemical Sciences, The University of Auckland, New Zealand.
| | - Sarah Jones
- School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Nina C Dempsey-Hibbert
- School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK.
| |
Collapse
|
96
|
STAT3-RXR-Nrf2 activates systemic redox and energy homeostasis upon steep decline in pO 2 gradient. Redox Biol 2017; 14:423-438. [PMID: 29078168 PMCID: PMC5680518 DOI: 10.1016/j.redox.2017.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/30/2017] [Accepted: 10/15/2017] [Indexed: 01/04/2023] Open
Abstract
Hypobaric hypoxia elicits several patho-physiological manifestations, some of which are known to be lethal. Among various molecular mechanisms proposed so far, perturbation in redox state due to imbalance between radical generation and antioxidant defence is promising. These molecular events are also related to hypoxic status of cancer cells and therefore its understanding has extended clinical advantage beyond high altitude hypoxia. In present study, however, the focus was to understand and propose a model for rapid acclimatization of high altitude visitors to enhance their performance based on molecular changes. We considered using simulated hypobaric hypoxia at some established thresholds of high altitude stratification based on known physiological effects. Previous studies have focused on the temporal aspect while overlooking the effects of varying pO2 levels during exposure to hypobaric hypoxia. The pO2 levels, indicative of altitude, are crucial to redox homeostasis and can be the limiting factor during acclimatization to hypobaric hypoxia. In this study we present the effects of acute (24h) exposure to high (3049m; pO2: 71kPa), very high (4573m; pO2: 59kPa) and extreme altitude (7620m; pO2: 40kPa) zones on lung and plasma using semi-quantitative redox specific transcripts and quantitative proteo-bioinformatics workflow in conjunction with redox stress assays. It was observed that direct exposure to extreme altitude caused 100% mortality, which turned into high survival rate after pre-exposure to 59kPa, for which molecular explanation were also found. The pO2 of 59kPa (very high altitude zone) elicits systemic energy and redox homeostatic processes by modulating the STAT3-RXR-Nrf2 trio. Finally we posit the various processes downstream of STAT3-RXR-Nrf2 and the plasma proteins that can be used to ascertain the redox status of an individual.
Collapse
|
97
|
Olianas MC, Dedoni S, Onali P. Muscarinic Acetylcholine Receptors Potentiate 5'-Adenosine Monophosphate-Activated Protein Kinase Stimulation and Glucose Uptake Triggered by Thapsigargin-Induced Store-Operated Ca 2+ Entry in Human Neuroblastoma Cells. Neurochem Res 2017; 43:245-258. [PMID: 28994003 DOI: 10.1007/s11064-017-2410-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 12/18/2022]
Abstract
The 5'-adenosine monophosphate-activated protein kinase (AMPK) is a key regulator of the cellular energy metabolism and may induce either cell survival or death. We previously reported that in SH-SY5Y human neuroblastoma cells stimulation of muscarinic acetylcholine receptors (mAChRs) activate AMPK by triggering store-operated Ca2+ entry (SOCE). However, whether mAChRs may control AMPK activity by regulating additional mechanisms beyond SOCE remains to be investigated. In the present study we examined the effects of mAChRs on AMPK when SOCE was induced by the sarco-endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin. We found that in SH-SY5Y cells depleted of Ca2+ by thapsigargin, the re-addition Ca2+ to the medium stimulated AMPK phosphorylation at Thr172, which is required for full kinase activity. This response occurred through SOCE, as it was blocked by either the SOCE modulator 2-aminoethoxydiphephenyl borate, knockdown of the SOCE molecular component STIM1, or inhibition of Ca2+/calmodulin (CaM)-dependent protein kinase kinase β (CaMKKβ). In thapsigargin-pretreated cells, stimulation of pharmacologically defined M3 mAChRs potentiated SOCE-induced AMPK activation. This potentiation did not involve an increased Ca2+ influx, but was associated with CaM mobilization from membrane to cytosol, increased CaM/CaMKKβ interaction, and enhanced CaMKK stimulation by thapsigargin-induced SOCE. In thapsigargin-pretreated cells Ca2+ re-addition stimulated glucose uptake and increased the membrane expression of the glucose transporter GLUT1. Both responses were significantly potentiated by mAChRs. These data indicate that in human neuroblastoma cells mAChRs up-regulate AMPK and the downstream glucose uptake by triggering not only SOCE but also CaM translocation and enhanced formation of active CaM/CaMKKβ complexes.
Collapse
Affiliation(s)
- Maria C Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, CA, Italy
| | - Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, CA, Italy
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, CA, Italy.
| |
Collapse
|
98
|
Park YJ, Kim HS, Lee HY, Hwang JS, Bae YS. A novel antimicrobial peptide isolated from centipede Scolopendra subspinipes mutilans stimulates neutrophil activity through formyl peptide receptor 2. Biochem Biophys Res Commun 2017; 494:352-357. [PMID: 28988115 DOI: 10.1016/j.bbrc.2017.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/30/2022]
Abstract
In this study, we identified scolopendrasin X, a novel antimicrobial peptide (AMP), from centipede Scolopendra subspinipes mutilans. Scolopendrasin X strongly stimulated mouse neutrophils, resulting in intracellular calcium increase, chemotactic migration through pertussis toxin-sensitive G-protein and phospholipase C pathway, and increased superoxide anion production in neutrophils. Target receptor for scolopendrasin X, formyl peptide receptor (FPR)2 mediated scolopendrasin X-induced neutrophil activation. Moreover, scolopendrasin X significantly blocked inflammatory cytokine production induced by lipopolysaccharide in mouse neutrophils. Taken together, our results suggest that the novel AMP scolopendrasin X can be used as a material to regulate neutrophil activity through FPR2.
Collapse
Affiliation(s)
- Yoo Jung Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung Sik Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju 55365, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.
| |
Collapse
|
99
|
Choy CH, Han BK, Botelho RJ. Phosphoinositide Diversity, Distribution, and Effector Function: Stepping Out of the Box. Bioessays 2017; 39. [PMID: 28977683 DOI: 10.1002/bies.201700121] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/31/2017] [Indexed: 12/26/2022]
Abstract
Phosphoinositides (PtdInsPs) modulate a plethora of functions including signal transduction and membrane trafficking. PtdInsPs are thought to consist of seven interconvertible species that localize to a specific organelle, to which they recruit a set of cognate effector proteins. Here, in reviewing the literature, we argue that this model needs revision. First, PtdInsPs can carry a variety of acyl chains, greatly boosting their molecular diversity. Second, PtdInsPs are more promiscuous in their localization than is usually acknowledged. Third, PtdInsP interconversion is likely achieved through kinase-phosphatase enzyme complexes that coordinate their activities and channel substrates without affecting bulk substrate population. Additionally, we contend that despite hundreds of PtdInsP effectors, our attention is biased toward few proteins. Lastly, we recognize that PtdInsPs can act to nucleate coincidence detection at the effector level, as in PDK1 and Akt. Overall, better integrated models of PtdInsP regulation and function are not only possible but needed.
Collapse
Affiliation(s)
- Christopher H Choy
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada M5B2K3.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada M5B2K3
| | - Bong-Kwan Han
- The Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Roberto J Botelho
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada M5B2K3.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada M5B2K3
| |
Collapse
|
100
|
Watts JL, Ristow M. Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 2017; 207:413-446. [PMID: 28978773 PMCID: PMC5629314 DOI: 10.1534/genetics.117.300106] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| |
Collapse
|