51
|
Lai SW, Chen JH, Lin HY, Liu YS, Tsai CF, Chang PC, Lu DY, Lin C. Regulatory Effects of Neuroinflammatory Responses Through Brain-Derived Neurotrophic Factor Signaling in Microglial Cells. Mol Neurobiol 2018; 55:7487-7499. [PMID: 29427085 DOI: 10.1007/s12035-018-0933-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/25/2018] [Indexed: 11/26/2022]
Abstract
Inhibition of microglial over-activation is an important strategy to counter balance neurodegenerative progression. We previously demonstrated that the adenosine monophosphate-activated protein kinase (AMPK) may be a therapeutic target in mediating anti-neuroinflammatory responses in microglia. Brain-derived neurotrophic factor (BDNF) is one of the major neurotrophic factors produced by astrocytes to maintain the development and survival of neurons in the brain, and have recently been shown to modulate homeostasis of neuroinflammation. Therefore, the present study focused on BDNF-mediated neuroinflammatory responses and may provide an endogenous regulation of neuroinflammation. Among the tested neuroinflammation, epigallocatechin gallate (EGCG) and minocycline exerted BDNF upregulation to inhibit COX-2 and proinflammatory mediator expressions. Furthermore, both EGCG and minocycline upregulated BDNF expression in microglia through AMPK signaling. In addition, minocycline and EGCG also increased expressions of erythropoietin (EPO) and sonic hedgehog (Shh). In the endogenous modulation of neuroinflammation, astrocyte-conditioned medium (AgCM) also decreased the expression of COX-2 and upregulated BDNF expression in microglia. The anti-inflammatory effects of BDNF were mediated through EPO/Shh in microglia. Our results indicated that the BDNF-EPO-Shh novel-signaling pathway underlies the regulation of inflammatory responses and may be regarded as a potential therapeutic target in neurodegenerative diseases. This study also reveals a better understanding of an endogenous crosstalk between astrocytes and microglia to regulate anti-inflammatory actions, which could provide a novel strategy for the treatment of neuroinflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sheng-Wei Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsiao-Yun Lin
- Department of Pharmacology, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics, Asia University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan.
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
52
|
Mattson MP, Moehl K, Ghena N, Schmaedick M, Cheng A. Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci 2018; 19:63-80. [PMID: 29321682 PMCID: PMC5913738 DOI: 10.1038/nrn.2017.156] [Citation(s) in RCA: 330] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During evolution, individuals whose brains and bodies functioned well in a fasted state were successful in acquiring food, enabling their survival and reproduction. With fasting and extended exercise, liver glycogen stores are depleted and ketones are produced from adipose-cell-derived fatty acids. This metabolic switch in cellular fuel source is accompanied by cellular and molecular adaptations of neural networks in the brain that enhance their functionality and bolster their resistance to stress, injury and disease. Here, we consider how intermittent metabolic switching, repeating cycles of a metabolic challenge that induces ketosis (fasting and/or exercise) followed by a recovery period (eating, resting and sleeping), may optimize brain function and resilience throughout the lifespan, with a focus on the neuronal circuits involved in cognition and mood. Such metabolic switching impacts multiple signalling pathways that promote neuroplasticity and resistance of the brain to injury and disease.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Keelin Moehl
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | - Nathaniel Ghena
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | - Maggie Schmaedick
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | - Aiwu Cheng
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| |
Collapse
|
53
|
Tang M, Zhang M, Wang L, Li H, Cai H, Dang R, Jiang P, Liu Y, Xue Y, Wu Y. Maternal dietary of n-3 polyunsaturated fatty acids affects the neurogenesis and neurochemical in female rat at weaning. Prostaglandins Leukot Essent Fatty Acids 2018; 128:11-20. [PMID: 29413357 DOI: 10.1016/j.plefa.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 10/16/2017] [Accepted: 11/08/2017] [Indexed: 12/17/2022]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) are rapidly accumulated in brain during pre- and neonatal life, which is important for the development and function of central nervous system. Deficiency of biologically important n-3 PUFA docosahexaenoic acid (C22:6n-3, DHA) is associated with impaired visual, attention and cognition, and would precipitate psychiatric symptoms. However, clinical studies of the potential mechanism on the effect of dietary DHA deficiency on neural development remain unclear. In addition, the effects of n-6 PUFAs and n-3 PUFAs ingestion on the dynamic process of the cell proliferation in neurogenesis of offspring were investigated using immunefluorescence. And GC-MS was used to determine the fatty acid content in the liver of offspring. To further investigate the neurochemical influence on maternal PUFAs levels, we assessed the functioning of various neurotransmitter systems including glutamatergic, dopaminergic, norepinephrinergic and serotoninergic systems in the brain of female rats at weaning by HPLC-MS/MS. Lastly, we analyzed the turnover rates and between-metabolite ratios (the ratios between metabolites of monoamine neurotransmitters) to seek potential links between the neurotransmitters and dietary fatty acids compositions. There were significant differences between the deficiency group and the control or supplementary group in liver fatty acids compositions, showing that n-3 PUFAs were largely replaced by n-6 PUFAs. The generation of n-3 PUFAs deficiency rats exhibited abnormal neurogenesis and neurochemical. Altered dopamine or norepinephrine transmission and between-metabolite ratios in brain areas may be a key neuronal mechanism that contributes to the potential detrimental effects of n-3 PUFAs deficiency for mental health.
Collapse
Affiliation(s)
- Mimi Tang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Min Zhang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Lu Wang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Huande Li
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Hualin Cai
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, PR China.
| | - Pei Jiang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, PR China.
| | - Yiping Liu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Ying Xue
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Yanqin Wu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| |
Collapse
|
54
|
Wei YC, Wang SR, Xu XH. Sex differences in brain-derived neurotrophic factor signaling: Functions and implications. J Neurosci Res 2017; 95:336-344. [PMID: 27870405 DOI: 10.1002/jnr.23897] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/18/2016] [Accepted: 08/01/2016] [Indexed: 02/03/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates diverse processes such as neuronal survival, differentiation, and plasticity. Accumulating evidence suggests that molecular events that direct sexual differentiation of the brain interact with BDNF signaling pathways. This Mini-Review first examines potential hormonal and epigenetic mechanisms through which sex influences BDNF signaling. We then examine how sex-specific regulation of BDNF signaling supports the development and function of sexually dimorphic neural circuits that underlie male-specific genital reflexes in rats and song production in birds. Finally, we discuss the implications of sex differences in BDNF signaling for gender-biased presentation of neurological and psychiatric diseases such as Alzheimer's disease. Although this Mini-Review focuses on BDNF, we try to convey the general message that sex influences brain functions in complex ways and underscore the requirement for and challenge of expanding research on sex differences in neuroscience. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi-Chao Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Shao-Ran Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
55
|
Silva TO, Jung I, Trott A, Bica CG, Casarin JN, Fortuna PC, Ribeiro EE, de Assis FD, Figueira GC, Barbisan F, Fernanda Manica-Cattani M, Bonadiman BSR, Houenou LJ, Prado-Lima PASD, da Cruz IBM. Association between T102C 5-HT2A receptor gene polymorphism and 5-year mortality risk among Brazilian Amazon riparian elderly population. Am J Hum Biol 2017; 29. [PMID: 28488759 DOI: 10.1002/ajhb.23016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 01/16/2017] [Accepted: 04/17/2017] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE Serotonin (5-HT) is a pleiotropic molecule that exerts several functions on brain and peripheral tissues via different receptors. The gene for the 5-HT2A receptor shows some variations, including a T102C polymorphism, that have been associated with increased risk of neuropsychiatric and vascular disorders. However, the potential impact of 5-HT2A imbalance caused by genetic variations on the human lifespan has not yet been established. METHODS We performed a prospective study involving an Amazon riparian elderly free-living population in Maués City, Brazil, with a 5-year follow-up. Out of a cohort of 637 subjects selected in July, 2009, we genotyped 471 individuals, including 209 males (44.4%) and 262 females (55.6%), all averaging 72.3 ± 7.8 years of age (ranging from 60 to 100 years). RESULTS The T102C-SNP genotypic frequencies were 14.0% TT, 28.0% CC, and 58.0% CT. From 80 elderly individuals who died during the period investigated, we observed significantly (P = .005) higher numbers of TT carriers (27.3%) and CC carriers (21.2%), compared to heterozygous CT carriers (12.5%). Cox-regression analysis showed that association between the T102C-SNP and elderly survival was independent of age, sex, and other health variables. CONCLUSIONS Our findings strongly suggest that imbalance in 5-HT2A may cause significant disturbances that lead to an increased susceptibility to death for individuals who are over 60 years of age.
Collapse
Affiliation(s)
- Tális O Silva
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Ivo Jung
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Alexis Trott
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande do Sul, Brazil
| | - Cláudia G Bica
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeferson N Casarin
- Laboratory of Molecular Aspects Associated with Genetic Diseases, University of Western Santa Catarina, Unoesc, Brazil
| | - Paola C Fortuna
- Laboratory of Molecular Aspects Associated with Genetic Diseases, University of Western Santa Catarina, Unoesc, Brazil
| | - Euler E Ribeiro
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Fernanda D de Assis
- Laboratório de Biogenômica, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Guilherme C Figueira
- Laboratório de Biogenômica, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Fernanda Barbisan
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Maria Fernanda Manica-Cattani
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Beatriz S R Bonadiman
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Lucien J Houenou
- Biotechnology Department, Forsyth Technical Community College, 2100 Silas Creek Parkway, Winston-Salem, North Carolina, 27103, USA
| | | | - Ivana B M da Cruz
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil.,Laboratório de Biogenômica, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
56
|
Wahl D, Coogan SCP, Solon-Biet SM, de Cabo R, Haran JB, Raubenheimer D, Cogger VC, Mattson MP, Simpson SJ, Le Couteur DG. Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia. Clin Interv Aging 2017; 12:1419-1428. [PMID: 28932108 PMCID: PMC5598548 DOI: 10.2147/cia.s145247] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Evaluation of behavior and cognition in rodent models underpins mechanistic and interventional studies of brain aging and neurodegenerative diseases, especially dementia. Commonly used tests include Morris water maze, Barnes maze, object recognition, fear conditioning, radial arm water maze, and Y maze. Each of these tests reflects some aspects of human memory including episodic memory, recognition memory, semantic memory, spatial memory, and emotional memory. Although most interventional studies in rodent models of dementia have focused on pharmacological agents, there are an increasing number of studies that have evaluated nutritional interventions including caloric restriction, intermittent fasting, and manipulation of macronutrients. Dietary interventions have been shown to influence various cognitive and behavioral tests in rodents indicating that nutrition can influence brain aging and possibly neurodegeneration.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney
- Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW, Australia
| | - Sean CP Coogan
- Charles Perkins Centre, University of Sydney, Sydney
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney
- Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW, Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - James B Haran
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney
- Faculty of Veterinary Science
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney
- Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW, Australia
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging’s Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney
- Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney
- Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW, Australia
| |
Collapse
|
57
|
Roh HT, So WY, Cho SY, Suh SH. Effects of Fluid Ingestion on Brain-Derived Neurotrophic Factor and Cognition During Exercise in the Heat. J Hum Kinet 2017; 58:73-86. [PMID: 28828079 PMCID: PMC5548156 DOI: 10.1515/hukin-2017-0074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We investigated the effects of fluid ingestion during exercise in different environments on the serum brain-derived neurotrophic factor and cognition among athletes. Ten collegiate male athletes (soccer, n = 5; rugby, n = 5) were enrolled, and they completed running tests in the following four conditions (60 min each): 1) thermoneutral temperature at 18°C (group 18); 2) high ambient temperature at 32°C without fluid ingestion (group 32); 3) high ambient temperature at 32°C with water ingestion (group 32+W); and 4) high ambient temperature at 32°C with sports drink ingestion (group 32+S). Serum brain-derived neurotrophic factor levels significantly increased in group 18 immediately after exercise when compared with those at rest and were significantly higher than those in group 32 immediately and 60 min after exercise (p < 0.05). In the Stroop Color and Word Test, significantly increased Word, Color, and Color-Word scores were observed in group 18 immediately after exercise compared to those at rest (p < 0.05). However, the Color-Word score appeared to be significantly lower in group 32 immediately after exercise compared to the other groups (p < 0.05) and at 60 min post-exercise compared to group 18 (p < 0.05). We found that the exercise performed in a thermoneutral environment improved cognitive function, but the exercise performed in a hot environment did not. The differences according to the exercise environment would be largely affected by brain-derived neurotrophic factor, and fluid ingestion regardless of the type of drink (water or sports beverage) was assumed to have contributed to the improvement in cognitive function caused by exercising in a hot environment.
Collapse
Affiliation(s)
- Hee-Tae Roh
- Department of Physical Education, College of Arts and Physical Education, Dong-A University, Busan, Republic of Korea
| | - Wi-Young So
- Sports and Health Care Major,College of Humanities and Arts, Korea, National University of Transportation, Chungju-si, Republic of Korea
| | - Su-Youn Cho
- Department of Physical Education, Yonsei University, Seoul, Republic of Korea
| | - Sang-Hoon Suh
- Department of Physical Education, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
58
|
Cao T, Guo Q, Su M, Feng Y, Fan M, Si Y, Memon NH, Lin J, Fang D. Posttraumatic stress disorder eliminates association of TrkB rs1187327 with HDL-C in Chinese Han adolescents. Biosci Trends 2017. [PMID: 28626208 DOI: 10.5582/bst.2017.01039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tropomyosin-related kinase receptor B (TrkB) has been observed to be a common player in posttraumatic stress disorder (PTSD) and the regulation of serum lipids levels. However, interplays of PTSD with TrkB on serum lipids levels have not been explored yet. This study was to investigate the interplays of PTSD and TrkB rs1187327 on serum lipid profiles. Variants of TrkB rs1187327 of 709 high school students were identified by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analyses and verified by DNA sequencing. The PTSD Checklist Civilian Version (PCL-C) was used to assess PTSD. Colorimetric methods were used to determine the serum levels of triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and glucose. The results show that the GG homozygotes had a significantly higher level of HDL-C than the A allele carriers of TrkB rs1187327 after the adjustment for gender, age and body mass index (BMI) (1.44 ± 0.299 mmol/L vs. 1.39 ± 0.266 mmol/L, p = 0.036). When PTSD was taken into account, the higher than the A allele carriers level of HDL-C of the GG homozygotes was observed significant after the adjustment for gender, age and BMI only in the subjects without PTSD (1.44 ± 0.293 mmol/ L vs. 1.39 ± 0.267 mmol/L, p = 0.030), but not in the subjects with PTSD. These results suggest that the A allele of TrkB rs1187327 may be associated with decreased levels of serum HDL-C in general healthy adolescents, but not in adolescents with PTSD.
Collapse
Affiliation(s)
- Ting Cao
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University
| | - Qiwei Guo
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University
| | - Mi Su
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University
| | - Yue Feng
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University
| | - Mei Fan
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University
| | - Yanjun Si
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University
| | - Nazakat H Memon
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University
| | - Dingzhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University
| |
Collapse
|
59
|
Khallaf WA, Messiha BA, Abo-Youssef AM, El-Sayed NS. Protective effects of telmisartan and tempol on lipopolysaccharide-induced cognitive impairment, neuroinflammation, and amyloidogenesis: possible role of brain-derived neurotrophic factor. Can J Physiol Pharmacol 2017; 95:850-860. [DOI: 10.1139/cjpp-2017-0042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiotensin II has pro-inflammatory and pro-oxidant potentials. We investigated the possible protective effects of the Angiotensin II receptor blocker telmisartan, compared with the superoxide scavenger tempol, on lipopolysaccharide (LPS)-induced cognitive decline and amyloidogenesis. Briefly, mice were allocated into a normal control group, an LPS control group, a tempol treatment group, and 2 telmisartan treatment groups. A behavioral study was conducted followed by a biochemical study via assessment of brain levels of beta amyloid (Aβ) and brain-derived neurotropic factor (BDNF) as amyloidogenesis and neuroplasticity markers, tumor necrosis factor alpha (TNF-α), nitric oxide end products (NOx), neuronal and inducible nitric oxide synthase (nNOS and iNOS) as inflammatory markers, and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione reduced (GSH), and nitrotyrosine (NT) as oxido-nitrosative stress markers. Finally, histopathological examination of cerebral cortex, hippocampus, and cerebellum sections was performed using routine and special Congo red stains. Tempol and telmisartan improved cognition, decreased brain Aβ deposition and BDNF depletion, decreased TNF-α, NOx, nNOS, iNOS, MDA, and NT brain levels, and increased brain SOD and GSH contents, parallel to confirmatory histopathological evidences. In conclusion, tempol and telmisartan are promising drugs in managing cognitive impairment and amyloidogenesis, at least via upregulation of BDNF with inhibition of neuroinflammation and oxido-nitrosative stress.
Collapse
Affiliation(s)
- Waleed A.I. Khallaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Basim A.S. Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Amira M.H. Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Nesrine S. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| |
Collapse
|
60
|
Anthony SS, Date I, Yasuhara T. Limiting exercise inhibits neuronal recovery from neurological disorders. Brain Circ 2017; 3:124-129. [PMID: 30276313 PMCID: PMC6057693 DOI: 10.4103/bc.bc_16_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Patients who are bedridden often suffer from muscular atrophy due to reduced daily activities and can become depressed. However, patients who undergo physical therapy sometimes demonstrate positive benefits including a reduction of stressful and depressed behavior. Regenerative medicine has seen improvements in two stem cell-based therapies for central nervous system disorders. One therapy is through the transfer of exogenous stem cells. The other therapy is a more natural method and focuses on the increasing endogenous neurogenesis and restoring the neurological impairments. This study overviews how immobilization-induced disuse atrophy affects neurogenesis in rats, specifically hypothesizing that immobilization diminishes circulating trophic factor levels, like vascular endothelial growth factors or brain-derived neurotrophic factor, which in turn limits neurogenesis. This hypothesis requires the classification of the stem cell microenvironment by probing growth factors in addition to other stress-related proteins that correlate with exercise-induced neurogenesis. There is research examining the effects of increased exercise on neurogenesis while limiting exercise, which better demonstrates the pathological states of immobile stroke patients, remains relatively unexplored. To examine the effects of immobilization on neurogenesis quantitative measurements of movements, 5-bromo-2deoxyuridine labeling of proliferative cells, biochemical assays of serum, cerebrospinal fluid and neurological levels of trophic factors, growth factors, and stress-related proteins will indicate levels of neurogenesis. In further research, studies are needed to show how in vivo stimulation, or lack thereof, affects stem cell microenvironments to advance treatment procedures for strengthening neurogenesis in bedridden patients. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.
Collapse
Affiliation(s)
- Stefan S. Anthony
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| |
Collapse
|
61
|
Nayernia Z, Colaianna M, Robledinos-Antón N, Gutzwiller E, Sloan-Béna F, Stathaki E, Hibaoui Y, Cuadrado A, Hescheler J, Stasia MJ, Saric T, Jaquet V, Krause KH. Decreased neural precursor cell pool in NADPH oxidase 2-deficiency: From mouse brain to neural differentiation of patient derived iPSC. Redox Biol 2017; 13:82-93. [PMID: 28575744 PMCID: PMC5454143 DOI: 10.1016/j.redox.2017.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 10/28/2022] Open
Abstract
There is emerging evidence for the involvement of reactive oxygen species (ROS) in the regulation of stem cells and cellular differentiation. Absence of the ROS-generating NADPH oxidase NOX2 in chronic granulomatous disease (CGD) patients, predominantly manifests as immune deficiency, but has also been associated with decreased cognition. Here, we investigate the role of NOX enzymes in neuronal homeostasis in adult mouse brain and in neural cells derived from human induced pluripotent stem cells (iPSC). High levels of NOX2 were found in mouse adult neurogenic regions. In NOX2-deficient mice, neurogenic regions showed diminished redox modifications, as well as decrease in neuroprecursor numbers and in expression of genes involved in neural differentiation including NES, BDNF and OTX2. iPSC from healthy subjects and patients with CGD were used to study the role of NOX2 in human in vitro neuronal development. Expression of NOX2 was low in undifferentiated iPSC, upregulated upon neural induction, and disappeared during neuronal differentiation. In human neurospheres, NOX2 protein and ROS generation were polarized within the inner cell layer of rosette structures. NOX2 deficiency in CGD-iPSCs resulted in an abnormal neural induction in vitro, as revealed by a reduced expression of neuroprogenitor markers (NES, BDNF, OTX2, NRSF/REST), and a decreased generation of mature neurons. Vector-mediated NOX2 expression in NOX2-deficient iPSCs rescued neurogenesis. Taken together, our study provides novel evidence for a regulatory role of NOX2 during early stages of neurogenesis in mouse and human.
Collapse
Affiliation(s)
- Zeynab Nayernia
- Department of Pathology and Immunology, University of Geneva Medical School, 1-rue Michel Servet, 1211 Geneva, Switzerland
| | - Marilena Colaianna
- Department of Pathology and Immunology, University of Geneva Medical School, 1-rue Michel Servet, 1211 Geneva, Switzerland
| | - Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas "Alberto Sols", Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eveline Gutzwiller
- Department of Pathology and Immunology, University of Geneva Medical School, 1-rue Michel Servet, 1211 Geneva, Switzerland
| | - Frédérique Sloan-Béna
- Hôpitaux Universitaires de Genève HUG, Laboratoires de Cytogénétique Constitutionnelle, Service de Médecine Génétique, Geneva, Switzerland
| | - Elisavet Stathaki
- Hôpitaux Universitaires de Genève HUG, Laboratoires de Cytogénétique Constitutionnelle, Service de Médecine Génétique, Geneva, Switzerland
| | - Yousef Hibaoui
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas "Alberto Sols", Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jürgen Hescheler
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Marie-José Stasia
- Université Grenoble Alpes, Techniques de l'Ingénierie Médicale et de la Complexité- Grenoble, F38000 Grenoble, France
| | - Tomo Saric
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Vincent Jaquet
- Department of Pathology and Immunology, University of Geneva Medical School, 1-rue Michel Servet, 1211 Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, University of Geneva Medical School, 1-rue Michel Servet, 1211 Geneva, Switzerland.
| |
Collapse
|
62
|
Engelberth RCGJ, Silva KDDA, Fiuza FP, Soares JG, Costa MSMO, Lima RRDM, Nascimento ESD, Santos JRD, Cavalcanti JRLP, Cavalcante JS. Retinal, NPY- and 5ht- inputs to the aged suprachiasmatic nucleus in common marmosets (Callithrix jacchus). Neurosci Res 2017; 121:54-59. [PMID: 28288865 DOI: 10.1016/j.neures.2017.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/02/2016] [Accepted: 03/09/2017] [Indexed: 01/08/2023]
Abstract
The circadian timing system (CTS) anticipates optimal physiological patterns in response to environmental fluctuations, such as light-dark cycle. Since age-related disruption of circadian synchronization is linked to several pathological conditions, we characterized alterations of neurochemical constituents and retinal projections to the major pacemaker of CTS, the suprachiasmatic nucleus (SCN), in adult and aged marmosets. We used intraocular injections of neural tracer Cholera toxin b (CTb) to report age-related reductions in CTb, neuropeptide Y and serotonin immunoreactivities. Considering these projections arise in SCN from nuclei that relay environmental information to entrain the circadian clock, we provide important anatomical correlates to age-associated physiological deficits.
Collapse
Affiliation(s)
- Rovena C G J Engelberth
- Laboratory of Neurochemical Studies, Physiology Department, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil.
| | - Kayo D de Azevedo Silva
- Laboratory of Neurochemical Studies, Physiology Department, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Felipe Porto Fiuza
- Laboratory of Neurochemical Studies, Physiology Department, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Joacil Germano Soares
- Laboratory of Neuroanatomy, Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Miriam S M O Costa
- Laboratory of Neuroanatomy, Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ruthnaldo R de Melo Lima
- Laboratory of Neuroanatomy, Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Expedito Silva do Nascimento
- Laboratory of Neuroanatomy, Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - José R Dos Santos
- Department of Biosciences, Federal University of Sergipe, Itabaiana, Sergipe, Brazil
| | - José R L P Cavalcanti
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Health Science Center, University of State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Physiology Department, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| |
Collapse
|
63
|
Li Q, Qu FL, Gao Y, Jiang YP, Rahman K, Lee KH, Han T, Qin LP. Piper sarmentosum Roxb. produces antidepressant-like effects in rodents, associated with activation of the CREB-BDNF-ERK signaling pathway and reversal of HPA axis hyperactivity. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:9-19. [PMID: 28126450 DOI: 10.1016/j.jep.2017.01.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE There are many plants of genus Piper which have been reported to induce antidepressant-like effects, Piper sarmentosum (PS) is one of them. PS is a Chinese herbal medicine and a traditional edible vegetable. MATERIALS AND METHODS In the present study, the antidepressant-like effects of PS extracts and the ethyl acetate fraction of PS extracts (PSY) were assessed using the open field test (OFT), forced swimming test (FST), and tail suspension test (TST) in mice. Furthermore, we applied a 4 consecutive weeks of chronic unpredictable mild stress (CUMS) as a model of depression in rats, followed by a sucrose preference test. Then we examined the possible mechanisms of this action. The activity of the hypothalamic-pituitary-adrenal (HPA) axis was evaluated by detecting the serum corticosterone (CORT) concentrations, and the protein expression levels of brain-derived neurotrophic factor (BDNF), the phosphorylated form CREB and ERK1/2 were detected by qRT-PCR or Western blot. RESULTS The results showed that PS extracts (100, 200mg/kg) and PSY (12.5, 25, 50mg/kg) treatment produced antidepressant-like effects in mice similar to fluoxetine (20mg/kg), indicated by the reduced immobility time in the FST and TST, while both had no influence on the locomotor activity in the OFT. PSY treatment significantly increased sucrose preference and reduced serum CORT levels in CUMS rats. Moreover, PSY up-regulated BDNF protein levels, and increased CREB and ERK phosphorylation levels in the hippocampus on CUMS rats. CONCLUSIONS These findings suggest that the antidepressant-like effects of PS extracts and PSY are mediated, at least in part, by modulating HPA axis, BDNF, CREB and ERK phosphorylation and expression in the hippocampus.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China; The 102nd Hospital of PLA, 55 Heping North Road, Changzhou 213003, PR China
| | - Fa-Lin Qu
- The 102nd Hospital of PLA, 55 Heping North Road, Changzhou 213003, PR China
| | - Yue Gao
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China
| | - Yi-Ping Jiang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7568, United States
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China; Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7568, United States.
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China.
| |
Collapse
|
64
|
Rosso G, Zanardini R, Chiodelli DF, Ferrari C, Gennarelli M, Bocchio-Chiavetto L. Serum Levels of Insulin-Like Growth Factor-1 and Obsessive-Compulsive Disorder: A Case-Control Study. Neuropsychobiology 2017; 74:15-21. [PMID: 27459640 DOI: 10.1159/000446918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/18/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Recent findings suggest an involvement of insulin-like growth factor-1 (IGF-1) in the pathogenesis of many psychiatric disorders; however, there is a lack of data regarding IGF-1 in patients with obsessive-compulsive disorder (OCD). The aims of the present study were (1) to analyze putative alterations of IGF-1 serum content in patients with OCD compared to patients with major depressive disorder (MDD) and healthy controls, and (2) to analyze putative changes of IGF-1 levels during drug treatment in subjects with OCD compared to patients with MDD. METHODS We recruited 40 OCD patients, 37 MDD patients, and 43 healthy controls. All participants were adults. Serum IGF-1 levels were measured by the ELISA method on venous blood samples collected at baseline and after 10 ± 1 weeks of drug treatment. RESULTS IGF-1 levels were increased in OCD patients compared to controls (149.9 ± 60.2 vs. 121.2 ± 51.6 ng/ml; p = 0.040). No correlations were observed between baseline IGF-1 levels, clinical features, and response to treatment at follow-up in OCD or MDD patients. No changes in serum IGF-1 were observed after drug treatment. CONCLUSION Our results show for the first time that serum IGF-1 levels are altered in patients with OCD. Further research on the role of IGF-1 in OCD is warranted.
Collapse
Affiliation(s)
- Gianluca Rosso
- Psychiatric Unit, San Luigi Gonzaga Hospital of Orbassano, Neuroscience Department, University of Turin, Orbassano, IRCCS San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | | | | | | | | |
Collapse
|
65
|
Tzeng WY, Wu HH, Wang CY, Chen JC, Yu L, Cherng CG. Sex Differences in Stress and Group Housing Effects on the Number of Newly Proliferated Cells and Neuroblasts in Middle-Aged Dentate Gyrus. Front Behav Neurosci 2017; 10:249. [PMID: 28119581 PMCID: PMC5220061 DOI: 10.3389/fnbeh.2016.00249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/19/2016] [Indexed: 11/13/2022] Open
Abstract
Sex differences in stress and coping responses have been frequently documented in aged people, while whether such differences in aged people may appear at the middle age are unknown. This study was undertaken to study the impact of acute stress and social interaction on early neurogenesis in the dentate gyrus (DG) and hippocampus-related memory in two sexes of middle-aged mice. The number of newly proliferated cells, neuroblasts in DG, the object recognition and location memory in 9-month-old male and female C57BL/6N mice were assessed under baseline conditions as well as following an acute stressor regimen and group housing. Three conspecific companions, serving as "the housing group," were used to model the social interaction throughout the stressor regimen. Males had lower numbers of newly proliferated cells and neuroblasts under baseline conditions as compared to females. The stressor regimen caused rapid decreases in the number of newly proliferated cells and neuroblasts in female DG but no obvious changes were observed in male DG. Group housing, regardless of companions' age, prevented the stress-induced decreases in the number of newly proliferated cells and neuroblasts in female DG. In contrast, the presence of young or age-matched companions potentiated the stress effect in males by decreasing the number of newly proliferated cells and neuroblasts. Finally, neither the stressor regimen nor group housing affected mouse performances in the object recognition and location memory in either sex. These findings, taken together, provide evidence to support a notion that middle-aged females appear to demonstrate more stress susceptibility on early neurogenesis in DG as compared to middle-aged males, although the hippocampus-related memory performances are comparable and not affected by stress in these males and females. Experiencing stress, middle-aged females are more prone to benefit from social interaction as compared to middle-aged males in this regard. We suggest, accordingly, that involving social interaction may afford a therapeutic advance in preventing stress-produced decreases in early neurogenesis in middle-aged females' DG.
Collapse
Affiliation(s)
- Wen-Yu Tzeng
- Department of Physiology, National Cheng Kung University College of Medicine Tainan, Taiwan
| | - Hsin-Hua Wu
- Department of Physiology, National Cheng Kung University College of Medicine Tainan, Taiwan
| | - Ching-Yi Wang
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine Tainan, Taiwan
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University Taoyuan, Taiwan
| | - Lung Yu
- Department of Physiology, National Cheng Kung University College of MedicineTainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University College of MedicineTainan, Taiwan
| | - Chianfang G Cherng
- Department of Health Psychology, Chang Jung Christian University Tainan, Taiwan
| |
Collapse
|
66
|
Neuroprotective Effects of Aged Garlic Extract on Cognitive Dysfunction and Neuroinflammation Induced by β-Amyloid in Rats. Nutrients 2017; 9:nu9010024. [PMID: 28054940 PMCID: PMC5295068 DOI: 10.3390/nu9010024] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/05/2016] [Accepted: 12/26/2016] [Indexed: 01/08/2023] Open
Abstract
Neuroinflammation is pathological evidence of Alzheimer's disease (AD) that likely starts as a host defense response to the damaging effects of the β-amyloid (Aβ) deposits in the brain. The activation of microglia may promote the neurodegenerative process through the release of proinflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNFα), which may lead to neuronal damage and eventual death. Aged garlic extract (AGE) has been reported to have multiple biological activities, including anti-inflammatory effects. Therefore, the objective of this study was to investigate the effect of AGE on Aβ (1-42)-induced cognitive dysfunction and neuroinflammation. Adult male Wistar rats were given AGE (125, 250, and 500 mg/kg BW, body weight), orally administered, daily for 56 days. They were then injected with 1 μL of aggregated Aβ (1-42) into the lateral ventricles; bilaterally. Seven days later, their recognition memory was evaluated using a novel object recognition (NOR) test. Then the rats were sacrificed to investigate the alteration of microglia cells, IL-1β and TNFα in the cerebral cortex and hippocampus. The results indicated that AGE at doses of 250 and 500 mg/kg BW significantly improved short-term recognition memory in cognitively impaired rats. In addition, AGE significantly minimized the inflammatory response by reducing the activation of microglia and IL-1β to the levels found in the control, which is similar to the results found in Celebrex-treated rats. In conclusion, AGE may be useful for improving the short-term recognition memory and relieve the neuroinflammation in Aβ-induced rats.
Collapse
|
67
|
Badowska-Szalewska E, Ludkiewicz B, Krawczyk R, Moryś J. Exposure to mild stress and brain derived neurotrophin factor (BDNF) immunoreactivity in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei: Comparison between aged and adult rats. J Chem Neuroanat 2016; 78:57-64. [DOI: 10.1016/j.jchemneu.2016.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/13/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022]
|
68
|
Yang J, Huang T, Song WM, Petralia F, Mobbs CV, Zhang B, Zhao Y, Schadt EE, Zhu J, Tu Z. Discover the network underlying the connections between aging and age-related diseases. Sci Rep 2016; 6:32566. [PMID: 27582315 PMCID: PMC5007654 DOI: 10.1038/srep32566] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/11/2016] [Indexed: 12/27/2022] Open
Abstract
Although our knowledge of aging has greatly expanded in the past decades, it remains elusive why and how aging contributes to the development of age-related diseases (ARDs). In particular, a global mechanistic understanding of the connections between aging and ARDs is yet to be established. We rely on a network modelling named "GeroNet" to study the connections between aging and more than a hundred diseases. By evaluating topological connections between aging genes and disease genes in over three thousand subnetworks corresponding to various biological processes, we show that aging has stronger connections with ARD genes compared to non-ARD genes in subnetworks corresponding to "response to decreased oxygen levels", "insulin signalling pathway", "cell cycle", etc. Based on subnetwork connectivity, we can correctly "predict" if a disease is age-related and prioritize the biological processes that are involved in connecting to multiple ARDs. Using Alzheimer's disease (AD) as an example, GeroNet identifies meaningful genes that may play key roles in connecting aging and ARDs. The top modules identified by GeroNet in AD significantly overlap with modules identified from a large scale AD brain gene expression experiment, supporting that GeroNet indeed reveals the underlying biological processes involved in the disease.
Collapse
Affiliation(s)
- Jialiang Yang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Tao Huang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Won-min Song
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Francesca Petralia
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Charles V. Mobbs
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Bin Zhang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Yong Zhao
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Eric E. Schadt
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Jun Zhu
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Zhidong Tu
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| |
Collapse
|
69
|
Chiang MC, Cheng YC, Chen SJ, Yen CH, Huang RN. Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against Amyloid-beta-induced mitochondrial dysfunction. Exp Cell Res 2016; 347:322-31. [PMID: 27554603 DOI: 10.1016/j.yexcr.2016.08.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is the general consequence of dementia and is diagnostic neuropathology by the cumulation of amyloid-beta (Aβ) protein aggregates, which are thought to promote mitochondrial dysfunction processes leading to neurodegeneration. AMP-activated protein kinase (AMPK), a critical regulator of energy homeostasis and a major player in lipid and glucose metabolism, is potentially implied in the mitochondrial deficiency of AD. Metformin, one of the widespread used anti- metabolic disease drugs, use its actions in part by stimulation of AMPK. While the mechanisms of AD are well established, the neuronal roles for AMPK in AD are still not well understood. In the present study, human neural stem cells (hNSCs) exposed to Aβ had significantly reduced cell viability, which correlated with decreased AMPK, neuroprotective genes (Bcl-2 and CREB) and mitochondria associated genes (PGC1α, NRF-1 and Tfam) expressions, as well as increased activation of caspase 3/9 activity and cytosolic cytochrome c. Co-treatment with metformin distinct abolished the Aβ-caused actions in hNSCs. Metformin also significantly rescued hNSCs from Aβ-mediated mitochondrial deficiency (lower D-loop level, mitochondrial mass, maximal respiratory function, COX activity, and mitochondrial membrane potential). Importantly, co-treatment with metformin significantly restored fragmented mitochondria to almost normal morphology in the hNSCs with Aβ. These findings extend our understanding of the central role of AMPK in Aβ-related neuronal impairment. Thus, a better understanding of AMPK might assist in both the recognition of its critical effects and the implementation of new therapeutic strategies in the treatment of AD.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shiang-Jiuun Chen
- Department of Life Science and Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Chia-Hui Yen
- Department of International Business, Ming Chuan University, Taipei 111, Taiwan
| | - Rong-Nan Huang
- Department of Entomology and Research Center for Plant-Medicine, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
70
|
Hardman RJ, Kennedy G, Macpherson H, Scholey AB, Pipingas A. Adherence to a Mediterranean-Style Diet and Effects on Cognition in Adults: A Qualitative Evaluation and Systematic Review of Longitudinal and Prospective Trials. Front Nutr 2016; 3:22. [PMID: 27500135 PMCID: PMC4956662 DOI: 10.3389/fnut.2016.00022] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/05/2016] [Indexed: 01/01/2023] Open
Abstract
The Mediterranean-style diet (MedDiet) involves substantial intake of fruits, vegetables, and fish, and a lower consumption of dairy, red meat, and sugars. Over the past 15 years, much empirical evidence supports the suggestion that a MedDiet may be beneficial with respect to reducing the incidence of cardiovascular disease, cancer, metabolic syndrome, and dementia. A number of cross-sectional studies that have examined the impact of MedDiet on cognition have yielded largely positive results. The objective of this review is to evaluate longitudinal and prospective trials to gain an understanding of how a MedDiet may impact cognitive processes over time. The included studies were aimed at improving cognition or minimizing of cognitive decline. Studies reviewed included assessments of dietary status using either a food frequency questionnaire or a food diary assessment. Eighteen articles meeting our inclusion criteria were subjected to systematic review. These revealed that higher adherence to a MedDiet is associated with slower rates of cognitive decline, reduced conversion to Alzheimer's disease, and improvements in cognitive function. The specific cognitive domains that were found to benefit with improved Mediterranean Diet Score were memory (delayed recognition, long-term, and working memory), executive function, and visual constructs. The current review has also considered a number of methodological issues in making recommendations for future research. The utilization of a dietary pattern, such as the MedDiet, will be essential as part of the armamentarium to maintain quality of life and reduce the potential social and economic burden of dementia.
Collapse
Affiliation(s)
- Roy J. Hardman
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Greg Kennedy
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Helen Macpherson
- Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, VIC, Australia
| | - Andrew B. Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
71
|
Lippert T, Watson N, Ji X, Yasuhara T, Date I, Kaneko Y, Tajiri N, Borlongan CV. Detrimental effects of physical inactivity on neurogenesis. Brain Circ 2016; 2:80-85. [PMID: 30276277 PMCID: PMC6126252 DOI: 10.4103/2394-8108.186278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 01/01/2023] Open
Abstract
Patients diagnosed with neurological disorders exhibit a variety of physical and psychiatric symptoms, including muscle atrophy, general immobility, and depression. Patients who participate in physical rehabilitation at times show unexpected clinical improvement, which includes diminished depression and other stress-related behaviors. Regenerative medicine has advanced two major stem cell-based therapies for central nervous system (CNS) disorders, transplantation of exogenous stem cells, and enhancing the endogenous neurogenesis. The latter therapy utilizes a natural method of re-innervating the injured brain, which may mend neurological impairments. In this study, we examine how inactivity-induced atrophy, using the hindlimb suspension model, alters neurogenesis in rats. The hypothesis is that inactivity inhibits neurogenesis by decreasing circulation growth or trophic factors, such as vascular endothelial growth or neurotrophic factors. The restriction modifies neurogenesis and stem cell differentiation in the CNS, the stem cell microenvironment is examined by the trophic and growth factors, including stress-related proteins. Despite growing evidence revealing the benefits of “increased” exercise on neurogenesis, the opposing theory involving “physical inactivity,” which simulates pathological states, continues to be neglected. This novel theory will allow us to explore the effects on neurogenesis by an intransigent stem cell microenvironment likely generated by inactivity. 5-bromo-2-deoxyuridine labeling of proliferative cells, biochemical assays of serum, cerebrospinal fluid, and brain levels of trophic factors, growth factors, and stress-related proteins are suggested identifiers of neurogenesis, while evaluation of spontaneous movements will give insight into the psychomotor effects of inactivity. Investigations devised to show how in vivo stimulation, or lack thereof, affects the stem cell microenvironment are necessary to establish treatment methods to boost neurogenesis in bedridden patients.
Collapse
Affiliation(s)
- Trenton Lippert
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Nate Watson
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| |
Collapse
|
72
|
Santos LE, Beckman D, Ferreira ST. Microglial dysfunction connects depression and Alzheimer's disease. Brain Behav Immun 2016; 55:151-165. [PMID: 26612494 DOI: 10.1016/j.bbi.2015.11.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) and major depressive disorder (MDD) are highly prevalent neuropsychiatric conditions with intriguing epidemiological overlaps. Depressed patients are at increased risk of developing late-onset AD, and around one in four AD patients are co-diagnosed with MDD. Microglia are the main cellular effectors of innate immunity in the brain, and their activation is central to neuroinflammation - a ubiquitous process in brain pathology, thought to be a causal factor of both AD and MDD. Microglia serve several physiological functions, including roles in synaptic plasticity and neurogenesis, which may be disrupted in neuroinflammation. Following early work on the 'sickness behavior' of humans and other animals, microglia-derived inflammatory cytokines have been shown to produce depressive-like symptoms when administered exogenously or released in response to infection. MDD patients consistently show increased circulating levels of pro-inflammatory cytokines, and anti-inflammatory drugs show promise for treating depression. Activated microglia are abundant in the AD brain, and concentrate around senile plaques, hallmark lesions composed of aggregated amyloid-β peptide (Aβ). The Aβ burden in affected brains is regulated largely by microglial clearance, and the complex activation state of microglia may be crucial for AD progression. Intriguingly, recent reports have linked soluble Aβ oligomers, toxins that accumulate in AD brains and are thought to cause memory impairment, to increased brain cytokine production and depressive-like behavior in mice. Here, we review recent findings supporting the inflammatory hypotheses of AD and MDD, focusing on microglia as a common player and therapeutic target linking these devastating disorders.
Collapse
Affiliation(s)
- Luís Eduardo Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Danielle Beckman
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Sergio T Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| |
Collapse
|
73
|
Abstract
Stroke is the second foremost cause of mortality worldwide and a major cause of long-term disability. Due to changes in lifestyle and an aging population, the incidence of stroke continues to increase and stroke mortality predicted to exceed 12 % by the year 2030. However, the development of pharmacological treatments for stroke has failed to progress much in over 20 years since the introduction of the thrombolytic drug, recombinant tissue plasminogen activator. These alarming circumstances caused many research groups to search for alternative treatments in the form of neuroprotectants. Here, we consider the potential use of phytochemicals in the treatment of stroke. Their historical use in traditional medicine and their excellent safety profile make phytochemicals attractive for the development of therapeutics in human diseases. Emerging findings suggest that some phytochemicals have the ability to target multiple pathophysiological processes involved in stroke including oxidative stress, inflammation and apoptotic cell death. Furthermore, epidemiological studies suggest that the consumption of plant sources rich in phytochemicals may reduce stroke risk, and so reinforce the possibility of developing preventative or neuroprotectant therapies for stroke. In this review, we describe results of preclinical studies that demonstrate beneficial effects of phytochemicals in experimental models relevant to stroke pathogenesis, and we consider their possible mechanisms of action.
Collapse
|
74
|
Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine. Neuroscience 2016; 319:79-91. [DOI: 10.1016/j.neuroscience.2016.01.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
|
75
|
Patel V, Patel AM, McArdle JJ. Synaptic abnormalities of mice lacking toll-like receptor (TLR)-9. Neuroscience 2016; 324:1-10. [PMID: 26955780 DOI: 10.1016/j.neuroscience.2016.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 02/07/2023]
Abstract
Motor, sensory, and autonomic abnormalities are reported for toll-like receptor 9 (TLR9) knock-out (KO) mice. However, a physiological role of TLR9 in the nervous system is largely unknown. Since altered synaptic transmission can contribute to sensory and motor abnormalities, we evaluated neuromuscular junction (NMJ) function and morphology of TLR9 KO mice. Triangularis sterni nerve-muscle preparations were dissected from TLR9 KO and age-matched control mice. Two-electrode voltage clamp of the motor endplate revealed that the amplitude and frequency of miniature end plate currents (mEPCs) for TLR9 KO NMJs were significantly greater than control. In contrast, mean endplate current (EPC, 1Hz) amplitude was equivalent to control. The ratio of mean EPC to mean mEPC amplitude indicated a decline of quantal content (m) for TLR9 KO NMJs. Furthermore, m declined more rapidly than control in response to 50-Hz stimulus trains. A rightward shift of the mEPC amplitude distribution suggested formation of vesicles containing larger amounts of acetylcholine (ACh). Staining with rhodamine α-bungarotoxin revealed a significant decline of endplate size in TLR9 KO mice. This alteration may result from ACh-induced decline of acetylcholine receptor (AChR) expression resulting from increased frequency and amplitude of mEPCs. At the same time, excessive spontaneous vesicular ACh release may initiate retrograde suppression of excitation-secretion coupling. These data suggest a novel role of TLR9 in the development of the NMJ.
Collapse
Affiliation(s)
- V Patel
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers University, Newark, NJ 07103, USA.
| | - A M Patel
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers University, Newark, NJ 07103, USA
| | - J J McArdle
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
76
|
da Silva PGC, Domingues DD, de Carvalho LA, Allodi S, Correa CL. Neurotrophic factors in Parkinson's disease are regulated by exercise: Evidence-based practice. J Neurol Sci 2016; 363:5-15. [PMID: 27000212 DOI: 10.1016/j.jns.2016.02.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 12/24/2022]
Abstract
We carried out a qualitative review of the literature on the influence of forced or voluntary exercise in Parkinson's Disease (PD)-induced animals, to better understand neural mechanisms and the role of neurotrophic factors (NFs) involved in the improvement of motor behavior. A few studies indicated that forced or voluntary exercise may promote neuroprotection, through upregulation of NF expression, against toxicity of drugs that simulate PD. Forced training, such as treadmill exercise and forced-limb use, adopted in most studies, in addition to voluntary exercise on a running wheel are suitable methods for NFs upregulation.
Collapse
Affiliation(s)
- Paula Grazielle Chaves da Silva
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Daniel Desidério Domingues
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Litia Alves de Carvalho
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas-Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Clynton Lourenço Correa
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-Graduação em Educação Física, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
77
|
Yoon H, Kleven A, Paulsen A, Kleppe L, Wu J, Ying Z, Gomez-Pinilla F, Scarisbrick IA. Interplay between exercise and dietary fat modulates myelinogenesis in the central nervous system. Biochim Biophys Acta Mol Basis Dis 2016; 1862:545-555. [PMID: 26826016 DOI: 10.1016/j.bbadis.2016.01.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/15/2015] [Accepted: 01/14/2016] [Indexed: 12/14/2022]
Abstract
Here we show that the interplay between exercise training and dietary fat regulates myelinogenesis in the adult central nervous system. Mice consuming high fat with coordinate voluntary running wheel exercise for 7weeks showed increases in the abundance of the major myelin membrane proteins, proteolipid (PLP) and myelin basic protein (MBP), in the lumbosacral spinal cord. Expression of MBP and PLP RNA, as well that for Myrf1, a transcription factor driving oligodendrocyte differentiation were also differentially increased under each condition. Furthermore, expression of IGF-1 and its receptor IGF-1R, known to promote myelinogenesis, were also increased in the spinal cord in response to high dietary fat or exercise training. Parallel increases in AKT signaling, a pro-myelination signaling intermediate activated by IGF-1, were also observed in the spinal cord of mice consuming high fat alone or in combination with exercise. Despite the pro-myelinogenic effects of high dietary fat in the context of exercise, high fat consumption in the setting of a sedentary lifestyle reduced OPCs and mature oligodendroglia. Whereas 7weeks of exercise training alone did not alter OPC or oligodendrocyte numbers, it did reverse reductions seen with high fat. Evidence is presented suggesting that the interplay between exercise and high dietary fat increase SIRT1, PGC-1α and antioxidant enzymes which may permit oligodendroglia to take advantage of diet and exercise-related increases in mitochondrial activity to yield increases in myelination despite higher levels of reactive oxygen species.
Collapse
Affiliation(s)
- Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew Kleven
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | - Alex Paulsen
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | - Laurel Kleppe
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | - Jianmin Wu
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, USA
| | | | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
78
|
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015; 11:1164-78. [PMID: 26788077 PMCID: PMC4697050 DOI: 10.5114/aoms.2015.56342] [Citation(s) in RCA: 693] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/05/2014] [Indexed: 01/09/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival and growth, serves as a neurotransmitter modulator, and participates in neuronal plasticity, which is essential for learning and memory. It is widely expressed in the CNS, gut and other tissues. BDNF binds to its high affinity receptor TrkB (tyrosine kinase B) and activates signal transduction cascades (IRS1/2, PI3K, Akt), crucial for CREB and CBP production, that encode proteins involved in β cell survival. BDNF and insulin-like growth factor-1 have similar downstream signaling mechanisms incorporating both p-CAMK and MAPK that increase the expression of pro-survival genes. Brain-derived neurotrophic factor regulates glucose and energy metabolism and prevents exhaustion of β cells. Decreased levels of BDNF are associated with neurodegenerative diseases with neuronal loss, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Thus, BDNF may be useful in the prevention and management of several diseases including diabetes mellitus.
Collapse
Affiliation(s)
- Siresha Bathina
- Bio-Science Research Center, Gayatri Vidya Parishad College of Engineering, Visakhapatnam, India
| | - Undurti N. Das
- Bio-Science Research Center, Gayatri Vidya Parishad College of Engineering, Visakhapatnam, India
- UND Life Sciences, USA
| |
Collapse
|
79
|
Haas CB, Kalinine E, Zimmer ER, Hansel G, Brochier AW, Oses JP, Portela LV, Muller AP. Brain Insulin Administration Triggers Distinct Cognitive and Neurotrophic Responses in Young and Aged Rats. Mol Neurobiol 2015; 53:5807-5817. [PMID: 26497034 DOI: 10.1007/s12035-015-9494-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/15/2015] [Indexed: 11/27/2022]
Abstract
Aging is a major risk factor for cognitive deficits and neurodegenerative disorders, and impaired brain insulin receptor (IR) signaling is mechanistically linked to these abnormalities. The main goal of this study was to investigate whether brain insulin infusions improve spatial memory in aged and young rats. Aged (24 months) and young (4 months) male Wistar rats were intracerebroventricularly injected with insulin (20 mU) or vehicle for five consecutive days. The animals were then assessed for spatial memory using a Morris water maze. Insulin increased memory performance in young rats, but not in aged rats. Thus, we searched for cellular and molecular mechanisms that might account for this distinct memory response. In contrast with our expectation, insulin treatment increased the proliferative activity in aged rats, but not in young rats, implying that neurogenesis-related effects do not explain the lack of insulin effects on memory in aged rats. Furthermore, the expression levels of the IR and downstream signaling proteins such as GSK3-β, mTOR, and presynaptic protein synaptophysin were increased in aged rats in response to insulin. Interestingly, insulin treatment increased the expression of the brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) receptors in the hippocampus of young rats, but not of aged rats. Our data therefore indicate that aged rats can have normal IR downstream protein expression but failed to mount a BDNF response after challenge in a spatial memory test. In contrast, young rats showed insulin-mediated TrkB/BDNF response, which paralleled with improved memory performance.
Collapse
Affiliation(s)
- Clarissa B Haas
- Departamento de Bioquímica, ICBS, UFRGS. Programa de Pós Graduação em Ciências Biológicas-Bioquímica, Rua Ramiro Barcelos, 2600 anexo, CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduardo Kalinine
- Departamento de Bioquímica, ICBS, UFRGS. Programa de Pós Graduação em Ciências Biológicas-Bioquímica, Rua Ramiro Barcelos, 2600 anexo, CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduardo R Zimmer
- Departamento de Bioquímica, ICBS, UFRGS. Programa de Pós Graduação em Ciências Biológicas-Bioquímica, Rua Ramiro Barcelos, 2600 anexo, CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
- Instituto do Cérebro do Rio Grande do Sul (InsCer ), PUCRS, A. Ipiranga, 6690, prédio 63 - Bairro, Jardim Botânico, CEP 90610.000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gisele Hansel
- Departamento de Bioquímica, ICBS, UFRGS. Programa de Pós Graduação em Ciências Biológicas-Bioquímica, Rua Ramiro Barcelos, 2600 anexo, CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andressa W Brochier
- Departamento de Bioquímica, ICBS, UFRGS. Programa de Pós Graduação em Ciências Biológicas-Bioquímica, Rua Ramiro Barcelos, 2600 anexo, CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jean P Oses
- Programa de Pós-Graduação em Saúde & Comportamento Centro de Ciências da Vida e da Saúde, Universidade Católica de Pelotas, Rua Almirante Barroso, 1202 sala G109, CEP: 96010-280, Pelotas, RS, Brazil
| | - Luis V Portela
- Departamento de Bioquímica, ICBS, UFRGS. Programa de Pós Graduação em Ciências Biológicas-Bioquímica, Rua Ramiro Barcelos, 2600 anexo, CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alexandre P Muller
- Unidade de Ciências da Saúde, Laboratório de Bioquímica e Fisiologia do Exercício Universidade do Extremo Sul Catarinense-UNESC, Av. Universitária, 1105 - Bairro Universitário, CEP: 88806-000, Criciúma, Santa Catarina, Brazil.
| |
Collapse
|
80
|
Chen GH, Tong JJ, Wang F, Hu XQ, Li XW, Tao F, Wei ZJ. Chronic adjunction of 1-deoxynojirimycin protects from age-related behavioral and biochemical changes in the SAMP8 mice. AGE (DORDRECHT, NETHERLANDS) 2015; 37:102. [PMID: 26400487 PMCID: PMC5005858 DOI: 10.1007/s11357-015-9839-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/15/2015] [Indexed: 05/24/2023]
Abstract
Several studies have indicated that a caloric restriction mimetic or treatment for type 2 diabetes may reverse brain aging. Therefore, we investigated the effect of 1-deoxynojirimycin (DNJ), an alkaloid acting as an inhibitor of α-glucosidase, on age-related behavioral and biochemical changes. SAMP8 mice were randomly assigned to a control group labeled "old" or to the 10- or 20-mg/kg/day DNJ groups. The mice in the DNJ groups were administered DNJ orally from 3 to 9 months of age, and then, a "young" control group was added to analyze the age effect. The old controls exhibited significant declines in sensorimotor ability, open-field anxiety, spatial and nonspatial memory abilities, and age-related biochemical changes, including decreased serum insulin level; increased levels of insulin-like growth factor 1 receptor, presynaptic protein synaptotagmin-1, and astrocyte activation; and decreased levels of insulin receptor, brain-derived neurotrophic factor, presynaptic protein syntaxin-1, and acetylation of histones H4 at lysine 8 in the dorsal hippocampus. Significant correlations exist between the age-related behavioral deficits and the serological and histochemical data. Chronic DNJ treatment alleviated these age-related changes, and the 20-mg/kg/day DNJ group showed more significant improvement. Thus, DNJ may have the potential to maintain successful brain aging.
Collapse
Affiliation(s)
- Gui-Hai Chen
- Department of Neurology, the Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Hefei, 238000, People's Republic of China.
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, Anhui, People's Republic of China.
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Jing-Jing Tong
- Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Fang Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Xue-Qin Hu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, Anhui, People's Republic of China
| | - Xue-Wei Li
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Fei Tao
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Zhao-Jun Wei
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, Anhui, People's Republic of China.
| |
Collapse
|
81
|
Lee S, Park S, Won J, Lee SR, Chang KT, Hong Y. The Incremental Induction of Neuroprotective Properties by Multiple Therapeutic Strategies for Primary and Secondary Neural Injury. Int J Mol Sci 2015; 16:19657-70. [PMID: 26295390 PMCID: PMC4581318 DOI: 10.3390/ijms160819657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 01/09/2023] Open
Abstract
Neural diseases including injury by endogenous factors, traumatic brain injury, and degenerative neural injury are eventually due to reactive oxygen species (ROS). Thus ROS generation in neural tissues is a hallmark feature of numerous forms of neural diseases. Neural degeneration and the neural damage process is complex, involving a vast array of tissue structure, transcriptional/translational, electrochemical, metabolic, and functional events within the intact neighbors surrounding injured neural tissues. During aging, multiple changes involving physical, chemical, and biochemical processes occur from the molecular to the morphological levels in neural tissues. Among many recommended therapeutic candidates, melatonin also plays a role in protecting the nervous system from anti-inflammation and efficiently safeguards neuronal cells via antioxidants and other endogenous/exogenous beneficial factors. Therefore, given the wide range of mechanisms responsible for neuronal damage, multi-action drugs or therapies for the treatment of neural injury that make use of two or more agents and target several pathways may have greater efficacy in promoting functional recovery than a single therapy alone.
Collapse
Affiliation(s)
- Seunghoon Lee
- Department of Physical Therapy, College of Biomedical Science & Engineering, Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
| | - Sookyoung Park
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Life Sciences, Kyungnam University, Changwon 51767, Korea.
| | - Jinyoung Won
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea.
| | - Kyu-Tae Chang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea.
| | - Yonggeun Hong
- Department of Physical Therapy, College of Biomedical Science & Engineering, Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
| |
Collapse
|
82
|
Rodriguez M, Rodriguez-Sabate C, Morales I, Sanchez A, Sabate M. Parkinson's disease as a result of aging. Aging Cell 2015; 14:293-308. [PMID: 25677794 PMCID: PMC4406659 DOI: 10.1111/acel.12312] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2014] [Indexed: 12/15/2022] Open
Abstract
It is generally considered that Parkinson's disease is induced by specific agents that degenerate a clearly defined population of dopaminergic neurons. Data commented in this review suggest that this assumption is not as clear as is often thought and that aging may be critical for Parkinson's disease. Neurons degenerating in Parkinson's disease also degenerate in normal aging, and the different agents involved in the etiology of this illness are also involved in aging. Senescence is a wider phenomenon affecting cells all over the body, whereas Parkinson's disease seems to be restricted to certain brain centers and cell populations. However, reviewed data suggest that Parkinson's disease may be a local expression of aging on cell populations which, by their characteristics (high number of synaptic terminals and mitochondria, unmyelinated axons, etc.), are highly vulnerable to the agents promoting aging. The development of new knowledge about Parkinson's disease could be accelerated if the research on aging and Parkinson's disease were planned together, and the perspective provided by gerontology gains relevance in this field.
Collapse
Affiliation(s)
- Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La LagunaLa Laguna, Spain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)La Laguna, Spain
| | - Clara Rodriguez-Sabate
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)La Laguna, Spain
| | - Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La LagunaLa Laguna, Spain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)La Laguna, Spain
| | - Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La LagunaLa Laguna, Spain
| | - Magdalena Sabate
- Rehabilitation Service, Department of Pharmacology and Physical Medicine, Faculty of Medicine, University of La LagunaLa Laguna, Spain
| |
Collapse
|
83
|
Tong JJ, Chen GH, Wang F, Li XW, Cao L, Sui X, Tao F, Yan WW, Wei ZJ. Chronic acarbose treatment alleviates age-related behavioral and biochemical changes in SAMP8 mice. Behav Brain Res 2015; 284:138-52. [DOI: 10.1016/j.bbr.2015.01.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/26/2015] [Accepted: 01/30/2015] [Indexed: 12/24/2022]
|
84
|
Watson N, Ji X, Yasuhara T, Date I, Kaneko Y, Tajiri N, Borlongan CV. No pain, no gain: lack of exercise obstructs neurogenesis. Cell Transplant 2015; 24:591-7. [PMID: 25806858 DOI: 10.3727/096368915x687723] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bedridden patients develop atrophied muscles, their daily activities greatly reduced, and some display a depressive mood. Patients who are able to receive physical rehabilitation sometimes show surprising clinical improvements, including reduced depression and attenuation of other stress-related behaviors. Regenerative medicine has advanced two major stem cell-based therapies for CNS disorders, namely, transplantation of exogenous stem cells and amplification of endogenous neurogenesis. The latter strategy embraces a natural way of reinnervating the damaged brain and correcting the neurological impairments. In this study, we discussed how immobilization-induced disuse atrophy, using the hindlimb suspension model, affects neurogenesis in rats. The overarching hypothesis is that immobilization suppresses neurogenesis by reducing the circulating growth or trophic factors, such as vascular endothelial growth factor or brain-derived neurotrophic factor. That immobilization alters neurogenesis and stem cell differentiation in the CNS requires characterization of the stem cell microenvironment by examining the trophic and growth factors, as well as stress-related proteins that have been implicated in exercise-induced neurogenesis. Although accumulating evidence has revealed the contribution of "increased" exercise on neurogenesis, the reverse paradigm involving "lack of exercise," which mimics pathological states (e.g., stroke patients are often immobile), remains underexplored. This novel paradigm will enable us to examine the effects on neurogenesis by a nonpermissive stem cell microenvironment likely produced by lack of exercise. BrdU labeling of proliferative cells, biochemical assays of serum, cerebrospinal fluid and brain levels of trophic factors, growth factors, and stress-related proteins are proposed as indices of neurogenesis, while quantitative measurements of spontaneous movements will reveal psychomotor components of immobilization. Studies designed to reveal how in vivo stimulation, or lack thereof, alters the stem cell microenvironment are needed to begin to develop treatment strategies for enhancing neurogenesis in bedridden patients.
Collapse
Affiliation(s)
- Nate Watson
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Hadjighassem M, Kamalidehghan B, Shekarriz N, Baseerat A, Molavi N, Mehrpour M, Joghataei MT, Tondar M, Ahmadipour F, Meng GY. Oral consumption of α-linolenic acid increases serum BDNF levels in healthy adult humans. Nutr J 2015; 14:20. [PMID: 25889793 PMCID: PMC4353682 DOI: 10.1186/s12937-015-0012-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/16/2015] [Indexed: 02/04/2023] Open
Abstract
Background aims Dietary omega-6 and omega-3 fatty acids have remarkable impacts on the levels of DHA in the brain and retina. Low levels of DHA in plasma and blood hamper visual and neural development in children and cause dementia and cognitive decline in adults. The level of brain-derived neurotrophic factors (BDNF) changes with dietary omega-3 fatty acid intake. BDNF is known for its effects on promoting neurogenesis and neuronal survival. Methods In this study, we examined the effect of the oral consumption of α-Linolenic acid (ALA) on blood levels of BDNF and Malondialdehyde (MDA) in healthy adult humans. 30 healthy volunteers, 15 men and 15 women, were selected randomly. Each individual served as his or her own control. Before consuming the Flaxseed oil capsules, 5cc blood from each individual was sampled in order to measure the plasma levels of BDNF and MDA as baseline controls. During the experiment, each individual was given 3 oral capsules of flaxseed oil, containing 500mg of alpha linolenic acid, daily for one week. Then, plasma levels of BDNF and MDA were tested. Results The plasma levels of BDNF and MDA significantly (P < 0.05) increased in individuals who received the oral capsules of ALA. Plasma levels of BDNF increased more in the women in comparison with the men. Conclusion ALA treatment could be a feasible approach to reduce size of infarcts in stroke patients. Thus, ALA could be used in adjunction with routine stroke therapies to minimize brain lesions caused by stroke.
Collapse
Affiliation(s)
- Mahmoudreza Hadjighassem
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Brain and Spinal Cord Research Center, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran.
| | - Behnam Kamalidehghan
- Department of Pharmacy, Faculty of Medicine, University of Malaya (UM), Kuala Lumpur, Malaysia.
| | - Nima Shekarriz
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Argavan Baseerat
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Nima Molavi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Masoud Mehrpour
- Department of Neurology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Tondar
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, USA.
| | - Fatemeh Ahmadipour
- Department of Pharmacy, Faculty of Medicine, University of Malaya (UM), Kuala Lumpur, Malaysia.
| | - Goh Yong Meng
- Department of Animal Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia.
| |
Collapse
|
86
|
Buresh R, Berg K. A tutorial on oxidative stress and redox signaling with application to exercise and sedentariness. SPORTS MEDICINE-OPEN 2015; 1:3. [PMID: 27747840 PMCID: PMC4532704 DOI: 10.1186/s40798-014-0003-7] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/23/2014] [Indexed: 11/24/2023]
Abstract
Oxidative stress has been shown to play a role in the etiology of several chronic diseases, including cardiovascular disease, diabetes mellitus, and cancer. Free radicals and, most prominently, the superoxide radical, result from oxidative metabolism and several enzyme-catalyzed reactions, and endogenous cellular antioxidants dismutate many reactive oxygen species (ROS). Under certain conditions, ROS production can outpace dismutation (e.g., long-term sedentariness and positive energy balance) and the result is oxidative stress, with proteins, lipids, and DNA the most common targets of radicals. However, the molecules that contribute to oxidative stress also appear to participate in vital cell signaling activity that supports health and stimulates favorable adaptations to exercise training, such that inhibiting ROS formation prevents common adaptations to training. Furthermore, researchers have recently suggested that some proteins are not as readily formed when the redox state of the cell is insufficiently oxidative. Exercise training appears to optimize the redox environment by dramatically enhancing the capacity of the cell to neutralize ROS while regularly creating oxidative environments in which membrane and secretory proteins can be synthesized. The role that exercise plays in enhancing management of ROS likely explains many of the associated health benefits.
Collapse
Affiliation(s)
- Robert Buresh
- Department of Exercise Science and Sport Management, Kennesaw State University, 520 Parliament Garden Way NW, Kennesaw, GA, 30144, USA.
| | - Kris Berg
- School of Health, Physical Education, and Recreation, University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
87
|
Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase. Curr Biol 2014; 25:163-174. [PMID: 25557666 DOI: 10.1016/j.cub.2014.11.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/13/2014] [Accepted: 11/17/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cellular mechanisms aimed at repairing protein damage and maintaining homeostasis, widely understood to be triggered by the damage itself, have recently been shown to be under cell nonautonomous control in the metazoan C. elegans. The heat shock response (HSR) is one such conserved mechanism, activated by cells upon exposure to proteotoxic conditions such as heat. Previously, we had shown that this conserved cytoprotective response is regulated by the thermosensory neuronal circuitry of C. elegans. Here, we investigate the mechanisms and physiological relevance of neuronal control. RESULTS By combining optogenetic methods with live visualization of the dynamics of the heat shock transcription factor (HSF1), we show that excitation of the AFD thermosensory neurons is sufficient to activate HSF1 in another cell, even in the absence of temperature increase. Excitation of the AFD thermosensory neurons enhances serotonin release. Serotonin release elicited by direct optogenetic stimulation of serotonergic neurons activates HSF1 and upregulates molecular chaperones through the metabotropic serotonin receptor SER-1. Consequently, excitation of serotonergic neurons alone can suppress protein misfolding in C. elegans peripheral tissue. CONCLUSIONS These studies imply that thermosensory activity coupled to serotonergic signaling is sufficient to activate the protective HSR prior to frank proteotoxic damage. The ability of neurosensory release of serotonin to control cellular stress responses and activate HSF1 has powerful implications for the treatment of protein conformation diseases.
Collapse
|
88
|
Jonas A, Thiem S, Kuhlmann T, Wagener R, Aszodi A, Nowell C, Hagemeier K, Laverick L, Perreau V, Jokubaitis V, Emery B, Kilpatrick T, Butzkueven H, Gresle M. Axonally derived matrilin-2 induces proinflammatory responses that exacerbate autoimmune neuroinflammation. J Clin Invest 2014; 124:5042-56. [PMID: 25329699 DOI: 10.1172/jci71385] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/11/2014] [Indexed: 01/14/2023] Open
Abstract
In patients with multiple sclerosis (MS) and mice with experimental autoimmune encephalomyelitis (EAE), inflammatory axonal injury is a major determinant of disability; however, the drivers of this injury are incompletely understood. Here, we used the EAE model and determined that the extracellular matrix protein matrilin-2 (MATN2) is an endogenous neuronal molecule that is regulated in association with inflammatory axonal injury. Compared with WT mice, mice harboring a deletion of Matn2 exhibited reduced disease severity and axon damage following induction of EAE. Evaluation of neuron-macrophage cocultures revealed that exogenous MATN2 specifically signals through TLR4 and directly induces expression of proinflammatory genes in macrophages, promoting axonal damage. Moreover, the MATN2-induced proinflammatory response was attenuated greatly in macrophages from Myd88 KO mice. Examination of brain sections from patients with MS revealed that MATN2 is expressed in lesions but not in normal-appearing white matter. Together, our results indicate that MATN2 is a deleterious endogenous neuroaxonal injury response signal that activates innate immune cells and could contribute to early axonal damage in CNS inflammatory diseases like MS.
Collapse
|
89
|
Joshi R, Garabadu D, Teja GR, Krishnamurthy S. Silibinin ameliorates LPS-induced memory deficits in experimental animals. Neurobiol Learn Mem 2014; 116:117-31. [PMID: 25444719 DOI: 10.1016/j.nlm.2014.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/19/2014] [Accepted: 09/27/2014] [Indexed: 01/19/2023]
Abstract
Neuroinflammation is considered as one of the predisposing factor in the etiology of several neurodegenerative disorders. Therefore, the objective of the present study was to evaluate the protective effect of silibinin (SIL) in the lipopolysaccharide (LPS)-induced neuroinflammatory model. The effect of SIL on memory function was also evaluated on normal rats without LPS administration. In the first experiment, male rats were divided into five groups. Except control group animals, all rats received bilateral intracerebroventricular injection of LPS (5 μg/5 μl) into lateral ventricles on the first day of the experimental schedule. Control rats received bilateral intracerebroventricular injection of artificial cerebrospinal fluid into lateral ventricles. SIL in doses of 50, 100 and 200 mg/kg, p.o. was administered 1h before LPS injection and continued for 7 days. On Day-7, SIL attenuated the LPS-induced long-term and working memory loss in elevated plus and Y-maze test respectively. Further, SIL dose-dependently attenuated LPS-induced decrease in acetylcholine level and increase in the acetylcholinestrase activity in hippocampus and pre-frontal cortex. SIL ameliorated LPS-induced decrease in the mitochondrial complex activity (I, IV and V) and integrity, increase in lipid peroxidation and decrease in the activity of superoxide dismutase in both the brain regions. SIL attenuated amyloidogenesis in the hippocampus, while it decreased the LPS-induced increase in the level of NFκB in the pre-frontal cortex. In another study, SIL dose-dependently, enhanced memory functions in the normal rats, indicating its nootropic activity. Hence, SIL could be a potential candidate in the management of neuroinflammation-related memory disorders.
Collapse
Affiliation(s)
- Ritu Joshi
- Neurotherapeutics Lab, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Debapriya Garabadu
- Neurotherapeutics Lab, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gangineni Ravi Teja
- Neurotherapeutics Lab, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Lab, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
90
|
Shu X, Zhang Y, Xu H, Kang K, Cai D. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia. Neural Regen Res 2014; 8:2370-8. [PMID: 25206547 PMCID: PMC4146044 DOI: 10.3969/j.issn.1673-5374.2013.25.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 07/20/2013] [Indexed: 11/18/2022] Open
Abstract
Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance.
Collapse
Affiliation(s)
- Xiaoliang Shu
- Department of Nutrition, Affiliated Dongfang Hospital of Tongji University, Shanghai 200120, China
| | - Yongsheng Zhang
- Department of Nutrition, First Affiliated Hospital of Guangxi Medical University, Nanning 530027, Guangxi Zhuang Autonomous Region, China
| | - Han Xu
- Department of Nutrition, Affiliated Dongfang Hospital of Tongji University, Shanghai 200120, China
| | - Kai Kang
- Department of Nutrition, Affiliated Dongfang Hospital of Tongji University, Shanghai 200120, China
| | - Donglian Cai
- Department of Nutrition, Affiliated Changhai Hospital of the Second Military Medical University of Chinese PLA, Shanghai 200433, China
| |
Collapse
|
91
|
Li-Byarlay H, Rittschof CC, Massey JH, Pittendrigh BR, Robinson GE. Socially responsive effects of brain oxidative metabolism on aggression. Proc Natl Acad Sci U S A 2014; 111:12533-7. [PMID: 25092297 PMCID: PMC4151721 DOI: 10.1073/pnas.1412306111] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite ongoing high energetic demands, brains do not always use glucose and oxygen in a ratio that produces maximal ATP through oxidative phosphorylation. In some cases glucose consumption exceeds oxygen use despite adequate oxygen availability, a phenomenon known as aerobic glycolysis. Although metabolic plasticity seems essential for normal cognition, studying its functional significance has been challenging because few experimental systems link brain metabolic patterns to distinct behavioral states. Our recent transcriptomic analysis established a correlation between aggression and decreased whole-brain oxidative phosphorylation activity in the honey bee (Apis mellifera), suggesting that brain metabolic plasticity may modulate this naturally occurring behavior. Here we demonstrate that the relationship between brain metabolism and aggression is causal, conserved over evolutionary time, cell type-specific, and modulated by the social environment. Pharmacologically treating honey bees to inhibit complexes I or V in the oxidative phosphorylation pathway resulted in increased aggression. In addition, transgenic RNAi lines and genetic manipulation to knock down gene expression in complex I in fruit fly (Drosophila melanogaster) neurons resulted in increased aggression, but knockdown in glia had no effect. Finally, honey bee colony-level social manipulations that decrease individual aggression attenuated the effects of oxidative phosphorylation inhibition on aggression, demonstrating a specific effect of the social environment on brain function. Because decreased neuronal oxidative phosphorylation is usually associated with brain disease, these findings provide a powerful context for understanding brain metabolic plasticity and naturally occurring behavioral plasticity.
Collapse
Affiliation(s)
- Hongmei Li-Byarlay
- Department of Entomology, Department of Entomology, North Carolina State University, Raleigh, NC 27607
| | - Clare C Rittschof
- Department of Entomology, Institute for Genomic Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801; and
| | | | | | - Gene E Robinson
- Department of Entomology, Institute for Genomic Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801; and
| |
Collapse
|
92
|
|
93
|
Nikkhah A, Ghahremanitamadon F, Zargooshnia S, Shahidi S, Soleimani Asl S. Effect of Amyloid β- Peptide on Passive Avoidance Learning in Rats: A Behavioral Study. ACTA ACUST UNITED AC 2014. [DOI: 10.17795/ajnpp-18664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
94
|
Petralia RS, Mattson MP, Yao PJ. Aging and longevity in the simplest animals and the quest for immortality. Ageing Res Rev 2014; 16:66-82. [PMID: 24910306 DOI: 10.1016/j.arr.2014.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/08/2014] [Accepted: 05/22/2014] [Indexed: 12/12/2022]
Abstract
Here we review the examples of great longevity and potential immortality in the earliest animal types and contrast and compare these to humans and other higher animals. We start by discussing aging in single-celled organisms such as yeast and ciliates, and the idea of the immortal cell clone. Then we describe how these cell clones could become organized into colonies of different cell types that lead to multicellular animal life. We survey aging and longevity in all of the basal metazoan groups including ctenophores (comb jellies), sponges, placozoans, cnidarians (hydras, jellyfish, corals and sea anemones) and myxozoans. Then we move to the simplest bilaterian animals (with a head, three body cell layers, and bilateral symmetry), the two phyla of flatworms. A key determinant of longevity and immortality in most of these simple animals is the large numbers of pluripotent stem cells that underlie the remarkable abilities of these animals to regenerate and rejuvenate themselves. Finally, we discuss briefly the evolution of the higher bilaterians and how longevity was reduced and immortality lost due to attainment of greater body complexity and cell cycle strategies that protect these complex organisms from developing tumors. We also briefly consider how the evolution of multiple aging-related mechanisms/pathways hinders our ability to understand and modify the aging process in higher organisms.
Collapse
|
95
|
Protective effects of Borago officinalis extract on amyloid β-peptide(25-35)-induced memory impairment in male rats: a behavioral study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:798535. [PMID: 25013802 PMCID: PMC4071970 DOI: 10.1155/2014/798535] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and most common form of dementia that leads to memory impairment. In the present study we have examined the protective effects of Borago officinalis (borage) extract on Amyloid β (A β)-Induced memory impairment. Wistar male rats received intrahippocampal (IHP) injection of the A β (25-35) and borage extract throughout gestation (100 mg/kg). Learning and memory functions in the rats were examined by the passive avoidance and the Morris water maze (MWM) tasks. Finally, the antioxidant capacity of hippocampus was measured using ferric ion reducing antioxidant power (FRAP) assay. The results showed that A β (25-35) impaired step-through latency and time in dark compartment in passive avoidance task. In the MWM, A β (25-35) significantly increased escape latency and traveled distance. Borage administration attenuated the A β-induced memory impairment in both the passive avoidance and the MWM tasks. A β induced a remarkable decrease in antioxidant power (FRAP value) of hippocampus and borage prevented the decrease of the hippocampal antioxidant status. This data suggests that borage could improve the learning impairment and oxidative damage in the hippocampal tissue following A β treatment and that borage consumption may lead to an improvement of AD-induced cognitive dysfunction.
Collapse
|
96
|
Bódis J, Papp S, Vermes I, Sulyok E, Tamás P, Farkas B, Zámbó K, Hatzipetros I, Kovács GL. "Platelet-associated regulatory system (PARS)" with particular reference to female reproduction. J Ovarian Res 2014; 7:55. [PMID: 24883111 PMCID: PMC4039651 DOI: 10.1186/1757-2215-7-55] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
Abstract
Background Blood platelets play an essential role in hemostasis, thrombosis and coagulation of blood. Beyond these classic functions their involvement in inflammatory, neoplastic and immune processes was also investigated. It is well known, that platelets have an armament of soluble molecules, factors, mediators, chemokines, cytokines and neurotransmitters in their granules, and have multiple adhesion molecules and receptors on their surface. Methods Selected relevant literature and own views and experiences as clinical observations have been used. Results Considering that platelets are indispensable in numerous homeostatic endocrine functions, it is reasonable to suppose that a platelet-associated regulatory system (PARS) may exist; internal or external triggers and/or stimuli may complement and connect regulatory pathways aimed towards target tissues and/or cells. The signal (PAF, or other tissue/cell specific factors) comes from the stimulated (by the e.g., hypophyseal hormones, bacteria, external factors, etc.) organs or cells, and activates platelets. Platelet activation means their aggregation, sludge formation, furthermore the release of the for-mentioned biologically very powerful factors, which can locally amplify and deepen the tissue specific cell reactions. If this process is impaired or inhibited for any reason, the specifically stimulated organ shows hypofunction. When PARS is upregulated, organ hyperfunction may occur that culminate in severe diseases. Conclusion Based on clinical and experimental evidences we propose that platelets modulate the function of hypothalamo-hypophyseal-ovarian system. Specifically, hypothalamic GnRH releases FSH from the anterior pituitary, which induces and stimulates follicular and oocyte maturation and steroid hormone secretion in the ovary. At the same time follicular cells enhance PAF production. Through these pathways activated platelets are accumulated in the follicular vessels surrounding the follicle and due to its released soluble molecules (factors, mediators, chemokines, cytokines, neurotransmitters) locally increase oocyte maturation and hormone secretion. Therefore we suggest that platelets are not only a small participant but may be the conductor or active mediator of this complex regulatory system which has several unrevealed mechanisms. In other words platelets are corpuscular messengers, or are more than a member of the family providing hemostasis.
Collapse
Affiliation(s)
- József Bódis
- Department of Obstetrics and Gynecology, University of Pécs, 7624 Pécs Édesanyák útja 17, Hungary ; HAS-UP Human reproduction scientific research group, 7624 Pécs Édesanyák útja 17, Hungary
| | - Szilárd Papp
- Department of Obstetrics and Gynecology, University of Pécs, 7624 Pécs Édesanyák útja 17, Hungary
| | - István Vermes
- Institiute of Diagnostics, Faculty of Health Sciences, University of Pécs, 7400 Kaposvár, Szent Imre u. 14/b, Hungary
| | - Endre Sulyok
- Faculty of Health Sciences, University of Pécs, 7621 Pécs Vörösmarty u. 4, Hungary
| | - Péter Tamás
- Department of Obstetrics and Gynecology, University of Pécs, 7624 Pécs Édesanyák útja 17, Hungary
| | - Bálint Farkas
- Department of Obstetrics and Gynecology, University of Pécs, 7624 Pécs Édesanyák útja 17, Hungary
| | - Katalin Zámbó
- Department of Nuclear Medicine, University of Pécs, 7624 Pécs Ifjúság u. 13, Hungary
| | - Ioannis Hatzipetros
- Department of Obstetrics and Gynecology, University of Pécs, 7624 Pécs Édesanyák útja 17, Hungary
| | - Gábor L Kovács
- Department of Laboratory Medicine, University of Pécs, 7624 Pécs Ifjúság u. 13, Hungary ; Szentagothai Research Centre, University of Pécs, 7624 Pécs, Ifjúsag u. 20., Hungary
| |
Collapse
|
97
|
Tzeng WY, Chen LH, Cherng CG, Tsai YN, Yu L. Sex differences and the modulating effects of gonadal hormones on basal and the stressor-decreased newly proliferative cells and neuroblasts in dentate gyrus. Psychoneuroendocrinology 2014; 42:24-37. [PMID: 24636498 DOI: 10.1016/j.psyneuen.2014.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/06/2014] [Accepted: 01/06/2014] [Indexed: 01/23/2023]
Abstract
This study was undertaken to assess sex differences and the modulating effects of gonad intactness and the estrous phase on basal and the stressor-decreased cell proliferation and early differentiation in Balb/C mouse dentate gyrus (DG). Besides, we compared the stress-reversing effects exerted by the presence of male and female Balb/C mouse odors in stressed male and female mouse DG in this regard. Female mice had lower baselines in the number of newly proliferated cells and neuroblasts than male mice. Although the stressor induced decreases in the number of newly proliferative cells and neuroblasts in both male and female DG, an obvious decrease in neuronal lineage commitment was observed in female DG. Moreover, ovariectomy induced decreases in baselines in the number of proliferative cells and neuroblasts but did not affect the stressor-induced decrease in neuronal lineage commitment in female DG. Interestingly, pro-estrous mice exhibited the stressor-decreased neuronal lineage commitment, while estrous and diestrous mice did not display such a decrease. Furthermore, orchidectomy did not affect basal or the stressor-decreased newly proliferative cells or neuroblasts in male DG. Finally, male odors were less effective than female odors in abolishing the stressor-decreased neuronal lineage commitment in female mice, while male and female odors were comparable in reversing the stressor-decreased newly proliferated cells and neuroblasts in male mice. The protective effects of mouse odors' company in the stressed male mouse DG were associated with local BDNF and NGF replenishment. Taken together, sexual differences in baselines in the number of newly proliferative cells, neuroblasts, and the sensitivity to stress-altered neuronal lineage commitment in the DG could be, in part, due to gonadal hormone differences between the two sexes. Mouse odors may reverse stressor-decreased newly proliferative cells and neuroblasts in male, but not in female, mouse DG by restoring BDNF and NGF levels.
Collapse
Affiliation(s)
- Wen-Yu Tzeng
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan 70101, Taiwan, ROC
| | - Li-Hsien Chen
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan 70101, Taiwan, ROC
| | - Chianfang G Cherng
- Department of Health Psychology, Chang Jung Christian University, Tainan 71101, Taiwan, ROC
| | - Yi-Ni Tsai
- Institute of Behavioral Medicine, National Cheng Kung University College of Medicine, Tainan 70101, Taiwan, ROC
| | - Lung Yu
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan 70101, Taiwan, ROC; Institute of Behavioral Medicine, National Cheng Kung University College of Medicine, Tainan 70101, Taiwan, ROC.
| |
Collapse
|
98
|
Whiteman AS, Young DE, He X, Chen TC, Wagenaar RC, Stern CE, Schon K. Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults. Behav Brain Res 2013; 259:302-12. [PMID: 24269495 DOI: 10.1016/j.bbr.2013.11.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/16/2013] [Accepted: 11/13/2013] [Indexed: 11/18/2022]
Abstract
Convergent evidence from human and non-human animal studies suggests aerobic exercise and increased aerobic capacity may be beneficial for brain health and cognition. It is thought growth factors may mediate this putative relationship, particularly by augmenting plasticity mechanisms in the hippocampus, a brain region critical for learning and memory. Among these factors, glucocorticoids, brain derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF), hormones that have considerable and diverse physiological importance, are thought to effect normal and exercise-induced hippocampal plasticity. Despite these predictions, relatively few published human studies have tested hypotheses that relate exercise and fitness to the hippocampus, and none have considered the potential links to all of these hormonal components. Here we present cross-sectional data from a study of recognition memory; serum BDNF, cortisol, IGF-1, and VEGF levels; and aerobic capacity in healthy young adults. We measured circulating levels of these hormones together with performance on a recognition memory task, and a standard graded treadmill test of aerobic fitness. Regression analyses demonstrated BDNF and aerobic fitness predict recognition memory in an interactive manner. In addition, IGF-1 was positively associated with aerobic fitness, but not with recognition memory. Our results may suggest an exercise adaptation-related change in the BDNF dose-response curve that relates to hippocampal memory.
Collapse
Affiliation(s)
- Andrew S Whiteman
- Department of Psychology and Center for Memory & Brain, Boston University, 2 Cummington Mall, Boston, MA 02215, USA
| | - Daniel E Young
- Exercise and Health Sciences Department, College of Nursing and Health Sciences, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Xuemei He
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, 85 East Newton Street, Boston, MA 02118, USA
| | - Tai C Chen
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, 85 East Newton Street, Boston, MA 02118, USA
| | - Robert C Wagenaar
- Sargent College of Health and Rehabilitation Sciences, Boston University, 635 Commonwealth Avenue, Boston, MA 02215, USA
| | - Chantal E Stern
- Department of Psychology and Center for Memory & Brain, Boston University, 2 Cummington Mall, Boston, MA 02215, USA
| | - Karin Schon
- Department of Psychology and Center for Memory & Brain, Boston University, 2 Cummington Mall, Boston, MA 02215, USA; Department of Anatomy and Neurobiology, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA.
| |
Collapse
|
99
|
Frazzitta G, Maestri R, Ghilardi MF, Riboldazzi G, Perini M, Bertotti G, Boveri N, Buttini S, Lombino FL, Uccellini D, Turla M, Pezzoli G, Comi C. Intensive Rehabilitation Increases BDNF Serum Levels in Parkinsonian Patients. Neurorehabil Neural Repair 2013; 28:163-8. [DOI: 10.1177/1545968313508474] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Exercise may decrease the risk of Parkinson’s disease (PD) in humans and reduce PD symptoms in animal models. The beneficial effects have been linked to increased levels of neurotrophic factors. Objective. We examined whether intensive rehabilitation treatment reduces motor disability in patients in the early stages of PD and increases brain-derived neurotrophic factor (BDNF) serum levels. Methods. Thirty participants in the early stages of PD treated with rasagiline were randomly assigned to 3 hours of rehabilitation treatment that included aerobic exercise for 28 days (Group 1) or to not therapy (control; Group 2). BDNF serum levels were assessed at time T0 (baseline, before treatment), T1 (10 days), T2 (20 days), and T3 (28 days). At T0 and T3, we assessed the Unified Parkinson’s Disease Rating Scale (UPDRS) III in both groups, as well as the UPDRS II and total, Berg Balance Scale, and 6-minute walking test only in Group 1. Results. BDNF levels significantly increased at T1 in Group 1, an increase that was maintained throughout the treatment period. At T3 compared to T0, UPDRS III scores significantly improved in Group 1 along with scores for UPDRS II, total, Berg Balance Scale, and 6-minute walking test. Conclusions. Intensive rehabilitation treatment increases the BDNF levels and improves PD signs in patients in the early stages of the disease. These results are in line with studies on animal models of PD and healthy subjects.
Collapse
Affiliation(s)
- Giuseppe Frazzitta
- “Moriggia-Pelascini” Hospital, Gravedona ed Uniti, Italy
- “S. Isidoro” Hospital, Trescore Balneario, Italy
| | | | | | - Giulio Riboldazzi
- Macchi Foundation, Varese, Italy
- “Le Terrazze” Hospital, Cunardo, Italy
| | | | | | | | - Sara Buttini
- University of the Eastern Piedmont, Novara, Italy
| | | | | | | | - Gianni Pezzoli
- Parkinson Institute, Istituti Clinici di Perfezionamento, Milano, Italy
| | | |
Collapse
|
100
|
Radák Z, Silye G, Bartha C, Jakus J, Stefanovits-Bányai É, Atalay M, Marton O, Koltai E. The effects of cocoa supplementation, caloric restriction, and regular exercise, on oxidative stress markers of brain and memory in the rat model. Food Chem Toxicol 2013; 61:36-41. [DOI: 10.1016/j.fct.2013.01.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|