51
|
Karim M, Iqbal T, Nawaz A, Yaku K, Nakagawa T. Deletion of Nmnat1 in Skeletal Muscle Leads to the Reduction of NAD + Levels but Has No Impact on Skeletal Muscle Morphology and Fiber Types. J Nutr Sci Vitaminol (Tokyo) 2023; 69:184-189. [PMID: 37394423 DOI: 10.3177/jnsv.69.184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a coenzyme that mediates many redox reactions in energy metabolism. NAD+ is also a substrate for ADP-ribosylation and deacetylation by poly (ADP-ribose) polymerase and sirtuin, respectively. Nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) is a NAD+ biosynthesizing enzyme found in the nucleus. Recent research has shown that the maintaining NAD+ levels is critical for sustaining muscle functions both in physiological and pathological conditions. However, the role of Nmnat1 in skeletal muscle remains unexplored. In this study, we generated skeletal muscle-specific Nmnat1 knockout (M-Nmnat1 KO) mice and investigated its role in skeletal muscle. We found that NAD+ levels were significantly lower in the skeletal muscle of M-Nmnat1 KO mice than in control mice. M-Nmnat1 KO mice, in contrast, had similar body weight and normal muscle histology. Furthermore, the distribution of muscle fiber size and gene expressions of muscle fiber type gene expression were comparable in M-Nmnat1 KO and control mice. Finally, we investigated the role of Nmnat1 in muscle regeneration using cardiotoxin-induced muscle injury model, but muscle regeneration appeared almost normal in M-Nmnat1 KO mice. These findings imply that Nmnat1 has a redundancy in the pathophysiology of skeletal muscle.
Collapse
Affiliation(s)
- Mariam Karim
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama
| | - Tooba Iqbal
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama
| | - Allah Nawaz
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama
- Research Center for Pre-Disease Science, University of Toyama
| |
Collapse
|
52
|
Haq MFU, Hussain MZ, Mahjabeen I, Akram Z, Saeed N, Shafique R, Abbasi SF, Kayani MA. Oncometabolic role of mitochondrial sirtuins in glioma patients. PLoS One 2023; 18:e0281840. [PMID: 36809279 PMCID: PMC9943017 DOI: 10.1371/journal.pone.0281840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Mitochondrial sirtuins have diverse role specifically in aging, metabolism and cancer. In cancer, these sirtuins play dichotomous role as tumor suppressor and promoter. Previous studies have reported the involvement of sirtuins in different cancers. However, till now no study has been published with respect to mitochondrial sirtuins and glioma risks. Present study was purposed to figure out the expression level of mitochondrial sirtuins (SIRT3, SIRT4, SIRT5) and related genes (GDH, OGG1-2α, SOD1, SOD2, HIF1α and PARP1) in 153 glioma tissue samples and 200 brain tissue samples from epilepsy patients (taken as controls). To understand the role of selected situins in gliomagenesis, DNA damage was measured using the comet assay and oncometabolic role (oxidative stress level, ATP level and NAD level) was measured using the ELISA and quantitative PCR. Results analysis showed significant down-regulation of SIRT4 (p = 0.0337), SIRT5 (p<0.0001), GDH (p = 0.0305), OGG1-2α (p = 0.0001), SOD1 (p<0.0001) and SOD2 (p<0.0001) in glioma patients compared to controls. In case of SIRT3 (p = 0.0322), HIF1α (p = 0.0385) and PARP1 (p = 0.0203), significant up-regulation was observed. ROC curve analysis and cox regression analysis showed the good diagnostic and prognostic value of mitochondrial sirtuins in glioma patients. Oncometabolic rate assessment analysis showed significant increased ATP level (p<0.0001), NAD+ level [(NMNAT1 (p<0.0001), NMNAT3 (p<0.0001) and NAMPT (p<0.04)] and glutathione level (p<0.0001) in glioma patients compared to controls. Significant increased level of damage ((p<0.04) and decrease level of antioxidant enzymes include superoxide dismutase (SOD, p<0.0001), catalase (CAT, p<0.0001) and glutathione peroxidase (GPx, p<0.0001) was observed in patients compared to controls. Present study data suggest that variation in expression pattern of mitochondrial sirtuins and increased metabolic rate may have diagnostic and prognostic significance in glioma patients.
Collapse
Affiliation(s)
- Maria Fazal Ul Haq
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
- * E-mail:
| | - Zertashia Akram
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nadia Saeed
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Rabia Shafique
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sumaira Fida Abbasi
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
53
|
Wang J, Sun R, Xia L, Zhu X, Zhang Q, Ye Y. Potential Therapeutic Effects of NAMPT-Mediated NAD Biosynthesis in Depression In Vivo. Brain Sci 2022; 12:brainsci12121699. [PMID: 36552159 PMCID: PMC9775136 DOI: 10.3390/brainsci12121699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
This study aimed to investigate the potential therapeutic effects of nicotinamide phosphoribosyltransferase (NAMPT)-mediated adenine dinucleotide (NAD) biosynthesis in depression models in vivo. Namptflox/flox mice were used to evaluate the role of NAMPT in depression. NAMPT and NAD levels in the prefrontal cortex (PFC) were measured, and depression-associated behavior, cognitive function, and social interaction were evaluated. The expression levels of BDNF, pCREB, CREB, monoamine neurotransmitters, and corticosterone (CORT) were also detected in the PFC. The contents of NAMPT and NAD decreased in the PFC in Namptflox/flox mice. Namptflox/flox mice showed depression-like behaviors, cognitive function deterioration, decreased social ability, and decreased dominance. Meanwhile, there were decreased expression levels of the pCREB/CREB ratio, but not BDNF, in the PFC. Levels of DA, 5-HT, and NE were decreased, and CORT was activated in the PFC of Namptflox/flox mice. Additionally, the role of NAMPT-NAD was examined in rats treated with nicotinamide riboside (NR) after being exposed to chronic unexpected mild stress (CUMS). NR reversed the decreased NAMPT expression in the PFC and HIP, and the NAD content in the PFC, but not HIP in rats with CUMS-induced depression. NR also improved depressive- and anxiolytic-like behaviors, locomotor activity, and cognitive function. BDNF expression and the pCREB/CREB ratio were significantly increased in both the PFC and HIP after NR treatment. The activation of CORT and decreased content of DA were reversed after NR treatment in the PFC. There was no difference in the 5-HT content among groups in both the PFC and HIP. Taken together, NAD synthesis induced by NAMPT could be associated with depression-like behaviors in mice, and the elevated NAD level by NR improved depression in rats.
Collapse
Affiliation(s)
- Jue Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Runxuan Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Linhan Xia
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Xinying Zhu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, China
| | - Qi Zhang
- College of Medicine, Jiaxing University, Jiaxing 314001, China
- Correspondence: (Q.Z.); (Y.Y.)
| | - Yilu Ye
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
- Correspondence: (Q.Z.); (Y.Y.)
| |
Collapse
|
54
|
Castro A, Signini ÉF, De Oliveira JM, Di Medeiros Leal MCB, Rehder-Santos P, Millan-Mattos JC, Minatel V, Pantoni CBF, Oliveira RV, Catai AM, Ferreira AG. The Aging Process: A Metabolomics Perspective. Molecules 2022; 27:molecules27248656. [PMID: 36557788 PMCID: PMC9785117 DOI: 10.3390/molecules27248656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Aging process is characterized by a progressive decline of several organic, physiological, and metabolic functions whose precise mechanism remains unclear. Metabolomics allows the identification of several metabolites and may contribute to clarifying the aging-regulated metabolic pathways. We aimed to investigate aging-related serum metabolic changes using a metabolomics approach. Fasting blood serum samples from 138 apparently healthy individuals (20−70 years old, 56% men) were analyzed by Proton Nuclear Magnetic Resonance spectroscopy (1H NMR) and Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS), and for clinical markers. Associations of the metabolic profile with age were explored via Correlations (r); Metabolite Set Enrichment Analysis; Multiple Linear Regression; and Aging Metabolism Breakpoint. The age increase was positively correlated (0.212 ≤ r ≤ 0.370, p < 0.05) with the clinical markers (total cholesterol, HDL, LDL, VLDL, triacylglyceride, and glucose levels); negatively correlated (−0.285 ≤ r ≤ −0.214, p < 0.05) with tryptophan, 3-hydroxyisobutyrate, asparagine, isoleucine, leucine, and valine levels, but positively (0.237 ≤ r ≤ 0.269, p < 0.05) with aspartate and ornithine levels. These metabolites resulted in three enriched pathways: valine, leucine, and isoleucine degradation, urea cycle, and ammonia recycling. Additionally, serum metabolic levels of 3-hydroxyisobutyrate, isoleucine, aspartate, and ornithine explained 27.3% of the age variation, with the aging metabolism breakpoint occurring after the third decade of life. These results indicate that the aging process is potentially associated with reduced serum branched-chain amino acid levels (especially after the third decade of life) and progressively increased levels of serum metabolites indicative of the urea cycle.
Collapse
Affiliation(s)
- Alex Castro
- Department of Chemistry, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
- Correspondence: (A.C.); (A.G.F.)
| | - Étore F. Signini
- Department of Physiotherapy, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | | | | | - Patrícia Rehder-Santos
- Department of Physiotherapy, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | | | - Vinicius Minatel
- Department of Physiotherapy, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Camila B. F. Pantoni
- Department of Physiotherapy, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Regina V. Oliveira
- Department of Chemistry, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Aparecida M. Catai
- Department of Physiotherapy, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Antônio G. Ferreira
- Department of Chemistry, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
- Correspondence: (A.C.); (A.G.F.)
| |
Collapse
|
55
|
Dai Y, Lin J, Ren J, Zhu B, Wu C, Yu L. NAD + metabolism in peripheral neuropathic pain. Neurochem Int 2022; 161:105435. [PMID: 36273706 DOI: 10.1016/j.neuint.2022.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an omnipresent metabolite that participates in redox reactions. Multiple NAD+-consuming enzymes are implicated in numerous biological processes, including transcription, signaling, and cell survival. Multiple pieces of evidence have demonstrated that NAD+-consuming enzymes, including poly(ADP-ribose) polymerases (PARPs), sirtuins (SIRTs), and sterile alpha and TIR motif-containing 1 (SARM1), play major roles in peripheral neuropathic pain of various etiologies. These NAD+ consumers primarily participate in peripheral neuropathic pain via mechanisms such as mitochondrial dysfunction, oxidative stress, and inflammation. Furthermore, NAD+ synthase and nicotinamide phosphoribosyltransferase (NAMPT) have recently been found to contribute to the regulation of pain. Here, we review the evidence indicating the involvement of NAD+ metabolism in the pathological mechanisms of peripheral neuropathic pain. Advanced understanding of the molecular and cellular mechanisms associated with NAD+ in peripheral neuropathic pain will facilitate the development of novel treatment options for diverse types of peripheral neuropathic pain.
Collapse
Affiliation(s)
- Yi Dai
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Jiaqi Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Jinxuan Ren
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Bin Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Chengwei Wu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Lina Yu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China.
| |
Collapse
|
56
|
Loss of hepatic Nmnat1 has no impact on diet-induced fatty liver disease. Biochem Biophys Res Commun 2022; 636:89-95. [DOI: 10.1016/j.bbrc.2022.10.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022]
|
57
|
Bouredji Z, Argaw A, Frenette J. The inflammatory response, a mixed blessing for muscle homeostasis and plasticity. Front Physiol 2022; 13:1032450. [PMID: 36505042 PMCID: PMC9726740 DOI: 10.3389/fphys.2022.1032450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Skeletal muscle makes up almost half the body weight of heathy individuals and is involved in several vital functions, including breathing, thermogenesis, metabolism, and locomotion. Skeletal muscle exhibits enormous plasticity with its capacity to adapt to stimuli such as changes in mechanical loading, nutritional interventions, or environmental factors (oxidative stress, inflammation, and endocrine changes). Satellite cells and timely recruited inflammatory cells are key actors in muscle homeostasis, injury, and repair processes. Conversely, uncontrolled recruitment of inflammatory cells or chronic inflammatory processes leads to muscle atrophy, fibrosis and, ultimately, impairment of muscle function. Muscle atrophy and loss of function are reported to occur either in physiological situations such as aging, cast immobilization, and prolonged bed rest, as well as in many pathological situations, including cancers, muscular dystrophies, and several other chronic illnesses. In this review, we highlight recent discoveries with respect to the molecular mechanisms leading to muscle atrophy caused by modified mechanical loading, aging, and diseases. We also summarize current perspectives suggesting that the inflammatory process in muscle homeostasis and repair is a double-edged sword. Lastly, we review recent therapeutic approaches for treating muscle wasting disorders, with a focus on the RANK/RANKL/OPG pathway and its involvement in muscle inflammation, protection and regeneration processes.
Collapse
Affiliation(s)
- Zineb Bouredji
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CRCHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, Canada
| | - Anteneh Argaw
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CRCHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, Canada
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CRCHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, Canada,Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, QC, Canada,*Correspondence: Jérôme Frenette,
| |
Collapse
|
58
|
Impact of Nuclear De Novo NAD + Synthesis via Histone Dynamics on DNA Repair during Cellular Senescence To Prevent Tumorigenesis. Mol Cell Biol 2022; 42:e0037922. [PMID: 36278823 PMCID: PMC9670974 DOI: 10.1128/mcb.00379-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
NAD+ synthesis is a fundamental process in living cells. The effects of local metabolite production on chromatin influence the epigenetic status of chromatin in DNA metabolism. We have previously shown that K5 acetylation of H2AX by TIP60 is required for the ADP ribosylation activity of PARP-1, for histone H2AX exchange at DNA damage sites. However, the detailed molecular mechanism has remained unclear. Here, we identified de novo NAD synthetase 1 (NAD syn1) as a novel binding partner to H2AX. The enzymatic activity of NAD syn1 is crucial for the ADP ribosylation activity of PARP-1 for the H2AX dynamics at sites of DNA damage. Inhibition of the NAD synthetase activity in the cell nucleus decreased the overall cellular NAD+ concentration, leading to cellular senescence. Accordingly, the acetylation-dependent H2AX dynamics and homologous recombination repair were suppressed, leading to increased tumorigenesis. Our findings have revealed the importance of de novo NAD+ production in the cell nucleus for protection against the decreased DNA repair capacity caused by cellular senescence and thus against tumorigenesis.
Collapse
|
59
|
Porcine placental extract increase the cellular NAD levels in human epidermal keratinocytes. Sci Rep 2022; 12:19040. [PMID: 36352014 PMCID: PMC9646745 DOI: 10.1038/s41598-022-23446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential cofactor for numerous enzymes involved in energy metabolism. Because decreasing NAD levels is a common hallmark of the aging process in various tissues and organs, maintaining NAD levels has recently been of interest for the prevention of aging and age-related diseases. Although placental extract (PE) are known to possess several anti-aging effects, the NAD-boosting activity of PE remains unknown. In this study, we found that porcine PE (PPE) significantly increased intracellular NAD levels in normal human epidermal keratinocytes (NHEKs). PPE also attenuated the NAD depletion induced by FK866, an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT). Interestingly, only the fraction containing nicotinamide mononucleotide (NMN), nicotinamide riboside (NR), and nicotinamide (NAM) restored NAD content in NHEKs in the absence of NAMPT activity. These results suggest that PPE increases intracellular NAD by providing NAD precursors such as NMN, NR, and NAM. Finally, we showed that the application of PPE to the stratum corneum of the reconstructed human epidermis significantly ameliorated FK866-induced NAD depletion, suggesting that topical PPE may be helpful for increasing skin NAD levels. This is the first study to report the novel biological activity of PE as an NAD booster in human epidermal cells.
Collapse
|
60
|
Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z, Zhang W, Ren J, Zhu F, Liu GH. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther 2022; 7:374. [PMID: 36336680 PMCID: PMC9637765 DOI: 10.1038/s41392-022-01211-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Aging is accompanied by the decline of organismal functions and a series of prominent hallmarks, including genetic and epigenetic alterations. These aging-associated epigenetic changes include DNA methylation, histone modification, chromatin remodeling, non-coding RNA (ncRNA) regulation, and RNA modification, all of which participate in the regulation of the aging process, and hence contribute to aging-related diseases. Therefore, understanding the epigenetic mechanisms in aging will provide new avenues to develop strategies to delay aging. Indeed, aging interventions based on manipulating epigenetic mechanisms have led to the alleviation of aging or the extension of the lifespan in animal models. Small molecule-based therapies and reprogramming strategies that enable epigenetic rejuvenation have been developed for ameliorating or reversing aging-related conditions. In addition, adopting health-promoting activities, such as caloric restriction, exercise, and calibrating circadian rhythm, has been demonstrated to delay aging. Furthermore, various clinical trials for aging intervention are ongoing, providing more evidence of the safety and efficacy of these therapies. Here, we review recent work on the epigenetic regulation of aging and outline the advances in intervention strategies for aging and age-associated diseases. A better understanding of the critical roles of epigenetics in the aging process will lead to more clinical advances in the prevention of human aging and therapy of aging-related diseases.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Hospital of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Zikai Zheng
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jie Ren
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
| |
Collapse
|
61
|
Mahamood A, Yaku K, Hikosaka K, Gulshan M, Inoue SI, Kobayashi F, Nakagawa T. Nmnat3 deficiency in hemolytic anemia exacerbate malaria infection. Biochem Biophys Res Commun 2022; 637:58-65. [DOI: 10.1016/j.bbrc.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
62
|
Zhou Z, Fan Y, Zong R, Tan K. The mitochondrial unfolded protein response: A multitasking giant in the fight against human diseases. Ageing Res Rev 2022; 81:101702. [PMID: 35908669 DOI: 10.1016/j.arr.2022.101702] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
Mitochondria, which serve as the energy factories of cells, are involved in cell differentiation, calcium homeostasis, amino acid and fatty acid metabolism and apoptosis. In response to environmental stresses, mitochondrial homeostasis is regulated at both the organelle and molecular levels to effectively maintain the number and function of mitochondria. The mitochondrial unfolded protein response (UPRmt) is an adaptive intracellular stress mechanism that responds to stress signals by promoting the transcription of genes encoding mitochondrial chaperones and proteases. The mechanism of the UPRmt in Caenorhabditis elegans (C. elegans) has been clarified over time, and the main regulatory factors include ATFS-1, UBL-5 and DVE-1. In mammals, the activation of the UPRmt involves eIF2α phosphorylation and the uORF-regulated expression of CHOP, ATF4 and ATF5. Several additional factors, such as SIRT3 and HSF1, are also involved in regulating the UPRmt. A deep and comprehensive exploration of the UPRmt can provide new directions and strategies for the treatment of human diseases, including aging, neurodegenerative diseases, cardiovascular diseases and diabetes. In this review, we mainly discuss the function of UPRmt, describe the regulatory mechanisms of UPRmt in C. elegans and mammals, and summarize the relationship between UPRmt and various human diseases.
Collapse
Affiliation(s)
- Zixin Zhou
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Yumei Fan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ruikai Zong
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
63
|
Jiang GJ, You XG, Fan TJ. Ultraviolet B irradiation induces senescence of human corneal endothelial cells in vitro by DNA damage response and oxidative stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112568. [PMID: 36137302 DOI: 10.1016/j.jphotobiol.2022.112568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The human corneal endothelial cells (HCEnCs) play a vital role in the maintenance of corneal transparency and visual acuity. In our daily life, HCEnCs are inevitably exposed to ultraviolet B (UVB) radiation leading to decreases of visual acuity and corneal transparency resulting in visual loss eventually. Therefore, understanding the UVB-induced cytotoxicity in HCEnCs is of importance for making efficient strategies to protect our vision from UVB-damage. However, in-depth knowledge about UVB-induced cytotoxicity in HCEnCs is missing. Herein, we pulse-irradiated the HCEnCs in vitro with 150 mJ/cm2 UVB (the environmental dose) at each subculture for 4 passages to explore the insights into UVB-induced phototoxicity. The results showed that the UVB-treated HCEnCs exhibit typical senescent characteristics, including significantly enlarged relative cell area, increased senescence-associated β-galactosidase positive staining, and upregulated p16INK4A and senescence associated secretory phenotypes (SASPs) such as CCL-27, IL-1α/6/8/10, TGF-β1 and TNF-α, as well as decreased cell proliferation and Lamin B1 expression, and translocation of Lamin B1. Furthermore, we explored the causative mechanisms of senescence and found that 150 mJ/cm2 UVB pulse-irradiation impairs DNA to activate DNA damage response (DDR) pathway of ATM-p53-p21WAF1/CIP1 with downregulated DNA repair enzyme PARP1, leading to cell cycle arrest resulting in DDR-mediated senescence. Meanwhile, UVB pulse-irradiation also elicits a consistent increase of ROS production to aggravate DNA damage and impose oxidative stress on energy metabolism leading to metabolic disturbance resulting in metabolic disturbance-mediated senescence. Altogether, the repeated pulse-irradiation of 150 mJ/cm2 UVB induces HCEnC senescence via both DDR pathway and energy metabolism disturbance.
Collapse
Affiliation(s)
- Guo-Jian Jiang
- College of marine life sciences, Ocean university of China, Qingdao, Shandong province 266003, China
| | - Xin-Guo You
- School of bioscience and technology, Weifang medical university, Weifang, Shandong province 261053, China
| | - Ting-Jun Fan
- College of marine life sciences, Ocean university of China, Qingdao, Shandong province 266003, China.
| |
Collapse
|
64
|
Chedere A, Mishra M, Kulkarni O, Sriraman S, Chandra N. Personalized quantitative models of NAD metabolism in hepatocellular carcinoma identify a subgroup with poor prognosis. Front Oncol 2022; 12:954512. [PMID: 36249025 PMCID: PMC9565660 DOI: 10.3389/fonc.2022.954512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer cells are known to undergo metabolic adaptation to cater to their enhanced energy demand. Nicotinamide adenine dinucleotide (NAD) is an essential metabolite regulating many cellular processes within the cell. The enzymes required for NAD synthesis, starting from the base precursor - tryptophan, are expressed in the liver and the kidney, while all other tissues convert NAD from intermediate precursors. The liver, being an active metabolic organ, is a primary contributor to NAD biosynthesis. Inhibition of key enzymes in the NAD biosynthetic pathways is proposed as a strategy for designing anti-cancer drugs. On the other hand, NAD supplementation has also been reported to be beneficial in cancer in some cases. As metabolic adaptation that occurs in cancer cells can lead to perturbations to the pathways, it is important to understand the exact nature of the perturbation in each individual patient. To investigate this, we use a mathematical modelling approach integrated with transcriptomes of patient samples from the TCGA-LIHC cohort. Quantitative profiling of the NAD biosynthesis pathway helps us understand the NAD biosynthetic status and changes in the controlling steps of the pathway. Our results indicate that NAD biosynthesis is heterogeneous among liver cancer patients, and that Nicotinate phosphoribosyl transferase (NAPRT) levels are indicative of the NAD biosynthetic status. Further, we find that reduced NAPRT levels combined with reduced Nicotinamide phosphoribosyl transferase (NAMPT) levels contribute to poor prognosis. Identification of the precise subgroup who may benefit from NAD supplementation in subgroup with low levels of NAPRT and NAMPT could be explored to improve patient outcome.
Collapse
Affiliation(s)
- Adithya Chedere
- Department of Biochemistry, Biological Science Division, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Madhulika Mishra
- Department of Biochemistry, Biological Science Division, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Omkar Kulkarni
- Department of Biochemistry, Biological Science Division, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Shrisruti Sriraman
- IISc Mathematics Initiative, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Biological Science Division, Indian Institute of Science, Bengaluru, Karnataka, India
- IISc Mathematics Initiative, Indian Institute of Science, Bengaluru, Karnataka, India
- *Correspondence: Nagasuma Chandra,
| |
Collapse
|
65
|
Guimera AM, Clark P, Wordsworth J, Anugula S, Rasmussen LJ, Shanley DP. Systems modelling predicts chronic inflammation and genomic instability prevent effective mitochondrial regulation during biological ageing. Exp Gerontol 2022; 166:111889. [PMID: 35811018 DOI: 10.1016/j.exger.2022.111889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022]
Abstract
The regulation of mitochondrial turnover under conditions of stress occurs partly through the AMPK-NAD+-PGC1α-SIRT1 signalling pathway. This pathway can be affected by both genomic instability and chronic inflammation since these will result in an increased rate of NAD+ degradation through PARP1 and CD38 respectively. In this work we develop a computational model of this signalling pathway, calibrating and validating it against experimental data. The computational model is used to study mitochondrial turnover under conditions of stress and how it is affected by genomic instability, chronic inflammation and biological ageing in general. We report that the AMPK-NAD+-PGC1α-SIRT1 signalling pathway becomes less responsive with age and that this can prime for the accumulation of dysfunctional mitochondria.
Collapse
Affiliation(s)
- Alvaro Martinez Guimera
- Biosciences Institute, Ageing Research Laboratories, Campus for Ageing and Vitality, Newcastle University, United Kingdom
| | - Peter Clark
- Biosciences Institute, Ageing Research Laboratories, Campus for Ageing and Vitality, Newcastle University, United Kingdom
| | - James Wordsworth
- Biosciences Institute, Ageing Research Laboratories, Campus for Ageing and Vitality, Newcastle University, United Kingdom
| | - Sharath Anugula
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daryl P Shanley
- Biosciences Institute, Ageing Research Laboratories, Campus for Ageing and Vitality, Newcastle University, United Kingdom.
| |
Collapse
|
66
|
Liu Y, Wang M, Hou XO, Hu LF. Roles of microglial mitophagy in neurological disorders. Front Aging Neurosci 2022; 14:979869. [PMID: 36034136 PMCID: PMC9399802 DOI: 10.3389/fnagi.2022.979869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
Microglia are the resident innate immune cells in the central nervous system (CNS) that serve as the first line innate immunity in response to pathogen invasion, ischemia and other pathological stimuli. Once activated, they rapidly release a variety of inflammatory cytokines and phagocytose pathogens or cell debris (termed neuroinflammation), which is beneficial for maintaining brain homeostasis if appropriately activated. However, excessive or uncontrolled neuroinflammation may damage neurons and exacerbate the pathologies in neurological disorders. Microglia are highly dynamic cells, dependent on energy supply from mitochondria. Moreover, dysfunctional mitochondria can serve as a signaling platform to facilitate innate immune responses in microglia. Mitophagy is a means of clearing damaged or redundant mitochondria, playing a critical role in the quality control of mitochondrial homeostasis and turnover. Mounting evidence has shown that mitophagy not only limits the inflammatory response in microglia but also affects their phagocytosis, whereas mitochondria dysfunction and mitophagy defects are associated with aging and neurological disorders. Therefore, targeting microglial mitophagy is a promising therapeutic strategy for neurological disorders. This article reviews and highlights the role and regulation of mitophagy in microglia in neurological conditions, and the research progress in manipulating microglial mitophagy and future directions in this field are also discussed.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Miao Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiao-Ou Hou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- *Correspondence: Xiao-Ou Hou,
| | - Li-Fang Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- Li-Fang Hu,
| |
Collapse
|
67
|
Cai Z, Tian S, Klein T, Tu L, Geenen LW, Koudstaal T, van den Bosch AE, de Rijke YB, Reiss IKM, Boersma E, van der Ley C, Van Faassen M, Kema I, Duncker DJ, Boomars KA, Tran-Lundmark K, Guignabert C, Merkus D. Kynurenine metabolites predict survival in pulmonary arterial hypertension: A role for IL-6/IL-6Rα. Sci Rep 2022; 12:12326. [PMID: 35853948 PMCID: PMC9296482 DOI: 10.1038/s41598-022-15039-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of the kynurenine pathway (KP) has been reported in patients with pulmonary arterial hypertension (PAH) undergoing PAH therapy. We aimed to determine KP-metabolism in treatment-naïve PAH patients, investigate its prognostic values, evaluate the effect of PAH therapy on KP-metabolites and identify cytokines responsible for altered KP-metabolism. KP-metabolite levels were determined in plasma from PAH patients (median follow-up 42 months) and in rats with monocrotaline- and Sugen/hypoxia-induced PH. Blood sampling of PAH patients was performed at the time of diagnosis, six months and one year after PAH therapy. KP activation with lower tryptophan, higher kynurenine (Kyn), 3-hydroxykynurenine (3-HK), quinolinic acid (QA), kynurenic acid (KA), and anthranilic acid was observed in treatment-naïve PAH patients compared with controls. A similar KP-metabolite profile was observed in monocrotaline, but not Sugen/hypoxia-induced PAH. Human lung primary cells (microvascular endothelial cells, pulmonary artery smooth muscle cells, and fibroblasts) were exposed to different cytokines in vitro. Following exposure to interleukin-6 (IL-6)/IL-6 receptor α (IL-6Rα) complex, all cell types exhibit a similar KP-metabolite profile as observed in PAH patients. PAH therapy partially normalized this profile in survivors after one year. Increased KP-metabolites correlated with higher pulmonary vascular resistance, shorter six-minute walking distance, and worse functional class. High levels of Kyn, 3-HK, QA, and KA measured at the latest time-point were associated with worse long-term survival. KP-metabolism was activated in treatment-naïve PAH patients, likely mediated through IL-6/IL-6Rα signaling. KP-metabolites predict response to PAH therapy and survival of PAH patients.
Collapse
Affiliation(s)
- Zongye Cai
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siyu Tian
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Theo Klein
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Laurie W Geenen
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Thomas Koudstaal
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Annemien E van den Bosch
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Yolanda B de Rijke
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Irwin K M Reiss
- Department of Pediatrics/Neonatology, Sophia Children's Hospital, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Eric Boersma
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Clinical Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Claude van der Ley
- Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn Van Faassen
- Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido Kema
- Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dirk J Duncker
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Karin A Boomars
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Daphne Merkus
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands. .,Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, LMU Munich, Munich, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.
| |
Collapse
|
68
|
Du SH, Shi J, Yu TY, Hu XX, He SM, Cao YY, Xie ZL, Liu SS, Li YT, Li N, Yu JB. Nicotinamide mononucleotide ameliorates acute lung injury by inducing mitonuclear protein imbalance and activating the UPR mt. Exp Biol Med (Maywood) 2022; 247:1264-1276. [PMID: 35538652 PMCID: PMC9379602 DOI: 10.1177/15353702221094235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mitochondria need to interact with the nucleus under homeostasis and stress to maintain cellular demands and nuclear transcriptional programs. Disrupted mitonuclear interaction is involved in many disease processes. However, the role of mitonuclear signaling regulators in endotoxin-induced acute lung injury (ALI) remains unknown. Nicotinamide adenine dinucleotide (NAD+) is closely related to mitonuclear interaction with its central role in mitochondrial metabolism. In the current study, C57BL/6J mice were administrated with lipopolysaccharide 15 mg/kg to induce endotoxin-induced ALI and investigated whether the NAD+ precursor nicotinamide mononucleotide (NMN) could preserve mitonuclear interaction and alleviate ALI. After pretreatment with NMN for 7 days, NAD+ levels in the mitochondrial, nucleus, and total intracellular were significantly increased in endotoxemia mice. Moreover, supplementation of NMN alleviated lung pathologic injury, reduced ROS levels, increased MnSOD activities, mitigated mitochondrial dysfunction, ameliorated the defects in the nucleus morphology, and these cytoprotective effects were accompanied by preserving mitonuclear interaction (including mitonuclear protein imbalance and the mitochondrial unfolded protein response, UPRmt). Furthermore, NAD+-mediated mitonuclear protein imbalance and UPRmt are probably regulated by deacetylase Sirtuin1 (SIRT1). Taken together, our results indicated that NMN pretreatment ameliorated ALI by inducing mitonuclear protein imbalance and activating the UPRmt in an SIRT1-dependent manner.
Collapse
Affiliation(s)
- Shi-Han Du
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Tian-Yu Yu
- Tianjin Medical University, Tianjin 300070, China
| | - Xin-Xin Hu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Si-Meng He
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, NanKai University, Tianjin 300071, China
| | - Ying-Ya Cao
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Zi-Lei Xie
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Sha-Sha Liu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Yu-Ting Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Na Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Jian-Bo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China,Jian-Bo Yu.
| |
Collapse
|
69
|
Ru M, Wang W, Zhai Z, Wang R, Li Y, Liang J, Kothari D, Niu K, Wu X. Nicotinamide mononucleotide supplementation protects the intestinal function in aging mice and D-galactose induced senescent cells. Food Funct 2022; 13:7507-7519. [PMID: 35678708 DOI: 10.1039/d2fo00525e] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nicotinamide adenine dinucleotide (NAD+) level shows a temporal decrease during the aging process, which has been deemed as an aging hallmark. Nicotinamide mononucleotide (NMN), a key NAD+ precursor, shows the potential to retard the age-associated functional decline in organs. In the current study, to explore whether NMN has an impact on the intestine during the aging process, the effects of NMN supplementation on the intestinal morphology, microbiota, and NAD+ content, as well as its anti-inflammatory, anti-oxidative and barrier functions were investigated in aging mice and D-galactose (D-gal) induced senescent IPEC-J2 cells. The results showed that 4 months of NMN administration had little impact on the colonic microbiota and NAD+ content in aging mice, while it significantly increased the jejunal NAD+ content and improved the jejunal structure including increasing the villus length and shortening the crypt. Moreover, NMN supplementation significantly up-regulated the mRNA expression of SIRT3, SIRT6, nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), the catalytic subunit of glutamate-cysteine ligase (GCLC), superoxide dismutase 2 (SOD2), occludin, and claudin-1, but down-regulated the mRNA expression of tumor necrosis factor alpha (TNF-α). Specifically, in the D-gal induced senescent IPEC-J2 cells, 500 μM NMN restored the increased mRNA expression of interleukin 6 (IL6ST), IL-1A, nuclear factor (NF-κB1), and claudin-1 to normal levels to some extent. Furthermore, NMN treatment significantly affected the mRNA expression of antioxidant enzymes including NQO1, GCLC, SOD 2 and 3, and GSH-PX1, 3 and 4. In addition, 200 μM NMN enhanced the cell viability and total antioxidant capacity and lowered the reactive oxygen species level of senescent IPEC-J2 cells. Notably, NMN restored the down-regulated protein expression of occludin and claudin-1 induced by D-gal. The above data demonstrated the potential of NMN in ameliorating the structural and functional decline in the intestine during aging.
Collapse
Affiliation(s)
- Meng Ru
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Wanwan Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Zhenya Zhai
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Ruxia Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Yumeng Li
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China.
| | - Jiang Liang
- ERA Biotechnology (Shenzhen) Co., Ltd, Shenzhen 518155, China
| | - Damini Kothari
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, South Korea
| | - Kaimin Niu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China. .,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Xin Wu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China. .,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| |
Collapse
|
70
|
Wagner S, Manickam R, Brotto M, Tipparaju SM. NAD + centric mechanisms and molecular determinants of skeletal muscle disease and aging. Mol Cell Biochem 2022; 477:1829-1848. [PMID: 35334034 PMCID: PMC10065019 DOI: 10.1007/s11010-022-04408-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/03/2022] [Indexed: 12/20/2022]
Abstract
The nicotinamide adenine dinucleotide (NAD+) is an essential redox cofactor, involved in various physiological and molecular processes, including energy metabolism, epigenetics, aging, and metabolic diseases. NAD+ repletion ameliorates muscular dystrophy and improves the mitochondrial and muscle stem cell function and thereby increase lifespan in mice. Accordingly, NAD+ is considered as an anti-oxidant and anti-aging molecule. NAD+ plays a central role in energy metabolism and the energy produced is used for movements, thermoregulation, and defense against foreign bodies. The dietary precursors of NAD+ synthesis is targeted to improve NAD+ biosynthesis; however, studies have revealed conflicting results regarding skeletal muscle-specific effects. Recent advances in the activation of nicotinamide phosphoribosyltransferase in the NAD+ salvage pathway and supplementation of NAD+ precursors have led to beneficial effects in skeletal muscle pathophysiology and function during aging and associated metabolic diseases. NAD+ is also involved in the epigenetic regulation and post-translational modifications of proteins that are involved in various cellular processes to maintain tissue homeostasis. This review provides detailed insights into the roles of NAD+ along with molecular mechanisms during aging and disease conditions, such as the impacts of age-related NAD+ deficiencies on NAD+-dependent enzymes, including poly (ADP-ribose) polymerase (PARPs), CD38, and sirtuins within skeletal muscle, and the most recent studies on the potential of nutritional supplementation and distinct modes of exercise to replenish the NAD+ pool.
Collapse
Affiliation(s)
- Sabrina Wagner
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA
| | - Ravikumar Manickam
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington (UTA), Arlington, TX, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA.
| |
Collapse
|
71
|
Balashova NV, Zavileyskiy LG, Artiukhov AV, Shaposhnikov LA, Sidorova OP, Tishkov VI, Tramonti A, Pometun AA, Bunik VI. Efficient Assay and Marker Significance of NAD+ in Human Blood. Front Med (Lausanne) 2022; 9:886485. [PMID: 35665345 PMCID: PMC9162244 DOI: 10.3389/fmed.2022.886485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Oxidized nicotinamide adenine dinucleotide (NAD+) is a biological molecule of systemic importance. Essential role of NAD+ in cellular metabolism relies on the substrate action in various redox reactions and cellular signaling. This work introduces an efficient enzymatic assay of NAD+ content in human blood using recombinant formate dehydrogenase (FDH, EC 1.2.1.2), and demonstrates its diagnostic potential, comparing NAD+ content in the whole blood of control subjects and patients with cardiac or neurological pathologies. In the control group (n = 22, 25–70 years old), our quantification of the blood concentration of NAD+ (18 μM, minimum 15, max 23) corresponds well to NAD+ quantifications reported in literature. In patients with demyelinating neurological diseases (n = 10, 18–55 years old), the NAD+ levels significantly (p < 0.0001) decrease (to 14 μM, min 13, max 16), compared to the control group. In cardiac patients with the heart failure of stage II and III according to the New York Heart Association (NYHA) functional classification (n = 24, 42–83 years old), the blood levels of NAD+ (13 μM, min 9, max 18) are lower than those in the control subjects (p < 0.0001) or neurological patients (p = 0.1). A better discrimination of the cardiac and neurological patients is achieved when the ratios of NAD+ to the blood creatinine levels, mean corpuscular volume or potassium ions are compared. The proposed NAD+ assay provides an easy and robust tool for clinical analyses of an important metabolic indicator in the human blood.
Collapse
Affiliation(s)
- Natalia V. Balashova
- Department of Clinical Laboratory Diagnostics, Faculty of Advanced Medicine, M.F. Vladimirsky Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
- Department of Dietetics and Clinical Nutritionology, Faculty of Continuing Medical Education, RUDN Medical Institute, Moscow, Russia
| | - Lev G. Zavileyskiy
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Artem V. Artiukhov
- Department of Biokinetics, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biochemistry, Sechenov University, Moscow, Russia
| | - Leonid A. Shaposhnikov
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Olga P. Sidorova
- Department of Neurology, Faculty of Advanced Medicine, M.F. Vladimirsky Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | - Vladimir I. Tishkov
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, Italian National Research Council, Department of Biochemical Sciences “A. Rossi Fanelli,” Sapienza University of Rome, Rome, Italy
| | - Anastasia A. Pometun
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - Victoria I. Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Department of Biokinetics, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biochemistry, Sechenov University, Moscow, Russia
- *Correspondence: Victoria I. Bunik,
| |
Collapse
|
72
|
Yang J, Guo Q, Feng X, Liu Y, Zhou Y. Mitochondrial Dysfunction in Cardiovascular Diseases: Potential Targets for Treatment. Front Cell Dev Biol 2022; 10:841523. [PMID: 35646910 PMCID: PMC9140220 DOI: 10.3389/fcell.2022.841523] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVDs) are serious public health issues and are responsible for nearly one-third of global deaths. Mitochondrial dysfunction is accountable for the development of most CVDs. Mitochondria produce adenosine triphosphate through oxidative phosphorylation and inevitably generate reactive oxygen species (ROS). Excessive ROS causes mitochondrial dysfunction and cell death. Mitochondria can protect against these damages via the regulation of mitochondrial homeostasis. In recent years, mitochondria-targeted therapy for CVDs has attracted increasing attention. Various studies have confirmed that clinical drugs (β-blockers, angiotensin-converting enzyme inhibitors/angiotensin receptor-II blockers) against CVDs have mitochondrial protective functions. An increasing number of cardiac mitochondrial targets have shown their cardioprotective effects in experimental and clinical studies. Here, we briefly introduce the mechanisms of mitochondrial dysfunction and summarize the progression of mitochondrial targets against CVDs, which may provide ideas for experimental studies and clinical trials.
Collapse
|
73
|
Karas A, Holmannova D, Borsky P, Fiala Z, Andrys C, Hamakova K, Svadlakova T, Palicka V, Krejsek J, Rehacek V, Esterkova M, Kovarikova H, Borska L. Significantly Altered Serum Levels of NAD, AGE, RAGE, CRP, and Elastin as Potential Biomarkers of Psoriasis and Aging—A Case-Control Study. Biomedicines 2022; 10:biomedicines10051133. [PMID: 35625870 PMCID: PMC9138308 DOI: 10.3390/biomedicines10051133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 01/11/2023] Open
Abstract
Background: This study aims to investigate potential markers of psoriasis and aging, and to elucidate possible connections between these two processes. Methods: The serum samples of 60 psoriatic patients and 100 controls were analysed, and the levels of four selected parameters (AGEs, RAGE, NAD, and elastin) were determined using commercial ELISA kits. Serum C-reactive protein was assayed using an immune-nephelometry method. Findings: Among the patients, the levels of CRP, AGEs, and RAGE were all increased, while the levels of NAD were reduced when compared to the control group. A negative correlation between the levels of AGEs and NAD was found. A negative correlation between age and the NAD levels among the control group was observed, however among the patients the relationship was diminished. While there was no difference in the levels of native elastin between the patients and the controls, a positive correlation between the levels of native elastin and age and a negative correlation between the levels of native elastin and the severity of psoriasis were found. Conclusions: The results of our study support the notion of psoriasis and possibly other immune-mediated diseases accelerating the aging process through sustained systemic damage. The serum levels of CRP, NAD, AGEs, and RAGE appear to be promising potential biomarkers of psoriasis. The decrease in the serum levels of NAD is associated with (pro)inflammatory states. Our analysis indicates that the levels of native elastin might strongly reflect both the severity of psoriasis and the aging process.
Collapse
Affiliation(s)
- Adam Karas
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Drahomira Holmannova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Pavel Borsky
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
- Correspondence: ; Tel.: +420-495-816-386
| | - Zdenek Fiala
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Kvetoslava Hamakova
- Clinic of Dermal and Venereal Diseases, University Hospital, 500 03 Hradec Kralove, Czech Republic;
| | - Tereza Svadlakova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
- Institute of Clinical Immunology and Allergology, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Vladimir Palicka
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (V.P.); (H.K.)
| | - Jan Krejsek
- Institute of Clinical Immunology and Allergology, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Vit Rehacek
- Transfusion Center, University Hospital, 500 03 Hradec Kralove, Czech Republic;
| | - Monika Esterkova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Helena Kovarikova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (V.P.); (H.K.)
| | - Lenka Borska
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| |
Collapse
|
74
|
Chen Y, Hamidu S, Yang X, Yan Y, Wang Q, Li L, Oduro PK, Li Y. Dietary Supplements and Natural Products: An Update on Their Clinical Effectiveness and Molecular Mechanisms of Action During Accelerated Biological Aging. Front Genet 2022; 13:880421. [PMID: 35571015 PMCID: PMC9096086 DOI: 10.3389/fgene.2022.880421] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Accelerated biological aging, which involves the gradual decline of organ or tissue functions and the distortion of physiological processes, underlies several human diseases. Away from the earlier free radical concept, telomere attrition, cellular senescence, proteostasis loss, mitochondrial dysfunction, stem cell exhaustion, and epigenetic and genomic alterations have emerged as biological hallmarks of aging. Moreover, nutrient-sensing metabolic pathways are critical to an organism's ability to sense and respond to nutrient levels. Pharmaceutical, genetic, and nutritional interventions reverting physiological declines by targeting nutrient-sensing metabolic pathways can promote healthy aging and increase lifespan. On this basis, biological aging hallmarks and nutrient-sensing dependent and independent pathways represent evolving drug targets for many age-linked diseases. Here, we discuss and update the scientific community on contemporary advances in how dietary supplements and natural products beneficially revert accelerated biological aging processes to retrograde human aging and age-dependent human diseases, both from the clinical and preclinical studies point-of-view. Overall, our review suggests that dietary/natural products increase healthspan-rather than lifespan-effectively minimizing the period of frailty at the end of life. However, real-world setting clinical trials and basic studies on dietary supplements and natural products are further required to decisively demonstrate whether dietary/natural products could promote human lifespan.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sherif Hamidu
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Xintong Yang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Yuhong Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
75
|
Okabe K, Yaku K, Uchida Y, Fukamizu Y, Sato T, Sakurai T, Tobe K, Nakagawa T. Oral Administration of Nicotinamide Mononucleotide Is Safe and Efficiently Increases Blood Nicotinamide Adenine Dinucleotide Levels in Healthy Subjects. Front Nutr 2022; 9:868640. [PMID: 35479740 PMCID: PMC9036060 DOI: 10.3389/fnut.2022.868640] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
Nicotinamide mononucleotide (NNM) is an orally bioavailable NAD+ precursor that has demonstrated beneficial effects against aging and aging-associated diseases in animal models. NMN is ultimately converted to NAD+, a redox cofactor that mediates many metabolic enzymes. NAD+ also serves as the substrate for poly(ADP-ribose) polymerase (PARP) and sirtuins, and regulates various biological processes, such as metabolism, DNA repair, gene expression, and stress responses. Previous mouse models showed that NMN administration can increase NAD+ in various organs and ameliorate aging-related diseases, such as obesity, diabetes, heart failure, stroke, kidney failure, and Alzheimer's disease through NAD+-mediated pathways. However, evidence of its effect on humans is still scarce. In this study, we conducted a placebo-controlled, randomized, double blind, parallel-group trial to investigate the safety of orally administered NMN and its efficacy to increase NAD+ levels in thirty healthy subjects. Healthy volunteers received 250 mg/day of NMN (n = 15) or placebo (n = 15) for 12 weeks, and physiological and laboratory tests were performed during this period. In addition, NAD+ and its related metabolites in whole blood were examined. Oral supplementation of NMN for 12 weeks caused no abnormalities in physiological and laboratory tests, and no obvious adverse effects were observed. NAD+ levels in whole blood were significantly increased after NMN administration. We also observed the significant rise in nicotinic acid mononucleotide (NAMN) levels, but not in NMN. We also found that the increased amount of NAD+ was strongly correlated with pulse rate before the administration of NMN. These results suggest that oral administration of NMN is a safe and practical strategy to boost NAD+ levels in humans. Clinical Trial Registration: JRCT [https://jrct.niph.go.jp/], identifier: [jRCTs041200034].
Collapse
Affiliation(s)
- Keisuke Okabe
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
- Center for Clinical Research, Toyama University Hospital, University of Toyama, Toyama, Japan
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yoshiaki Uchida
- Research and Development Division, Mitsubishi Corporation Life Sciences Limited, Chiyoda-ku, Japan
| | - Yuichiro Fukamizu
- Research and Development Division, Mitsubishi Corporation Life Sciences Limited, Chiyoda-ku, Japan
| | - Toshiya Sato
- Research and Development Division, Mitsubishi Corporation Life Sciences Limited, Chiyoda-ku, Japan
| | - Takanobu Sakurai
- Research and Development Division, Mitsubishi Corporation Life Sciences Limited, Chiyoda-ku, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
- Center for Clinical Research, Toyama University Hospital, University of Toyama, Toyama, Japan
- Research Center for Pre-disease Science, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Pre-disease Science, University of Toyama, Toyama, Japan
| |
Collapse
|
76
|
Takeshita H, Yamamoto K. Tryptophan Metabolism and COVID-19-Induced Skeletal Muscle Damage: Is ACE2 a Key Regulator? Front Nutr 2022; 9:868845. [PMID: 35463998 PMCID: PMC9028463 DOI: 10.3389/fnut.2022.868845] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
The severity of coronavirus disease 2019 (COVID-19) is characterized by systemic damage to organs, including skeletal muscle, due to excessive secretion of inflammatory cytokines. Clinical studies have suggested that the kynurenine pathway of tryptophan metabolism is selectively enhanced in patients with severe COVID-19. In addition to acting as a receptor for severe acute respiratory syndrome coronavirus 2, the causative virus of COVID-19, angiotensin converting enzyme 2 (ACE2) contributes to tryptophan absorption and inhibition of the renin-angiotensin system. In this article, we review previous studies to assess the potential for a link between tryptophan metabolism, ACE2, and skeletal muscle damage in patients with COVID-19.
Collapse
|
77
|
Odoh CK, Guo X, Arnone JT, Wang X, Zhao ZK. The role of NAD and NAD precursors on longevity and lifespan modulation in the budding yeast, Saccharomyces cerevisiae. Biogerontology 2022; 23:169-199. [PMID: 35260986 PMCID: PMC8904166 DOI: 10.1007/s10522-022-09958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
Molecular causes of aging and longevity interventions have witnessed an upsurge in the last decade. The resurgent interests in the application of small molecules as potential geroprotectors and/or pharmacogenomics point to nicotinamide adenine dinucleotide (NAD) and its precursors, nicotinamide riboside, nicotinamide mononucleotide, nicotinamide, and nicotinic acid as potentially intriguing molecules. Upon supplementation, these compounds have shown to ameliorate aging related conditions and possibly prevent death in model organisms. Besides being a molecule essential in all living cells, our understanding of the mechanism of NAD metabolism and its regulation remain incomplete owing to its omnipresent nature. Here we discuss recent advances and techniques in the study of chronological lifespan (CLS) and replicative lifespan (RLS) in the model unicellular organism Saccharomyces cerevisiae. We then follow with the mechanism and biology of NAD precursors and their roles in aging and longevity. Finally, we review potential biotechnological applications through engineering of microbial lifespan, and laid perspective on the promising candidature of alternative redox compounds for extending lifespan.
Collapse
Affiliation(s)
- Chuks Kenneth Odoh
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaojia Guo
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - James T Arnone
- Department of Biology, William Paterson University, Wayne, NJ, 07470, USA
| | - Xueying Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
| |
Collapse
|
78
|
Hönigova K, Navratil J, Peltanova B, Polanska HH, Raudenska M, Masarik M. Metabolic tricks of cancer cells. Biochim Biophys Acta Rev Cancer 2022; 1877:188705. [PMID: 35276232 DOI: 10.1016/j.bbcan.2022.188705] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022]
Abstract
One of the characteristics of cancer cells important for tumorigenesis is their metabolic plasticity. Indeed, in various stress conditions, cancer cells can reshape their metabolic pathways to support the increased energy request due to continuous growth and rapid proliferation. Moreover, selective pressures in the tumor microenvironment, such as hypoxia, acidosis, and competition for resources, force cancer cells to adapt by complete reorganization of their metabolism. In this review, we highlight the characteristics of cancer metabolism and discuss its clinical significance, since overcoming metabolic plasticity of cancer cells is a key objective of modern cancer therapeutics and a better understanding of metabolic reprogramming may lead to the identification of possible targets for cancer therapy.
Collapse
Affiliation(s)
- Katerina Hönigova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jiri Navratil
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Barbora Peltanova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Hana Holcova Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic.
| |
Collapse
|
79
|
Pei Z, Wang F, Wang K, Wang L. Nicotinamide Adenine Dinucleotide in the Development and Treatment of Cardiac Remodeling and Aging. Mini Rev Med Chem 2022; 22:2310-2317. [DOI: 10.2174/1389557522666220304121917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 01/14/2022] [Indexed: 11/22/2022]
Abstract
Background:
Recently, the beneficial effects of nicotinamide adenine dinucleotide (NAD+) as an antiaging and antioxidant molecule have become a focus of research. However, the mechanisms by which NAD+ supplementation affects the associated metabolites under physiological conditions remain unclear. Specifically, although NAD+ is involved in several processes that are dysregulated in cardiovascular diseases, some effects of NAD+ precursors and NAD+ on cardiac diseases have started to gain recognition only recently.
Objective:
To discuss the influence of NAD+ supplementation on adverse cardiac remodeling and aging.
Results:
Supplementation with NAD+ precursors or nicotinamide riboside, which enhances or supplements the NAD+ metabolome, might have a protective effect on the heart. NAD+ can alleviate chronic heart failure via a mitochondrial oxidation–reduction (redox) state mechanism. Furthermore, NAD+ replenishment can improve the life span of mice.
Conclusion:
NAD+ exerts considerable antiaging and antioxidant effects with promising therapeutic effects. However, its effect in humans and use as a dietary supplement need to be studied further.
Collapse
Affiliation(s)
- Zuowei Pei
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 Dahua Road, Dong Dan, Beijing 100730, P. R. China
| | - Fang Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 Dahua Road, Dong Dan, Beijing 100730, P. R. China
| | - Kanglin Wang
- Hefei Knature Bio-pharm Co., Ltd., No. 32 Meichong Lake Road, Hefei, P. R. China
| | - Lei Wang
- Hefei Knature Bio-pharm Co., Ltd., No. 32 Meichong Lake Road, Hefei, P. R. China
| |
Collapse
|
80
|
Bai L, Yang ZX, Ma PF, Liu JS, Wang DS, Yu HC. Overexpression of SLC25A51 promotes hepatocellular carcinoma progression by driving aerobic glycolysis through activation of SIRT5. Free Radic Biol Med 2022; 182:11-22. [PMID: 35182732 DOI: 10.1016/j.freeradbiomed.2022.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022]
Abstract
Solute carrier family 25 member 20 (SLC25A51) is a newly identified mammalian mitochondrial NAD+ transporter. However, the clinicopathological and biological significance of SLC25A51 in human cancers, including hepatocellular carcinoma (HCC), remains unclear. The aim of this study was to define the role of SLC25A51 in HCC progression. Here we demonstrate that SLC25A51 is significantly overexpressed in human HCC specimens and cell lines, caused by, at least in partial, the decrease of miR-212-3p. SLC25A51 overexpression is positively correlated with the clinicopathological characteristics of vascular invasion and tumor diameter, as well as poor survival in patients with HCC. Knockdown of SLC25A51 attenuated, while overexpression of SLC25A51 enhanced the growth and metastasis of HCC cells both in vitro and in vivo. Mechanistically, glucose metabolism reprogramming from oxidative phosphorylation to glycolysis by activation of mitochondrial sirtuin 5 (SIRT5) was found to contribute to the promotion of growth and metastasis by SLC25A51 in HCC cells. Together, these findings reveal important roles of SLC25A51 in HCC tumorigenesis and suggest SLC25A51 as a promising prognostic marker and therapeutic target for treating HCC.
Collapse
Affiliation(s)
- Lu Bai
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhao-Xu Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Peng-Fei Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Shan Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - De-Sheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Heng-Chao Yu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
81
|
Secomandi L, Borghesan M, Velarde M, Demaria M. The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions. Hum Reprod Update 2022; 28:172-189. [PMID: 34918084 PMCID: PMC8888999 DOI: 10.1093/humupd/dmab038] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 10/28/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Advanced maternal age is associated with decreased oocyte quantity and quality as well as uterine and placental dysfunctions. These changes lead to infertility, pregnancy complications and birth defects in the offspring. As the mean age of giving birth is increasing worldwide, prevention of age-associated infertility and pregnancy complications, along with the more frequent use of ART, become extremely important. Currently, significant research is being conducted to unravel the mechanisms underlying female reproductive aging. Among the potential mechanisms involved, recent evidence has suggested a contributing role for cellular senescence, a cellular state of irreversible growth arrest characterized by a hypersecretory and pro-inflammatory phenotype. Elucidating the role of senescence in female reproductive aging holds the potential for developing novel and less invasive therapeutic measures to prevent or even reverse female reproductive aging and increase offspring wellbeing. OBJECTIVE AND RATIONALE The review will summarize the positive and negative implications of cellular senescence in the pathophysiology of the female reproductive organs during aging and critically explore the use of novel senotherapeutics aiming to reverse and/or eliminate their detrimental effects. The focus will be on major senescence mechanisms of the ovaries, the uterus, and the placenta, as well as the potential and risks of using senotherapies that have been discovered in recent years. SEARCH METHODS Data for this review were identified by searches of MEDLINE, PubMed and Google Scholar. References from relevant articles using the search terms 'Cellular Senescence', 'Aging', 'Gestational age', 'Maternal Age', 'Anti-aging', 'Uterus', 'Pregnancy', 'Fertility', 'Infertility', 'Reproduction', 'Implant', 'Senolytic', 'Senostatic', 'Senotherapy' and 'Senotherapeutic' where selected. A total of 182 articles published in English between 2005 and 2020 were included, 27 of which focus on potential senotherapies for reproductive aging. Exclusion criteria were inclusion of the terms 'male' and 'plants'. OUTCOMES Aging is a major determinant of reproductive wellbeing. Cellular senescence is a basic aging mechanism, which can be exploited for therapeutic interventions. Within the last decade, several new strategies for the development and repurposing of drugs targeting senescent cells have emerged, such as modulators of the anti-inflammatory response, oxidative stress, DNA damage, and mitochondria and protein dysfunctions. Several studies of female reproductive aging and senotherapies have been discussed that show promising results for future interventions. WIDER IMPLICATIONS In most countries of the Organization for Economic Co-operation and Development, the average age at which women give birth is above 30 years. Currently, in countries such as the Netherlands, Australia, Spain, Finland, Germany and the UK, birth rates among 30- to 34-year-olds are now higher than in any other age groups. This review will provide new knowledge and scientific advancement on the senescence mechanisms during female reproductive aging, and benefit fundamental and clinical scientists and professionals in the areas of reproduction, cancer, immunobiology and fibrosis.
Collapse
Affiliation(s)
- Laura Secomandi
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), 9713AV Groningen, The Netherlands
| | - Michela Borghesan
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), 9713AV Groningen, The Netherlands
| | - Michael Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, PH 1101, Philippines
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), 9713AV Groningen, The Netherlands
| |
Collapse
|
82
|
Curry A, White D, Cen Y. Small Molecule Regulators Targeting NAD + Biosynthetic Enzymes. Curr Med Chem 2022; 29:1718-1738. [PMID: 34060996 PMCID: PMC8630097 DOI: 10.2174/0929867328666210531144629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a key player in many metabolic pathways as an activated carrier of electrons. In addition to being the cofactor for redox reactions, NAD+ also serves as the substrate for various enzymatic transformations such as adenylation and ADP-ribosylation. Maintaining cellular NAD+ homeostasis has been suggested as an effective anti-aging strategy. Given the importance of NAD+ in regulating a broad spectrum of cellular events, small molecules targeting NAD+ metabolism have been pursued as therapeutic interventions for the treatment of mitochondrial disorders and agerelated diseases. In this article, small molecule regulators of NAD+ biosynthetic enzymes will be reviewed. The focus will be given to the discovery and development of these molecules, the mechanism of action as well as their therapeutic potentials.
Collapse
Affiliation(s)
- Alyson Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Dawanna White
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA;,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA,Address correspondence to this author at the Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA; Tel: 804-828-7405;
| |
Collapse
|
83
|
Meyer-Ficca ML, Zwerdling AE, Swanson CA, Tucker AG, Lopez SA, Wandersee MK, Warner GM, Thompson KL, Chini CC, Chen H, Chini EN, Meyer RG. Low NAD + Levels Are Associated With a Decline of Spermatogenesis in Transgenic ANDY and Aging Mice. Front Endocrinol (Lausanne) 2022; 13:896356. [PMID: 35600581 PMCID: PMC9120959 DOI: 10.3389/fendo.2022.896356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Advanced paternal age has increasingly been recognized as a risk factor for male fertility and progeny health. While underlying causes are not well understood, aging is associated with a continuous decline of blood and tissue NAD+ levels, as well as a decline of testicular functions. The important basic question to what extent ageing-related NAD+ decline is functionally linked to decreased male fertility has been difficult to address due to the pleiotropic effects of aging, and the lack of a suitable animal model in which NAD+ levels can be lowered experimentally in chronologically young adult males. We therefore developed a transgenic mouse model of acquired niacin dependency (ANDY), in which NAD+ levels can be experimentally lowered using a niacin-deficient, chemically defined diet. Using ANDY mice, this report demonstrates for the first time that decreasing body-wide NAD+ levels in young adult mice, including in the testes, to levels that match or exceed the natural NAD+ decline observed in old mice, results in the disruption of spermatogenesis with small testis sizes and reduced sperm counts. ANDY mice are dependent on dietary vitamin B3 (niacin) for NAD+ synthesis, similar to humans. NAD+-deficiency the animals develop on a niacin-free diet is reversed by niacin supplementation. Providing niacin to NAD+-depleted ANDY mice fully rescued spermatogenesis and restored normal testis weight in the animals. The results suggest that NAD+ is important for proper spermatogenesis and that its declining levels during aging are functionally linked to declining spermatogenesis and male fertility. Functions of NAD+ in retinoic acid synthesis, which is an essential testicular signaling pathway regulating spermatogonial proliferation and differentiation, may offer a plausible mechanism for the hypospermatogenesis observed in NAD+-deficient mice.
Collapse
Affiliation(s)
- Mirella L. Meyer-Ficca
- School of Veterinary Medicine, Utah State University, Logan, UT, United States
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- *Correspondence: Ralph G. Meyer, ; Mirella L. Meyer-Ficca,
| | - Alexie E. Zwerdling
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Corey A. Swanson
- School of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - Abby G. Tucker
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Sierra A. Lopez
- School of Veterinary Medicine, Utah State University, Logan, UT, United States
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Miles K. Wandersee
- School of Veterinary Medicine, Utah State University, Logan, UT, United States
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Gina M. Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
- Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL, United States
| | - Katie L. Thompson
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
- Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL, United States
| | - Claudia C.S. Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
- Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL, United States
| | - Haolin Chen
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Eduardo N. Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
- Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL, United States
| | - Ralph G. Meyer
- School of Veterinary Medicine, Utah State University, Logan, UT, United States
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- *Correspondence: Ralph G. Meyer, ; Mirella L. Meyer-Ficca,
| |
Collapse
|
84
|
Jian-Pi-Yi-Shen Formula Alleviates Chronic Kidney Disease in Two Rat Models by Modulating QPRT/NAD +/SIRT3/Mitochondrial Dynamics Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6625345. [PMID: 34938344 PMCID: PMC8687808 DOI: 10.1155/2021/6625345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
Abstract
Objective Jian-Pi-Yi-Shen formula (JPYSF) is a traditional Chinese herbal decoction and has been used for treating chronic kidney disease (CKD) in clinics for decades. However, the potential mechanisms have not been fully elucidated. This study was designed to test the efficacy of JPYSF in treating CKD and explore the underlying mechanism. Methods Two CKD rat models were established by 5/6 nephrectomy (5/6 Nx) and feeding with adenine-containing feed, respectively. The intervention dose of JPYSF was 10.89 g/kg/d by gastric irrigation. Renal function was assessed by serum creatinine (Scr) and blood urea nitrogen (BUN). Periodic acid-Schiff (PAS) and Masson's trichrome staining were used to evaluate renal histopathological changes. The levels of nicotinamide adenine dinucleotide (NAD+) were measured by using the enzyme-linked immunosorbent assay kit. The proteins expressions of renal fibrosis, quinolinate phosphoribosyltransferase (QPRT), sirtuin 3 (SIRT3), and mitochondrial dynamics were determined and quantified by Western blot analysis. Results The results show that administration of JPYSF significantly lowered Scr and BUN levels, improved renal tubular atrophy and interstitial fibrosis, and decreased renal extracellular matrix deposition in two CKD rat models. In addition, CKD rats exhibited suppressed QPRT/NAD+/SIRT3 signal, increased mitochondrial fission, and decreased mitochondrial fusion. JPYSF treatment promoted QPRT/NAD+/SIRT3 signal and restored mitochondrial fission/fusion balance. Conclusion In conclusion, administration of JPYSF effectively alleviated CKD progression in two rat models, which may be related with regulation of the QPRT/NAD+/SIRT3/mitochondrial dynamics pathway.
Collapse
|
85
|
Flores-Cotera LB, Chávez-Cabrera C, Martínez-Cárdenas A, Sánchez S, García-Flores OU. Deciphering the mechanism by which the yeast Phaffia rhodozyma responds adaptively to environmental, nutritional, and genetic cues. J Ind Microbiol Biotechnol 2021; 48:kuab048. [PMID: 34302341 PMCID: PMC8788774 DOI: 10.1093/jimb/kuab048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022]
Abstract
Phaffia rhodozyma is a basidiomycetous yeast that synthesizes astaxanthin (ASX), which is a powerful and highly valuable antioxidant carotenoid pigment. P. rhodozyma cells accrue ASX and gain an intense red-pink coloration when faced with stressful conditions such as nutrient limitations (e.g., nitrogen or copper), the presence of toxic substances (e.g., antimycin A), or are affected by mutations in the genes that are involved in nitrogen metabolism or respiration. Since cellular accrual of ASX occurs under a wide variety of conditions, this yeast represents a valuable model for studying the growth conditions that entail oxidative stress for yeast cells. Recently, we proposed that ASX synthesis can be largely induced by conditions that lead to reduction-oxidation (redox) imbalances, particularly the state of the NADH/NAD+ couple together with an oxidative environment. In this work, we review the multiple known conditions that elicit ASX synthesis expanding on the data that we formerly examined. When considered alongside the Mitchell's chemiosmotic hypothesis, the study served to rationalize the induction of ASX synthesis and other adaptive cellular processes under a much broader set of conditions. Our aim was to propose an underlying mechanism that explains how a broad range of divergent conditions converge to induce ASX synthesis in P. rhodozyma. The mechanism that links the induction of ASX synthesis with the occurrence of NADH/NAD+ imbalances may help in understanding how other organisms detect any of a broad array of stimuli or gene mutations, and then adaptively respond to activate numerous compensatory cellular processes.
Collapse
Affiliation(s)
- Luis B Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México city 07360, México
| | - Cipriano Chávez-Cabrera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México city 07360, México
| | - Anahi Martínez-Cárdenas
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México city 07360, México
| | - Sergio Sánchez
- Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México city 04510, México
| | - Oscar Ulises García-Flores
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México city 07360, México
| |
Collapse
|
86
|
Zhang HY, Fan ZL, Wang TY. Advances of Glycometabolism Engineering in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2021; 9:774175. [PMID: 34926421 PMCID: PMC8675083 DOI: 10.3389/fbioe.2021.774175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
As the most widely used mammalian cell line, Chinese hamster ovary (CHO) cells can express various recombinant proteins with a post translational modification pattern similar to that of the proteins from human cells. During industrial production, cells need large amounts of ATP to support growth and protein expression, and since glycometabolism is the main source of ATP for cells, protein production partly depends on the efficiency of glycometabolism. And efficient glycometabolism allows less glucose uptake by cells, reducing production costs, and providing a better mammalian production platform for recombinant protein expression. In the present study, a series of progresses on the comprehensive optimization in CHO cells by glycometabolism strategy were reviewed, including carbohydrate intake, pyruvate metabolism and mitochondrial metabolism. We analyzed the effects of gene regulation in the upstream and downstream of the glucose metabolism pathway on cell’s growth and protein expression. And we also pointed out the latest metabolic studies that are potentially applicable on CHO cells. In the end, we elaborated the application of metabolic models in the study of CHO cell metabolism.
Collapse
Affiliation(s)
- Huan-Yu Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Zhen-Lin Fan
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China.,Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| |
Collapse
|
87
|
Cytosolic Self-DNA—A Potential Source of Chronic Inflammation in Aging. Cells 2021; 10:cells10123544. [PMID: 34944052 PMCID: PMC8700131 DOI: 10.3390/cells10123544] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is the consequence of a lifelong accumulation of stochastic damage to tissues and cellular components. Advancing age closely associates with elevated markers of innate immunity and low-grade chronic inflammation, probably reflecting steady increasing incidents of cellular and tissue damage over the life course. The DNA sensing cGAS-STING signaling pathway is activated by misplaced cytosolic self-DNA, which then initiates the innate immune responses. Here, we hypothesize that the stochastic release of various forms of DNA from the nucleus and mitochondria, e.g., because of DNA damage, altered nucleus integrity, and mitochondrial damage, can result in chronic activation of inflammatory responses that characterize the aging process. This cytosolic self-DNA-innate immunity axis may perturb tissue homeostasis and function that characterizes human aging and age-associated pathology. Proper techniques and experimental models are available to investigate this axis to develop therapeutic interventions.
Collapse
|
88
|
Guo J, Chiang WC. Mitophagy in aging and longevity. IUBMB Life 2021; 74:296-316. [PMID: 34889504 DOI: 10.1002/iub.2585] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/21/2021] [Indexed: 12/22/2022]
Abstract
The clearance of damaged or unwanted mitochondria by autophagy (also known as mitophagy) is a mitochondrial quality control mechanism postulated to play an essential role in cellular homeostasis, metabolism, and development and confers protection against a wide range of diseases. Proper removal of damaged or unwanted mitochondria is essential for organismal health. Defects in mitophagy are associated with Parkinson's, Alzheimer's disease, cancer, and other degenerative disorders. Mitochondria regulate organismal fitness and longevity via multiple pathways, including cellular senescence, stem cell function, inflammation, mitochondrial unfolded protein response (mtUPR), and bioenergetics. Thus, mitophagy is postulated to be pivotal for maintaining organismal healthspan and lifespan and the protection against aged-related degeneration. In this review, we will summarize recent understanding of the mechanism of mitophagy and aspects of mitochondrial functions. We will focus on mitochondria-related cellular processes that are linked to aging and examine current genetic evidence that supports the hypothesis that mitophagy is a pro-longevity mechanism.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Chung Chiang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
89
|
Turner J, Licollari A, Mihalcea E, Tan A. Safety Evaluation for Restorin® NMN, a NAD+ Precursor. Front Pharmacol 2021; 12:749727. [PMID: 34867355 PMCID: PMC8632654 DOI: 10.3389/fphar.2021.749727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/26/2021] [Indexed: 01/07/2023] Open
Abstract
NAD+ is an abundant molecule in the body and vital to all living cells. NAD+ levels decline with age, and this decline correlates with age-related diseases. Therefore, sustaining NAD+ levels offers potential benefits to healthspan and longevity. Here we conducted toxicity studies to evaluate the safety of Restorin® NMN, a high purity form of the direct NAD+ precursor, β-nicotinamide mononucleotide (NMN). Based on the preliminary toxicity study and a 14-days repeated dose toxicity study at a higher dose level exposure, Restorin® NMN was administered orally to Sprague-Dawley rats for 91 days followed by a 14-days recovery period. The oral doses of 500, 1,000, and 2000 mg/kg/day were compared. There were no test item-related findings that could be considered adverse events in animals dosed at 500 mg/kg/day. The findings in the Restorin® NMN high dose group (2000 mg/kg/day) were similar to the reference item (Nicotinamide Riboside Chloride) dosed at 1740 mg/kg/day: reduced body weight, reductions in body weight gains, and diminished food consumption. In conclusion, the No-Observed-Adverse-Effect-Level (NOAEL) for Restorin® NMN is 1,000 mg/kg/day in female rats and 500 mg/kg/day in male rats, and the Low-Observed-Adverse-Effect-Level (LOAEL) for Resotrin® NMN is 2000 mg/kg/day.
Collapse
Affiliation(s)
- John Turner
- US Scientific Corp, Dover, DE, United States
| | - Albert Licollari
- Nucro-Technics, a Division of Vimy Ridge Group LTD, Toronto, ON, Canada
| | - Emil Mihalcea
- Nucro-Technics, a Division of Vimy Ridge Group LTD, Toronto, ON, Canada
| | - Aimin Tan
- Nucro-Technics, a Division of Vimy Ridge Group LTD, Toronto, ON, Canada
| |
Collapse
|
90
|
Niu KM, Bao T, Gao L, Ru M, Li Y, Jiang L, Ye C, Wang S, Wu X. The Impacts of Short-Term NMN Supplementation on Serum Metabolism, Fecal Microbiota, and Telomere Length in Pre-Aging Phase. Front Nutr 2021; 8:756243. [PMID: 34912838 PMCID: PMC8667784 DOI: 10.3389/fnut.2021.756243] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022] Open
Abstract
Aging is a natural process with concomitant changes in the gut microbiota and associate metabolomes. Beta-nicotinamide mononucleotide, an important NAD+ intermediate, has drawn increasing attention to retard the aging process. We probed the changes in the fecal microbiota and metabolomes of pre-aging male mice (C57BL/6, age: 16 months) following the oral short-term administration of nicotinamide mononucleotide (NMN). Considering the telomere length as a molecular gauge for aging, we measured this in the peripheral blood mononuclear cells (PBMC) of pre-aging mice and human volunteers (age: 45-60 years old). Notably, the NMN administration did not influence the body weight and feed intake significantly during the 40 days in pre-aging mice. Metabolomics suggested 266 upregulated and 58 downregulated serum metabolites. We identified 34 potential biomarkers linked with the nicotinamide, purine, and proline metabolism pathways. Nicotinamide mononucleotide significantly reduced the fecal bacterial diversity (p < 0.05) with the increased abundance of Helicobacter, Mucispirillum, and Faecalibacterium, and lowered Akkermansia abundance associated with nicotinamide metabolism. We propose that this reshaped microbiota considerably lowered the predicated functions of aging with improved immune and cofactors/vitamin metabolism. Most notably, the telomere length of PBMC was significantly elongated in the NMN-administered mice and humans. Taken together, these findings suggest that oral NMN supplementation in the pre-aging stage might be an effective strategy to retard aging. We recommend further studies to unravel the underlying molecular mechanisms and comprehensive clinical trials to validate the effects of NMN on aging.
Collapse
Affiliation(s)
- Kai-Min Niu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Tongtong Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China
| | - Lumin Gao
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China
| | - Meng Ru
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
| | - Liang Jiang
- ERA Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China
| | - Changming Ye
- ERA Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China
| | - Shujin Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
- Institute of Life Sciences, Chongqing Medical University (CAS), Chongqing, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences (CAS), Changsha, China
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| |
Collapse
|
91
|
Wu J. Targeting nicotinamide adenosine dinucleotide (NAD) in diffuse gliomas. Neuro Oncol 2021; 24:245-246. [PMID: 34919142 DOI: 10.1093/neuonc/noab265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jing Wu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
92
|
BST1 regulates nicotinamide riboside metabolism via its glycohydrolase and base-exchange activities. Nat Commun 2021; 12:6767. [PMID: 34799586 PMCID: PMC8604996 DOI: 10.1038/s41467-021-27080-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 11/04/2021] [Indexed: 11/09/2022] Open
Abstract
Nicotinamide riboside (NR) is one of the orally bioavailable NAD+ precursors and has been demonstrated to exhibit beneficial effects against aging and aging-associated diseases. However, the metabolic pathway of NR in vivo is not yet fully understood. Here, we demonstrate that orally administered NR increases NAD+ level via two different pathways. In the early phase, NR was directly absorbed and contributed to NAD+ generation through the NR salvage pathway, while in the late phase, NR was hydrolyzed to nicotinamide (NAM) by bone marrow stromal cell antigen 1 (BST1), and was further metabolized by the gut microbiota to nicotinic acid, contributing to generate NAD+ through the Preiss-Handler pathway. Furthermore, we report BST1 has a base-exchange activity against both NR and nicotinic acid riboside (NAR) to generate NAR and NR, respectively, connecting amidated and deamidated pathways. Thus, we conclude that BST1 plays a dual role as glycohydrolase and base-exchange enzyme during oral NR supplementation.
Collapse
|
93
|
Ji W, Tang X, Du W, Lu Y, Wang N, Wu Q, Wei W, Liu J, Yu H, Ma B, Li L, Huang W. Optical/electrochemical methods for detecting mitochondrial energy metabolism. Chem Soc Rev 2021; 51:71-127. [PMID: 34792041 DOI: 10.1039/d0cs01610a] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review highlights the biological importance of mitochondrial energy metabolism and the applications of multiple optical/electrochemical approaches to determine energy metabolites. Mitochondria, the main sites of oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis, provide the majority of energy required by aerobic cells for maintaining their physiological activity. They also participate in cell growth, differentiation, information transmission, and apoptosis. Multiple mitochondrial diseases, caused by internal or external factors, including oxidative stress, intense fluctuations of the ionic concentration, abnormal oxidative phosphorylation, changes in electron transport chain complex enzymes and mutations in mitochondrial DNA, can occur during mitochondrial energy metabolism. Therefore, developing accurate, sensitive, and specific methods for the in vivo and in vitro detection of mitochondrial energy metabolites is of great importance. In this review, we summarise the mitochondrial structure, functions, and crucial energy metabolic signalling pathways. The mechanism and applications of different optical/electrochemical methods are thoroughly reviewed. Finally, future research directions and challenges are proposed.
Collapse
Affiliation(s)
- Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Xiao Tang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wei Du
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Yao Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Nanxiang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wei Wei
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jie Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China. .,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China. .,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| |
Collapse
|
94
|
Xu L, Yang C, Ma J, Zhang X, Wang Q, Xiong X. NAMPT-mediated NAD + biosynthesis suppresses activation of hepatic stellate cells and protects against CCl 4-induced liver fibrosis in mice. Hum Exp Toxicol 2021; 40:S666-S675. [PMID: 34752167 DOI: 10.1177/09603271211052991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in the salvage pathway of mammalian nicotinamide adenine dinucleotide (NAD+) biosynthesis. Through its NAD+-biosynthetic activity, NAMPT is able to regulate the development of hepatic steatosis and inflammation induced by diet or alcohol. However, the roles NAMPT plays in the development of liver fibrosis remain obscure. Purpose: To investigate the roles of NAMPT-mediated NAD+ biosynthesis in hepatic stellate cell (HSC) activation and liver fibrosis. Research Design: Realtime RT-PCR and western blot analyses were performed to analyze the expression of profibrogenic genes. Sirius red staining was conducted to examine the fibrosis in liver. Mouse liver fibrosis was induced by intraperitoneal injection of carbon tetrachloride (CCl4) 2 times a week for 6 weeks. Adenovirus-mediated NAMPT overexpression or nicotinamide mononucleotide (NMN) administration was carried out to study the effects of elevation of NAD+ levels on protecting CCl4-induced liver fibrosis in mice. LX2 cells or primary HSCs were used to study the role of NAMPT overexpression or NMN treatment in reducing profibrogenic gene expression in vitro. ResultsCCl4 administration suppresses NAMPT expression in liver and reduces hepatic NAD+ content. Tgfβ1 treatment decreases intracellular NAD+ levels and NAMPT expression in LX2 cells. Adenovirus-mediated NAMPT overexpression augments liver NAD+ levels, inhibits HSC activation and alleviates CCl4-induced liver fibrosis in mice. Administration of NMN also suppresses HSC activation and protects against CCl4-induced liver fibrosis in mice. Conclusions: NAMPT-mediated NAD+ biosynthesis inhibits HSC activation and protects against CCl4-induced liver fibrosis.
Collapse
Affiliation(s)
- Lin Xu
- School of Forensic Medicine, 91593Xinxiang Medical University, Xinxiang, China.,Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenyan Yang
- School of Forensic Medicine, 91593Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Metabolism and Integrative Physiology, 91593Xinxiang Medical University, Xinxiang, China
| | - Jie Ma
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, 91593Xinxiang Medical University, Xinxiang, China.,Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, 91593Xinxiang Medical University, Henan, China
| | - Xinge Zhang
- School of Forensic Medicine, 91593Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Metabolism and Integrative Physiology, 91593Xinxiang Medical University, Xinxiang, China
| | - Qingzhi Wang
- School of Forensic Medicine, 91593Xinxiang Medical University, Xinxiang, China
| | - Xiwen Xiong
- School of Forensic Medicine, 91593Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Metabolism and Integrative Physiology, 91593Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
95
|
Liu Y, Yasawong M, Yu B. Metabolic engineering of Escherichia coli for biosynthesis of β-nicotinamide mononucleotide from nicotinamide. Microb Biotechnol 2021; 14:2581-2591. [PMID: 34310854 PMCID: PMC8601175 DOI: 10.1111/1751-7915.13901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022] Open
Abstract
The β-nicotinamide mononucleotide (NMN) is a key intermediate of an essential coenzyme for cellular redox reactions, NAD. Administration of NMN is reported to improve various symptoms, such as diabetes and age-related physiological decline. Thus, NMN is attracting much attention as a promising nutraceutical. Here, we engineered an Escherichia coli strain to produce NMN from cheap substrate nicotinamide (NAM) and glucose. The supply of in vivo precursor phosphoribosyl pyrophosphate (PRPP) and ATP was enhanced by strengthening the metabolic flux from glucose. A nicotinamide phosphoribosyltransferase with high activity was newly screened, which is the key enzyme for converting NAM to NMN with PRPP as cofactor. Notably, the E. coli endogenous protein YgcS, which function is primarily in the uptake of sugars, was firstly proven to be beneficial for NMN production in this study. Fine-tuning regulation of ygcS gene expression in the engineered E. coli strain increased NMN production. Combined with process optimization of whole-cell biocatalysts reaction, a final NMN titre of 496.2 mg l-1 was obtained.
Collapse
Affiliation(s)
- Yang Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Montri Yasawong
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- Program on Environmental ToxicologyChulabhorn Graduate InstituteChulabhorn Royal AcademyBangkok10210Thailand
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- China‐Thailand Joint Laboratory on Microbial BiotechnologyBeijingChina
| |
Collapse
|
96
|
Cheng XS, Shi FX, Zhao KP, Lin W, Li XY, Zhang J, Bu YY, Zhu R, Li XH, Duan DX, Ji XY, Wei JS, Wang JZ, Du J, Zhou XW. Nmnat2 attenuates amyloidogenesis and up-regulates ADAM10 in AMPK activity-dependent manner. Aging (Albany NY) 2021; 13:23620-23636. [PMID: 34644262 PMCID: PMC8580354 DOI: 10.18632/aging.203634] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/03/2021] [Indexed: 12/16/2022]
Abstract
Amyloid-β (Aβ) accumulating is considered as a causative factor for formation of senile plaque in Alzheimer’s disease (AD), but its mechanism is still elusive. The Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2), a key redox cofactor for energy metabolism, is reduced in AD. Accumulative evidence has shown that the decrease of α-secretase activity, a disintegrin and metalloprotease domain 10 (ADAM10), is responsible for the increase of Aβ productions in AD patient’s brain. Here, we observe that the activity of α-secretase ADAM10 and levels of Nmnat2 are significantly decreased, meanwhile there is a simultaneous elevation of Aβ in Tg2576 mice. Over-expression of Nmnat2 increases the mRNA expression of α-secretase ADAM10 and its activity and inhibits Aβ production in N2a/APPswe cells, which can be abolished by Compound C, an AMPK antagonist, suggesting that AMPK is involved in over-expression of Nmnat2 against Aβ production. The further assays demonstrate that Nmnat2 activates AMPK by up-regulating the ratio of NAD+/NADH, moreover AMPK agonist AICAR can also increase ADAM10 activity and reduces Aβ1-40/1-42. Taken together, Nmnat2 suppresses Aβ production and up-regulates ADAM10 in AMPK activity-dependent manner, suggesting that Nmnat2 may serve as a new potential target in arresting AD.
Collapse
Affiliation(s)
- Xiang-Shu Cheng
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China.,Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Brain Research Laboratory, Henan University, Kaifeng 475004, Henan, China
| | - Fang-Xiao Shi
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Kun-Peng Zhao
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Department of Psychiatry, Henan Key Lab of Biological Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, Henan, China
| | - Wang Lin
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiao-Ying Li
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China
| | - Jun Zhang
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China
| | - Yao-Yao Bu
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China
| | - Rui Zhu
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiao-Hong Li
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Dong-Xiao Duan
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xin-Ying Ji
- Department of Microbiology, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jian-She Wei
- Brain Research Laboratory, Henan University, Kaifeng 475004, Henan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jin Du
- Department of Neurology, Translational Medicine Center, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China.,Department of Respiratory, Huaihe Hospital Affiliated to Henan University, Kaifeng 475000, Henan, China.,Brain Research Laboratory, Henan University, Kaifeng 475004, Henan, China
| | - Xin-Wen Zhou
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
97
|
Liu X, Luo D, Huang S, Liu S, Zhang B, Wang F, Lu J, Chen J, Li S. Impaired Nicotinamide Adenine Dinucleotide Biosynthesis in the Kidney of Chronic Kidney Disease. Front Physiol 2021; 12:723690. [PMID: 34603081 PMCID: PMC8484911 DOI: 10.3389/fphys.2021.723690] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/23/2021] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) is a global public health problem with high morbidity and mortality. Decreased nicotinamide adenine dinucleotide (NAD+) levels were found to be associated with aging, cancer, and neurodegenerative and metabolic disorders. However, the alteration of renal NAD+ levels and biosynthesis pathways in CKD is less known. In the present study, we aimed to evaluate renal NAD+ levels and tested the expression of key enzymes in three NAD+ biosynthesis pathways in two different types of CKD rat model. CKD rat models were established by 5/6 nephrectomy (5/6 Nx) and feeding with adenine-containing feed, respectively. Renal function was assessed by serum creatinine (Scr) and blood urea nitrogen (BUN). Renal pathology was evaluated by periodic acid-Schiff (PAS) and Masson’s trichrome staining. The expression of key enzymes in three NAD+ biosynthesis pathways was determined and quantified by Western blot analysis. The results showed CKD rat models were successfully established as evidenced by increased Scr and BUN levels, upregulation of neutrophil gelatinase-associated lipocalin (NGAL), glomerular hypertrophy, and renal fibrosis. Renal NAD+ and NADH content were both declined in two CKD rat models, and NAD+ levels were negatively correlated with Scr and BUN levels in CKD rats. Three key enzymes involved in NAD+ biosynthesis were significantly downregulated in the kidney of both of the two CKD models. They were quinolinate phosphoribosyltransferase (QPRT) in the de novo pathway, nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1), and NMNAT3 in the salvage pathway. Moreover, the expression of NAD+-consuming enzymes sirtuin 3 (SIRT3) and CD38 decreased significantly in CKD rats. In conclusion, NAD+ biosynthesis was significantly impaired in CKD, which may attribute to downregulation of QPRT and NMNAT 1/3.
Collapse
Affiliation(s)
- Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Denggui Luo
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shiying Huang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Siqi Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Bing Zhang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Fochang Wang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shunmin Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
98
|
van der Velpen V, Rosenberg N, Maillard V, Teav T, Chatton J, Gallart‐Ayala H, Ivanisevic J. Sex-specific alterations in NAD+ metabolism in 3xTg Alzheimer's disease mouse brain assessed by quantitative targeted LC-MS. J Neurochem 2021; 159:378-388. [PMID: 33829502 PMCID: PMC8596789 DOI: 10.1111/jnc.15362] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/21/2022]
Abstract
Levels of nicotinamide adenine dinucleotide (NAD+) are known to decline with age and have been associated with impaired mitochondrial function leading to neurodegeneration, a key facet of Alzheimer's disease (AD). NAD+synthesis is sustained via tryptophan-kynurenine (Trp-Kyn) pathway as de novo synthesis route, and salvage pathways dependent on the availability of nicotinic acid and nicotinamide. While being currently investigated as a multifactorial disease with a strong metabolic component, AD remains without curative treatment and important sex differences were reported in relation to disease onset and progression. The aim of this study was to reveal the potential deregulation of NAD+metabolism in AD with the direct analysis of NAD+precursors in the mouse brain tissue (wild type (WT) versus triple transgenic (3xTg) AD), using a sex-balanced design. To this end, we developed a quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, which allowed for the measurement of the full spectrum of NAD+precursors and intermediates in all three pathways. In brain tissue of mice with developed AD symptoms, a decrease in kynurenine (Kyn) versus increase in kynurenic acid (KA) levels were observed in both sexes with a significantly higher increment of KA in males. These alterations in Trp-Kyn pathway might be a consequence of neuroinflammation and a compensatory production of neuroprotective kynurenic acid. In the NAD+ salvage pathway, significantly lower levels of nicotinamide mononucleotide (NMN) were measured in the AD brain of males and females. Depletion of NMN implies the deregulation of salvage pathway critical for maintaining optimal NAD+ levels and mitochondrial and neuronal function.
Collapse
Affiliation(s)
- Vera van der Velpen
- Metabolomics PlatformFaculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
- Present address:
Clinical Pharmacology and ToxicologyDepartment of General Internal Medicine, InselspitalBern University HospitalBernSwitzerland
| | - Nadia Rosenberg
- Department of Fundamental NeurosciencesFaculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Vanille Maillard
- Metabolomics PlatformFaculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Tony Teav
- Metabolomics PlatformFaculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Jean‐Yves Chatton
- Department of Fundamental NeurosciencesFaculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Hector Gallart‐Ayala
- Metabolomics PlatformFaculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Julijana Ivanisevic
- Metabolomics PlatformFaculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
99
|
Zeng M, Wei TF, Chen C, Shen C, Gao TY, Xie X, Wu M, Lu YB, Zhang WP. Nicotinamide phosphoribosyltransferase inhibitor ameliorates mouse aging-induced cognitive impairment. J Cereb Blood Flow Metab 2021; 41:2510-2523. [PMID: 33818184 PMCID: PMC8504953 DOI: 10.1177/0271678x211006291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme for the synthesis of nicotinamide adenine dinucleotide (NAD) in the salvaging pathway. Though NAMPT inhibitors such as FK866 were originally developed as anti-cancer drugs, they also display neuroprotective effects. Here we show that the administration of FK866 at 0.5 mg/kg (ip, qod) for four weeks, i.e., ∼1% of the dose used for the treatment of cancer, significantly alleviates the aging-induced impairment of cognition and locomotor activity. Mechanistically, FK866 enhanced autophagy, reduced protein aggregation, and inhibited neuroinflammation indicated by decreasing TNFα, IL-6, GFAP, and Iba1 levels in the aged mouse brain. Though FK866 did not affect the total NAD and nicotinamide mononucleotide (NMN) levels in the mouse brain at the dose we used, FK866 increased nicotinamide (NAM) level in the young mouse brain and decreased NAM level in the aged mouse brain. On the other hand, FK866 did not affect the serum glucose, cholesterol, and triglyceride of young and aged mice and exhibited no effects on the various indices of young mice. Thus, the NAMPT inhibitor can be repurpose to counteract the cognitive impairment upon aging. We also envision that NAMPT inhibitor can be used for the treatment of age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Zeng
- Departments of Pharmacology and Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Tao-Feng Wei
- Departments of Pharmacology and Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Cong Chen
- Departments of Pharmacology and Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Chen Shen
- Departments of Pharmacology and Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Tong-Yao Gao
- Departments of Pharmacology and Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Xian Xie
- Hospital of Stomatology, Zhejiang University School of Medicine, Zhejiang, China
| | - Ming Wu
- Department of Thoracic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Yun-Bi Lu
- Departments of Pharmacology and Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Wei-Ping Zhang
- Departments of Pharmacology and Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| |
Collapse
|
100
|
Wen DT, Zheng L, Lu K, Hou WQ. Activation of cardiac Nmnat/NAD+/SIR2 pathways mediates endurance exercise resistance to lipotoxic cardiomyopathy in aging Drosophila. J Exp Biol 2021; 224:272180. [PMID: 34495320 DOI: 10.1242/jeb.242425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022]
Abstract
Endurance exercise is an important way to resist and treat high-fat diet (HFD)-induced lipotoxic cardiomyopathy, but the underlying molecular mechanisms are poorly understood. Here, we used Drosophila to identify whether cardiac Nmnat/NAD+/SIR2 pathway activation mediates endurance exercise-induced resistance to lipotoxic cardiomyopathy. The results showed that endurance exercise activated the cardiac Nmnat/NAD+/SIR2/FOXO pathway and the Nmnat/NAD+/SIR2/PGC-1α pathway, including up-regulating cardiac Nmnat, SIR2, FOXO and PGC-1α expression, superoxide dismutase (SOD) activity and NAD+ levels, and it prevented HFD-induced or cardiac Nmnat knockdown-induced cardiac lipid accumulation, malondialdehyde (MDA) content and fibrillation increase, and fractional shortening decrease. Cardiac Nmnat overexpression also activated heart Nmnat/NAD+/SIR2 pathways and resisted HFD-induced cardiac malfunction, but it could not protect against HFD-induced lifespan reduction and locomotor impairment. Exercise improved lifespan and mobility in cardiac Nmnat knockdown flies. Therefore, the current results confirm that cardiac Nmnat/NAD+/SIR2 pathways are important antagonists of HFD-induced lipotoxic cardiomyopathy. Cardiac Nmnat/NAD+/SIR2 pathway activation is an important underlying molecular mechanism by which endurance exercise and cardiac Nmnat overexpression give protection against lipotoxic cardiomyopathy in Drosophila.
Collapse
Affiliation(s)
- Deng-Tai Wen
- Ludong University, City Yantai 264025, Shandong Province, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Chang Sha 410012, Hunan Province, China
| | - Kai Lu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Chang Sha 410012, Hunan Province, China
| | - Wen-Qi Hou
- Ludong University, City Yantai 264025, Shandong Province, China
| |
Collapse
|