51
|
LFB: A Novel Antimicrobial Brevinin-Like Peptide from the Skin Secretion of the Fujian Large Headed Frog, Limnonectes fujianensi. Biomolecules 2019; 9:biom9060242. [PMID: 31234333 PMCID: PMC6627297 DOI: 10.3390/biom9060242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/22/2022] Open
Abstract
Amphibians are a natural source of abundant antimicrobial peptides and thus have been widely investigated for isolation of such biomolecules. Many new antimicrobial peptide families have been discovered from amphibians. In this study, a novel antimicrobial peptide named Limnonectes fujianensis Brevinvin (LFB) has been identified in the skin secretion from the Fujian large headed frog, Limnonectes fujianensis. The cDNA sequence was cloned from a skin secretion library and the predicted mature peptide was identified through MS/MS fragmentation sequencing of reverse phase HPLC fractions on the same sample. LFB was predicted to be an amphipathic, hydrophobic, alpha helical, and beta turn peptide that inserts into a lipid bilayer in order to kill the cells. In antimicrobial assays, a synthetic replicate of this novel antimicrobial peptide demonstrated significant activity against the Gram-positive bacterium Staphylococcus aureus, the Gram-negative bacterium Escherichia coli and the yeast, Candida albicans. This novel peptide was highly potent (MIC 4.88 uM) against Gram-negative bacterium, and also has the ability to inhibit the growth of human cancer cell lines with IC50 values ranging from 18.9 μM down to 2.0 μM. These findings help to enrich our understanding of Brevinin-like peptides. Moreover, the data presented here validate frog secretion as a source of potential novel antimicrobial peptides, that also exhibit anti-tumor properties, that could be useful for the treatment of cancer.
Collapse
|
52
|
A Hylarana latouchii Skin Secretion-Derived Novel Bombesin-Related Pentadecapeptide (Ranatensin-HLa) Evoke Myotropic Effects on the in vitro Rat Smooth Muscles. Toxins (Basel) 2019; 11:toxins11040204. [PMID: 30959738 PMCID: PMC6521075 DOI: 10.3390/toxins11040204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/17/2022] Open
Abstract
Amphibians have developed successful defensive strategies for combating predators and invasive microorganisms encountered in their broad range of environments, which involve secretion of complex cocktails of noxious, toxic and diverse bioactive molecules from the skins. In recent years, amphibian skin secretions have been considered as an extraordinary warehouse for the discovery of therapeutic medicines. In this study, through bioactivity screening of the Hylarana latouchii skin secretion-derived fractions, a novel peptide belonging to ranatensin subfamily (ranatensin-HLa) was discovered, and structurally and pharmacologically-characterised. It consists of 15 amino acid residues, pGlu-NGDRAPQWAVGHFM-NH2, and its synthetic replicate was found to exhibit pharmacological activities on increasing the contraction of the in vitro rat bladder and uterus smooth muscles. Corresponding characteristic sigmoidal dose-response curves with EC50 values of 7.1 nM and 5.5 nM were produced, respectively, in bladder and uterus. Moreover, the precursor of ranatensin-HLa showed a high degree of similarity to those of bombesin-like peptides from Odorrana grahami and Odorrana schmackeri. Hylarana latouchii skin continues to serve as a storehouse with diverse lead compounds for the development of therapeutically effective medicines.
Collapse
|
53
|
Membrane-active antimicrobial peptide identified in Rana arvalis by targeted DNA sequencing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:651-659. [DOI: 10.1016/j.bbamem.2018.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 11/21/2022]
|
54
|
Martin H C, Ibáñez R, Nothias LF, Boya P CA, Reinert LK, Rollins-Smith LA, Dorrestein PC, Gutiérrez M. Viscosin-like lipopeptides from frog skin bacteria inhibit Aspergillus fumigatus and Batrachochytrium dendrobatidis detected by imaging mass spectrometry and molecular networking. Sci Rep 2019; 9:3019. [PMID: 30816229 PMCID: PMC6395710 DOI: 10.1038/s41598-019-39583-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022] Open
Abstract
Amphibian populations worldwide have declined and in some cases become extinct due to chytridiomycosis, a pandemic disease caused by the fungus Batrachochytrium dendrobatidis; however, some species have survived these fungal epidemics. Previous studies have suggested that the resistance of these species is due to the presence of cutaneous bacteria producing antifungal metabolites. As our understanding of these metabolites is still limited, we assessed the potential of such compounds against human-relevant fungi such as Aspergillus. In this work we isolated 201 bacterial strains from fifteen samples belonging to seven frog species collected in the highlands of Panama and tested them against Aspergillus fumigatus. Among the 29 bacterial isolates that exhibited antifungal activity, Pseudomonas cichorii showed the greatest inhibition. To visualize the distribution of compounds and identify them in the inhibition zone produced by P. cichorii, we employed MALDI imaging mass spectrometry (MALDI IMS) and MS/MS molecular networking. We identified viscosin and massetolides A, F, G and H in the inhibition zone. Furthermore, viscosin was isolated and evaluated in vitro against A. fumigatus and B. dendrobatidis showing MIC values of 62.50 µg/mL and 31.25 µg/mL, respectively. This is the first report of cyclic depsipeptides with antifungal activity isolated from frog cutaneous bacteria.
Collapse
Affiliation(s)
- Christian Martin H
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama.,Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama.,Departamento de Zoología, Universidad de Panamá, Panama, Republic of Panama
| | - Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Cristopher A Boya P
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama.,Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Laura K Reinert
- Department of Pathology, Microbiology, and Immunology, and Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Louise A Rollins-Smith
- Department of Pathology, Microbiology, and Immunology, and Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Marcelino Gutiérrez
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama.
| |
Collapse
|
55
|
Biochemical and Biological Profile of Parotoid Secretion of the Amazonian Rhinella marina (Anura: Bufonidae). BIOMED RESEARCH INTERNATIONAL 2019; 2019:2492315. [PMID: 31214612 PMCID: PMC6535847 DOI: 10.1155/2019/2492315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022]
Abstract
Skin secretions of frogs have a high chemical complexity. They have diverse types of biomolecules, such as proteins, peptides, biogenic amines, and alkaloids. These compounds protect amphibians' skin against growth of bacteria, fungi, and protozoa and participate in defense system against attack from predators. Therewith, this work performed biochemical and biological profile of macroglands parotoid secretion from cane toad. For poison analysis, we performed molecular exclusion and reverse phase chromatography, electrophoresis, and mass spectrometry. Antimicrobial, antiplasmodial, leishmanicidal, cytotoxicity, genotoxicity, and inflammatory activity of crude and/or fractions of R. marina secretion were also evaluated. Fractionation prior to filtration from poison showed separation of low mass content (steroids and alkaloids) and high molecular mass (protein). Material below 10 kDa two steroids, marinobufagin and desacetylcinobufagin, was detected. Crude extract and fractions were active against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Plasmodium falciparum, Leishmania guyanensis, and Leishmania braziliensis. Crude extract was also active against cancer cells although it was not cytotoxic for normal cells. This extract did not show significant DNA damage but it showed an important inflammatory effect in vivo. The information obtained in this work contributes to the understanding of the constituents of R. marina secretion as well as the bioactive potential of these molecules.
Collapse
|
56
|
Abstract
Antimicrobial peptides are ubiquitous molecules that form the innate immune system of organisms across all kingdoms of life. Despite their prevalence and early origins, they continue to remain potent natural antimicrobial agents. Antimicrobial peptides are therefore promising drug candidates in the face of overwhelming multi-drug resistance to conventional antibiotics. Over the past few decades, thousands of antimicrobial peptides have been characterized in vitro, and their efficacy data are now available in a multitude of public databases. Computational antimicrobial peptide design attempts typically use such data. However, utilizing heterogenous data aggregated from different sources presents significant drawbacks. In this report, we present a uniform dataset containing 20 antimicrobial peptides assayed against 30 organisms of Gram-negative, Gram-positive, mycobacterial, and fungal origin. We also present circular dichroism spectra for all antimicrobial peptides. We draw simple inferences from this data, and we discuss what characteristics are essential for antimicrobial peptide efficacy. We expect our uniform dataset to be useful for future projects involving computational antimicrobial peptide design.
Collapse
|
57
|
Rončević T, Gerdol M, Spazzali F, Florian F, Mekinić S, Tossi A, Pallavicini A. Parallel identification of novel antimicrobial peptide sequences from multiple anuran species by targeted DNA sequencing. BMC Genomics 2018; 19:827. [PMID: 30458708 PMCID: PMC6245896 DOI: 10.1186/s12864-018-5225-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022] Open
Abstract
Background Antimicrobial peptides (AMPs) are multifunctional effector molecules that often combine direct antimicrobial activities with signaling or immunomodulatory functions. The skin secretions of anurans contain a variety of such bioactive peptides. The identification of AMPs from frog species often requires sacrificing several specimens to obtain small quantities of crude peptides, followed by activity based fractionation to identify the active principles. Results We report an efficient alternative approach to selectively amplify AMP-coding transcripts from very small amounts of tissue samples, based on RNA extraction and cDNA synthesis, followed by PCR amplification and high-throughput sequencing of size-selected amplicons. This protocol exploits the highly conserved signal peptide region of the AMP precursors from Ranidae, Hylidae and Bombinatoridae for the design of family-specific, forward degenerate primers, coupled with a reverse primer targeting the mRNA poly-A tail. Conclusions Analysis of the assembled sequencing output allowed to identify more than a hundred full-length mature peptides, mostly from Ranidae species, including several novel potential AMPs for functional characterization. This (i) confirms the effectiveness of the experimental approach and indicates points for protocol optimization to account for particular cases, and (ii) encourages the application of the same methodology to other multigenic AMP families, also from other genera, sharing common features as in anuran AMPs. Electronic supplementary material The online version of this article (10.1186/s12864-018-5225-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomislav Rončević
- Department of Physics, Faculty of Science, University of Split, 21000, Split, Croatia.
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Francesca Spazzali
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Fiorella Florian
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Stjepan Mekinić
- Public Institution for the Management of Protected Areas in the County of Split and Dalmatia - "Sea and karst", 21000, Split, Croatia
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | | |
Collapse
|
58
|
Siano A, Humpola MV, de Oliveira E, Albericio F, Simonetta AC, Lajmanovich R, Tonarelli GG. Leptodactylus latrans Amphibian Skin Secretions as a Novel Source for the Isolation of Antibacterial Peptides. Molecules 2018; 23:molecules23112943. [PMID: 30423858 PMCID: PMC6278411 DOI: 10.3390/molecules23112943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
Amphibians´ skin produces a diverse array of antimicrobial peptides that play a crucial role as the first line of defense against microbial invasion. Despite the immense richness of wild amphibians in Argentina, current knowledge about the presence of peptides with antimicrobial properties is limited to a only few species. Here we used LC-MS-MS to identify antimicrobial peptides with masses ranging from 1000 to 4000 Da from samples of skin secretions of Leptodactylus latrans (Anura: Leptodactylidae). Three novel amino acid sequences were selected for chemical synthesis and further studies. The three synthetic peptides, named P1-Ll-1577, P2-Ll-1298, and P3-Ll-2085, inhibited the growth of two ATCC strains, namely Escherichia coli and Staphylococcus aureus. P3-Ll-2085 was the most active peptide. In the presence of trifluoroethanol (TFE) and anionic liposomes, it adopted an amphipathic α-helical structure. P2-Ll-1298 showed slightly lower activity than P3-Ll-2085. Comparison of the MIC values of these two peptides revealed that the addition of seven amino acid residues (GLLDFLK) on the N-terminal of P2-Ll-1298 significantly improved activity against both strains. P1-Ll-1577, which remarkably is an anionic peptide, showed interesting antimicrobial activity against E. coli and S. aureus strain, showing marked membrane selectivity and non-hemolysis. Due to this, P1-L1-1577 emerges as a potential candidate for the development of new antibacterial drugs.
Collapse
Affiliation(s)
- Alvaro Siano
- Departamento de Química Orgánica, Facultad de Bioquímica y Cs. Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1825 Buenos Aires, Argentina.
| | - Maria Veronica Humpola
- Departamento de Química Orgánica, Facultad de Bioquímica y Cs. Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1825 Buenos Aires, Argentina.
| | - Eliandre de Oliveira
- Proteomics Platform, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain.
| | - Fernando Albericio
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain;.
- Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain.
- School of Chemistry and Physics, University of KwaZulu-Natal, 4000 Durban, South Africa.
| | - Arturo C Simonetta
- Cátedras de Microbiología y Biotecnología, Departamento de Ingeniería en Alimentos, Facultad de Ingeniería Química, U.N.L. Santiago del Estero 2829, 3000 Santa Fe, Argentina.
| | - Rafael Lajmanovich
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1825 Buenos Aires, Argentina.
- Cátedra de Ecotoxicología, Escuela Superior de Sanidad. FBCB, U.N.L. Ciudad Universitaria, 3000 Santa Fe, Argentina.
| | - Georgina G Tonarelli
- Departamento de Química Orgánica, Facultad de Bioquímica y Cs. Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina.
| |
Collapse
|
59
|
A novel antimicrobial peptide, Ranatuerin-2PLx, showing therapeutic potential in inhibiting proliferation of cancer cells. Biosci Rep 2018; 38:BSR20180710. [PMID: 30279210 PMCID: PMC6239254 DOI: 10.1042/bsr20180710] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides are a promising resource for developing novel antibiotic and even anticancer drugs. Here, a 28-mer polypeptide, Ranatuerin-2PLx (R2PLx), was identified from lyophilised skin secretions. The chemically synthetic replicates exhibited moderate and broadspectrum antimicrobial effect against various microorganisms including methicillin-resistant Staphylococcus aureus (MRSA, minimal inhibitory concentration = 256 µM). In addition, R2PLx was found to inhibit the proliferation of several tumour cells, especially showing more potent effect on prostate cancer cell, PC-3. The early cell apoptosis was observed in 6 h by Annexin V-FITC/propidium iodide staining, as well as the activation of Caspase-3 at 5 µM peptide concentration. R2PLx may therefore be promising for developing new therapeutic approach for cancer treatment. Moreover, the artificial deficiency of conserved rana-box loop or net positive charge in C-terminal domain notably reduced the biological activities of the truncated and substituted isoforms, respectively, suggesting for maintaining their biological potency of ranatuerin family requires both cysteine-bridged segment and cationincity within the loop domain in C-terminus.
Collapse
|
60
|
Zhang F, Guo ZL, Chen Y, Li L, Yu HN, Wang YP. Effects of C-terminal amidation and heptapeptide ring on the biological activities and advanced structure of amurin-9KY, a novel antimicrobial peptide identified from the brown frog, Rana kunyuensis. Zool Res 2018; 40:198-204. [PMID: 30127331 PMCID: PMC6591156 DOI: 10.24272/j.issn.2095-8137.2018.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rana kunyuensis is a species of brown frog that lives exclusively on Kunyu Mountain, Yantai, China. In the current study, a 279-bp cDNA sequence encoding a novel antimicrobial peptide (AMP), designated as amurin-9KY, was cloned from synthesized double-strand skin cDNA of R. kunyuensis. The amurin-9KY precursor was composed of 62 amino acid (aa) residues, whereas the mature peptide was composed of 14 aa and contained two cysteines forming a C-terminal heptapeptide ring (Rana box domain) and an amidated C-terminus. These structural characters represent a novel amphibian AMP family. Although amurin-9KY exhibited high similarity to the already identified amurin-9AM from R. amurensis, little is known about the structures and activities of amurin-9 family AMPs so far. Therefore, amurin-9KY and its three derivatives (amurin-9KY1–3) were designed and synthesized. The structures and activities were examined to evaluate the influence of C-terminal amidation and the heptapeptide ring on the activities and structure of amurin-9KY. Results indicated that C-terminal amidation was essential for antimicrobial activity, whereas both C-terminal amidation and the heptapeptide ring played roles in the low hemolytic activity. Circular dichroism (CD) spectra showed that the four peptides adopted an α-helical conformation in THF/H2O (v/v 1:1) solution, but a random coil in aqueous solution. Elimination of the C-terminal heptapeptide ring generated two free cysteine residues with unpaired thiol groups, which greatly increased the concentration-dependent anti-oxidant activity. Scanning electron microscopy (SEM) was also performed to determine the possible bactericidal mechanisms.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou Jiangsu 215123, China
| | - Zhi-Lai Guo
- School of Life Sciences, Guizhou Normal University, Guiyang Guizhou 550001, China
| | - Yan Chen
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou Jiangsu 215123, China
| | - Li Li
- School of Life Sciences, Guizhou Normal University, Guiyang Guizhou 550001, China
| | - Hai-Ning Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian Liaoning 116023, China; E-mail:
| | - Yi-Peng Wang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou Jiangsu 215123, China; E-mail:
| |
Collapse
|
61
|
Mishra B, Wang X, Lushnikova T, Zhang Y, Golla RM, Narayana JL, Wang C, McGuire TR, Wang G. Antibacterial, antifungal, anticancer activities and structural bioinformatics analysis of six naturally occurring temporins. Peptides 2018; 106:9-20. [PMID: 29842923 PMCID: PMC6063800 DOI: 10.1016/j.peptides.2018.05.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022]
Abstract
Antimicrobial peptides are a special class of natural products with potential applications as novel therapeutics. This study focuses on six temporins (four with no activity data and two as positive controls). Using synthetic peptides, we report antibacterial, antifungal, and anticancer activities of temporins-CPa, CPb, 1Ga, 1Oc, 1Ola, and 1SPa. While temporin-1Ga and temporin-1OLa showed higher antifungal and anticancer activity, most of these peptides were active primarily against Gram-positive bacteria. Temporin-1OLa, with the highest cell selectivity index, could preferentially kill methicillin-resistant Staphylococcus aureus (MRSA), consistent with a reduced hemolysis in the presence of bacteria. Mechanistically, temporin-1OLa rapidly killed MRSA by damaging bacterial membranes. Using micelles as a membrane-mimetic model, we determined the three-dimensional structure of temporin-1OLa by NMR spectroscopy. The peptide adopted a two-domain structure where a hydrophobic patch is followed by a classic amphipathic helix covering residues P3-I12. Such a structure is responsible for anti-biofilm ability in vitro and in vivo protection of wax moths Galleria mellonella from staphylococcal infection. Finally, our bioinformatic analysis leads to a classification of temporins into six types and confers significance to this NMR structure since temporin-1OLa shares a sequence model with 62% of temporins. Collectively, our results indicate the potential of temporin-1OLa as a new anti-MRSA compound, which shows an even better anti-biofilm capability in combination with linezolid.
Collapse
Affiliation(s)
- Biswajit Mishra
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Xiuqing Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA; Department of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Tamara Lushnikova
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Yingxia Zhang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA; Key Laboratory of Tropical Biological Resources, Ministry of Education, College of Marine Science, Hainan University, Haikou 570228, Hainan, China
| | - Radha M Golla
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Jayaram Lakshmaiah Narayana
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Chunfeng Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA; The First Affiliated Hospital of Zhengzhou University, 1 Mianfang Road, Zhengzhou 450052, Henan, China
| | - Timothy R McGuire
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA.
| |
Collapse
|
62
|
Zohrab F, Askarian S, Jalili A, Kazemi Oskuee R. Biological Properties, Current Applications and Potential Therapeautic Applications of Brevinin Peptide Superfamily. Int J Pept Res Ther 2018; 25:39-48. [PMID: 32214928 PMCID: PMC7087712 DOI: 10.1007/s10989-018-9723-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2018] [Indexed: 12/28/2022]
Abstract
The Brevinin peptides are antimicrobial agents obtained from frog skin secretions. Brevinin-2R has attracted many attentions due to its very low hemolytic activity, cationic property, and high affinity to cancer cells. Moreover, it has shown little toxicity against normal mammalian cells, while having killed several tumor cell lines by activation of lysosome-mitochondrial death pathway. In this review, we introduced the Brevinin superfamily with a focus on its therapeutic applications. Next, some unique properties of Brevinins were briefly discussed, including their ability to stimulate insulin secretion, dendritic cell maturation, and wound healing. In this context, we also provide information about the decoration of nanoparticles, such as cerium nano-oxide, by Brevinins. Finally, we addressed their potential for anti-tumor and drug design applications.
Collapse
Affiliation(s)
- Fatemeh Zohrab
- 1Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Askarian
- Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Amin Jalili
- 1Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- 3Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
63
|
The Amphibian Antimicrobial Peptide Temporin B Inhibits In Vitro Herpes Simplex Virus 1 Infection. Antimicrob Agents Chemother 2018; 62:AAC.02367-17. [PMID: 29483113 PMCID: PMC5923125 DOI: 10.1128/aac.02367-17] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/19/2018] [Indexed: 02/06/2023] Open
Abstract
The herpes simplex virus 1 (HSV-1) is widespread in the population, and in most cases its infection is asymptomatic. The currently available anti-HSV-1 drugs are acyclovir and its derivatives, although long-term therapy with these agents can lead to drug resistance. Thus, the discovery of novel antiherpetic compounds deserves additional effort. Naturally occurring antimicrobial peptides (AMPs) represent an interesting class of molecules with potential antiviral properties. To the best of our knowledge, this study is the first demonstration of the in vitro anti-HSV-1 activity of temporin B (TB), a short membrane-active amphibian AMP. In particular, when HSV-1 was preincubated with 20 μg/ml TB, significant antiviral activity was observed (a 5-log reduction of the virus titer). Such an effect was due to the disruption of the viral envelope, as demonstrated by transmission electron microscopy. Moreover, TB partially affected different stages of the HSV-1 life cycle, including the attachment and the entry of the virus into the host cell, as well as the subsequent postinfection phase. Furthermore, its efficacy was confirmed on human epithelial cells, suggesting TB as a novel approach for the prevention and/or treatment of HSV-1 infections.
Collapse
|
64
|
Shah ZA, Farooq S, Ali SA, Hameed A, Choudhary MI, Shaheen F. New analogs of temporin-LK1 as inhibitors of multidrug-resistant (MDR) bacterial pathogens. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1437450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Zafar Ali Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Chemistry, University of Swabi, Anbar, Pakistan
| | - Saba Farooq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Abid Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Abdul Hameed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - M. Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farzana Shaheen
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
65
|
Zhang L, Chen X, Zhang Y, Ma C, Xi X, Wang L, Zhou M, Burrows JF, Chen T. Identification of novel Amurin-2 variants from the skin secretion of Rana amurensis, and the design of cationicity-enhanced analogues. Biochem Biophys Res Commun 2018; 497:943-949. [PMID: 29366784 DOI: 10.1016/j.bbrc.2018.01.124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 01/21/2023]
Abstract
Rana amurensis is important in Chinese medicine as its skin secretions contain abundant bioactive peptides. Here, we have identified the antimicrobial peptide Amurin-2 and three highly-conserved variants, Amurin-2a, Amurin-2b and Amurin-2c through a combination of molecular cloning and MS/MS fragmentation sequencing. Synthetic replicates of these peptides demonstrate potent antimicrobial activity against S. aureus, whilst some have activity against C.albicans and even resistant bacterial MRSA. Furthermore, two Lys-analogues (K4-Amurin-2 and K11-Amurin-2) were designed to improve the bioactive function and the antimicrobial activity of K4-Amurin-2 against E.coli was enhanced distinctly. In addition, the two modified peptides also showed more potent activity against S. aureus, C. albicans and MRSA strains. Meanwhile, these peptides showed inhibitory effect on the cell viability of several cancer cells. As a result, these structural and functional studies of Amurin-2 variants and analogues could provide insights for future antimicrobial peptide design.
Collapse
Affiliation(s)
- Luyao Zhang
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Xiaoling Chen
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Ying Zhang
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK; Clinical Trial Center, Beijing Hospital, Beijing, 100730, China
| | - Chengbang Ma
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK.
| | - Xinping Xi
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK.
| | - Lei Wang
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Mei Zhou
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - James F Burrows
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Tianbao Chen
- School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
66
|
Profiling of red pigment produced by Streptomyces sp. JAR6 and its bioactivity. 3 Biotech 2018; 8:22. [PMID: 29276660 DOI: 10.1007/s13205-017-1044-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022] Open
Abstract
Actinomycetes strain was isolated from leaf litter soil sample and was identified as Streptomyces sp. by conventional and molecular approaches. The biologically active compound responsible for antimicrobial and anticancer activity of the strain JAR6 was elucidated by solid state fermentation followed by subsequent chromatographic and spectroscopic analysis. Extraction, purification and structural confirmation of red pigment metabolite viz undecylprodigiosin were established on the basis of spectroscopic studies and comparing the data from the literature. The biologically active compound was tested against Gram-positive and Gram-negative clinical isolates and its minimum inhibitory concentration was recorded. The antimicrobial activity of undecylprodigiosin is more prominent against Salmonella sp., Proteus mirabilis, Shigella sp. and Enterococcus sp. whereas, it was less effective against Staphylococcus aureus, Klebsiella pneumonia and Escherichia coli. The anticancer activity of undecylprodigiosin was tested against HeLa cell lines and it exhibited commendable cytotoxicity effect with IC50 value of 145 µg/ml. The present investigation reveals that undecylprodigiosin produced by Streptomyces strain JAR6 is a potent bioactive metabolite with effective pharmaceutical properties.
Collapse
|
67
|
Saravanakumar K, Wang MH. Trichoderma based synthesis of anti-pathogenic silver nanoparticles and their characterization, antioxidant and cytotoxicity properties. Microb Pathog 2018; 114:269-273. [DOI: 10.1016/j.micpath.2017.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 01/01/2023]
|
68
|
Shen M, Dong W, Qian J, Zou L. Antimicrobial activity and membrane interaction mechanism of the antimicrobial peptides derived from Rana chensinensis with short sequences. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
69
|
Shi J, Zhang P, Xu MM, Fang Z, Lin Y, Che L, Feng B, Li J, Li G, Wu D, Xu S. Effects of composite antimicrobial peptide on growth performance and health in weaned piglets. Anim Sci J 2017; 89:397-403. [DOI: 10.1111/asj.12933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 08/28/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Jiankai Shi
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China; Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
| | - Pan Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China; Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
| | - Meng meng Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China; Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China; Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China; Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China; Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China; Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China; Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
| | - Gang Li
- Sichuan Rota Bioengineering Co, Ltd; Chengdu China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China; Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China; Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
| |
Collapse
|
70
|
Wu Y, Qiao R, Chen T, Wu J, Du S. Identification and molecular cloning of novel antimicrobial peptides from skin secretions of the Chinese bamboo leaf odorous frog ( Odorrana versabilis ) and the North American pickerel frog ( Rana palustris ). JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2017. [DOI: 10.1016/j.jtcms.2017.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
71
|
Triana-Vidal LE, Castro MS, Pires Júnior OR, Álvares ACM, de Freitas SM, Fontes W, Vargas JAG, Zúñiga-Baos JA, Correia Batista IDF, Grellier P, Charneau S. Dendropsophin 1, a novel antimicrobial peptide from the skin secretion of the endemic Colombian frog Dendropsophus columbianus. Nat Prod Res 2017; 32:1383-1389. [DOI: 10.1080/14786419.2017.1346646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Luz Elena Triana-Vidal
- Laboratório de Bioquímica e Química de proteínas, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Mariana Souza Castro
- Laboratório de Bioquímica e Química de proteínas, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
- Laboratório de Toxinologia, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Osmindo Rodrigues Pires Júnior
- Laboratório de Toxinologia, Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Alice Cunha Morales Álvares
- Laboratório de Biofísica, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Sonia Maria de Freitas
- Laboratório de Biofísica, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Wagner Fontes
- Laboratório de Bioquímica e Química de proteínas, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Jimmy Alexander Guerrero Vargas
- Departamento de Biología, Universidad del Cauca, Grupo de Investigaciones Herpetológicas y Toxinológicas (GIHT), Popayán, Colombia
| | - Jorge Alberto Zúñiga-Baos
- Departamento de Biología, Universidad del Cauca, Grupo de Investigaciones Herpetológicas y Toxinológicas (GIHT), Popayán, Colombia
| | | | - Philippe Grellier
- Muséum National d’Histoire Naturelle,UMR 7245 CNRS – Molécules de Communication et Adaptation des Micro-organismes, Paris, France
| | - Sébastien Charneau
- Laboratório de Bioquímica e Química de proteínas, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
72
|
Xu YG, Chai LH, Shi W, Wang DD, Zhang JY, Xiao XH. Transcriptome profiling and digital gene expression analysis of the skin of Dybowski's frog (Rana dybowskii) exposed to Aeromonas hydrophila. Appl Microbiol Biotechnol 2017. [PMID: 28647779 DOI: 10.1007/s00253-017-8385-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recently, populations of Rana dybowskii, an important amphibian species in Northeast China, have decreased, mainly owing to the disease caused by Aeromonas hydrophila. However, effective control methods have not yet been developed. In order to explore the immune responses of R. dybowskii upon exposure to A. hydrophila infection, Illumina high-throughput transcriptome sequencing and digital gene expression (DGE) technology were employed to investigate transcriptomic changes in the skin of R. dybowskii exposed to A. hydrophila. In this work, a total of 26,244,446 transcriptome sequencing reads were obtained and assembled into 109,089 unique unigenes using de novo assembly, and a total of 37,105 unigenes (34.0%) were functionally annotated against the non-redundant (Nr), Swiss-Prot, Cluster of Orthologous Groups of Proteins (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) databases. Gene expression changes in the skin tissue of R. dybowskii exposed to A. hydrophila were investigated by a tag-based DGE system, and a total of 1435 significantly differentially expressed genes were identified, including 460 that were up-regulated and 975 that were down-regulated, indicating a large change in the host transcriptome profile exposed to A. hydrophila. Among these, 478 genes were associated with immune-relevant pathways, metabolic pathways, cellular components, growth, migration, and muscle and hormone signaling pathways. We confirmed the differential expression of 106 immune-relevant genes associated with innate and adaptive immune responses. Our data provide a fairly comprehensive molecular biology background for the deeper understanding of the amphibian immune system following A. hydrophila infection.
Collapse
Affiliation(s)
- Yi-Gang Xu
- College of Wildlife Resources, Northeast Forestry University, Harbin, China. .,College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Long-Hui Chai
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Wen Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Dan-Dan Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Jing-Yu Zhang
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Xiang-Hong Xiao
- College of Wildlife Resources, Northeast Forestry University, Harbin, China.
| |
Collapse
|
73
|
Wang X, Ren S, Guo C, Zhang W, Zhang X, Zhang B, Li S, Ren J, Hu Y, Wang H. Identification and functional analyses of novel antioxidant peptides and antimicrobial peptides from skin secretions of four East Asian frog species. Acta Biochim Biophys Sin (Shanghai) 2017; 49:550-559. [PMID: 28402481 DOI: 10.1093/abbs/gmx032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022] Open
Abstract
In the present study, we identified 50 peptides that are classified into 21 peptide families with antioxidant and/or antimicrobial activity from Amolops daiyunensis, Pelophylax hubeiensis, Hylarana maosuoensis and Nanorana pleskei, which belong to four different genera in the Ranidae and Dicroglossidae families. These four frog species were found for the first time to express antioxidant peptides (AOPs) and antimicrobial peptides (AMPs). These peptides include seven newly discovered families daiyunin-1, daiyunin-2, daiyunin-3, maosonensis-1MS1, pleskein-1, pleskein-2, and pleskein-3. Antioxidant and antimicrobial activity assays showed that some of these peptides have good biological activities. For example, at a concentration of 50 μM, nigroain-B-MS1, and nigroain-C-MS1 both exhibited relatively strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonicacid) (ABTS) free radical scavenging ability, with eradication rates of 99.7% and 68.3% (nigroain-B-MS1), and 99.8% and 58.3% (nigroain-C-MS1), respectively. These peptides are potential candidates for the development of novel antioxidant or AMP preparations.
Collapse
Affiliation(s)
- Xiao Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Shuguang Ren
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Chao Guo
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Weiqi Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiaoli Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Baowen Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Sihan Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Jian Ren
- College of Basic, Tianjin Agricultural University, Tianjin 300384, China
| | - Yuhong Hu
- Instrumental Analysis Center, Hebei Normal University, Shijiazhuang 050024, China
| | - Hui Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
74
|
Dong Z, Luo W, Zhong H, Wang M, Song Y, Deng S, Zhang Y. Molecular cloning and characterization of antimicrobial peptides from skin of Hylarana guentheri. Acta Biochim Biophys Sin (Shanghai) 2017; 49:450-457. [PMID: 28338958 DOI: 10.1093/abbs/gmx023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Indexed: 11/14/2022] Open
Abstract
The cDNAs encoding antimicrobial peptides (AMPs) in the skin of Hylarana guentheri were identified, namely temporin (five peptides, termed temporin-GHa-GHd and temporin-GUa), brevinin-1 (one peptide, brevinin-1GUb), and brevinin-2 (eight peptides, brevinin-2GHd-2GHj, and brevinin-2GHb). Eleven of the 14 peptides have novel primary structures. Synthesized temporin GHa-GHd have broad-spectrum antimicrobial activities against Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Escherichia coli, Vibrio alginolyticus, and Pseudomonas aeruginosa), as well as fungus (Candida albicans). Among these tested strains, S. aureus was the most sensitive to temporin-GHa-GHd with minimum inhibitory concentration (MIC) values between 6.8 and 12.9 μM. They also exhibited antimicrobial activities against Methicillin-resistant S. aureus with the MIC ranging from 12.7 to 51.7 μM. Interestingly, secondary structure prediction shows that there is no α-helix in temporin-GHb, which illustrates that α-helix is not required for the antimicrobial activity of temporin-GHb. NaCl (at final concentrations of 0.15-2 M) decreased the antimicrobial activity of temporin-GHa-GHd slightly, while human serum and S. aureus V8 proteinase had no effect on the antimicrobial activity. Scanning electron microscopy images of E. coli and S. aureus showed that the surface of microbial cells was considerably rough and shrived after 1 h of treatment with temporin-GHa-GHd at 37°C. The stabilities of temporin-GHa-GHd in human serum or in S. aureus V8 proteinase make them to be promising candidates of novel antimicrobial agents or models for the development of novel AMPs.
Collapse
Affiliation(s)
- Zhu Dong
- Key Laboratory of Tropical Biological Resources, Ministry of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Wenjie Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Hengren Zhong
- Key Laboratory of Tropical Biological Resources, Ministry of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Manchuriga Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou 570228, China
| | - Yanting Song
- Key Laboratory of Tropical Biological Resources, Ministry of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Shiming Deng
- Key Laboratory of Tropical Biological Resources, Ministry of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Yingxia Zhang
- Key Laboratory of Tropical Biological Resources, Ministry of Education, College of Marine Science, Hainan University, Haikou 570228, China
| |
Collapse
|
75
|
Casciaro B, Cappiello F, Cacciafesta M, Mangoni ML. Promising Approaches to Optimize the Biological Properties of the Antimicrobial Peptide Esculentin-1a(1-21)NH 2: Amino Acids Substitution and Conjugation to Nanoparticles. Front Chem 2017; 5:26. [PMID: 28487853 PMCID: PMC5404639 DOI: 10.3389/fchem.2017.00026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) represent an interesting class of molecules with expanding biological properties which make them a viable alternative for the development of future antibiotic drugs. However, for this purpose, some limitations must be overcome: (i) the poor biostability due to enzymatic degradation; (ii) the cytotoxicity at concentrations slightly higher than the therapeutic dosages; and (iii) the inefficient delivery to the target site at effective concentrations. Recently, a derivative of the frog skin AMP esculentin-1a, named esculentin-1a(1–21)NH2, [Esc(1–21): GIFSKLAGKKIKNLLISGLKG-NH2] has been found to have a potent activity against the Gram-negative bacterium Pseudomonas aeruginosa; a slightly weaker activity against Gram-positive bacteria and interesting immunomodulatory properties. With the aim to optimize the antimicrobial features of Esc(1–21) and to circumvent the limitations described above, two different approaches were followed: (i) substitutions by non-coded amino acids, i.e., α-aminoisobutyric acid or d-amino acids; and (ii) peptide conjugation to gold nanoparticles. In this mini-review, we summarized the structural and functional properties of the resulting Esc(1–21)-derived compounds. Overall, our data may assist researchers in the rational design and optimization of AMPs for the development of future drugs to fight the worldwide problem of antibiotic resistance.
Collapse
Affiliation(s)
- Bruno Casciaro
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of RomeRome, Italy
| | - Floriana Cappiello
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of RomeRome, Italy
| | - Mauro Cacciafesta
- Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological and Geriatric Sciences, Sapienza University of RomeRome, Italy
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of RomeRome, Italy
| |
Collapse
|
76
|
Chen X, Wang H, Wang L, Zhou M, Chen T, Shaw C. Identification of Miscellaneous Peptides from the Skin Secretion of the European Edible Frog, Pelophylax kl. Esculentus. Protein J 2017; 35:291-9. [PMID: 27402449 DOI: 10.1007/s10930-016-9672-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The chemical compounds synthesised and secreted from the dermal glands of amphibian have diverse bioactivities that play key roles in the hosts' innate immune system and in causing diverse pharmacological effects in predators that may ingest the defensive skin secretions. As new biotechnological methods have developed, increasing numbers of novel peptides with novel activities have been discovered from this source of natural compounds. In this study, a number of defensive skin secretion peptide sequences were obtained from the European edible frog, P. kl. esculentus, using a 'shotgun' cloning technique developed previously within our laboratory. Some of these sequences have been previously reported but had either obtained from other species or were isolated using different methods. Two new skin peptides are described here for the first time. Esculentin-2c and Brevinin-2Tbe belong to the Esculentin-2 and Brevinin-2 families, respectively, and both are very similar to their respective analogues but with a few amino acid differences. Further, [Asn-3, Lys-6, Phe-13] 3-14-bombesin isolated previously from the skin of the marsh frog, Rana ridibunda, was identified here in the skin of P. kl. esculentus. Studies such as this can provide a rapid elucidation of peptide and corresponding DNA sequences from unstudied species of frogs and can rapidly provide a basis for related scientific studies such as those involved in systematic or the evolution of a large diverse gene family and usage by biomedical researchers as a source of potential novel drug leads or pharmacological agents.
Collapse
Affiliation(s)
- Xiaole Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.
| | - He Wang
- School of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| | - Lei Wang
- Medicine Natural Peptide Discovery Group, School of Pharmacy, Queen's University, Belfast, BT9 7BL, Northern Ireland, UK
| | - Mei Zhou
- Medicine Natural Peptide Discovery Group, School of Pharmacy, Queen's University, Belfast, BT9 7BL, Northern Ireland, UK
| | - Tianbao Chen
- Medicine Natural Peptide Discovery Group, School of Pharmacy, Queen's University, Belfast, BT9 7BL, Northern Ireland, UK
| | - Chris Shaw
- Medicine Natural Peptide Discovery Group, School of Pharmacy, Queen's University, Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
77
|
Insight into the mechanism of action of temporin-SHa, a new broad-spectrum antiparasitic and antibacterial agent. PLoS One 2017; 12:e0174024. [PMID: 28319176 PMCID: PMC5358776 DOI: 10.1371/journal.pone.0174024] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/22/2017] [Indexed: 12/28/2022] Open
Abstract
Antimicrobial peptides (AMPs) are promising drugs to kill resistant pathogens. In contrast to bacteria, protozoan parasites, such as Leishmania, were little studied. Therefore, the antiparasitic mechanism of AMPs is still unclear. In this study, we sought to get further insight into this mechanism by focusing our attention on temporin-SHa (SHa), a small broad-spectrum AMP previously shown to be active against Leishmania infantum. To improve activity, we designed analogs of SHa and compared the antibacterial and antiparasitic mechanisms. [K3]SHa emerged as a highly potent compound active against a wide range of bacteria, yeasts/fungi, and trypanosomatids (Leishmania and Trypanosoma), with leishmanicidal intramacrophagic activity and efficiency toward antibiotic-resistant strains of S. aureus and antimony-resistant L. infantum. Multipassage resistance selection demonstrated that temporins-SH, particularly [K3]SHa, are not prone to induce resistance in Escherichia coli. Analysis of the mode of action revealed that bacterial and parasite killing occur through a similar membranolytic mechanism involving rapid membrane permeabilization and depolarization. This was confirmed by high-resolution imaging (atomic force microscopy and field emission gun-scanning electron microscopy). Multiple combined techniques (nuclear magnetic resonance, surface plasmon resonance, differential scanning calorimetry) allowed us to detail peptide-membrane interactions. [K3]SHa was shown to interact selectively with anionic model membranes with a 4-fold higher affinity (KD = 3 x 10−8 M) than SHa. The amphipathic α-helical peptide inserts in-plane in the hydrophobic lipid bilayer and disrupts the acyl chain packing via a detergent-like effect. Interestingly, cellular events, such as mitochondrial membrane depolarization or DNA fragmentation, were observed in L. infantum promastigotes after exposure to SHa and [K3]SHa at concentrations above IC50. Our results indicate that these temporins exert leishmanicidal activity via a primary membranolytic mechanism but can also trigger apoptotis-like death. The many assets demonstrated for [K3]SHa make this small analog an attractive template to develop new antibacterial/antiparasitic drugs.
Collapse
|
78
|
Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: Enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7). Microb Pathog 2017; 105:86-95. [PMID: 28214590 DOI: 10.1016/j.micpath.2017.02.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 11/21/2022]
Abstract
This research focused on green engineering and characterization of silver (PcAgNPs) and copper nanoparticles (PcCuNPs) using Prosopis cineraria (Pc) leaf extract prepared by using microwave irradiation. We studied their enhanced antimicrobial activity on human pathogens as well as cytotoxicity on breast cancer cells (MCF-7). Biofabricated silver and copper nanoparticles exhibited UV-Visible absorbance peaks at 420 nm and 575 nm, confirming the bioreduction and stabilization of nanoparticles. Nanoparticles were characterized by FTIR, XRD, FESEM, and EDX analysis. FTIR results indicated the presence of alcohols, alkanes, aromatics, phenols, ethers, benzene, amines and amides that were possibly involved in the reduction and capping of silver and copper ions. XRD analysis was performed to confirm the crystalline nature of the silver and copper nanoparticles. FESEM analysis suggested that the nanoparticles were hexagonal or spherical in shape with size ranging from 20 to 44.49 nm and 18.9-32.09 nm for AgNPs and CuNPs, respectively. EDX analysis confirmed the presence of silver and copper elemental signals in the nanoparticles. The bioengineered silver and copper nanohybrids showed enhanced antimicrobial activity against Gram-positive and Gram-negative MDR human pathogens. MTT assay results indicated that CuNPs show potential cytotoxic effect followed by AgNPs against MCF-7 cancer cell line. IC50 were 65.27 μg/ml, 37.02 μg/ml and 197.3 μg/ml for PcAgNPs, PcCuNPs and P. cineraria leaf extracts, respectively, treated MCF-7 cells. The present investigation highlighted an effective protocol for microwave-assisted synthesis of biomolecule-loaded silver and copper nanoparticles with enhanced antibacterial and anticancer activity. Results strongly suggested that bioengineered AgNPs and CuNPs could be used as potential tools against microbial pathogens and cancer cells.
Collapse
|
79
|
Vineeth Kumar TPVK, Asha R, Shyla G, George S. Identification and characterization of novel host defense peptides from the skin secretion of the fungoid frog, Hydrophylax bahuvistara (Anura: Ranidae). Chem Biol Drug Des 2017; 92:1409-1418. [PMID: 28072492 DOI: 10.1111/cbdd.12937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022]
Abstract
Two novel peptides (brevinin1 HYba1 and brevinin1 HYba2) were identified from the skin secretion of the frog Hydrophylax bahuvistara, endemic to Western Ghats, India, and their amino acid sequences were confirmed using cDNA cloning and LC/MS/MS. Antibacterial, hemolytic, and cytotoxic activities of brevinin1 peptides and their synthetic analogs (amidated C-terminus) were investigated and compared. All the peptides except the acidic forms showed antibacterial activity against all tested Gram-positive and Gram-negative bacteria. They exhibited low hemolysis on human erythrocytes and showed potent cytotoxic activity against Hep 3B cancer cell line. Upon amidation, the peptides showed increased activity against the tested microbes without altering their hemolytic and cytotoxic properties. The study also emphasizes the need for screening endemic amphibian fauna of Western Ghats, as a potential source of host defense peptides with possible therapeutic applications in the future.
Collapse
Affiliation(s)
| | - Radhamony Asha
- Chemical Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Gopal Shyla
- Molecular Ecology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Sanil George
- Molecular Ecology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
80
|
Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V, Kadirvelu K, Balagurunathan R. In vitro antimicrobial and in vivo wound healing effect of actinobacterially synthesised nanoparticles of silver, gold and their alloy. RSC Adv 2017. [DOI: 10.1039/c7ra08483h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antibacterial, antifungal and wound healing potential of actinobacterially synthesised Ag, Au and Ag/Au nanoparticles.
Collapse
Affiliation(s)
| | | | | | - Krishna Kadirvelu
- DRDO-BU Centre for Life Sciences
- Bharathiar University Campus
- Coimbatore 641 046
- India
| | - Ramasamy Balagurunathan
- Actinobacterial Research Laboratory
- Department of Microbiology
- Periyar University
- Salem 636 011
- India
| |
Collapse
|
81
|
Samgina TY, Artemenko KA, Bergquist J, Trebse P, Torkar G, Tolpina MD, Lebedev AT. Differentiation of frogs from two populations belonging to the Pelophylax esculentus complex by LC-MS/MS comparison of their skin peptidomes. Anal Bioanal Chem 2016; 409:1951-1961. [PMID: 28012108 DOI: 10.1007/s00216-016-0143-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/22/2016] [Accepted: 12/09/2016] [Indexed: 12/27/2022]
Abstract
LC-MS/MS was applied to establish the composition of the skin peptidome of a Slovenian green frog belonging to the Pelophylax esculentus complex. As this was similar to the peptidome of the Moscow population of Pelophylax ridibundus, it allowed us to identify the Slovenian frog from the Pelophylax esculentus complex as Pelophylax ridibundus. The sequences of six new peptides from the brevinin 2 family are reported for the first time on the basis of manual interpretation of their tandem mass spectra. The structural similarity of the brevinin 2 peptides from the Moscow and Slovenian populations of Pelophylax ridibundus enables peptides from this family to be utilized as biomarkers for Pelophylax ridibundus inter- and intraspecies differentiation, and the proposed approach can be used as an analytical tool for differentiating the corresponding species and populations. The potential biological activities of the novel peptides were estimated by 2D mass mapping. The results allowed us to classify all of the available peptides belonging to the brevinin 2 family. Graphical Abstract Intraspecies identification within the green frog complex.
Collapse
Affiliation(s)
- Tatiana Yu Samgina
- Department of Chemistry, Moscow State University, Leninskie Gori 1/3, 119991, Moscow, Russian Federation
| | - Konstantin A Artemenko
- Department of Chemistry-Biomedical Center, Analytical Chemistry, Uppsala University, Uppsala, 75124, Sweden
| | - Jonas Bergquist
- Department of Chemistry-Biomedical Center, Analytical Chemistry, Uppsala University, Uppsala, 75124, Sweden
| | - Polonca Trebse
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Gregor Torkar
- Faculty of Education, University of Ljubljana, Kardeljeva ploščad 16, 1000, Ljubljana, Slovenia
| | - Miriam D Tolpina
- Department of Chemistry, Moscow State University, Leninskie Gori 1/3, 119991, Moscow, Russian Federation
| | - Albert T Lebedev
- Department of Chemistry, Moscow State University, Leninskie Gori 1/3, 119991, Moscow, Russian Federation.
| |
Collapse
|
82
|
Discovery of Novel Bacterial Cell-Penetrating Phylloseptins in Defensive Skin Secretions of the South American Hylid Frogs, Phyllomedusa duellmani and Phyllomedusa coelestis. Toxins (Basel) 2016; 8:toxins8090255. [PMID: 27589802 PMCID: PMC5037481 DOI: 10.3390/toxins8090255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/22/2016] [Indexed: 02/03/2023] Open
Abstract
Phylloseptin (PS) peptides, derived from South American hylid frogs (subfamily Phyllomedusinae), have been found to have broad-spectrum antimicrobial activities and relatively low haemolytic activities. Although PS peptides have been identified from several well-known and widely-distributed species of the Phyllomedusinae, there remains merit in their study in additional, more obscure and specialised members of this taxon. Here, we report the discovery of two novel PS peptides, named PS-Du and PS-Co, which were respectively identified for the first time and isolated from the skin secretions of Phyllomedusa duellmani and Phyllomedusa coelestis. Their encoding cDNAs were cloned, from which it was possible to deduce the entire primary structures of their biosynthetic precursors. Reversed-phase high-performance liquid chromatography (RP-HPLC) and tandem mass spectrometry (MS/MS) analyses were employed to isolate and structurally-characterise respective encoded PS peptides from skin secretions. The peptides had molecular masses of 2049.7 Da (PS-Du) and 1972.8 Da (PS-Co). They shared typical N-terminal sequences and C-terminal amidation with other known phylloseptins. The two peptides exhibited growth inhibitory activity against E. coli (NCTC 10418), as a standard Gram-negative bacterium, S. aureus (NCTC 10788), as a standard Gram-positive bacterium and C. albicans (NCPF 1467), as a standard pathogenic yeast, all as planktonic cultures. Moreover, both peptides demonstrated the capability of eliminating S. aureus biofilm.
Collapse
|
83
|
Davis LR, Klonoski K, Rutschow HL, Van Wijk KJ, Sun Q, Haribal MM, Saporito RA, Vega A, Rosenblum EB, Zamudio KR, Robertson JM. Host Defense Skin Peptides Vary with Color Pattern in the Highly Polymorphic Red-Eyed Treefrog. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
84
|
Chen X, Wang H, Yang M, Wang L, Zhou M, Chen T, Shaw C. Identification and bioactivity evaluation of two novel temporins from the skin secretion of the European edible frog, Pelophylax kl. esculentus. Biochem Biophys Res Commun 2016; 476:566-573. [DOI: 10.1016/j.bbrc.2016.05.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 11/25/2022]
|
85
|
Souza ALA, Faria RX, Calabrese KS, Hardoim DJ, Taniwaki N, Alves LA, De Simone SG. Temporizin and Temporizin-1 Peptides as Novel Candidates for Eliminating Trypanosoma cruzi. PLoS One 2016; 11:e0157673. [PMID: 27384541 PMCID: PMC4934777 DOI: 10.1371/journal.pone.0157673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022] Open
Abstract
Tropical diseases caused by parasitic infections continue to cause socioeconomic distress worldwide. Among these, Chagas disease has become a great concern because of globalization. Caused by Trypanosoma cruzi, there is an increasing need to discover new, more effective methods to manage infections that minimize disease onset. Antimicrobial peptides represent a possible solution to this challenge. As effector molecules of the innate immune response against pathogens, they are the first line of defense found in all multi-cellular organisms. In amphibians, temporins are a large family of antimicrobial peptides found in skin secretions. Their functional roles and modes of action present unique properties that indicate possible candidates for therapeutic applications. Here, we investigated the trypanocide activity of temporizin and temporizin-1. Temporizin is an artificial, hybrid peptide containing the N-terminal region of temporin A, the pore-forming region of gramicidin and a C-terminus consisting of alternating leucine and lysine. Temporizin-1 is a modification of temporizin with a reduction in the region responsible for insertion into membranes. Their activities were evaluated in a cell permeabilization assay by flow cytometry, an LDH release assay, electron microscopy, an MTT assay and patch clamp experiments. Both temporizin and temporizin-1 demonstrated toxicity against T. cruzi with temporizin displaying slightly more potency. At concentrations up to 100 μg/ ml, both peptides exhibited low toxicity in J774 cells, a macrophage lineage cell line, and no toxicity was observed in mouse primary peritoneal macrophages. In contrast, the peptides showed some toxicity in rat adenoma GH3 cells and Jurkat human lymphoma cells with temporizin-1 displaying lower toxicity. In summary, a shortened form of the hybrid temporizin peptide, temporizin-1, was efficient at killing T. cruzi and it has low toxicity in wild-type mammalian cells. These data suggest that temporizin-1 might be a candidate for Chagas disease therapy.
Collapse
Affiliation(s)
- André L. A. Souza
- FIOCRUZ, Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), Rio de Janeiro, RJ, Brazil
- FIOCRUZ, Oswaldo Cruz Institute, Laboratory of Experimental and Computational Biochemistry of Pharmaceuticals, Rio de Janeiro, RJ, Brazil
| | - Robson X. Faria
- FIOCRUZ, Oswaldo Cruz Institute, Laboratory of Toxoplasmosis and other Protozoosis, Rio de Janeiro, RJ, Brazil
| | - Kátia S. Calabrese
- FIOCRUZ, Oswaldo Cruz Institute, Laboratory of Imunomodulation and Protozoology, Rio de Janeiro, RJ, Brazil
| | - Daiane J. Hardoim
- FIOCRUZ, Oswaldo Cruz Institute, Laboratory of Imunomodulation and Protozoology, Rio de Janeiro, RJ, Brazil
| | - Noemi Taniwaki
- FIOCRUZ, Adolfo Lutz Institute, Electronic Microscopy section, Araçatuba, São Paulo, SP, Brazil
| | - Luiz A. Alves
- FIOCRUZ, Oswaldo Cruz Institute, Laboratory of Cellular Communication, Rio de Janeiro, RJ, Brazil
| | - Salvatore G. De Simone
- FIOCRUZ, Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), Rio de Janeiro, RJ, Brazil
- Federal Fluminense University, Biology Institute, Department of Cellular and Molecular Biology, Niterói, RJ, Brazil
| |
Collapse
|
86
|
Two novel antimicrobial peptides from skin venoms of spadefoot toad Megophrys minor. Chin J Nat Med 2016; 14:294-298. [DOI: 10.1016/s1875-5364(16)30030-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 11/23/2022]
|
87
|
A novel short anionic antibacterial peptide isolated from the skin of Xenopus laevis with broad antibacterial activity and inhibitory activity against breast cancer cell. Arch Microbiol 2016; 198:473-82. [DOI: 10.1007/s00203-016-1206-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 01/25/2023]
|
88
|
Samgina TY, Tolpina MD, Trebse P, Torkar G, Artemenko KA, Bergquist J, Lebedev AT. LTQ Orbitrap Velos in routine de novo sequencing of non-tryptic skin peptides from the frog Rana latastei with traditional and reliable manual spectra interpretation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:265-276. [PMID: 27071218 DOI: 10.1002/rcm.7436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
RATIONALE Mass spectrometry has shown itself to be the most efficient tool for the sequencing of peptides. However, de novo sequencing of novel natural peptides is significantly more challenging in comparison with the same procedure applied for the tryptic peptides. To reach the goal in this case it is essential to select the most efficient methods of triggering fragmentation and combine all the possible complementary techniques. METHODS Collision-induced dissociation (CID), high-energy collision dissociation (HCD), and electron-transfer dissociation (ETD) tandem mass spectra recorded with a LTQ Orbitrap Velos instrument were used for the elucidation of the sequence of the natural non-tryptic peptides from the skin secretion of Rana latastei. Manual interpretation of the spectra was applied. RESULTS The combined approach using CID, HCD, and ETD tandem mass spectra of the multiprotonated peptides in various charge states, as well as of their proteolytic fragments, allowed the sequences of seven novel peptides from the skin secretion of Rana latastei to be established. CONCLUSIONS Manual mass spectrometry sequencing of natural non-tryptic peptides from the skin secretion of Rana latastei provided the opportunity to work successfully with these species and demonstrated once again its advantage over automatic approaches.
Collapse
|
89
|
Pereira AV, de Barros G, Pinto EG, Tempone AG, Orsi RDO, Dos Santos LD, Calvi S, Ferreira RS, Pimenta DC, Barraviera B. Melittin induces in vitro death of Leishmania (Leishmania) infantum by triggering the cellular innate immune response. J Venom Anim Toxins Incl Trop Dis 2016; 22:1. [PMID: 26752985 PMCID: PMC4706697 DOI: 10.1186/s40409-016-0055-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Apis mellifera venom, which has already been recommended as an alternative anti-inflammatory treatment, may be also considered an important source of candidate molecules for biotechnological and biomedical uses, such as the treatment of parasitic diseases. METHODS Africanized honeybee venom from Apis mellifera was fractionated by RP-C18-HPLC and the obtained melittin was incubated with promastigotes and intracellular amastigotes of Leishmania (L.) infantum. Cytotoxicity to mice peritoneal macrophages was evaluated through mitochondrial oxidative activity. The production of anti- and pro-inflammatory cytokines, NO and H2O2 by macrophages was determined. RESULTS Promastigotes and intracellular amastigotes were susceptible to melittin (IC50 28.3 μg.mL(-1) and 1.4 μg.mL(-1), respectively), but also showed mammalian cell cytotoxicity with an IC50 value of 5.7 μg.mL(-1). Uninfected macrophages treated with melittin increased the production of IL-10, TNF-α, NO and H2O2. Infected melittin-treated macrophages increased IL-12 production, but decreased the levels of IL-10, TNF-α, NO and H2O2. CONCLUSIONS The results showed that melittin acts in vitro against promastigotes and intracellular amastigotes of Leishmania (L.) infantum. Furthermore, they can act indirectly on intracellular amastigotes through a macrophage immunomodulatory effect.
Collapse
Affiliation(s)
- Andreia Vieira Pereira
- Graduate Program in Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | - Gustavo de Barros
- Graduate Program in Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | - Erika Gracielle Pinto
- Department of Parasitology, Adolfo Lutz Institute, São Paulo, SP Brazil ; Laboratory of Protozoology, Institute for Tropical Medicine, University of São Paulo (USP), São Paulo, SP Brazil
| | | | - Ricardo de Oliveira Orsi
- Department of Animal Production, School of Veterinary Medicine and Animal Husbandry, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil ; Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP - Univ Estadual Paulista), Rua José Barbosa de Barros, 1780, 18610-307 Botucatu, SP Brazil
| | - Lucilene Delazari Dos Santos
- Graduate Program in Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil ; Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP - Univ Estadual Paulista), Rua José Barbosa de Barros, 1780, 18610-307 Botucatu, SP Brazil
| | - Sueli Calvi
- Graduate Program in Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil ; Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP - Univ Estadual Paulista), Rua José Barbosa de Barros, 1780, 18610-307 Botucatu, SP Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil ; Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP - Univ Estadual Paulista), Rua José Barbosa de Barros, 1780, 18610-307 Botucatu, SP Brazil
| | | | - Benedito Barraviera
- Graduate Program in Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil ; Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP - Univ Estadual Paulista), Rua José Barbosa de Barros, 1780, 18610-307 Botucatu, SP Brazil
| |
Collapse
|
90
|
Hakim MA, Yang S, Lai R. Centipede venoms and their components: resources for potential therapeutic applications. Toxins (Basel) 2015; 7:4832-51. [PMID: 26593947 PMCID: PMC4663536 DOI: 10.3390/toxins7114832] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/23/2022] Open
Abstract
Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components.
Collapse
Affiliation(s)
- Md Abdul Hakim
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of sciences, Kunming 650223, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing100009, China.
| | - Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of sciences, Kunming 650223, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing100009, China.
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of sciences, Kunming 650223, Yunnan, China.
- Joint Laboratory of Natural Peptide, University of Science and Technology of China and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
91
|
Mangoni ML, Luca V, McDermott AM. Fighting microbial infections: A lesson from amphibian skin-derived esculentin-1 peptides. Peptides 2015; 71:286-95. [PMID: 25959536 DOI: 10.1016/j.peptides.2015.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 01/20/2023]
Abstract
Due to the growing emergence of resistance to commercially available antibiotics/antimycotics in virtually all clinical microbial pathogens, the discovery of alternative anti-infective agents, is greatly needed. Gene-encoded antimicrobial peptides (AMPs) hold promise as novel therapeutics. In particular, amphibian skin is one of the richest storehouses of AMPs, especially that of the genus Rana, with esculentins-1 being among the longest (46 amino acids) AMPs found in nature to date. Here, we report on the recently discovered in vitro and in vivo activities and mechanism of action of two derivatives of the N-terminal part of esculentin-1a and -1b peptides, primarily against two relevant opportunistic microorganisms causing a large number of life-threatening infections worldwide; i.e. the Gram-negative bacterium Pseudomonas aeruginosa and the yeast Candida albicans. Because of distinct advantages compared to several mammalian AMPs, the two selected frog skin AMP-derivatives represent attractive candidates for the development of new antimicrobial compounds with expanded properties, for both human and veterinary medicine.
Collapse
Affiliation(s)
- Maria Luisa Mangoni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro, 5-00185 Rome, Italy.
| | - Vincenzo Luca
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro, 5-00185 Rome, Italy
| | - Alison M McDermott
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
| |
Collapse
|
92
|
Evaristo GP, Pinkse MW, Chen T, Wang L, Mohammed S, Heck AJ, Mathes I, Lottspeich F, Shaw C, Albar JP, Verhaert PD. De novo sequencing of two novel peptides homologous to calcitonin-like peptides, from skin secretion of the Chinese Frog, Odorrana schmackeri. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
93
|
Jallouk AP, Palekar RU, Pan H, Schlesinger PH, Wickline SA. Modifications of natural peptides for nanoparticle and drug design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 98:57-91. [PMID: 25819276 PMCID: PMC4750874 DOI: 10.1016/bs.apcsb.2014.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural products serve as an important source of novel compounds for drug development. Recently, peptides have emerged as a new class of therapeutic agents due to their versatility and specificity for biological targets. Yet, their effective application often requires use of a nanoparticle delivery system. In this chapter, we review the role of natural peptides in the design and creation of nanomedicines, with a particular focus on cell-penetrating peptides, antimicrobial peptides, and peptide toxins. The use of natural peptides in conjunction with nanoparticle delivery systems holds great promise for the development of new therapeutic formulations as well as novel platforms for the delivery of various cargoes.
Collapse
Affiliation(s)
- Andrew P. Jallouk
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Department of Medicine, Division of Cardiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108
| | - Rohun U. Palekar
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Department of Medicine, Division of Cardiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108
| | - Hua Pan
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Department of Medicine, Division of Cardiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108
| | - Paul H. Schlesinger
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Samuel A. Wickline
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Department of Medicine, Division of Cardiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| |
Collapse
|
94
|
Xu X, Lai R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem Rev 2015; 115:1760-846. [PMID: 25594509 DOI: 10.1021/cr4006704] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xueqing Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology , Kunming 650223, Yunnan, China
| | | |
Collapse
|
95
|
König E, Bininda-Emonds ORP, Shaw C. The diversity and evolution of anuran skin peptides. Peptides 2015; 63:96-117. [PMID: 25464160 DOI: 10.1016/j.peptides.2014.11.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 02/06/2023]
Abstract
Amphibians exhibit various, characteristic adaptations related to their "incomplete" shift from the aquatic to the terrestrial habitat. In particular, the integument was subject to a number of specialized modifications during the evolution of these animals. In this review, we place special emphasis on endogenous host-defence skin peptides from the cuteanous granular glands anuran amphibians (frogs and toads). The overview on the two broad groups of neuroactive and antimicrobial peptides (AMPs) goes beyond a simple itemization in that we provide a new perspective into the evolution and function of anuran AMPs. Briefly, these cationic, amphipathic and α-helical peptides are traditionally viewed as being part of the innate immune system, protecting the moist skin against invading microorganisms through their cytolytic action. However, the complete record of anuran species investigated to date suggests that AMPs are distributed sporadically (i.e., non-universally) across Anura. Together with the intriguing observation that virtually all anurans known to produce neuropeptides in their granular glands also co-secrete cytolytic peptides, we call the traditional role for AMPs as being purely antimicrobial into question and present an alternative scenario. We hypothesize AMPs to assist neuroactive peptides in their antipredator role through their cytolytic action increasing the delivery of the latter to the endocrine and nervous system of the predator. Thus, AMPs are more accurately viewed as cytolysins and their contribution to the immune system is better regarded as an accessory benefit.
Collapse
Affiliation(s)
- Enrico König
- AG Systematik und Evolutionsbiologie, IBU - Fakultät V, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Strasse 9-11, 26129 Oldenburg, Germany.
| | - Olaf R P Bininda-Emonds
- AG Systematik und Evolutionsbiologie, IBU - Fakultät V, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Strasse 9-11, 26129 Oldenburg, Germany
| | - Chris Shaw
- School of Pharmacy, Medical Biology Center, Queen's University, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
96
|
Manzo G, Casu M, Rinaldi AC, Montaldo NP, Luganini A, Gribaudo G, Scorciapino MA. Folded structure and insertion depth of the frog-skin antimicrobial Peptide esculentin-1b(1-18) in the presence of differently charged membrane-mimicking micelles. JOURNAL OF NATURAL PRODUCTS 2014; 77:2410-2417. [PMID: 25337981 DOI: 10.1021/np5004406] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Antimicrobial peptides (AMPs) are effectors of the innate immunity of most organisms. Their role in the defense against pathogen attack and their high selectivity for bacterial cells make them attractive for the development of a new class of antimicrobial drugs. The N-terminal fragment of the frog-skin peptide esculentin-1b (Esc(1-18)) has shown broad-spectrum antimicrobial activity. Similarly to most cationic AMPs, it is supposed to act by binding to and damaging the negatively charged plasma membrane of bacteria. Differently from many other AMPs, Esc(1-18) activity is preserved in biological fluids such as serum. In this work, a structural investigation was performed through NMR spectroscopy. The 3D structure was obtained in the presence of either zwitterionic or negatively charged micelles as membrane models for eukaryotic and prokaryotic membranes, respectively. Esc(1-18) showed a higher affinity for and deeper insertion into the latter and adopted an amphipathic helical structure characterized by a kink at the residue G8. These findings were confirmed by measuring penetration into lipid monolayers. The presence of negatively charged lipids in the bilayer appears to be necessary for Esc(1-18) to bind, to fold in the right three-dimensional structure, and, ultimately, to exert its biological role as an AMP.
Collapse
Affiliation(s)
- Giorgia Manzo
- Department of Chemical and Geological Sciences and ‡Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria , I-09042 Monserrato (CA), Italy
| | | | | | | | | | | | | |
Collapse
|
97
|
Sun Y, Dong W, Sun L, Ma L, Shang D. Insights into the membrane interaction mechanism and antibacterial properties of chensinin-1b. Biomaterials 2014; 37:299-311. [PMID: 25453959 DOI: 10.1016/j.biomaterials.2014.10.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/02/2014] [Indexed: 11/29/2022]
Abstract
Antimicrobial peptides (AMPs) with non-specific membrane disrupting activities are thought to exert their antimicrobial activity as a result of their cationicity, hydrophobicity and α-helical or β-sheet structures. Chensinin-1, a native peptide from skin secretions of Rana chensinensis, fails to manifest its desired biological properties because its low hydrophobic nature and an adopted random coil structure in a membrane-mimetic environment. In this study, chensinin-1b was designed by rearranging the amino acid sequence of its hydrophilic/polar residues on one face and its hydrophobic/nonpolar residues on the opposite face according to its helical diagram, and by replacing three Gly residues with three Trp residues. Introduction of Trp residues significantly promoted the binding of the peptide to the bacterial outer membrane and exerted bactericidal activity through cytoplasmic membrane damage. Chensinin-1b demonstrates higher antimicrobial activity and greater cell selectivity than its parent peptide, chensinin-1. The electrostatic interactions between chensinin-1b and lipopolysaccharide (LPS) may have facilitated the uptake of the peptide into Gram-negative cells and be also helpful to disrupt the bacterial cytoplasmic membrane, as evidenced by depolarisation of the membrane potential and leakage of calceins from the liposomes of Escherichia coli and Staphylococcus aureus. Chensinin-1b was also found to penetrate mouse skin and was also effective in vivo, as measured by hydroxyproline levels in a wound infection mouse model, and could therefore act as an anti-infective agent for wound healing.
Collapse
Affiliation(s)
- Yue Sun
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Weibing Dong
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Li Sun
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Lijie Ma
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
98
|
Wang L, Zhang H, Jia Z, Ma Q, Dong N, Shan A. In vitro and in vivo activity of the dimer of PMAP-36 expressed in Pichia pastoris. J Mol Microbiol Biotechnol 2014; 24:234-40. [PMID: 25196715 DOI: 10.1159/000365572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The antimicrobial peptide PMAP-36 exists as a homodimer stabilized by an intermolecular disulfide bridge. The dimer of PMAP-36 exhibits a potent and rapid microbicidal activity against a wide spectrum of microorganisms. The gene encoding the antiparallel dimer (PMAP-36)2 was designed and codon-optimized according to bias of Pichia pastoris. The gene was then expressed in the P. pastoris strain GS115. The concentration of the recombinant product reached 106 mg/l. In vitro activity assays indicated that the recombinant peptide showed antimicrobial activities against Gram-positive and Gram-negative bacteria but did not cause hemolysis of chicken erythrocytes. Subsequently, 120 7-day-old male Arbor Acres broilers were used to evaluate the in vivo activities of the peptide. A prophylactic dose of ciprofloxacin lactate was supplemented as the control. The results showed that recombinant (PMAP-36)2 significantly increased the serum IgM content of the birds (p < 0.05). The recombinant peptide significantly increased the amounts of Bifidobacterium and decreased the amount of Escherichia coli cells in the ceca of the experimental birds (p < 0.05). The results obtained in the present study indicate that the recombinant (PMAP-36)2 has a potent in vitro and in vivo activity and can be used as an alternative to antibiotic treatment.
Collapse
Affiliation(s)
- Liang Wang
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, PR China
| | | | | | | | | | | |
Collapse
|
99
|
Guo C, Hu Y, Li J, Liu Y, Li S, Yan K, Wang X, Liu J, Wang H. Identification of multiple peptides with antioxidant and antimicrobial activities from skin and its secretions of Hylarana taipehensis, Amolops lifanensis, and Amolops granulosus. Biochimie 2014; 105:192-201. [PMID: 25066917 DOI: 10.1016/j.biochi.2014.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/15/2014] [Indexed: 11/27/2022]
Abstract
Amphibian skin and its secretions contain many kinds of peptides with different bioactivities. In this study, a large number of peptides including antioxidant and antimicrobial peptides were identified from three East Asian frog species Hylarana taipehensis, Amolops lifanensis, and Amolops granulosus. The majority of these peptides were antimicrobial peptides, while eight antioxidant peptides were identified, which included two novel peptides taipehensin-1TP1 (TLIWEFYHQILDEYNKENKG) and taipehensin-2TP1 (CLMARPNYRCKIFKQC). These antioxidant peptides exhibited the ability to scavenge ABTS and/or DPPH free radicals. Moreover, six out of eight antioxidant peptides temporin-TP1, brevinin-1TP1, brevinin-1TP2, brevinin-1TP3, brevinin-1LF1, and palustrin-2GN1 also showed antimicrobial activity.
Collapse
Affiliation(s)
- Chao Guo
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yuhong Hu
- Instrumental Analysis Center, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Jing Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yuliang Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Sihan Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Keqiang Yan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Xiao Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Jingze Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Hui Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
100
|
Hu Y, Xu S, Hu Y, Guo C, Meng H, Li J, Liu J, Wang H. Diverse Families of Antimicrobial Peptides Isolated from Skin Secretions of Three Species of East Asian Frogs,Babina daunchina,Babina adenopleura, andRana omeimontis(Ranidae). Zoolog Sci 2014; 31:438-44. [DOI: 10.2108/zs140014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|