51
|
MacLellan A, Nazal B, Young L, Mason G. Waking inactivity as a welfare indicator in laboratory mice: investigating postures, facial expressions and depression-like states. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221083. [PMID: 36340516 PMCID: PMC9627452 DOI: 10.1098/rsos.221083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/29/2022] [Indexed: 05/09/2023]
Abstract
Animal welfare assessment relies on valid and practical indicators of affect. In mice, the most widely used research vertebrates, lying still with eyes open, inactive-but-awake (IBA) in the home cage, has potential to be one such indicator. IBA is elevated in barren, conventional housing compared with well-resourced, enriched housing, and predicts immobility in Forced Swim Tests, a common measure of 'helplessness' in depression research. In Experiment 1, using females from three strains (C57BL/6, Balb/c and DBA/2), we first replicated past findings, confirming higher levels of IBA in conventional cages and a positive relationship between IBA and helplessness. We then extended this research to three other signs of depression: changes in weight and sleep, and reduced hippocampal volume. Here, IBA positively covaried with body mass index, with sleep in DBA/2s and conventionally housed BALB/cs, and negatively covaried with hippocampal volume in conventionally housed C57BL/6s. In Experiment 2, we sought to refine the phenotype of IBA to improve its accuracy as a welfare indicator. Here, scoring IBA performed in hunched postures appeared to improve its accuracy as an indicator in Balb/c mice. Additional research is now needed to further refine the phenotype of IBA and to confirm whether it reflects states consistent with depression, or instead other underlying poor welfare conditions.
Collapse
Affiliation(s)
- Aileen MacLellan
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| | - Basma Nazal
- Formerly Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| | - Lauren Young
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| | - Georgia Mason
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
52
|
Luteolin-7- O-Glucuronide Improves Depression-like and Stress Coping Behaviors in Sleep Deprivation Stress Model by Activation of the BDNF Signaling. Nutrients 2022; 14:nu14163314. [PMID: 36014820 PMCID: PMC9412559 DOI: 10.3390/nu14163314] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Stress exposure is a major risk factor for mental disorders such as depression. Because of the limitations of classical antidepressants such as side effects, low efficacy, and difficulty in long-term use, new natural medicines and bioactive molecules from plants with greater safety and efficacy have recently attracted attention. Luteolin-7-O-glucuronide (L7Gn), a bioactive molecule present in Perilla frutescens, is known to alleviate severe inflammatory responses and oxidative stress in macrophages. However, its antistress and antidepressant effects have not been elucidated. The present study aims to explore the antidepressant the effect of L7Gn on stress-induced behaviors and the underlying mechanism in a mouse sleep deprivation (SD) model. L7Gn treatment improved depression-like and stress coping behaviors induced by SD stress, as confirmed by the tail suspension test and forced swimming test. Furthermore, L7Gn treatment reduced the blood corticosterone and hippocampal proinflammatory cytokine levels which were increased by SD stress, and L7Gn also increased the mRNA and protein levels of hippocampal brain-derived neurotrophic factor (BDNF) which were reduced by SD stress. Additionally, treatment with L7Gn resulted in increases in the phosphorylation of tropomyosin-related kinase B (TrkB), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB), which are downstream molecules of BDNF signaling. These findings suggest that L7Gn have therapeutic potential for SD-induced stress, via activating the BDNF signaling.
Collapse
|
53
|
Petković A, Chaudhury D. Encore: Behavioural animal models of stress, depression and mood disorders. Front Behav Neurosci 2022; 16:931964. [PMID: 36004305 PMCID: PMC9395206 DOI: 10.3389/fnbeh.2022.931964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Animal studies over the past two decades have led to extensive advances in our understanding of pathogenesis of depressive and mood disorders. Among these, rodent behavioural models proved to be of highest informative value. Here, we present a comprehensive overview of the most popular behavioural models with respect to physiological, circuit, and molecular biological correlates. Behavioural stress paradigms and behavioural tests are assessed in terms of outcomes, strengths, weaknesses, and translational value, especially in the domain of pharmacological studies.
Collapse
Affiliation(s)
| | - Dipesh Chaudhury
- Laboratory of Neural Systems and Behaviour, Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
54
|
Guven EB, Pranic NM, Unal G. The differential effects of brief environmental enrichment following social isolation in rats. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:818-832. [PMID: 35199313 PMCID: PMC8865499 DOI: 10.3758/s13415-022-00989-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 11/08/2022]
Abstract
Environmental enrichment (EE) in rodents is associated with a wide range of physiological, affective, and cognitive benefits. A seemingly opposite housing condition, social isolation (SI), is used as a rodent model of stress, negatively affecting several neurobiological mechanisms and hampering cognitive performance. Experimental designs that involve switching between these housing conditions produced mixed results. We evaluated different behavioral and cognitive effects of brief EE following long-term, SI-induced stress. We revealed the influence of enrichment after 30 days of isolation on behavioral despair, anxiety-like behavior, and spatial working memory in adult male Wistar rats and found a substantial anxiolytic effect in the experimental (SI to EE) group. Interestingly, rats exposed to EE also showed increased behavioral despair compared with the control (continuous SI) group. There was no difference in spatial working memory performance at the end of a 5-day water Y-maze (WYM) test. However, the SI to EE animals displayed better memory performance in the first 2 days of the WYM, indicating faster learning. In line with this difference, we recorded significantly more c-Fos-immunopositive (c-Fos+) cells in the retrosplenial and perirhinal cortices of the SI to EE animals. The lateral and basolateral nuclei of the amygdala showed no such difference. These results suggest that brief enrichment following isolation stress leads to differential results in affective and cognitive systems.
Collapse
Affiliation(s)
- Elif Beyza Guven
- Department of Psychology, Behavioral Neuroscience Laboratory, Boğaziçi University, 34342, Istanbul, Turkey
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Nicole Melisa Pranic
- Department of Psychology, Behavioral Neuroscience Laboratory, Boğaziçi University, 34342, Istanbul, Turkey
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Gunes Unal
- Department of Psychology, Behavioral Neuroscience Laboratory, Boğaziçi University, 34342, Istanbul, Turkey.
| |
Collapse
|
55
|
Youssef MMM, Hamada HT, Lai ESK, Kiyama Y, El-Tabbal M, Kiyonari H, Nakano K, Kuhn B, Yamamoto T. TOB is an effector of the hippocampus-mediated acute stress response. Transl Psychiatry 2022; 12:302. [PMID: 35906220 PMCID: PMC9338090 DOI: 10.1038/s41398-022-02078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Stress affects behavior and involves critical dynamic changes at multiple levels ranging from molecular pathways to neural circuits and behavior. Abnormalities at any of these levels lead to decreased stress resilience and pathological behavior. However, temporal modulation of molecular pathways underlying stress response remains poorly understood. Transducer of ErbB2.1, known as TOB, is involved in different physiological functions, including cellular stress and immediate response to stimulation. In this study, we investigated the role of TOB in psychological stress machinery at molecular, neural circuit, and behavioral levels. Interestingly, TOB protein levels increased after mice were exposed to acute stress. At the neural circuit level, functional magnetic resonance imaging (fMRI) suggested that intra-hippocampal and hippocampal-prefrontal connectivity were dysregulated in Tob knockout (Tob-KO) mice. Electrophysiological recordings in hippocampal slices showed increased postsynaptic AMPAR-mediated neurotransmission, accompanied by decreased GABA neurotransmission and subsequently altered Excitatory/Inhibitory balance after Tob deletion. At the behavioral level, Tob-KO mice show abnormal, hippocampus-dependent, contextual fear conditioning and extinction, and depression-like behaviors. On the other hand, increased anxiety observed in Tob-KO mice is hippocampus-independent. At the molecular level, we observed changes in factors involved in stress response like decreased stress-induced LCN2 expression and ERK phosphorylation, as well as increased MKP-1 expression. This study introduces TOB as an important modulator in the hippocampal stress signaling machinery. In summary, we reveal a molecular pathway and neural circuit mechanism by which Tob deletion contributes to expression of pathological stress-related behavior.
Collapse
Affiliation(s)
- Mohieldin M M Youssef
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Hiro Taiyo Hamada
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Esther Suk King Lai
- Neural Circuit Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuji Kiyama
- Laboratory of Biochemistry and Molecular Biology, Graduate school of medical and dental sciences, Kagoshima University, Kagoshima, Japan
| | - Mohamed El-Tabbal
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Kohei Nakano
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
56
|
Barroca NCB, Della Santa G, Suchecki D, García-Cairasco N, Umeoka EHDL. Challenges in the use of animal models and perspectives for a translational view of stress and psychopathologies. Neurosci Biobehav Rev 2022; 140:104771. [PMID: 35817171 DOI: 10.1016/j.neubiorev.2022.104771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
The neurobiology and development of treatments for stress-related neuropsychiatric disorders rely heavily on animal models. However, the complexity of these disorders makes it difficult to model them entirely, so only specific features of human psychopathology are emulated and these models should be used with great caution. Importantly, the effects of stress depend on multiple factors, like duration, context of exposure, and individual variability. Here we present a review on pre-clinical studies of stress-related disorders, especially those developed to model posttraumatic stress disorder, major depression, and anxiety. Animal models provide relevant evidence of the underpinnings of these disorders, as long as face, construct, and predictive validities are fulfilled. The translational challenges faced by scholars include reductionism and anthropomorphic/anthropocentric interpretation of the results instead of a more naturalistic and evolutionary understanding of animal behavior that must be overcome to offer a meaningful model. Other limitations are low statistical power of analysis, poor evaluation of individual variability, sex differences, and possible conflicting effects of stressors depending on specific windows in the lifespan.
Collapse
Affiliation(s)
- Nayara Cobra Barreiro Barroca
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Giovanna Della Santa
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Deborah Suchecki
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Norberto García-Cairasco
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; School of Medicine, University Center UniCerrado, Goiatuba, GO, Brazil
| |
Collapse
|
57
|
Li L, Wang S, Huang L, Zhi M, Cai Q, Fang Z, Yan Z, Xi K, Feng D. The Impacts of Workplace Environment on Coal Miners’ Emotion and Cognition Depicted in a Mouse Model. Front Behav Neurosci 2022; 16:896545. [PMID: 35783230 PMCID: PMC9245518 DOI: 10.3389/fnbeh.2022.896545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/16/2022] [Indexed: 12/05/2022] Open
Abstract
Most coal mine accidents are caused by the unsafe behavior of employees. Previous studies have shown that there is a significant connection among the working environment, the psychological state of employees, and unsafe behaviors. However, the internal biological mechanism has not been revealed. To explore the physiological and psychological alterations of coal mine workers and the underlying mechanisms that cause unsafe behaviors, the current study established a novel coal mine environment biological simulation (CEBS) model in mice. This model recreated the underground workplace environment facts in coal mines such as temperature, humidity, and noise, and mice were employed to receive these conditioning stresses according to the 8-h work. Animal behavior tests were performed to evaluate the evolution of the mental state including anxiety and depression, as well as the abilities of learning and memory during the 4-week environmental simulation. CEBS mice showed the adaptation process of anxiety from occurrence to stability in the process of environmental simulation, and also suffered from severe depression compared to the control mice. In addition, impaired spatial memory was also implicated in mice after 4-week CEBS. The behavior results of CEBS mice were consistent with the previous psychological investigation of coal workers. In summary, a novel mouse model was established in this study to depict the occurrence of negative emotions and impaired cognition in coal miners by simulating the underground workplace environment, which provided a basis for further exploring the biological mechanism of miners’ unsafe behavior.
Collapse
Affiliation(s)
- Lei Li
- College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an, China
- *Correspondence: Lei Li,
| | - Siwei Wang
- College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an, China
| | - Lu Huang
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Mei Zhi
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Qing Cai
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Zihao Fang
- College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an, China
| | - Zhenguo Yan
- College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an, China
| | - Kaiwen Xi
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Dayun Feng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- Dayun Feng,
| |
Collapse
|
58
|
Cahill S, Chandola T, Hager R. Genetic Variants Associated With Resilience in Human and Animal Studies. Front Psychiatry 2022; 13:840120. [PMID: 35669264 PMCID: PMC9163442 DOI: 10.3389/fpsyt.2022.840120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
Resilience is broadly defined as the ability to maintain or regain functioning in the face of adversity and is influenced by both environmental and genetic factors. The identification of specific genetic factors and their biological pathways underpinning resilient functioning can help in the identification of common key factors, but heterogeneities in the operationalisation of resilience have hampered advances. We conducted a systematic review of genetic variants associated with resilience to enable the identification of general resilience mechanisms. We adopted broad inclusion criteria for the definition of resilience to capture both human and animal model studies, which use a wide range of resilience definitions and measure very different outcomes. Analyzing 158 studies, we found 71 candidate genes associated with resilience. OPRM1 (Opioid receptor mu 1), NPY (neuropeptide Y), CACNA1C (calcium voltage-gated channel subunit alpha1 C), DCC (deleted in colorectal carcinoma), and FKBP5 (FKBP prolyl isomerase 5) had both animal and human variants associated with resilience, supporting the idea of shared biological pathways. Further, for OPRM1, OXTR (oxytocin receptor), CRHR1 (corticotropin-releasing hormone receptor 1), COMT (catechol-O-methyltransferase), BDNF (brain-derived neurotrophic factor), APOE (apolipoprotein E), and SLC6A4 (solute carrier family 6 member 4), the same allele was associated with resilience across divergent resilience definitions, which suggests these genes may therefore provide a starting point for further research examining commonality in resilience pathways.
Collapse
Affiliation(s)
- Stephanie Cahill
- Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Faculty of Humanities, Cathie Marsh Institute for Social Research, The University of Manchester, Manchester, United Kingdom
| | - Tarani Chandola
- Faculty of Humanities, Cathie Marsh Institute for Social Research, The University of Manchester, Manchester, United Kingdom
- Methods Hub, Department of Sociology, Faculty of Social Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Reinmar Hager
- Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
59
|
Juvenile handling rescues autism-related effects of prenatal exposure to valproic acid. Sci Rep 2022; 12:7174. [PMID: 35504947 PMCID: PMC9065111 DOI: 10.1038/s41598-022-11269-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
Environmental factors acting on young animals affect neurodevelopmental trajectories and impact adult brain function and behavior. Psychiatric disorders may be caused or worsen by environmental factors, but early interventions can improve performance. Understanding the possible mechanisms acting upon the developing brain could help identify etiological factors of psychiatric disorders and enable advancement of effective therapies. Research has focused on the long-lasting effects of environmental factors acting during the perinatal period, therefore little is known about the impact of these factors at later ages when neurodevelopmental pathologies such as autism spectrum disorder (ASD) are usually diagnosed. Here we show that handling mice during the juvenile period can rescue a range of behavioral and cellular effects of prenatal valproic acid (VPA) exposure. VPA-exposed animals show reduced sociability and increased repetitive behaviors, along with other autism-related endophenotypes such as increased immobility in the forced swim test and increased neuronal activity in the piriform cortex (Pir). Our results demonstrate that briefly handling mice every other day between postnatal days 22 and 34 can largely rescue these phenotypes. This effect can also be observed when animals are analyzed across tests using an “autism” factor, which also discriminates between animals with high and low Pir neuron activity. Thus, we identified a juvenile developmental window when environmental factors can determine adult autism-related behavior. In addition, our results have broader implications on behavioral neuroscience, as they highlight the importance of adequate experimental design and control of behavioral experiments involving treating or testing young animals.
Collapse
|
60
|
De Gregorio D, Inserra A, Enns JP, Markopoulos A, Pileggi M, El Rahimy Y, Lopez-Canul M, Comai S, Gobbi G. Repeated lysergic acid diethylamide (LSD) reverses stress-induced anxiety-like behavior, cortical synaptogenesis deficits and serotonergic neurotransmission decline. Neuropsychopharmacology 2022; 47:1188-1198. [PMID: 35301424 PMCID: PMC9018770 DOI: 10.1038/s41386-022-01301-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/02/2023]
Abstract
Lysergic acid diethylamide (LSD) is a serotonergic psychedelic compound receiving increasing interest due to putative anxiolytic and antidepressant properties. However, the potential neurobiological mechanisms mediating these effects remain elusive. Employing in vivo electrophysiology, microionthophoresis, behavioral paradigms and morphology assays, we assessed the impact of acute and chronic LSD administration on anxiety-like behavior, on the cortical dendritic spines and on the activity of serotonin (5-HT) neurons originating in the dorsal raphe nucleus (DRN) in male mice exposed to chronic restraint stress. We found that while the acute intraperitoneal (i.p.) administration of LSD (5, 15 and 30 and 60 μg/kg) did not produce any anxiolytic or antidepressant effects in non-stressed mice, the dose of 30 µg/kg (daily for 7 days) prevented the stress-induced anxiety-like behavior and the stress-induced decrease of cortical spine densitiy. Interestingly, while LSD acutely decreased the firing activity of 5-HT neurons, repeated LSD increased their basal firing rate and restored the low 5-HT firing induced by stress. This effect was accompanied by a decreased inhibitory response of 5-HT neurons to microiontophoretic applications of the 5-HT1A agonist 8-OH-DPAT (8-hydroxy-N,N-dipropyl-2-aminotetralin). In conclusion, repeated LSD prevents the exacerbation of anxiety-like behavior following chronic stress exposure, but has no behavioral effects in non-stressed mice. These effects are paralleled by increased cortical spinogenesis and an enhancement of 5-HT neurotransmission which might be due to 5-HT1A receptors desensitization. Increased cortical spine density and enhancement of serotonergic neurotransmission may thus represent a candidate mechanism which mediate the therapeutic effects of serotonergic psychedelics on stress-induced anxiety.
Collapse
Affiliation(s)
- Danilo De Gregorio
- grid.63984.300000 0000 9064 4811Department of Psychiatry, McGill University and Research Institute of the McGill University Health Center, H3A1A1 Montreal, QC Canada ,grid.15496.3f0000 0001 0439 0892Present Address: Division of Neuroscience, Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Antonio Inserra
- grid.63984.300000 0000 9064 4811Department of Psychiatry, McGill University and Research Institute of the McGill University Health Center, H3A1A1 Montreal, QC Canada
| | - Justine P. Enns
- grid.63984.300000 0000 9064 4811Department of Psychiatry, McGill University and Research Institute of the McGill University Health Center, H3A1A1 Montreal, QC Canada
| | - Athanasios Markopoulos
- grid.63984.300000 0000 9064 4811Department of Psychiatry, McGill University and Research Institute of the McGill University Health Center, H3A1A1 Montreal, QC Canada
| | - Michael Pileggi
- grid.63984.300000 0000 9064 4811Department of Psychiatry, McGill University and Research Institute of the McGill University Health Center, H3A1A1 Montreal, QC Canada
| | - Youssef El Rahimy
- grid.63984.300000 0000 9064 4811Department of Psychiatry, McGill University and Research Institute of the McGill University Health Center, H3A1A1 Montreal, QC Canada
| | - Martha Lopez-Canul
- grid.63984.300000 0000 9064 4811Department of Psychiatry, McGill University and Research Institute of the McGill University Health Center, H3A1A1 Montreal, QC Canada
| | - Stefano Comai
- grid.63984.300000 0000 9064 4811Department of Psychiatry, McGill University and Research Institute of the McGill University Health Center, H3A1A1 Montreal, QC Canada ,grid.5608.b0000 0004 1757 3470Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy ,grid.15496.3f0000 0001 0439 0892Present Address: Division of Neuroscience, Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Gabriella Gobbi
- Department of Psychiatry, McGill University and Research Institute of the McGill University Health Center, H3A1A1, Montreal, QC, Canada.
| |
Collapse
|
61
|
Li Y, Chen Z, Zhao J, Yu H, Chen X, He Y, Tian Y, Wang Y, Chen C, Cheng K, Xie P. Neurotransmitter and Related Metabolic Profiling in the Nucleus Accumbens of Chronic Unpredictable Mild Stress-Induced Anhedonia-Like Rats. Front Behav Neurosci 2022; 16:862683. [PMID: 35571281 PMCID: PMC9100667 DOI: 10.3389/fnbeh.2022.862683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
Major depressive disorder (MDD) is a serious mental disorder that affects many people. The neurotransmitter deficiency hypothesis has been the crux of much research on the treatment of depression. Anhedonia, as a core symptom, was closely associated with altered levels of 5-hydroxytryptamine (5-HT), dopamine (DA), and diverse types of glutamate (Glu) receptors in the nucleus accumbens (NAc). However, there were no reports showing how Glu changed in the NAc, and there were other unreported molecules involved in modulating stress-induced anhedonia. Thus, we investigated changes in neurotransmitters and their related metabolites in GABAergic, serotonergic and catecholaminergic pathways in the NAc of a rat model of chronic unpredictable mild stress- (CUMS-) induced anhedonia-like behavior. Then, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to detect target neurotransmitters and related metabolites in the NAc. Finally, the Western blot was used to assess the expression of key enzymes and receptors. Here, we found that the 5-HT level in anhedonia-susceptible (Sus) rats was increased while the Glu level decreased. DA did not show a significant change among CUMS rats. Correspondingly, we detected a reduction in monoamine oxidase-A (MAOA) and Glu receptor 1 levels in anhedonia-Sus rats while Glu receptor 2 (GluR2) and NMDA2B levels were increased in anhedonia-resilient (Res) rats. We also found that the levels of glutamine (Gln), kynurenic acid (Kya), histamine (HA), L-phenylalanine (L-Phe), and tyramine (Tyra) were changed after CUMS. These alterations in neurotransmitters may serve as a new insight into understanding the development of anhedonia-like behavior in depression.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Zhi Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Jianting Zhao
- Department of Neurology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical College, Xinxiang, China
| | - Heming Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Xiangyu Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Yu Tian
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Chong Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Ke Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
- *Correspondence: Ke Cheng,
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
- Peng Xie,
| |
Collapse
|
62
|
George SD, Archana R, Parasuraman S. Caloric Vestibular Stimulation Induced Enhancement of Behavior and Neurotrophic Factors in Chronic Mild Stress Induced Rats. Front Pharmacol 2022; 13:834292. [PMID: 35600855 PMCID: PMC9118215 DOI: 10.3389/fphar.2022.834292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Caloric Vestibular Stimulation (CVS) is a non-invasive technique for stimulating the vestibular system. The vestibular system maintains equilibrium and acts as a moderator of mood, emotional control, and stress levels. Stress is a disruption of psychological, behavioral, and physiological homeostasis that affects people of all ages in today's world. Thus, modest therapeutic procedures like vestibular stimulation can be practiced to effectively reduce stress. Hence, the purpose of the study was to determine the effect of vestibular stimulation on improving behavioral alterations and neurotrophic factors in rats exposed to Chronic Mild Stress (CMS). Methodology: The study employed 24 healthy male Sprague Dawley rats divided into four groups (n = 6). CMS was induced for 28 days with a variety of stimuli. Bilateral CVS with hot water (temperature ≈40°C) was started on Day 14 of CMS and continued for 15 days. On days 1, 15, and 28, locomotor activity (LA), wire grip strength (WGS), fall off time (FT), and immobilization time (IT) were measured, and the data were analyzed statistically. Additionally, neurotrophic factors such as Brain Derived Neurotrophic Factor (BDNF) and Glial cell line-Derived Neurotrophic Factor (GDNF) were observed in rats' hippocampus. Results: On days 15 and 28, the CMS-induced group showed a significant reduction in LA, WGS, FT and IT in comparison to the control group. On day 28, the CVS-induced group demonstrated a significant increase in WGS, FT and IT when compared to the CMS group. Immunohistochemical analysis revealed that animals subjected to CMS had decreased BDNF and GDNF expression compared to the control group, indicating neuronal dysfunction in the hippocampus in response to stress. However, therapy with CVS increased BDNF and GDNF expression, thereby regenerating damaged hippocampus nerve terminals. Conclusion: The findings of the current study revealed that CVS is a safe and simple neuroprotective treatment against stress and a promising non-invasive technique for overcoming the motor symptoms associated with it. The findings may pave the way for future research and therapeutic applications of CVS for stress management.
Collapse
Affiliation(s)
- Sherly Deborah George
- Department of Physiology, Faculty of Medicine, Manipal University College Malaysia, Melaka, Malaysia
- Department of Physiology, Saveetha Medical College, Saveetha Institute of Technical and Medical Sciences (SIMATS), Chennai, India
- Unit of Physiology, Faculty of Medicine, AIMST University, Kedah, Malaysia
| | - Rajagopalan Archana
- Department of Physiology, Saveetha Medical College, Saveetha Institute of Technical and Medical Sciences (SIMATS), Chennai, India
| | | |
Collapse
|
63
|
Kositsyn YMHB, Volgin AD, de Abreu MS, Demin KA, Zabegalov KN, Maslov GO, Petersen EV, Kolesnikova TO, Strekalova T, Kalueff AV. Towards translational modeling of behavioral despair and its treatment in zebrafish. Behav Brain Res 2022; 430:113906. [PMID: 35489477 DOI: 10.1016/j.bbr.2022.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/03/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022]
Abstract
Depression is a widespread and severely debilitating neuropsychiatric disorder whose key clinical symptoms include low mood, anhedonia and despair (the inability or unwillingness to overcome stressors). Experimental animal models are widely used to improve our mechanistic understanding of depression pathogenesis, and to develop novel antidepressant therapies. In rodents, various experimental models of 'behavioral despair' have already been developed and rigorously validated. Complementing rodent studies, the zebrafish (Danio rerio) is emerging as a powerful model organism to assess pathobiological mechanisms of depression and other related affective disorders. Here, we critically discuss the developing potential and important translational implications of zebrafish models for studying despair and its mechanisms, and the utility of such aquatic models for antidepressant drug screening.
Collapse
Affiliation(s)
- Yuriy M H B Kositsyn
- School of Pharmacy, Southwest University, Chongqing, China; Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew D Volgin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Murilo S de Abreu
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia; Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil; Sirius University of Science and Technology, Sochi, Russia.
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medcial Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | | | - Gleb O Maslov
- Ural Federal University, Ekaterinburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | | | | | - Tatiana Strekalova
- University of Maastricht, Maastricht, Netherlands; Sirius University of Science and Technology, Sochi, Russia
| | - Allan V Kalueff
- Ural Federal University, Ekaterinburg, Russia; University of Maastricht, Maastricht, Netherlands; Sirius University of Science and Technology, Sochi, Russia.
| |
Collapse
|
64
|
Behavioral Engagement With Playable Objects Resolves Stress-Induced Adaptive Changes by Reshaping the Reward System. Biol Psychiatry 2022; 91:676-689. [PMID: 34961622 DOI: 10.1016/j.biopsych.2021.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND The reward system regulates motivated behavior, and repeated practice of specific motivated behavior might conversely modify the reward system. However, the detailed mechanisms by which they reciprocally regulate each other are not clearly understood. METHODS Mice subjected to chronic restraint stress show long-lasting depressive-like behavior, which is rescued by continual engagement with playable objects. A series of molecular, pharmacological, genetic, and behavioral analyses, combined with microarray, liquid chromatography, and chemogenetic tools, are used to investigate the neural mechanisms of antidepressive effects of playable objects. RESULTS Here, we show that repeated restraint induces dopamine surges into the nucleus accumbens-lateral shell (NAc-lSh), which cause upregulation of the neuropeptide PACAP in the NAc-lSh. As repeated stress is continued, the dopamine surge by stressors is adaptively suppressed without restoring PACAP upregulation, and the resulting enhanced PACAP inputs from NAc-lSh neurons to the ventral pallidum facilitate depressive-like behaviors. Continual engagement with playable objects in mice subjected to chronic stress remediates reduced dopamine response to new stressors, enhanced PACAP upregulation, and depressive-like behaviors. Overactivation of dopamine D1 receptors over the action of D2 receptors in the NAc-lSh promotes depressive-like behaviors. Conversely, inhibition of D1 receptors or PACAP upregulation in the NAc-lSh confers resilience to chronic stress-induced depressive-like behaviors. Histochemical and chemogenetic analyses reveal that engagement with playable objects produces antidepressive effects by reshaping the ventral tegmental area-to-NAc-lSh and NAc-lSh-to-ventral pallidum circuits. CONCLUSIONS These results suggest that behavioral engagement with playable objects remediates depressive-like behaviors by resolving stress-induced maladaptive changes in the reward system.
Collapse
|
65
|
Pitzer C, Kurpiers B, Eltokhi A. Sex Differences in Depression-Like Behaviors in Adult Mice Depend on Endophenotype and Strain. Front Behav Neurosci 2022; 16:838122. [PMID: 35368297 PMCID: PMC8969904 DOI: 10.3389/fnbeh.2022.838122] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Depression affects women nearly twice as frequently as men. In contrast, rodent models of depression have shown inconsistent results regarding sex bias, often reporting more depression-like behaviors in males. This sex discrepancy in rodents modeling depression may rely on differences in the baseline activity of males and females in depression-related behavioral tests. We previously showed that the baseline despair and anhedonia behaviors, major endophenotypes of depression, are not sex biased in young adolescent wild-type mice of C57BL/6N, DBA/2, and FVB/N strains. Since the prevalence of depression in women peaks in their reproductive years, we here investigated sex differences of the baseline depression-like behaviors in adult mice using these three strains. Similar to the results in young mice, no difference was found between adult male and female mice in behavioral tests measuring despair in both tail suspension and forced swim tests, and anhedonia in the sucrose preference test. We then extended our study and tested apathy, another endophenotype of depression, using the splash test. Adult male and female mice showed significantly different results in the baseline apathy-like behaviors depending on the investigated strain. This study dissects the complex sex effects of different depression endophenotypes, stresses the importance of considering strain, and puts forward a hypothesis of the inconsistency of results between different laboratories investigating rodent models of depression.
Collapse
Affiliation(s)
- Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
- *Correspondence: Claudia Pitzer,
| | - Barbara Kurpiers
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Ahmed Eltokhi,
| |
Collapse
|
66
|
Wallace K, Bowles T, Griffin A, Robinson R, Solis L, Railey T, Shaffery JP, Araji S, Spencer SK. Evidence of Anxiety, Depression and Learning Impairments following Prenatal Hypertension. Behav Sci (Basel) 2022; 12:bs12020053. [PMID: 35200304 PMCID: PMC8869594 DOI: 10.3390/bs12020053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Hypertensive disorders of pregnancy, such as Preeclampsia (PreE) and HELLP (hemolysis, elevated liver enzyme, low platelet) syndrome, affects approximately 5–10% of pregnancies and increases the risk of women developing disorders, such as anxiety or depression, in the postpartum period. Using preclinical rodent models, we set out to determine whether rats with a history of PreE or HELLP had evidence of anxiety, depression or cognitive impairment and whether immune suppression during pregnancy prevented these changes in mood and/or cognition. Methods: Timed-pregnant rats were infused with sFlt-1 and/or sEng to induce PreE or HELLP beginning on gestational day 12. After delivery, a battery of validated behavioral assays was used to assess post-partum depression, anxiety and learning. Results: There was no negative effect on maternal pup interaction due to PreE or HELLP; however, hypertensive dams spent more time immobile in the forced swim test (p < 0.0001). Hypertensive dams also spent less time in the open area of the open field (p = 0.001). There were no significant changes in recognition memory (p = 0.08); however, spatial learning was impaired in hypertensive dams (p = 0.003). Immobility time in the forced swim test was positively correlated with increased circulating S100B (p = 0.04), while increased time spent in the outer zones of the open field was negatively correlated with BDNF levels (p < 0.0001). Conclusion: The results from this study suggest that hypertensive pregnancy disorders are associated with depression, anxiety and learning impairments in the post-partum period.
Collapse
Affiliation(s)
- Kedra Wallace
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (T.B.); (R.R.); (L.S.); (T.R.); (S.A.)
- Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Correspondence:
| | - Teylor Bowles
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (T.B.); (R.R.); (L.S.); (T.R.); (S.A.)
| | - Ashley Griffin
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Reanna Robinson
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (T.B.); (R.R.); (L.S.); (T.R.); (S.A.)
| | - Lucia Solis
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (T.B.); (R.R.); (L.S.); (T.R.); (S.A.)
| | - Teryn Railey
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (T.B.); (R.R.); (L.S.); (T.R.); (S.A.)
| | - James P. Shaffery
- Department of Psychiatry, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Sarah Araji
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (T.B.); (R.R.); (L.S.); (T.R.); (S.A.)
| | - Shauna-Kay Spencer
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (T.B.); (R.R.); (L.S.); (T.R.); (S.A.)
| |
Collapse
|
67
|
Maya-Romero AM, Dodd GE, Landin JD, Zaremba HK, Allen OF, Bilbow MA, Hammaker RD, Santerre-Anderson JL. Adolescent high-fructose corn syrup consumption leads to dysfunction in adult affective behaviors and mesolimbic proteins in male Sprague-Dawley rats. Behav Brain Res 2022; 419:113687. [PMID: 34838930 DOI: 10.1016/j.bbr.2021.113687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
Abstract
Adolescence is a critical period of development, during which the brain undergoes rapid maturation. Problematically, adolescents are the top consumers of high fructose corn syrup (HFCS) sweetened beverages and snacks, which may have neurodevelopmental consequences. While HFCS consumption has been linked to an increased likelihood of obesity and other physical health impairments, the link between HFCS and persistent behavioral changes is not yet fully established. The present study aimed to assess whether adolescent HFCS consumption could lead to alterations in adult behaviors and protein expression, following cessation. Adolescent HFCS-exposure contributed to deficits in learning and motivation on an effort-related T-Maze procedure, as well as increased immobility time in the forced swim paradigm during adulthood. Molecularly, protracted decreases in accumbal dopamine D1 and D2 receptors and protein kinase G (PKG), as well as increases in tyrosine hydroxylase and GluA2 receptor subunits, were observed following HFCS-exposure. Taken together, these data suggest that adolescent HFCS-consumption leads to protracted dysfunction in affective behaviors and alterations in accumbal proteins which persist following cessation of HFCS-consumption.
Collapse
Affiliation(s)
- Alex M Maya-Romero
- Department of Psychology, King's College, Wilkes-Barre, PA, USA; Program in Neuroscience, King's College, Wilkes-Barre, PA, USA
| | - Gina E Dodd
- Department of Psychology, King's College, Wilkes-Barre, PA, USA; Program in Neuroscience, King's College, Wilkes-Barre, PA, USA
| | - Justine D Landin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Helen K Zaremba
- Department of Psychology, King's College, Wilkes-Barre, PA, USA; Program in Neuroscience, King's College, Wilkes-Barre, PA, USA
| | - Omar F Allen
- Department of Psychology, King's College, Wilkes-Barre, PA, USA; Program in Neuroscience, King's College, Wilkes-Barre, PA, USA
| | - Mackenzie A Bilbow
- Department of Psychology, King's College, Wilkes-Barre, PA, USA; Program in Neuroscience, King's College, Wilkes-Barre, PA, USA
| | - Rhyce D Hammaker
- Department of Psychology, King's College, Wilkes-Barre, PA, USA; Program in Neuroscience, King's College, Wilkes-Barre, PA, USA
| | - Jessica L Santerre-Anderson
- Department of Psychology, King's College, Wilkes-Barre, PA, USA; Program in Neuroscience, King's College, Wilkes-Barre, PA, USA.
| |
Collapse
|
68
|
Animal models of postpartum depression revisited. Psychoneuroendocrinology 2022; 136:105590. [PMID: 34839082 DOI: 10.1016/j.psyneuen.2021.105590] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022]
Abstract
Postpartum depression (PPD) is a heterogeneous mood disorder and the most frequent psychiatric complication of the postnatal period. Given its potential long-lasting repercussions on the well-being of the mother and the infants, it should be a priority in public health. In spite of efforts devoted to clinical investigation and preclinical studies, the underlying neurobiological mechanisms of this disorder remain unknown in detail. Much of the progress in the area has been made from animal models, especially rodent models. The aim of this mini-review is to update the current rodent models in PPD research and their main contributions to the field. Animal models are critical tools to advance understanding of the pathophysiological basis of this disorder and to help the development of new therapeutic strategies. Here, we group PPD models into 2 main categories (Models based on hormone manipulations, Models based on stress exposure), each of which includes different paradigms that reflect risk factors or physiological conditions associated with this disease. Finally, we provide an overview of emerging models that provide new perspectives on the study of possible pathophysiological factors related to PPD, to contribute to tackling potential therapeutic targets.
Collapse
|
69
|
Zoubovsky SP, Williams MT, Hoseus S, Tumukuntala S, Riesenberg A, Schulkin J, Vorhees CV, Campbell K, Lim HW, Muglia LJ. Neurobehavioral abnormalities following prenatal psychosocial stress are differentially modulated by maternal environment. Transl Psychiatry 2022; 12:22. [PMID: 35039487 PMCID: PMC8764031 DOI: 10.1038/s41398-022-01785-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Prenatal stress (PS) is associated with increased vulnerability to affective disorders. Transplacental glucocorticoid passage and stress-induced maternal environment alterations are recognized as potential routes of transmission that can fundamentally alter neurodevelopment. However, molecular mechanisms underlying aberrant emotional outcomes or the individual contributions intrauterine stress versus maternal environment play in shaping these mechanisms remain unknown. Here, we report anxiogenic behaviors, anhedonia, and female hypothalamic-pituitary-adrenal axis hyperactivity as a consequence of psychosocial PS in mice. Evidence of fetal amygdala programming precedes these abnormalities. In adult offspring, we observe amygdalar transcriptional changes demonstrating sex-specific dysfunction in synaptic transmission and neurotransmitter systems. We find these abnormalities are primarily driven by in-utero stress exposure. Importantly, maternal care changes postnatally reverse anxiety-related behaviors and partially rescue gene alterations associated with neurotransmission. Our data demonstrate the influence maternal environment exerts in shaping offspring emotional development despite deleterious effects of intrauterine stress.
Collapse
Affiliation(s)
- Sandra P. Zoubovsky
- grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Michael T. Williams
- grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Sarah Hoseus
- grid.239573.90000 0000 9025 8099Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Shivani Tumukuntala
- grid.239573.90000 0000 9025 8099Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Amy Riesenberg
- grid.239573.90000 0000 9025 8099Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Jay Schulkin
- grid.213910.80000 0001 1955 1644Department of Neuroscience, Georgetown University, Washington, DC USA ,grid.34477.330000000122986657Department of Obstetrics and Gynecology, University of Washington, Seattle, WA USA
| | - Charles V. Vorhees
- grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Kenneth Campbell
- grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Hee-Woong Lim
- grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Louis J. Muglia
- grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.427464.70000 0000 8727 8697Office of the President, Burroughs Wellcome Fund, Research Triangle Park, NC USA
| |
Collapse
|
70
|
Ventura R, Cabib S, Babicola L, Andolina D, Di Segni M, Orsini C. Interactions Between Experience, Genotype and Sex in the Development of Individual Coping Strategies. Front Behav Neurosci 2022; 15:785739. [PMID: 34987364 PMCID: PMC8721137 DOI: 10.3389/fnbeh.2021.785739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/29/2021] [Indexed: 02/01/2023] Open
Abstract
Coping strategies, the first line of defense against adversities, develop through experience. There is consistent evidence that both genotype and sex contribute to the development of dysfunctional coping, leading to maladaptive outcomes of adverse experiences or to adaptive coping that fosters rapid recovery even from severe stress. However, how these factors interact to influence the development of individual coping strategies is just starting to be investigated. In the following review, we will consider evidence that experience, sex, and genotype influence the brain circuits and neurobiological processes involved in coping with adversities and discuss recent results pointing to the specific effects of the interaction between early experiences, genotype, and stress in the development of functional and dysfunctional coping styles.
Collapse
Affiliation(s)
- Rossella Ventura
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Simona Cabib
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Lucy Babicola
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Diego Andolina
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Matteo Di Segni
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Cristina Orsini
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
71
|
Rosas-Sánchez GU, German-Ponciano LJ, Rodríguez-Landa JF. Considerations of Pool Dimensions in the Forced Swim Test in Predicting the Potential Antidepressant Activity of Drugs. Front Behav Neurosci 2022; 15:757348. [PMID: 35069137 PMCID: PMC8777187 DOI: 10.3389/fnbeh.2021.757348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gilberto Uriel Rosas-Sánchez
- Programa de Doctorado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | | | - Juan Francisco Rodríguez-Landa
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
- *Correspondence: Juan Francisco Rodríguez-Landa
| |
Collapse
|
72
|
Postpartum scarcity-adversity disrupts maternal behavior and induces a hypodopaminergic state in the rat dam and adult female offspring. Neuropsychopharmacology 2022; 47:488-496. [PMID: 34703012 PMCID: PMC8674224 DOI: 10.1038/s41386-021-01210-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Postpartum adversity is among the strongest predictors for the emergence of postpartum depression (PPD) in humans and a translational risk factor employed in rodent models. Parental care is disturbed under conditions of environmental adversity, including low resource environments, and in PPD. Nonetheless, the neural changes associated with these adversity-induced maladaptive behavioral states remain poorly understood. Postpartum scarcity-adversity can be modeled in rats by providing the dam with limited bedding and nesting (LBN) materials, which mimics the effects of a stressful low resource environment in potentiating maltreatment/neglect in humans. Indeed, LBN exposure from postpartum days (PD) 2-9 increased adverse maternal behaviors, impaired pup retrieval, and increased passive stress coping responses. Since mesolimbic dopamine (DA) activity is an important mechanism for motivated maternal behavior and is implicated in PPD, we assessed the impact of postpartum scarcity-adversity on in vivo electrophysiological properties of ventral tegmental area (VTA) DA neurons at two timepoints. We found reduced numbers of active VTA DA neurons in LBN dams at PD 9-10 but not PD-21, suggesting a transient impact on VTA population activity in LBN dams. Finally, we assessed the impact of early life scarcity-adversity on VTA DA function by conducting VTA recordings in adult female offspring and found a long-lasting attenuation in DA activity. These findings highlight a link between adversity-induced deficits in DA function and disrupted maternal behavior, suggesting the VTA/mesolimbic DA system as a potential mechanism by which postpartum scarcity-adversity drives aberrant maternal behavior, and early postnatal programming of adult VTA function in the offspring.
Collapse
|
73
|
Female-specific role of ciliary neurotrophic factor in the medial amygdala in promoting stress responses. Neurobiol Stress 2022; 17:100435. [PMID: 35146079 PMCID: PMC8819478 DOI: 10.1016/j.ynstr.2022.100435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) is produced by astrocytes which have been implicated in regulating stress responses. We found that CNTF in the medial amygdala (MeA) promotes despair or passive coping, i.e., immobility in an acute forced swim stress, in female mice, while having no effect in males. Neutralizing CNTF antibody injected into the MeA of wildtype females reduced activation of downstream STAT3 (Y705) 24 and 48 h later. In concert, the antibody reduced immobility in the swim test in females and only after MeA injection, but not when injected in the central or basolateral amygdala. Antibody injected into the male MeA did not affect immobility. These data reveal a unique role of CNTF in female MeA in promoting despair or passive coping behavior. Moreover, 4 weeks of chronic unpredictable stress (CUS) increased immobility in the swim test and reduced sucrose preference in wildtype CNTF+/+, but not CNTF−/− littermate, females. Following CUS, 10 min of restraint stress increased plasma corticosterone levels only in CNTF+/+ females. In males, the CUS effects were present in both genotypes. Further, CUS increased CNTF expression in the MeA of female, but not male, mice. CUS did not alter CNTF in the female hippocampus, hypothalamus and bed nucleus of stria terminalis. This suggests that MeA CNTF has a female-specific role in promoting CUS-induced despair or passive coping, behavioral anhedonia and neuroendocrine responses. Compared to CNTF+/+ mice, CNTF−/− mice did not show differences in CUS-induced anxiety-like behavior and sensorimotor gating function as measured by elevated T-Maze, open field and pre-pulse inhibition of the acoustic startle response. Together, this study reveals a novel CNTF-mediated female-specific mechanism in stress responses and points to opportunities for developing treatments for stress-related disorders in women. CNTF in the MeA promotes despair or passive coping behavior in female mice only. Chronic stress upregulates CNTF in female but not male MeA. CNTF contributes to chronic stress-induced despair or passive coping, anhedonia and neuroendocrine responses in females only. CNTF does not affect anxiety-like behavior and sensorimotor gating function. These data reveal a novel CNTF-mediated female-specific mechanism in stress responses.
Collapse
|
74
|
Thermoregulatory significance of immobility in the forced swim test. Physiol Behav 2022; 247:113709. [DOI: 10.1016/j.physbeh.2022.113709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 11/19/2022]
|
75
|
Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology (Berl) 2022; 239:663-693. [PMID: 35072761 PMCID: PMC8785013 DOI: 10.1007/s00213-021-05982-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE The chronic mild stress (CMS) paradigm was first described almost 40 years ago and has become a widely used model in the search for antidepressant drugs for major depression disorder (MDD). It has resulted in the publication of almost 1700 studies in rats alone. Under the original CMS procedure, the expression of an anhedonic response, a key symptom of depression, was seen as an essential feature of both the model and a depressive state. The prolonged exposure of rodents to unpredictable/uncontrollable mild stressors leads to a reduction in the intake of palatable liquids, behavioral despair, locomotor inhibition, anxiety-like changes, and vegetative (somatic) abnormalities. Many of the CMS studies do not report these patterns of behaviors, and they often fail to include consistent molecular, neuroanatomical, and physiological phenotypes of CMS-exposed animals. OBJECTIVES To critically review the CMS studies in rats so that conceptual and methodological flaws can be avoided in future studies. RESULTS Analysis of the literature supports the validity of the CMS model and its impact on the field. However, further improvements could be achieved by (i) the stratification of animals into 'resilient' and 'susceptible' cohorts within the CMS animals, (ii) the use of more refined protocols in the sucrose test to mitigate physiological and physical artifacts, and (iii) the systematic evaluation of the non-specific effects of CMS and implementation of appropriate adjustments within the behavioral tests. CONCLUSIONS We propose methodological revisions and the use of more advanced behavioral tests to refine the rat CMS paradigm, which offers a valuable tool for developing new antidepressant medications.
Collapse
|
76
|
Baynard C, Prisinzano TE, Butelman ER. Rapid-Onset Anti-Stress Effects of a Kappa-Opioid Receptor Antagonist, LY2795050, Against Immobility in an Open Space Swim Paradigm in Male and Female Mice. Front Pharmacol 2021; 12:775317. [PMID: 34880762 PMCID: PMC8645979 DOI: 10.3389/fphar.2021.775317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
The kappa-opioid receptor (KOR) / dynorphin system is implicated with behavioral and neurobiological effects of stress exposure (including heavy exposure to drugs of abuse) in translational animal models. Thus some KOR-antagonists can decrease the aversive, depressant-like and anxiety-like effects caused by stress exposure. The first generation of selective KOR-antagonists have slow onsets (hours) and extremely long durations of action (days-weeks), in vivo. A new generation of KOR antagonists with rapid onset and shorter duration of action can potentially decrease the effects of stress exposure in translational models, and may be of interest for medication development. This study examined the rapid onset anti-stress effects of one of the shorter acting novel KOR-antagonists (LY2795050, (3-chloro-4-(4-(((2S)-2-pyridin-3-ylpyrrolidin-1-yl)methyl) phenoxy)benzamide)) in a single-session open space swim (OSS) stress paradigm (15 min duration), in adult male and female C57BL/6 J mice. LY2795050 (0.32 mg/kg, i.p.) had rapid onset (within 15 min) and short duration (<3 h) of KOR-antagonist effects, based on its blockade of the locomotor depressant effects of the KOR-agonist U50,488 (10 mg/kg). LY2795050 (0.32 mg/kg), when administered only 1 min prior to the OSS stress paradigm, decreased immobility in males, but not females. With a slightly longer pretreatment time (15 min), this dose of LY2795050 decreased immobility in both males and females. A 10-fold smaller dose of LY2795050 (0.032 mg/kg) was inactive in the OSS, showing dose-dependence of this anti-stress effect. Overall, these studies show that a novel KOR-antagonist can produce very rapid onset anti-immobility effects in this model of acute stress exposure.
Collapse
Affiliation(s)
- Caroline Baynard
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, NY, United States
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Eduardo R Butelman
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, NY, United States
| |
Collapse
|
77
|
Variability in Behavioral Phenotypes after Forced Swimming-Induced Stress in Rats Is Associated with Expression of the Glucocorticoid Receptor, Nurr1, and IL-1β in the Hippocampus. Int J Mol Sci 2021; 22:ijms222312700. [PMID: 34884503 PMCID: PMC8657438 DOI: 10.3390/ijms222312700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/05/2022] Open
Abstract
Individual differences in coping with stress may determine either a vulnerable or resilient phenotype. Therefore, it is important to better understand the biology underlying the behavioral phenotype. We assessed whether individual behavioral phenotype to acute stress is related with the hippocampal expression of glucocorticoid receptor (GR), Nurr1, interleukin-1 beta (IL-1β) or brain-derived neurotrophic factor (BDNF). Wistar male rats were exposed to forced swimming for 15 min and sacrificed at different times. Behavioral response was analyzed, and it was compared with the gene and protein expression of GR, Nurr1, IL-1β and BDNF in the hippocampus for each time point. Behavioral phenotyping showed a group with high immobility (vulnerable) while another had low immobility (resilient). No significant differences were found in the Nurr1, IL-1β and BDNF mRNA levels between resilient and vulnerable rats at different recovery times except for Nr3c1 (gene for GR). However, exposure to stress caused significantly higher levels of GR, Nurr1 and IL-1β proteins of vulnerable compared to resilient rats. This variability of behavioral phenotypes is associated with a differential molecular response to stress that involves GR, Nurr1, and IL-1β as mediators in coping with stress. This contributes to identifying biomarkers of susceptibility to stress.
Collapse
|
78
|
Holanda VAD, Oliveira MC, da Silva Junior ED, Gavioli EC. Tamsulosin facilitates depressive-like behaviors in mice: Involvement of endogenous glucocorticoids. Brain Res Bull 2021; 178:29-36. [PMID: 34798218 DOI: 10.1016/j.brainresbull.2021.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/04/2023]
Abstract
The benign prostatic hyperplasia (BPH) is the main source of lower urinary tract symptoms. The BPH is a common age-dependent disease and tamsulosin is an α1-adrenoceptor blocker widely prescribed for BPH. Beyond the common adverse effects of tamsulosin, increased diagnosis of dementia after prescription was observed. Importantly, a clinical study suggested that tamsulosin may exert antidepressant effects in BPH patients. Considering the expression of α1-adrenoceptors in the brain, this study aimed to investigate the effects of tamsulosin in the forced swimming and open field tests in mice. For this, tamsulosin (0.001-1 mg/kg) was orally administered subacutely (1, 5 and 23 hr) and acutely (60 min) before tests. Mifepristone (10 mg/kg), a glucocorticoid receptor antagonist, and aminoglutethimide (10 mg/kg), a streoidogenesis inhibitor, were intraperitoneally injected before tamsulosin to investigate the role of the hypothalamic-pituitary-adrenal axis in the mediation of tamsulosin-induced effects. Subacute and acute administrations of tamsulosin increased the immobility time in the first exposition to an inescapable stressful situation. In the re-exposition to the swim task, controls displayed a natural increase in the immobility time, and the treatment with tamsulosin further increased this behavioral parameter. Tamsuslosin did not affect spontaneous locomotion neither in naïve nor in stressed mice. Our findings also showed that mifepristone and aminoglutethimide prevented the tamsulosin-induced increase in the immobility time in the first and second swimming sessions, respectively. In conclusion, tamsulosin may contribute to increased susceptibility to depressive-like behaviors, by facilitating the acquisition of a passive stress-copying strategy. These effects seem to be dependent on endogenous glucocorticoids.
Collapse
Affiliation(s)
- Victor A D Holanda
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador salgado Filho, 3000, Campus Universitário - Lagoa Nova, Natal 59078-900, Brazil
| | - Matheus C Oliveira
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador salgado Filho, 3000, Campus Universitário - Lagoa Nova, Natal 59078-900, Brazil
| | - Edilson D da Silva Junior
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador salgado Filho, 3000, Campus Universitário - Lagoa Nova, Natal 59078-900, Brazil
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador salgado Filho, 3000, Campus Universitário - Lagoa Nova, Natal 59078-900, Brazil.
| |
Collapse
|
79
|
Behavioural adaptations after antibiotic treatment in male mice are reversed by activation of the aryl hydrocarbon receptor. Brain Behav Immun 2021; 98:317-329. [PMID: 34461234 DOI: 10.1016/j.bbi.2021.08.228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/15/2021] [Accepted: 08/21/2021] [Indexed: 01/08/2023] Open
Abstract
The intestinal microbiota plays an important role in regulating brain functions and behaviour. Microbiota-dependent changes in host physiology have been suggested to be key contributors to psychiatric conditions. However, specific host pathways modulated by the microbiota involved in behavioural control are lacking. Here, we assessed the role of the aryl hydrocarbon receptor (Ahr) in modulating microbiota-related alterations in behaviour in male and female mice after antibiotic (Abx) treatment. Mice of both sexes were treated with Abx to induce bacterial depletion. Mice were then tested in a battery of behavioural tests, including the elevated plus maze and open field tests (anxiety-like behaviour), 3 chamber test (social preference), and the tail suspension and forced swim tests (despair behaviour). Behavioural measurements in the tail suspension test were also performed after microbiota reconstitution and after administration of an Ahr agonist, β-naphthoflavone. Gene expression analyses were performed in the brain, liver, and colon by qPCR. Abx-induced bacterial depletion did not alter anxiety-like behaviour, locomotion, or social preference in either sex. A sex-dependent effect was observed in despair behaviour. Male mice had a reduction in despair behaviour after Abx treatment in both the tail suspension and forced swim tests. A similar alteration in despair behaviour was observed in Ahr knockout mice. Despair behaviour was normalized by either microbiota recolonization or Ahr activation in Abx-treated mice. Ahr activation by β-naphthoflavone was confirmed by increased expression of the Ahr-target genes Cyp1a1, Cyp1b1, and Ahrr. Our results demonstrate a role for Ahr in mediating the behaviours that are regulated by the crosstalk between the intestinal microbiota and the host. Ahr represents a novel potential modulator of behavioural conditions influenced by the intestinal microbiota.
Collapse
|
80
|
Dearing C, Morano R, Ptaskiewicz E, Mahbod P, Scheimann JR, Franco-Villanueva A, Wulsin L, Myers B. Glucoregulation and coping behavior after chronic stress in rats: Sex differences across the lifespan. Horm Behav 2021; 136:105060. [PMID: 34537487 PMCID: PMC8629951 DOI: 10.1016/j.yhbeh.2021.105060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 01/01/2023]
Abstract
The purpose of the current study was to determine how biological sex shapes behavioral coping and metabolic health across the lifespan after chronic stress. We hypothesized that examining chronic stress-induced behavioral and endocrine outcomes would reveal sex differences in the biological basis of susceptibility. During late adolescence, male and female Sprague-Dawley rats experienced chronic variable stress (CVS). Following completion of CVS, all rats experienced a forced swim test (FST) followed 3 days later by a fasted glucose tolerance test (GTT). The FST was used to determine coping in response to a stressor. Endocrine metabolic function was evaluated in the GTT by measuring glucose and corticosterone, the primary rodent glucocorticoid. Rats then aged to 15 months when the FST and GTT were repeated. In young rats, chronically stressed females exhibited more passive coping and corticosterone release in the FST. Additionally, chronically stressed females had elevated corticosterone and impaired glucose clearance in the GTT. Aging affected all measurements as behavioral and endocrine outcomes were sex specific. Furthermore, regression analysis between hormonal and behavioral responses identified associations depending on sex and stress. Collectively, these data indicate increased female susceptibility to the effects of chronic stress during adolescence. Further, translational investigation of coping style and glucose homeostasis may identify biomarkers for stress-related disorders.
Collapse
Affiliation(s)
- Carley Dearing
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Rachel Morano
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Elaine Ptaskiewicz
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Parinaz Mahbod
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Jessie R Scheimann
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ana Franco-Villanueva
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Lawson Wulsin
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States of America
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America.
| |
Collapse
|
81
|
Eltokhi A, Kurpiers B, Pitzer C. Baseline Depression-Like Behaviors in Wild-Type Adolescent Mice Are Strain and Age but Not Sex Dependent. Front Behav Neurosci 2021; 15:759574. [PMID: 34690714 PMCID: PMC8529326 DOI: 10.3389/fnbeh.2021.759574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Depression is a major neuropsychiatric disorder, decreasing the ability of hundreds of millions of individuals worldwide to function in social, academic, and employment settings. Beyond the alarming public health problem, depression leads to morbidity across the entire age including adolescence and adulthood. Modeling depression in rodents has been used to understand the pathophysiological mechanisms behind this disorder and create new therapeutics. Although women are two times more likely to be diagnosed with depression compared to men, behavioral experiments on rodent models of depression are mainly performed in males based on the assumption that the estrous cycles in females may affect the behavioral outcome and cause an increase in the intrinsic variability compared to males. Still, the inclusion of female rodents in the behavioral analysis is mandatory to establish the origin of sex bias in depression. Here, we investigated the baseline depression-like behaviors in male and female mice of three adolescent wild-type inbred strains, C57BL/6N, DBA/2, and FVB/N, that are typically used as background strains for mouse models of neuropsychiatric disorders. Our experiments, performed at two different developmental stages during adolescence (P22-P26 and P32-P36), revealed strain but no sex differences in a set of depression-related tests, including tail suspension, sucrose preference and forced swim tests. Additionally, the 10-day interval during this sensitive period uncovered a strong impact on the behavioral outcome of C57BL/6N and FVB/N mice, highlighting a significant effect of maturation on behavioral patterns. Since anxiety-related behavioral tests are often performed together with depression tests in mouse models of neuropsychiatric disorders, we extended our study and included hyponeophagia as an anxiety test. Consistent with a previous study revealing sex differences in other anxiety tests in adolescent mice, male and females mice behaved differently in the hyponeophagia test at P27. Our study gives insight into the behavioral experiments assessing depression and stresses the importance of considering strain, age and sex when evaluating neuropsychiatric-like traits in rodent models.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Barbara Kurpiers
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
82
|
Bravo-Tobar ID, Fernández P, Sáez JC, Dagnino-Subiabre A. Long-term effects of stress resilience: Hippocampal neuroinflammation and behavioral approach in male rats. J Neurosci Res 2021; 99:2493-2510. [PMID: 34184764 DOI: 10.1002/jnr.24902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/07/2021] [Accepted: 05/26/2021] [Indexed: 01/28/2023]
Abstract
Resilience to stress is the ability to quickly adapt to adversity. There is evidence that exposure to prolonged stress triggers neuroinflammation what produces individual differences in stress vulnerability. However, the relationship between stress resilience, neuroinflammation, and depressive-like behaviors remains unknown. The aim of this study was to analyze the long-term effects of social defeat stress (SDS) on neuroinflammation in the hippocampus and depressive-like behaviors. Male rats were subjected to the SDS paradigm. Social interaction was analyzed 1 and 2 weeks after ending the SDS to determine which animals were susceptible or resilient to stress. Neuroinflammation markers glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1, and elevated membrane permeability in astrocytes and microglia, as well as depressive-like behaviors in the sucrose preference test and forced swim test were evaluated in all rats. One week after SDS, resilient rats increased their sucrose preference, and time spent in the floating behavior decreased in the forced swim test compared to susceptible rats. Surprisingly, resilient rats became susceptible to stress, and presented neuroinflammation 2 weeks after SDS. These findings suggest that SDS-induced hippocampal neuroinflammation persists in post-stress stages, regardless of whether rats were initially resilient or not. Our study opens a new approach to understanding the neurobiology of stress resilience.
Collapse
Affiliation(s)
- Iván D Bravo-Tobar
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Paola Fernández
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Juan C Sáez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alexies Dagnino-Subiabre
- Laboratory of Stress Neurobiology, Centre for Integrative Neurobiology and Pathophysiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
83
|
Binge-like Alcohol Exposure in Adolescence: Behavioural, Neuroendocrine and Molecular Evidence of Abnormal Neuroplasticity… and Return. Biomedicines 2021; 9:biomedicines9091161. [PMID: 34572345 PMCID: PMC8470908 DOI: 10.3390/biomedicines9091161] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/02/2023] Open
Abstract
Binge alcohol consumption among adolescents affects the developing neural networks underpinning reward and stress processing in the nucleus accumbens (NAc). This study explores in rats the long-lasting effects of early intermittent exposure to intoxicating alcohol levels at adolescence, on: (1) the response to natural positive stimuli and inescapable stress; (2) stress-axis functionality; and (3) dopaminergic and glutamatergic neuroadaptation in the NAc. We also assess the potential effects of the non-intoxicating phytocannabinoid cannabidiol, to counteract (or reverse) the development of detrimental consequences of binge-like alcohol exposure. Our results show that adolescent binge-like alcohol exposure alters the sensitivity to positive stimuli, exerts social and novelty-triggered anxiety-like behaviour, and passive stress-coping during early and prolonged withdrawal. In addition, serum corticosterone and hypothalamic and NAc corticotropin-releasing hormone levels progressively increase during withdrawal. Besides, NAc tyrosine hydroxylase levels increase at late withdrawal, while the expression of dopamine transporter, D1 and D2 receptors is dynamically altered during binge and withdrawal. Furthermore, the expression of markers of excitatory postsynaptic signaling—PSD95; Homer-1 and -2 and the activity-regulated spine-morphing proteins Arc, LIM Kinase 1 and FOXP1—increase at late withdrawal. Notably, subchronic cannabidiol, during withdrawal, attenuates social- and novelty-induced aversion and passive stress-coping and rectifies the hyper-responsive stress axis and NAc dopamine and glutamate-related neuroplasticity. Overall, the exposure to binge-like alcohol levels in adolescent rats makes the NAc, during withdrawal, a locus minoris resistentiae as a result of perturbations in neuroplasticity and in stress-axis homeostasis. Cannabidiol holds a promising potential for increasing behavioural, neuroendocrine and molecular resilience against binge-like alcohol harmful effects.
Collapse
|
84
|
From serendipity to rational drug design in brain disorders: in silico, in vitro, and in vivo approaches. Curr Opin Pharmacol 2021; 60:177-182. [PMID: 34461562 DOI: 10.1016/j.coph.2021.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022]
Abstract
Prolonged life expectancy and stressful lifestyles have increased the risk of developing neurological disorders, including neurodegenerative and psychiatric illnesses. Despite obvious and immediate needs for effective treatment, drug discovery for neurological disorders has been largely serendipitous, whereas hypothesis-driven drug development programs have been remarkably poor. This may be partly due to insufficient knowledge of molecular mechanisms underlying disease pathophysiology, complex genetic and environmental risk factors, and oversimplified diagnostic criteria. Here, we review recent progress in cell type-specific investigations, bioinformatics analyses, and large reference databases, the integration of which, when combined with effective use of animal models, provides novel insights into disease mechanisms, suggests innovative drug development, and ultimately promises superior treatments for patients suffering from neurological disorders.
Collapse
|
85
|
Natale S, Esteban Masferrer M, Deivasigamani S, Gross CT. A role for cerebral cortex in the suppression of innate defensive behaviour. Eur J Neurosci 2021; 54:6044-6059. [PMID: 34405470 DOI: 10.1111/ejn.15426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/14/2021] [Accepted: 08/11/2021] [Indexed: 11/27/2022]
Abstract
The cerebral cortex is widely accepted to be involved in the control of cognition and the processing of learned information. However, data suggest that it may also have a role in the regulation of innate responses because rodents, cats or primates with surgical removal of cortical regions show excessive aggression and rage elicited by threatening stimuli. Nevertheless, the imprecision and chronic nature of these lesions leave open the possibility that compensatory processes may underlie some of these phenotypes. In the present study we applied a precise, rapid and reversible inhibition approach to examine the contribution of the cerebral cortex to defensive behaviours elicited by a variety of innately aversive stimuli in laboratory mice. Pharmacological treatment of mice carrying the pharmacogenetic inhibitory receptor hM4D selectively in neocortex, archicortex and related dorsal telencephalon-derived structures resulted in the rapid inhibition of cerebral cortex neural activity. Cortical inhibition was associated with a selective increase in defensive behaviours elicited by an aggressive conspecific, a novel prey and a physically stressful stimulus. These findings are consistent with a role for cortex in the acute inhibition of innate defensive behaviours.
Collapse
Affiliation(s)
- Silvia Natale
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy.,Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Esteban Masferrer
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy
| | | | - Cornelius T Gross
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy
| |
Collapse
|
86
|
de Kloet ER, Molendijk ML. Floating Rodents and Stress-Coping Neurobiology. Biol Psychiatry 2021; 90:e19-e21. [PMID: 34119316 DOI: 10.1016/j.biopsych.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 01/14/2023]
Affiliation(s)
- Edo Ronald de Kloet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Marc L Molendijk
- Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, the Netherlands; Institute of Psychology, Leiden University, Leiden, the Netherlands
| |
Collapse
|
87
|
Trunnell ER, Carvalho C. The forced swim test has poor accuracy for identifying novel antidepressants. Drug Discov Today 2021; 26:2898-2904. [PMID: 34390862 DOI: 10.1016/j.drudis.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/04/2021] [Accepted: 08/08/2021] [Indexed: 12/28/2022]
Abstract
Despite the prevalence of treatment-resistant depression, many pharmaceutical companies have abandoned the development of new antidepressants. Experts have attributed this, in part, to the low quality of preclinical tests available in this field, often citing over-reliance on animal behavioral screens, such as the forced swim test (FST). This retrospective review assessed whether compounds tested in the FST by major pharmaceutical companies were shown to have antidepressant effects in humans. Of 109 compounds identified, only 28% had been explored for antidepressant effects in humans. Of these, there were only three for which the FST appeared to positively predict antidepressant efficacy, but none are currently approved to treat any type of depression. With such poor accuracy for identifying novel antidepressants, the FST might not be a useful screening tool for this purpose.
Collapse
Affiliation(s)
- Emily R Trunnell
- Laboratory Investigations Department, 501 Front Street, People for the Ethical Treatment of Animals, Norfolk, VA 23510, USA.
| | - Constança Carvalho
- Centro de Filosofia das Ciências da Universidade de Lisboa, Faculdade de Ciências, Campo Grande, Lisboa, Portugal
| |
Collapse
|
88
|
Usui N, Yoshida M, Takayanagi Y, Nasanbuyan N, Inutsuka A, Kurosu H, Mizukami H, Mori Y, Kuro‐o M, Onaka T. Roles of fibroblast growth factor 21 in the control of depression-like behaviours after social defeat stress in male rodents. J Neuroendocrinol 2021; 33:e13026. [PMID: 34472154 PMCID: PMC9285091 DOI: 10.1111/jne.13026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor 21 (FGF21) modulates energy metabolism and neuroendocrine stress responses. FGF21 synthesis is increased after environmental or metabolic challenges. Detailed roles of FGF21 in the control of behavioural disturbances under stressful conditions remain to be clarified. Here, we examined the roles of FGF21 in the control of behavioural changes after social defeat stress in male rodents. Central administration of FGF21 increased the number of tyrosine hydroxylase-positive catecholaminergic cells expressing c-Fos protein, an activity marker of neurones, in the nucleus tractus solitarius and area postrema. Double in situ hybridisation showed that some catecholaminergic neurones in the dorsal medulla oblongata expressed β-Klotho, an essential co-receptor for FGF21, in male mice. Social defeat stress increased FGF21 concentrations in the plasma of male mice. FGF21-deficient male mice showed social avoidance in a social avoidance test with C57BL/6J mice (background strain of FGF21-deficient mice) and augmented immobility behaviour in a forced swimming test after social defeat stress. On the other hand, overexpression of FGF21 by adeno-associated virus vectors did not significantly change behaviours either in wild-type male mice or FGF21-deficient male mice. The present data are consistent with the view that endogenous FGF21, possibly during the developmental period, has an inhibitory action on stress-induced depression-like behaviour in male rodents.
Collapse
Affiliation(s)
- Naoki Usui
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
- Department of Dentistry, Oral and Maxillofacial SurgeryJichi Medical UniversityShimotsukeJapan
| | - Masahide Yoshida
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
| | - Yuki Takayanagi
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
| | - Naranbat Nasanbuyan
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
| | - Ayumu Inutsuka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
| | - Hiroshi Kurosu
- Division of Anti‐aging MedicineCenter for Molecular MedicineJichi Medical UniversityShimotsukeJapan
| | - Hiroaki Mizukami
- Division of Genetic TherapeuticsCenter for Molecular MedicineJichi Medical UniversityShimotsukeJapan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral and Maxillofacial SurgeryJichi Medical UniversityShimotsukeJapan
| | - Makoto Kuro‐o
- Division of Anti‐aging MedicineCenter for Molecular MedicineJichi Medical UniversityShimotsukeJapan
| | - Tatsushi Onaka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
| |
Collapse
|
89
|
Vega-Rivera NM, González-Monroy E, Morelos-Santana E, Estrada-Camarena E. The relevance of the endocrine condition in microglia morphology and dendrite complexity of doublecortin-associated neurons in young adult and middle-aged female rats exposed to acute stress. Eur J Neurosci 2021; 54:5293-5309. [PMID: 34302304 DOI: 10.1111/ejn.15398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023]
Abstract
Menopause, natural or surgical, might facilitate the onset of psychiatric pathologies. Some reports suggest that their severity could increase if the decline of ovarian hormones occurs abruptly and before natural endocrine senescence. Therefore, we compared the effects of ovariectomy on microglia's morphological alterations, the complexity of newborn neurons, and the animal's ability to cope with stress. Young adult (3 months) and middle-aged (15 months) female Wistar rats were subjected to an ovariectomy (OVX) or were sham-operated. After 3 weeks, animals were assigned to one of the following independent groups: (1) young adult OVX + no stress; (2) young adult sham + no stress; (3) young adult OVX + stress; (4) young adult sham + stress; (5) middle-aged OVX + no stress; (6) middle-aged sham + no stress; (7) middle-aged OVX + stress; (8) middle-aged sham + stress. Acute stress was induced by forced swimming test (FST) exposure. Immobility behavior was scored during FST and 30 min after; animals were euthanized, their brains collected and prepared for immunohistochemical detection of Iba-1 to analyze morphological alterations in microglia, and doublecortin (DCX) detection to evaluate the dendrite complexity of newborn neurons. OVX increased immobility behavior, induced microglia morphological alterations, and reduced dendrite complexity of newborn neurons in young adult rats. FST further increased this effect. In middle-aged rats, the main effects were related to the aging process without OVX or stress exposure. In conclusion, surgical menopause favors in young adult rats, but not in middle-aged, the vulnerability to develop immobility behavior, retracted morphology of microglial cells, and decreased dendrite complexity of newborn neurons.
Collapse
Affiliation(s)
- Nelly Maritza Vega-Rivera
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry, Mexico City, Mexico
| | - Edgar González-Monroy
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry, Mexico City, Mexico
| | - Erik Morelos-Santana
- Division of Clinical Investigations, National Institute of Psychiatry, Mexico City, Mexico
| | - Erika Estrada-Camarena
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry, Mexico City, Mexico
| |
Collapse
|
90
|
Maiolati M, Tarmati V, Latagliata C, Cabib S, Orsini C. Opposite genotype-specific effects of serotoninergic treatments on Pavlovian Conditioned Approach in mice of two inbred strains C57 BL/6J and DBA/2J. Behav Pharmacol 2021; 32:392-403. [PMID: 33709985 DOI: 10.1097/fbp.0000000000000629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Individual variability in the response to pharmacological therapies is a major problem in the treatment of psychiatric disorders. Comparative studies of phenotypes expressed by mice of the C57BL/6J (C57) and DBA/2J (DBA) inbred strains can help identify neurobiological determinants of this variability at preclinical levels. We have recently demonstrated that whereas young adult mice of both strains develop sign-tracking in a Pavlovian Conditioned Approach (PCA), a trait associated with dysfunctional behavior in rat models, in full adult C57 mice acquisition of this phenotype is inhibited by pre-frontal cortical (PFC) serotonin (5HT) transmission. These findings suggest a different role of 5HT transmission on sign-tracking development in mice of the two genotypes. In the present experiments, we tested the effects of the 5-HT synthesis booster 5-hydroxytryptophan (5-HTP) and of the selective 5HT reuptake inhibitor (SSRI) fluoxetine on the development and expression of sign-tracking in young adult mice from both inbred strains. In mice of the C57 strain, administration of 5-HTP before each training session blocked the training-induced shift to positive PCA scores which indicates the development of sign-tracking, whereas the same treatment was ineffective in mice of DBA strain. On the other hand, a single administration of fluoxetine was ineffective in unhandled saline- and 5-HTP-treated C57 mice, whereas it enhanced the expression of positive PCA scores by mice of DBA strain treated with 5-HTP during training. These findings confirm the strain-specific inhibitory role of PFC 5-HT transmission on sign-tracking development by mice of the C57 strain and support the hypothesis that different genotype-specific neurobiological substrates of dysfunctional phenotypes contribute to variable effects of pharmacotherapies.
Collapse
Affiliation(s)
- Marzia Maiolati
- PhD Program in Behavioral Neuroscience, Department of Psychology, University of Rome "Sapienza"
| | - Valeria Tarmati
- PhD Program in Behavioral Neuroscience, Department of Psychology, University of Rome "Sapienza"
| | | | - Simona Cabib
- IRCSS Fondazione Santa Lucia, Department of Experimental Neurosciences
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - Cristina Orsini
- IRCSS Fondazione Santa Lucia, Department of Experimental Neurosciences
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
91
|
de Jong TV, Kim P, Guryev V, Mulligan MK, Williams RW, Redei EE, Chen H. Whole genome sequencing of nearly isogenic WMI and WLI inbred rats identifies genes potentially involved in depression and stress reactivity. Sci Rep 2021; 11:14774. [PMID: 34285244 PMCID: PMC8292482 DOI: 10.1038/s41598-021-92993-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
The WMI and WLI inbred rats were generated from the stress-prone, and not yet fully inbred, Wistar Kyoto (WKY) strain. These were selected using bi-directional selection for immobility in the forced swim test and were then sib-mated for over 38 generations. Despite the low level of genetic diversity among WKY progenitors, the WMI substrain is significantly more vulnerable to stress relative to the counter-selected WLI strain. Here we quantify numbers and classes of genomic sequence variants distinguishing these substrains with the long term goal of uncovering functional and behavioral polymorphism that modulate sensitivity to stress and depression-like phenotypes. DNA from WLI and WMI was sequenced using Illumina xTen, IonTorrent, and 10X Chromium linked-read platforms to obtain a combined coverage of ~ 100X for each strain. We identified 4,296 high quality homozygous SNPs and indels between the WMI and WLI. We detected high impact variants in genes previously implicated in depression (e.g. Gnat2), depression-like behavior (e.g. Prlr, Nlrp1a), other psychiatric disease (e.g. Pou6f2, Kdm5a, Reep3, Wdfy3), and responses to psychological stressors (e.g. Pigr). High coverage sequencing data confirm that the two substrains are nearly coisogenic. Nonetheless, the small number of sequence variants contributes to numerous well characterized differences including depression-like behavior, stress reactivity, and addiction related phenotypes. These selected substrains are an ideal resource for forward and reverse genetic studies using a reduced complexity cross.
Collapse
Affiliation(s)
| | - Panjun Kim
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, The Netherlands
| | | | | | - Eva E Redei
- Northwestern University - Chicago, Chicago, IL, USA
| | - Hao Chen
- University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
92
|
Danger perception and stress response through an olfactory sensor for the bacterial metabolite hydrogen sulfide. Neuron 2021; 109:2469-2484.e7. [PMID: 34186026 DOI: 10.1016/j.neuron.2021.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
The olfactory system serves a critical function as a danger detection system to trigger defense responses essential for survival. The cellular and molecular mechanisms that drive such defenses in mammals are incompletely understood. Here, we have discovered an ultrasensitive olfactory sensor for the highly poisonous bacterial metabolite hydrogen sulfide (H2S) in mice. An atypical class of sensory neurons in the main olfactory epithelium, the type B cells, is activated by both H2S and low O2. These two stimuli trigger, respectively, Cnga2- and Trpc2-signaling pathways, which operate in separate subcellular compartments, the cilia and the dendritic knob. This activation drives essential defensive responses: elevation of the stress hormone ACTH, stress-related self-grooming behavior, and conditioned place avoidance. Our findings identify a previously unknown signaling paradigm in mammalian olfaction and define type B cells as chemosensory neurons that integrate distinct danger inputs from the external environment with appropriate defense outputs.
Collapse
|
93
|
Papp M, Cubala WJ, Swiecicki L, Newman-Tancredi A, Willner P. Perspectives for therapy of treatment-resistant depression. Br J Pharmacol 2021; 179:4181-4200. [PMID: 34128229 DOI: 10.1111/bph.15596] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/11/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
A high proportion of depressed patients fail to respond to antidepressant drug treatment. Treatment-resistant depression (TRD) is a major challenge for the psychopharmacology of mood disorders. Only in the past decade have novel treatments, including deep brain stimulation (DBS) and ketamine, been discovered that provide rapid and sometimes prolonged relief to a high proportion of TRD sufferers. In this review, we consider the current status of TRD from four perspectives: the challenge of developing an appropriate regulatory framework for novel rapidly acting antidepressants; the efficacy of non-pharmacological somatic therapies; the development of an animal model of TRD and its use to understand the neural basis of antidepressant non-response; and the potential for rapid antidepressant action from targets (such as 5-HT1A receptors) beyond the glutamate receptor.
Collapse
Affiliation(s)
- Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Wiesław Jerzy Cubala
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Lukasz Swiecicki
- Second Department of Psychiatry, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Paul Willner
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
94
|
Rosell-Valle C, Pedraza C, Manuel I, Moreno-Rodríguez M, Rodríguez-Puertas R, Castilla-Ortega E, Caramés JM, Gómez Conde AI, Zambrana-Infantes E, Ortega-Pinazo J, Serrano-Castro PJ, Chun J, Rodríguez De Fonseca F, Santín LJ, Estivill-Torrús G. Chronic central modulation of LPA/LPA receptors-signaling pathway in the mouse brain regulates cognition, emotion, and hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110156. [PMID: 33152386 DOI: 10.1016/j.pnpbp.2020.110156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 02/05/2023]
Abstract
Several studies have demonstrated that lysophosphatidic acid (LPA) acts through its LPA receptors in multiple biological and behavioral processes, including adult hippocampal neurogenesis, hippocampal-dependent memory, and emotional regulation. However, analyses of the effects have typically involved acute treatments, and there is no information available regarding the effect of the chronic pharmacological modulation of the LPA/LPA receptors-signaling pathway. Thus, we analyzed the effect of the chronic (21 days) and continuous intracerebroventricular (ICV) infusion of C18:1 LPA and the LPA1-3 receptor antagonist Ki16425 in behavior and adult hippocampal neurogenesis. Twenty-one days after continuous ICV infusions, mouse behaviors in the open field test, Y-maze test and forced swimming test were assessed. In addition, the hippocampus was examined for c-Fos expression and α-CaMKII and phospho-α-CaMKII levels. The current study demonstrates that chronic C18:1 LPA produced antidepressant effects, improved spatial working memory, and enhanced adult hippocampal neurogenesis. In contrast, chronic LPA1-3 receptor antagonism disrupted exploratory activity and spatial working memory, induced anxiety and depression-like behaviors and produced an impairment of hippocampal neurogenesis. While these effects were accompanied by an increase in neuronal activation in the DG of C18:1 LPA-treated mice, Ki16425-treated mice showed reduced neuronal activation in CA3 and CA1 hippocampal subfields. Treatment with the antagonist also induced an imbalance in the expression of basal/activated α-CaMKII protein forms. These outcomes indicate that the chronic central modulation of the LPA receptors-signaling pathway in the brain regulates cognition and emotion, likely comprising hippocampal-dependent mechanisms. The use of pharmacological modulation of this pathway in the brain may potentially be targeted for the treatment of several neuropsychiatric conditions.
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain; Unidad de Producción de Reprogramación Celular, Red Andaluza para el diseño y traslación de Terapias Avanzadas, Junta de Andalucía, Spain
| | - Carmen Pedraza
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Iván Manuel
- Departamento de Farmacología, Facultad de Medicina y Enfermería, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Marta Moreno-Rodríguez
- Departamento de Farmacología, Facultad de Medicina y Enfermería, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Rafael Rodríguez-Puertas
- Departamento de Farmacología, Facultad de Medicina y Enfermería, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - José María Caramés
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK
| | - Ana I Gómez Conde
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; ECAI de Microscopía, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Emma Zambrana-Infantes
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Jesús Ortega-Pinazo
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Pedro J Serrano-Castro
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Fernando Rodríguez De Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Luis J Santín
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain.
| | - Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain; Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain.
| |
Collapse
|
95
|
Pütz SM, Kram J, Rauh E, Kaiser S, Toews R, Lueningschroer-Wang Y, Rieger D, Raabe T. Loss of p21-activated kinase Mbt/PAK4 causes Parkinson-like phenotypes in Drosophila. Dis Model Mech 2021; 14:dmm047811. [PMID: 34125184 PMCID: PMC8246267 DOI: 10.1242/dmm.047811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) provokes bradykinesia, resting tremor, rigidity and postural instability, and also non-motor symptoms such as depression, anxiety, sleep and cognitive impairments. Similar phenotypes can be induced in Drosophila melanogaster through modification of PD-relevant genes or the administration of PD-inducing toxins. Recent studies correlated deregulation of human p21-activated kinase 4 (PAK4) with PD, leaving open the question of a causative relationship of mutations in this gene for manifestation of PD symptoms. To determine whether flies lacking the PAK4 homolog Mushroom bodies tiny (Mbt) show PD-like phenotypes, we tested for a variety of PD criteria. Here, we demonstrate that mbt mutant flies show PD-like phenotypes including age-dependent movement deficits, reduced life expectancy and fragmented sleep. They also react to a stressful situation with higher immobility, indicating an influence of Mbt on emotional behavior. Loss of Mbt function has a negative effect on the number of dopaminergic protocerebral anterior medial (PAM) neurons, most likely caused by a proliferation defect of neural progenitors. The age-dependent movement deficits are not accompanied by a corresponding further loss of PAM neurons. Previous studies highlighted the importance of a small PAM subgroup for age-dependent PD motor impairments. We show that impaired motor skills are caused by a lack of Mbt in this PAM subgroup. In addition, a broader re-expression of Mbt in PAM neurons improves life expectancy. Conversely, selective Mbt knockout in the same cells shortens lifespan. We conclude that mutations in Mbt/PAK4 can play a causative role in the development of PD phenotypes.
Collapse
Affiliation(s)
- Stephanie M. Pütz
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Jette Kram
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Elisa Rauh
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Sophie Kaiser
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Romy Toews
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Yi Lueningschroer-Wang
- Neurobiology and Genetics, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Dirk Rieger
- Neurobiology and Genetics, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Thomas Raabe
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| |
Collapse
|
96
|
Rosell-Valle C, Martínez-Losa M, Matas-Rico E, Castilla-Ortega E, Zambrana-Infantes E, Gómez-Conde AI, Sánchez-Salido L, Ladrón de Guevara-Miranda D, Pedraza C, Serrano-Castro PJ, Chun J, Rodríguez de Fonseca F, Álvarez-Dolado M, Santín LJ, Estivill-Torrús G. GABAergic deficits in absence of LPA 1 receptor, associated anxiety-like and coping behaviors, and amelioration by interneuron precursor transplants into the dorsal hippocampus. Brain Struct Funct 2021; 226:1479-1495. [PMID: 33792787 DOI: 10.1007/s00429-021-02261-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023]
Abstract
Defects in GABAergic function can cause anxiety- and depression-like behaviors among other neuropsychiatric disorders. Therapeutic strategies using the transplantation of GABAergic interneuron progenitors derived from the medial ganglionic eminence (MGE) into the adult hippocampus reversed the symptomatology in multiple rodent models of interneuron-related pathologies. In turn, the lysophosphatidic acid receptor LPA1 has been reported to be essential for hippocampal function. Converging evidence suggests that deficits in LPA1 receptor signaling represent a core feature underlying comparable hippocampal dysfunction and behaviors manifested in common neuropsychiatric conditions. Here, we first analyzed the GABAergic interneurons in the hippocampus of wild-type and maLPA1-null mice, lacking the LPA1 receptor. Our data revealed a reduction in the number of neurons expressing GABA, calcium-binding proteins, and neuropeptides such as somatostatin and neuropeptide Y in the hippocampus of maLPA1-null mice. Then, we used interneuron precursor transplants to test links between hippocampal GABAergic interneuron deficit, cell-based therapy, and LPA1 receptor-dependent psychiatric disease-like phenotypes. For this purpose, we transplanted MGE-derived interneuron precursors into the adult hippocampus of maLPA1-null mice, to test their effects on GABAergic deficit and behavioral symptoms associated with the absence of the LPA1 receptor. Transplant studies in maLPA1-null mice showed that grafted cells were able to restore the hippocampal host environment, decrease the anxiety-like behaviors and neutralize passive coping, with no abnormal effects on motor activity. Furthermore, grafted MGE-derived cells maintained their normal differentiation program. These findings reinforce the use of cell-based strategies for brain disorders and suggest that the LPA1 receptor represents a potential target for interneuron-related neuropsychiatric disorders.
Collapse
Grants
- PSI2017-82604R Spanish Ministry of Science, Innovation and Universities, co-funded by European Regional Development Fund (ERDF, EU)
- PSI2017-83408P Spanish Ministry of Science, Innovation and Universities, co-funded by European Regional Development Fund (ERDF, EU)
- SAF-09-07746 Spanish Ministry of Science, Innovation and Universities, co-funded by European Regional Development Fund (ERDF, EU)
- PI16/01510 Spanish Ministry of Science, Innovation and Universities, co-funded by European Regional Development Fund (ERDF, EU)
- SEJ-4515 Andalusian Regional Ministry of Economy, Knowledge, Business and University
- SEJ-1863 Andalusian Regional Ministry of Economy, Knowledge, Business and University
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
- Unidad de Producción de Reprogramación Celular, Red Andaluza Para El Diseño Y Traslación de Terapias Avanzadas, Junta de Andalucía, Spain
| | - Magdalena Martínez-Losa
- Laboratorio de Terapia Celular en Neuropatologías, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC, Sevilla, Spain
| | - Elisa Matas-Rico
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Emma Zambrana-Infantes
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Ana Isabel Gómez-Conde
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- ECAI de Microscopía, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Lourdes Sánchez-Salido
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- ECAI de Microscopía, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - David Ladrón de Guevara-Miranda
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Carmen Pedraza
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Pedro Jesús Serrano-Castro
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Manuel Álvarez-Dolado
- Laboratorio de Terapia Celular en Neuropatologías, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC, Sevilla, Spain
| | - Luis Javier Santín
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain.
| |
Collapse
|
97
|
Solarz A, Majcher-Maślanka I, Kryst J, Chocyk A. A Search for Biomarkers of Early-life Stress-related Psychopathology: Focus on 70-kDa Heat Shock Proteins. Neuroscience 2021; 463:238-253. [PMID: 33662529 DOI: 10.1016/j.neuroscience.2021.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022]
Abstract
Clinical studies clearly indicate that early-life stress (ELS) may cause physical and mental health problems later in life. Therefore, the identification of universal biomarkers of ELS-related diseases is very important. The 70-kDa heat shock proteins (HSP70s), specifically HSPA5 and HSPA1B, have been recently shown to be potentially associated with occurrence of anxiety, mood disorders, and schizophrenia; thus, we hypothesized that HSP70s are potential candidate biomarkers of ELS-induced psychopathologies. A maternal separation (MS) procedure in rats was used to model ELS, and the expression of HSPA5 and HSPA1B was investigated in the blood, medial prefrontal cortex (mPFC), and hippocampus of juvenile, preadolescent, and adult animals. We also studied the effects of MS on the long-term potentiation (LTP) and behavioral phenotypes of adult rats. We found that MS enhanced the expression of HSPA1B mRNA in the blood and mPFC of juvenile and preadolescent rats. This increase was accompanied by an increase in the HSPA1A/1B protein levels in the mPFC and hippocampus of juvenile rats that persisted in the mPFC until adulthood. MS juvenile and adult rats showed enhanced HSPA5 mRNA expression in the blood and increased HSPA5 protein expression in the mPFC (juveniles) and hippocampus (adults). Concurrently, MS adult rats exhibited aberrations in LTP in the mPFC and hippocampus and a less anxious behavioral phenotype. These results indicate that MS may produce enduring overexpression of HSPA1B and HSPA5 in the brain and blood. Therefore, both HSP70 family members may be potential candidate peripheral and brain biomarkers of ELS-induced changes in brain functioning.
Collapse
Affiliation(s)
- Anna Solarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343 Kraków, Poland
| | - Iwona Majcher-Maślanka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343 Kraków, Poland
| | - Joanna Kryst
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343 Kraków, Poland
| | - Agnieszka Chocyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343 Kraków, Poland.
| |
Collapse
|
98
|
Gorman-Sandler E, Hollis F. The forced swim test: Giving up on behavioral despair (Commentary on Molendijk & de Kloet, 2021). Eur J Neurosci 2021; 55:2832-2835. [PMID: 33955617 DOI: 10.1111/ejn.15270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Erin Gorman-Sandler
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
99
|
Cabeza L, Ramadan B, Giustiniani J, Houdayer C, Pellequer Y, Gabriel D, Fauconnet S, Haffen E, Risold PY, Fellmann D, Belin D, Peterschmitt Y. Chronic exposure to glucocorticoids induces suboptimal decision-making in mice. Eur Neuropsychopharmacol 2021; 46:56-67. [PMID: 33531260 DOI: 10.1016/j.euroneuro.2021.01.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/11/2022]
Abstract
Anxio-depressive symptoms as well as severe cognitive dysfunction including aberrant decision-making (DM) are documented in neuropsychiatric patients with hypercortisolaemia. Yet, the influence of the hypothalamo-pituitary-adrenal (HPA) axis on DM processes remains poorly understood. As a tractable mean to approach this human condition, adult male C57BL/6JRj mice were chronically treated with corticosterone (CORT) prior to behavioural, physiological and neurobiological evaluation. The behavioural data indicate that chronic CORT delays the acquisition of contingencies required to orient responding towards optimal DM performance in a mouse Gambling Task (mGT). Specifically, CORT-treated animals show a longer exploration and a delayed onset of the optimal DM performance. Remarkably, the proportion of individuals performing suboptimally in the mGT is increased in the CORT condition. This variability seems to be better accounted for by variations in sensitivity to negative rather than to positive outcome. Besides, CORT-treated animals perform worse than control animals in a spatial working memory (WM) paradigm and in a motor learning task. Finally, Western blotting neurobiological analyses show that chronic CORT downregulates glucocorticoid receptor expression in the medial Prefrontal Cortex (mPFC). Besides, corticotropin-releasing factor signalling in the mPFC of CORT individuals negatively correlates with their DM performance. Collectively, this study describes how chronic exposure to glucocorticoids induces suboptimal DM under uncertainty in a mGT, hampers WM and motor learning processes, thus affecting specific emotional, motor, cognitive and neurobiological endophenotypic dimensions relevant for precision medicine in biological psychiatry.
Collapse
Affiliation(s)
- Lidia Cabeza
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France.
| | - Bahrie Ramadan
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France
| | - Julie Giustiniani
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France; Clinical Psychiatry, Hôpital Universitaire CHRU, Besançon, France; Hôpital Universitaire CHRU, CIC-INSERM-1431, Besançon, France
| | - Christophe Houdayer
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France
| | - Yann Pellequer
- PEPITE EA-4267, Université de Bourgogne - Franche-Comté, Besançon, France
| | - Damien Gabriel
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France; Hôpital Universitaire CHRU, CIC-INSERM-1431, Besançon, France
| | - Sylvie Fauconnet
- Hôpital Universitaire CHRU, CIC-INSERM-1431, Besançon, France; Laboratoire de Carcinogenèse associée aux HPV EA-3181, Université de Bourgogne - Franche-Comté, Besançon, France; Urologie, andrologie et transplantation rénale, Hôpital Universitaire CHRU, Besançon, France
| | - Emmanuel Haffen
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France; Clinical Psychiatry, Hôpital Universitaire CHRU, Besançon, France; Hôpital Universitaire CHRU, CIC-INSERM-1431, Besançon, France
| | - Pierre-Yves Risold
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France
| | - Dominique Fellmann
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France
| | - David Belin
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Yvan Peterschmitt
- Laboratoire de Neurosciences Intégratives et Cliniques EA-481, Université de Bourgogne - Franche-Comté, Besançon, France.
| |
Collapse
|
100
|
Lalonde C, Grandbois J, Khurana S, Murray A, Tharmalingam S, Tai TC. Late gestational exposure to dexamethasone and fetal programming of abnormal behavior in Wistar Kyoto rats. Brain Behav 2021; 11:e02049. [PMID: 33528889 PMCID: PMC8035474 DOI: 10.1002/brb3.2049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Fetal programming was characterized a few decades ago, explaining the correlation of physiological phenotypes of offspring exposed to early-life stress. High acute or chronic prenatal stress can overwhelm the enzymatic placental barrier, inducing transcriptional changes in the fetus that can result in different adverse behavioral and physiological phenotypes. The current study investigates the impact of exposure to the synthetic glucocorticoid, dexamethasone, during late gestation on behavioral outcomes. METHODS Pregnant Wistar Kyoto rats were given daily subcutaneous injections from gestational days 15-21 of either dexamethasone (0.9% NaCl, 4% EtOH, 100 µg kg-1 day-1 ) or were physically manipulated as naïve controls. Pups were raised normally until 17 weeks of age and underwent the Porsolt swim task and elevated plus maze for depressive and anxiety-like behaviors, respectively. Neural tissue was preserved for genetic analysis using quantitative real-time polymerase chain reaction. RESULTS Statistical analyses show significant disruption of behavior and genetic profiles of offspring exposed to dexamethasone in-utero. Exposed animals spent more time immobile on the swim task and entered open arms of the elevated plus maze more often than their naïve counterparts. In the prefrontal cortex, there was a sex by treatment interaction on gene expression relevant to neural transmission in ryanodine receptor 2, as well as increased gene expression in SNAP25, COMT, and LSAMP in males prenatally exposed to dexamethasone compared with controls. Both dysregulated genes and behavior are linked to decreased anxiety and fear inhibition. CONCLUSION Our results indicate adult offspring exposed to dexamethasone in-utero have a tendency toward passive stress-coping strategies and an inhibition of anxiety on behavioral tasks. Methyltransferase activity, synaptic activity, and cellular processes were disrupted in the prefrontal cortices of these animals. Specifically, genes involved in emotional response pathways were overexpressed, supporting the link between the behavioral and genetic profiles. Combined, we determine that dexamethasone offspring have adaptive predispositions when faced with novel situations, with increased immobility in the swim task and increased exploration on the elevated plus maze.
Collapse
Affiliation(s)
- Christine Lalonde
- Biomolecular Sciences, Laurentian University, Sudbury, ON, Canada.,Division of Medical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada
| | - Julie Grandbois
- Division of Medical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada.,Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Sandhya Khurana
- Biomolecular Sciences, Laurentian University, Sudbury, ON, Canada
| | - Alyssa Murray
- Division of Medical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada.,Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Sujeenthar Tharmalingam
- Biomolecular Sciences, Laurentian University, Sudbury, ON, Canada.,Division of Medical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada.,Department of Biology, Laurentian University, Sudbury, ON, Canada.,Department of Chem/Biochem, Laurentian University, Sudbury, ON, Canada
| | - T C Tai
- Biomolecular Sciences, Laurentian University, Sudbury, ON, Canada.,Division of Medical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada.,Department of Biology, Laurentian University, Sudbury, ON, Canada.,Department of Chem/Biochem, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|