51
|
Dimova V, Welte-Jzyk C, Kronfeld A, Korczynski O, Baier B, Koirala N, Steenken L, Kollmann B, Tüscher O, Brockmann MA, Birklein F, Muthuraman M. Brain connectivity networks underlying resting heart rate variability in acute ischemic stroke. Neuroimage Clin 2023; 41:103558. [PMID: 38142520 PMCID: PMC10788522 DOI: 10.1016/j.nicl.2023.103558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Acute strokes can affect heart rate variability (HRV), the mechanisms how are not well understood. We included 42 acute stroke patients (2-7 days after ischemic stroke, mean age 66 years, 16 women). For analysis of HRV, 20 matched controls (mean age 60.7, 10 women) were recruited. HRV was assessed at rest, in a supine position and individual breathing rhythmus for 5 min. The coefficient of variation (VC), the root mean square of successive differences (RMSSD), the powers of low (LF, 0.04-0.14 Hz) and high (HF, 0.15-0.50 Hz) frequency bands were extracted. HRV parameters were z-transformed related to age- and sex-matched normal subjects. Z-values < -1 indicate reduced HRV. Acute stroke lesions were marked on diffusion-weighted images employing MRIcroN and co-registered to a T1-weighted structural volume-dataset. Using independent component analysis (ICA), stroke lesions were related to HRV. Subsequently, we used the ICA-derived lesion pattern as a seed and estimated the connectivity between these brain regions and seven common functional networks, which were obtained from 50 age-matched healthy subjects (mean age 68.9, 27 women). Especially, LF and VC were frequently reduced in patients. ICA revealed one covarying lesion pattern for LF and one similar for VC, predominantly affecting the right hemisphere. Activity in brain areas corresponding to these lesions mainly impact on limbic (r = 0.55 ± 0.08) and salience ventral attention networks (0.61 ± 0.10) in the group with reduced LF power (z-score < -1), but on control and default mode networks in the group with physiological LF power (z-score > -1). No different connectivity could be found for the respective VC groups. Our results suggest that HRV alteration after acute stroke might be due to affecting resting-state brain networks.
Collapse
Affiliation(s)
- Violeta Dimova
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudia Welte-Jzyk
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oliver Korczynski
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Bernhard Baier
- Edith-Stein Fachklinik for Neurorehabilitation, Bad Bergzabern, Germany
| | - Nabin Koirala
- Haskins Laboratories, Yale University, New Haven, CT 06511, USA
| | - Livia Steenken
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Bianca Kollmann
- Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany; Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oliver Tüscher
- Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany; Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Institute for Molecular Biology (IMB), Mainz, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frank Birklein
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Neural Engineering with Signal Analytics and Artificial Intelligence, Department of Neurology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
52
|
Schnittjer AJ, Kim H, Lepley AS, Onate JA, Criss CR, Simon JE, Grooms DR. Organization of sensorimotor activity in anterior cruciate ligament reconstructed individuals: an fMRI conjunction analysis. Front Hum Neurosci 2023; 17:1263292. [PMID: 38077185 PMCID: PMC10704895 DOI: 10.3389/fnhum.2023.1263292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/17/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Anterior cruciate ligament reconstruction (ACLR) is characterized by persistent involved limb functional deficits that persist for years despite rehabilitation. Previous research provides evidence of both peripheral and central nervous system adaptations following ACLR. However, no study has compared functional organization of the brain for involved limb motor control relative to the uninvolved limb and healthy controls. The purpose of this study was to examine sensorimotor cortex and cerebellar functional activity overlap and non-overlap during a knee motor control task between groups (ACLR and control), and to determine cortical organization of involved and uninvolved limb movement between groups. Methods Eighteen participants with left knee ACLR and 18 control participants performed a knee flexion/extension motor control task during functional magnetic resonance imaging (fMRI). A conjunction analysis was conducted to determine the degree of overlap in brain activity for involved and uninvolved limb knee motor control between groups. Results The ACLR group had a statistically higher mean percent signal change in the sensorimotor cortex for the involved > uninvolved contrast compared to the control group. Brain activity between groups statistically overlapped in sensorimotor regions of the cortex and cerebellum for both group contrasts: involved > uninvolved and uninvolved > involved. Relative to the control group, the ACLR group uniquely activated superior parietal regions (precuneus, lateral occipital cortex) for involved limb motor control. Additionally, for involved limb motor control, the ACLR group displayed a medial and superior shift in peak voxel location in frontal regions; for parietal regions, the ACLR group had a more posterior and superior peak voxel location relative to the control group. Conclusion ACLR may result in unique activation of the sensorimotor cortex via a cortically driven sensory integration strategy to maintain involved limb motor control. The ACLR group's unique brain activity was independent of strength, self-reported knee function, and time from surgery.
Collapse
Affiliation(s)
- Amber J. Schnittjer
- Translational Biomedical Sciences, Graduate College, Ohio University, Athens, OH, United States
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
| | - HoWon Kim
- Translational Biomedical Sciences, Graduate College, Ohio University, Athens, OH, United States
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
| | - Adam S. Lepley
- School of Kinesiology, Exercise and Sports Science Initiative, University of Michigan, Ann Arbor, MI, United States
| | - James A. Onate
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Cody R. Criss
- OhioHealth Riverside Methodist Hospital, Columbus, OH, United States
| | - Janet E. Simon
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, United States
| | - Dustin R. Grooms
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, OH, United States
| |
Collapse
|
53
|
Weber CF, Lake EMR, Haider SP, Mozayan A, Bobba PS, Mukherjee P, Scheinost D, Constable RT, Ment L, Payabvash S. Autism spectrum disorder-specific changes in white matter connectome edge density based on functionally defined nodes. Front Neurosci 2023; 17:1285396. [PMID: 38075286 PMCID: PMC10702224 DOI: 10.3389/fnins.2023.1285396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/30/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction Autism spectrum disorder (ASD) is associated with both functional and microstructural connectome disruptions. We deployed a novel methodology using functionally defined nodes to guide white matter (WM) tractography and identify ASD-related microstructural connectome changes across the lifespan. Methods We used diffusion tensor imaging and clinical data from four studies in the national database for autism research (NDAR) including 155 infants, 102 toddlers, 230 adolescents, and 96 young adults - of whom 264 (45%) were diagnosed with ASD. We applied cortical nodes from a prior fMRI study identifying regions related to symptom severity scores and used these seeds to construct WM fiber tracts as connectome Edge Density (ED) maps. Resulting ED maps were assessed for between-group differences using voxel-wise and tract-based analysis. We then examined the association of ASD diagnosis with ED driven from functional nodes generated from different sensitivity thresholds. Results In ED derived from functionally guided tractography, we identified ASD-related changes in infants (pFDR ≤ 0.001-0.483). Overall, more wide-spread ASD-related differences were detectable in ED based on functional nodes with positive symptom correlation than negative correlation to ASD, and stricter thresholds for functional nodes resulted in stronger correlation with ASD among infants (z = -6.413 to 6.666, pFDR ≤ 0.001-0.968). Voxel-wise analysis revealed wide-spread ED reductions in central WM tracts of toddlers, adolescents, and adults. Discussion We detected early changes of aberrant WM development in infants developing ASD when generating microstructural connectome ED map with cortical nodes defined by functional imaging. These were not evident when applying structurally defined nodes, suggesting that functionally guided DTI-based tractography can help identify early ASD-related WM disruptions between cortical regions exhibiting abnormal connectivity patterns later in life. Furthermore, our results suggest a benefit of involving functionally informed nodes in diffusion imaging-based probabilistic tractography, and underline that different age cohorts can benefit from age- and brain development-adapted image processing protocols.
Collapse
Affiliation(s)
- Clara F Weber
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, Lübeck University, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Lübeck University, Lübeck, Germany
| | - Evelyn M R Lake
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Stefan P Haider
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
- Department of Otorhinolaryngology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ali Mozayan
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Pratheek S Bobba
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Dustin Scheinost
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Robert T Constable
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Laura Ment
- Yale University School of Medicine, Department of Pediatrics and Neurology, New Haven, CT, United States
| | - Seyedmehdi Payabvash
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| |
Collapse
|
54
|
Mihara M, Izumika R, Tsukiura T. Remembering unexpected beauty: Contributions of the ventral striatum to the processing of reward prediction errors regarding the facial attractiveness in face memory. Neuroimage 2023; 282:120408. [PMID: 37838105 DOI: 10.1016/j.neuroimage.2023.120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
The COVID-19 pandemic has led people to predict facial attractiveness from partially covered faces. Differences in the predicted and observed facial attractiveness (i.e., masked and unmasked faces, respectively) are defined as reward prediction error (RPE) in a social context. Cognitive neuroscience studies have elucidated the neural mechanisms underlying RPE-induced memory improvements in terms of monetary rewards. However, little is known about the mechanisms underlying RPE-induced memory modulation in terms of social rewards. To elucidate this, the present functional magnetic resonance imaging (fMRI) study investigated activity and functional connectivity during face encoding. In encoding trials, participants rated the predicted attractiveness of faces covered except for around the eyes (prediction phase) and then rated the observed attractiveness of these faces without any cover (outcome phase). The difference in ratings between these phases was defined as RPE in facial attractiveness, and RPE was categorized into positive RPE (increased RPE from the prediction to outcome phases), negative RPE (decreased RPE from the prediction to outcome phases), and non-RPE (no difference in RPE between the prediction and outcome phases). During retrieval, participants were presented with individual faces that had been seen and unseen in the encoding trials, and were required to judge whether or not each face had been seen in the encoding trials. Univariate activity in the ventral striatum (VS) exhibited a linear increase with increased RPE in facial attractiveness. In the multivariate pattern analysis (MVPA), activity patterns in the VS and surrounding areas (extended VS) significantly discriminated between positive/negative RPE and non-RPE. In the functional connectivity analysis, significant functional connectivity between the extended VS and the hippocampus was observed most frequently in positive RPE. Memory improvements by face-based RPE could be involved in functional networks between the extended VS (representing RPE) and the hippocampus, and the interaction could be modulated by RPE values in a social context.
Collapse
Affiliation(s)
- Moe Mihara
- Department of Cognitive, Behavioral and Health Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu-Cho Sakyo-ku, Kyoto 606-8501, Japan
| | - Reina Izumika
- Department of Cognitive, Behavioral and Health Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu-Cho Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Tsukiura
- Department of Cognitive, Behavioral and Health Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu-Cho Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
55
|
Stewart BW, Keaser ML, Lee H, Margerison SM, Cormie MA, Moayedi M, Lindquist MA, Chen S, Mathur BN, Seminowicz DA. Pathological claustrum activity drives aberrant cognitive network processing in human chronic pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.564054. [PMID: 37961503 PMCID: PMC10635040 DOI: 10.1101/2023.11.01.564054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Aberrant cognitive network activity and cognitive deficits are established features of chronic pain. However, the nature of cognitive network alterations associated with chronic pain and their underlying mechanisms require elucidation. Here, we report that the claustrum, a subcortical nucleus implicated in cognitive network modulation, is activated by acute painful stimulation and pain-predictive cues in healthy participants. Moreover, we discover pathological activity of the claustrum and a lateral aspect of the right dorsolateral prefrontal cortex (latDLPFC) in migraine patients. Dynamic causal modeling suggests a directional influence of the claustrum on activity in this latDLPFC region, and diffusion weighted imaging (DWI) verifies their structural connectivity. These findings advance understanding of claustrum function during acute pain and provide evidence of a possible circuit mechanism driving cognitive impairments in chronic pain.
Collapse
Affiliation(s)
- Brent W. Stewart
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Michael L. Keaser
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Hwiyoung Lee
- Department of Epidemiology & Public Health, Maryland Psychiatric Research Center, Catonsville, MD, USA
| | - Sarah M. Margerison
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
- Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew A. Cormie
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, ON, Canada
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, ON, Canada
- Department of Dentistry, Mount Sinai Hospital, Toronto, ON, Canada
- Division of Clinical & Computational Neuroscience, Krembil Brain Institute, University Health Network
| | | | - Shuo Chen
- Department of Epidemiology & Public Health, Maryland Psychiatric Research Center, Catonsville, MD, USA
| | - Brian N. Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
56
|
Oeckl P, Bluma M, Bucci M, Halbgebauer S, Chiotis K, Sandebring-Matton A, Ashton NJ, Molfetta GD, Grötschel L, Kivipelto M, Blennow K, Zetterberg H, Savitcheva I, Nordberg A, Otto M. Blood β-synuclein is related to amyloid PET positivity in memory clinic patients. Alzheimers Dement 2023; 19:4896-4907. [PMID: 37052206 DOI: 10.1002/alz.13046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 04/14/2023]
Abstract
INTRODUCTION β-synuclein is an emerging blood biomarker to study synaptic degeneration in Alzheimer´s disease (AD), but its relation to amyloid-β (Αβ) pathology is unclear. METHODS We investigated the association of plasma β-synuclein levels with [18F] flutemetamol positron emission tomography (PET) in patients with AD dementia (n = 51), mild cognitive impairment (MCI-Aβ+ n = 18, MCI- Aβ- n = 30), non-AD dementias (n = 22), and non-demented controls (n = 5). RESULTS Plasma β-synuclein levels were higher in Aβ+ (AD dementia, MCI-Aβ+) than in Aβ- subjects (non-AD dementias, MCI-Aβ-) with good discrimination of Aβ+ from Aβ- subjects and prediction of Aβ status in MCI individuals. A positive correlation between plasma β-synuclein and Aβ PET was observed in multiple cortical regions across all lobes. DISCUSSION Plasma β-synuclein demonstrated discriminative properties for Aβ PET positive and negative subjects. Our data underline that β-synuclein is not a direct marker of Aβ pathology and suggest different longitudinal dynamics of synaptic degeneration versus amyloid deposition across the AD continuum. HIGHLIGHTS Blood and CSF β-synuclein levels are higher in Aβ+ than in Aβ- subjects. Blood β-synuclein level correlates with amyloid PET positivity in multiple regions. Blood β-synuclein predicts Aβ status in MCI individuals.
Collapse
Affiliation(s)
- Patrick Oeckl
- German Center for Neurodegenerative Diseases e.V. (DZNE), Ulm, Germany
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Marina Bluma
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Marco Bucci
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Steffen Halbgebauer
- German Center for Neurodegenerative Diseases e.V. (DZNE), Ulm, Germany
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Konstantinos Chiotis
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Sandebring-Matton
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Guglielmo Di Molfetta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Lana Grötschel
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Miia Kivipelto
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Irina Savitcheva
- Medical Radiation Physics and Nuclear Medicine, Karolinska University, Stockholm, Sweden
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
- University Clinic and Polyclinic for Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
57
|
Turker S, Kuhnke P, Schmid FR, Cheung VKM, Weise K, Knoke M, Zeidler B, Seidel K, Eckert L, Hartwigsen G. Adaptive short-term plasticity in the typical reading network. Neuroimage 2023; 281:120373. [PMID: 37696425 PMCID: PMC10577446 DOI: 10.1016/j.neuroimage.2023.120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
The left temporo-parietal cortex (TPC) is crucial for phonological decoding, i.e., for learning and retaining sound-letter mappings, and appears hypoactive in dyslexia. Here, we tested the causal contribution of this area for reading in typical readers with transcranial magnetic stimulation (TMS) and explored the reading network's response with fMRI. By investigating the underlying neural correlates of stimulation-induced modulations of the reading network, we can help improve targeted interventions for individuals with dyslexia. 28 typical adult readers overtly read simple and complex words and pseudowords during fMRI after effective and sham TMS over the left TPC. To explore differences in functional activation and effective connectivity within the reading network, we performed univariate and multivariate analyses, as well as dynamic causal modeling. While TMS-induced effects on reading performance and brain activation showed large individual variability, multivariate analyses revealed a shift in activation in the left inferior frontal cortex for pseudoword reading after effective TMS. Furthermore, TMS increased effective connectivity from the left ventral occipito-temporal cortex to the left TPC. In the absence of effects on reading performance, the observed changes in task-related activity and the increase in functional coupling between the two core reading nodes suggest successful short-term compensatory reorganization in the reading network following TMS-induced disruption. This study is the first to explore neurophysiological changes induced by TMS to a core reading node in typical readers while performing an overt reading task. We provide evidence for remote stimulation effects and emphasize the relevance of functional interactions in the reading network.
Collapse
Affiliation(s)
- S Turker
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, University of Leipzig, Germany.
| | - P Kuhnke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, University of Leipzig, Germany
| | - F R Schmid
- CBC Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - V K M Cheung
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - K Weise
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - M Knoke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - B Zeidler
- Centre for Systematic Musicology, University of Graz, Austria
| | - K Seidel
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - L Eckert
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - G Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, University of Leipzig, Germany
| |
Collapse
|
58
|
Le LNN, Wheeler GJ, Holy EN, Donnay CA, Blockley NP, Yee AH, Ng KL, Fan AP. Cortical oxygen extraction fraction using quantitative BOLD MRI and cerebral blood flow during vasodilation. Front Physiol 2023; 14:1231793. [PMID: 37869717 PMCID: PMC10588655 DOI: 10.3389/fphys.2023.1231793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction: We aimed to demonstrate non-invasive measurements of regional oxygen extraction fraction (OEF) from quantitative BOLD MRI modeling at baseline and after pharmacological vasodilation. We hypothesized that OEF decreases in response to vasodilation with acetazolamide (ACZ) in healthy conditions, reflecting compensation in regions with increased cerebral blood flow (CBF), while cerebral metabolic rate of oxygen (CMRO2) remained unchanged. We also aimed to assess the relationship between OEF and perfusion in the default mode network (DMN) regions that have shown associations with vascular risk factors and cerebrovascular reactivity in different neurological conditions. Material and methods: Eight healthy subjects (47 ± 13 years, 6 female) were scanned on a 3 T scanner with a 32-channel head coil before and after administration of 15 mg/kg ACZ as a pharmacological vasodilator. The MR imaging acquisition protocols included: 1) A Gradient Echo Slice Excitation Profile Imaging Asymmetric Spin Echo scan to quantify OEF, deoxygenated blood volume, and reversible transverse relaxation rate (R2 ') and 2) a multi-post labeling delay arterial spin labeling scan to measure CBF. To assess changes in each parameter due to vasodilation, two-way t-tests were performed for all pairs (baseline versus vasodilation) in the DMN brain regions with Bonferroni correction for multiple comparisons. The relationships between CBF versus OEF and CBF versus R2' were analyzed and compared across DMN regions using linear, mixed-effect models. Results: During vasodilation, CBF significantly increased in the medial frontal cortex (P = 0.004 ), posterior cingulate gyrus (pCG) (P = 0.004 ), precuneus cortex (PCun) (P = 0.004 ), and occipital pole (P = 0.001 ). Concurrently, a significant decrease in OEF was observed only in the pCG (8.8%, P = 0.003 ) and PCun (8.7 % , P = 0.001 ). CMRO2 showed a trend of increased values after vasodilation, but these differences were not significant after correction for multiple comparisons. Although R2' showed a slightly decreasing trend, no statistically significant changes were found in any regions in response to ACZ. The CBF response to ACZ exhibited a stronger negative correlation with OEF (β = - 0.104 ± 0.027 ; t = - 3.852 , P < 0.001 ), than with R2' (β = - 0.016 ± 0.006 ; t = - 2.692 , P = 0.008 ). Conclusion: Quantitative BOLD modeling can reliably measure OEF across multiple physiological conditions and captures vascular changes with higher sensitivity than R2' values. The inverse correlation between OEF and CBF across regions in DMN, suggests that these two measurements, in response to ACZ vasodilation, are reliable indicators of tissue health in this healthy cohort.
Collapse
Affiliation(s)
- Linh N. N. Le
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Gregory J. Wheeler
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Emily N. Holy
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Corinne A. Donnay
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Nicholas P. Blockley
- School of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alan H. Yee
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Kwan L. Ng
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Audrey P. Fan
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
- Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
59
|
DiPiero M, Cordash H, Prigge MB, King CK, Morgan J, Guerrero-Gonzalez J, Adluru N, King JB, Lange N, Bigler ED, Zielinski BA, Alexander AL, Lainhart JE, Dean DC. Tract- and gray matter- based spatial statistics show white matter and gray matter microstructural differences in autistic males. Front Neurosci 2023; 17:1231719. [PMID: 37829720 PMCID: PMC10565827 DOI: 10.3389/fnins.2023.1231719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental condition commonly studied in the context of early childhood. As ASD is a life-long condition, understanding the characteristics of brain microstructure from adolescence into adulthood and associations to clinical features is critical for improving outcomes across the lifespan. In the current work, we utilized Tract Based Spatial Statistics (TBSS) and Gray Matter Based Spatial Statistics (GBSS) to examine the white matter (WM) and gray matter (GM) microstructure in neurotypical (NT) and autistic males. Methods Multi-shell diffusion MRI was acquired from 78 autistic and 81 NT males (12-to-46-years) and fit to the DTI and NODDI diffusion models. TBSS and GBSS were performed to analyze WM and GM microstructure, respectively. General linear models were used to investigate group and age-related group differences. Within the ASD group, relationships between WM and GM microstructure and measures of autistic symptoms were investigated. Results All dMRI measures were significantly associated with age across WM and GM. Significant group differences were observed across WM and GM. No significant age-by-group interactions were detected. Within the ASD group, positive relationships with WM microstructure were observed with ADOS-2 Calibrated Severity Scores. Conclusion Using TBSS and GBSS our findings provide new insights into group differences of WM and GM microstructure in autistic males from adolescence into adulthood. Detection of microstructural differences across the lifespan as well as their relationship to the level of autistic symptoms will deepen to our understanding of brain-behavior relationships of ASD and may aid in the improvement of intervention options for autistic adults.
Collapse
Affiliation(s)
- Marissa DiPiero
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Hassan Cordash
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Molly B. Prigge
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | - Carolyn K. King
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | - Jubel Morgan
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | | | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jace B. King
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | - Nicholas Lange
- Department of Psychiatry, Harvard School of Medicine, Boston, MA, United States
| | - Erin D. Bigler
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, United States
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Brandon A. Zielinski
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
- Departments of Pediatrics and Neurology, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew L. Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Janet E. Lainhart
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Douglas C. Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
60
|
Nunes JD, Vourvopoulos A, Blanco-Mora DA, Jorge C, Fernandes JC, Bermudez i Badia S, Figueiredo P. Brain activation by a VR-based motor imagery and observation task: An fMRI study. PLoS One 2023; 18:e0291528. [PMID: 37756271 PMCID: PMC10529559 DOI: 10.1371/journal.pone.0291528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
Training motor imagery (MI) and motor observation (MO) tasks is being intensively exploited to promote brain plasticity in the context of post-stroke rehabilitation strategies. This may benefit from the use of closed-loop neurofeedback, embedded in brain-computer interfaces (BCI's) to provide an alternative non-muscular channel, which may be further augmented through embodied feedback delivered through virtual reality (VR). Here, we used functional magnetic resonance imaging (fMRI) in a group of healthy adults to map brain activation elicited by an ecologically-valid task based on a VR-BCI paradigm called NeuRow, whereby participants perform MI of rowing with the left or right arm (i.e., MI), while observing the corresponding movement of the virtual arm of an avatar (i.e., MO), on the same side, in a first-person perspective. We found that this MI-MO task elicited stronger brain activation when compared with a conventional MI-only task based on the Graz BCI paradigm, as well as to an overt motor execution task. It recruited large portions of the parietal and occipital cortices in addition to the somatomotor and premotor cortices, including the mirror neuron system (MNS), associated with action observation, as well as visual areas related with visual attention and motion processing. Overall, our findings suggest that the virtual representation of the arms in an ecologically-valid MI-MO task engage the brain beyond conventional MI tasks, which we propose could be explored for more effective neurorehabilitation protocols.
Collapse
Affiliation(s)
- João D. Nunes
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, and Faculty of Engineering, University of Porto, Porto, Portugal
| | - Athanasios Vourvopoulos
- Institute for Systems and Robotics - Lisboa, and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Diego Andrés Blanco-Mora
- Faculdade de Ciências Exatas e da Engenharia, N-LINCS Madeira — ARDITI, Universidade da Madeira, Funchal, Portugal
| | - Carolina Jorge
- Faculdade de Ciências Exatas e da Engenharia, N-LINCS Madeira — ARDITI, Universidade da Madeira, Funchal, Portugal
| | - Jean-Claude Fernandes
- Central Hospital of Funchal, Physical Medicine and Rehabilitation Service, Funchal, Portugal
| | - Sergi Bermudez i Badia
- Faculdade de Ciências Exatas e da Engenharia, N-LINCS Madeira — ARDITI, Universidade da Madeira, Funchal, Portugal
| | - Patrícia Figueiredo
- Institute for Systems and Robotics - Lisboa, and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
61
|
Ferreira J, Roelofs A, Freches GB, Piai V. An fMRI study of inflectional encoding in spoken word production: Role of domain-general inhibition. Neuropsychologia 2023; 188:108653. [PMID: 37499792 DOI: 10.1016/j.neuropsychologia.2023.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 05/02/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
A major issue concerning inflectional encoding in spoken word production is whether or not regular forms (e.g., past tense walked) are encoded by rule application and irregular forms (e.g., swam) by retrieval from associative memory and inhibition of the regular rule. We used functional magnetic resonance imaging (fMRI) to examine the involvement of domain-general inhibition, thought to be underpinned by right inferior frontal gyrus (IFG), right pre-supplementary motor area (SMA), and right basal ganglia. Participants were presented with infinitive verbs that take either regular or irregular past tense. They switched between producing the past tense of these regular and irregular verbs in one block, and between inflecting or reading these infinitive verbs aloud in another block. As concerns corticobasal areas, compared to reading, inflecting activated left IFG and left preSMA/SMA. Regulars yielded higher activation than irregulars in these frontal areas, both on switch and repeat trials, which did not differ in activation. Switching between inflecting and reading activated left preSMA/SMA. These results indicate that inflectional encoding, and switching between inflecting and reading, engage frontal areas in the left hemisphere, including left preSMA/SMA for both and left IFG for inflecting, without recruiting the domain-general inhibition circuitry in the right hemisphere. We advance an account of inflectional encoding in spoken word production that assumes a distinction between regulars and irregulars, but without engaging domain-general inhibition.
Collapse
Affiliation(s)
- João Ferreira
- Radboud University, Donders Centre for Cognition, Maria Montessori Building, Thomas van Aquinostraat 4, 6525 GD Nijmegen, the Netherlands.
| | - Ardi Roelofs
- Radboud University, Donders Centre for Cognition, Maria Montessori Building, Thomas van Aquinostraat 4, 6525 GD Nijmegen, the Netherlands.
| | - Guilherme Blazquez Freches
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands; Radboud University, Donders Centre for Neuroscience, Heyendaalseweg, 135 6525, AJ Nijmegen, the Netherlands.
| | - Vitória Piai
- Radboud University, Donders Centre for Cognition, Maria Montessori Building, Thomas van Aquinostraat 4, 6525 GD Nijmegen, the Netherlands; Radboudumc, Donders Centre for Medical Neuroscience, Dept. of Medical Psychology, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
62
|
Bordin V, Pirastru A, Bergsland N, Cazzoli M, Baselli G, Baglio F. Optimal echo times for quantitative susceptibility mapping: A test-retest study on basal ganglia and subcortical brain nuclei. Neuroimage 2023; 278:120272. [PMID: 37437701 DOI: 10.1016/j.neuroimage.2023.120272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/16/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
Quantitative Susceptibility Mapping (QSM) is a recent MRI-technique able to quantify the bulk magnetic susceptibility of myelin, iron, and calcium in the brain. Its variability across different acquisition parameters has prompted the need for standardisation across multiple centres and MRI vendors. However, a high level of agreement between repeated imaging acquisitions is equally important. With this study we aimed to assess the inter-scan repeatability of an optimised multi-echo GRE sequence in 28 healthy volunteers. We extracted and compared the susceptibility measures from the scan and rescan acquisitions across 7 bilateral brain regions (i.e., 14 regions of interest (ROIs)) relevant for neurodegeneration. Repeatability was first assessed while reconstructing QSM with a fixed number of echo times (i.e., 8). Excellent inter-scan repeatability was found for putamen, globus pallidus and caudate nucleus, while good performance characterised the remaining structures. An increased variability was instead noted for small ROIs like red nucleus and substantia nigra. Secondly, we assessed the impact exerted on repeatability by the number of echoes used to derive QSM maps. Results were impacted by this parameter, especially in smaller regions. Larger brain structures, on the other hand, showed more consistent performance. Nevertheless, with either 8 or 7 echoes we managed to obtain good inter-scan repeatability on almost all ROIs. These findings indicate that the designed acquisition/reconstruction protocol has wide applicability, particularly in clinical or research settings involving longitudinal acquisitions (e.g. rehabilitation studies).
Collapse
Affiliation(s)
- Valentina Bordin
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Alice Pirastru
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Niels Bergsland
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy; Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Marta Cazzoli
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | |
Collapse
|
63
|
Gowin JL, Sloan ME, Kirk-Provencher KT, Rosenblatt SL, Penner AE, Stangl BL, Byrd ND, Swan JE, Ramchandani VA. Opioid receptor antagonism and neural response to monetary rewards: Pilot studies in light and heavy alcohol users. J Psychopharmacol 2023; 37:937-941. [PMID: 37530456 DOI: 10.1177/02698811231191707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Alcohol use disorder (AUD) is a prevalent condition associated with high degree of comorbidity and mortality. Among the few approved pharmacotherapies for AUD, two involve opioid receptor antagonism. Naltrexone and nalmefene are thought to act via opioid receptor blockage to reduce neural response to alcohol and drug-associated cues and consumption, but there have been limited efforts to characterize these effects in humans. In these studies, we sought to test the magnitude of opioid antagonism effects on neural response to monetary rewards in two groups: light drinkers (for the naltrexone study) and heavy drinkers (for the nalmefene study). We conducted double-blind, randomized, crossover pilot studies of reward activation in the brain following acute administration of opioid antagonist and placebo in 11 light and 9 heavy alcohol users. We used a monetary incentive delay task during functional MRI. We found a main effect of cue type on BOLD activation in the nucleus accumbens, demonstrating a neural reward response. The effect of opioid antagonism, relative to placebo, was small and nonsignificant for reward activation in the accumbens for both light and heavy alcohol users. Based on the results of two pilot studies, opioid antagonist medications do not appear to decrease neural activation to monetary rewards in the nucleus accumbens relative to placebo.
Collapse
Affiliation(s)
- Joshua L Gowin
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew E Sloan
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | | - Sophie L Rosenblatt
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anne E Penner
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bethany L Stangl
- National Institute on Alcohol Abuse and Alcoholism, Laboratory on Human Psychopharmacology, Bethesda, MD, USA
| | - Nia D Byrd
- National Institute on Alcohol Abuse and Alcoholism, Laboratory on Human Psychopharmacology, Bethesda, MD, USA
| | - Julia E Swan
- National Institute on Alcohol Abuse and Alcoholism, Laboratory on Human Psychopharmacology, Bethesda, MD, USA
| | - Vijay A Ramchandani
- National Institute on Alcohol Abuse and Alcoholism, Laboratory on Human Psychopharmacology, Bethesda, MD, USA
| |
Collapse
|
64
|
Brynildsen JK, Rajan K, Henderson MX, Bassett DS. Network models to enhance the translational impact of cross-species studies. Nat Rev Neurosci 2023; 24:575-588. [PMID: 37524935 PMCID: PMC10634203 DOI: 10.1038/s41583-023-00720-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2023] [Indexed: 08/02/2023]
Abstract
Neuroscience studies are often carried out in animal models for the purpose of understanding specific aspects of the human condition. However, the translation of findings across species remains a substantial challenge. Network science approaches can enhance the translational impact of cross-species studies by providing a means of mapping small-scale cellular processes identified in animal model studies to larger-scale inter-regional circuits observed in humans. In this Review, we highlight the contributions of network science approaches to the development of cross-species translational research in neuroscience. We lay the foundation for our discussion by exploring the objectives of cross-species translational models. We then discuss how the development of new tools that enable the acquisition of whole-brain data in animal models with cellular resolution provides unprecedented opportunity for cross-species applications of network science approaches for understanding large-scale brain networks. We describe how these tools may support the translation of findings across species and imaging modalities and highlight future opportunities. Our overarching goal is to illustrate how the application of network science tools across human and animal model studies could deepen insight into the neurobiology that underlies phenomena observed with non-invasive neuroimaging methods and could simultaneously further our ability to translate findings across species.
Collapse
Affiliation(s)
- Julia K Brynildsen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanaka Rajan
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael X Henderson
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
65
|
Mueller C, Goodman AM, Nenert R, Allendorfer JB, Philip NS, Correia S, Oster RA, LaFrance WC, Szaflarski JP. Repeatability of neurite orientation dispersion and density imaging in patients with traumatic brain injury. J Neuroimaging 2023; 33:802-824. [PMID: 37210714 PMCID: PMC10524628 DOI: 10.1111/jon.13125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to assess the repeatability of neurite orientation dispersion and density imaging in healthy controls (HCs) and traumatic brain injury (TBI). METHODS Seventeen HCs and 48 TBI patients were scanned twice over 18 weeks with diffusion imaging. Orientation dispersion (ODI), neurite density (NDI), and the fraction of isotropic diffusion (F-ISO) were quantified in regions of interest (ROIs) from a gray matter, subcortical, and white matter atlas and compared using the coefficient of variation for repeated measures (CVrep ), which quantifies the expected percent change on repeated measurement. We used a modified signed likelihood ratio test (M-SLRT) to compare the CVrep between groups in each ROI while correcting for multiple comparisons. RESULTS NDI exhibited excellent repeatability in both groups; the only group difference was found in the fusiform gyrus, where HCs exhibited better repeatability (M-SLRT = 9.463, p = .0021). ODI also had excellent repeatability in both groups, although repeatability was significantly better in HCs in 16 cortical ROIs (p < .0022) and in the bilateral white matter and bilateral cortex (p < .0027). F-ISO exhibited relatively poor repeatability in both groups, with few group differences. CONCLUSION Overall, the repeatability of the NDI, ODI, and F-ISO metrics over an 18-week period is acceptable for assessing the effects of behavioral or pharmacological interventions, though caution is advised when assessing F-ISO changes over time.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 6th Ave S, Birmingham, AL 35233
| | - Adam M. Goodman
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 6th Ave S, Birmingham, AL 35233
| | - Rodolphe Nenert
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 6th Ave S, Birmingham, AL 35233
| | - Jane B. Allendorfer
- Departments of Neurology and Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Noah S. Philip
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI
| | - Stephen Correia
- Department of Psychiatry, Butler Hospital / Brown University, Providence, RI
| | - Robert A. Oster
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - W. Curt LaFrance
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI
- Departments of Psychiatry and Neurology, Rhode Island Hospital / Brown University, Providence, RI
| | - Jerzy P. Szaflarski
- Departments of Neurology, Neurobiology and Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
66
|
Hanewald B, Lockhofen DEL, Sammer G, Stingl M, Gallhofer B, Mulert C, Iffland JR. Functional connectivity in a monetary and social incentive delay task in medicated patients with schizophrenia. Front Psychiatry 2023; 14:1200860. [PMID: 37711426 PMCID: PMC10498543 DOI: 10.3389/fpsyt.2023.1200860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/02/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Numerous studies indicate impaired reward-related learning in individuals with schizophrenia, with various factors such as illness duration, medication, disease severity, and level of analysis (behavioral or neurophysiological data) potentially confounding the results. Patients with schizophrenia who are treated with second-generation antipsychotics have been found to have a less affected reward system. However, this finding does not explain the neural dysfunctions observed in previous studies. This study aimed to address the open question of whether the less impaired reward-related behavior is associated with unimpaired task-related functional connectivity or altered task-related functional connectivity. Methods The study included 23 participants diagnosed within the schizophrenia spectrum and 23 control participants matched in terms of age, sex, and education. Participants underwent an MRI while performing a monetary incentive delay task and a social incentive delay task. The collected data were analyzed in terms of behavior and functional connectivity. Results Both groups exhibited a main effect of reward type on behavioral performance, indicating faster reaction times in the social incentive delay task, but no main effect of reward level. Altered functional connectivity was observed in predictable brain regions within the patient group, depending on the chosen paradigm, but not when compared to healthy individuals. Discussion In addition to expected slower response times, patients with schizophrenia demonstrated similar response patterns to control participants at the behavioral level. The similarities in behavioral data may underlie different connectivity patterns. Our findings suggest that perturbations in reward processing do not necessarily imply disturbances in underlying connectivities. Consequently, we were able to demonstrate that patients with schizophrenia are indeed capable of exhibiting goal-directed, reward-responsive behavior, although there are differences depending on the type of reward.
Collapse
Affiliation(s)
- Bernd Hanewald
- Center for Psychiatry, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
67
|
Kumar VJ, Scheffler K, Grodd W. The structural connectivity mapping of the intralaminar thalamic nuclei. Sci Rep 2023; 13:11938. [PMID: 37488187 PMCID: PMC10366221 DOI: 10.1038/s41598-023-38967-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
The intralaminar nuclei of the thalamus play a pivotal role in awareness, conscious experience, arousal, sleep, vigilance, as well as in cognitive, sensory, and sexual processing. Nonetheless, in humans, little is known about the direct involvement of these nuclei in such multifaceted functions and their structural connections in the brain. Thus, examining the versatility of structural connectivity of the intralaminar nuclei with the rest of the brain seems reasonable. Herein, we attempt to show the direct structural connectivity of the intralaminar nuclei to diencephalic, mesencephalic, and cortical areas using probabilistic tracking of the diffusion data from the human connectome project. The intralaminar nuclei fiber distributions span a wide range of subcortical and cortical areas. Moreover, the central medial and parafascicular nucleus reveal similar connectivity to the temporal, visual, and frontal cortices with only slight variability. The central lateral nucleus displays a refined projection to the superior colliculus and fornix. The centromedian nucleus seems to be an essential component of the subcortical somatosensory system, as it mainly displays connectivity via the medial and superior cerebellar peduncle to the brainstem and the cerebellar lobules. The subparafascicular nucleus projects to the somatosensory processing areas. It is interesting to note that all intralaminar nuclei have connections to the brainstem. In brief, the structural connectivity of the intralaminar nuclei aligns with the structural core of various functional demands for arousal, emotion, cognition, sensory, vision, and motor processing. This study sheds light on our understanding of the structural connectivity of the intralaminar nuclei with cortical and subcortical structures, which is of great interest to a broader audience in clinical and neuroscience research.
Collapse
Affiliation(s)
| | - Klaus Scheffler
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University Clinic Tübingen, Tübingen, Germany
| | - Wolfgang Grodd
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
68
|
Brown SSG, Westwater ML, Seidlitz J, Ziauddeen H, Fletcher PC. Hypothalamic volume is associated with body mass index. Neuroimage Clin 2023; 39:103478. [PMID: 37558541 PMCID: PMC10509524 DOI: 10.1016/j.nicl.2023.103478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/19/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
The hypothalamus is an important neuroendocrine hub for the control of appetite and satiety. In animal studies it has been established that hypothalamic lesioning or stimulation causes alteration to feeding behaviour and consequently body mass, and exposure to high calorie diets induces hypothalamic inflammation. These findings suggest that alterations in hypothalamic structure and function are both a cause and a consequence of changes to food intake. However, there is limited in vivo human data relating the hypothalamus to obesity or eating disorders, in part due to technical problems relating to its small size. Here, we used a novel automated segmentation algorithm to exploratorily investigate the relationship between hypothalamic volume, normalised to intracranial volume, and body mass index (BMI). The analysis was applied across four independent datasets comprising of young adults (total n = 1,351 participants) spanning a range of BMIs (13.3 - 47.8 kg/m2). We compared underweight (including individuals with anorexia nervosa), healthy weight, overweight and obese individuals in a series of complementary analyses. We report that overall hypothalamic volume is significantly larger in overweight and obese groups of young adults. This was also observed for a number of hypothalamic sub-regions. In the largest dataset (the HCP-Young Adult dataset (n = 1111)) there was a significant relationship between hypothalamic volume and BMI. We suggest that our findings of a positive relationship between hypothalamic volume and BMI is potentially consistent with hypothalamic inflammation as seen in animal models in response to high fat diet, although more research is needed to establish a causal relationship. Overall, we present novel, in vivo findings that link elevated BMI to altered hypothalamic structure. This has important implications for study of the neural mechanisms of obesity in humans.
Collapse
Affiliation(s)
- Stephanie S G Brown
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom.
| | - Margaret L Westwater
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, United Kingdom
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute of Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Hisham Ziauddeen
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom; Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom; Cambridgeshire and Peterborough NHS Trust, United Kingdom
| |
Collapse
|
69
|
Jensen D, Chen J, Turner JA, Stephen JM, Wang YP, Wilson TW, Calhoun VD, Liu J. Epigenetic associations with adolescent grey matter maturation and cognitive development. Front Genet 2023; 14:1222619. [PMID: 37529779 PMCID: PMC10390095 DOI: 10.3389/fgene.2023.1222619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction: Adolescence, a critical phase of human neurodevelopment, is marked by a tremendous reorganization of the brain and accompanied by improved cognitive performance. This development is driven in part by gene expression, which in turn is partly regulated by DNA methylation (DNAm). Methods: We collected brain imaging, cognitive assessments, and DNAm in a longitudinal cohort of approximately 200 typically developing participants, aged 9-14. This data, from three time points roughly 1 year apart, was used to explore the relationships between seven cytosine-phosphate-guanine (CpG) sites in genes highly expressed in brain tissues (GRIN2D, GABRB3, KCNC1, SLC12A9, CHD5, STXBP5, and NFASC), seven networks of grey matter (GM) volume change, and scores from seven cognitive tests. Results: The demethylation of the CpGs as well as the rates of change in DNAm were significantly related to improvements in total, crystalized, and fluid cognition scores, executive function, episodic memory, and processing speed, as well as several networks of GM volume increases and decreases that highlight typical patterns of brain maturation. Discussion: Our study provides a first look at the DNAm of genes involved in myelination, excitatory and inhibitory receptors, and connectivity, how they are related to the large-scale changes occurring in the brain structure as well as cognition during adolescence.
Collapse
Affiliation(s)
- Dawn Jensen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Jessica A. Turner
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Wexnar Medical Center, Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, United States
| | | | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United States
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
- The Mind Research Network, Albuquerque, NM, United States
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
70
|
Firdaus I, Kleiboer AM, Huizink AC, Kaag AM. The Moderating Role of Sex in the Relation between Cue-Induced Craving and Resting-State Functional Connectivity in the Salience Network of Non-Clinically Diagnosed Drinkers. Eur Addict Res 2023; 29:294-304. [PMID: 37423204 PMCID: PMC10614227 DOI: 10.1159/000531090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 04/18/2023] [Indexed: 07/11/2023]
Abstract
INTRODUCTION Previous research indicates a relation between craving and increased connectivity in the resting-state salience network. However, the link between cue-induced craving and connectivity in the salience network remains unclear. Further investigation is needed to understand the effect of sex on the relationship between cue-induced craving and the salience network. We investigated the role of sex in the association between the resting-state functional connectivity (RSFC) salience network and subjective cue-induced craving. METHODS Twenty-six males (mean age = 25.3) and 23 females (mean age = 26.0), with a score of 12 or higher on the alcohol use disorder identification test, were included in the current study. No significant difference in age was observed between males and females. Participants underwent a resting-state MRI scan for 6 min. Following the MRI scan, participants completed an alcohol cue-exposure task for 5.5 min to assess cue-induced craving using the desire to drink alcohol questionnaire. We applied independent component analysis methods to determine functional connectivity within the salience network. Subsequently, we investigated how cue-induced craving is related to the salience network's RSFC and if this relationship is moderated by sex. RESULTS The association between the salience network and cue-induced craving was not statistically significant nor did we find a moderating effect for sex. CONCLUSION The null findings in the study may be explained by a lack of power. Alternatively, alcohol use sex disparities may be more prevalent in the recreational/impulsive stage, whereas participants in our study were in the later stage of addiction.
Collapse
Affiliation(s)
- Insan Firdaus
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Annet M Kleiboer
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anja C Huizink
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anne Marije Kaag
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
71
|
Rhoads SA, O'Connell K, Berluti K, Ploe ML, Elizabeth HS, Amormino P, Li JL, Dutton MA, VanMeter AS, Marsh AA. Neural responses underlying extraordinary altruists' generosity for socially distant others. PNAS NEXUS 2023; 2:pgad199. [PMID: 37416875 PMCID: PMC10321390 DOI: 10.1093/pnasnexus/pgad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/22/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023]
Abstract
Most people are much less generous toward strangers than close others, a bias termed social discounting. But people who engage in extraordinary real-world altruism, like altruistic kidney donors, show dramatically reduced social discounting. Why they do so is unclear. Some prior research suggests reduced social discounting requires effortfully overcoming selfishness via recruitment of the temporoparietal junction. Alternatively, reduced social discounting may reflect genuinely valuing strangers' welfare more due to how the subjective value of their outcomes is encoded in regions such as rostral anterior cingulate cortex (ACC) and amygdala. We tested both hypotheses in this pre-registered study. We also tested the hypothesis that a loving-kindness meditation (LKM) training intervention would cause typical adults' neural and behavioral patterns to resemble altruists. Altruists and matched controls (N = 77) completed a social discounting task during functional magnetic resonance imaging; 25 controls were randomized to complete LKM training. Neither behavioral nor imaging analyses supported the hypothesis that altruists' reduced social discounting reflects effortfully overcoming selfishness. Instead, group differences emerged in social value encoding regions, including rostral ACC and amygdala. Activation in these regions corresponded to the subjective valuation of others' welfare predicted by the social discounting model. LKM training did not result in more generous behavioral or neural patterns, but only greater perceived difficulty during social discounting. Our results indicate extraordinary altruists' generosity results from the way regions involved in social decision-making encode the subjective value of others' welfare. Interventions aimed at promoting generosity may thus succeed to the degree they can increase the subjective valuation of others' welfare.
Collapse
Affiliation(s)
- Shawn A Rhoads
- Department of Psychology, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Katherine O'Connell
- Interdisciplinary Program in Neuroscience, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Kathryn Berluti
- Department of Psychology, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Montana L Ploe
- Department of Psychology, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Hannah S Elizabeth
- Department of Psychology, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Paige Amormino
- Department of Psychology, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Joanna L Li
- Department of Psychology, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Mary Ann Dutton
- Department of Psychiatry, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Ashley Skye VanMeter
- Interdisciplinary Program in Neuroscience, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
- Department of Neurology, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Abigail A Marsh
- Department of Psychology, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| |
Collapse
|
72
|
Martinez Villar G, Daneault V, Martineau-Dussault MÈ, Baril AA, Gagnon K, Lafond C, Gilbert D, Thompson C, Marchi NA, Lina JM, Montplaisir J, Carrier J, Gosselin N, André C. Altered resting-state functional connectivity patterns in late middle-aged and older adults with obstructive sleep apnea. Front Neurol 2023; 14:1215882. [PMID: 37470008 PMCID: PMC10353887 DOI: 10.3389/fneur.2023.1215882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Obstructive sleep apnea (OSA) is increasingly recognized as a risk factor for cognitive decline, and has been associated with structural brain alterations in regions relevant to memory processes and Alzheimer's disease. However, it is unclear whether OSA is associated with disrupted functional connectivity (FC) patterns between these regions in late middle-aged and older populations. Thus, we characterized the associations between OSA severity and resting-state FC between the default mode network (DMN) and medial temporal lobe (MTL) regions. Second, we explored whether significant FC changes differed depending on cognitive status and were associated with cognitive performance. Methods Ninety-four participants [24 women, 65.7 ± 6.9 years old, 41% with Mild Cognitive Impairment (MCI)] underwent a polysomnography, a comprehensive neuropsychological assessment and a resting-state functional magnetic resonance imaging (MRI). General linear models were conducted between OSA severity markers (i.e., the apnea-hypopnea, oxygen desaturation and microarousal indices) and FC values between DMN and MTL regions using CONN toolbox. Partial correlations were then performed between OSA-related FC patterns and (i) OSA severity markers in subgroups stratified by cognitive status (i.e., cognitively unimpaired versus MCI) and (ii) cognitive scores in the whole sample. All analyzes were controlled for age, sex and education, and considered significant at a p < 0.05 threshold corrected for false discovery rate. Results In the whole sample, a higher apnea-hypopnea index was significantly associated with lower FC between (i) the medial prefrontal cortex and bilateral hippocampi, and (ii) the left hippocampus and both the posterior cingulate cortex and precuneus. FC patterns were not associated with the oxygen desaturation index, or micro-arousal index. When stratifying the sample according to cognitive status, all associations remained significant in cognitively unimpaired individuals but not in the MCI group. No significant associations were observed between cognition and OSA severity or OSA-related FC patterns. Discussion OSA severity was associated with patterns of lower FC in regions relevant to memory processes and Alzheimer's disease. Since no associations were found with cognitive performance, these FC changes could precede detectable cognitive deficits. Whether these FC patterns predict future cognitive decline over the long-term needs to be investigated.
Collapse
Affiliation(s)
- Guillermo Martinez Villar
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Véronique Daneault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
| | - Marie-Ève Martineau-Dussault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Andrée-Ann Baril
- Douglas Mental Health Institute, McGill University, Montréal, QC, Canada
| | - Katia Gagnon
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Laboratory and Sleep Clinic, Hôpital en Santé Mentale Rivière-des-Prairies, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
| | - Chantal Lafond
- Department of Pulmonology, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Danielle Gilbert
- Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, QC, Canada
- Department of Radiology, Hopital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l'Ile-de, Montréal, QC, Canada
| | - Cynthia Thompson
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
| | - Nicola Andrea Marchi
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Center for Investigation and Research in Sleep, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Département de Génie Electrique, École de Technologie Supérieure, Montréal, QC, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Claire André
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
73
|
Kampa M, Hermann A, Stark R, Klucken T. Neural correlates of immediate versus delayed extinction when simultaneously varying the time of the test in humans. Cereb Cortex 2023:bhad205. [PMID: 37317067 DOI: 10.1093/cercor/bhad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Anxiety disorders are effectively treated with exposure therapy based on the extinction of Pavlovian fear conditioning. Animal research indicates that both the timing of extinction and test are important factors to reduce the return of fear. However, empirical evidence in humans is incomplete and inconsistent. In this neuroimaging study, we, therefore, tested 103 young, healthy participants in a 2-factorial between-subjects design with the factors extinction group (immediate, delayed) and test group (+1 day and +7 days). Immediate extinction led to greater retention of fear memory at the beginning of extinction training indicated by increased skin conductance responses. A return of fear was observed in both extinction groups, with a trend toward a greater return of fear in immediate extinction. The return of fear was generally higher in groups with an early test. Neuroimaging results show successful cross-group fear acquisition and retention, as well as activation of the left nucleus accumbens during extinction training. Importantly, the delayed extinction group showed a larger bilateral nucleus accumbens activation during test. This nucleus accumbens finding is discussed in terms of salience, contingency, relief, and prediction error processing. It may imply that the delayed extinction group benefits more from the test as a new learning opportunity.
Collapse
Affiliation(s)
- Miriam Kampa
- Department of Clinical Psychology and Psychotherapy, University of Siegen, Siegen 57072, Germany
- Bender Institute of Neuroimaging, Justus Liebig University, Giessen 35394, Germany
| | - Andrea Hermann
- Bender Institute of Neuroimaging, Justus Liebig University, Giessen 35394, Germany
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University, Giessen 35394, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen 35394, Germany
| | - Rudolf Stark
- Bender Institute of Neuroimaging, Justus Liebig University, Giessen 35394, Germany
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University, Giessen 35394, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen 35394, Germany
| | - Tim Klucken
- Department of Clinical Psychology and Psychotherapy, University of Siegen, Siegen 57072, Germany
| |
Collapse
|
74
|
van Galen KA, Schrantee A, Ter Horst KW, la Fleur SE, Booij J, Constable RT, Schwartz GJ, DiLeone RJ, Serlie MJ. Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study. Nat Metab 2023:10.1038/s42255-023-00816-9. [PMID: 37308722 DOI: 10.1038/s42255-023-00816-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/04/2023] [Indexed: 06/14/2023]
Abstract
Post-ingestive nutrient signals to the brain regulate eating behaviour in rodents, and impaired responses to these signals have been associated with pathological feeding behaviour and obesity. To study this in humans, we performed a single-blinded, randomized, controlled, crossover study in 30 humans with a healthy body weight (females N = 12, males N = 18) and 30 humans with obesity (females N = 18, males N = 12). We assessed the effect of intragastric glucose, lipid and water (noncaloric isovolumetric control) infusions on the primary endpoints cerebral neuronal activity and striatal dopamine release, as well as on the secondary endpoints plasma hormones and glucose, hunger scores and caloric intake. To study whether impaired responses in participants with obesity would be partially reversible with diet-induced weight loss, imaging was repeated after 10% diet-induced weight loss. We show that intragastric glucose and lipid infusions induce orosensory-independent and preference-independent, nutrient-specific cerebral neuronal activity and striatal dopamine release in lean participants. In contrast, participants with obesity have severely impaired brain responses to post-ingestive nutrients. Importantly, the impaired neuronal responses are not restored after diet-induced weight loss. Impaired neuronal responses to nutritional signals may contribute to overeating and obesity, and ongoing resistance to post-ingestive nutrient signals after significant weight loss may in part explain the high rate of weight regain after successful weight loss.
Collapse
Affiliation(s)
- Katy A van Galen
- Amsterdam UMC, location AMC, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - Anouk Schrantee
- Amsterdam UMC, location AMC, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - Kasper W Ter Horst
- Amsterdam University Medical Centers (UMC), location AMC, Department of Endocrinology and Metabolism and Amsterdam Gastroenterology Metabolism Endocrinology Institute, Amsterdam, the Netherlands
| | - Susanne E la Fleur
- Amsterdam University Medical Centers (UMC), location AMC, Department of Endocrinology and Metabolism and Amsterdam Gastroenterology Metabolism Endocrinology Institute, Amsterdam, the Netherlands
- Amsterdam UMC, location AMC, Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam, the Netherlands
| | - Jan Booij
- Amsterdam UMC, location AMC, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - R Todd Constable
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, USA
| | - Gary J Schwartz
- Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism, Bronx, NY, USA
| | - Ralph J DiLeone
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | - Mireille J Serlie
- Amsterdam University Medical Centers (UMC), location AMC, Department of Endocrinology and Metabolism and Amsterdam Gastroenterology Metabolism Endocrinology Institute, Amsterdam, the Netherlands.
- Yale University School of Medicine, Department of Endocrinology, New Haven, CT, USA.
| |
Collapse
|
75
|
Nichols ES, Blumenthal A, Kuenzel E, Skinner JK, Duerden EG. Hippocampus long-axis specialization throughout development: A meta-analysis. Hum Brain Mapp 2023. [PMID: 37209288 DOI: 10.1002/hbm.26340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023] Open
Abstract
The human adult hippocampus can be subdivided into the head, or anterior hippocampus and its body and tail, or posterior hippocampus, and a wealth of functional differences along the longitudinal axis have been reported. One line of literature emphasizes specialization for different aspects of cognition, whereas another emphasizes the unique role of the anterior hippocampus in emotional processing. While some research suggests that functional differences in memory between the anterior and posterior hippocampus appear early in development, it remains unclear whether this is also the case for functional differences in emotion processing. The goal of this meta-analysis was to determine whether the long-axis functional specialization observed in adults is present earlier in development. Using a quantitative meta-analysis, long-axis functional specialization was assessed using the data from 26 functional magnetic resonance imaging studies, which included 39 contrasts and 804 participants ranging in age from 4 to 21 years. Results indicated that emotion was more strongly localized to the anterior hippocampus, with memory being more strongly localized to the posterior hippocampus, demonstrating long-axis specialization with regard to memory and emotion in children similar to that seen in adults. An additional analysis of laterality indicated that while memory was left dominant, emotion was processed bilaterally.
Collapse
Affiliation(s)
- Emily S Nichols
- Faculty of Education, Western University, London, Canada
- Western Institute for Neuroscience, Western University, London, Canada
| | - Anna Blumenthal
- Cervo Brain Research Centre, Université Laval, Quebec, Canada
| | | | | | - Emma G Duerden
- Faculty of Education, Western University, London, Canada
- Western Institute for Neuroscience, Western University, London, Canada
- Pediatrics, Schulich School of Medicine & Dentistry, Western University, London, Canada
| |
Collapse
|
76
|
DeRosa H, Smith A, Geist L, Cheng A, Hunter RG, Kentner AC. Maternal immune activation alters placental histone-3 lysine-9 tri-methylation, offspring sensorimotor processing, and hypothalamic transposable element expression in a sex-specific manner. Neurobiol Stress 2023; 24:100538. [PMID: 37139465 PMCID: PMC10149420 DOI: 10.1016/j.ynstr.2023.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Animal models of maternal immune activation (MIA) are central to identifying the biological mechanisms that underly the association between prenatal infection and neuropsychiatric disorder susceptibility. Many studies, however, have limited their scope to protein coding genes and their role in mediating this inherent risk, while much less attention has been directed towards exploring the roles of the epigenome and transposable elements (TEs). In Experiment 1, we demonstrate the ability of MIA to alter the chromatin landscape of the placenta. We induced MIA by injecting 200 μg/kg (i.p.) of lipopolysaccharide (LPS) on gestational day 15 in Sprague-Dawley rats. We found a sex-specific rearrangement of heterochromatin 24-h after exposure to MIA, as evidenced by an increase in histone-3 lysine-9 trimethylation (H3K9me3). In Experiment 2, MIA was associated with long-term sensorimotor processing deficits as indicated by reduced prepulse inhibition (PPI) of the acoustic startle reflex in adult male and female offspring and an increased mechanical allodynia threshold in males. Analyses of gene expression within the hypothalamus-chosen for its involvement in the sex-specific pathogenesis of schizophrenia and the stress response-revealed significantly higher levels of the stress-sensitive genes Gr and Fkbp5. Deleterious TE expression is often a hallmark of neuropsychiatric disease and we found sex-specific increases in the expression of several TEs including IAP, B2 SINE, and LINE-1 ORF1. The data from this study warrant the future consideration of chromatin stability and TEs as part of the mechanism that drives MIA-associated changes in the brain and behavior.
Collapse
Affiliation(s)
- Holly DeRosa
- University of Massachusetts Boston, Department of Psychology, Developmental and Brain Sciences Program, Boston, Massachusetts, USA
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Arianna Smith
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Laurel Geist
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Ada Cheng
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Richard G. Hunter
- University of Massachusetts Boston, Department of Psychology, Developmental and Brain Sciences Program, Boston, Massachusetts, USA
| | - Amanda C. Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| |
Collapse
|
77
|
Anthony J, Johnson W, Papathomas A, Breen K, Kinnafick F. Differences in body mass index trajectories of adolescent psychiatric inpatients by sex, age, diagnosis and medication: an exploratory longitudinal, mixed effects analysis. Child Adolesc Ment Health 2023; 28:318-326. [PMID: 35798687 PMCID: PMC10946920 DOI: 10.1111/camh.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Adolescents in secure psychiatric care typically report high obesity rates. However, longitudinal research exploring the rate and extent of change is sparse. This study aimed to analyse sex differences in longitudinal body mass index (BMI) change for adolescents receiving treatment in a secure psychiatric hospital. METHODS The sample comprised 670 adolescents in secure psychiatric care. BMI trajectories from admission to 50 months of hospitalisation were produced using sex-stratified multilevel models. Systematic difference in mean BMI trajectories according to age at admission (14, 15, 16, or 17 years), medication (Olanzapine or Sodium Valproate), and primary diagnosis (Psychotic, non-Psychotic or Functional/behavioural disorders) were investigated. RESULTS Together, males and females experienced a mean BMI increase of 2.22 m/kg2 over the 50-month period. For females, BMI increased from 25.69 m/kg2 to 30.31 m/kg2 , and for males, reduced from 25.01 m/kg2 to 23.95 m/kg2 . From 30 to 50 months, a plateau was observed for females and a reduction in BMI observed for males. Psychotic disorders in males (β 3.87; CI 1.1-6.7) were associated with the greatest rate of BMI change. For medication, Olanzapine in females was associated with the greatest rate of change (β1.78; CI -.89-4.47). CONCLUSIONS This is the first longitudinal study exploring longitudinal BMI change for adolescent inpatients. Results highlight that individual differences in adolescent inpatients result in differing levels of risk to weight gain in secure care. Specifically, males with psychotic disorders and females taking Olanzapine present the greatest risk of weight gain. This has implications for the prioritisation of interventions for those most at risk of weight gain.
Collapse
Affiliation(s)
- Justine Anthony
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
- St Andrew's HealthcareNorthamptonUK
| | - William Johnson
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Anthony Papathomas
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Kieran Breen
- Research CentreSt Andrew's HealthcareNorthamptonUK
| | - Florence‐Emilie Kinnafick
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| |
Collapse
|
78
|
Schmitz-Koep B, Menegaux A, Gaser C, Brandes E, Schinz D, Thalhammer M, Daamen M, Boecker H, Zimmer C, Priller J, Wolke D, Bartmann P, Sorg C, Hedderich DM. Altered Gray Matter Cortical and Subcortical T1-Weighted/T2-Weighted Ratio in Premature-Born Adults. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:495-504. [PMID: 35276405 DOI: 10.1016/j.bpsc.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Microscopic studies in newborns and animal models indicate impaired myelination after premature birth, particularly for cortical myelination; however, it remains unclear whether such myelination impairments last into adulthood and, if so, are relevant for impaired cognitive performance. It has been suggested that the ratio of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging signal intensity (T1w/T2w ratio) is a proxy for myelin content. We hypothesized altered gray matter (GM) T1w/T2w ratio in premature-born adults, which is associated with lower cognitive performance after premature birth. METHODS We analyzed GM T1w/T2w ratio in 101 adults born very premature (VP) and/or at very low birth weight (VLBW) (<32 weeks of gestation and/or birth weight <1500 g) and 109 full-term control subjects at 26 years of age, controlled for voxelwise volume alterations. Cognitive performance was assessed by verbal, performance, and full scale IQ using the Wechsler Adult Intelligence Scale. RESULTS Significantly higher T1w/T2w ratio in VP/VLBW subjects was found bilaterally in widespread cortical areas, particularly in frontal, parietal, and temporal cortices, and in putamen and pallidum. In these areas, T1w/T2w ratio was not related to birth variables, such as gestational age, or IQ scores. In contrast, significantly lower T1w/T2w ratio in VP/VLBW subjects was found in bilateral clusters in superior temporal gyrus, which was associated with birth weight in the VP/VLBW group. Furthermore, lower T1w/T2w ratio in left superior temporal gyrus was associated with lower full scale and verbal IQ. CONCLUSIONS Results demonstrate GM T1w/T2w ratio alterations in premature-born adults and suggest altered GM myelination development after premature birth with lasting and functionally relevant effects into early adulthood.
Collapse
Affiliation(s)
- Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Gaser
- Departments of Psychiatry, University Hospital Jena, Jena, Germany; Departments of Neurology, University Hospital Jena, Jena, Germany
| | - Elin Brandes
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - David Schinz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany; Department of Neuropsychiatry, Charité - Universitätsmedizin Berlin and Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Berlin, Germany; UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, United Kingdom; Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
79
|
Camacho M, Wilms M, Mouches P, Almgren H, Souza R, Camicioli R, Ismail Z, Monchi O, Forkert ND. Explainable classification of Parkinson's disease using deep learning trained on a large multi-center database of T1-weighted MRI datasets. Neuroimage Clin 2023; 38:103405. [PMID: 37079936 PMCID: PMC10148079 DOI: 10.1016/j.nicl.2023.103405] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/13/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
INTRODUCTION Parkinson's disease (PD) is a severe neurodegenerative disease that affects millions of people. Early diagnosis is important to facilitate prompt interventions to slow down disease progression. However, accurate PD diagnosis can be challenging, especially in the early disease stages. The aim of this work was to develop and evaluate a robust explainable deep learning model for PD classification trained from one of the largest collections of T1-weighted magnetic resonance imaging datasets. MATERIALS AND METHODS A total of 2,041 T1-weighted MRI datasets from 13 different studies were collected, including 1,024 datasets from PD patients and 1,017 datasets from age- and sex-matched healthy controls (HC). The datasets were skull stripped, resampled to isotropic resolution, bias field corrected, and non-linearly registered to the MNI PD25 atlas. The Jacobian maps derived from the deformation fields together with basic clinical parameters were used to train a state-of-the-art convolutional neural network (CNN) to classify PD and HC subjects. Saliency maps were generated to display the brain regions contributing the most to the classification task as a means of explainable artificial intelligence. RESULTS The CNN model was trained using an 85%/5%/10% train/validation/test split stratified by diagnosis, sex, and study. The model achieved an accuracy of 79.3%, precision of 80.2%, specificity of 81.3%, sensitivity of 77.7%, and AUC-ROC of 0.87 on the test set while performing similarly on an independent test set. Saliency maps computed for the test set data highlighted frontotemporal regions, the orbital-frontal cortex, and multiple deep gray matter structures as most important. CONCLUSION The developed CNN model, trained on a large heterogenous database, was able to differentiate PD patients from HC subjects with high accuracy with clinically feasible classification explanations. Future research should aim to investigate the combination of multiple imaging modalities with deep learning and on validating these results in a prospective trial as a clinical decision support system.
Collapse
Affiliation(s)
- Milton Camacho
- Biomedical Engineering Program, University of Calgary, Canada; Department of Radiology, University of Calgary, Canada.
| | - Matthias Wilms
- Department of Radiology, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Pauline Mouches
- Biomedical Engineering Program, University of Calgary, Canada; Department of Radiology, University of Calgary, Canada
| | - Hannes Almgren
- Department of Clinical Neurosciences, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Raissa Souza
- Biomedical Engineering Program, University of Calgary, Canada; Department of Radiology, University of Calgary, Canada
| | - Richard Camicioli
- Neuroscience and Mental Health Institute and Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Zahinoor Ismail
- Department of Clinical Neurosciences, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Department of Psychiatry, University of Calgary, Canada
| | - Oury Monchi
- Department of Clinical Neurosciences, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Department of Radiology, Radio-oncology and Nuclear Medicine, Université de Montréal, Quebec, Canada; Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Québec, Canada
| | - Nils D Forkert
- Department of Radiology, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Clinical Neurosciences, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Department of Electrical and Software Engineering, University of Calgary, Canada
| |
Collapse
|
80
|
Rowe EG, Harris CD, Dzafic I, Garrido MI. Anxiety attenuates learning advantages conferred by statistical stability and induces loss of volatility-attuning in brain activity. Hum Brain Mapp 2023; 44:2557-2571. [PMID: 36811216 PMCID: PMC10028666 DOI: 10.1002/hbm.26230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Anxiety can alter an individual's perception of their external sensory environment. Previous studies suggest that anxiety can increase the magnitude of neural responses to unexpected (or surprising) stimuli. Additionally, surprise responses are reported to be boosted during stable compared to volatile environments. Few studies, however, have examined how learning is impacted by both threat and volatility. To investigate these effects, we used threat-of-shock to transiently increase subjective anxiety in healthy adults while they performed an auditory oddball task under stable and volatile environments and while undergoing functional Magnetic Resonance Imaging (fMRI) scanning. We then used Bayesian Model Selection (BMS) mapping to identify the brain areas where different models of anxiety displayed the highest evidence. Behaviourally, we found that threat-of-shock eliminated the accuracy advantage conferred by environmental stability over volatility. Neurally, we found that threat-of-shock led to attenuation and loss of volatility-attuning of brain activity evoked by surprising sounds across most subcortical and limbic regions including the thalamus, basal ganglia, claustrum, insula, anterior cingulate, hippocampal gyrus and the superior temporal gyrus. Taken together, our findings suggest that threat eliminates learning advantages conferred by statistical stability compared to volatility. Thus, we propose that anxiety disrupts behavioural adaptation to environmental statistics, and that multiple subcortical and limbic regions are implicated in this process.
Collapse
Affiliation(s)
- Elise G Rowe
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, Victoria, Australia
| | - Clare D Harris
- Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, Victoria, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Ilvana Dzafic
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, Victoria, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
- Orygen, the National Centre of Excellence for Youth Mental Health, Melbourne, Victoria, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Marta I Garrido
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, Victoria, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
- Graeme Clark Institute for Biomedical Engineering, Parkville, Victoria, Australia
| |
Collapse
|
81
|
Bhatt RR, Todorov S, Sood R, Ravichandran S, Kilpatrick LA, Peng N, Liu C, Vora PP, Jahanshad N, Gupta A. Integrated multi-modal brain signatures predict sex-specific obesity status. Brain Commun 2023; 5:fcad098. [PMID: 37091587 PMCID: PMC10116578 DOI: 10.1093/braincomms/fcad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 01/31/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Investigating sex as a biological variable is key to determine obesity manifestation and treatment response. Individual neuroimaging modalities have uncovered mechanisms related to obesity and altered ingestive behaviours. However, few, if any, studies have integrated data from multi-modal brain imaging to predict sex-specific brain signatures related to obesity. We used a data-driven approach to investigate how multi-modal MRI and clinical features predict a sex-specific signature of participants with high body mass index (overweight/obese) compared to non-obese body mass index in a sex-specific manner. A total of 78 high body mass index (55 female) and 105 non-obese body mass index (63 female) participants were enrolled in a cross-sectional study. All participants classified as high body mass index had a body mass index greater than 25 kg/m2 and non-obese body mass index had a body mass index between 19 and 20 kg/m2. Multi-modal neuroimaging (morphometry, functional resting-state MRI and diffusion-weighted scan), along with a battery of behavioural and clinical questionnaires were acquired, including measures of mood, early life adversity and altered ingestive behaviours. A Data Integration Analysis for Biomarker discovery using Latent Components was conducted to determine whether clinical features, brain morphometry, functional connectivity and anatomical connectivity could accurately differentiate participants stratified by obesity and sex. The derived models differentiated high body mass index against non-obese body mass index participants, and males with high body mass index against females with high body mass index obtaining balanced accuracies of 77 and 75%, respectively. Sex-specific differences within the cortico-basal-ganglia-thalamic-cortico loop, the choroid plexus-CSF system, salience, sensorimotor and default-mode networks were identified, and were associated with early life adversity, mental health quality and greater somatosensation. Results showed multi-modal brain signatures suggesting sex-specific cortical mechanisms underlying obesity, which fosters clinical implications for tailored obesity interventions based on sex.
Collapse
Affiliation(s)
- Ravi R Bhatt
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90089, USA
| | - Svetoslav Todorov
- Goodman-Luskin Microbiome Center, G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Ingestive Behavior and Obesity Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Riya Sood
- Goodman-Luskin Microbiome Center, G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Ingestive Behavior and Obesity Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Soumya Ravichandran
- Goodman-Luskin Microbiome Center, G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Ingestive Behavior and Obesity Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Lisa A Kilpatrick
- Goodman-Luskin Microbiome Center, G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Ingestive Behavior and Obesity Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Newton Peng
- Goodman-Luskin Microbiome Center, G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Ingestive Behavior and Obesity Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Cathy Liu
- Goodman-Luskin Microbiome Center, G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Ingestive Behavior and Obesity Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Priten P Vora
- Goodman-Luskin Microbiome Center, G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Ingestive Behavior and Obesity Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90089, USA
| | - Arpana Gupta
- Goodman-Luskin Microbiome Center, G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Ingestive Behavior and Obesity Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
82
|
Standage DI, Areshenkoff CN, Gale DJ, Nashed JY, Flanagan JR, Gallivan JP. Whole-brain dynamics of human sensorimotor adaptation. Cereb Cortex 2023; 33:4761-4778. [PMID: 36245212 PMCID: PMC10110437 DOI: 10.1093/cercor/bhac378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/13/2022] Open
Abstract
Humans vary greatly in their motor learning abilities, yet little is known about the neural processes that underlie this variability. We identified distinct profiles of human sensorimotor adaptation that emerged across 2 days of learning, linking these profiles to the dynamics of whole-brain functional networks early on the first day when cognitive strategies toward sensorimotor adaptation are believed to be most prominent. During early learning, greater recruitment of a network of higher-order brain regions, involving prefrontal and anterior temporal cortex, was associated with faster learning. At the same time, greater integration of this "cognitive network" with a sensorimotor network was associated with slower learning, consistent with the notion that cognitive strategies toward adaptation operate in parallel with implicit learning processes of the sensorimotor system. On the second day, greater recruitment of a network that included the hippocampus was associated with faster learning, consistent with the notion that declarative memory systems are involved with fast relearning of sensorimotor mappings. Together, these findings provide novel evidence for the role of higher-order brain systems in driving variability in adaptation.
Collapse
Affiliation(s)
- Dominic I Standage
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Corson N Areshenkoff
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
| | - Joseph Y Nashed
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen’s University, Humphrey Hall, 62 Arch Street, Kingston, Ontario K7L 3N6, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Psychology, Queen’s University, Humphrey Hall, 62 Arch Street, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
83
|
Sperling SA, Druzgal J, Blair JC, Flanigan JL, Stohlman SL, Barrett MJ. Cholinergic nucleus 4 grey matter density is associated with apathy in Parkinson's disease. Clin Neuropsychol 2023; 37:676-694. [PMID: 35443870 DOI: 10.1080/13854046.2022.2065362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective: The generation and maintenance of goal-directed behavior is subserved by multiple brain regions that receive cholinergic inputs from the cholinergic nucleus 4 (Ch4). It is unknown if Ch4 degeneration contributes to apathy in Parkinson's disease (PD). Method: We analyzed data from 106 pre-surgical patients with PD who had brain MRIs and completed the Frontal Systems Behavior Scales (FrSBe). Eighty-eight patients also completed the Beck Depression Inventory-2nd Edition. Cholinergic basal forebrain grey matter densities (GMD) were measured by applying probabilistic maps to T1 MPRAGE sequences processed using voxel-based morphometry methods. We used linear and hierarchical regression modelling to examine the association between Ch4 GMD and the FrSBe Apathy subscale scores. We used similar methods to assess the specificity of this association and potential associations between Ch4 target regions and apathy. Results: Ch4 GMD (p = .021) and Ch123 GMD (p = .032) were significantly associated with Apathy subscale scores on univariate analysis. Ch4 GMD, but not Ch123 GMD, remained significantly associated with apathy when adjusting for age, sex, levodopa equivalent doses, and disease duration. Centromedial amygdala GMD, which receives cholinergic inputs from Ch4, was also associated with apathy. Ch4 GMD was not associated with depression or disinhibition, nor was it associated with executive dysfunction when adjusting for clinical and demographic variables. Conclusions: Ch4 GMD is specifically associated with apathy in PD. Ch4 degeneration results in cholinergic denervation of multiple cortical and limbic regions, which may contribute to the cognitive and emotional-affective processing deficits that underlie the behavioral symptoms of apathy.
Collapse
Affiliation(s)
- Scott A Sperling
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Jamie C Blair
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Joseph L Flanigan
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Shelby L Stohlman
- Curry School of Education and Human Development, University of Virginia, Charlottesville, VA, USA
| | - Matthew J Barrett
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
84
|
Balters S, Schlichting MR, Foland-Ross L, Brigadoi S, Miller JG, Kochenderfer MJ, Garrett AS, Reiss AL. Towards assessing subcortical "deep brain" biomarkers of PTSD with functional near-infrared spectroscopy. Cereb Cortex 2023; 33:3969-3984. [PMID: 36066436 PMCID: PMC10068291 DOI: 10.1093/cercor/bhac320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/13/2022] Open
Abstract
Assessment of brain function with functional near-infrared spectroscopy (fNIRS) is limited to the outer regions of the cortex. Previously, we demonstrated the feasibility of inferring activity in subcortical "deep brain" regions using cortical functional magnetic resonance imaging (fMRI) and fNIRS activity in healthy adults. Access to subcortical regions subserving emotion and arousal using affordable and portable fNIRS is likely to be transformative for clinical diagnostic and treatment planning. Here, we validate the feasibility of inferring activity in subcortical regions that are central to the pathophysiology of posttraumatic stress disorder (PTSD; i.e. amygdala and hippocampus) using cortical fMRI and simulated fNIRS activity in a sample of adolescents diagnosed with PTSD (N = 20, mean age = 15.3 ± 1.9 years) and age-matched healthy controls (N = 20, mean age = 14.5 ± 2.0 years) as they performed a facial expression task. We tested different prediction models, including linear regression, a multilayer perceptron neural network, and a k-nearest neighbors model. Inference of subcortical fMRI activity with cortical fMRI showed high prediction performance for the amygdala (r > 0.91) and hippocampus (r > 0.95) in both groups. Using fNIRS simulated data, relatively high prediction performance for deep brain regions was maintained in healthy controls (r > 0.79), as well as in youths with PTSD (r > 0.75). The linear regression and neural network models provided the best predictions.
Collapse
Affiliation(s)
- Stephanie Balters
- Department of Psychiatry and Behavioral Sciences, Stanford University, 94305 Stanford, CA, USA
| | - Marc R Schlichting
- Department of Aeronautics and Astronautics, Stanford University, 94305 Stanford, CA, USA
| | - Lara Foland-Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University, 94305 Stanford, CA, USA
| | - Sabrina Brigadoi
- Department of Developmental Psychology and Socialisation, University of Padova, 35122 Padova PD, Italy
| | - Jonas G Miller
- Department of Psychology, Stanford University, 94305 Stanford, CA, USA
| | - Mykel J Kochenderfer
- Department of Aeronautics and Astronautics, Stanford University, 94305 Stanford, CA, USA
| | - Amy S Garrett
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, 78229 San Antonio, TX, USA
| | - Allan L Reiss
- Department of Psychiatry and Behavioral Sciences, Stanford University, 94305 Stanford, CA, USA
- Department of Radiology, Stanford University, 94304 Palo Alto, CA, USA
- Department of Pediatrics, Stanford University, 94304 Palo Alto, CA, USA
| |
Collapse
|
85
|
Kampa M, Sebastian A, Tüscher O, Stark R, Klucken T. Refocus on stopping! Replication of reduced right amygdala reactivity to negative, visual primes during inhibition of motor responses. NEUROIMAGE: REPORTS 2023. [DOI: 10.1016/j.ynirp.2022.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
86
|
Murray RJ, Kreibig SD, Pehrs C, Vuilleumier P, Gross JJ, Samson AC. Mixed emotions to social situations: An fMRI investigation. Neuroimage 2023; 271:119973. [PMID: 36848968 DOI: 10.1016/j.neuroimage.2023.119973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Neuroscience research has generally studied emotions each taken in isolation. However, mixed emotional states (e.g., the co-occurrence of amusement and disgust, or sadness and pleasure) are common in everyday life. Psychophysiological and behavioral evidence suggests that mixed emotions may have response profiles that are distinguishable from their constituent emotions. Yet, the brain bases of mixed emotions remain unresolved. METHODS We recruited 38 healthy adults who viewed short, validated film clips, eliciting either positive (amusing), negative (disgusting), neutral, or mixed (a mix of amusement and disgust) emotional states, while brain activity was assessed by functional magnetic resonance imaging (fMRI). We assessed mixed emotions in two ways: first by comparing neural reactivity to ambiguous (mixed) with that to unambiguous (positive and negative) film clips and second by conducting parametric analyses to measure neural reactivity with respect to individual emotional states. We thus obtained self-reports of amusement and disgust after each clip and computed a minimum feeling score (shared minimum of amusement and disgust) to quantify mixed emotional feelings. RESULTS Both analyses revealed a network of the posterior cingulate (PCC), medial superior parietal lobe (SPL)/precuneus, and parieto-occipital sulcus to be involved in ambiguous contexts eliciting mixed emotions. CONCLUSION Our results are the first to shed light on the dedicated neural processes involved in dynamic social ambiguity processing. They suggest both higher-order (SPL) and lower-order (PCC) processes may be needed to process emotionally complex social scenes.
Collapse
Affiliation(s)
- Ryan J Murray
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, Geneva, Switzerland
| | - Sylvia D Kreibig
- Department of Psychology, Stanford University, Stanford, CA 94305 USA
| | - Corinna Pehrs
- Bernstein Center for Computational Neuroscience Berlin, BCCN, Berlin, Germany
| | - Patrik Vuilleumier
- Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, Geneva, Switzerland; Neuroscience Department, Laboratory for Behavioral Neurology and Imaging of Cognition, Medical school, University of Geneva, Campus Biotech, Geneva, Switzerland
| | - James J Gross
- Department of Psychology, Stanford University, Stanford, CA 94305 USA
| | - Andrea C Samson
- Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, Geneva, Switzerland; Faculty of Psychology, UniDistance Suisse, Brig, Switzerland; Institute of Special Education, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
87
|
Chicos L, Rangaprakash D, Barry R, Herr H. Resting state neurophysiology of agonist-antagonist myoneural interface in persons with transtibial amputation. RESEARCH SQUARE 2023:rs.3.rs-2362961. [PMID: 36798194 PMCID: PMC9934762 DOI: 10.21203/rs.3.rs-2362961/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The agonist-antagonist myoneural interface (AMI) is a novel amputation surgery that preserves sensorimotor signaling mechanisms of the central-peripheral nervous systems. Our first neuroimaging study investigating AMI subjects (Srinivasan et al., Sci. Transl. Med. 2020) focused on task-based neural signatures, and showed evidence of proprioceptive feedback to the central nervous system. The study of resting state neural activity helps non-invasively characterize the neural patterns that prime task response. In this first study on resting state fMRI in AMI subjects, we compared resting state functional connectivity in patients with transtibial AMI (n=12) and traditional (n=7) amputations, as well as biologically intact control subjects (n=10). We hypothesized that the AMI surgery will induce functional network reorganization that significantly differs from the traditional amputation surgery and also more closely resembles the neural configuration of controls. We found AMI subjects to have lower connectivity with salience and motor seed regions compared to traditional amputees. Additionally, with connections affected in traditional amputees, AMI subjects exhibited a connectivity pattern more closely resembling controls. Lastly, sensorimotor connectivity in amputee cohorts was significantly associated with phantom sensation (R2=0.7, p=0.0008). These findings provide researchers and clinicians with a critical mechanistic understanding of the effects of the AMI surgery on the brain at rest, spearheading future research towards improved prosthetic control and embodiment.
Collapse
Affiliation(s)
| | | | - Robert Barry
- Massachusetts General Hospital & Harvard Medical School
| | - Hugh Herr
- Massachusetts Institute of Technology
| |
Collapse
|
88
|
Longitudinal brain age prediction and cognitive function after stroke. Neurobiol Aging 2023; 122:55-64. [PMID: 36502572 DOI: 10.1016/j.neurobiolaging.2022.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Advanced age is associated with post-stroke cognitive decline. Machine learning based on brain scans can be used to estimate brain age of patients, and the corresponding difference from chronological age, the brain age gap (BAG), has been investigated in a range of clinical conditions, yet not thoroughly in post-stroke neurocognitive disorder (NCD). We aimed to investigate the association between BAG and post-stroke NCD over time. Lower BAG (younger appearing brain compared to chronological age) was found associated with lower risk of post-stroke NCD up to 36 months after stroke, even among those showing no evidence of impairments 3 months after hospital admission. For patients with no NCD at baseline, survival analysis suggested that higher baseline BAG was associated with higher risk of post-stroke NCD at 18 and 36 months. In conclusion, a younger appearing brain is associated with a lower risk of post-stroke NCD.
Collapse
|
89
|
Nowak M, Schindler S, Storch M, Geyer S, Schönknecht P. Mammillary body and hypothalamic volumes in mood disorders. J Psychiatr Res 2023; 158:216-225. [PMID: 36603316 DOI: 10.1016/j.jpsychires.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/20/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
We have previously reported an in vivo enlargement of the left hypothalamus in mood disorders using 7 T magnetic resonance imaging. The aim of this follow-up study was to find out whether the hypothalamic volume difference may be located in the mammillary bodies (MB) rather than being widespread across the hypothalamus. We developed and evaluated a detailed segmentation algorithm that allowed a reliable segmentation of the MBs, and applied it to 20 unmedicated (MDDu) and 20 medicated patients with major depressive disorder, 21 medicated patients with bipolar disorder, and 23 controls. 20 out of 23 healthy controls were matched to the MDDu. We tested for group differences in MB and hypothalamus without MB (HTh) volumes using analyses of covariance. Associations between both volumes of interest were analysed using bivariate and partial correlations. In contrast to postmortem findings, we found no statistically significant differences of the MB volumes between the study groups. Left HTh volumes differed significantly across the study groups after correction for intracranial volume (ICV) and for ICV and sex. Our result of an HTh enlargement in mood disorders was confirmed by a paired t-test between the matched pairs of MDDu and healthy controls using the native MB and HTh volumes. In the whole sample, MB volumes correlated significantly with the ipsilateral HTh volumes. Our results indicate a structural relationship between both volumes, and that our previous in vivo finding of a hypothalamus enlargement does not extend to the MB, but is limited to the HTh. The enlargement is more likely related to the dysregulation of the HPA axis than to cognitive dysfunctions accompanying mood disorders.
Collapse
Affiliation(s)
- Markus Nowak
- University Hospital Leipzig, Department of Psychiatry and Psychotherapy, Semmelweisstraße 10, 04103, Leipzig, Germany; Charité University of Medicine, Department of Psychiatry and Psychotherapy and St. Hedwig Hospital Berlin, Große Hamburger Straße 5-11, 10115, Berlin, Germany.
| | - Stephanie Schindler
- University Hospital Leipzig, Department of Psychiatry and Psychotherapy, Semmelweisstraße 10, 04103, Leipzig, Germany
| | - Melanie Storch
- University Hospital Leipzig, Department of Psychiatry and Psychotherapy, Semmelweisstraße 10, 04103, Leipzig, Germany
| | - Stefan Geyer
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurophysics, Stephanstraße 1a, 04103, Leipzig, Germany
| | - Peter Schönknecht
- University Hospital Leipzig, Department of Psychiatry and Psychotherapy, Semmelweisstraße 10, 04103, Leipzig, Germany; University Hospital Leipzig, Out-patient Department for Sexual-therapeutic Prevention and Forensic Psychiatry, Semmelweisstraße 10, 04103, Leipzig, Germany; Academic State Hospital Arnsdorf, Hufelandstraße 15, 01477, Arnsdorf, Germany
| |
Collapse
|
90
|
Kaminski A, You X, Flaharty K, Jeppsen C, Li S, Merchant JS, Berl MM, Kenworthy L, Vaidya CJ. Cingulate-Prefrontal Connectivity During Dynamic Cognitive Control Mediates Association Between p Factor and Adaptive Functioning in a Transdiagnostic Pediatric Sample. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:189-199. [PMID: 35868485 PMCID: PMC10152206 DOI: 10.1016/j.bpsc.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Covariation among psychiatric symptoms is being actively pursued for transdiagnostic dimensions of psychopathology with predictive utility. A superordinate dimension, the p factor, reflects overall psychopathology burden and has support from genetic and neuroimaging correlates. However, the neurocognitive correlates that link an elevated p factor to maladaptive outcomes are unknown. We tested the mediating potential of dynamic adjustments in cognitive control rooted in functional connections anchored by the dorsal anterior cingulate cortex (dACC) in a transdiagnostic pediatric sample. METHODS A multiple mediation model tested the association between the p factor (derived by principal component analysis of Child Behavior Checklist syndrome scales) and outcome measured with the Vineland Adaptive Behavior Scale-II in 89 children ages 8 to 13 years (23 female) with a variety of primary neurodevelopmental diagnoses who underwent functional magnetic resonance imaging during a socioaffective Stroop-like task with eye gaze as distractor. Mediators included functional connectivity of frontoparietal- and salience network-affiliated dACC seeds during conflict adaptation. RESULTS Higher p factor scores were related to worse adaptive functioning. This effect was partially mediated by conflict adaptation-dependent functional connectivity between the frontoparietal network-affiliated dACC seed and the right dorsolateral prefrontal cortex. Post hoc follow-up indicated that the p factor was related to all Vineland Adaptive Behaviors Scale-II domains; the association was strongest for socialization followed by daily living skills and then communication. Mediation results remained significant for socialization only. CONCLUSIONS Higher psychopathology burden was associated with worse adaptive functioning in early adolescence. This association was mediated by weaker dACC-dorsolateral prefrontal cortex functional connectivity underlying modulation of cognitive control in response to contextual contingencies. Our results contribute to the identification of transdiagnostic and developmentally relevant neurocognitive endophenotypes of psychopathology.
Collapse
Affiliation(s)
- Adam Kaminski
- Department of Psychology, Georgetown University, Washington, D.C..
| | - Xiaozhen You
- Children's Research Institute, Children's National Medical Center, Washington, D.C
| | - Kathryn Flaharty
- Department of Psychology, Georgetown University, Washington, D.C
| | - Charlotte Jeppsen
- Children's Research Institute, Children's National Medical Center, Washington, D.C
| | - Sufang Li
- Department of Psychology, Georgetown University, Washington, D.C
| | | | - Madison M Berl
- Children's Research Institute, Children's National Medical Center, Washington, D.C
| | - Lauren Kenworthy
- Children's Research Institute, Children's National Medical Center, Washington, D.C
| | - Chandan J Vaidya
- Department of Psychology, Georgetown University, Washington, D.C.; Children's Research Institute, Children's National Medical Center, Washington, D.C..
| |
Collapse
|
91
|
Comparing the functional neuroanatomy of proactive and reactive control between patients with schizophrenia and healthy controls. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:203-215. [PMID: 36418846 PMCID: PMC10166198 DOI: 10.3758/s13415-022-01036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 11/27/2022]
Abstract
Cognitive control deficits are associated with impaired executive functioning in schizophrenia. The Dual Mechanisms of Control framework suggests that proactive control requires sustained dorsolateral prefrontal activity, whereas reactive control marshals a larger network. However, primate studies suggest these processes are maintained by dual-encoding regions. To distinguish between these theories, we compared the distinctiveness of proactive and reactive control functional neuroanatomy. In a reanalysis of data from a previous study, 47 adults with schizophrenia and 56 controls completed the Dot Pattern Expectancy task during an fMRI scan examining proactive and reactive control in frontoparietal and medial temporal regions. Areas suggesting specialized control or between-group differences were tested for association with symptoms and task performance. Elastic net models additionally explored these areas' predictive abilities regarding performance. Most regions were active in both reactive and proactive control. However, evidence of specialized proactive control was found in the left middle and superior frontal gyri. Control participants showed greater proactive control in the left middle and right inferior frontal gyri. Elastic net models moderately predicted task performance and implicated various frontal gyri regions in control participants, with additional involvement of anterior cingulate and posterior parietal regions for reactive control. Elastic nets for patient participants implicated the inferior and superior frontal gyri, and posterior parietal lobe. Specialized cognitive control was unassociated with either performance or schizophrenia symptomatology. Future work is needed to clarify the distinctiveness of proactive and reactive control, and its role in executive deficits in severe psychopathology.
Collapse
|
92
|
Associations between Elemental Metabolic Dynamics and Default Mode Network Functional Connectivity Are Altered in Autism. J Clin Med 2023; 12:jcm12031022. [PMID: 36769671 PMCID: PMC9917994 DOI: 10.3390/jcm12031022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Autism is a neurodevelopmental condition associated with atypical social communication, cognitive, and sensory faculties. Recent advances in exposure biology suggest that biomarkers of elemental uptake and metabolism measured in hair samples can yield an effective signal predictive of autism diagnosis. Here, we investigated if elemental biomarkers in hair were associated with functional connectivity in regions of the default mode network (DMN) previously linked to autism. In a study sample which included twin pairs with concordant and discordant diagnoses for autism, our analysis of hair samples and neuroimaging data supported two general findings. First, independent of autism diagnosis, we found a broad pattern of association between elemental biomarkers and functional connectivity in the DMN, which primarily involved dynamics in zinc metabolism. Second, we found that associations between the DMN and elemental biomarkers, particularly involving phosphorus, calcium, manganese, and magnesium, differed significantly in autistic participants from control participants. In sum, these findings suggest that functional dynamics in elemental metabolism relate broadly to persistent patterns of functional connectivity in the DMN, and that these associations are altered in the emergence of autism.
Collapse
|
93
|
DiPiero MA, Surgent OJ, Travers BG, Alexander AL, Lainhart JE, Dean Iii DC. Gray matter microstructure differences in autistic males: A gray matter based spatial statistics study. Neuroimage Clin 2022; 37:103306. [PMID: 36587584 PMCID: PMC9817031 DOI: 10.1016/j.nicl.2022.103306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/29/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition. Understanding the brain's microstructure and its relationship to clinical characteristics is important to advance our understanding of the neural supports underlying ASD. In the current work, we implemented Gray-Matter Based Spatial Statistics (GBSS) to examine and characterize cortical microstructure and assess differences between typically developing (TD) and autistic males. METHODS A multi-shell diffusion MRI (dMRI) protocol was acquired from 83 TD and 70 autistic males (5-to-21-years) and fit to the DTI and NODDI models. GBSS was performed for voxelwise analysis of cortical gray matter (GM). General linear models were used to investigate group differences, while age-by-group interactions assessed age-related differences between groups. Within the ASD group, relationships between cortical microstructure and measures of autistic symptoms were investigated. RESULTS All dMRI measures were significantly associated with age across the GM skeleton. Group differences and age-by-group interactions are reported. Group-wise increases in neurite density in autistic individuals were observed across frontal, temporal, and occipital regions of the right hemisphere. Significant age-by-group interactions of neurite density were observed within the middle frontal gyrus, precentral gyrus, and frontal pole. Negative relationships between neurite dispersion and the ADOS-2 Calibrated Severity Scores (CSS) were observed within the ASD group. DISCUSSION Findings demonstrate group and age-related differences between groups in neurite density in ASD across right-hemisphere brain regions supporting cognitive processes. Results provide evidence of altered neurodevelopmental processes affecting GM microstructure in autistic males with implications for the role of cortical microstructure in the level of autistic symptoms. CONCLUSION Using dMRI and GBSS, our findings provide new insights into group and age-related differences of the GM microstructure in autistic males. Defining where and when these cortical GM differences arise will contribute to our understanding of brain-behavior relationships of ASD and may aid in the development and monitoring of targeted and individualized interventions.
Collapse
Affiliation(s)
- Marissa A DiPiero
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Olivia J Surgent
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Brittany G Travers
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew L Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Janet E Lainhart
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Douglas C Dean Iii
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
94
|
Weber KA, Teplin ZM, Wager TD, Law CSW, Prabhakar NK, Ashar YK, Gilam G, Banerjee S, Delp SL, Glover GH, Hastie TJ, Mackey S. Confounds in neuroimaging: A clear case of sex as a confound in brain-based prediction. Front Neurol 2022; 13:960760. [PMID: 36601297 PMCID: PMC9806266 DOI: 10.3389/fneur.2022.960760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Muscle weakness is common in many neurological, neuromuscular, and musculoskeletal conditions. Muscle size only partially explains muscle strength as adaptions within the nervous system also contribute to strength. Brain-based biomarkers of neuromuscular function could provide diagnostic, prognostic, and predictive value in treating these disorders. Therefore, we sought to characterize and quantify the brain's contribution to strength by developing multimodal MRI pipelines to predict grip strength. However, the prediction of strength was not straightforward, and we present a case of sex being a clear confound in brain decoding analyses. While each MRI modality-structural MRI (i.e., gray matter morphometry), diffusion MRI (i.e., white matter fractional anisotropy), resting state functional MRI (i.e., functional connectivity), and task-evoked functional MRI (i.e., left or right hand motor task activation)-and a multimodal prediction pipeline demonstrated significant predictive power for strength (R 2 = 0.108-0.536, p ≤ 0.001), after correcting for sex, the predictive power was substantially reduced (R 2 = -0.038-0.075). Next, we flipped the analysis and demonstrated that each MRI modality and a multimodal prediction pipeline could significantly predict sex (accuracy = 68.0%-93.3%, AUC = 0.780-0.982, p < 0.001). However, correcting the brain features for strength reduced the accuracy for predicting sex (accuracy = 57.3%-69.3%, AUC = 0.615-0.780). Here we demonstrate the effects of sex-correlated confounds in brain-based predictive models across multiple brain MRI modalities for both regression and classification models. We discuss implications of confounds in predictive modeling and the development of brain-based MRI biomarkers, as well as possible strategies to overcome these barriers.
Collapse
Affiliation(s)
- Kenneth A. Weber
- Systems Neuroscience and Pain Lab, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States,*Correspondence: Kenneth A. Weber II
| | - Zachary M. Teplin
- Systems Neuroscience and Pain Lab, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Christine S. W. Law
- Systems Neuroscience and Pain Lab, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Nitin K. Prabhakar
- Division of Physical Medicine and Rehabilitation, Department of Orthopaedic Surgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Yoni K. Ashar
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, United States
| | - Gadi Gilam
- Systems Neuroscience and Pain Lab, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States,The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Scott L. Delp
- Department of Bioengineering and Mechanical Engineering, Stanford University, Palo Alto, CA, United States
| | - Gary H. Glover
- Radiological Sciences Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Trevor J. Hastie
- Department of Statistics, Stanford University, Palo Alto, CA, United States
| | - Sean Mackey
- Systems Neuroscience and Pain Lab, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
95
|
McQuaid GA, Darcey VL, Patterson AE, Rose EJ, VanMeter AS, Fishbein DH. Baseline brain and behavioral factors distinguish adolescent substance initiators and non-initiators at follow-up. Front Psychiatry 2022; 13:1025259. [PMID: 36569626 PMCID: PMC9780121 DOI: 10.3389/fpsyt.2022.1025259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Background Earlier substance use (SU) initiation is associated with greater risk for the development of SU disorders (SUDs), while delays in SU initiation are associated with a diminished risk for SUDs. Thus, identifying brain and behavioral factors that are markers of enhanced risk for earlier SU has major public health import. Heightened reward-sensitivity and risk-taking are two factors that confer risk for earlier SU. Materials and methods We characterized neural and behavioral factors associated with reward-sensitivity and risk-taking in substance-naïve adolescents (N = 70; 11.1-14.0 years), examining whether these factors differed as a function of subsequent SU initiation at 18- and 36-months follow-up. Adolescents completed a reward-related decision-making task while undergoing functional MRI. Measures of reward sensitivity (Behavioral Inhibition System-Behavioral Approach System; BIS-BAS), impulsive decision-making (delay discounting task), and SUD risk [Drug Use Screening Inventory, Revised (DUSI-R)] were collected. These metrics were compared for youth who did [Substance Initiators (SI); n = 27] and did not [Substance Non-initiators (SN); n = 43] initiate SU at follow-up. Results While SI and SN youth showed similar task-based risk-taking behavior, SI youth showed more variable patterns of activation in left insular cortex during high-risk selections, and left anterior cingulate cortex in response to rewarded outcomes. Groups displayed similar discounting behavior. SI participants scored higher on the DUSI-R and the BAS sub-scale. Conclusion Activation patterns in the insula and anterior cingulate cortex may serve as a biomarker for earlier SU initiation. Importantly, these brain regions are implicated in the development and experience of SUDs, suggesting differences in these regions prior to substance exposure.
Collapse
Affiliation(s)
- Goldie A. McQuaid
- Department of Psychology, George Mason University, Fairfax, VA, United States
- Center for Functional and Molecular Imaging, Georgetown University Medical Center, Washington, DC, United States
| | - Valerie L. Darcey
- Center for Functional and Molecular Imaging, Georgetown University Medical Center, Washington, DC, United States
- The Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
| | - Amanda E. Patterson
- Center for Functional and Molecular Imaging, Georgetown University Medical Center, Washington, DC, United States
| | - Emma Jane Rose
- Department of Psychology, The Pennsylvania State University, University Park, PA, United States
| | - Ashley S. VanMeter
- Center for Functional and Molecular Imaging, Georgetown University Medical Center, Washington, DC, United States
| | - Diana H. Fishbein
- Frank Porter Graham Child Development Institute, The University of North Carolina, Chapel Hill, Chapel Hill, NC, United States
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
96
|
Johansen IT, Steen NE, Rødevand L, Werner MCF, Lunding SH, Hjell G, Ormerod MBEG, Agartz I, Melle I, Lagerberg TV, Nerhus M, Andreassen OA. Sex-specific associations between metabolic hormones, severe mental disorders and antipsychotic treatment. Psychoneuroendocrinology 2022; 146:105927. [PMID: 36152455 DOI: 10.1016/j.psyneuen.2022.105927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Metabolic dysregulation has been associated with severe mental disorders (SMD) and with antipsychotic (AP) treatment, but the role of sex is unknown. To identify possible sex-related processes linked to SMD and AP treatment, we investigated sex differences in associations between hormones involved in metabolic regulation in patients with SMD compared to healthy controls (HC) and AP treatment. METHODS We included patients with SMD (N = 1753) and HC (N = 1194) and measured hormones involved in metabolic regulation (insulin, cortisol, thyroid-stimulating hormone (TSH), thyroxine, leptin, adiponectin, testosterone, sex hormone-binding globulin (SHBG), prolactin). Patients were grouped according to use of first-generation AP (N = 163), second-generation AP (N = 1087) or no use of AP (N = 503). Hormones were used one by one as dependent variables in multiple regression analyses with interactions between sex and SMD patients versus HC, and between sex and AP treatment, followed by analyses in males and females separately. RESULTS We found significant interactions between sex and SMD patients versus HC for testosterone, SHBG and adiponectin, with significantly higher testosterone and lower adiponectin levels in females. Furthermore, we found significant interaction between sex and AP groups for TSH, testosterone and insulin, with significantly lower TSH levels in AP-treated females, and lower testosterone and higher insulin levels in AP-treated males. CONCLUSIONS Our findings suggest sex differences in metabolic hormones related to both SMD and AP treatment, indicating sex-dependent mechanisms. Clinicians should be aware of potential sex-specific metabolic changes during AP treatment and experimental studies are warranted to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Ingrid T Johansen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Nils Eiel Steen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Rødevand
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Maren C F Werner
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Synve H Lunding
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gabriela Hjell
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, Ostfold Hospital, Graalum, Norway
| | - Monica B E G Ormerod
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institute & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ingrid Melle
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trine V Lagerberg
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mari Nerhus
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Akershus University Hospital, Division of Mental Health Services, Department for Special Psychiatry, Lorenskog, Norway
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
97
|
Bancelin D, Bachrata B, Bollmann S, de Lima Cardoso P, Szomolanyi P, Trattnig S, Robinson SD. Unsupervised physiological noise correction of functional magnetic resonance imaging data using phase and magnitude information (PREPAIR). Hum Brain Mapp 2022; 44:1209-1226. [PMID: 36401844 PMCID: PMC9875918 DOI: 10.1002/hbm.26152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 10/23/2022] [Indexed: 11/21/2022] Open
Abstract
Of the sources of noise affecting blood oxygen level-dependent functional magnetic resonance imaging (fMRI), respiration and cardiac fluctuations are responsible for the largest part of the variance, particularly at high and ultrahigh field. Existing approaches to removing physiological noise either use external recordings, which can be unwieldy and unreliable, or attempt to identify physiological noise from the magnitude fMRI data. Data-driven approaches are limited by sensitivity, temporal aliasing, and the need for user interaction. In the light of the sensitivity of the phase of the MR signal to local changes in the field stemming from physiological processes, we have developed an unsupervised physiological noise correction method using the information carried in the phase and the magnitude of echo-planar imaging data. Our technique, Physiological Regressor Estimation from Phase and mAgnItude, sub-tR (PREPAIR) derives time series signals sampled at the slice TR from both phase and magnitude images. It allows physiological noise to be captured without aliasing, and efficiently removes other sources of signal fluctuations not related to physiology, prior to regressor estimation. We demonstrate that the physiological signal time courses identified with PREPAIR agree well with those from external devices and retrieve challenging cardiac dynamics. The removal of physiological noise was as effective as that achieved with the most used approach based on external recordings, RETROICOR. In comparison with widely used recording-free physiological noise correction tools-PESTICA and FIX, both performed in unsupervised mode-PREPAIR removed significantly more respiratory and cardiac noise than PESTICA, and achieved a larger increase in temporal signal-to-noise-ratio at both 3 and 7 T.
Collapse
Affiliation(s)
- David Bancelin
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Beata Bachrata
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria,Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal ImagingViennaAustria
| | - Saskia Bollmann
- Centre for Advanced ImagingThe University of QueenslandBrisbaneAustralia
| | - Pedro de Lima Cardoso
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Pavol Szomolanyi
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria,Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal ImagingViennaAustria
| | - Simon Daniel Robinson
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria,Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal ImagingViennaAustria,Centre for Advanced ImagingThe University of QueenslandBrisbaneAustralia,Department of NeurologyMedical University of GrazGrazAustria
| |
Collapse
|
98
|
Rushmore RJ, Bouix S, Kubicki M, Rathi Y, Yeterian E, Makris N. HOA2.0-ComPaRe: A next generation Harvard-Oxford Atlas comparative parcellation reasoning method for human and macaque individual brain parcellation and atlases of the cerebral cortex. Front Neuroanat 2022; 16:1035420. [PMID: 36439195 PMCID: PMC9684647 DOI: 10.3389/fnana.2022.1035420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2023] Open
Abstract
Comparative structural neuroanatomy is a cornerstone for understanding human brain structure and function. A parcellation framework that relates systematically to fundamental principles of histological organization is an essential step in generating structural comparisons between species. In the present investigation, we developed a comparative parcellation reasoning system (ComPaRe), which is a formal ontological system in human and non-human primate brains based on the cortical cytoarchitectonic mapping used for both species as detailed by Brodmann. ComPaRe provides a theoretical foundation for mapping neural systems in humans and other species using neuroimaging. Based on this approach, we revised the methodology of the original Harvard-Oxford Atlas (HOA) system of brain parcellation to produce a comparative framework for the human (hHOA) and the rhesus monkey (mHOA) brains, which we refer to as HOA2.0-ComPaRe. In addition, we used dedicated segmentation software in the publicly available 3D Slicer platform to parcellate an individual human and rhesus monkey brain. This method produces quantitative morphometric parcellations in the individual brains. Based on these parcellations we created a representative template and 3D brain atlas for the two species, each based on a single subject. Thus, HOA2.0-ComPaRe provides a theoretical foundation for mapping neural systems in humans and other species using neuroimaging, while also representing a significant revision of the original human and macaque monkey HOA parcellation schemas. The methodology and atlases presented here can be used in basic and clinical neuroimaging for morphometric (volumetric) analysis, further generation of atlases, as well as localization of function and structural lesions.
Collapse
Affiliation(s)
- Richard Jarrett Rushmore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
- Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, United States
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Software Engineering and Information Technology, École de Technologie Supérieure, Montreal, QC, Canada
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
- Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, United States
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
- Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, United States
| | - Edward Yeterian
- Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychology, Colby College, Waterville, ME, United States
| | - Nikos Makris
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
- Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
99
|
Kumar VJ, Beckmann CF, Scheffler K, Grodd W. Relay and higher-order thalamic nuclei show an intertwined functional association with cortical-networks. Commun Biol 2022; 5:1187. [PMID: 36333448 PMCID: PMC9636420 DOI: 10.1038/s42003-022-04126-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Almost all functional processing in the cortex strongly depends on thalamic interactions. However, in terms of functional interactions with the cerebral cortex, the human thalamus nuclei still partly constitute a terra incognita. Hence, for a deeper understanding of thalamic-cortical cooperation, it is essential to know how the different thalamic nuclei are associated with cortical networks. The present work examines network-specific connectivity and task-related topical mapping of cortical areas with the thalamus. The study finds that the relay and higher-order thalamic nuclei show an intertwined functional association with different cortical networks. In addition, the study indicates that relay-specific thalamic nuclei are not only involved with relay-specific behavior but also in higher-order functions. The study enriches our understanding of interactions between large-scale cortical networks and the thalamus, which may interest a broader audience in neuroscience and clinical research.
Collapse
Affiliation(s)
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Klaus Scheffler
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- Department for Biomedical MagneticResonance, University Hospital Tübingen, Tübingen, Germany
| | - Wolfgang Grodd
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| |
Collapse
|
100
|
Szabo E, Timmers I, Borsook D, Simons LE, Sieberg CB. Altered anterior insula functional connectivity in adolescent and young women with endometriosis-associated pain: Pilot resting-state fMRI study. Eur J Paediatr Neurol 2022; 41:80-90. [PMID: 36375399 PMCID: PMC9722632 DOI: 10.1016/j.ejpn.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Endometriosis is the leading cause of chronic pelvic pain. Alterations in brain functional connectivity have been reported in adult women with endometriosis-associated pain (EAP), however, it is still unknown if similar patterns of changes exist in adolescents. METHODS In this pilot study, resting-state fMRI scans were obtained from 11 adolescent and young women with EAP and 14 healthy female controls. Using a seed-to-voxel approach, we investigated functional connectivity between the anterior insula, medial prefrontal cortex, and the rest of the brain. Furthermore, we explored whether potential functional connectivity differences were correlated with clinical characteristics including disease duration, pain intensity, and different psychosocial factors (pain catastrophizing, fear of pain, functional disability, anxiety, and depression). RESULTS Our findings revealed that patients with EAP demonstrated significantly decreased connectivity between the right anterior insula and two clusters: one in the right cerebellum, and one in the left middle frontal gyrus compared to controls. Additionally, functional connectivity between the right anterior insula and the right cerebellum was positively associated with pain intensity levels. In patients with EAP, brain changes were also correlated with state anxiety and fear of pain. CONCLUSIONS Our results are relevant not only for understanding the brain characteristics underlying EAP at a younger age, but also in enhancing future pain treatment efforts by supporting the involvement of the central nervous system in endometriosis.
Collapse
Affiliation(s)
- Edina Szabo
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA; Biobehavioral Pain Innovations Lab, Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA; Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Inge Timmers
- Department of Rehabilitation Medicine, Maastricht University, Maastricht, the Netherlands; Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - David Borsook
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Department of Anesthesiology, Harvard Medical School, Boston, MA, USA
| | - Laura E Simons
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Christine B Sieberg
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA; Biobehavioral Pain Innovations Lab, Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|