51
|
González-González E, Mendoza-Ramos JL, Pedroza SC, Cuellar-Monterrubio AA, Márquez-Ipiña AR, Lira-Serhan D, Trujillo-de Santiago G, Alvarez MM. Validation of use of the miniPCR thermocycler for Ebola and Zika virus detection. PLoS One 2019; 14:e0215642. [PMID: 31071117 PMCID: PMC6508694 DOI: 10.1371/journal.pone.0215642] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 04/07/2019] [Indexed: 01/16/2023] Open
Abstract
The development of point-of-care (POC) diagnostic systems has received well-deserved attention in recent years in the scientific literature, and many experimental systems show great promise in real settings. However, in the case of an epidemic emergency (or a natural disaster), the first line of response should be based on commercially available and validated resources. Here, we compare the performance and ease of use of the miniPCR, a recently commercially available compact and portable PCR device, and a conventional thermocycler for the diagnostics of viral nucleic acids. We used both thermocyclers to detect and amplify Ebola and Zika DNA sequences of different lengths (in the range of 91 to 300 nucleotides) at different concentrations (in the range of ~50 to 4.0 x 108 DNA copies). Our results suggest that the performance of both thermocyclers is quite similar. Moreover, the portability, ease of use, and reproducibility of the miniPCR makes it a reliable alternative for point-of-care nucleic acid detection and amplification.
Collapse
Affiliation(s)
- Everardo González-González
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, CP, Monterrey, Nuevo León, México
- Departamento de Bioingeniería, Tecnologico de Monterrey, CP, Monterrey, Nuevo León, México
| | - Jackelin Lizeth Mendoza-Ramos
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, CP, Monterrey, Nuevo León, México
- Departamento de Bioingeniería, Tecnologico de Monterrey, CP, Monterrey, Nuevo León, México
| | - Sara Cristina Pedroza
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, CP, Monterrey, Nuevo León, México
- Departamento de Ingeniería Mecátrónica y Eléctrica, Tecnologico de Monterrey, CP, Monterrey, Nuevo León, México
| | - Aimé Alexandra Cuellar-Monterrubio
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, CP, Monterrey, Nuevo León, México
- Departamento de Ingeniería Mecátrónica y Eléctrica, Tecnologico de Monterrey, CP, Monterrey, Nuevo León, México
| | - Alan Roberto Márquez-Ipiña
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, CP, Monterrey, Nuevo León, México
- Departamento de Bioingeniería, Tecnologico de Monterrey, CP, Monterrey, Nuevo León, México
| | - Daniel Lira-Serhan
- Departamento de Ingeniería Mecátrónica y Eléctrica, Tecnologico de Monterrey, CP, Monterrey, Nuevo León, México
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, CP, Monterrey, Nuevo León, México
- Departamento de Ingeniería Mecátrónica y Eléctrica, Tecnologico de Monterrey, CP, Monterrey, Nuevo León, México
| | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, CP, Monterrey, Nuevo León, México
- Departamento de Bioingeniería, Tecnologico de Monterrey, CP, Monterrey, Nuevo León, México
| |
Collapse
|
52
|
Biosensors for Epilepsy Management: State-of-Art and Future Aspects. SENSORS 2019; 19:s19071525. [PMID: 30925837 PMCID: PMC6480455 DOI: 10.3390/s19071525] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
Epilepsy is a serious neurological disorder which affects every aspect of patients’ life, including added socio-economic burden. Unfortunately, only a few suppressive medicines are available, and a complete cure for the disease has not been found yet. Excluding the effectiveness of available therapies, the timely detection and monitoring of epilepsy are of utmost priority for early remediation and prevention. Inability to detect underlying epileptic signatures at early stage causes serious damage to the central nervous system (CNS) and irreversible detrimental variations in the organ system. Therefore, development of a multi-task solving novel smart biosensing systems is urgently required. The present review highlights advancements in state-of-art biosensing technology investigated for epilepsy diseases diagnostics and progression monitoring or both together. State of art epilepsy biosensors are composed of nano-enabled smart sensing platform integrated with micro/electronics and display. These diagnostics systems provide bio-information needed to understand disease progression and therapy optimization timely. The associated challenges related to the development of an efficient epilepsy biosensor and vision considering future prospects are also discussed in this report. This review will serve as a guide platform to scholars for understanding and planning of future research aiming to develop a smart bio-sensing system to detect and monitor epilepsy for point-of-care (PoC) applications.
Collapse
|
53
|
Hong SL, Xiang MQ, Tang M, Pang DW, Zhang ZL. Ebola Virus Aptamers: From Highly Efficient Selection to Application on Magnetism-Controlled Chips. Anal Chem 2019; 91:3367-3373. [PMID: 30740973 DOI: 10.1021/acs.analchem.8b04623] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aptamers for Ebola virus (EBOV) offer a powerful means for prevention and diagnostics. Unfortunately, few aptamers for EBOV have been discovered yet. Herein, assisted by magnetism-controlled selection chips to strictly manipulate selection conditions, a highly efficient aptamer selection platform for EBOV is proposed. With highly stringent selection conditions of rigorous washing, manipulation of minuscule amounts of magnetic beads, and real-time evaluation of the selection effectiveness, the selection performance of the platform was improved significantly. In only three rounds of selection, the high-performance aptamers for EBOV GP and NP proteins were obtained simultaneously, with dissociation constants ( Kd) in the nanomolar range. The aptamer was further applied to the detection of EBOV successfully, with a detection limit of 4.2 ng/mL. The whole detection process that consisted of sample mixing, separation, and signal acquisition was highly integrated and conducted in a magnetism-controlled detection chip, showing high biosafety and great potential for point-of-care detection. The method may open up new avenues for prevention and control of EBOV.
Collapse
Affiliation(s)
- Shao-Li Hong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Meng-Qi Xiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Man Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
54
|
Kaushik A, Mujawar MA. Point of Care Sensing Devices: Better Care for Everyone. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4303. [PMID: 30563249 PMCID: PMC6308549 DOI: 10.3390/s18124303] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 01/21/2023]
Abstract
Improved health management is a key to provide a better health care [...].
Collapse
Affiliation(s)
- Ajeet Kaushik
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University (FIU), Miami, FL 33199, USA.
| | - Mubarak A Mujawar
- Department of Electrical and Computer Engineering, College of Engineering and Computing, Florida International University, Miami, FL 33174, USA.
| |
Collapse
|
55
|
Evans D, Papadimitriou KI, Vasilakis N, Pantelidis P, Kelleher P, Morgan H, Prodromakis T. A Novel Microfluidic Point-of-Care Biosensor System on Printed Circuit Board for Cytokine Detection. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4011. [PMID: 30453609 PMCID: PMC6264023 DOI: 10.3390/s18114011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 01/17/2023]
Abstract
Point of Care (PoC) diagnostics have been the subject of considerable research over the last few decades driven by the pressure to detect diseases quickly and effectively and reduce healthcare costs. Herein, we demonstrate a novel, fully integrated, microfluidic amperometric enzyme-linked immunosorbent assay (ELISA) prototype using a commercial interferon gamma release assay (IGRA) as a model antibody binding system. Microfluidic assay chemistry was engineered to take place on Au-plated electrodes within an assay cell on a printed circuit board (PCB)-based biosensor system. The assay cell is linked to an electrochemical reporter cell comprising microfluidic architecture, Au working and counter electrodes and a Ag/AgCl reference electrode, all manufactured exclusively via standard commercial PCB fabrication processes. Assay chemistry has been optimised for microfluidic diffusion kinetics to function under continual flow. We characterised the electrode integrity of the developed platforms with reference to biological sampling and buffer composition and subsequently we demonstrated concentration-dependent measurements of H₂O₂ depletion as resolved by existing FDA-validated ELISA kits. Finally, we validated the assay technology in both buffer and serum and demonstrate limits of detection comparable to high-end commercial systems with the addition of full microfluidic assay architecture capable of returning diagnostic analyses in approximately eight minutes.
Collapse
Affiliation(s)
- Daniel Evans
- Nanoelectronics & Nanotechnology Research Group, Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.
| | - Konstantinos I Papadimitriou
- Nanoelectronics & Nanotechnology Research Group, Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.
| | - Nikolaos Vasilakis
- Nanoelectronics & Nanotechnology Research Group, Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.
| | - Panagiotis Pantelidis
- Centre for Immunology and Vaccinology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW10 9NH, UK.
- Infection and Immunity, North West London Pathology, Imperial College NHS Trust, Charing Cross Hospital, London W6 8RF, UK.
| | - Peter Kelleher
- Centre for Immunology and Vaccinology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW10 9NH, UK.
- Infection and Immunity, North West London Pathology, Imperial College NHS Trust, Charing Cross Hospital, London W6 8RF, UK.
| | - Hywel Morgan
- Nanoelectronics & Nanotechnology Research Group, Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - Themistoklis Prodromakis
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
56
|
Rhyman L, Tursun M, Abdallah HH, Choong YS, Parlak C, Kharkar P, Ramasami P. Theoretical investigation of the derivatives of favipiravir (T-705) as potential drugs for Ebola virus. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Density functional theory (DFT) method was used to compute the structural and vibrational parameters of favipiravir (T-705) in the gas phase. The functional used was B3LYP in conjuction with the 6–311++G(d,p) basis set. We also computed these parameters for unsubstituted T-705 and derivatives of T-705 by substituting fluorine by chlorine, bromine and the cyanide group. There is a good comparison between the computed and experimental parameters for T-705 and therefore, the predicted data should be reliable for the other compounds for which experimental data is not available. We extended our DFT study to include molecular docking involving the Ebola virus viral protein 35 (VP35). The docking results indicate that the T-705 and its chlorine and bromine analogues have comparable free energy of binding with VP35.
Graphical Abstract:
Collapse
|
57
|
A novel electrochemical DNA biosensor for Ebola virus detection. Anal Biochem 2018; 557:151-155. [DOI: 10.1016/j.ab.2018.06.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/30/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
|
58
|
Abstract
The motivation of this editorial began with a brief introduction of Society for Personalized NanoMedicine [...]
Collapse
|
59
|
Kost GJ. Molecular and point-of-care diagnostics for Ebola and new threats: National POCT policy and guidelines will stop epidemics. Expert Rev Mol Diagn 2018; 18:657-673. [DOI: 10.1080/14737159.2018.1491793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Gerald J. Kost
- Point-of-Care Center for Teaching and Research (POCT•CTRTM), School of Medicine, UC Davis, and Knowledge Optimization®, Davis, CA
| |
Collapse
|
60
|
Kaushik A, Yndart A, Kumar S, Jayant RD, Vashist A, Brown AN, Li CZ, Nair M. A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein. Sci Rep 2018; 8:9700. [PMID: 29946074 PMCID: PMC6018776 DOI: 10.1038/s41598-018-28035-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/14/2018] [Indexed: 12/16/2022] Open
Abstract
This work, as a proof of principle, presents a sensitive and selective electrochemical immunosensor for Zika-virus (ZIKV)-protein detection using a functionalized interdigitated micro-electrode of gold (IDE-Au) array. A miniaturized IDE-Au immunosensing chip was prepared via immobilization of ZIKV specific envelop protein antibody (Zev-Abs) onto dithiobis(succinimidyl propionate) i.e., (DTSP) functionalized IDE-Au (electrode gap/width of 10 µm). Electrochemical impedance spectroscopy (EIS) was performed to measure the electrical response of developed sensing chip as a function of ZIKV-protein concentrations. The results of EIS studies confirmed that sensing chip detected ZIKV-protein selectively and exhibited a detection range from 10 pM to 1 nM and a detection limit of 10 pM along with a high sensitivity of 12 kΩM-1. Such developed ZIKV immune-sensing chip can be integrated with a miniaturized potentiostat (MP)-interfaced with a smartphone for rapid ZIKV-infection detection required for early stage diagnostics at point-of-care application.
Collapse
Affiliation(s)
- Ajeet Kaushik
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA.
| | - Adriana Yndart
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA
| | - Sanjeev Kumar
- Biomedical Instrumentation, CSIR-Central Scientific Instruments Organization, Sector 30-C, Chandigarh, 160030, India
| | - Rahul Dev Jayant
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA
| | - Arti Vashist
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA
| | - Ashley N Brown
- Institute for Therapeutic Innovation, Department of Medicine, College of Medicine, University of Florida, Orlando, Florida, 32827, USA
| | - Chen-Zhong Li
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, Florida, 33174, USA
| | - Madhavan Nair
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199, USA.
| |
Collapse
|
61
|
Colino CI, Millán CG, Lanao JM. Nanoparticles for Signaling in Biodiagnosis and Treatment of Infectious Diseases. Int J Mol Sci 2018; 19:E1627. [PMID: 29857492 PMCID: PMC6032068 DOI: 10.3390/ijms19061627] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 01/09/2023] Open
Abstract
Advances in nanoparticle-based systems constitute a promising research area with important implications for the treatment of bacterial infections, especially against multidrug resistant strains and bacterial biofilms. Nanosystems may be useful for the diagnosis and treatment of viral and fungal infections. Commercial diagnostic tests based on nanosystems are currently available. Different methodologies based on nanoparticles (NPs) have been developed to detect specific agents or to distinguish between Gram-positive and Gram-negative microorganisms. Also, biosensors based on nanoparticles have been applied in viral detection to improve available analytical techniques. Several point-of-care (POC) assays have been proposed that can offer results faster, easier and at lower cost than conventional techniques and can even be used in remote regions for viral diagnosis. Nanoparticles functionalized with specific molecules may modulate pharmacokinetic targeting recognition and increase anti-infective efficacy. Quorum sensing is a stimuli-response chemical communication process correlated with population density that bacteria use to regulate biofilm formation. Disabling it is an emerging approach for combating its pathogenicity. Natural or synthetic inhibitors may act as antibiofilm agents and be useful for treating multi-drug resistant bacteria. Nanostructured materials that interfere with signal molecules involved in biofilm growth have been developed for the control of infections associated with biofilm-associated infections.
Collapse
Affiliation(s)
- Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| | - Carmen Gutiérrez Millán
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
62
|
Hong SL, Zhang YN, Liu YH, Tang M, Pang DW, Wong G, Chen J, Qiu X, Gao GF, Liu W, Bi Y, Zhang ZL. Cellular-Beacon-Mediated Counting for the Ultrasensitive Detection of Ebola Virus on an Integrated Micromagnetic Platform. Anal Chem 2018; 90:7310-7317. [DOI: 10.1021/acs.analchem.8b00513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shao-Li Hong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ya-Nan Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ya-Hua Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Man Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Gary Wong
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - George F. Gao
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
63
|
Wu M, Lai Q, Ju Q, Li L, Yu HD, Huang W. Paper-based fluorogenic devices for in vitro diagnostics. Biosens Bioelectron 2018; 102:256-266. [DOI: 10.1016/j.bios.2017.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/10/2017] [Accepted: 11/01/2017] [Indexed: 12/30/2022]
|
64
|
Ma C, Jing H, Zhang P, Han L, Zhang M, Wang F, Niu S, Shi C. An ultrafast one-step assay for the visual detection of RNA virus. Chem Commun (Camb) 2018. [PMID: 29517791 DOI: 10.1039/c8cc00150b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A one-step, rapid, and visual method was developed for the detection of RNA viruses and a few copies of the Zika RNA virus were directly detected within 25 min by naked-eye observation. This method will prove to be promising for point-of-care testing in out-of-lab and inconvenient settings.
Collapse
Affiliation(s)
- Cuiping Ma
- College of Marine Science and Biological Engineering, Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Hao Jing
- College of Marine Science and Biological Engineering, Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Pansong Zhang
- College of Marine Science and Biological Engineering, Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lingzhi Han
- College of Marine Science and Biological Engineering, Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Meiling Zhang
- College of Marine Science and Biological Engineering, Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Fuxin Wang
- College of Marine Science and Biological Engineering, Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Shuyan Niu
- College of Marine Science and Biological Engineering, Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chao Shi
- College of Life Sciences, Qingdao University, Qingdao, 266071, P. R. China.
| |
Collapse
|
65
|
Area I, NdaÏrou F, J. Nieto J, J. Silva C, F. M. Torres D. Ebola model and optimal control with vaccination constraints. ACTA ACUST UNITED AC 2018. [DOI: 10.3934/jimo.2017054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
66
|
Adetiba E, Olugbara OO, Taiwo TB, Adebiyi MO, Badejo JA, Akanle MB, Matthews VO. Alignment-Free Z-Curve Genomic Cepstral Coefficients and Machine Learning for Classification of Viruses. BIOINFORMATICS AND BIOMEDICAL ENGINEERING 2018. [PMCID: PMC7120486 DOI: 10.1007/978-3-319-78723-7_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Accurate detection of pathogenic viruses has become highly imperative. This is because viral diseases constitute a huge threat to human health and wellbeing on a global scale. However, both traditional and recent techniques for viral detection suffer from various setbacks. In codicil, some of the existing alignment-free methods are also limited with respect to viral detection accuracy. In this paper, we present the development of an alignment-free, digital signal processing based method for pathogenic viral detection named Z-Curve Genomic Cesptral Coefficients (ZCGCC). To evaluate the method, ZCGCC were computed from twenty six pathogenic viral strains extracted from the ViPR corpus. Naïve Bayesian classifier, which is a popular machine learning method was experimentally trained and validated using the extracted ZCGCC and other alignment-free methods in the literature. Comparative results show that the proposed ZCGCC gives good accuracy (93.0385%) and improved performance to existing alignment-free methods.
Collapse
|
67
|
Sareen S, Sood SK, Gupta SK. IoT-based cloud framework to control Ebola virus outbreak. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2018; 9:459-476. [PMID: 32218876 PMCID: PMC7091278 DOI: 10.1007/s12652-016-0427-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/11/2016] [Indexed: 05/10/2023]
Abstract
Ebola is a deadly infectious virus that spreads very quickly through human-to-human transmission and sometimes death. The continuous detection and remote monitoring of infected patients are required in order to prevent the spread of Ebola virus disease (EVD). Healthcare services based on Internet of Things (IoT) and cloud computing technologies are emerging as a more effective and proactive solution which provides remote continuous monitoring of patients. A novel architecture based on Radio Frequency Identification Device (RFID), wearable sensor technology, and cloud computing infrastructure is proposed for the detection and monitoring of Ebola infected patients. The aim of this work is to prevent the spreading of the infection at the early stage of the outbreak. The J48 decision tree is used to evaluate the level of infection in a user depending on his symptoms. RFID is used to automatically sense the close proximity interactions (CPIs) between users. Temporal Network Analysis (TNA) is applied to describe and monitor the current state of the outbreak using the CPI data. The performance and accuracy of our proposed model are evaluated on Amazon EC2 cloud using synthetic data of two million users. Our proposed model provided 94 % accuracy for the classification and 92 % of the resource utilization.
Collapse
Affiliation(s)
- Sanjay Sareen
- Computer Section, Guru Nanak Dev University, Amritsar, Punjab India
- I. K. Gujral Punjab Technical University, Kapurthala, Punjab India
| | - Sandeep K. Sood
- Computer Science and Engineering Department, Guru Nanak Dev University, Regional Campus, Gurdaspur, Punjab India
| | - Sunil Kumar Gupta
- Computer Science and Engineering Department, Beant College of Engineering and Technology, Gurdaspur, Punjab India
| |
Collapse
|
68
|
Hoy CFO, Kushiro K, Takai M. Fabrication and assessment of an electrospun polymeric microfiber-based platform under bulk flow conditions with rapid and efficient antigen capture. Analyst 2018; 143:865-873. [DOI: 10.1039/c7an01366c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A sensitive and rapid membrane capable of antigen capture in 5 seconds compared to a conventional method in 60 minutes.
Collapse
Affiliation(s)
- Carlton F. O. Hoy
- Department of Bioengineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| | - Keiichiro Kushiro
- Department of Bioengineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| | - Madoka Takai
- Department of Bioengineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| |
Collapse
|
69
|
Kononova AA, Sokolova AS, Cheresiz SV, Yarovaya OI, Nikitina RA, Chepurnov AA, Pokrovsky AG, Salakhutdinov NF. N-Heterocyclic borneol derivatives as inhibitors of Marburg virus glycoprotein-mediated VSIV pseudotype entry. MEDCHEMCOMM 2017; 8:2233-2237. [PMID: 30108738 PMCID: PMC6072471 DOI: 10.1039/c7md00424a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
Abstract
There is currently no approved antiviral therapy for treatment of Marburg virus disease (MVD). Although filovirus infection outbreaks are quite rare, the high mortality rates in such outbreaks make the development of anti-filoviral drugs an important goal of medical chemistry and virology. Here, we performed screening of a large library of natural derivatives for their virus entry inhibition activity using pseudotype systems. The bornyl ester derivatives containing saturated N-heterocycles exhibited the highest antiviral activity. It is supposed that compounds with specific inhibitory activity toward MarV-GP-dependent virus entry will inhibit the rVSIV-ΔG-MarV-GP pseudotype much more efficiently than the control rVSIV-ΔG-G pseudotype. At the same time, the compounds similarly inhibiting both pseudotypes will likely affect rVSIV capsid replication or the cellular mechanisms common to the entry of both viruses. Borneol itself is not active against both pseudotypes and is nontoxic, whereas its derivatives have varying toxicity and antiviral activity. Among low-toxic borneol derivatives, six compounds turned out to be relatively specific inhibitors of MarV-GP-mediated infection (SC > 10). Of them, compound 6 containing a methylpiperidine moiety exhibited the highest virus-specific activity. Notably, the virus-specific activity of this compound is twice as high as that of the reference.
Collapse
Affiliation(s)
- A A Kononova
- Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russia .
| | - A S Sokolova
- Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russia .
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch , Russian Academy of Sciences , Lavrentjev Avenue 9 , 630090 , Novosibirsk , Russia
| | - S V Cheresiz
- Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russia .
- Novosibirsk Tuberculosis Research Institute , Ohotskaya St. 81a , 630040 , Novosibirsk , Russia
| | - O I Yarovaya
- Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russia .
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch , Russian Academy of Sciences , Lavrentjev Avenue 9 , 630090 , Novosibirsk , Russia
| | - R A Nikitina
- Scientific Research Institute of Clinical Immunology, Siberian Branch , Academy of Medical Sciences of Russia , Yadrintsevskaya St. 14 , 630099 , Novosibirsk , Russia
- Research Institute of Experimental and Clinical Medicine , Timakova St. 2 , 630117 , Novosibirsk , Russia
| | - A A Chepurnov
- Scientific Research Institute of Clinical Immunology, Siberian Branch , Academy of Medical Sciences of Russia , Yadrintsevskaya St. 14 , 630099 , Novosibirsk , Russia
- Research Institute of Experimental and Clinical Medicine , Timakova St. 2 , 630117 , Novosibirsk , Russia
| | - A G Pokrovsky
- Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russia .
| | - N F Salakhutdinov
- Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russia .
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch , Russian Academy of Sciences , Lavrentjev Avenue 9 , 630090 , Novosibirsk , Russia
| |
Collapse
|
70
|
Colavita F, Biava M, Mertens P, Gilleman Q, Borlon C, Delli Guanti M, Petrocelli A, Cataldi G, Kamara AT, Kamara SA, Konneh K, Vincenti D, Castilletti C, Abdurahman S, Mirazimi A, Capobianchi MR, Ippolito G, Miccio R, Di Caro A. EBOLA Ag K-SeT rapid test: field evaluation in Sierra Leone. Clin Microbiol Infect 2017; 24:653-657. [PMID: 29107122 DOI: 10.1016/j.cmi.2017.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Efficient interruption of Ebola virus disease (EVD) transmission chains critically depends on reliable and fast laboratory diagnosis. We evaluated the performance of the EBOLA Virus Antigen Detection K-SeT (EBOLA Ag K-SeT), a new rapid diagnostic antigen test in field settings. METHODS The study was conducted in a field laboratory located in Freetown (Sierra Leone) by the Italian National Institute for Infectious Diseases 'L. Spallanzani' and the EMERGENCY Onlus NGO. The EBOLA Ag K-SeT was tested on 210 residual plasma samples (EVD prevalence 50%) from patients hospitalized at the EMERGENCY Ebola treatment center in Goderich (Freetown), comparing the results with quantitative real-time PCR. RESULTS Overall, the sensitivity of EBOLA Ag K-SeT was 88.6% (95% confidence interval (CI), 82.5-94.7), and the corresponding specificity was 98.1% (95% CI, 95.5-100.7). The positive and negative predictive values were 97.9% (95% CI, 95.0-100.8) and 89.6% (95% CI, 84-95.2), respectively. The sensitivity strongly increased up to 98.7% (95% CI, 96.1-101.2) for those samples with high virus load (≥6.2 log RNA copies/mL). CONCLUSIONS Our results suggest that EBOLA Ag K-SeT could represent a new effective diagnostic tool for EVD, meeting a need for resource-poor settings and rapid diagnosis for individuals with suspected EVD.
Collapse
Affiliation(s)
- F Colavita
- National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - M Biava
- National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | | | | | - C Borlon
- Coris BioConcept, Gembloux, Belgium
| | | | | | | | - A T Kamara
- EMERGENCY Onlus NGO, Milan, Italy; Diagnostic Ebola Virus Diseases Laboratory, 'Princess Christian Maternity Hospital', Freetown, Sierra Leone
| | - S A Kamara
- EMERGENCY Onlus NGO, Milan, Italy; Diagnostic Ebola Virus Diseases Laboratory, 'Princess Christian Maternity Hospital', Freetown, Sierra Leone
| | - K Konneh
- EMERGENCY Onlus NGO, Milan, Italy; Diagnostic Ebola Virus Diseases Laboratory, 'Princess Christian Maternity Hospital', Freetown, Sierra Leone
| | - D Vincenti
- National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - C Castilletti
- National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - S Abdurahman
- Public Health Agency of Sweden, Stockholm, Sweden
| | - A Mirazimi
- Public Health Agency of Sweden, Stockholm, Sweden; National Veterinary Institute, Uppsala, Sweden; Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - M R Capobianchi
- National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - G Ippolito
- National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - R Miccio
- EMERGENCY Onlus NGO, Milan, Italy
| | - A Di Caro
- National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy.
| |
Collapse
|
71
|
Jung J, Lee J, Shin S, Kim YT. Development of a Telemetric, Miniaturized Electrochemical Amperometric Analyzer. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2416. [PMID: 29065534 PMCID: PMC5677258 DOI: 10.3390/s17102416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023]
Abstract
In this research, we developed a portable, three-electrode electrochemical amperometric analyzer that can transmit data to a PC or a tablet via Bluetooth communication. We performed experiments using an indium tin oxide (ITO) glass electrode to confirm the performance and reliability of the analyzer. The proposed analyzer uses a current-to-voltage (I/V) converter to convert the current generated by the reduction-oxidation (redox) reaction of the buffer solution to a voltage signal. This signal is then digitized by the processor. The configuration of the power and ground of the printed circuit board (PCB) layer is divided into digital and analog parts to minimize the noise interference of each part. The proposed analyzer occupies an area of 5.9 × 3.25 cm² with a current resolution of 0.4 nA. A potential of 0~2.1 V can be applied between the working and the counter electrodes. The results of this study showed the accuracy of the proposed analyzer by measuring the Ruthenium(III) chloride ( Ru III ) concentration in 10 mM phosphate-buffered saline (PBS) solution with a pH of 7.4. The measured data can be transmitted to a PC or a mobile such as a smartphone or a tablet PC using the included Bluetooth module. The proposed analyzer uses a 3.7 V, 120 mAh lithium polymer battery and can be operated for 60 min when fully charged, including data processing and wireless communication.
Collapse
Affiliation(s)
- Jaehyo Jung
- IT Fusion Technology Research Center, Department of IT Fusion Technology, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea.
| | - Jihoon Lee
- IT Fusion Technology Research Center, Department of IT Fusion Technology, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea.
| | - Siho Shin
- IT Fusion Technology Research Center, Department of IT Fusion Technology, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea.
| | - Youn Tae Kim
- IT Fusion Technology Research Center, Department of IT Fusion Technology, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea.
| |
Collapse
|
72
|
Biomedical Applications of Nanotechnology and Nanomaterials. MICROMACHINES 2017; 8:mi8100298. [PMID: 30400488 PMCID: PMC6190473 DOI: 10.3390/mi8100298] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 01/01/2023]
|
73
|
Dickerson MB, Dennis PB, Tondiglia VP, Nadeau LJ, Singh KM, Drummy LF, Partlow BP, Brown DP, Omenetto FG, Kaplan DL, Naik RR. 3D Printing of Regenerated Silk Fibroin and Antibody-Containing Microstructures via Multiphoton Lithography. ACS Biomater Sci Eng 2017; 3:2064-2075. [DOI: 10.1021/acsbiomaterials.7b00338] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Matthew B. Dickerson
- Materials
and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
| | - Patrick B. Dennis
- Materials
and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
| | - Vincent P. Tondiglia
- Materials
and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
| | - Lloyd J. Nadeau
- Materials
and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
| | - Kristi M. Singh
- Materials
and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
| | - Lawrence F. Drummy
- Materials
and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
| | - Benjamin P. Partlow
- Biomedical
Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Dean P. Brown
- Materials
and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
| | - Fiorenzo G. Omenetto
- Biomedical
Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Biomedical
Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Rajesh R. Naik
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
| |
Collapse
|
74
|
Kaushik A, Tiwari S, Jayant RD, Vashist A, Nikkhah-Moshaie R, El-Hage N, Nair M. Electrochemical Biosensors for Early Stage Zika Diagnostics. Trends Biotechnol 2017; 35:308-317. [PMID: 28277248 PMCID: PMC5366270 DOI: 10.1016/j.tibtech.2016.10.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 02/06/2023]
Abstract
Health agencies have declared the recent Zika virus (ZIKV) infection an epidemic and a public health emergency of global concern due to its association with microcephaly and serious neurological disorders. The unavailability of effective drugs, vaccines, and diagnostic tools increases the demand for efficient analytical devices to detect ZIKV infection. However, high costs, longer diagnostic times, and stringent expertise requirements limit the utility of reverse transcriptase-PCR methods for rapid diagnostics. Therefore, developing portable, sensitive, selective, and cost-effective sensing systems to detect ZIKV at picomolar concentrations in biofluids would be a breakthrough in diagnostics and therapeutics. This paper highlights the advancements in developing smart sensing strategies to monitor ZIKV progression, with rapid point-of-care diagnostics as the ultimate aim.
Collapse
Affiliation(s)
- Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Sneham Tiwari
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Rahul D Jayant
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Arti Vashist
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Roozbeh Nikkhah-Moshaie
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Nazira El-Hage
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
75
|
Pleet ML, DeMarino C, Lepene B, Aman MJ, Kashanchi F. The Role of Exosomal VP40 in Ebola Virus Disease. DNA Cell Biol 2017; 36:243-248. [PMID: 28177658 DOI: 10.1089/dna.2017.3639] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ebola virus (EBOV) can cause a devastating hemorrhagic disease, leading to death in a short period of time. After infection, the resulting EBOV disease results in high levels of circulating cytokines, endothelial dysfunction, coagulopathy, and bystander lymphocyte apoptosis in humans and nonhuman primates. The VP40 matrix protein of EBOV is essential for viral assembly and budding from the host cell. Recent data have shown that VP40 exists in the extracellular environment, including in exosomes, and exosomal VP40 can impact the viability of recipient immune cells, including myeloid and T cells, through the regulation of the RNAi and endosomal sorting complexes required for transport pathways. In this study, we discuss the latest findings of the impact of exosomal VP40 on immune cells in vitro and its potential implications for pathogenesis in vivo.
Collapse
Affiliation(s)
- Michelle L Pleet
- 1 Laboratory of Molecular Virology, School of Systems Biology, George Mason University , Manassas, Virginia
| | - Catherine DeMarino
- 1 Laboratory of Molecular Virology, School of Systems Biology, George Mason University , Manassas, Virginia
| | | | - M Javad Aman
- 3 Integrated BioTherapeutics, Inc. , Gaithersburg, Maryland
| | - Fatah Kashanchi
- 1 Laboratory of Molecular Virology, School of Systems Biology, George Mason University , Manassas, Virginia
| |
Collapse
|
76
|
Yoshikawa T, Tamura M, Tokonami S, Iida T. Optical Trap-Mediated High-Sensitivity Nanohole Array Biosensors with Random Nanospikes. J Phys Chem Lett 2017; 8:370-374. [PMID: 28056504 DOI: 10.1021/acs.jpclett.6b02262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We clarify an unconventional principle of the light-driven operation of a biosensor for enhanced sensitivity with the help of random nanospikes added to the surface of a nanohole array. Such a system is capable of optically guiding viruses and trapping them in the vicinity of a highly sensitive site by an anomalous light-induced force arising from random-nanospike-modulated extraordinary optical transmission and the plasmonic mirror image in a virus as a dielectric submicron object. In particular, after guiding the viruses near the apex of nanospikes, there are conditions where the spectral peak shift of extraordinary optical transmission can be greatly increased and reach several hundred nanometers in comparison with that of a conventional nanohole array without random nanospikes. These results will allow for the development of a simple, rapid, and highly sensitive virus detection method based on optical trapping with the help of random-nanospike-modulated extraordinary optical transmission, facilitating convenient medical diagnosis and food inspection.
Collapse
Affiliation(s)
- Takayasu Yoshikawa
- Department of Physical Science, Graduate School of Science and ‡Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mamoru Tamura
- Department of Physical Science, Graduate School of Science and ‡Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shiho Tokonami
- Department of Physical Science, Graduate School of Science and ‡Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takuya Iida
- Department of Physical Science, Graduate School of Science and ‡Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
77
|
Wu Z, Hu J, Zeng T, Zhang ZL, Chen J, Wong G, Qiu X, Liu W, Gao GF, Bi Y, Pang DW. Ultrasensitive Ebola Virus Detection Based on Electroluminescent Nanospheres and Immunomagnetic Separation. Anal Chem 2017; 89:2039-2048. [DOI: 10.1021/acs.analchem.6b04632] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhen Wu
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Jiao Hu
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Tao Zeng
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Zhi-Ling Zhang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Jianjun Chen
- Center
for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- CAS
Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute
of Virology, Chinese Academy of Sciences, Hubei 430071, People’s Republic of China
| | - Gary Wong
- Center
for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Xiangguo Qiu
- Special
Pathogens Program, National Microbiology Laboratory, Public Health
Agency of Canada, Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 3R2, Canada
| | - Wenjun Liu
- Center
for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - George F. Gao
- Center
for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- Shenzhen
Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious
Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, People’s Republic of China
| | - Yuhai Bi
- Center
for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- Shenzhen
Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious
Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, People’s Republic of China
| | - Dai-Wen Pang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
78
|
Balcioglu M, Rana M, Hizir MS, Robertson NM, Haque K, Yigit MV. Rapid Visual Screening and Programmable Subtype Classification of Ebola Virus Biomarkers. Adv Healthc Mater 2017; 6. [PMID: 27990771 DOI: 10.1002/adhm.201600739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/26/2016] [Indexed: 01/27/2023]
Abstract
The massive outbreaks of the highly transmissible and lethal Ebola virus disease were caused by infection with one of the Ebolavirus species. It is vital to develop cost-effective, highly sensitive and selective multitarget biosensing platforms that allow for both the detection and phenotyping. Here, a highly programmable, cost-efficient and multianalyte sensing approach is reported that enables visual detection and differentiation of conserved oligonucleotide regions of all Ebolavirus subtypes known to infect human primates. This approach enables the detection of as little as 400 amols (24 × 106 molecules) of target sequences with the naked eye. Furthermore, the detection assay can be used to classify four virus biomarkers using a single nanoprobe template. This can be achieved by using different combinations of short single stranded initiator molecules, referred to as programming units, which also enable the simultaneous and rapid identification of the four biomarkers in 16 different combinations. The results of 16 × 5 array studies illustrate that the system is extremely selective with no false-positive or false-negative. Finally, the target strands in liquid biopsy mimics prepared from urine specimens are also able to be identified and classified.
Collapse
Affiliation(s)
- Mustafa Balcioglu
- Department of Chemistry; University at Albany; State University of New York; 1400 Washington Avenue Albany NY 12222 USA
| | - Muhit Rana
- Department of Chemistry; University at Albany; State University of New York; 1400 Washington Avenue Albany NY 12222 USA
| | - Mustafa Salih Hizir
- Department of Chemistry; University at Albany; State University of New York; 1400 Washington Avenue Albany NY 12222 USA
| | - Neil M. Robertson
- Department of Chemistry; University at Albany; State University of New York; 1400 Washington Avenue Albany NY 12222 USA
| | - Kashfia Haque
- Department of Chemistry; University at Albany; State University of New York; 1400 Washington Avenue Albany NY 12222 USA
| | - Mehmet V. Yigit
- Department of Chemistry; University at Albany; State University of New York; 1400 Washington Avenue Albany NY 12222 USA
- The RNA Institute; University at Albany; State University of New York; 1400 Washington Avenue Albany NY 12222 USA
| |
Collapse
|
79
|
Shiwani HA, Pharithi RB, Khan B, Egom CBA, Kruzliak P, Maher V, Egom EEA. An update on the 2014 Ebola outbreak in Western Africa. ASIAN PAC J TROP MED 2016; 10:6-10. [PMID: 28107867 DOI: 10.1016/j.apjtm.2016.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/20/2016] [Accepted: 12/02/2016] [Indexed: 11/28/2022] Open
Abstract
The recent Ebola outbreak in Western Africa was the most devastating outbreak witnessed in recent times. There have been remarkable local and international efforts to control the crisis. Ebola Virus Disease is the focus of immense research activity. The progression of events in the region has been evolving swiftly and it is of paramount importance to the medical community to be acquainted with the situation. Over 28000 people were inflicted with the condition, over 11000 have died. Novel data has emerged regarding modes of transmission, providing rationale for recent flare-ups. Similarly, studies on survivors are elucidating the later stages of the disease recovery process. Novel techniques for diagnosis are also discussed. Finally, the current research regarding treatment and vaccine development is reviewed, particularly the implementation of rVSV-ZEBOV vaccination programs.
Collapse
Affiliation(s)
- Haaris A Shiwani
- Department of Clinical Medicine, Education Division, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Rebabonye B Pharithi
- Department of Cardiology, The Adelaide and Meath Hospital Dublin, Incorporating the National Children Hospital, Tallaght, Dublin, 24, Ireland
| | - Barkat Khan
- Department of Cardiology, The Adelaide and Meath Hospital Dublin, Incorporating the National Children Hospital, Tallaght, Dublin, 24, Ireland
| | | | - Peter Kruzliak
- International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Vincent Maher
- Department of Cardiology, The Adelaide and Meath Hospital Dublin, Incorporating the National Children Hospital, Tallaght, Dublin, 24, Ireland
| | - Emmanuel Eroume-A Egom
- Department of Clinical Medicine, Education Division, Trinity College Dublin, The University of Dublin, Dublin, Ireland; Department of Cardiology, The Adelaide and Meath Hospital Dublin, Incorporating the National Children Hospital, Tallaght, Dublin, 24, Ireland; Egom Clinical and Translational Research Services, Dartmouth, NS, Canada.
| |
Collapse
|
80
|
Scagnolari C, Turriziani O, Monteleone K, Pierangeli A, Antonelli G. Consolidation of molecular testing in clinical virology. Expert Rev Anti Infect Ther 2016; 15:387-400. [PMID: 28002969 DOI: 10.1080/14787210.2017.1271711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The development of quantitative methods for the detection of viral nucleic acids have significantly improved our ability to manage disease progression and to assess the efficacy of antiviral treatment. Moreover, major advances in molecular technologies during the last decade have allowed the identification of new host genetic markers associated with antiviral drug response but have also strongly revolutionized the way we see and perform virus diagnostics in the coming years. Areas covered: In this review, we describe the history and development of virology diagnostic methods, dedicating particular emphasis on the gradual evolution and recent advances toward the introduction of multiparametric platforms for the syndromic diagnosis. In parallel, we outline the consolidation of viral genome quantification practice in different clinical settings. Expert commentary: More rapid, accurate and affordable molecular technology can be predictable with particular emphasis on emerging techniques (next generation sequencing, digital PCR, point of care testing and syndromic diagnosis) to simplify viral diagnosis in the next future.
Collapse
Affiliation(s)
- Carolina Scagnolari
- a Laboratory of Virology, Department of Molecular Medicine, and Istituto Pasteur Italia-Cenci Bolognetti Foundation , 'Sapienza' University of Rome , Rome , Italy
| | - Ombretta Turriziani
- a Laboratory of Virology, Department of Molecular Medicine, and Istituto Pasteur Italia-Cenci Bolognetti Foundation , 'Sapienza' University of Rome , Rome , Italy
| | - Katia Monteleone
- a Laboratory of Virology, Department of Molecular Medicine, and Istituto Pasteur Italia-Cenci Bolognetti Foundation , 'Sapienza' University of Rome , Rome , Italy
| | - Alessandra Pierangeli
- a Laboratory of Virology, Department of Molecular Medicine, and Istituto Pasteur Italia-Cenci Bolognetti Foundation , 'Sapienza' University of Rome , Rome , Italy
| | - Guido Antonelli
- a Laboratory of Virology, Department of Molecular Medicine, and Istituto Pasteur Italia-Cenci Bolognetti Foundation , 'Sapienza' University of Rome , Rome , Italy
| |
Collapse
|
81
|
Kaushik A, Vabbina PK, Atluri V, Shah P, Vashist A, Jayant RD, Yandart A, Nair M. Electrochemical monitoring-on-chip (E-MoC) of HIV-infection in presence of cocaine and therapeutics. Biosens Bioelectron 2016; 86:426-431. [PMID: 27419908 PMCID: PMC5028277 DOI: 10.1016/j.bios.2016.06.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Electrochemical monitoring-on-chip (E-MoC)-based approach for rapid assessment of human immunodeficiency virus (HIV)-infection in the presence of cocaine (Coc) and specific drugs namely i.e., tenofovir (Tef), rimcazole (RA) is demonstrated here, for the first time, using electrochemical impedance spectroscopy (EIS). An in-vitro primary human astrocytes (HA) model was developed using a cultureware chip (CC, used for E-MoC) for HIV-infection, Coc exposure and treatment with anti-HIV drug i.e., Tef, and Coc antagonist i.e., RA. The charge transfer resistance (Rct) value of each CC well varies with respect to infection and treatment demonstrated highly responsive sensitivity of developed chip. The results of E-MoC, a proof-of-the concept, suggested that HIV-infection progression due to Coc ingestion and therapeutic effects of highly specific drugs are measurable on the basis of cell electrophysiology. Though, this work needs various molecular biology-based optimizations to promote this technology as an analytical tool for the rapid assessment of HIV-infection in a patient to manage HIV diseases for timely diagnosis. The presented study is based on using CNS cells and efforts are being made to perform this method using peripheral cells such as monocytes derived dendritic cells.
Collapse
Affiliation(s)
- Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Phani Kiran Vabbina
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Venkata Atluri
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Pratikkumar Shah
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Arti Vashist
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Rahul Dev Jayant
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Adriana Yandart
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
82
|
Wu T, Xu T, Xu LP, Huang Y, Shi W, Wen Y, Zhang X. Superhydrophilic cotton thread with temperature-dependent pattern for sensitive nucleic acid detection. Biosens Bioelectron 2016; 86:951-957. [DOI: 10.1016/j.bios.2016.07.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/25/2022]
|
83
|
Kennedy SB, Wasunna CL, Dogba JB, Sahr P, Eastman CB, Bolay FK, Mason GT, Kieh MWS. The laboratory health system and its response to the Ebola virus disease outbreak in Liberia. Afr J Lab Med 2016; 5:509. [PMID: 28879143 PMCID: PMC5433816 DOI: 10.4102/ajlm.v5i3.509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/15/2016] [Indexed: 11/03/2022] Open
Abstract
The laboratory system in Liberia has generally been fragmented and uncoordinated. Accordingly, the country's Ministry of Health established the National Reference Laboratory to strengthen and sustain laboratory services. However, diagnostic testing services were often limited to clinical tests performed in health facilities, with the functionality of the National Reference Laboratory restricted to performing testing services for a limited number of epidemic-prone diseases. The lack of testing capacity in-country for Lassa fever and other haemorrhagic fevers affected the response of the country's health system during the onset of the Ebola virus disease (EVD) outbreak. Based on the experiences of the EVD outbreak, efforts were initiated to strengthen the laboratory system and infrastructure, enhance human resource capacity, and invest in diagnostic services and public health surveillance to inform admittance, treatment, and discharge decisions. In this article, we briefly describe the pre-EVD laboratory capability in Liberia, and extensively explore the post-EVD strengthening initiatives to enhance capacity, mobilise resources and coordinate disaster response with international partners to rebuild the laboratory infrastructure in the country. Now that the EVD outbreak has ended, additional initiatives are needed to revise the laboratory strategic and operational plan for post-EVD relevance, promote continual human resource capacity, institute accreditation and validation programmes, and coordinate the investment strategy to strengthen and sustain the preparedness of the laboratory sector to mitigate future emerging and re-emerging infectious diseases.
Collapse
Affiliation(s)
- Stephen B Kennedy
- Incident Management System, Emergency Operations Center, Ministry of Health, Monrovia, Liberia.,Partnership for Research on Ebola Virus in Liberia, Liberia-US Clinical Research Partnership Program, First Floor, John F. Kennedy Medical Center, Monrovia, Liberia
| | - Christine L Wasunna
- Partnership for Research on Ebola Virus in Liberia, Liberia-US Clinical Research Partnership Program, First Floor, John F. Kennedy Medical Center, Monrovia, Liberia
| | - John B Dogba
- National Reference Laboratory, Ministry of Health, Charlesville, Margibi County, Liberia
| | - Philip Sahr
- Partnership for Research on Ebola Virus in Liberia, Liberia-US Clinical Research Partnership Program, First Floor, John F. Kennedy Medical Center, Monrovia, Liberia.,National Reference Laboratory, Ministry of Health, Charlesville, Margibi County, Liberia
| | - Candace B Eastman
- Africabio Enterprises, Inc., Payne Avenue, Sinkor, Monrovia, Liberia
| | - Fatorma K Bolay
- Partnership for Research on Ebola Virus in Liberia, Liberia-US Clinical Research Partnership Program, First Floor, John F. Kennedy Medical Center, Monrovia, Liberia.,Liberia Institute for Biomedical Research, Ministry of Health, Charlesville, Margibi County, Liberia.,National Research Ethics Board, Partnership for Research on Ebola Virus in Liberia, First Floor, John F. Kennedy Medical Center, Monrovia, Liberia
| | - Gloria T Mason
- National Research Ethics Board, Partnership for Research on Ebola Virus in Liberia, First Floor, John F. Kennedy Medical Center, Monrovia, Liberia
| | - Mark W S Kieh
- Partnership for Research on Ebola Virus in Liberia, Liberia-US Clinical Research Partnership Program, First Floor, John F. Kennedy Medical Center, Monrovia, Liberia
| |
Collapse
|
84
|
Vashist A, Kaushik A, Vashist A, Jayant RD, Tomitaka A, Ahmad S, Gupta YK, Nair M. Recent trends on hydrogel based drug delivery systems for infectious diseases. Biomater Sci 2016; 4:1535-1553. [PMID: 27709137 PMCID: PMC5162423 DOI: 10.1039/c6bm00276e] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Since centuries, the rapid spread and cure of infectious diseases have been a major concern to the progress and survival of humans. These diseases are a global burden and the prominent cause for worldwide deaths and disabilities. Nanomedicine has emerged as the most excellent tool to eradicate and halt their spread. Various nanoformulations (NFs) using advanced nanotechnology are in demand. Recently, hydrogel and nanogel based drug delivery devices have posed new prospects to simulate the natural intelligence of various biological systems. Owing to their unique porous interpenetrating network design, hydrophobic drug incorporation and stimulus sensitivity hydrogels owe excellent potential as targeted drug delivery systems. The present review is an attempt to highlight the recent trends of hydrogel based drug delivery systems for the delivery of therapeutic agents and diagnostics for major infectious diseases including acquired immune deficiency syndrome (AIDS), malaria, tuberculosis, influenza and ebola. Future prospects and challenges are also described.
Collapse
Affiliation(s)
- Arti Vashist
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| | - Ajeet Kaushik
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rahul Dev Jayant
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| | - Asahi Tomitaka
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| | - Sharif Ahmad
- Materials Research Laboratory, Department of Chemistry, New Delhi, 110025, India
| | - Y K Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Madhavan Nair
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| |
Collapse
|
85
|
Kaushik A, Jayant RD, Nair M. Advancements in nano-enabled therapeutics for neuroHIV management. Int J Nanomedicine 2016; 11:4317-25. [PMID: 27621624 PMCID: PMC5012604 DOI: 10.2147/ijn.s109943] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This viewpoint is a global call to promote fundamental and applied research aiming toward designing smart nanocarriers of desired properties, novel noninvasive strategies to open the blood–brain barrier (BBB), delivery/release of single/multiple therapeutic agents across the BBB to eradicate neurohuman immunodeficiency virus (HIV), strategies for on-demand site-specific release of antiretroviral therapy, developing novel nanoformulations capable to recognize and eradicate latently infected HIV reservoirs, and developing novel smart analytical diagnostic tools to detect and monitor HIV infection. Thus, investigation of novel nanoformulations, methodologies for site-specific delivery/release, analytical methods, and diagnostic tools would be of high significance to eradicate and monitor neuroacquired immunodeficiency syndrome. Overall, these developments will certainly help to develop personalized nanomedicines to cure HIV and to develop smart HIV-monitoring analytical systems for disease management.
Collapse
Affiliation(s)
- Ajeet Kaushik
- Center for Personalized NanoMedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Rahul Dev Jayant
- Center for Personalized NanoMedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Madhavan Nair
- Center for Personalized NanoMedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
86
|
Shah K, Maghsoudlou P. Enzyme-linked immunosorbent assay (ELISA): the basics. Br J Hosp Med (Lond) 2016; 77:C98-101. [PMID: 27388394 DOI: 10.12968/hmed.2016.77.7.c98] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Karishma Shah
- Academic Foundation Doctor in the Department of Orthopaedics, Oxford University Clinical Academic Graduate School and Oxford University Hospitals, Oxford
| | - Panagiotis Maghsoudlou
- Academic Foundation Doctor in the Department of Clinical Pharmacology, Guy's and St Thomas' Hospital, London SE1 7EH
| |
Collapse
|
87
|
Cutts T, Grolla A, Jones S, Cook BWM, Qiu X, Theriault SS. Inactivation of Zaire ebolavirus Variant Makona in Human Serum Samples Analyzed by Enzyme-Linked Immunosorbent Assay. J Infect Dis 2016; 214:S218-S221. [PMID: 27571899 DOI: 10.1093/infdis/jiw289] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Personnel deployed to remote areas during infectious disease outbreaks have limited access to mechanical and chemical inactivation resources. The inactivation of infectious agents present in diagnostic samples is critical to ensure the safety of personnel and the containment of the disease. We evaluated the efficacy of thermal inactivation (exposure to 56°C for 1 hour) and chemical inactivation with 0.5% Tween-20 against a high titer of Ebola virus (species Zaire ebolavirus) variant Makona in spiked human serum samples. No surviving virus was revealed by a 50% tissue culture infective dose assay after the combined treatment under laboratory conditions. In-field use of this inactivation protocol during the 2013-2016 West Africa Ebola outbreaks demonstrated readily detectable levels of immunoglobulin G and/or immunoglobulin M in human plasma samples after treatment.
Collapse
Affiliation(s)
- Todd Cutts
- Applied Biosafety Research Program, Canadian Science Centre for Human and Animal Health Applied Biosafety Research Program, JC wilt Infectious Disease Research Centre
| | - Allen Grolla
- Special Pathogens, Canadian Science Centre for Human and Animal Health
| | - Shane Jones
- Special Pathogens, Canadian Science Centre for Human and Animal Health
| | - Bradley W M Cook
- Applied Biosafety Research Program, Canadian Science Centre for Human and Animal Health Applied Biosafety Research Program, JC wilt Infectious Disease Research Centre
| | - Xiangguo Qiu
- Special Pathogens, Canadian Science Centre for Human and Animal Health Department of Medical Microbiology
| | - Steven S Theriault
- Applied Biosafety Research Program, Canadian Science Centre for Human and Animal Health Applied Biosafety Research Program, JC wilt Infectious Disease Research Centre Department of Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
88
|
Boisen ML, Hartnett JN, Goba A, Vandi MA, Grant DS, Schieffelin JS, Garry RF, Branco LM. Epidemiology and Management of the 2013-16 West African Ebola Outbreak. Annu Rev Virol 2016; 3:147-171. [PMID: 27578439 DOI: 10.1146/annurev-virology-110615-040056] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The 2013-16 West African Ebola outbreak is the largest, most geographically dispersed, and deadliest on record, with 28,616 suspected cases and 11,310 deaths recorded to date in Guinea, Liberia, and Sierra Leone. We provide a review of the epidemiology and management of the 2013-16 Ebola outbreak in West Africa aimed at stimulating reflection on lessons learned that may improve the response to the next international health crisis caused by a pathogen that emerges in a region of the world with a severely limited health care infrastructure. Surveillance efforts employing rapid and effective point-of-care diagnostics designed for environments that lack advanced laboratory infrastructure will greatly aid in early detection and containment efforts during future outbreaks. Introduction of effective therapeutics and vaccines against Ebola into the public health system and the biodefense armamentarium is of the highest priority if future outbreaks are to be adequately managed and contained in a timely manner.
Collapse
Affiliation(s)
- M L Boisen
- Corgenix Inc., Broomfield, Colorado 80020.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112; .,Zalgen Labs, LLC, Germantown, Maryland 20876;
| | - J N Hartnett
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112;
| | - A Goba
- Lassa Fever Program, Kenema Government Hospital, Kenema, Sierra Leone.,Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - M A Vandi
- Lassa Fever Program, Kenema Government Hospital, Kenema, Sierra Leone.,Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - D S Grant
- Lassa Fever Program, Kenema Government Hospital, Kenema, Sierra Leone.,Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - J S Schieffelin
- Section of Infectious Diseases, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - R F Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112; .,Zalgen Labs, LLC, Germantown, Maryland 20876;
| | - L M Branco
- Zalgen Labs, LLC, Germantown, Maryland 20876;
| |
Collapse
|
89
|
Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 2016; 45:4074-126. [PMID: 27152673 PMCID: PMC5068136 DOI: 10.1039/c5cs00287g] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides an overview of recent developments in "chemical virology." Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials.
Collapse
Affiliation(s)
- Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. and Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
90
|
Abstract
Ebola virus disease is one of the deadliest pathogens known to man, with a mortality rate between 25-90% depending on the species and outbreak of Ebola. Typically, it presents with fever, headache, voluminous vomiting and diarrhea, and can progress to a hemorrhagic illness; neurologic symptoms, including meningoencephalitis, seizures, and coma, can also occur. Recently, an outbreak occurred in West Africa, affecting > 28,000 people, and killing > 11,000. Owing to the magnitude of this outbreak, and the large number (>17,000) of Ebola survivors, the medical and scientific communities are learning much more about the acute manifestations and sequelae of Ebola. A number of neurologic complications can occur after Ebola, such as seizures, memory loss, headaches, cranial nerve abnormalities, and tremor. Ebola may also persist in some immunologically privileged sites, including the central nervous system, and can rarely lead to relapse in disease. Owing to these findings, it is important that survivors are evaluated and monitored for neurologic symptoms. Much is unknown about this disease, and treatment remains largely supportive; however, with ongoing clinical and basic science, the mechanisms of how Ebola affects the central nervous system and how it persists after acute disease will hopefully become more clear, and better treatments and clinical practices for Ebola patients will be developed.
Collapse
Affiliation(s)
- Bridgette Jeanne Billioux
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Bryan Smith
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
91
|
Dick JE, Hilterbrand AT, Strawsine LM, Upton JW, Bard AJ. Enzymatically enhanced collisions on ultramicroelectrodes for specific and rapid detection of individual viruses. Proc Natl Acad Sci U S A 2016; 113:6403-8. [PMID: 27217569 PMCID: PMC4988591 DOI: 10.1073/pnas.1605002113] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We report the specific collision of a single murine cytomegalovirus (MCMV) on a platinum ultramicroelectrode (UME, radius of 1 μm). Antibody directed against the viral surface protein glycoprotein B functionalized with glucose oxidase (GOx) allowed for specific detection of the virus in solution and a biological sample (urine). The oxidation of ferrocene methanol to ferrocenium methanol was carried out at the electrode surface, and the ferrocenium methanol acted as the cosubstrate to GOx to catalyze the oxidation of glucose to gluconolactone. In the presence of glucose, the incident collision of a GOx-covered virus onto the UME while ferrocene methanol was being oxidized produced stepwise increases in current as observed by amperometry. These current increases were observed due to the feedback loop of ferrocene methanol to the surface of the electrode after GOx reduces ferrocenium methanol back to ferrocene. Negative controls (i) without glucose, (ii) with an irrelevant virus (murine gammaherpesvirus 68), and (iii) without either virus do not display these current increases. Stepwise current decreases were observed for the prior two negative controls and no discrete events were observed for the latter. We further apply this method to the detection of MCMV in urine of infected mice. The method provides for a selective, rapid, and sensitive detection technique based on electrochemical collisions.
Collapse
Affiliation(s)
- Jeffrey E Dick
- Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Adam T Hilterbrand
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Lauren M Strawsine
- Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Jason W Upton
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Allen J Bard
- Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712;
| |
Collapse
|
92
|
Dick JE, Hilterbrand AT, Strawsine LM, Upton JW, Bard AJ. Enzymatically enhanced collisions on ultramicroelectrodes for specific and rapid detection of individual viruses. Proc Natl Acad Sci U S A 2016. [PMID: 27217569 DOI: 10.3969/j.issn.2095-4344.2016.43.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We report the specific collision of a single murine cytomegalovirus (MCMV) on a platinum ultramicroelectrode (UME, radius of 1 μm). Antibody directed against the viral surface protein glycoprotein B functionalized with glucose oxidase (GOx) allowed for specific detection of the virus in solution and a biological sample (urine). The oxidation of ferrocene methanol to ferrocenium methanol was carried out at the electrode surface, and the ferrocenium methanol acted as the cosubstrate to GOx to catalyze the oxidation of glucose to gluconolactone. In the presence of glucose, the incident collision of a GOx-covered virus onto the UME while ferrocene methanol was being oxidized produced stepwise increases in current as observed by amperometry. These current increases were observed due to the feedback loop of ferrocene methanol to the surface of the electrode after GOx reduces ferrocenium methanol back to ferrocene. Negative controls (i) without glucose, (ii) with an irrelevant virus (murine gammaherpesvirus 68), and (iii) without either virus do not display these current increases. Stepwise current decreases were observed for the prior two negative controls and no discrete events were observed for the latter. We further apply this method to the detection of MCMV in urine of infected mice. The method provides for a selective, rapid, and sensitive detection technique based on electrochemical collisions.
Collapse
Affiliation(s)
- Jeffrey E Dick
- Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Adam T Hilterbrand
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Lauren M Strawsine
- Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Jason W Upton
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Allen J Bard
- Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712;
| |
Collapse
|
93
|
Development and Evaluation of a Rapid and Sensitive EBOV-RPA Test for Rapid Diagnosis of Ebola Virus Disease. Sci Rep 2016; 6:26943. [PMID: 27246147 PMCID: PMC4887875 DOI: 10.1038/srep26943] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
Confirming Ebola virus disease (EVD), a deadly infectious disease, requires real-time RT-PCR, which takes up to a few hours to yield results. Therefore, a rapid diagnostic assay is imperative for EVD diagnosis. A rapid nucleic acid test based on recombinase polymerase amplification (EBOV-RPA) was developed to specifically detect the 2014 outbreak strains. The EBOV-RPA assay was evaluated by testing samples from suspected EVD patients in parallel with RT-PCR. An EBOV-RPA, which could be completed in 20 min, was successfully developed. Of 271 patients who tested positive for Ebola virus by RT-PCR, 264 (sensitivity: 97%, 95% CI: 95.5-99.3%) were positive by EBOV-RPA; 101 of 104 patients (specificity: 97%, 95% CI: 93.9-100%) who tested negative by RT-PCR were also negative by EBOV-RPA. The sensitivity values for samples with a Ct value of <34, which accounted for 95.59% of the samples, was 100%. Discordant samples positive by RT-PCR but negative by EBOV-RPA had significantly high Ct values. Results of external quality assessment samples with EBOV-RPA were 100%, consistent with those of RT-PCR. The EBOV-RPA assay showed 97% sensitivity and 97% specificity for all EVD samples tested, making it a rapid and sensitive test for EVD diagnosis.
Collapse
|
94
|
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology. SENSORS 2016; 16:223. [PMID: 26861346 PMCID: PMC4801599 DOI: 10.3390/s16020223] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/02/2016] [Indexed: 12/12/2022]
Abstract
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.
Collapse
|
95
|
Tang J, Huang Y, Liu H, Zhang C, Tang D. Novel glucometer-based immunosensing strategy suitable for complex systems with signal amplification using surfactant-responsive cargo release from glucose-encapsulated liposome nanocarriers. Biosens Bioelectron 2015; 79:508-14. [PMID: 26748368 DOI: 10.1016/j.bios.2015.12.097] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/08/2015] [Accepted: 12/27/2015] [Indexed: 12/11/2022]
Abstract
Methods based on surfactant-responsive controlled release systems of cargoes from nanocontainers have been developed for bioanalytical applications, but most were utilized for drug delivery and a few reports were focused on immunoassays. Herein we design an in situ amplified immunoassay protocol for high-efficient detection of aflatoxins (aflatoxin B1, AFB1 used in this case) based on surfactant-responsive cargo release from glucose-encapsulated liposome nanocarriers with sensitivity enhancement. Initially, biotinylated liposome nanocarrier encapsulated with glucose was synthesized using a reverse-phase evaporation method. Thereafter, the nanocarrier was utilized as the signal-generation tag on capture antibody-coating microplate through classical biotin-avidin linkage after reaction with biotinylated detection antibody. Upon addition of buffered surfactant (1X PBS-Tween 20 buffer) into the medium, the surfactant immediately hydrolyzed the conjugated liposome, and released the encapsulated glucose from the nanocarriers, which could be quantitatively determined by using a low-cost personal glucometer (PGM). The detectable signal increased with the increment of target analyte. Under the optimal conditions, the assay could allow PGM detection toward target AFB1 as low as 0.6 pg mL(-1) (0.6 ppt). Moreover, the methodology also showed good reproducibility and high specificity toward target AFB1 against other mycotoxins and proteins, and was applicable for quantitatively monitoring target AFB1 in the complex systems, e.g., naturally contaminated/spiked peanut samples and serum specimens, with the acceptable results. Taking these advantages of simplification, low cost, universality and sensitivity, our design provides a new horizon for development of advanced immunoassays in future point-of-care testing.
Collapse
Affiliation(s)
- Juan Tang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China.
| | - Yapei Huang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Huiqiong Liu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Cengceng Zhang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|