51
|
Cardoso RDR, Chambo SD, Zaninelli TH, Bianchini BHS, da Silva MDV, Bertozzi MM, Saraiva-Santos T, Franciosi A, Martelossi-Cebinelli G, Garcia-Miguel PE, Borghi SM, Casagrande R, Verri WA. Resolvin D5 (RvD5) Reduces Renal Damage Caused by LPS Endotoxemia in Female Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010121. [PMID: 36615318 PMCID: PMC9821966 DOI: 10.3390/molecules28010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
In self-revolving gram-negative Escherichia coli infection, Resolvin D5 (RvD5) was found to enhance bacteria phagocytosis and reduce the production of inflammatory mediators, contributing to the resolution of infection. LPS (lipopolysaccharide) is a gram-negative bacterial structure product which activates the immune system and, at high doses, leads to endotoxemia. To our knowledge, the effect of RvD5 against LPS endotoxemia has not been investigated to date. Female Swiss mice received an i.p. treatment with RvD5 (0.1, 1 or 10 ng/animal). After 1 h, they were stimulated with LPS (10 mg/kg, i.v.), and samples were collected after additional 6 h. The resulting data demonstrated that RvD5 protected the kidneys (urea and creatinine serum levels) from tissue injury. These effects were related to an improvement in histopathological parameters and a reduction of enzymatic markers of leukocyte infiltration, pro-inflammatory cytokine (IL-1β, TNF-α, and IL-6) production, and oxidative stress. Antioxidant markers were also increased by RvD5, but IL-10 (an anti-inflammatory cytokine) levels were unaltered. We also observed that RvD5 reduced the infiltration of CD45+ hematopoietic cells into the kidneys, reduced the activation of NFκB and promoted the Nrf2 pathway by reducing Keap-1 levels. Our data indicate that RvD5 may be a therapeutic possibility to reduce kidney lesions in LPS endotoxemia.
Collapse
Affiliation(s)
- Renato D. R. Cardoso
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Sandmary D. Chambo
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Tiago H. Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Beatriz H. S. Bianchini
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Matheus Deroco Veloso da Silva
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Mariana M. Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Anelise Franciosi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Pamela E. Garcia-Miguel
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Sergio M. Borghi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86039-440, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
- Correspondence: ; Tel.: +55-43-3371-4979
| |
Collapse
|
52
|
Zhou L, Zhang D, Kong L, Xu X, Gong D. Clinical improvement of sepsis by extracorporeal centrifugal leukocyte apheresis in a porcine model. J Transl Med 2022; 20:538. [PMID: 36419190 PMCID: PMC9682844 DOI: 10.1186/s12967-022-03752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Extracorporeal blood purification therapies targeting removal of the downstream products of the inflammatory cascade in sepsis have failed to improve mortality. As an upstream process of the inflammatory cascade, activated white blood cells should be a potential therapeutic target for sepsis, and the effect of removing such cells by extracorporeal centrifugal leukocytapheresis (LCAP) is worth considering. METHODS Fourteen peritonitis-induced septic pigs were randomly assigned to receive a sham operation (control group, n = 7) or one session of LCAP at 12 h after sepsis induction (treatment group, n = 7). Samples from peripheral blood at various time-points and from LCAP collection were tested. All pigs were euthanized at 48 h, and lung, kidney, liver and spleen tissues were obtained for histopathological examination. RESULTS Two pigs died in accidents before the induction of sepsis, and 12 pigs were finally included for the statistical analysis. A significant clinical improvement was present in the treatment group relative to the control group in terms of the mean arterial blood pressure (MAP), oxygen tension (PaO2), lactic acid level, oxygenation index (PaO2/FiO2), and carbon dioxide tension (PaCO2, P < 0.05). Flow cytometry tests showed that a mixture of B cells, dendritic cells, T helper cells, cytotoxic T cells, monocytes and neutrophils were removed from the circulation by LCAP, resulting in sepsis-induced change trends in the control cells; these change trends were all flattened in the treatment group, although nonsignificantly. CONCLUSIONS LCAP may exert a wide-spectrum and bidirectional immunomodulatory effect on sepsis, accompanied by improvements in hemodynamics and oxygenation status.
Collapse
Affiliation(s)
- Lei Zhou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 Zhongshan East Road, Xuanwu District, Nanjing, 210016, China
| | - Dong Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 Zhongshan East Road, Xuanwu District, Nanjing, 210016, China
| | - Ling Kong
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 Zhongshan East Road, Xuanwu District, Nanjing, 210016, China
| | - Xiaodong Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 Zhongshan East Road, Xuanwu District, Nanjing, 210016, China
| | - Dehua Gong
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, 305 Zhongshan East Road, Xuanwu District, Nanjing, 210016, China.
| |
Collapse
|
53
|
Wang Z, Zhang X, Qi L, Feng W, Gu Y, Ding Y. Olfactory mucosa tissue-derived mesenchymal stem cells lysate ameliorates LPS-induced acute liver injury in mice. BMC Pulm Med 2022; 22:414. [DOI: 10.1186/s12890-022-02204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Acute liver injury (ALI) induced by sepsis seriously endangers the health of human beings every year. Mesenchymal stem cells (MSCs) lysate containing various regulators had a positive effect on anti-inflammation, hoping to provide a promising strategy in ALI.
Methods
Olfactory mucosa-derived mesenchymal stem cells (OM-MSCs) were extracted and identified. The collected OM-MSCs were prepared after repeated freeze–thaw in phosphate buffer solution (PBS). Then, OM-MSCs lysate was filtered for future experiments. To understand the composes of OM-MSCs clearly, we detected the components of OM-MSCs lysate by western blotting. In vitro, OM-MSCs lysate was applied to evaluate the effects on normal human liver cells (LO-2) under stimulation of LPS. Lipopolysaccharide (LPS) was also injected intraperitoneally to build ALI model in mice. We further assessed the anti-inflammatory capacity of OM-MSCs lysate on ALI in vivo by aminotransferase determination, pathology observation, and immunohistochemical staining. Moreover, the immunoblot technique was performed to recognize the changes in inflammatory factors and related proteins.
Results
In this study, we found that OM-MSCs lysate could protect structure effectively, improve the plasma aminotransferases, diminish inflammation by releasing interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β). A significant decrease in tumor necrosis factor-α (TNF-α) also occurred under the treatment of OM-MSCs lysate. In addition, trophic factors originating from OM-MSCs lysate provided a supportive micro-environment for liver recovery. Especially, up-expression of vascular endothelial growth factor (VEGF) in vivo revealed that OM-MSCs might have a great potential for healing.
Conclusions
Our results demonstrated that OM-MSCs lysate could alleviate LPS-induced ALI via decreasing inflammatory cytokines and promoting recovery.
Collapse
|
54
|
Chen M, Su W, Chen F, Lai T, Liu Y, Yu D. Mechanisms underlying the therapeutic effects of 4-octyl itaconate in treating sepsis based on network pharmacology and molecular docking. Front Genet 2022; 13:1056405. [PMID: 36406124 PMCID: PMC9671214 DOI: 10.3389/fgene.2022.1056405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 09/08/2024] Open
Abstract
Objective: Through network pharmacology and molecular docking technology, the hub genes, biological functions, and signaling pathways of 4-Octyl itaconate (4-OI) against sepsis were revealed. Methods: Pathological targets of sepsis were screened using GeneCards and GEO databases. Similarly, the pharmacological targets of 4-OI were obtained through Swiss TargetPrediction (STP), Similarity ensemble approach (SEA), and TargetNet databases. Then, all the potential targets of 4-OI anti-sepsis were screened by the online platform Draw Venn diagram, and the hub genes were screened by Cytoscape software. The identified hub genes were analyzed by GO and KEGG enrichment analysis, protein interaction (PPI) network, and molecular and docking technology to verify the reliability of hub gene prediction, further confirming the target and mechanism of 4-OI in the treatment of sepsis. Results: After the target screening of 4-OI and sepsis, 264 pharmacological targets, 1953 pathological targets, and 72 genes related to 4-OI anti-sepsis were obtained, and eight hub genes were screened, namely MMP9, MMP2, SIRT1, PPARA, PTPRC, NOS3, TLR2, and HSP90AA1. The enrichment analysis results indicated that 4-OI might be involved in regulating inflammatory imbalance, immunosuppression, and oxidative stress in developing sepsis. 4-OI protects multiple organ dysfunction in sepsis by acting on hub genes, and MMP9 is a reliable gene for the prognosis and diagnosis of sepsis. The molecular docking results showed that 4-OI binds well to the hub target of sepsis. Conclusion: 4-OI plays an antiseptic role by regulating MMP9, MMP2, SIRT1, PPARA, PTPRC, NOS3, TLR2 and HSP90AA1. These Hub genes may provide new insights into follow-up research on the target of sepsis treatment.
Collapse
Affiliation(s)
- Maolin Chen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Wenxing Su
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Fangling Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Tianlun Lai
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yilun Liu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Daojiang Yu
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
55
|
Xiao H, Xu X, Du L, Li X, Zhao H, Wang Z, Zhao L, Yang Z, Zhang S, Yang Y, Wang C. Lycorine and organ protection: Review of its potential effects and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154266. [PMID: 35752077 DOI: 10.1016/j.phymed.2022.154266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Multiorgan dysfunction, especially sepsis-related multiorgan damage, remains a major cause of high mortality in the late stages of infection and a great clinical challenge. In recent years, natural drugs have received widespread attention because of their low cost, wide sources, high efficacy, low toxicity, and limited side effects. Lycorine, a natural compound extracted from Amaryllidaceae, exhibits multiple pharmacological activities, including in the regulation of autophagy and the induction of cancer cell apoptosis, and has anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor activities. However, studies on lycorine have mainly focused on its antitumor properties, and research on its use for organ protection, especially in sepsis-related organ injury, is relatively limited. PURPOSE To review and discuss the effects and mechanisms of lycorine in the treatment of multi-organ dysfunction, especially sepsis. METHODS Literature searches in electronic databases, such as Web of Science, Science Direct, PubMed, Google Scholar, and Scopus, were performed using 'Lycorine', 'Amaryllidaceae', 'Pharmacology', 'Pharmacokinetics', 'Anti-inflammation', 'Autophagy', 'Apoptosis', 'Anti-microbial and anti-parasitic', 'Antitumor', 'Organ protection', and 'Sepsis' as keywords, the correlated literature was extracted and conducted from the databases mentioned above. RESULTS By summarizing the progress made in existing research, we found that the general effects of lycorine involve the regulation of autophagy and the induction of cancer cell apoptosis, and anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor effects; through these pathways, the compound can ameliorate organ damage. In addition, lycorine was found to have an important effect on organ damage in sepsis. CONCLUSION Lycorine is a promising natural organ protective agent. This review will provide a new theoretical basis for the treatment of organ protection, especially in sepsis.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Luyang Du
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Xiyang Li
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Shaofei Zhang
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China.
| | - Changyu Wang
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
56
|
Expression of MicroRNAs in Sepsis-Related Organ Dysfunction: A Systematic Review. Int J Mol Sci 2022; 23:ijms23169354. [PMID: 36012630 PMCID: PMC9409129 DOI: 10.3390/ijms23169354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a critical condition characterized by increased levels of pro-inflammatory cytokines and proliferating cells such as neutrophils and macrophages in response to microbial pathogens. Such processes lead to an abnormal inflammatory response and multi-organ failure. MicroRNAs (miRNA) are single-stranded non-coding RNAs with the function of gene regulation. This means that miRNAs are involved in multiple intracellular pathways and thus contribute to or inhibit inflammation. As a result, their variable expression in different tissues and organs may play a key role in regulating the pathophysiological events of sepsis. Thanks to this property, miRNAs may serve as potential diagnostic and prognostic biomarkers in such life-threatening events. In this narrative review, we collect the results of recent studies on the expression of miRNAs in heart, blood, lung, liver, brain, and kidney during sepsis and the molecular processes in which they are involved. In reviewing the literature, we find at least 122 miRNAs and signaling pathways involved in sepsis-related organ dysfunction. This may help clinicians to detect, prevent, and treat sepsis-related organ failures early, although further studies are needed to deepen the knowledge of their potential contribution.
Collapse
|
57
|
Prognostic Value of Albumin-to-Fibrinogen Ratio for 28-Day Mortality among Patients with Sepsis from Various Infection Sites. Mediators Inflamm 2022; 2022:3578528. [PMID: 35990041 PMCID: PMC9385315 DOI: 10.1155/2022/3578528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose This study investigated the prognostic value of the albumin-to-fibrinogen ratio (AFR) in patients with sepsis as a consequence of infection at various sites. Methods A total of 300 patients with sepsis caused by various infection sites, who met the diagnostic criteria for sepsis hospitalized in the intensive care unit, were enrolled in this study. The observational endpoint was 28-day mortality. Cox proportional hazard regression analysis was performed to determine the potential prognostic factors for 28-day mortality in these septic patients. Receiver operating characteristic (ROC) curve analysis was used to evaluate and compare the prognostic factors for 28-day mortality. Results Of 300 participants, 147 died, corresponding to a 28-day mortality of 49% (147/300). Baseline Acute Physiology and Chronic Health Evaluation (APACHE II) score (hazard ratio (HR) 1.18 (95% confidence interval (CI) 1.07–1.30); P < 0.001), baseline lactic acid level (HR 1.27 (95% CI 1.08–1.50); P = 0.005), the presence of septic shock (HR 21.44 (95% CI 2.51–182.76); P = 0.005), and baseline AFR (HR 0.70 (95% CI 0.62–0.80); P < 0.001) were independent prognostic factors for 28-day mortality in patients with sepsis according to multivariate Cox analysis. Baseline AFR was an effective predictor of 28-day mortality, with an area under the ROC curve (AUC) of 0.700, and a specificity and sensitivity of 90.8% and 42.1%, respectively. A low baseline AFR level was associated with increased 28-day sepsis-related mortality. The quadruple index, which included the APACHE II score, lactic acid, septic shock, and AFR, showed a more accurate predictive value for septic patients than the APACHE II score, lactic acid, septic shock, and AFR alone, with an AUC of 0.922, and specificity and sensitivity of 86.9% and 83.6%, respectively. Moreover, the triple index, which included the APACHE II score, lactic acid, and septic shock, showed a significantly lower prognostic value for 28-day mortality compared with the ROC curve of the quadruple index and triple index, with an AUC of 0.877 and specificity and sensitivity of 77.8% and 82.3%, respectively. Conclusions The results of this study demonstrate that AFR is an independent protective factor for predicting 28-day mortality in patients with sepsis due to various infection sites. AFR combined with the APACHE II score, lactic acid, and septic shock showed a higher prognostic value for sepsis prognosis.
Collapse
|
58
|
Schäfer TV, Vakunenkova OA, Ivnitsky JJ, Golovko AI. Gut Barrier in Critical States of the Body. BIOLOGY BULLETIN REVIEWS 2022. [PMCID: PMC9297268 DOI: 10.1134/s2079086422040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intestinal barrier (IB) is a system of diffusion barriers separating the intestinal chyme and blood. The aim of the review is to identify the role of IB dysfunction in the formation of critical states of the body and to substantiate ways to prevent these states. Toxic substances produced by normal intestinal microflora are characterized. The involvement of endotoxin and ammonia in the pathogenesis of sepsis, acute circulatory disorders, secondary acute pulmonary lesions, and acute cerebral insufficiency is shown. Approaches to protect the IB in critical states of the body are proposed.
Collapse
Affiliation(s)
- T. V. Schäfer
- State Scientific Research and Testing Institute of Military Medicine, St. Petersburg, Russia
| | - O. A. Vakunenkova
- Golikov Scientific and Clinical Center of Toxicology, St. Petersburg, Russia
| | - Ju. Ju. Ivnitsky
- Golikov Scientific and Clinical Center of Toxicology, St. Petersburg, Russia
| | - A. I. Golovko
- Golikov Scientific and Clinical Center of Toxicology, St. Petersburg, Russia
| |
Collapse
|
59
|
Zhang J, Luo W, Miao C, Zhong J. Hypercatabolism and Anti-catabolic Therapies in the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome. Front Nutr 2022; 9:941097. [PMID: 35911117 PMCID: PMC9326442 DOI: 10.3389/fnut.2022.941097] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 12/06/2022] Open
Abstract
Owing to the development of intensive care units, many patients survive their initial insults but progress to chronic critical illness (CCI). Patients with CCI are characterized by prolonged hospitalization, poor outcomes, and significant long-term mortality. Some of these patients get into a state of persistent low-grade inflammation, suppressed immunity, and ongoing catabolism, which was defined as persistent inflammation, immunosuppression, and catabolism syndrome (PICS) in 2012. Over the past few years, some progress has been made in the treatment of PICS. However, most of the existing studies are about the role of persistent inflammation and suppressed immunity in PICS. As one of the hallmarks of PICS, hypercatabolism has received little research attention. In this review, we explore the potential pathophysiological changes and molecular mechanisms of hypercatabolism and its role in PICS. In addition, we summarize current therapies for improving the hypercatabolic status and recommendations for patients with PICS.
Collapse
Affiliation(s)
- Jinlin Zhang
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Wenchen Luo
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jing Zhong
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
- Fudan Zhangjiang Institute, Shanghai, China
- Department of Anesthesiology, Zhongshan Wusong Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- *Correspondence: Jing Zhong,
| |
Collapse
|
60
|
Ivnitsky JJ, Schäfer TV, Rejniuk VL, Vakunenkova OA. Secondary Dysfunction of the Intestinal Barrier in the Pathogenesis of Complications of Acute Poisoning. J EVOL BIOCHEM PHYS+ 2022; 58:1075-1098. [PMID: 36061072 PMCID: PMC9420239 DOI: 10.1134/s0022093022040123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022]
Abstract
The last decade has been marked by an exponential increase
in the number of publications on the physiological role of the normal
human gut microbiota. The idea of a symbiotic relationship between
the human organism and normal microbiota of its gastrointestinal
tract has been firmly established as an integral part of the current
biomedical paradigm. However, the type of this symbiosis varies
from mutualism to parasitism and depends on the functional state
of the host organism. Damage caused to the organism by external
agents can lead to the emergence of conditionally pathogenic properties
in the normal gut microbiota, mediated by humoral factors and affecting
the outcome of exogenous exposure. Among the substances produced
by symbiotic microbiota, there are an indefinite number of compounds
with systemic toxicity. Some occur in the intestinal chyme in potentially
lethal amounts in the case they enter the bloodstream quickly. The quick
entry of potential toxicants is prevented by the intestinal barrier
(IB), a set of structural elements separating the intestinal chyme
from the blood. Hypothetically, severe damage to the IB caused by
exogenous toxicants can trigger a leakage and subsequent systemic
redistribution of toxic substances of bacterial origin. Until recently,
the impact of such a redistribution on the outcome of acute exogenous
poisoning remained outside the view of toxicology. The present review
addresses causal relationships between the secondary dysfunction
of the IB and complications of acute poisoning. We characterize
acute systemic toxicity of such waste products of the normal gut microflora
as ammonia and endotoxins, and demonstrate their involvement in
the formation of such complications of acute poisoning as shock,
sepsis, cerebral insufficiency and secondary lung injuries. The
principles of assessing the functional state of the IB and the approaches
to its protection in acute poisoning are briefly considered.
Collapse
Affiliation(s)
- Ju. Ju. Ivnitsky
- Golikov Research Clinical Center of Toxicology, Federal Medical Biological Agency, St. Petersburg, Russia
| | - T. V. Schäfer
- State Scientific Research Test Institute of Military Medicine, Ministry of Defense of the Russian Federation, St. Petersburg, Russia
| | - V. L. Rejniuk
- Golikov Research Clinical Center of Toxicology, Federal Medical Biological Agency, St. Petersburg, Russia
| | - O. A. Vakunenkova
- Golikov Research Clinical Center of Toxicology, Federal Medical Biological Agency, St. Petersburg, Russia
| |
Collapse
|
61
|
Schwertz H, Rowley JW, Portier I, Middleton EA, Tolley ND, Campbell RA, Eustes AS, Chen K, Rondina MT. Human platelets display dysregulated sepsis-associated autophagy, induced by altered LC3 protein-protein interaction of the Vici-protein EPG5. Autophagy 2022; 18:1534-1550. [PMID: 34689707 PMCID: PMC9298447 DOI: 10.1080/15548627.2021.1990669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023] Open
Abstract
Platelets mediate central aspects of host responses during sepsis, an acute profoundly systemic inflammatory response due to infection. Macroautophagy/autophagy, which mediates critical aspects of cellular responses during inflammatory conditions, is known to be a functional cellular process in anucleate platelets, and is essential for normal platelet functions. Nevertheless, how sepsis may alter autophagy in platelets has never been established. Using platelets isolated from septic patients and matched healthy controls, we show that during clinical sepsis, the number of autophagosomes is increased in platelets, most likely due to an accumulation of autophagosomes, some containing mitochondria and indicative of mitophagy. Therefore, autophagy induction or early-stage autophagosome formation (as compared to decreased later-stage autophagosome maturation or autophagosome-late endosome/lysosome fusion) is normal or increased. This was consistent with decreased fusion of autophagosomes with lysosomes in platelets. EPG5 (ectopic P-granules autophagy protein 5 homolog), a protein essential for normal autophagy, expression did increase, while protein-protein interactions between EPG5 and MAP1LC3/LC3 (which orchestrate the fusion of autophagosomes and lysosomes) were significantly reduced in platelets during sepsis. Furthermore, data from a megakaryocyte model demonstrate the importance of TLR4 (toll like receptor 4), LPS-dependent signaling for regulating this mechanism. Similar phenotypes were also observed in platelets isolated from a patient with Vici syndrome: an inherited condition caused by a naturally occurring, loss-of-function mutation in EPG5. Together, we provide evidence that autophagic functions are aberrant in platelets during sepsis, due in part to reduced EPG5-LC3 interactions, regulated by TLR4 engagement, and the resultant accumulation of autophagosomes.Abbreviations: ACTB: beta actin; CLP: cecal ligation and puncture; Co-IP: co-immunoprecipitation; DAP: death associated protein; DMSO: dimethyl sulfoxide; EPG5: ectopic P-granules autophagy protein 5 homolog; ECL: enhanced chemiluminescence; HBSS: Hanks' balanced salt solution; HRP: horseradish peroxidase; ICU: intensive care unit; LPS: lipopolysaccharide; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MKs: megakaryocytes; PFA: paraformaldehyde; PBS: phosphate-buffered saline; PLA: proximity ligation assay; pRT-PCR: quantitative real-time polymerase chain reaction; RT: room temperature; SQSTM1/p62: sequestosome 1; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TLR4: toll like receptor 4; TEM: transmission electron microscopy; WGA: wheat germ agglutinin.
Collapse
Affiliation(s)
- Hansjörg Schwertz
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Work Wellness Clinic, University of Utah, Salt Lake City, UT, USA
- Division of Occupational Medicine, University of Utah, Salt Lake City, UT, USA
- Occupational Medicine, Billings Clinic Bozeman, Bozeman, MT, USA
| | - Jesse W. Rowley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Division of Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Irina Portier
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth A. Middleton
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Division of Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Neal D. Tolley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Robert A. Campbell
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Departments of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Alicia S. Eustes
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Iowa in Iowa City, IA, USA
| | - Karin Chen
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children’s Hospital, Seattle, WA, USA
| | - Matthew T. Rondina
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Departments of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, Salt Lake City, UT84112, USA
| |
Collapse
|
62
|
Weckx R, Goossens C, Derde S, Pauwels L, Vander Perre S, Van den Berghe G, Langouche L. Efficacy and safety of ketone ester infusion to prevent muscle weakness in a mouse model of sepsis-induced critical illness. Sci Rep 2022; 12:10591. [PMID: 35732826 PMCID: PMC9217969 DOI: 10.1038/s41598-022-14961-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/15/2022] [Indexed: 02/03/2023] Open
Abstract
In septic mice, 3-hydroxybutyrate-sodium-salt has shown to partially prevent sepsis-induced muscle weakness. Although effective, the excessive sodium load was toxic. We here investigated whether ketone ester 3-hydroxybutyl-3-hydroxybutanoate (3HHB) was a safer alternative. In a mouse model of abdominal sepsis, the effects of increasing bolus doses of 3HHB enantiomers on mortality, morbidity and muscle force were investigated (n = 376). Next, plasma 3HB- clearance after bolus d-3HHB was investigated (n = 27). Subsequently, in septic mice, the effect on mortality and muscle force of a continuous d,l-3HHB infusion was investigated (n = 72). In septic mice, as compared with placebo, muscle force was increased at 20 mmol/kg/day l-3HHB and at 40 mmol/kg/day d- and d,l-3HHB. However, severity of illness and mortality was increased by doubling the effective bolus doses. Bolus 3HHB caused a higher 3HB− plasma peak and slower clearance with sepsis. Unlike bolus injections, continuous infusion of d,l-3HHB did not increase severity of illness or mortality, while remaining effective in improving muscle force. Treatment of septic mice with the ketone ester 3HHB partly prevented muscle weakness. Toxicity of 3HHB administered as bolus was completely avoided by continuous infusion of the same dose. Whether continuous infusion of ketone esters represents a promising intervention to also prevent ICU-acquired weakness in human patients should be investigated.
Collapse
Affiliation(s)
- Ruben Weckx
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 bus 503, 3000, Leuven, Belgium
| | - Chloë Goossens
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 bus 503, 3000, Leuven, Belgium
| | - Sarah Derde
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 bus 503, 3000, Leuven, Belgium
| | - Lies Pauwels
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 bus 503, 3000, Leuven, Belgium
| | - Sarah Vander Perre
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 bus 503, 3000, Leuven, Belgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 bus 503, 3000, Leuven, Belgium
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 bus 503, 3000, Leuven, Belgium.
| |
Collapse
|
63
|
Yuan-Yuan X, Xu CZ, Liang YF, Jin DQ, Ding J, Sheng Y, Zhang L, Deng F. Ascorbic acid and hydrocortisone synergistically inhibit septic organ injury via improving oxidative stress and inhibiting inflammation. Immunopharmacol Immunotoxicol 2022; 44:786-794. [PMID: 35635075 DOI: 10.1080/08923973.2022.2082978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The current study aimed to investigate the effect of the combination of ascorbic acid (AscA) and hydrocortisone (Hyd) on septic organ injury and its potential mechanism. METHOD Sepsis was induced in mice by a single intraperitoneal injection of lipopolysaccharides. RESULTS AscA and Hyd combined showed more effective protection of the injured liver and kidney in septic mice by decreasing ALT, AST, BUN and SCr and ameliorating pathological manifestations than Hyd or AscA alone. AscA showed a mild inhibitory effect on the secretion of proinflammatory cytokines (TNF-α, IL-1β and IL-6). However, Hyd showed a weak regulatory effect on septic oxidative stress markers (MDA, SOD and GSH-Px). However, the combination of AscA and Hyd showed a more powerful inhibitory effect on the septic inflammatory response and oxidative stress than Hyd or AscA alone by decreasing TNF-α, IL-1β and IL-6 and regulating MDA, SOD and GSH. In an in vitro study, cotreatment of RAW 264.7 macrophages with Hyd and AscA sharply reduced reactive oxygen species (ROS) generation and synergistically inhibited TNF-α, IL-1β and IL-6 secretion, which could be abolished by additional stimulation with the ROS donor 3-nitropropionic acid (3-NP). As expected, cotreatment of macrophages with Hyd and AscA synergistically inhibited the activation of p38 MAPK and p-p65, and the effect could be reversed by additional stimulation with 3-NP. CONCLUSIONS AscA and Hyd synergistically protect the kidney and liver from injury by inhibiting the inflammatory response and oxidative stress. The powerful inhibitory effects of AscA on oxidative stress contribute to the synergistic anti-inflammatory action.
Collapse
Affiliation(s)
- Xu Yuan-Yuan
- Department of Pediatric Critical Care Medicine, Affiliated Provincial Children's Hospital of Anhui Medical University, Wangjiang East Road No.39, Hefei, 230051, China
| | - Cheng-Zhu Xu
- The Second Clinical Medical College of Anhui Medical University, Meishan Road No.81, Hefei, 230032, China
| | - You-Feng Liang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Jixi Road No.218, Hefei, 230022, China
| | - Dan-Qun Jin
- Department of Pediatric Critical Care Medicine, Affiliated Provincial Children's Hospital of Anhui Medical University, Wangjiang East Road No.39, Hefei, 230051, China
| | - Jie Ding
- Department of Pediatric Critical Care Medicine, Affiliated Provincial Children's Hospital of Anhui Medical University, Wangjiang East Road No.39, Hefei, 230051, China
| | - Yao Sheng
- Department of Pediatric Critical Care Medicine, Affiliated Provincial Children's Hospital of Anhui Medical University, Wangjiang East Road No.39, Hefei, 230051, China
| | - Le Zhang
- Department of Pediatric Critical Care Medicine, Affiliated Provincial Children's Hospital of Anhui Medical University, Wangjiang East Road No.39, Hefei, 230051, China
| | - Fang Deng
- Department of Pediatric Nephrology, Affiliated Provincial Children's Hospital of Anhui Medical University, Wangjiang East Road No.39, Hefei, 230051, China
| |
Collapse
|
64
|
Kozakov K, Philipp A, Lunz D, Lubnow M, Provaznik Z, Keyser A, Rupprecht L, Schmid C, Schopka S. Multi-organ dysfunction syndrome in patients undergoing extracorporeal life support. Artif Organs 2022; 46:1912-1922. [PMID: 35470442 DOI: 10.1111/aor.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/30/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Multiple organ failure is a common complication in patients undergoing ECLS significantly affecting patient outcomes. Gaining knowledge about the mechanisms of onset, clinical course, risk factors, and potential therapeutic targets is highly desirable. METHODS Data of 354 patients undergoing ECLS with one-, two, three-, and four organ failures were retrospectively analyzed. Incidence of multiple organ dysfunction (MODS), its impact on survival, risk factors for its occurrence, and the impact of proinflammatory mediators on the occurrence of MODS in patients undergoing ECLS were investigated. RESULTS The median follow-up was 66 (IQR 6; 820) days. 245 (69.2%) patients could be weaned from ECLS, 30-day survival and 1-year survival were 194 (54.1%) and 157 (44.4%), respectively. The duration of mechanical support was 4 (IQR 2; 7) days in the median. Increasing severity of MODS resulted in significant prolongation of mechanical circulatory support and worsening of the outcome. Liver dysfunction had the strongest impact on patient mortality (OR = 2.5) and survival time (19 vs 367 days). The serum concentration of analyzed interleukins rose significantly with each, additional organ affected by dysfunction (p < 0.001). All analyzed proinflammatory cytokines showed significant predictivity relative to the occurrence of MODS with interleukin 8 serum level prior to ECLS showing the strongest predictive potential for the occurrence of MODS (AUC 0.78). CONCLUSION MODS represents a frequent complication in patients undergoing ECLS with a significant impact on survival. Proinflammatory cytokines show prognostic capacity regarding the occurrence and severity of multi-organ dysfunction.
Collapse
Affiliation(s)
- Kostiantyn Kozakov
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Alois Philipp
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Dirk Lunz
- Department of Anaesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | - Matthias Lubnow
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Zdenek Provaznik
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Andreas Keyser
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Leopold Rupprecht
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Simon Schopka
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
65
|
Inflammation: A New Look at an Old Problem. Int J Mol Sci 2022; 23:ijms23094596. [PMID: 35562986 PMCID: PMC9100490 DOI: 10.3390/ijms23094596] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Pro-inflammatory stress is inherent in any cells that are subject to damage or threat of damage. It is defined by a number of universal components, including oxidative stress, cellular response to DNA damage, unfolded protein response to mitochondrial and endoplasmic reticulum stress, changes in autophagy, inflammasome formation, non-coding RNA response, formation of an inducible network of signaling pathways, and epigenetic changes. The presence of an inducible receptor and secretory phenotype in many cells is the cause of tissue pro-inflammatory stress. The key phenomenon determining the occurrence of a classical inflammatory focus is the microvascular inflammatory response (exudation, leukocyte migration to the alteration zone). This same reaction at the systemic level leads to the development of life-critical systemic inflammation. From this standpoint, we can characterize the common mechanisms of pathologies that differ in their clinical appearance. The division of inflammation into alternative variants has deep evolutionary roots. Evolutionary aspects of inflammation are also described in the review. The aim of the review is to provide theoretical arguments for the need for an up-to-date theory of the relationship between key human pathological processes based on the integrative role of the molecular mechanisms of cellular and tissue pro-inflammatory stress.
Collapse
|
66
|
Alves GF, Aimaretti E, Einaudi G, Mastrocola R, de Oliveira JG, Collotta D, Porchietto E, Aragno M, Cifani C, Sordi R, Thiemermann C, Fernandes D, Collino M. Pharmacological Inhibition of FAK-Pyk2 Pathway Protects Against Organ Damage and Prolongs the Survival of Septic Mice. Front Immunol 2022; 13:837180. [PMID: 35178052 PMCID: PMC8843946 DOI: 10.3389/fimmu.2022.837180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/14/2022] [Indexed: 12/29/2022] Open
Abstract
Sepsis and septic shock are associated with high mortality and are considered one of the major public health concerns. The onset of sepsis is known as a hyper-inflammatory state that contributes to organ failure and mortality. Recent findings suggest a potential role of two non-receptor protein tyrosine kinases, namely Focal adhesion kinase (FAK) and Proline-rich tyrosine kinase 2 (Pyk2), in the inflammation associated with endometriosis, cancer, atherosclerosis and asthma. Here we investigate the role of FAK-Pyk2 in the pathogenesis of sepsis and the potential beneficial effects of the pharmacological modulation of this pathway by administering the potent reversible dual inhibitor of FAK and Pyk2, PF562271 (PF271) in a murine model of cecal ligation and puncture (CLP)-induced sepsis. Five-month-old male C57BL/6 mice underwent CLP or Sham surgery and one hour after the surgical procedure, mice were randomly assigned to receive PF271 (25 mg/kg, s.c.) or vehicle. Twenty-four hours after surgery, organs and plasma were collected for analyses. In another group of mice, survival rate was assessed every 12 h over the subsequent 5 days. Experimental sepsis led to a systemic cytokine storm resulting in the formation of excessive amounts of both pro-inflammatory cytokines (TNF-α, IL-1β, IL-17 and IL-6) and the anti-inflammatory cytokine IL-10. The systemic inflammatory response was accompanied by high plasma levels of ALT, AST (liver injury), creatinine, (renal dysfunction) and lactate, as well as a high, clinical severity score. All parameters were attenuated following PF271 administration. Experimental sepsis induced an overactivation of FAK and Pyk2 in liver and kidney, which was associated to p38 MAPK activation, leading to increased expression/activation of several pro-inflammatory markers, including the NLRP3 inflammasome complex, the adhesion molecules ICAM-1, VCAM-1 and E-selectin and the enzyme NOS-2 and myeloperoxidase. Treatment with PF271 inhibited FAK-Pyk2 activation, thus blunting the inflammatory abnormalities orchestrated by sepsis. Finally, PF271 significantly prolonged the survival of mice subjected to CLP-sepsis. Taken together, our data show for the first time that the FAK-Pyk2 pathway contributes to sepsis-induced inflammation and organ injury/dysfunction and that the pharmacological modulation of this pathway may represents a new strategy for the treatment of sepsis.
Collapse
Affiliation(s)
- Gustavo Ferreira Alves
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy.,Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giacomo Einaudi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Debora Collotta
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy
| | - Elisa Porchietto
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Regina Sordi
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Christoph Thiemermann
- William Harvey Research Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Daniel Fernandes
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Massimo Collino
- Department of Neurosciences (Rita Levi Montalcini), University of Turin, Turin, Italy
| |
Collapse
|
67
|
Zeng Y, Ma W, Ma C, Ren X, Wang Y. Inhibition of TXNDC5 attenuates lipopolysaccharide-induced septic shock by altering inflammatory responses. J Transl Med 2022; 102:422-431. [PMID: 34864825 DOI: 10.1038/s41374-021-00711-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Sepsis and its severe form, septic shock, represent the leading cause of death among hospitalized patients. Thioredoxin is a ubiquitous protein essential for cellular redox balance and its aberrant expression is associated with a wide spectrum of inflammation-related pathological conditions. The current study aimed to compare the expression of thioredoxin domain containing 5 (TXNDC5) in septic patients with or without septic shock and to explore the potential regulatory effects of TXNDC5 in sepsis. We analyzed the RNA expression data downloaded from the Gene Expression Omnibus database and measured the plasma level of TXNDC5 in septic patients. The results showed that TXNDC5 was upregulated in patients with septic shock compared to septic patients without shock or healthy controls. We further treated wild-type mice and cultured macrophages with lipopolysaccharide (LPS) and found that TXNDC5 was highly expressed in mice with LPS-induced sepsis and macrophages subjected to LPS stimulation compared to corresponding controls. Then a mouse strain with targeted depletion of Txndc5 was generated. Txndc5 depletion reduced inflammatory cytokine production and affected the recruitment of macrophages and neutrophils into the blood and peritoneum of mice challenged with LPS. Further analysis revealed that TXNDC5 inhibition alleviated LPS-induced sepsis by inhibiting the NF-κB signaling pathway. In summary, these findings suggested that the inhibition of TXNDC5 may be a potential approach to treat sepsis and related syndromes.
Collapse
Affiliation(s)
- Yanping Zeng
- Department of ICU, Shaoxing Central Hospital Medical Alliance General Hospital, Shaoxing, Zhejiang, 312030, China.
| | - Weixing Ma
- Department of ICU, Shaoxing Central Hospital Medical Alliance General Hospital, Shaoxing, Zhejiang, 312030, China
| | - Cheng Ma
- Department of ICU, Shaoxing Central Hospital Medical Alliance General Hospital, Shaoxing, Zhejiang, 312030, China
| | - Xiaohui Ren
- Department of ICU, Shaoxing Central Hospital Medical Alliance General Hospital, Shaoxing, Zhejiang, 312030, China
| | - Yan Wang
- Department of ICU, Shaoxing Central Hospital Medical Alliance General Hospital, Shaoxing, Zhejiang, 312030, China
| |
Collapse
|
68
|
Zhu Z, Chambers S, Zeng Y, Bhatia M. Gases in Sepsis: Novel Mediators and Therapeutic Targets. Int J Mol Sci 2022; 23:3669. [PMID: 35409029 PMCID: PMC8998565 DOI: 10.3390/ijms23073669] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis, a potentially lethal condition resulting from failure to control the initial infection, is associated with a dysregulated host defense response to pathogens and their toxins. Sepsis remains a leading cause of morbidity, mortality and disability worldwide. The pathophysiology of sepsis is very complicated and is not yet fully understood. Worse still, the development of effective therapeutic agents is still an unmet need and a great challenge. Gases, including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S), are small-molecule biological mediators that are endogenously produced, mainly by enzyme-catalyzed reactions. Accumulating evidence suggests that these gaseous mediators are widely involved in the pathophysiology of sepsis. Many sepsis-associated alterations, such as the elimination of invasive pathogens, the resolution of disorganized inflammation and the preservation of the function of multiple organs and systems, are shaped by them. Increasing attention has been paid to developing therapeutic approaches targeting these molecules for sepsis/septic shock, taking advantage of the multiple actions played by NO, CO and H2S. Several preliminary studies have identified promising therapeutic strategies for gaseous-mediator-based treatments for sepsis. In this review article, we summarize the state-of-the-art knowledge on the pathophysiology of sepsis; the metabolism and physiological function of NO, CO and H2S; the crosstalk among these gaseous mediators; and their crucial effects on the development and progression of sepsis. In addition, we also briefly discuss the prospect of developing therapeutic interventions targeting these gaseous mediators for sepsis.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Stephen Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| | - Yiming Zeng
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| |
Collapse
|
69
|
Nedel WL, Strogulski NR, Kopczynski A, Rodolphi MS, Montes THM, Júnior JA, Friedman G, Portela LV. Association Between Hyperlactatemia, Perfusional Parameters, and Lymphocyte Mitochondrial Dysfunction in Septic Shock Patients. Shock 2022; 57:378-383. [PMID: 34628453 DOI: 10.1097/shk.0000000000001868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION In septic shock, mitochondrial dysfunction, and hypoperfusion are the main triggers of multi-organ failure. Little is known about the crosstalk between mitochondrial dysfunction and hemodynamic alterations, especially in the post-resuscitation phase. Here, we assess whether hypoperfusion and lactate levels are associated with oxygen consumption linked to mitochondrial bioenergetic activity in lymphocytes of patients admitted with septic shock. PATIENTS AND METHODS Prospective cohort study in patients with septic shock defined as the requirement of vasopressors to maintain a mean arterial pressure 65 mm Hg after initial fluid administration. Basal mitochondrial and Complex I respiration was measured to evaluate mitochondrial activity. Both variables and capillary refill time were compared with arterial lactate post-fluid resuscitation. We also compared mitochondrial activity measurements between patients with and without hypoperfusion status. RESULTS A total of 90 patients were included in analysis. The median arterial lactate at the time of septic shock diagnosis was 2.0 mmol/Dl (IQR 1.3-3.0). Baseline respiration at the time of septic shock diagnosis was correlated with lactate (Spearman -0.388, 95% CI -0.4893 to -0.1021; P = 0.003), as well as Complex I respiration (Spearman -0.403, 95% CI -0.567 to -0.208; P < 0.001). Patients with hypoperfusion status had no difference in basal respiration when compared with patients who did not have hypoperfusion status (P = 0.22) nor in Complex I respiration (P = 0.09). CONCLUSION Changes in lymphocytic mitochondrial metabolism are associated with post-resuscitation arterial lactate in septic shock; however, they are not associated with the presence of a hypoperfusional status. In this scenario, it is therefore suggested that systemic perfusion and mitochondrial metabolism have different courses.
Collapse
Affiliation(s)
- Wagner Luis Nedel
- Intensive Care Unit, Hospital Nossa Senhora da Conceição, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| | - Nathan Ryzewski Strogulski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| | - Afonso Kopczynski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| | - Marcelo Salimen Rodolphi
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| | - Thiago Hermes Maeso Montes
- Intensive Care Unit, Hospital Nossa Senhora da Conceição, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| | - Jose Abruzzi Júnior
- Intensive Care Unit, Hospital Nossa Senhora da Conceição, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| | - Gilberto Friedman
- Programa de Pós-Graduação em Pneumologia, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| | - Luis Valmor Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
70
|
Macrophage Migration Inhibitory Factor Provides A Predictive Performance of Septic Acute Kidney Injury. Shock 2022; 57:666-671. [PMID: 35234206 DOI: 10.1097/shk.0000000000001918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Septic acute kidney injury (AKI) is a common condition in ICU with poor outcomes. Septic AKI patients have a progressively decreased urine output and increased serum creatinine. However, urine volume and serum creatinine showed poor sensitivity to early diagnosis of septic AKI. Searching for potential biomarkers to early detect AKI is crucial in day-to-day clinical practice. Macrophage migration inhibitory factor (MIF), primarily released by renal tubular epithelial cells, vascular endothelial cells, and immune cells, was found to be closely associated with the inflammatory response in sepsis. MIF may be used as a biomarker of septic AKI indicating aggravation of systemic inflammatory response. METHODS Our study included sepsis patients admitted to the ICU. The KDIGO guideline was used to confirm the diagnosis and staging of septic AKI. Blood samples were collected and tested, as well as clinical data were recorded. Independent risk factors were selected via logistic regression analysis. By drawing the receiver operating characteristic (ROC) curves, the area under the ROC curves (AUC) was computed. The relationship between serum MIF level and mortality of septic AKI was analyzed using Cox regression analysis. RESULTS With high serum MIF level at ICU admission, the patients were more likely to develop AKI. The AUC of serum MIF (MIFAUC = 0.797) was found to be a good predictor of septic AKI. In addition, higher serum MIF levels corresponded to more severe AKI as well as a higher mortality rate. CONCLUSIONS Serum MIF might be a biomarker for predicting the occurrence, development, and outcomes of septic AKI. This conclusion will need to be confirmed by more robust investigations in the future.
Collapse
|
71
|
Liver and Kidney Surgical Anatomy to Verify the Effect of miR-221 on Organ Damage in Septic Rats. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2814431. [PMID: 35186224 PMCID: PMC8856800 DOI: 10.1155/2022/2814431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/01/2022]
Abstract
Background Related studies have shown that miR-221 has the ability to promote inflammatory response. This experiment mainly discusses the effect of miR-221 on acute liver and kidney injury in septic rats. Method Thirty Sprague Dawley (SD) rats were randomly divided into a (1) control group, (2) sepsis group, (3) miR-221 overexpression group, (4) miR-221 inhibition group, (5) HECTD2 inhibition group, and (6) miR-221 overexpression + HECTD2 inhibition group. The sepsis rat model was prepared by cecal ligation and puncture (CLP). The expression levels of miR-221 and HECTD2 were detected by RT-qPCR. The levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the liver were detected by the IFCC method. The levels of blood urea nitrogen (BUN) were detected by the creatine oxidase method. The levels of inflammatory factors were detected by ELISA. The apoptosis rate of liver and kidney cells was detected by flow cytometry. The expression of p65 protein was detected by western blotting. Result RT-qPCR results showed that the expressions of miR-221 and HECTD2 were upregulated in septic rats (P < 0.05). Compared with group 1, the liver function index, kidney function index, liver and kidney apoptosis rate, serum inflammatory factor level, and p65 protein expression in each group were increased (P < 0.05). Compared with group 2, the liver function index, kidney function index, liver and kidney apoptosis rate, serum inflammatory factor level, and p65 protein expression in groups 4 and 5 were decreased (P < 0.05). Compared with group 2, the expression of HECTD2 was upregulated in group 3 (P < 0.05). Compared with group 3, the liver function index, renal function index, liver and kidney apoptosis rate, serum inflammatory factor level, and p65 protein expression were decreased in group 6 (P < 0.05). Conclusion MiR-221 promotes the expression of HECTD2 in septic rats, and inhibition of miR-221 expression can reduce the degree of liver and kidney injury in septic rats.
Collapse
|
72
|
Zhang L, Huang T, Xu F, Li S, Zheng S, Lyu J, Yin H. Prediction of prognosis in elderly patients with sepsis based on machine learning (random survival forest). BMC Emerg Med 2022; 22:26. [PMID: 35148680 PMCID: PMC8832779 DOI: 10.1186/s12873-022-00582-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 02/02/2022] [Indexed: 12/05/2022] Open
Abstract
Background Elderly patients with sepsis have many comorbidities, and the clinical reaction is not obvious. Thus, clinical treatment is difficult. We planned to use the laboratory test results and comorbidities of elderly patients with sepsis from a large-scale public database Medical Information Mart for Intensive Care (MIMIC) IV to build a random survival forest (RSF) model and to evaluate the model’s predictive value for these patients. Methods Clinical information of elderly patients with sepsis in MIMIC IV database was collected retrospectively. Machine learning (RSF) was used to select the top 30 variables in the training cohort to build the final RSF model. The model was compared with the traditional scoring systems SOFA, SAPSII, and APSIII. The performance of the model was evaluated by C index and calibration curve. Results A total of 6,503 patients were enrolled in the study. The top 30 important variables screened by RSF were used to construct the final RSF model. The new model provided a better C-index (0.731 in the validation cohort). The calibration curve described the agreement between the predicted probability of RSF model and the observed 30-day survival. Conclusions We constructed a prognostic model to predict a 30-day mortality risk in elderly patients with sepsis based on machine learning (RSF algorithm), and it proved superior to the traditional scoring systems. The risk factors affecting the patients were also ranked. In addition to the common risk factors of vasopressors, ventilator use, and urine output. Newly added factors such as RDW, type of ICU unit, malignant cancer, and metastatic solid tumor also significantly influence prognosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12873-022-00582-z.
Collapse
Affiliation(s)
- Luming Zhang
- Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Tao Huang
- Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
| | - Fengshuo Xu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Shaojin Li
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Shuai Zheng
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,School of Public Health, Shannxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Haiyan Yin
- Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.
| |
Collapse
|
73
|
Xiao K, Zhang DC, Hu Y, Song LC, Xu JQ, He WX, Pan P, Wang YW, Xie LX. Potential roles of vitamin D binding protein in attenuating liver injury in sepsis. Mil Med Res 2022; 9:4. [PMID: 35057868 PMCID: PMC8772176 DOI: 10.1186/s40779-022-00365-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In sepsis, vitamin D binding protein (VDBP) has been shown to be low-expressed. The current study examined the relationship between serum VDBP level and liver injury in sepsis patients, as well as in a mouse model for sepsis and in cultured liver epithelial cell line exposed to lipopolysaccharide (LPS). METHODS The human study included 78 sepsis patients and 50 healthy volunteers. Sepsis patients were categorized into sepsis survivor group (n = 43) and sepsis non-survivor group (n = 35) based on 28-day mortality for data analysis. Adult male C57BL/6 mice were subjected to cecal ligation and puncture (CLP). Serum samples were collected on day 1, 3, 5 and 7 to determine the levels of VDBP, 25-hydroxyvitamin D [25(OH)D3], 1,25-dihydroxyvitamin D [1,25(OH)2D3], interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). Potential protective effects of VDBP overexpression against LPS-induced liver damage were examined in cultured THLE2 cells. RESULTS Serum levels of VDBP, 25(OH)D3, and 1,25(OH)2D3 were significantly lower in sepsis patients vs. the healthy control (P < 0.001), as well as in the sepsis non-survivor group vs. the sepsis survivor group (P < 0.001, P = 0.0338, or P = 0.0013, respectively). Lower serum VDBP level was associated with higher Acute Physiology and Chronic Health Evaluation (APACHE) II score (r = - 0.2565, P = 0.0234) and Sequential Organ Failure Assessment score (r = - 0.3522, P = 0.0016), but lower serum albumin (ALB, r = 0.4628, P < 0.001) and total protein (TP, r = 0.263, P = 0.02). In CLP mice, there was a 5-day period of serum VDBP reduction, followed by return towards the baseline on day 7. VDBP was also decreased in LPS-treated THLE2 cells (P < 0.001). VDBP overexpression reduced LPS-induced THLE2 damage. Reduced damage was associated with decreased oxidative stress and inactivation of the c-Jun N-terminal kinase signaling pathway. CONCLUSION VDBP may be protective against sepsis-induced liver injury.
Collapse
Affiliation(s)
- Kun Xiao
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, No. 28, Fuxing Street, Haidian District, Beijing, 100853, China
| | - Du-Chao Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Shijitan Hospital, Beijing, 100071, China
| | - Ye Hu
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, No. 28, Fuxing Street, Haidian District, Beijing, 100853, China
| | - Li-Cheng Song
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, No. 28, Fuxing Street, Haidian District, Beijing, 100853, China
| | - Jian-Qiao Xu
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, No. 28, Fuxing Street, Haidian District, Beijing, 100853, China
| | - Wan-Xue He
- Medical School of Chinese People's Liberation Army (PLA), Chinese PLA General Hospital, Beijing, 100853, China
| | - Pan Pan
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, No. 28, Fuxing Street, Haidian District, Beijing, 100853, China
| | - Yu-Wei Wang
- Department of Geriatric Comprehensive Surgery, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Street, Haidian District, Beijing, 100853, China.
| | - Li-Xin Xie
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, No. 28, Fuxing Street, Haidian District, Beijing, 100853, China.
| |
Collapse
|
74
|
Non-linear and Interaction Analyses of Biomarkers for Organ Dysfunctions as Predictive Markers for Sepsis: A Nationwide Retrospective Study. J Pers Med 2022; 12:jpm12010044. [PMID: 35055359 PMCID: PMC8778987 DOI: 10.3390/jpm12010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022] Open
Abstract
The Sequential Organ Failure Assessment (SOFA) score is predominantly used to assess the severity of organ dysfunction in sepsis. However, differences in prognostic value between SOFA subscores have not been sufficiently evaluated. This retrospective observational study used a large-scale database containing about 30 million patients. Among them, we included 38,869 adult patients with sepsis from 2006 to 2019. The cardiovascular and neurological subscores were calculated by a modified method. Associations between the biomarkers of the SOFA components and mortality were examined using restricted cubic spline analyses, which showed that an increase in the total modified SOFA score was linearly associated with increased mortality. However, the prognostic association of subscores varied widely: platelet count showed a J-shaped association, creatinine showed an inverted J-shaped association, and bilirubin showed only a weak association. We also evaluated interaction effects on mortality between an increase of one subscore and another. The joint odds ratios on mortality of two modified SOFA subscores were synergistically increased compared to the sum of the single odds ratios, especially in cardiovascular-neurological, coagulation-hepatic, and renal-hepatic combinations. In conclusion, total modified SOFA score was associated with increased mortality despite the varied prognostic associations of the subscores, possibly because interactions between subscores synergistically enhanced prognostic accuracy.
Collapse
|
75
|
Yu N, Liu X, Shi D, Bai L, Niu T, Liu Y. CD63 and C3AR1: The Potential Molecular Targets in the Progression of Septic Shock. Int J Gen Med 2022; 15:711-728. [PMID: 35082520 PMCID: PMC8784317 DOI: 10.2147/ijgm.s338486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background The molecular mechanism of septic shock is unknown. We studied the pathogenesis of septic shock and provide a novel strategy for treating and improving the prognosis of septic shock. Methods Gluten-Sensitive Enteropathy (GSE) 131761, GSE119217, GSE26378 datasets were downloaded from the Gene Expression Omnibus (GEO) database. The three datasets included 204 septic shock samples and 48 normal samples. The R packages “affy” and “limma” were employed to identify the differently expressed genes (DEGs) between septic shock and normal samples. Weighted gene co-expression network analysis (WGCNA) was performed to search for modules that play an important role in septic shock. Functional annotation of DEGs and construction and analysis of hub genes were used to explore the pathomechanism of septic shock. The receiver operating characteristic (ROC) curves were obtained using MedCalc software. The drug molecules that could regulate hub genes associated with septic shock were searched for in the CMap database. An animal model of septic shock was constructed to analyze the role of these hub genes. Results The merged series contained 321 up-regulated and 255 down-regulated genes. WGCNA showed the brown module had the highest correlation with the status of septic shock. GO and KEGG enrichment analysis results of the brown module genes showed they were mainly enriched in “leukocyte differentiation”, “Ras-proximate-1 (Rap1) signaling pathway”, and “cytokine–cytokine receptor interaction”. Through construction and analysis of a protein–protein interaction (PPI) network, cluster of differentiation 63 (CD63) and complement component 3a receptor 1 (C3AR1) were identified as hub genes of septic shock. The area under curve (AUC) of C3AR1 for the septic shock is 0.772 (P<0.001), and the AUC of CD63 for the septic shock is 0.871 (P<0.001). Small molecule drugs were filtered by the number of instances (n>3) and P-values <0.05, including “monensin”, “verteporfin”, “ikarugamycin”, “tetrahydroalstonine”, “cefamandole”, “etoposide”. In the animal model, the relative expression levels of interleukin-6 (IL-6), Tumor Necrosis Factor-α (TNF-α), and lactic acid were significantly higher in the septic shock group compared with the control group. Results of Real Time Quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) analysis for CD63 and C3AR1 showed that their relative expression levels were significantly lower in the septic shock group compared with the control group (P<0.05). Conclusion CD63 and C3AR1 are significant hub genes of septic shock and may represent potential molecular targets for future studies of septic shock.
Collapse
Affiliation(s)
- Ning Yu
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Xuefang Liu
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Dandan Shi
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Long Bai
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Tianfu Niu
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Ya Liu
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
- Correspondence: Ya Liu, Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China, Email ;
| |
Collapse
|
76
|
Silva CMS, Wanderley CWS, Veras FP, Sonego F, Nascimento DC, Gonçalves AV, Martins TV, Cólon DF, Borges VF, Brauer VS, Damasceno LEA, Silva KP, Toller-Kawahisa JE, Batah SS, Souza ALJ, Monteiro VS, Oliveira AER, Donate PB, Zoppi D, Borges MC, Almeida F, Nakaya HI, Fabro AT, Cunha TM, Alves-Filho JC, Zamboni DS, Cunha FQ. Gasdermin D inhibition prevents multiple organ dysfunction during sepsis by blocking NET formation. Blood 2021; 138:2702-2713. [PMID: 34407544 PMCID: PMC8703366 DOI: 10.1182/blood.2021011525] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/10/2021] [Indexed: 12/25/2022] Open
Abstract
Multiple organ dysfunction is the most severe outcome of sepsis progression and is highly correlated with a worse prognosis. Excessive neutrophil extracellular traps (NETs) are critical players in the development of organ failure during sepsis. Therefore, interventions targeting NET release would likely effectively prevent NET-based organ injury associated with this disease. Herein, we demonstrate that the pore-forming protein gasdermin D (GSDMD) is active in neutrophils from septic humans and mice and plays a crucial role in NET release. Inhibition of GSDMD with disulfiram or genic deletion abrogated NET formation, reducing multiple organ dysfunction and sepsis lethality. Mechanistically, we demonstrate that during sepsis, activation of the caspase-11/GSDMD pathway controls NET release by neutrophils during sepsis. In summary, our findings uncover a novel therapeutic use for disulfiram and suggest that GSDMD is a therapeutic target to improve sepsis treatment.
Collapse
Affiliation(s)
- Camila Meirelles S Silva
- Center for Research in Inflammatory Diseases
- Department of Biochemistry and Immunology
- Department of Pharmacology, and
| | - Carlos Wagner S Wanderley
- Center for Research in Inflammatory Diseases
- Department of Biochemistry and Immunology
- Department of Pharmacology, and
| | | | | | - Daniele C Nascimento
- Center for Research in Inflammatory Diseases
- Department of Biochemistry and Immunology
- Department of Pharmacology, and
| | - Augusto V Gonçalves
- Center for Research in Inflammatory Diseases
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Timna V Martins
- Center for Research in Inflammatory Diseases
- Department of Biochemistry and Immunology
| | - David F Cólon
- Center for Research in Inflammatory Diseases
- Department of Biochemistry and Immunology
| | - Vanessa F Borges
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, and
| | | | | | - Katiussia P Silva
- Center for Research in Inflammatory Diseases
- Institute of Biosciences, Sao Paulo State University, Botucatu, Sao Paulo, Brazil
| | | | | | | | - Valter S Monteiro
- Center for Research in Inflammatory Diseases
- Department of Biochemistry and Immunology
| | | | - Paula B Donate
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, and
| | - Daniel Zoppi
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil; and
| | - Marcos C Borges
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil; and
| | | | - Helder I Nakaya
- Center for Research in Inflammatory Diseases
- Hospital Israelita Albert Einstein, Sao Paulo, Sao Paulo, Brazil
| | | | - Thiago M Cunha
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, and
| | | | - Dario S Zamboni
- Center for Research in Inflammatory Diseases
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Fernando Q Cunha
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, and
| |
Collapse
|
77
|
Ginsenoside Rg3 alleviates septic liver injury by regulating the lncRNA TUG1/miR-200c-3p/SIRT1 axis. J Inflamm (Lond) 2021; 18:31. [PMID: 34930287 PMCID: PMC8686388 DOI: 10.1186/s12950-021-00296-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Studies have shown that ginsenoside R3 (Rg3) plays a protective role in sepsis-induced organ injuries and mitochondrial dysfunction. Long noncoding RNA (lncRNA) taurine-upregulated gene 1 (TUG1) is regarded as a regulator in sepsis. However, the association between TUG1 and Rg3 remains elusive. Methods A sepsis mouse model was established by caecal ligation and puncture (CLP), and liver injury was induced by haematoxylin-eosin (H&E) staining. Lipopolysaccharide (LPS) was used to induce hepatocyte damage. The expression levels of TUG1, microRNA (miR)-200a-3p, and silencing information regulator 1 (SIRT1) were examined by quantitative real-time polymerase chain reaction (qRT–PCR) assays. Cell viability was monitored using the Cell Counting Kit-8 (CCK-8) assay. MitoSOX Red staining and CBIC2 (JC-1) dye were employed to detect mitochondrial reactive oxygen species (ROS) and mitochondrial transmembrane potential (MTP) levels, respectively. The interaction between miR-200a-3p and TUG1 or SIRT1 was confirmed via dual-luciferase reporter or RNA immunoprecipitation (RIP) assay. Results Rg3 upregulated TUG1 expression in liver tissues of CLP mice and LPS-induced hepatocytes. Rg3 could activate autophagy to improve mitochondrial dysfunction in LPS-treated hepatocytes, which was partially reversed by TUG1 depletion or miR-200a-3p overexpression. Importantly, TUG1 targeted miR-200a-3p to activate the SIRT1/AMP-activated protein kinase (AMPK) pathway in LPS-treated hepatocytes. Moreover, gain of TUG1 ameliorated mitochondrial dysfunction in LPS-treated hepatocytes by sequestering miR-200a-3p. Conclusion Our study revealed that Rg3 increased TUG1 expression and reduced miR-200a-3p expression to stimulate the SIRT1/AMPK pathway, thereby enhancing autophagy to improve sepsis-induced liver injury and mitochondrial dysfunction. Supplementary Information The online version contains supplementary material available at 10.1186/s12950-021-00296-2.
Collapse
|
78
|
Domizi R, Damiani E, Scorcella C, Carsetti A, Giaccaglia P, Casarotta E, Montomoli J, Gabbanelli V, Brugia M, Moretti M, Adrario E, Donati A. Mid-Regional Proadrenomedullin (MR-proADM) and Microcirculation in Monitoring Organ Dysfunction of Critical Care Patients With Infection: A Prospective Observational Pilot Study. Front Med (Lausanne) 2021; 8:680244. [PMID: 34917627 PMCID: PMC8669477 DOI: 10.3389/fmed.2021.680244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 10/25/2021] [Indexed: 01/20/2023] Open
Abstract
Introduction: Microvascular alterations are involved in the development of organ injury in critical care patients. Mid-regional proadrenomedullin (MR-proADM) may predict organ damage and its evolution. The main objective of this study was to assess the correlation between MR-proADM and microvascular flow index (MFI) in a small cohort of 20 adult critical care patients diagnosed with infection, sepsis, or septic shock. Further objectives were to evaluate the correlation between the clearance of MR-proADM and the variables of microcirculation and between MR-proADM and the Sequential Organ Failure Assessment (SOFA) score. Materials and Methods: This is a prospective observational pilot study. Inclusion criteria: consecutive adult patients admitted to intensive care unit (ICU) for or with infection-related illness. Daily measurement of MR-proADM and calculation of the SOFA score from admission in ICU to day 5. Repeated evaluations of sublingual microcirculation, collection of clinical data, and laboratory tests. Results: Primary outcome: MR-proADM was not significantly correlated to the MFI at admission in ICU. A clearance of MR-proADM of 20% or more in the first 24 h was related to the improvement of the MFIs and MFIt [percentual variation of the MFIs + 12.35 (6.01–14.59)% vs. +2.23 (−4.45–6.01)%, p = 0.005; MFIt +9.09 (4.53–16.26)% vs. −1.43 (−4.36–3.12)%, p = 0.002]. Conclusion: This study did not support a direct correlation of MR-proADM with the MFI at admission in ICU; however, it showed a good correlation between the clearance of MR-proADM, MFI, and other microvascular variables. This study also supported the prognostic value of the marker. Adequately powered studies should be performed to confirm the findings.
Collapse
Affiliation(s)
- Roberta Domizi
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy
| | - Elisa Damiani
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Claudia Scorcella
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy
| | - Andrea Carsetti
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Paolo Giaccaglia
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Erika Casarotta
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Jonathan Montomoli
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Vincenzo Gabbanelli
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy
| | - Marina Brugia
- Laboratory Medicine, Azienda Ospedaliera Universitaria Ospedali Riuniti Ancona, Ancona, Italy
| | - Marco Moretti
- Laboratory Medicine, Azienda Ospedaliera Universitaria Ospedali Riuniti Ancona, Ancona, Italy
| | - Erica Adrario
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Abele Donati
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
79
|
Kuang L, Zhu Y, Wu Y, Peng X, Tian K, Liu L, Li T. Synergetic Effect of 4-Phenylbutyric Acid in Combination with Cyclosporine A on Cardiovascular Function in Sepsis Rats via Inhibition of Endoplasmic Reticulum Stress and Mitochondrial Permeability Transition Pore Opening. Front Pharmacol 2021; 12:770558. [PMID: 34916944 PMCID: PMC8670008 DOI: 10.3389/fphar.2021.770558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/01/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Sepsis/septic shock is a common complication in the intensive care unit, and the opening of the mitochondrial permeability transition pore (mPTP), as well as the endoplasmic reticulum stress (ERS), play important roles in this situation. Whether the combination of anti-ERS and anti-mPTP by 4-phenylbutyric acid (PBA) and Cyclosporine A (CsA) could benefit sepsis is unclear. Methods: The cecal ligation and puncture-induced septic shock models were replicated in rats, and lipopolysaccharide (LPS)-challenged primary vascular smooth muscle cells and H9C2 cardiomyocytes in vitro models were also used. The therapeutic effects of CsA, PBA, and combined administration on oxygen delivery, cardiac and vascular function, vital organ injury, and the underlying mechanisms were observed. Results: Septic shock significantly induced cardiovascular dysfunction, hypoperfusion, and organ injury and resulted in high mortality in rats. Conventional treatment including fluid resuscitation, vasoactive agents, and antibiotics slightly restored tissue perfusion and organ function in septic rats. Supplementation of CsA or PBA improved the tissue perfusion, organ function, and survival of septic shock rats. The combined application of PBA and CsA could significantly enhance the beneficial effects, compared with using PBA or CsA alone. Further study showed that PBA enhanced CsA-induced cardiovascular protection, which contributed to better therapeutic effects. Conclusion: Anti-ERS and anti-mPTP-opening by the combination of PBA and CsA was beneficial to septic shock. PBA enforced the CsA-associated cardiovascular protection and contributed to the synergetic effect.
Collapse
Affiliation(s)
- Lei Kuang
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Zhu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yue Wu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoyong Peng
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kunlun Tian
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liangming Liu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tao Li
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
80
|
Sousa AH, Vale GTD, Nascimento JA, Awata WMC, Silva CBP, Assis VO, Alves JV, Tostes RC, Tirapelli CR. Inhibition of inducible nitric oxide synthase protects against the deleterious effects of sub-lethal sepsis and ethanol in the cardiorenal system. Can J Physiol Pharmacol 2021; 99:1324-1332. [PMID: 34314655 DOI: 10.1139/cjpp-2021-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that ethanol would aggravate the deleterious effects of sub-lethal cecal ligation and puncture (SL-CLP) sepsis in the cardiorenal system and that inhibition of inducible nitric oxide synthase (iNOS) would prevent such response. Male C57BL/6 mice were treated with ethanol for 12 weeks. One hour before SL-CLP surgery, mice were treated with N6-(1-iminoethyl)-lysine (L-NIL, 5 mg/kg, i.p.), a selective inhibitor of iNOS. A second dose of L-NIL was administered 24 h after SL-CLP surgery. Mice were killed 48 h post surgery and the blood, the renal cortex, and the left ventricle (LV) were collected for biochemical analysis. L-NIL attenuated the increase in serum creatinine levels induced by ethanol, but not by SL-CLP. Ethanol, but not SL-CLP, increased creatine kinase (CK)-MB activity and L-NIL did not prevent this response. In the renal cortex, L-NIL prevented the redox imbalance induced by ethanol and SL-CLP. Inhibition of iNOS also decreased lipoperoxidation induced by ethanol and SL-CLP in the LV. L-NIL prevented the increase of pro-inflammatory cytokines and reactive oxygen species induced by ethanol and (or) SL-CLP in the cardiorenal system, suggesting that iNOS modulated some of the molecular mechanisms that underlie the deleterious effects of both conditions in the cardiorenal system.
Collapse
Affiliation(s)
- Arthur H Sousa
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Gabriel T do Vale
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
- Universidade do Estado de Minas Gerais (UEMG)
| | - Jose A Nascimento
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Wanessa M C Awata
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carla B P Silva
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
- Programa de Pós-Graduação em Toxicologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Victor O Assis
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Juliano V Alves
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Rita C Tostes
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
81
|
Jiang H, Dong Y, Yan D, Wu Y, Wang Y, Ren Y, Mao G, Liang G, Liu W, Zhou Y, Huang Z, Qi L. The expression of STEAP4 in peripheral blood predicts the outcome of septic patients. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1519. [PMID: 34790725 PMCID: PMC8576732 DOI: 10.21037/atm-21-2794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022]
Abstract
Background Sepsis is a systemic disease characterized by extensive inflammatory responses and impaired organ function, which are characteristics that make it easily missed and complex to treat. A large number of laboratory and clinical studies on the diagnosis and treatment of sepsis have been continuously carried out, confirming the importance of mitochondrial function during the development of sepsis. STEAP4 is an important metalloreductase in mitochondria, which is involved in the biogenesis and respiratory chain of mitochondria. The role of STEAP4 in inflammation remains controversial. Research in this field may contribute to the development of new diagnostic and treatment options for sepsis. Methods The expression of STEAP4 was measured in the peripheral blood of patients with severe sepsis and compared with healthy controls. Cell and mouse inflammatory models were established to detect the expression of STEAP4 and other inflammatory cytokines. Results (I) The expression of STEAP4 in the peripheral blood of patients with severe sepsis is higher than that of healthy volunteers (P<0.01), which is related to the SOFA score and transaminase. (II) STEAP4 has a certain predictive effect on the outcome of patients [area under curve (AUC) =0.696, P<0.05, 95% CI: 0.528 to 0.833]. (III) Inflammation led to increased expression of STEAP4 gene in RAW264.7 cells and mouse liver tissue. Conclusions The expression of STEAP4 is elevated in the early stage of sepsis and the degree of its elevation can be used to predict the clinical outcome of sepsis patients.
Collapse
Affiliation(s)
- Haiyan Jiang
- Department of Health Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yansong Dong
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Dajun Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yao Wu
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yue Wang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuting Ren
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Guomin Mao
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Guiwen Liang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yang Zhou
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhongwei Huang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Rugao Branch (Rugao Bo'ai Hospital), Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
82
|
Wijnands KAP, Meesters DM, Vandendriessche B, Briedé JJ, van Eijk HMH, Brouckaert P, Cauwels A, Lamers WH, Poeze M. Microcirculatory Function during Endotoxemia-A Functional Citrulline-Arginine-NO Pathway and NOS3 Complex Is Essential to Maintain the Microcirculation. Int J Mol Sci 2021; 22:ijms222111940. [PMID: 34769369 PMCID: PMC8584871 DOI: 10.3390/ijms222111940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023] Open
Abstract
Competition for the amino acid arginine by endothelial nitric-oxide synthase (NOS3) and (pro-)inflammatory NO-synthase (NOS2) during endotoxemia appears essential in the derangement of the microcirculatory flow. This study investigated the role of NOS2 and NOS3 combined with/without citrulline supplementation on the NO-production and microcirculation during endotoxemia. Wildtype (C57BL6/N background; control; n = 36), Nos2-deficient, (n = 40), Nos3-deficient (n = 39) and Nos2/Nos3-deficient mice (n = 42) received a continuous intravenous LPS infusion alone (200 μg total, 18 h) or combined with L-citrulline (37.5 mg, last 6 h). The intestinal microcirculatory flow was measured by side-stream dark field (SDF)-imaging. The jejunal intracellular NO production was quantified by in vivo NO-spin trapping combined with electron spin-resonance (ESR) spectrometry. Amino-acid concentrations were measured by high-performance liquid chromatography (HPLC). LPS infusion decreased plasma arginine concentration in control and Nos3−/− compared to Nos2−/− mice. Jejunal NO production and the microcirculation were significantly decreased in control and Nos2−/− mice after LPS infusion. No beneficial effects of L-citrulline supplementation on microcirculatory flow were found in Nos3−/− or Nos2−/−/Nos3−/− mice. This study confirms that L-citrulline supplementation enhances de novo arginine synthesis and NO production in mice during endotoxemia with a functional NOS3-enzyme (control and Nos2−/− mice), as this beneficial effect was absent in Nos3−/− or Nos2−/−/Nos3−/− mice.
Collapse
Affiliation(s)
- Karolina A. P. Wijnands
- Department of Surgery, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (D.M.M.); (H.M.H.v.E.); (M.P.)
- Correspondence: ; Tel.: +31-650-513-913
| | - Dennis M. Meesters
- Department of Surgery, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (D.M.M.); (H.M.H.v.E.); (M.P.)
- Department of Genetics & Cell Biology, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| | - Benjamin Vandendriessche
- VIB Inflammation Research Center, 9052 Ghent, Belgium; (B.V.); (P.B.); (A.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Byteflies, 2600 Antwerp, Belgium
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jacob J. Briedé
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands;
| | - Hans M. H. van Eijk
- Department of Surgery, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (D.M.M.); (H.M.H.v.E.); (M.P.)
| | - Peter Brouckaert
- VIB Inflammation Research Center, 9052 Ghent, Belgium; (B.V.); (P.B.); (A.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Anje Cauwels
- VIB Inflammation Research Center, 9052 Ghent, Belgium; (B.V.); (P.B.); (A.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Orionis Biosciences, 9052 Ghent, Belgium
| | - Wouter H. Lamers
- Department of Anatomy & Embryology, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands;
| | - Martijn Poeze
- Department of Surgery, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (D.M.M.); (H.M.H.v.E.); (M.P.)
| |
Collapse
|
83
|
da Silveira F, Soares PHR, Marchesan LQ, da Fonseca RSA, Nedel WL. Assessing the prognosis of cirrhotic patients in the intensive care unit: What we know and what we need to know better. World J Hepatol 2021; 13:1341-1350. [PMID: 34786170 PMCID: PMC8568574 DOI: 10.4254/wjh.v13.i10.1341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/11/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Critically ill cirrhotic patients have high in-hospital mortality and utilize significant health care resources as a consequence of the need for multiorgan support. Despite this fact, their mortality has decreased in recent decades due to improved care of critically ill patients. Acute-on-chronic liver failure (ACLF), sepsis and elevated hepatic scores are associated with increased mortality in this population, especially among those not eligible for liver transplantation. No score is superior to another in the prognostic assessment of these patients, and both liver-specific and intensive care unit-specific scores have satisfactory predictive accuracy. The sequential assessment of the scores, especially the Sequential Organ Failure Assessment (SOFA) and Chronic Liver Failure Consortium (CLIF)-SOFA scores, may be useful as an auxiliary tool in the decision-making process regarding the benefits of maintaining supportive therapies in this population. A CLIF-ACLF > 70 at admission or at day 3 was associated with a poor prognosis, as well as SOFA score > 19 at baseline or increasing SOFA score > 72. Additional studies addressing the prognostic assessment of these patients are necessary.
Collapse
Affiliation(s)
- Fernando da Silveira
- Programa de Pós-Graduação em Pneumologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91430835, Brazil
- Intensive Care Unit, Grupo Hospitalar Conceição, Porto Alegre 91430835, Brazil
| | - Pedro H R Soares
- Intensive Care Unit, Grupo Hospitalar Conceição, Porto Alegre 91430835, Brazil
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre 91430835, Brazil
| | - Luana Q Marchesan
- Intensive Care Unit, Grupo Hospitalar Conceição, Porto Alegre 91430835, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria 97105900, Brazil
| | | | - Wagner L Nedel
- Intensive Care Unit, Grupo Hospitalar Conceição, Porto Alegre 91430835, Brazil
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre 91430835, Brazil
| |
Collapse
|
84
|
Wang Y, Zhang Y. LncRNA CAIF suppresses LPS-induced inflammation and apoptosis of cardiomyocytes through regulating miR-16 demethylation. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1468-1478. [PMID: 34547186 PMCID: PMC8589370 DOI: 10.1002/iid3.498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The long noncoding RNA, cardiac autophagy inhibitory factor (CAIF), and microRNA (miR)-16 are reported to be involved in lipopolysaccharide (LPS)-induced inflammatory responses and cell apoptosis in many diseases. Herein, we investigated the interaction between CAIF and miR-16 in sepsis-induced chronic heart failure (CHF). METHODS The expression of CAIF and miR-16 in plasma samples from sepsis-induced CHF patients (n = 60) and healthy controls (n = 60) were measured using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The correlations between CAIF and miR-16 across plasma samples from patients with sepsis-induced CHF and healthy controls were analyzed using linear regression. The messenger RNA (mRNA) levels of inducible nitric oxide synthase, C-C motif chemokine 2 (CCL2), growth-regulated alpha protein (CXCL1), and interleukin-6 (IL-6) were evaluated using qRT-PCR while nuclear factor κB activation was evaluated using luciferase assay. RESULTS The expression levels of CAIF and miR-16 were downregulated in the plasma of sepsis-induced CHF patients and were positively correlated in these patients. In cardiomyocytes, LPS treatment dose-dependently decreased CAIF and miR-16 levels. CAIF overexpression increased miR-16 expression by demethylating miR-16. CAIF and/or miR-16 overexpression suppressed LPS-induced CCL2, CXCL1, and IL-6 expression at both the mRNA and protein levels. Analysis of cell apoptosis and western blot analysis showed that CAIF and/or miR-16 overexpression inhibited LPS-induced cardiomyocyte apoptosis by reducing Bax and cleaved caspase 3 levels and enhancing Bcl-2 levels. CONCLUSION Our study is the first to report the abnormal expression of CAIF and miR-16 in heart disease. CAIF plays a protective role in sepsis-induced CHF by inhibiting cardiomyocyte apoptosis and inflammation, possibly by regulating miR-16 demethylation.
Collapse
Affiliation(s)
- Yan Wang
- Department of Intensive Care Unit, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yi Zhang
- Department of Intensive Care Unit, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
85
|
Weckx R, Goossens C, Derde S, Pauwels L, Vander Perre S, Van den Bergh G, Langouche L. Identification of the toxic threshold of 3-hydroxybutyrate-sodium supplementation in septic mice. BMC Pharmacol Toxicol 2021; 22:50. [PMID: 34544493 PMCID: PMC8454128 DOI: 10.1186/s40360-021-00517-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 09/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In septic mice, supplementing parenteral nutrition with 150 mg/day 3-hydroxybutyrate-sodium-salt (3HB-Na) has previously shown to prevent muscle weakness without obvious toxicity. The main objective of this study was to identify the toxic threshold of 3HB-Na supplementation in septic mice, prior to translation of this promising intervention to human use. METHODS In a centrally-catheterized, antibiotic-treated, fluid-resuscitated, parenterally fed mouse model of prolonged sepsis, we compared with placebo the effects of stepwise escalating doses starting from 150 mg/day 3HB-Na on illness severity and mortality (n = 103). For 5-day survivors, also the impact on ex-vivo-measured muscle force, blood electrolytes, and markers of vital organ inflammation/damage was documented. RESULTS By doubling the reference dose of 150 mg/day to 300 mg/day 3HB-Na, illness severity scores doubled (p = 0.004) and mortality increased from 30.4 to 87.5 % (p = 0.002). De-escalating this dose to 225 mg still increased mortality (p ≤ 0.03) and reducing the dose to 180 mg/day still increased illness severity (p ≤ 0.04). Doses of 180 mg/day and higher caused more pronounced metabolic alkalosis and hypernatremia (p ≤ 0.04) and increased markers of kidney damage (p ≤ 0.05). Doses of 225 mg/day 3HB-Na and higher caused dehydration of brain and lungs (p ≤ 0.05) and increased markers of hippocampal neuronal damage and inflammation (p ≤ 0.02). Among survivors, 150 mg/day and 180 mg/day increased muscle force compared with placebo (p ≤ 0.05) up to healthy control levels (p ≥ 0.3). CONCLUSIONS This study indicates that 150 mg/day 3HB-Na supplementation prevented sepsis-induced muscle weakness in mice. However, this dose appeared maximally effective though close to the toxic threshold, possibly in part explained by excessive Na+ intake with 3HB-Na. Although lower doses were not tested and thus might still hold therapeutic potential, the current results point towards a low toxic threshold for the clinical use of ketone salts in human critically ill patients. Whether 3HB-esters are equally effective and less toxic should be investigated.
Collapse
Affiliation(s)
- Ruben Weckx
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 bus 503, 3000, Leuven, Belgium
| | - Chloë Goossens
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 bus 503, 3000, Leuven, Belgium
| | - Sarah Derde
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 bus 503, 3000, Leuven, Belgium
| | - Lies Pauwels
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 bus 503, 3000, Leuven, Belgium
| | - Sarah Vander Perre
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 bus 503, 3000, Leuven, Belgium
| | - Greet Van den Bergh
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 bus 503, 3000, Leuven, Belgium
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 bus 503, 3000, Leuven, Belgium.
| |
Collapse
|
86
|
Eduardo PM, Mario GL, Carlos César PM, Mayra MA, Sara HY, E BN. Bioelectric, tissue, and molecular characteristics of the gastric mucosa at different times of ischemia. Exp Biol Med (Maywood) 2021; 246:1968-1980. [PMID: 34130514 PMCID: PMC8474982 DOI: 10.1177/15353702211021601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
Gastrointestinal ischemia may be presented as a complication associated with late shock detection in patients in critical condition. Prolonged ischemia can cause mucosal integrity to lose its barrier function, triggering alterations that can induce organ dysfunction and lead to death. Electrical impedance spectroscopy has been proposed to identify early alteration in ischemia-induced gastric mucosa in this type of patients. This work analyzed changes in impedance parameters, and tissue and molecular alterations that allow us to identify the time of ischemia in which the gastric mucosa still maintains its barrier function. The animals were randomly distributed in four groups: Control, Ischemia 60, 90, and 120 min. Impedance parameters were measured and predictive values were determined to categorize the degree of injury using a receiver operating characteristic curve. Markers of inflammatory process and apoptosis (iNOS, TNFα, COX-2, and Caspase-3) were analyzed. The largest increase in impedance parameters occurred in the ischemia 90 and 120 min groups, with resistance at low frequencies (RL) and reactance at high frequencies (XH) being the most related to damage, allowing prediction of the occurrence of reversible and irreversible tissue damage. Histological analysis and apoptosis assay showed progressive mucosal deterioration with irreversible damage (p < 0.001) starting from 90 min of ischemia. Furthermore, a significant increase in the expression of iNOS, TNFα, and COX-2 was identified in addition to apoptosis in the gastric mucosa starting from 90 min of ischemia. Tissue damage generated by an ischemia time greater than 60 min induces loss of barrier function in the gastric mucosa.
Collapse
Affiliation(s)
- Peña-Mercado Eduardo
- Posgrado en Ciencias Naturales e Ingenieria, Unidad Cuajimalpa,
Universidad Autonoma Metropolitana, CDMX 05340, Mexico
| | - Garcia-Lorenzana Mario
- Departamento de Biologia de la Reproduccion, Unidad Iztapalapa,
Universidad Autonoma Metropolitana, CDMX 09340, Mexico
| | - Patiño-Morales Carlos César
- Laboratorio de Investigacion en Biologia del Desarrollo y
Teratogenesis Experimental, Hospital Infantil de Mexico, Federico Gomez, CDMX
06720, Mexico
| | - Montecillo-Aguado Mayra
- Doctorado en Ciencias Biologicas, Facultad de Medicina,
Universidad Nacional Autonoma de Mexico, CDMX 04510, Mexico
| | - Huerta-Yepez Sara
- Unidad de Investigacion en Enfermedades Hematoncologicas,
Hospital Infantil de Mexico, Federico Gomez, CDMX 06720, Mexico
| | - Beltran Nohra E
- Departamento de Procesos y Tecnologia, Unidad Cuajimalpa,
Universidad Autonoma Metropolitana, CDMX 05340, Mexico
| |
Collapse
|
87
|
Association between miR-126, miR-21, inflammatory factors and T lymphocyte apoptosis in septic rats. Mol Clin Oncol 2021; 15:206. [PMID: 34462662 DOI: 10.3892/mco.2021.2368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRs) serve an important role in regulating expression levels of inflammatory factors but the underlying mechanism is still unclear. The present study aimed to observe miR-126 and miR-21 expression and apoptosis in T lymphocytes and to analyze their association with cytokine release in septic rats. The septic model rats were given intraperitoneal lipopolysaccharide (LPS) and divided into 0, 12, 24, 48 and 72 h groups. Peripheral blood was collected from each group to isolate T lymphocytes. The expression levels of miR-126 and miR-21 in T lymphocytes were observed, as well as cytokine release and apoptosis. Finally, the association between miR-126, miR-21, cytokines and apoptosis in T lymphocytes was analyzed. The release of TNF-α and IL-6 in septic rats was initially elevated but then decreased. miR-126 and miR-21 levels in T lymphocytes in septic rats were lower than those of NC rats. miR-126 and miR-21 initially decreased and then increased, whereas of apoptosis of T lymphocytes increased and then decreased, in septic rats. The expression of miR-126 was positively correlated with that of miR-21 (r=0.316; P=0.029) and negatively correlated with that of TNF-α (r=-0.480; P=0.001) and IL-6 (r=-0.626; P<0.001), as well as the apoptotic rate of T lymphocytes (r=-0.377; P=0.008). Furthermore, expression levels of miR-126 were negatively corrlated with caspase-3 expression levels (r=-0.606; P<0.001) and activity (r=-0.541; P<0.001). There was a negative correlation between miR-21 and levels of TNF-α (r=-0.311; P=0.032) and IL-6 (r=-0.439; P=0.002), as well as caspase-3 expression (r=-0.398; P=0.005) and activity (r=-0.378; P=0.008). However, there miR-126 expression was not correlated with apoptotic rate of T lymphocytes. Altered expression levels of miR-126 and miR-21 reflected the severity of inflammatory response and indicated levels of T lymphocyte apoptosis in septic rats.
Collapse
|
88
|
Liu J, Wang Z, Lin J, Li T, Guo X, Pang R, Dong L, Duan M. Xuebijing injection in septic rats mitigates kidney injury, reduces cortical microcirculatory disorders, and suppresses activation of local inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114199. [PMID: 33989736 DOI: 10.1016/j.jep.2021.114199] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuebijing injections originate from the traditional Chinese medicine (TCM) prescription XuefuZhuyu Decoction. It is composed of five Chinese herbal extracts; Carthami flos, Paeoniae radix rubra, Chuanxiong rhizoma, Salviae miltiorrhizae, and Angelicae Sinensis radix. The China Food and Drug Administration approved Xuebijing injections as a TCM preparation for the adjuvant treatment of sepsis. AIM OF THE STUDY This study aims to determine the effects of Xuebijing injections as an adjuvant to antibiotics for the treatment of renal microcirculatory dysfunction and renal inflammation in rats with sepsis. MATERIALS AND METHODS The rats received a sham operation (Sham), sham operation followed by Xuebijign injection (Sxbj), cecal ligation and puncture (CLP), or CLP followed by Xuebijing injection (Cxbj). Renal microvascular perfusion in the cortex and oxygenation were assessed at different times after sepsis induction. Renal levels of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and high mobility group box (HMGB)-1 were measured. Urinary TIMP-2 × IGFBP-7 and neutrophil gelatinase-associated lipocalin (NGAL) were measured as kidney biomarkers, and serum creatinine (SCr) was used to assess kidney injury. Tissue samples were stained for histologic evaluation. RESULTS The induction of sepsis increased local inflammation and decreased renal microvascular perfusion and oxygenation. Compared with the CLP group, the Cxbj group displayed improvements in microvascular perfusion and oxygenation (p < 0.05). The CLP group had significant increases in renal inflammatory biomarkers (IL-1β, IL-6, TNF-α, and HMGB-1; p < 0.05) and Xuebijing injection reduced the levels of these markers. The levels of urinary TIMP-2 × IGFBP-7, NAGL, and SCr were lower in the Cxbj group than in the CLP group (p < 0.05), and the CLP group had a higher Paller score than the Cxbj group (p < 0.05). However, the CLP and Cxbj groups had no significant difference in mortality. CONCLUSIONS This study into the early stages of sepsis in a rat model indicated that as an adjuvant therapy to antibiotics, Xuebijing injection improved renal perfusion and oxygenation, suppressed renal inflammation, and ameliorated kidney dysfunction. However, Xuebijing injection had no impact on mortality.
Collapse
Affiliation(s)
- Jingfeng Liu
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Zhenzhou Wang
- National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration, Trauma Center, Peking University People's Hospital, Beijing, 100000, China.
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Tian Li
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Xinjie Guo
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Ran Pang
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Lei Dong
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
89
|
Malheiro LFG, Gaio R, Silva MVD, Martins S, Sampaio S, Quelhas-Santos J, Cerqueira A, Sarmento A, Santos L. Reactive hyperemia correlates with the presence of sepsis and glycocalyx degradation in the intensive care unit: a prospective cohort study. Rev Bras Ter Intensiva 2021; 32:363-373. [PMID: 33053025 PMCID: PMC7595718 DOI: 10.5935/0103-507x.20200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Objective To investigate whether reactive hyperemia measured by peripheral arterial tonometry correlates with markers of endothelial dysfunction and may be used to identify sepsis in critical illness. Methods A prospective study was performed using a cohort of critically ill patients. Endothelial dysfunction was assessed on admission by quantifying reactive hyperemia-peripheral arterial tonometry and plasma levels of endothelin-1, soluble E-selectin, endocan and syndecan-1. Septic patients were compared to patients without evidence of infection. Results Fifty-eight septic patients were compared to 28 controls. The natural logarithm of reactive hyperemia-peripheral arterial tonometry was negatively correlated with cardiovascular comorbidities, disease severity and plasma levels of soluble E-selectin (p = 0.024) and syndecan-1 (p < 0.001). The natural logarithm of reactive hyperemia-peripheral arterial tonometry was lower in septic patients than in controls (0.53 ± 0.48 versus 0.69 ± 0.42, respectively). When adjusted for age, the multivariable model predicted that each 0.1-unit decrease in natural logarithm of reactive hyperemia-peripheral arterial tonometry increased the odds for infection by 14.6%. m. Conclusion Reactive hyperemia-peripheral arterial tonometry is closely related to soluble E-selectin and syndecan-1, suggesting an association between endothelial activation, glycocalyx degradation and vascular reactivity. Reactive hyperemia-peripheral arterial tonometry appears to be compromised in critically ill patients, especially those with sepsis.
Collapse
Affiliation(s)
- Luís Filipe Gomes Malheiro
- Serviço de Doenças Infecciosas, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - Rita Gaio
- Departamento de Matemática, Faculdade de Ciências, Universidade do Porto - Porto, Portugal
| | - Manuel Vaz da Silva
- Departamento de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - Sandra Martins
- Departamento de Patologia Clínica, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - Susana Sampaio
- Departamento de Nefrologia, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - Janete Quelhas-Santos
- Departamento de Nefrologia, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - Ana Cerqueira
- Departamento de Nefrologia, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - António Sarmento
- Serviço de Doenças Infecciosas, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - Lurdes Santos
- Serviço de Doenças Infecciosas, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| |
Collapse
|
90
|
Hanidziar D, Robson SC. Synapomorphic features of hepatic and pulmonary vasculatures include comparable purinergic signaling responses in host defense and modulation of inflammation. Am J Physiol Gastrointest Liver Physiol 2021; 321:G200-G212. [PMID: 34105986 PMCID: PMC8410108 DOI: 10.1152/ajpgi.00406.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatosplanchnic and pulmonary vasculatures constitute synapomorphic, highly comparable networks integrated with the external environment. Given functionality related to obligatory requirements of "feeding and breathing," these organs are subject to constant environmental challenges entailing infectious risk, antigenic and xenobiotic exposures. Host responses to these stimuli need to be both protective and tightly regulated. These functions are facilitated by dualistic, high-low pressure blood supply of the liver and lungs, as well as tolerogenic characteristics of resident immune cells and signaling pathways. Dysregulation in hepatosplanchnic and pulmonary blood flow, immune responses, and microbiome implicate common pathogenic mechanisms across these vascular networks. Hepatosplanchnic diseases, such as cirrhosis and portal hypertension, often impact lungs and perturb pulmonary circulation and oxygenation. The reverse situation is also noted with lung disease resulting in hepatic dysfunction. Others, and we, have described common features of dysregulated cell signaling during liver and lung inflammation involving extracellular purines (e.g., ATP, ADP), either generated exogenously or endogenously. These metabokines serve as danger signals, when released by bacteria or during cellular stress and cause proinflammatory and prothrombotic signals in the gut/liver-lung vasculature. Dampening of these danger signals and organ protection largely depends upon activities of vascular and immune cell-expressed ectonucleotidases (CD39 and CD73), which convert ATP and ADP into anti-inflammatory adenosine. However, in many inflammatory disorders involving gut, liver, and lung, these protective mechanisms are compromised, causing perpetuation of tissue injury. We propose that interventions that specifically target aberrant purinergic signaling might prevent and/or ameliorate inflammatory disorders of the gut/liver and lung axis.
Collapse
Affiliation(s)
- Dusan Hanidziar
- 1Department of Anesthesia, Critical Care and Pain Medicine, grid.32224.35Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Simon C. Robson
- 2Department of Anesthesia, Critical Care and Pain Medicine, Center for Inflammation Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts,3Department of Medicine, Division of Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
91
|
Nedel WL, Kopczynski A, Rodolphi MS, Strogulski NR, De Bastiani M, Montes THM, Abruzzi J, Galina A, Horvath TL, Portela LV. Mortality of septic shock patients is associated with impaired mitochondrial oxidative coupling efficiency in lymphocytes: a prospective cohort study. Intensive Care Med Exp 2021; 9:39. [PMID: 34304333 PMCID: PMC8310546 DOI: 10.1186/s40635-021-00404-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/10/2021] [Indexed: 12/16/2022] Open
Abstract
Background Septic shock is a life-threatening condition that challenges immune cells to reprogram their mitochondrial metabolism towards to increase ATP synthesis for building an appropriate immunity. This could print metabolic signatures in mitochondria whose association with disease progression and clinical outcomes remain elusive. Method This is a single-center prospective cohort study performed in the ICU of one tertiary referral hospital in Brazil. Between November 2017 and July 2018, 90 consecutive patients, aged 18 years or older, admitted to the ICU with septic shock were enrolled. Seventy-five patients had Simplified Acute Physiology Score (SAPS 3) assessed at admission, and Sequential Organ Failure Assessment (SOFA) assessed on the first (D1) and third (D3) days after admission. Mitochondrial respiration linked to complexes I, II, V, and biochemical coupling efficiency (BCE) were assessed at D1 and D3 and Δ (D3–D1) in isolated lymphocytes. Clinical and mitochondrial endpoints were used to dichotomize the survival and death outcomes. Our primary outcome was 6-month mortality, and secondary outcomes were ICU and hospital ward mortality. Results The mean SAPS 3 and SOFA scores at septic shock diagnosis were 75.8 (± 12.9) and 8 (± 3) points, respectively. The cumulative ICU, hospital ward, and 6-month mortality were 32 (45%), 43 (57%), and 50 (66%), respectively. At the ICU, non-surviving patients presented elevated arterial lactate (2.8 mmol/L, IQR, 2–4), C-reactive protein (220 mg/L, IQR, 119–284), and capillary refill time (5.5 s, IQR, 3–8). Respiratory rates linked to CII at D1 and D3, and ΔCII were decreased in non-surviving patients. Also, the BCE at D1 and D3 and the ΔBCE discriminated patients who would evolve to death in the ICU, hospital ward, and 6 months after admission. After adjusting for possible confounders, the ΔBCE value but not SOFA scores was independently associated with 6-month mortality (RR 0.38, CI 95% 0.18–0.78; P = 0.009). At a cut-off of − 0.002, ΔBCE displayed 100% sensitivity and 73% specificity for predicting 6-month mortality Conclusions The ΔBCE signature in lymphocytes provided an earlier recognition of septic shock patients in the ICU at risk of long-term deterioration of health status. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-021-00404-9.
Collapse
Affiliation(s)
- Wagner Luis Nedel
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, anexo, Porto Alegre, RS, Brazil.,Intensive Care Unit, Hospital Nossa Senhora da Conceição, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| | - Afonso Kopczynski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, anexo, Porto Alegre, RS, Brazil
| | - Marcelo Salimen Rodolphi
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, anexo, Porto Alegre, RS, Brazil
| | - Nathan Ryzewski Strogulski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, anexo, Porto Alegre, RS, Brazil
| | - Marco De Bastiani
- Zimmer Lab, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Hermes Maeso Montes
- Intensive Care Unit, Hospital Nossa Senhora da Conceição, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| | - Jose Abruzzi
- Intensive Care Unit, Hospital Nossa Senhora da Conceição, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| | - Antonio Galina
- Laboratory of Bioenergetics and Mitochondrial Physiology, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Luis Valmor Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, anexo, Porto Alegre, RS, Brazil.
| |
Collapse
|
92
|
Efferth T, Oesch F. The immunosuppressive activity of artemisinin-type drugs towards inflammatory and autoimmune diseases. Med Res Rev 2021; 41:3023-3061. [PMID: 34288018 DOI: 10.1002/med.21842] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022]
Abstract
The sesquiterpene lactone artemisinin from Artemisia annua L. is well established for malaria therapy, but its bioactivity spectrum is much broader. In this review, we give a comprehensive and timely overview of the literature regarding the immunosuppressive activity of artemisinin-type compounds toward inflammatory and autoimmune diseases. Numerous receptor-coupled signaling pathways are inhibited by artemisinins, including the receptors for interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), β3-integrin, or RANKL, toll-like receptors and growth factor receptors. Among the receptor-coupled signal transducers are extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), AKT serine/threonine kinase (AKT), mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK) kinase (MEK), phospholipase C γ1 (PLCγ), and others. All these receptors and signal transduction molecules are known to contribute to the inhibition of the transcription factor nuclear factor κ B (NF-κB). Artemisinins may inhibit NF-κB by silencing these upstream pathways and/or by direct binding to NF-κB. Numerous NF-κB-regulated downstream genes are downregulated by artemisinin and its derivatives, for example, cytokines, chemokines, and immune receptors, which regulate immune cell differentiation, apoptosis genes, proliferation-regulating genes, signal transducers, and genes involved in antioxidant stress response. In addition to the prominent role of NF-κB, other transcription factors are also inhibited by artemisinins (mammalian target of rapamycin [mTOR], activating protein 1 [AP1]/FBJ murine osteosarcoma viral oncogene homologue [FOS]/JUN oncogenic transcription factor [JUN]), hypoxia-induced factor 1α (HIF-1α), nuclear factor of activated T cells c1 (NF-ATC1), Signal transducers and activators of transcription (STAT), NF E2-related factor-2 (NRF-2), retinoic-acid-receptor-related orphan nuclear receptor γ (ROR-γt), and forkhead box P-3 (FOXP-3). Many in vivo experiments in disease-relevant animal models demonstrate therapeutic efficacy of artemisinin-type drugs against rheumatic diseases (rheumatoid arthritis, osteoarthritis, lupus erythematosus, arthrosis, and gout), lung diseases (asthma, acute lung injury, and pulmonary fibrosis), neurological diseases (autoimmune encephalitis, Alzheimer's disease, and myasthenia gravis), skin diseases (dermatitis, rosacea, and psoriasis), inflammatory bowel disease, and other inflammatory and autoimmune diseases. Randomized clinical trials should be conducted in the future to translate the plethora of preclinical results into clinical practice.
Collapse
Affiliation(s)
- Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Franz Oesch
- Oesch-Tox Toxicological Consulting and Expert Opinions, Ingelheim, Germany and Institute of Toxicology, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
93
|
First-Days Reduction of Plasma and Skin Advanced Glycation End Products is Related to Outcome in Septic Patients. Shock 2021; 53:400-406. [PMID: 31232862 DOI: 10.1097/shk.0000000000001396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Advanced glycation end products (AGEs) are a result of nonenzymatic glycation of proteins and lipids, which can attach to either their cell surface receptor (RAGE) or its soluble form (sRAGE). Evidence exists for the implication of AGE-RAGE axis in sepsis, but data are still insufficient and conflicting. We aimed to analyze the kinetics of plasma and skin AGEs and sRAGE during sepsis, and their association with outcome in septic patients. METHODS We performed a prospective observational study. We enrolled 90 consecutive patients with severe sepsis or septic shock, within the first 24 h of Intensive Care Unit admission. During the first 5 days of sepsis, we measured plasma autofluorescence (PAF) and skin autofluorescence (SAF) as surrogates of circulating and skin AGEs, respectively. sRAGE was measured on days 1, 3, and 5. Delta values were defined as the difference between the PAF, SAF, or sRAGE on a specific day and the value on day 1. RESULTS 28-day mortality was 18%. Bivariate analysis found that ΔPAF3-1, ΔPAF4-1, ΔPAF5-1, and ΔSAF5-1 were significantly associated with 28-day mortality. Additionally, sRAGE1 was inversely correlated to ΔPAF4-1 (r = -0.250, P = 0.019) and ΔPAF5-1 (r = -0.246, P = 0.024), and significantly associated with 28-day mortality. In an adjusted multivariate logistic regression analysis, ΔPAF2-1, ΔPAF3-1, ΔPAF4-1, ΔPAF5-1, and ΔSAF5-1 were associated with 28-day mortality. CONCLUSIONS Kinetics of plasma and skin AGEs during the first days of sepsis are independently associated with mortality, where a decrease of plasma and skin AGEs are related to higher mortality.
Collapse
|
94
|
Endothelial Dysfunction and Neutrophil Degranulation as Central Events in Sepsis Physiopathology. Int J Mol Sci 2021; 22:ijms22126272. [PMID: 34200950 PMCID: PMC8230689 DOI: 10.3390/ijms22126272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a major health problem worldwide. It is a time-dependent disease, with a high rate of morbidity and mortality. In this sense, an early diagnosis is essential to reduce these rates. The progressive increase of both the incidence and prevalence of sepsis has translated into a significant socioeconomic burden for health systems. Currently, it is the leading cause of noncoronary mortality worldwide and represents one of the most prevalent pathologies both in hospital emergency services and in intensive care units. In this article, we review the role of both endothelial dysfunction and neutrophil dysregulation in the physiopathology of this disease. The lack of a key symptom in sepsis makes it difficult to obtain a quick and accurate diagnosis of this condition. Thus, it is essential to have fast and reliable diagnostic tools. In this sense, the use of biomarkers can be a very important alternative when it comes to achieving these goals. Both new biomarkers and treatments related to endothelial dysfunction and neutrophil dysregulation deserve to be further investigated in order to open new venues for the diagnosis, treatment and prognosis of sepsis.
Collapse
|
95
|
Rumienczyk I, Kulecka M, Ostrowski J, Mar D, Bomsztyk K, Standage SW, Mikula M. Multi-Organ Transcriptome Dynamics in a Mouse Model of Cecal Ligation and Puncture-Induced Polymicrobial Sepsis. J Inflamm Res 2021; 14:2377-2388. [PMID: 34113146 PMCID: PMC8184233 DOI: 10.2147/jir.s307305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE During sepsis, an excessive inflammatory immune reaction contributes to multi-organ dysfunction syndrome (MODS), a critical condition associated with high morbidity and mortality; however, the molecular mechanisms driving MODS remain elusive. METHODS We used RNA sequencing to characterize transcriptional changes in the early phase of sepsis, at 6, 12, 24 hour time points in lung, kidney, liver, and heart tissues, in a cecal ligation and puncture (CLP)-induced polymicrobial sepsis murine model. RESULTS The CLP surgery induced significant changes (adj. p-value<0.05) in expression of hundreds of transcripts in the four organs tested, with the highest number exceeding 2,000 differentially expressed genes (DEGs) in all organs at 12 hours post-CLP. Over-representation analysis by functional annotations of DEGs to the Reactome database revealed the immune system, hemostasis, lipid metabolism, signal transduction, and extracellular matrix remodeling biological processes as significantly altered in at least two organs, while metabolism of proteins and RNA were revelaed as being liver tissue specific in the early phase of sepsis. CONCLUSION RNA sequencing across organs and time-points in the CLP murine model allowed us to study the trajectories of transcriptome changes demonstrating alterations common across multiple organs as well as biological pathways altered in an organ-specific manner. These findings could pave new directions in the research of sepsis-induced MODS and indicate new sepsis treatment strategies.
Collapse
Affiliation(s)
- Izabela Rumienczyk
- Maria Sklodowska-Curie National Research Institute of Oncology, Department of Genetics, Warsaw, 02-781, Poland
| | - Maria Kulecka
- Maria Sklodowska-Curie National Research Institute of Oncology, Department of Genetics, Warsaw, 02-781, Poland
- Centre for Postgraduate Medical Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Warsaw, 01-813, Poland
| | - Jerzy Ostrowski
- Maria Sklodowska-Curie National Research Institute of Oncology, Department of Genetics, Warsaw, 02-781, Poland
- Centre for Postgraduate Medical Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Warsaw, 01-813, Poland
| | - Daniel Mar
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
| | - Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
| | - Stephen W Standage
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michal Mikula
- Maria Sklodowska-Curie National Research Institute of Oncology, Department of Genetics, Warsaw, 02-781, Poland
| |
Collapse
|
96
|
Karimi A, Naeini F, Asghari Azar V, Hasanzadeh M, Ostadrahimi A, Niazkar HR, Mobasseri M, Tutunchi H. A comprehensive systematic review of the therapeutic effects and mechanisms of action of quercetin in sepsis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153567. [PMID: 33940332 DOI: 10.1016/j.phymed.2021.153567] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Sepsis is a life-threatening condition caused by a dysregulated host response to infection. Several studies have indicated that flavonoids exhibit a wide variety of biological actions including free radical scavenging and antioxidant activities. Quercetin, one of the most extensively distributed flavonoids in the vegetables and fruits, presents various biological activities including modulation of oxidative stress, anti-infectious, anti-inflammatory, and neuroprotective activities. METHODS The present systematic review was conducted according to the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements. We searched Web of Sciences, Google Scholar, PubMed, Scopus, and Embase databases up to February 2021 by using the relevant keywords. RESULTS Out of 672 records screened, 35 articles met the study criteria. The evidence reviewed here indicates that quercetin supplementation may exert beneficial effects on sepsis by attenuating inflammation and oxidative stress, downregulating the mRNA expression of toll-like receptors (TLRs), modulating the immune response, and alleviating sepsis-related organ dysfunctions. CONCLUSION Due to the promising therapeutic effects of quercetin on sepsis complications and the lack of clinical trials in this regard, future human randomized clinical trials are warranted.
Collapse
Affiliation(s)
- Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Vahid Asghari Azar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Malihe Hasanzadeh
- Department of Biology, Ardabil Branch Islamic Azad University, Ardabil, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Niazkar
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Majid Mobasseri
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
97
|
Fedotcheva N, Olenin A, Beloborodova N. Influence of Microbial Metabolites on the Nonspecific Permeability of Mitochondrial Membranes under Conditions of Acidosis and Loading with Calcium and Iron Ions. Biomedicines 2021; 9:biomedicines9050558. [PMID: 34067718 PMCID: PMC8156683 DOI: 10.3390/biomedicines9050558] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial dysfunction is currently considered one of the main causes of multiple organ failure in chronic inflammation and sepsis. The participation of microbial metabolites in disorders of bioenergetic processes in mitochondria has been revealed, but their influence on the mitochondrial membrane permeability has not yet been studied. We tested the influence of various groups of microbial metabolites, including indolic and phenolic acids, trimethylamine-N-oxide (TMAO) and acetyl phosphate (AcP), on the nonspecific permeability of mitochondrial membranes under conditions of acidosis, imbalance of calcium ions and excess free iron, which are inherent in sepsis. Changes in the parameters of the calcium-induced opening of the mitochondrial permeability transition pore (MPTP) and iron-activated swelling of rat liver mitochondria were evaluated. The most active metabolites were indole-3-carboxylic acid (ICA) and benzoic acid (BA), which activated MPTP opening and swelling under all conditions. AcP showed the opposite effect on the induction of MPTP opening, increasing the threshold concentration of calcium by 1.5 times, while TMAO activated swelling only under acidification. All the redox-dependent effects of metabolites were suppressed by the lipid radical scavenger butyl-hydroxytoluene (BHT), which indicates the participation of these microbial metabolites in the activation of membrane lipid peroxidation. Thus, microbial metabolites can directly affect the nonspecific permeability of mitochondrial membranes, if conditions of acidosis, an imbalance of calcium ions and an excess of free iron are created in the pathological state.
Collapse
Affiliation(s)
- Nadezhda Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Street 3, 142290 Pushchino, Russia
- Correspondence:
| | - Andrei Olenin
- V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, 119991 Moscow, Russia;
| | - Natalia Beloborodova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25-2 Petrovka Street, 107031 Moscow, Russia;
| |
Collapse
|
98
|
Wang W, Yang N, Wen R, Liu CF, Zhang TN. Long Noncoding RNA: Regulatory Mechanisms and Therapeutic Potential in Sepsis. Front Cell Infect Microbiol 2021; 11:563126. [PMID: 34055659 PMCID: PMC8149942 DOI: 10.3389/fcimb.2021.563126] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection and is characterized by a hyperinflammatory state accompanied by immunosuppression. Long noncoding RNAs (lncRNAs) are noncoding RNAs longer than 200 nucleotides and have important roles in mediating various biological processes. Recently, lncRNAs were found to exert both promotive and inhibitory immune functions in sepsis, thus participating in sepsis regulation. Additionally, several studies have revealed that lncRNAs are involved in sepsis-induced organ dysfunctions, including cardiovascular dysfunction, acute lung injury, and acute kidney injury. Considering the lack of effective biomarkers for early identification and specific treatment for sepsis, lncRNAs may be promising biomarkers and even targets for sepsis therapies. This review systematically highlights the recent advances regarding the roles of lncRNAs in sepsis and sheds light on their use as potential biomarkers and treatment targets for sepsis.
Collapse
Affiliation(s)
| | | | | | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
99
|
Tanigawa K. Case review of severe acute radiation syndrome from whole body exposure: concepts of radiation-induced multi-organ dysfunction and failure. JOURNAL OF RADIATION RESEARCH 2021; 62:i15-i20. [PMID: 33978174 PMCID: PMC8114211 DOI: 10.1093/jrr/rraa121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Acute radiation syndrome (ARS) due to whole body exposure (WBE) presents various clinical pictures, occasionally leading to fatal consequences. In this report, the literature providing details of the clinical course of severe ARS owing to WBE is reviewed and the lessons learned from recent accidents are discussed, to better prepare for another radiological event. Studies investigating radiological accidents that provided details of medical care for severe ARS were searched in official reports from the International Atomic Energy Agency and through the databases of PubMed, Medline, CiNii and Google Scholar and reviewed. Four fatal cases of severe ARS due to WBE in Soreq 1990 and Nesvizh 1992, and two cases in JCO Tokaimura 1999 were reviewed. A common set of medical interventions was carried out, that put a focus on medical management assuming the occurrence of hematopoietic disorders. However, clinicians were faced with a mixture of chronic hematological and non-hematological events including persistent gastrointestinal disorders, gradual and progressive skin disorders, liver and renal dysfunction and respiratory failure. Clinical pictures following high-dose WBE have become more complicated as treatment modalities improve. To address these issues, a concept of severe ARS due to WBE has been proposed with respect to radiation-induced multi-organ dysfunction syndrome (RI-MODS) and failure (RI-MOF). These patients need to be managed at institutions where multidisciplinary, resource-intensive therapy can be provided.
Collapse
|
100
|
The application of omic technologies to research in sepsis-associated acute kidney injury. Pediatr Nephrol 2021; 36:1075-1086. [PMID: 32356189 PMCID: PMC7606209 DOI: 10.1007/s00467-020-04557-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022]
Abstract
Acute kidney injury (AKI) is common in critically ill children and adults, and sepsis-associated AKI (SA-AKI) is the most frequent cause of AKI in the ICU. To date, no mechanistically targeted therapeutic interventions have been identified. High-throughput "omic" technologies (e.g., genomics, proteomics, metabolomics, etc.) offer a new angle of approach to achieve this end. In this review, we provide an update on the current understanding of SA-AKI pathophysiology. Omic technologies themselves are briefly discussed to facilitate interpretation of studies using them. We next summarize the body of SA-AKI research to date that has employed omic technologies. Importantly, omic studies are helping to elucidate a pathophysiology of SA-AKI centered around cellular stress responses, metabolic changes, and dysregulation of energy production that underlie its clinical features. Finally, we propose opportunities for future research using clinically relevant animal models, integrating multiple omic technologies and ultimately progressing to translational human studies focusing therapeutic strategies on targeted disease mechanisms.
Collapse
|