51
|
El-Tanani M, Nsairat H, Matalka II, Lee YF, Rizzo M, Aljabali AA, Mishra V, Mishra Y, Hromić-Jahjefendić A, Tambuwala MM. The impact of the BCR-ABL oncogene in the pathology and treatment of chronic myeloid leukemia. Pathol Res Pract 2024; 254:155161. [PMID: 38280275 DOI: 10.1016/j.prp.2024.155161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Chronic Myeloid Leukemia (CML) is characterized by chromosomal aberrations involving the fusion of the BCR and ABL genes on chromosome 22, resulting from a reciprocal translocation between chromosomes 9 and 22. This fusion gives rise to the oncogenic BCR-ABL, an aberrant tyrosine kinase identified as Abl protein. The Abl protein intricately regulates the cell cycle by phosphorylating protein tyrosine residues through diverse signaling pathways. In CML, the BCR-ABL fusion protein disrupts the first exon of Abl, leading to sustained activation of tyrosine kinase and resistance to deactivation mechanisms. Pharmacological interventions, such as imatinib, effectively target BCR-ABL's tyrosine kinase activity by binding near the active site, disrupting ATP binding, and inhibiting downstream protein phosphorylation. Nevertheless, the emergence of resistance, often attributed to cap structure mutations, poses a challenge to imatinib efficacy. Current research endeavours are directed towards overcoming resistance and investigating innovative therapeutic strategies. This article offers a comprehensive analysis of the structural attributes of BCR-ABL, emphasizing its pivotal role as a biomarker and therapeutic target in CML. It underscores the imperative for ongoing research to refine treatment modalities and enhance overall outcomes in managing CML.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/therapeutic use
- Imatinib Mesylate/pharmacology
- Genes, abl
- Pyrimidines/therapeutic use
- Piperazines/therapeutic use
- Benzamides/pharmacology
- Benzamides/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, United Arab Emirates; Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Yin Fai Lee
- Neuroscience, Psychology & Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 9HN, UK; School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| |
Collapse
|
52
|
Bansal M, Ansari S, Verma M. Role of miRNAs to control the progression of Chronic Myeloid Leukemia by their expression levels. Med Oncol 2024; 41:55. [PMID: 38216843 DOI: 10.1007/s12032-023-02278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
Chronic Myeloid Leukemia (CML) is a myeloproliferative disorder distinguished by a specific genetic anomaly known as a reciprocal translocation between chromosomes 9 and 22. This translocation causes fusion between the BCR and ABL regions. Consequently, BCR::ABL oncoprotein is formed, which plays a significant role in driving CML progression. Imatinib, a tyrosine kinase inhibitor (TKI), became the first line of drugs against CML. However, with continuous treatment, patients developed resistance against it. Indeed, to address this challenge, microRNA-based therapy emerges as a promising approach. miRNAs are 20-25 nucleotides long and hold great significance in various cellular processes, including cell differentiation, proliferation, migration, and apoptosis. In several malignancies, it has been reported that miRNAs might help to promote or prevent tumourigenesis and abnormal expression because they could act as both oncogenes/tumor suppressors. Recently, because of their vital regulatory function in maintaining cell homeostasis, miRNAs might be used to control CML progression and in developing new therapies for TKI-resistant patients. They might also act as potential prognostic, diagnostic, and therapeutic biomarkers based on their expression profiles. Various annotation tools and microarray-based expression profiles can be used to predict dysregulated miRNAs and their target genes. The main purpose of this review is to provide brief insights into the role of dysregulated miRNAs in CML pathogenesis and to emphasize their clinical relevance, such as their significant potential as therapeutics against CML. Utilizing these miRNAs as a therapeutic approach by inhibition or amplification of their activity could unlock new doors for the therapy of CML.
Collapse
MESH Headings
- Humans
- MicroRNAs/genetics
- Fusion Proteins, bcr-abl
- Drug Resistance, Neoplasm/genetics
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Apoptosis
Collapse
Affiliation(s)
- Manvi Bansal
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Sana Ansari
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Malkhey Verma
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
53
|
Sun J, Hu R, Han M, Tan Y, Xie M, Gao S, Hu JF. Mechanisms underlying therapeutic resistance of tyrosine kinase inhibitors in chronic myeloid leukemia. Int J Biol Sci 2024; 20:175-181. [PMID: 38164178 PMCID: PMC10750272 DOI: 10.7150/ijbs.86305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/27/2023] [Indexed: 01/03/2024] Open
Abstract
Chronic myeloid leukemia (CML) is a malignant clonal disease involving hematopoietic stem cells that is characterized by myeloid cell proliferation in bone marrow and peripheral blood, and the presence of the Philadelphia (Ph) chromosome with BCR-ABL fusion gene. Treatment of CML has dramatically improved since the advent of tyrosine kinase inhibitors (TKI). However, there are a small subset of CML patients who develop resistance to TKI. Mutations in the ABL kinase domain (KD) are currently recognized as the leading cause of TKI resistance in CML. In this review, we discuss the concept of resistance and summarize recent advances exploring the mechanisms underlying CML resistance. Overcoming TKI resistance appears to be the most successful approach to reduce the burden of leukemia and enhance cures for CML. Advances in new strategies to combat drug resistance may rapidly change the management of TKI-resistant CML and expand the prospects for available therapies.
Collapse
MESH Headings
- Humans
- Tyrosine Kinase Inhibitors
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/therapeutic use
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
Collapse
Affiliation(s)
- Jingnan Sun
- Hematology Department, First hospital of Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Ruiping Hu
- Hematology Department, First hospital of Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Mengyuan Han
- Hematology Department, First hospital of Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Yehui Tan
- Hematology Department, First hospital of Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Mengqing Xie
- Hematology Department, First hospital of Jilin University, Changchun, Jilin, 130021, P.R. China
- Oncology Department, Cancer hospital Chinese Academy of Medical Sciences, Langfang District, 065001, P.R. China
| | - Sujun Gao
- Hematology Department, First hospital of Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Ji-Fan Hu
- Hematology Department, First hospital of Jilin University, Changchun, Jilin, 130021, P.R. China
- Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA94304, USA
| |
Collapse
|
54
|
Shindo M, Komiyama C, Yamaguchi T, Kageyama K, Yamamoto H, Fujimoto Y, Uchida N, Kodama T. Ponatinib-Related Vasospastic Angina. Int Heart J 2024; 65:349-353. [PMID: 38556342 DOI: 10.1536/ihj.23-355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) are essential drugs for chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Cardiovascular or arteriothrombotic adverse events have been reported in patients treated with TKIs. We report 3 cases of Ponatinib-related vasospastic angina, in which prophylactic administration of nitrates or calcium channel blockers was effective.
Collapse
Affiliation(s)
- Michiho Shindo
- Department of Cardiology, Toranomon Hospital
- Department of Hematology, Toranomon Hospital
| | | | | | | | | | - Yo Fujimoto
- Department of Cardiology, Toranomon Hospital
| | | | | |
Collapse
|
55
|
Fessart D, Robert J. [Mechanisms of cancer drug resistance]. Bull Cancer 2024; 111:37-50. [PMID: 37679207 DOI: 10.1016/j.bulcan.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 09/09/2023]
Abstract
Despite decades of research into the molecular mechanisms of cancer and the development of new treatments, drug resistance persists as a major problem. This is in part due to the heterogeneity of cancer, including the diversity of tumor cell lineage and cell plasticity, the spectrum of somatic mutations, the complexity of microenvironments, and immunosuppressive characteristic, then necessitating the use of many different therapeutic approaches. We summarize here the biological causes of resistance, thus offering new perspectives for tackle drug resistance.
Collapse
Affiliation(s)
- Delphine Fessart
- ARTiSt lab, Université de Bordeaux, Inserm U1312 BRIC, 33000 Bordeaux, France.
| | - Jacques Robert
- ARTiSt lab, Université de Bordeaux, Inserm U1312 BRIC, 33000 Bordeaux, France
| |
Collapse
|
56
|
Zhang X, Ma W, Xue W, Wang Y, Chen P, Li Q, Li YY, Hu X, Zhao Y, Zhou H. miR-181a plays the tumor-suppressor role in chronic myeloid leukemia CD34 + cells partially via SERPINE1. Cell Mol Life Sci 2023; 81:10. [PMID: 38103082 PMCID: PMC10725356 DOI: 10.1007/s00018-023-05036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/07/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023]
Abstract
The formation of the BCR-ABL fusion gene drives human chronic myeloid leukemia (CML). The last 2 decades have witnessed that specific tyrosine kinase inhibitors (TKIs, e.g., imatinib mesylate, IM) against ABL1 improve disease treatment, although some patients still suffer from relapse and TKI resistance. Therefore, a better understanding of the molecular pathology of CML is still urgently needed. miR-181a-5p (miR-181a) acts as a tumor suppressor in CML; however, the molecular mechanism of miR-181a in CML stem/progenitor cells remains elusive. Herein, we showed that miR-181a inhibited the growth of CML CD34+ cells, including the quiescent subset, and sensitized them to IM treatment, while miR-181a inhibition by a sponge sequence collaborated with BCR-ABL to enhance the growth of normal CD34+ cells. Transcriptome data and biochemical analysis revealed that SERPINE1 was a bona fide and critical target of miR-181a, which deepened the understanding of the regulatory mechanism of SERPINE1. Genetic and pharmacological inhibition of SERPINE1 led to apoptosis mainly mediated by caspase-9 activation. The dual inhibition of SERPINE1 and BCR-ABL exhibited a significantly stronger inhibitory effect than a single agent. Taken together, this study demonstrates that a novel miR-181a/SERPINE1 axis modulates CML stem/progenitor cells, which likely provides an important approach to override TKI resistance.
Collapse
Affiliation(s)
- Xiuyan Zhang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China.
- The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, 215006, China.
| | - Wenjuan Ma
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Wen Xue
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
- The Affiliated Nanhua Hospital, Department of Clinical Research Institute, Hengyang Medical School, University of South China, Hengyang, 421002, China
| | - Yu Wang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
- Jianhu Country People's Hospital, Yancheng, 224700, China
| | - Pan Chen
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Quanxue Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yuan-Yuan Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Xiaohui Hu
- The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, 215006, China.
- National Clinical Research Center for Hematologic Diseases, Suzhou, 215006, China.
| | - Yun Zhao
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China.
- National Clinical Research Center for Hematologic Diseases, Suzhou, 215006, China.
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, 215123, China.
| | - Haixia Zhou
- The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, 215006, China.
- National Clinical Research Center for Hematologic Diseases, Suzhou, 215006, China.
| |
Collapse
|
57
|
Hill J, Jones RM, Crich D. Atypical N-Alkyl to N-Noralkoxy Switch in a Dual cSRC/BCR-ABL1 Kinase Inhibitor Improves Drug Efflux and hERG Affinity. ACS Med Chem Lett 2023; 14:1869-1875. [PMID: 38116407 PMCID: PMC10726475 DOI: 10.1021/acsmedchemlett.3c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
We describe an atypical amine bioisostere, the trisubstituted hydroxylamine, that upon incorporation into an approved dual cSRC/BCR-ABL1 kinase inhibitor yields 9, a compound that retains potent biological activity and couples it with improved drug efflux and hERG affinity at the expense of only a 2 atomic mass unit increase in molecular weight. Contrary to the common expectation for hydroxylamines in medicinal chemistry, 9 is well tolerated in vivo and lacks the mutagenicity and genotoxicity so often ascribed to lesser substituted hydroxylamines. A matched molecular pair (MMP) analysis suggests that the beneficial properties conferred by the N-alkyl to N-noralkoxy switch arises from a reduction in basicity of the piperazine unit. Overall, these results lend additional support to the use of trisubstituted hydroxylamines as bioisosteres of N-alkyl groups that are not involved in key polar interactions.
Collapse
Affiliation(s)
- Jarvis Hill
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Robert M. Jones
- Independent
Researcher, P.O. Box 568, Oakley, Utah 84055-0568, United States
| | - David Crich
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
58
|
Vogt M, Dienstbier N, Schliehe-Diecks J, Scharov K, Tu JW, Gebing P, Hogenkamp J, Bilen BS, Furlan S, Picard D, Remke M, Yasin L, Bickel D, Kalia M, Iacoangeli A, Lenz T, Stühler K, Pandyra AA, Hauer J, Fischer U, Wagener R, Borkhardt A, Bhatia S. Co-targeting HSP90 alpha and CDK7 overcomes resistance against HSP90 inhibitors in BCR-ABL1+ leukemia cells. Cell Death Dis 2023; 14:799. [PMID: 38057328 PMCID: PMC10700369 DOI: 10.1038/s41419-023-06337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
HSP90 has emerged as an appealing anti-cancer target. However, HSP90 inhibitors (HSP90i) are characterized by limited clinical utility, primarily due to the resistance acquisition via heat shock response (HSR) induction. Understanding the roles of abundantly expressed cytosolic HSP90 isoforms (α and β) in sustaining malignant cells' growth and the mechanisms of resistance to HSP90i is crucial for exploiting their clinical potential. Utilizing multi-omics approaches, we identified that ablation of the HSP90β isoform induces the overexpression of HSP90α and extracellular-secreted HSP90α (eHSP90α). Notably, we found that the absence of HSP90α causes downregulation of PTPRC (or CD45) expression and restricts in vivo growth of BCR-ABL1+ leukemia cells. Subsequently, chronic long-term exposure to the clinically advanced HSP90i PU-H71 (Zelavespib) led to copy number gain and mutation (p.S164F) of the HSP90AA1 gene, and HSP90α overexpression. In contrast, acquired resistance toward other tested HSP90i (Tanespimycin and Coumermycin A1) was attained by MDR1 efflux pump overexpression. Remarkably, combined CDK7 and HSP90 inhibition display synergistic activity against therapy-resistant BCR-ABL1+ patient leukemia cells via blocking pro-survival HSR and HSP90α overexpression, providing a novel strategy to avoid the emergence of resistance against treatment with HSP90i alone.
Collapse
Affiliation(s)
- Melina Vogt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Dienstbier
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katerina Scharov
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jia-Wey Tu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philip Gebing
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Hogenkamp
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Berna-Selin Bilen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Silke Furlan
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Layal Yasin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Bickel
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Munishikha Kalia
- Department of Biostatistics and Health Informatics, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Thomas Lenz
- Molecular Proteomics Laboratory, Biological Medical Research Center, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Julia Hauer
- Department of Pediatrics and Children's Cancer Research Center, Children's Hospital Munich Schwabing, Technical University of Munich, School of Medicine, Munich, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Rabea Wagener
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
59
|
Liu XY, Wang YH, Wang J, Quan JK, Li XD, Guan KP. The role of CSE1L silencing in the regulation of proliferation and apoptosis via the AMPK/mTOR signaling pathway in chronic myeloid leukemia. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2023; 28:1-9. [PMID: 36652402 DOI: 10.1080/16078454.2022.2161201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Chromosome segregation 1-like (CSE1L) is abundant and strongly expressed in solid tumors. However, the expression and role of CSE1L in chronic myeloid leukemia(CML) remain largely unknown. MATERIALS AND METHODS The relative expression levels of CSE1L in bone marrow granulocytes from patients with primary CML and non-hematologic controls were measured by flow cytometry. Cell counting kit-8 analysis, DNA Content Quantitation Assay, and Annexin V-PE/7-AAD staining were applied to assess the effects of CSE1L knockdown on cell proliferation, cell cycle progression, and apoptosis. RESULTS Elevated expression of CSE1L was detected in bone marrow granulocytes of patients with primary CML. In the CML cell line K562 cells, CSE1L knockdown impaired cell proliferation blocked the cell cycle shift from G0/G1 phase to the S phase, and promoted apoptosis. Knockdown of CSE1L reduced Bcl-2 protein expression and increased Bax protein expression. Meanwhile, knockdown of CSE1L enhanced the expression of phospho-AMPK protein and decreased the expression of phospho-mTOR protein. The expression of total AMPK and mTOR proteins was not affected. In addition, CSE1L expression levels were decreased in imatinib-treated K562 cells. CONCLUSIONS CSE1L plays a pivotal role in K562 cell survival and growth. These functions may be partially dependent on the AMPK/mTOR signaling pathway to achieve. In addition, CSE1L may have had a future impact on the treatment of CML patients.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yong-Hong Wang
- Laboratory Department, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jing Wang
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ji-Kun Quan
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xu-Dong Li
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Kun-Ping Guan
- Laboratory Department, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
60
|
Chiou JT, Lee YC, Chang LS. Hydroquinone-selected chronic myelogenous leukemia cells are sensitive to chloroquine-induced cytotoxicity via MCL1 suppression and glycolysis inhibition. Biochem Pharmacol 2023; 218:115934. [PMID: 37989415 DOI: 10.1016/j.bcp.2023.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Previous studies have provided evidence that repeated exposure to the benzene metabolite hydroquinone (HQ) induces malignant transformation and increases basal autophagy in the chronic myeloid leukemia (CML) cell line K562. This study explored the cytotoxicity of the autophagy inhibitor chloroquine (CQ) on parental and HQ-selected K562 (K562/HQ) cells. CQ triggered apoptosis in these cells independently of inhibiting autophagic flux; however, in K562/HQ cells, CQ-induced cytotoxicity was higher than in K562 cells. Mechanistically, CQ-induced NOXA upregulation led to MCL1 downregulation and mitochondrial depolarization in K562/HQ cells. MCL1 overexpression or NOXA silencing attenuated CQ-mediated cytotoxicity in K562/HQ cells. CQ triggered ERK inactivation to increase Sp1, NFκB, and p300 expression, and co-assembly of Sp1, NFκB, and p300 in the miR-29a promoter region coordinately upregulated miR-29a transcription. CQ-induced miR-29a expression destabilized tristetraprolin (TTP) mRNA, which in turn reduced TTP-mediated NOXA mRNA decay, thereby increasing NOXA protein expression. A similar mechanism explained the CQ-induced downregulation of MCL1 in K562 cells. K562/HQ cells relied more on glycolysis for ATP production than K562 cells, whereas inhibition of glycolysis by CQ was greater in K562/HQ cells than in K562 cells. Likewise, CQ-induced MCL1 suppression and glycolysis inhibition resulted in higher cytotoxicity in CML KU812/HQ cells than in KU812 cells. Taken together, our data confirm that CQ inhibits MCL1 expression through the ERK/miR-29a/TTP/NOXA pathway, and that inhibition of glycolysis is positively correlated to higher cytotoxicity of CQ on HQ-selected CML cells.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
61
|
Short NJ, Senapati J, Jabbour E. An Update on the Management of Advanced Phase Chronic Myeloid Leukemia. Curr Hematol Malig Rep 2023; 18:234-242. [PMID: 37651057 DOI: 10.1007/s11899-023-00709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE OF REVIEW While most patients with chronic myeloid leukemia (CML) present in a chronic phase and are expected to have a normal life expectancy, some patients present with or progress to a more aggressive accelerated phase (AP) or blast phase (BP) of CML. Herein, we discuss the diagnostic considerations of advanced phase CML and review its contemporary management. RECENT FINDINGS Later-generation, more potent BCR::ABL1 tyrosine kinase inhibitors (TKIs) such as ponatinib may result in superior outcomes in patients with advanced phase CML. For CML-BP, combination approaches directed against the blast immunophenotype appear superior to TKI monotherapy. The role of allogeneic stem cell transplantation is controversial in CML-AP but has consistently been shown to improve outcomes for patients with CML-BP. Advanced phase CML, particularly CML-BP, remains a poor risk subtype of CML. However, novel combination approaches using later-generation TKIs are being explored in clinical trials and may lead to improved outcomes.
Collapse
Affiliation(s)
- Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Unit 428, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Jayastu Senapati
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Unit 428, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Unit 428, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| |
Collapse
|
62
|
Wang Y, Travers RJ, Farrell A, Lu Q, Bays JL, Stepanian A, Chen C, Jaffe IZ. Differential vascular endothelial cell toxicity of established and novel BCR-ABL tyrosine kinase inhibitors. PLoS One 2023; 18:e0294438. [PMID: 37983208 PMCID: PMC10659179 DOI: 10.1371/journal.pone.0294438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
BCR-ABL tyrosine kinase inhibitors (TKIs) have dramatically improved survival in Philadelphia chromosome-positive leukemias. Newer BCR-ABL TKIs provide superior cancer outcomes but with increased risk of acute arterial thrombosis, which further increases in patients with cardiovascular comorbidities and mitigates survival benefits compared to imatinib. Recent studies implicate endothelial cell (EC) damage in this toxicity by unknown mechanisms with few side-by-side comparisons of multiple TKIs and with no available data on endothelial impact of recently approved TKIs or novels TKIs being tested in clinical trials. To characterize BCR-ABL TKI induced EC dysfunction we exposed primary human umbilical vein ECs in 2D and 3D culture to clinically relevant concentrations of seven BCR-ABL TKIs and quantified their impact on EC scratch-wound healing, viability, inflammation, and permeability mechanisms. Dasatinib, ponatinib, and nilotinib, the TKIs associated with thrombosis in patients, all significantly impaired EC wound healing, survival, and proliferation compared to imatinib, but only dasatinib and ponatinib impaired cell migration and only nilotinib enhanced EC necrosis. Dasatinib and ponatinib increased leukocyte adhesion to ECs with upregulation of adhesion molecule expression in ECs (ICAM1, VCAM1, and P-selectin) and leukocytes (PSGL1). Dasatinib increased permeability and impaired cell junctional integrity in human engineered microvessels, consistent with its unique association with pleural effusions. Of the new agents, bafetinib decreased EC viability and increased microvessel permeability while asciminib and radotinib did not impact any EC function tested. In summary, the vasculotoxic TKIs (dasatinib, ponatinib, nilotinib) cause EC toxicity but with mechanistic differences, supporting the potential need for drug-specific vasculoprotective strategies. Asciminib and radotinib do not induce EC toxicity at clinically relevant concentrations suggesting a better safety profile.
Collapse
Affiliation(s)
- Yihua Wang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America
- Tufts University, Medford, MA, United States of America
| | - Richard J. Travers
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Alanna Farrell
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America
| | - Jennifer L. Bays
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Alec Stepanian
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America
| | - Christopher Chen
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America
| |
Collapse
|
63
|
Solís-Hernández MDJ, Palomares-Báez JP, Herrera-Bucio R, Chacón-García L, Navarro-Santos P. Derivates of 1,6-dihyadroazaazulenes as inhibitors of tyrosine kinases BCR-ABL1 wild type and mutant T315I: a molecular dynamics approach. J Biomol Struct Dyn 2023:1-12. [PMID: 37937766 DOI: 10.1080/07391102.2023.2279274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
The protein tyrosine kinase (PTK) produced by the BCR-ABL1 gene has generated significant interest in the development of inhibitors since the presence of punctual mutations causes resistance to currently approved drugs, mainly the T315I mutation has been the most difficult to address. In this work, derivatives of 1,6-dihydroazaazulenes are studied as possible inhibitors of this PTK in its wild form and the mutant T315I. The recognition of the ligands was explored through molecular docking, and the stability of the complexes and their evolution over time was studied using molecular dynamics (MD) simulations. Our results show that complexes are energetically stable and reside on the ATP binding site in all cases during the MD experiments. Interestingly, a few of our proposed ligands presented greater affinity for T315I, finding more favorable binding free energies (ΔG) than the reference drug axitinib. Furthermore, they may act as inhibitors for both isoforms. Our findings are promising because mutation of T315I does not prevent ligand recognition, as detailed in this work, which is very important to conduct further experimental research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manuel de Jesus Solís-Hernández
- Instituto de Investigaciones Quimico Biologicas, Universidad Michoacana de San Nicolas de Hidalgo Edificio B-1, Ciudad Universitaria, Michoacán, Mexico
| | | | - Rafael Herrera-Bucio
- Instituto de Investigaciones Quimico Biologicas, Universidad Michoacana de San Nicolas de Hidalgo Edificio B-1, Ciudad Universitaria, Michoacán, Mexico
| | - Luis Chacón-García
- Instituto de Investigaciones Quimico Biologicas, Universidad Michoacana de San Nicolas de Hidalgo Edificio B-1, Ciudad Universitaria, Michoacán, Mexico
| | - Pedro Navarro-Santos
- Instituto de Investigaciones Quimico Biologicas, Universidad Michoacana de San Nicolas de Hidalgo Edificio B-1, Ciudad Universitaria, Michoacán, Mexico
- CONACYT-Universidad Michoacana de San Nicolas de Hidalgo Edificio B-1, Ciudad Universitaria, Michoacán, Mexico
| |
Collapse
|
64
|
Shin JE, Kim SH, Kong M, Kim HR, Yoon S, Kee KM, Kim JA, Kim DH, Park SY, Park JH, Kim H, No KT, Lee HW, Gee HY, Hong S, Guan KL, Roe JS, Lee H, Kim DW, Park HW. Targeting FLT3-TAZ signaling to suppress drug resistance in blast phase chronic myeloid leukemia. Mol Cancer 2023; 22:177. [PMID: 37932786 PMCID: PMC10626670 DOI: 10.1186/s12943-023-01837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/01/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Although the development of BCR::ABL1 tyrosine kinase inhibitors (TKIs) rendered chronic myeloid leukemia (CML) a manageable condition, acquisition of drug resistance during blast phase (BP) progression remains a critical challenge. Here, we reposition FLT3, one of the most frequently mutated drivers of acute myeloid leukemia (AML), as a prognostic marker and therapeutic target of BP-CML. METHODS We generated FLT3 expressing BCR::ABL1 TKI-resistant CML cells and enrolled phase-specific CML patient cohort to obtain unpaired and paired serial specimens and verify the role of FLT3 signaling in BP-CML patients. We performed multi-omics approaches in animal and patient studies to demonstrate the clinical feasibility of FLT3 as a viable target of BP-CML by establishing the (1) molecular mechanisms of FLT3-driven drug resistance, (2) diagnostic methods of FLT3 protein expression and localization, (3) association between FLT3 signaling and CML prognosis, and (4) therapeutic strategies to tackle FLT3+ CML patients. RESULTS We reposition the significance of FLT3 in the acquisition of drug resistance in BP-CML, thereby, newly classify a FLT3+ BP-CML subgroup. Mechanistically, FLT3 expression in CML cells activated the FLT3-JAK-STAT3-TAZ-TEAD-CD36 signaling pathway, which conferred resistance to a wide range of BCR::ABL1 TKIs that was independent of recurrent BCR::ABL1 mutations. Notably, FLT3+ BP-CML patients had significantly less favorable prognosis than FLT3- patients. Remarkably, we demonstrate that repurposing FLT3 inhibitors combined with BCR::ABL1 targeted therapies or the single treatment with ponatinib alone can overcome drug resistance and promote BP-CML cell death in patient-derived FLT3+ BCR::ABL1 cells and mouse xenograft models. CONCLUSION Here, we reposition FLT3 as a critical determinant of CML progression via FLT3-JAK-STAT3-TAZ-TEAD-CD36 signaling pathway that promotes TKI resistance and predicts worse prognosis in BP-CML patients. Our findings open novel therapeutic opportunities that exploit the undescribed link between distinct types of malignancies.
Collapse
Affiliation(s)
- Ji Eun Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Soo-Hyun Kim
- Leukemia Omics Research Institute, Eulji University, Uijeongbu-si, Gyeonggi-Do, Republic of Korea
| | - Mingyu Kong
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungmin Yoon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyung-Mi Kee
- Leukemia Omics Research Institute, Eulji University, Uijeongbu-si, Gyeonggi-Do, Republic of Korea
| | - Jung Ah Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dong Hyeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - So Yeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Hyung Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hongtae Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kyoung Tai No
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon, 21983, Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seunghee Hong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyunbeom Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Dong-Wook Kim
- Leukemia Omics Research Institute, Eulji University, Uijeongbu-si, Gyeonggi-Do, Republic of Korea.
- Hematology Department, Eulji Medical Center, Eulji University, Uijeongbu-si, Gyeonggi-Do, Republic of Korea.
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
65
|
Marrocco I, Yarden Y. Resistance of Lung Cancer to EGFR-Specific Kinase Inhibitors: Activation of Bypass Pathways and Endogenous Mutators. Cancers (Basel) 2023; 15:5009. [PMID: 37894376 PMCID: PMC10605519 DOI: 10.3390/cancers15205009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-specific tyrosine kinase inhibitors (TKIs) have changed the landscape of lung cancer therapy. For patients who are treated with the new TKIs, the current median survival exceeds 3 years, substantially better than the average 20 month survival rate only a decade ago. Unfortunately, despite initial efficacy, nearly all treated patients evolve drug resistance due to the emergence of either new mutations or rewired signaling pathways that engage other receptor tyrosine kinases (RTKs), such as MET, HER3 and AXL. Apparently, the emergence of mutations is preceded by a phase of epigenetic alterations that finely regulate the cell cycle, bias a mesenchymal phenotype and activate antioxidants. Concomitantly, cells that evade TKI-induced apoptosis (i.e., drug-tolerant persister cells) activate an intrinsic mutagenic program reminiscent of the SOS system deployed when bacteria are exposed to antibiotics. This mammalian system imbalances the purine-to-pyrimidine ratio, inhibits DNA repair and boosts expression of mutation-prone DNA polymerases. Thus, the net outcome of the SOS response is a greater probability to evolve new mutations. Deeper understanding of the persister-to-resister transformation, along with the development of next-generation TKIs, EGFR-specific proteolysis targeting chimeras (PROTACs), as well as bispecific antibodies, will permit delaying the onset of relapses and prolonging survival of patients with EGFR+ lung cancer.
Collapse
Affiliation(s)
- Ilaria Marrocco
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
66
|
Stuart DD, Guzman-Perez A, Brooijmans N, Jackson EL, Kryukov GV, Friedman AA, Hoos A. Precision Oncology Comes of Age: Designing Best-in-Class Small Molecules by Integrating Two Decades of Advances in Chemistry, Target Biology, and Data Science. Cancer Discov 2023; 13:2131-2149. [PMID: 37712571 PMCID: PMC10551669 DOI: 10.1158/2159-8290.cd-23-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 07/28/2023] [Indexed: 09/16/2023]
Abstract
Small-molecule drugs have enabled the practice of precision oncology for genetically defined patient populations since the first approval of imatinib in 2001. Scientific and technology advances over this 20-year period have driven the evolution of cancer biology, medicinal chemistry, and data science. Collectively, these advances provide tools to more consistently design best-in-class small-molecule drugs against known, previously undruggable, and novel cancer targets. The integration of these tools and their customization in the hands of skilled drug hunters will be necessary to enable the discovery of transformational therapies for patients across a wider spectrum of cancers. SIGNIFICANCE Target-centric small-molecule drug discovery necessitates the consideration of multiple approaches to identify chemical matter that can be optimized into drug candidates. To do this successfully and consistently, drug hunters require a comprehensive toolbox to avoid following the "law of instrument" or Maslow's hammer concept where only one tool is applied regardless of the requirements of the task. Combining our ever-increasing understanding of cancer and cancer targets with the technological advances in drug discovery described below will accelerate the next generation of small-molecule drugs in oncology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Axel Hoos
- Scorpion Therapeutics, Boston, Massachusetts
| |
Collapse
|
67
|
Al Shahrani M, Gahtani RM, Abohassan M, Alasmari S, Makkawi M. Identification by molecular dynamic simulation and in vitro validation of SISB-A1, N-[1-(4-bromophenyl)-3-methyl-1H-pyrazol-5-yl]-2-[(2-oxo-4-phenyl-2H-chromen-7-yl) oxy], as an inhibitor of the Abl T315I mutant kinase to combat imatinib resistance in chronic myeloid leukemia. Med Oncol 2023; 40:316. [PMID: 37789230 DOI: 10.1007/s12032-023-02182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023]
Abstract
The discovery of imatinib, a specific inhibitor of Abl kinase, revolutionized the therapeutic approach to chronic myeloid leukemia (CML); however, its efficacy can be impeded by the emergence of novel mutations within the kinase domain, particularly AblT315I, that lead to the development of drug resistance. It therefore remains necessary to identify specific inhibitors that can effectively target imatinib-resistant CML harboring the AblT315I mutation. A natural product library sourced from the ZINC database was screened against the experimental structure of AblT315I kinase to identify compounds that selectively target the mutated kinase. The top-scoring compound was empirically tested for inhibition of AblT315I kinase using a luminescence-based kit and for impact on cellular proliferation using the BaF3-BCR-ABL-T315I stable cell line. Computational docking and molecular dynamic simulations identified the compound SISB-A1, N-[1-(4-bromophenyl)-3-methyl-1H-pyrazol-5-yl]-2-[(2-oxo-4-phenyl-2H-chromen-7-yl)oxy] acetamide, to effectively bind the catalytic domain of the mutant AblT315I kinase. Moreover, SISB-A1 exhibited greater preference than imatinib for amino acid residues of the mutant kinase's active site, including isoleucine 315. MMPBSA-based Gibbs binding free energy estimation predicted SISB-A1 to have a free energy of -51.5 versus -65.0 kcal/mol for the conventional AblT315I inhibitor ponatinib. Cell proliferation assays showed SISB-A1 to have a GI50 of 164.0 nM against the ABL-T315I stable cell line, whereas imatinib had a GI50 of 5035 nM. The IC50 value obtained for SISB-A1 against the AblT315I kinase was 197.9 nM. The results indicate SISB-A1 to have a notable ability to bind the catalytic domain of the AblT315I mutant kinase and effectively suppress its activity, thereby surpassing the associated resistance to imatinib. Continued advancement of this lead compound has the potential to yield innovative therapeutics for imatinib-resistant CML.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Fusion Proteins, bcr-abl
- Molecular Dynamics Simulation
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mutation
Collapse
Affiliation(s)
- Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 3665, 61481, Abha, Saudi Arabia
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 3665, 61481, Abha, Saudi Arabia
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 3665, 61481, Abha, Saudi Arabia
| | - Sultan Alasmari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 3665, 61481, Abha, Saudi Arabia
| | - Mohammed Makkawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 3665, 61481, Abha, Saudi Arabia.
| |
Collapse
|
68
|
Ma Z, Zhang W, Han X, Li G. Design, synthesis, cytotoxic activity, and in silico studies of nitrogenous stilbenes. Fitoterapia 2023; 170:105625. [PMID: 37507054 DOI: 10.1016/j.fitote.2023.105625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
In present study, five series of 45 nitrogenous stilbenes including 35 new compounds were designed, synthesized, and assayed for cytotoxic activities against two human tumor cell lines (K562 cells and MDA-MB-231 cells) and normal cell line (L-02 cells). Structure-activity relationships showed the introduction of N,N-dimethylamino enhanced the cytotoxicities toward K562 cells and compounds with N-methyl piperazine displayed stronger potency toward MDA-MB-231 cells. Among them, compound NS1i possessed extremely potent cytotoxicity with IC50 values 0.93 μM against K562 cells along with excellent selectivity on normal cell viability. Moreover, in silico target prediction and molecule docking demonstrated quinone reductase 2 may be the potential target for NS1i. In summary, nitrogenous stilbenes afford significant potential for the discovery of new highly efficient anticancer agents and NS1i may serve as a promising lead deserve further investigation.
Collapse
Affiliation(s)
- Zongchen Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wenjie Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiao Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
69
|
Frank AR, Vandiver F, McFadden DG. Forward genetic screens identify mechanisms of resistance to small molecule lactate dehydrogenase inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560315. [PMID: 37808702 PMCID: PMC10557759 DOI: 10.1101/2023.09.30.560315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Altered metabolism is a hallmark of cancer; however, it has been difficult to specifically target metabolism in cancer for therapeutic benefit. Cancers with genetically defined defects in metabolic enzymes constitute a subset of cancers where targeting metabolism is potentially accessible. Hürthle cell carcinoma of the thyroid (HTC) tumors frequently harbor deleterious mitochondrial DNA (mtDNA) mutations in subunits of complex I of the mitochondrial electron transport chain (ETC). Previous work has shown that HTC models with deleterious mtDNA mutations exhibit mitochondrial ETC defects that expose lactate dehydrogenase (LDH) as a therapeutic vulnerability. Here, we performed forward genetic screens to identify mechanisms of resistance to small molecule LDH inhibitors. We identified two distinct mechanisms of resistance: upregulation of an LDH isoform and a compound-specific resistance mutation. Using these tools, we demonstrate that the anti-cancer activity of LDH inhibitors in cell line and xenograft models of complex I-mutant HTC is through on-target LDH inhibition.
Collapse
Affiliation(s)
- Anderson R Frank
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Florentina Vandiver
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David G McFadden
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Lead contact
| |
Collapse
|
70
|
Marín A, Al Mamun A, Patel H, Akamatsu H, Ye D, Sudhan DR, Eli L, Marcelain K, Brown BP, Meiler J, Arteaga CL, Hanker AB. Acquired Secondary HER2 Mutations Enhance HER2/MAPK Signaling and Promote Resistance to HER2 Kinase Inhibition in Breast Cancer. Cancer Res 2023; 83:3145-3158. [PMID: 37404061 PMCID: PMC10530374 DOI: 10.1158/0008-5472.can-22-3617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023]
Abstract
HER2 mutations drive the growth of a subset of breast cancers and are targeted with HER2 tyrosine kinase inhibitors (TKI) such as neratinib. However, acquired resistance is common and limits the durability of clinical responses. Most HER2-mutant breast cancers progressing on neratinib-based therapy acquire secondary mutations in HER2. It is unknown whether these secondary HER2 mutations, other than the HER2T798I gatekeeper mutation, are causal to neratinib resistance. Herein, we show that secondary acquired HER2T862A and HER2L755S mutations promote resistance to HER2 TKIs via enhanced HER2 activation and impaired neratinib binding. While cells expressing each acquired HER2 mutation alone were sensitive to neratinib, expression of acquired double mutations enhanced HER2 signaling and reduced neratinib sensitivity. Computational structural modeling suggested that secondary HER2 mutations stabilize the HER2 active state and reduce neratinib binding affinity. Cells expressing double HER2 mutations exhibited resistance to most HER2 TKIs but retained sensitivity to mobocertinib and poziotinib. Double-mutant cells showed enhanced MEK/ERK signaling, which was blocked by combined inhibition of HER2 and MEK. Together, these findings reveal the driver function of secondary HER2 mutations in resistance to HER2 inhibition and provide a potential treatment strategy to overcome acquired resistance to HER2 TKIs in HER2-mutant breast cancer. SIGNIFICANCE HER2-mutant breast cancers acquire secondary HER2 mutations that drive resistance to HER2 tyrosine kinase inhibitors, which can be overcome by combined inhibition of HER2 and MEK.
Collapse
Affiliation(s)
- Arnaldo Marín
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
- Doctoral Program in Medical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 838045, Chile
- These authors contributed equally: Arnaldo Marin, Abdullah Al Mamun
| | - Abdullah Al Mamun
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- These authors contributed equally: Arnaldo Marin, Abdullah Al Mamun
| | - Hima Patel
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 838045, Chile
| | - Hiroaki Akamatsu
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
- Current Address: Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Dan Ye
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
| | - Dhivya R. Sudhan
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
| | - Lisa Eli
- Puma Biotechnology, Inc., Los Angeles, CA 90024, USA
| | - Katherine Marcelain
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 838045, Chile
| | - Benjamin P. Brown
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, 04103, Germany
| | - Carlos L. Arteaga
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ariella B. Hanker
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
71
|
Chen M, Fang X, Du R, Meng J, Liu J, Liu M, Yang Y, Wang C. A Nucleus-Targeting WT1 Antagonistic Peptide Encapsulated in Polymeric Nanomicelles Combats Refractory Chronic Myeloid Leukemia. Pharmaceutics 2023; 15:2305. [PMID: 37765274 PMCID: PMC10534672 DOI: 10.3390/pharmaceutics15092305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic myeloid leukemia (CML) is recognized as a classic clonal myeloproliferative disorder. Given the limited treatment options for CML patients in the accelerated phase (AP) and blast phase (BP), there is an evident need to develop new therapeutic strategies. This has the potential to improve outcomes for individuals in the advanced stages of CML. A promising therapeutic target is Wilms' tumor 1 (WT1), which is highly expressed in BP-CML cells and plays a crucial role in CML progression. In this study, a chemically synthesized nucleus-targeting WT1 antagonistic peptide termed WIP2W was identified. The therapeutic implications of both the peptide and its micellar formulation, M-WIP2W, were evaluated in WT1+ BP-CML cell lines and in mice. The findings indicate that WIP2W can bind specifically to the WT1 protein, inducing cell cycle arrest and notable cytotoxicity in WT1+ BP-CML cells. Moreover, subcutaneous injections of M-WIP2W were observed to significantly enhance intra-tumoral accumulation and to effectively inhibit tumor growth. Thus, WIP2W stands out as a potent and selective WT1 inhibitor, and the M-WIP2W nanoformulation appears promising for the therapeutic treatment of refractory CML as well as other WT1-overexpressing malignant cancers.
Collapse
Affiliation(s)
- Mengting Chen
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (M.C.); (X.F.); (R.D.); (J.M.); (J.L.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaocui Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (M.C.); (X.F.); (R.D.); (J.M.); (J.L.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Du
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (M.C.); (X.F.); (R.D.); (J.M.); (J.L.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Meng
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (M.C.); (X.F.); (R.D.); (J.M.); (J.L.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Liu
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (M.C.); (X.F.); (R.D.); (J.M.); (J.L.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingpeng Liu
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (M.C.); (X.F.); (R.D.); (J.M.); (J.L.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (M.C.); (X.F.); (R.D.); (J.M.); (J.L.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (M.C.); (X.F.); (R.D.); (J.M.); (J.L.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
72
|
Oyogoa E, Streich L, Raess PW, Braun T. Case Report: ASXL1, RUNX1, and IDH1 mutation in tyrosine kinase-independent resistant chronic myeloid leukemia progressing to chronic myelomonocytic leukemia-like accelerated phase. Front Oncol 2023; 13:1217153. [PMID: 37746298 PMCID: PMC10513384 DOI: 10.3389/fonc.2023.1217153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Although the majority of patients with chronic myeloid leukemia (CML) enjoy an excellent prognosis tyrosine kinase inhibitor (TKI) therapy, resistance remains a significant clinical problem. Resistance can arise from mutations in the kinase domain of ABL preventing drug binding, or due to ill-defined kinase-independent mechanisms. In this case report, we describe the case of a 27-year-old woman with a long-standing history of chronic phase (CP) CML who developed kinase-independent resistance with mutations in ASXL1 and RUNX1. As a consequence of uncontrolled disease, she progressed to a chronic myelomonocytic leukemia-like (CMML) accelerated phase (AP) disease with the acquisition of a mutation in IDH1. This disease progression was associated with the development of an inflammatory serositis, a phenomenon that has been described in CMML but not in AP-CML. This case presents key features of kinase-independent resistance with insight into potential mechanisms, highlights management challenges, and describes a novel systemic inflammatory response that occurred in this patient upon disease progression.
Collapse
Affiliation(s)
- Emmanuella Oyogoa
- Department of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Lukas Streich
- Department of Pathology, Oregon Health & Science University, Portland, OR, United States
| | - Philipp W. Raess
- Department of Pathology, Oregon Health & Science University, Portland, OR, United States
| | - Theodore Braun
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
73
|
Webster J, Mai H, Ly A, Maher C. INTEGRATE-Circ and INTEGRATE-Vis: unbiased detection and visualization of fusion-derived circular RNA. Bioinformatics 2023; 39:btad569. [PMID: 37707537 PMCID: PMC10516643 DOI: 10.1093/bioinformatics/btad569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023] Open
Abstract
MOTIVATION Backsplicing of RNA results in circularized rather than linear transcripts, known as circular RNA (circRNA). A recently discovered and poorly understood subset of circRNAs that are composed of multiple genes, termed fusion-derived circular RNAs (fcircRNAs), represent a class of potential biomarkers shown to have oncogenic potential. Detection of fcircRNAs eludes existing analytical tools, making it difficult to more comprehensively assess their prevalence and function. Improved detection methods may lead to additional biological and clinical insights related to fcircRNAs. RESULTS We developed the first unbiased tool for detecting fcircRNAs (INTEGRATE-Circ) and visualizing fcircRNAs (INTEGRATE-Vis) from RNA-Seq data. We found that INTEGRATE-Circ was more sensitive, precise and accurate than other tools based on our analysis of simulated RNA-Seq data and our tool was able to outperform other tools in an analysis of public lymphoblast cell line data. Finally, we were able to validate in vitro three novel fcircRNAs detected by INTEGRATE-Circ in a well-characterized breast cancer cell line. AVAILABILITY AND IMPLEMENTATION Open source code for INTEGRATE-Circ and INTEGRATE-Vis is available at https://www.github.com/ChrisMaherLab/INTEGRATE-CIRC and https://www.github.com/ChrisMaherLab/INTEGRATE-Vis.
Collapse
Affiliation(s)
- Jace Webster
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Hung Mai
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Amy Ly
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Christopher Maher
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63130, United States
| |
Collapse
|
74
|
Feng H, Fu Y, Cui Z, Zhou M, Zhang L, Gao Z, Ma S, Chen C. Histone demethylase PHF8 facilitates the development of chronic myeloid leukaemia by directly targeting BCR::ABL1. Br J Haematol 2023; 202:1178-1191. [PMID: 37469124 DOI: 10.1111/bjh.18983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Although tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of chronic myeloid leukaemia (CML), TKI resistance remains a major challenge. Here, we demonstrated that plant homeodomain finger protein 8 (PHF8), a histone demethylase was aberrantly enriched in CML samples compared to healthy controls. PHF8 inhibited CML cell differentiation and promoted CML cell proliferation. Furthermore, the proliferation-inhibited function of PHF8-knockdown have stronger effect on imatinib mesylate (IM)-resistant CML cells. Mechanistically, we identified that PHF8 as a transcriptional modulator interacted with the promoter of the BCR::ABL1 fusion gene and alters the methylation levels of H3K9me1, H3K9me2 and H3K27me1, thereby promoting BCR::ABL1 transcription. Overall, our study suggests that targeting PHF8, which directly regulates BCR::ABL1 expression, is a useful therapeutic approach for CML.
Collapse
MESH Headings
- Humans
- Apoptosis
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/metabolism
- Histone Demethylases/genetics
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Huimin Feng
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zelong Cui
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Minran Zhou
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lu Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenxing Gao
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Sai Ma
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
75
|
Mostufi-Zadeh-Haghighi G, Veratti P, Zodel K, Greve G, Waterhouse M, Zeiser R, Cleary ML, Lübbert M, Duque-Afonso J. Functional Characterization of Transforming Growth Factor-β Signaling in Dasatinib Resistance and Pre-BCR + Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:4328. [PMID: 37686604 PMCID: PMC10486903 DOI: 10.3390/cancers15174328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The multi-kinase inhibitor dasatinib has been implicated to be effective in pre-B-cell receptor (pre-BCR)-positive acute lymphoblastic leukemia (ALL) expressing the E2A-PBX1 fusion oncoprotein. The TGFβ signaling pathway is involved in a wide variety of cellular processes, including embryonic development and cell homeostasis, and it can have dual roles in cancer: suppressing tumor growth at early stages and mediating tumor progression at later stages. In this study, we identified the upregulation of the TGFβ signaling pathway in our previously generated human dasatinib-resistant pre-BCR+/E2A-PBX1+ ALL cells using global transcriptomic analysis. We confirm the upregulation of the TGFβ pathway member SMAD3 at the transcriptional and translational levels in dasatinib-resistant pre-BCR+/E2A-PBX1+ ALL cells. Hence, dasatinib blocks, at least partially, TGFβ-induced SMAD3 phosphorylation in several B-cell precursor (BCP) ALL cell lines as well as in dasatinib-resistant pre-BCR+/E2A-PBX1+ ALL cells. Activation of the TGFβ signaling pathway by TGF-β1 leads to growth inhibition by cell cycle arrest at the G0/G1 stage, increase in apoptosis and transcriptional changes of SMAD-targeted genes, e.g. c-MYC downregulation, in pre-BCR+/E2A-PBX1+ ALL cells. These results provide a better understanding about the role that the TGFβ signaling pathway plays in leukemogenesis of BCP-ALL as well as in secondary drug resistance to dasatinib.
Collapse
Affiliation(s)
- Gila Mostufi-Zadeh-Haghighi
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.M.-Z.-H.); (P.V.); (K.Z.); (G.G.); (M.W.); (R.Z.); (M.L.)
| | - Pia Veratti
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.M.-Z.-H.); (P.V.); (K.Z.); (G.G.); (M.W.); (R.Z.); (M.L.)
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kyra Zodel
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.M.-Z.-H.); (P.V.); (K.Z.); (G.G.); (M.W.); (R.Z.); (M.L.)
| | - Gabriele Greve
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.M.-Z.-H.); (P.V.); (K.Z.); (G.G.); (M.W.); (R.Z.); (M.L.)
| | - Miguel Waterhouse
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.M.-Z.-H.); (P.V.); (K.Z.); (G.G.); (M.W.); (R.Z.); (M.L.)
| | - Robert Zeiser
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.M.-Z.-H.); (P.V.); (K.Z.); (G.G.); (M.W.); (R.Z.); (M.L.)
| | - Michael L. Cleary
- Department of Pathology, Stanford University, Stanford, CA 94305, USA;
| | - Michael Lübbert
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.M.-Z.-H.); (P.V.); (K.Z.); (G.G.); (M.W.); (R.Z.); (M.L.)
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Jesús Duque-Afonso
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.M.-Z.-H.); (P.V.); (K.Z.); (G.G.); (M.W.); (R.Z.); (M.L.)
| |
Collapse
|
76
|
Sporbeck K, Haas ML, Pastor-Maldonado CJ, Schüssele DS, Hunter C, Takacs Z, Diogo de Oliveira AL, Franz-Wachtel M, Charsou C, Pfisterer SG, Gubas A, Haller PK, Knorr RL, Kaulich M, Macek B, Eskelinen EL, Simonsen A, Proikas-Cezanne T. The ABL-MYC axis controls WIPI1-enhanced autophagy in lifespan extension. Commun Biol 2023; 6:872. [PMID: 37620393 PMCID: PMC10449903 DOI: 10.1038/s42003-023-05236-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Human WIPI β-propellers function as PI3P effectors in autophagy, with WIPI4 and WIPI3 being able to link autophagy control by AMPK and TORC1 to the formation of autophagosomes. WIPI1, instead, assists WIPI2 in efficiently recruiting the ATG16L1 complex at the nascent autophagosome, which in turn promotes lipidation of LC3/GABARAP and autophagosome maturation. However, the specific role of WIPI1 and its regulation are unknown. Here, we discovered the ABL-ERK-MYC signalling axis controlling WIPI1. As a result of this signalling, MYC binds to the WIPI1 promoter and represses WIPI1 gene expression. When ABL-ERK-MYC signalling is counteracted, increased WIPI1 gene expression enhances the formation of autophagic membranes capable of migrating through tunnelling nanotubes to neighbouring cells with low autophagic activity. ABL-regulated WIPI1 function is relevant to lifespan control, as ABL deficiency in C. elegans increased gene expression of the WIPI1 orthologue ATG-18 and prolonged lifespan in a manner dependent on ATG-18. We propose that WIPI1 acts as an enhancer of autophagy that is physiologically relevant for regulating the level of autophagic activity over the lifespan.
Collapse
Affiliation(s)
- Katharina Sporbeck
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Maximilian L Haas
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Carmen J Pastor-Maldonado
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - David S Schüssele
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Catherine Hunter
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Zsuzsanna Takacs
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- Institute of Molecular Biotechnology, A-1030, Vienna, Austria
| | - Ana L Diogo de Oliveira
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Chara Charsou
- Institute of Basic Medical Sciences, University of Oslo, 0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway
| | - Simon G Pfisterer
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- Department of Anatomy, Faculty of Medicine, University of Helsinki, FI-00290, Helsinki, Finland
| | - Andrea Gubas
- Institute of Biochemistry II, Frankfurt Cancer Institute, Goethe University Medical School, D-60590, Frankfurt, Germany
| | - Patricia K Haller
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Roland L Knorr
- Humboldt University of Berlin, Institute of Biology, D-10115, Berlin, Germany
- Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- International Research Frontiers Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Manuel Kaulich
- Institute of Biochemistry II, Frankfurt Cancer Institute, Goethe University Medical School, D-60590, Frankfurt, Germany
| | - Boris Macek
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- Proteome Center Tübingen, Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Eeva-Liisa Eskelinen
- Department of Biosciences, University of Helsinki, Fl-00790, Helsinki, Finland
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland
| | - Anne Simonsen
- Institute of Basic Medical Sciences, University of Oslo, 0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway
| | - Tassula Proikas-Cezanne
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany.
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany.
| |
Collapse
|
77
|
Zhuravleva SI, Zadorozhny AD, Shilov BV, Lagunin AA. Prediction of Amino Acid Substitutions in ABL1 Protein Leading to Tumor Drug Resistance Based on "Structure-Property" Relationship Classification Models. Life (Basel) 2023; 13:1807. [PMID: 37763211 PMCID: PMC10532460 DOI: 10.3390/life13091807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Drug resistance to anticancer drugs is a serious complication in patients with cancer. Typically, drug resistance occurs due to amino acid substitutions (AAS) in drug target proteins. The study aimed at developing and validating a new approach to the creation of structure-property relationships (SPR) classification models to predict AASs leading to drug resistance to inhibitors of tyrosine-protein kinase ABL1. The approach was based on the representation of AASs as peptides described in terms of structural formulas. The data on drug-resistant and non-resistant variants of AAS for two isoforms of ABL1 were extracted from the COSMIC database. The given training sets (approximately 700 missense variants) were used for the creation of SPR models in MultiPASS software based on substructural atom-centric multiple neighborhoods of atom (MNA) descriptors for the description of the structural formula of protein fragments and a Bayesian-like algorithm for revealing structure-property relationships. It was found that MNA descriptors of the 6th level and peptides from 11 amino acid residues were the best combination for ABL1 isoform 1 with the prediction accuracy (AUC) of resistance to imatinib (0.897) and dasatinib (0.996). For ABL1 isoform 2 (resistance to imatinib), the best combination was MNA descriptors of the 6th level, peptides form 15 amino acids (AUC value was 0.909). The prediction of possible drug-resistant AASs was made for dbSNP and gnomAD data. The six selected most probable imatinib-resistant AASs were additionally validated by molecular modeling and docking, which confirmed the possibility of resistance for the E334V and T392I variants.
Collapse
Affiliation(s)
- Svetlana I. Zhuravleva
- Department of Bioinformatics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (S.I.Z.); (A.D.Z.); (B.V.S.)
| | - Anton D. Zadorozhny
- Department of Bioinformatics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (S.I.Z.); (A.D.Z.); (B.V.S.)
| | - Boris V. Shilov
- Department of Bioinformatics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (S.I.Z.); (A.D.Z.); (B.V.S.)
| | - Alexey A. Lagunin
- Department of Bioinformatics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (S.I.Z.); (A.D.Z.); (B.V.S.)
- Department of Bioinformatics, Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
78
|
Yang J, Kang H, Lyu L, Xiong W, Hu Y. A target map of clinical combination therapies in oncology: an analysis of clinicaltrials.gov. Discov Oncol 2023; 14:151. [PMID: 37603124 PMCID: PMC10441974 DOI: 10.1007/s12672-023-00758-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Combination therapies have taken center stage for cancer treatment, however, there is a lack of a comprehensive portrait to quantitatively map the current clinical combination progress. This study aims to capture clinical combination therapies of the validated FDA-approved new oncology drugs by a macro data analysis and to summarize combination mechanisms and strategies in the context of the existing literature. A total of 72 new molecular entities or new therapeutic biological products for cancer treatment approved by the FDA from 2017 to 2021 were identified, and the data on their related 3334 trials were retrieved from the database of ClinicalTrials.gov. Moreover, these sampled clinical trials were refined by activity status and combination relevance and labeled with the relevant clinical arms and drug combinations, as well as drug targets and target pairs. Combination therapies are increasingly prevalent in clinical trials of new oncology drugs. From retrospective work, existing clinical combination therapies in oncology are driven by different patterns (i.e., rational design and industry trends). The former can be represented by mechanism-based or structure-based combinations, such as targeting different domains of HER2 protein or in-series co-targeting in RAF plus MEK inhibitors. The latter is an empirically driven strategy, including redundant combinations in hot targets, such as PD-1/PD-L1, PI3K, CDK4/6, and PARP. Because of an explosion in the number of clinical trials and the resultant shortage of available patients, it is essential to rationally design drug combinations.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Heming Kang
- DPM, Faculty of Health Sciences, University of Macau, Room 1049, E12, Macao SAR, 999078, China
| | - Liyang Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Wei Xiong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanjia Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China.
- DPM, Faculty of Health Sciences, University of Macau, Room 1049, E12, Macao SAR, 999078, China.
| |
Collapse
|
79
|
Mazzera L, Abeltino M, Lombardi G, Cantoni AM, Jottini S, Corradi A, Ricca M, Rossetti E, Armando F, Peli A, Ferrari A, Martinelli G, Scupoli MT, Visco C, Bonifacio M, Ripamonti A, Gambacorti-Passerini C, Bonati A, Perris R, Lunghi P. MEK1/2 regulate normal BCR and ABL1 tumor-suppressor functions to dictate ATO response in TKI-resistant Ph+ leukemia. Leukemia 2023; 37:1671-1685. [PMID: 37386079 PMCID: PMC10400427 DOI: 10.1038/s41375-023-01940-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Resistance to tyrosine kinase inhibitors (TKIs) remains a clinical challenge in Ph-positive variants of chronic myeloid leukemia. We provide mechanistic insights into a previously undisclosed MEK1/2/BCR::ABL1/BCR/ABL1-driven signaling loop that may determine the efficacy of arsenic trioxide (ATO) in TKI-resistant leukemic patients. We find that activated MEK1/2 assemble into a pentameric complex with BCR::ABL1, BCR and ABL1 to induce phosphorylation of BCR and BCR::ABL1 at Tyr360 and Tyr177, and ABL1, at Thr735 and Tyr412 residues thus provoking loss of BCR's tumor-suppression functions, enhanced oncogenic activity of BCR::ABL1, cytoplasmic retention of ABL1 and consequently drug resistance. Coherently, pharmacological blockade of MEK1/2 induces dissociation of the pentameric MEK1/2/BCR::ABL1/BCR/ABL1 complex and causes a concurrent BCRY360/Y177, BCR::ABL1Y360/Y177 and cytoplasmic ABL1Y412/T735 dephosphorylation thereby provoking the rescue of the BCR's anti-oncogenic activities, nuclear accumulation of ABL1 with tumor-suppressive functions and consequently, growth inhibition of the leukemic cells and an ATO sensitization via BCR-MYC and ABL1-p73 signaling axes activation. Additionally, the allosteric activation of nuclear ABL1 was consistently found to enhance the anti-leukemic effects of the MEK1/2 inhibitor Mirdametinib, which when combined with ATO, significantly prolonged the survival of mice bearing BCR::ABL1-T315I-induced leukemia. These findings highlight the therapeutic potential of MEK1/2-inhibitors/ATO combination for the treatment of TKI-resistant leukemia.
Collapse
Affiliation(s)
- Laura Mazzera
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Brescia, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Manuela Abeltino
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Guerino Lombardi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | | | - Stefano Jottini
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Micaela Ricca
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | - Elena Rossetti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- National Healthcare Service (SSN-Servizio Sanitario Nazionale) ASL Piacenza, Piacenza, Italy
| | - Federico Armando
- Department of Veterinary Science, University of Parma, Parma, Italy
- University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Angelo Peli
- Department for Life Quality Studies Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Anna Ferrari
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
- Institute of Hematology "L. e A. Seragnoli", Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carlo Visco
- Department of Engineering for Innovation Medicine, Section of Hematology-University of Verona, Verona, Italy
| | - Massimiliano Bonifacio
- Department of Engineering for Innovation Medicine, Section of Hematology-University of Verona, Verona, Italy
| | - Alessia Ripamonti
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Adult Hematology, IRCCS San Gerardo, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Adult Hematology, IRCCS San Gerardo, Monza, Italy
| | - Antonio Bonati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberto Perris
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Centre for Molecular and Translational Oncology-COMT, University of Parma, Parma, Italy
| | - Paolo Lunghi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
- Centre for Molecular and Translational Oncology-COMT, University of Parma, Parma, Italy.
| |
Collapse
|
80
|
Sun S, Qin J, Liao W, Gao X, Shang Z, Luo D, Xiong S. Mitochondrial Dysfunction in Cardiotoxicity Induced by BCR-ABL1 Tyrosine Kinase Inhibitors -Underlying Mechanisms, Detection, Potential Therapies. Cardiovasc Toxicol 2023; 23:233-254. [PMID: 37479951 DOI: 10.1007/s12012-023-09800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
The advent of BCR-ABL tyrosine kinase inhibitors (TKIs) targeted therapy revolutionized the treatment of chronic myeloid leukemia (CML) patients. Mitochondria are the key organelles for the maintenance of myocardial tissue homeostasis. However, cardiotoxicity associated with BCR-ABL1 TKIs can directly or indirectly cause mitochondrial damage and dysfunction, playing a pivotal role in cardiomyocytes homeostatic system and putting the cancer survivors at higher risk. In this review, we summarize the cardiotoxicity caused by BCR-ABL1 TKIs and the underlying mechanisms, which contribute dominantly to the damage of mitochondrial structure and dysfunction: endoplasmic reticulum (ER) stress, mitochondrial stress, damage of myocardial cell mitochondrial respiratory chain, increased production of mitochondrial reactive oxygen species (ROS), and other kinases and other potential mechanisms of cardiotoxicity induced by BCR-ABL1 TKIs. Furthermore, detection and management of BCR-ABL1 TKIs will promote our rational use, and cardioprotection strategies based on mitochondria will improve our understanding of the cardiotoxicity from a mitochondrial perspective. Ultimately, we hope shed light on clinical decision-making. By integrate and learn from both research and practice, we will endeavor to minimize the mitochondria-mediated cardiotoxicity and reduce the adverse sequelae associated with BCR-ABL1 TKIs.
Collapse
Affiliation(s)
- Sheng Sun
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Medical Oncology, Hospital of Chengdu University of Traditioanal Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Jiqiu Qin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhoubiao Shang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dehua Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaoquan Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Medical Oncology, Hospital of Chengdu University of Traditioanal Chinese Medicine, Chengdu, 610075, Sichuan Province, China.
| |
Collapse
|
81
|
Bou Antoun N, Chioni AM. Dysregulated Signalling Pathways Driving Anticancer Drug Resistance. Int J Mol Sci 2023; 24:12222. [PMID: 37569598 PMCID: PMC10418675 DOI: 10.3390/ijms241512222] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
One of the leading causes of death worldwide, in both men and women, is cancer. Despite the significant development in therapeutic strategies, the inevitable emergence of drug resistance limits the success and impedes the curative outcome. Intrinsic and acquired resistance are common mechanisms responsible for cancer relapse. Several factors crucially regulate tumourigenesis and resistance, including physical barriers, tumour microenvironment (TME), heterogeneity, genetic and epigenetic alterations, the immune system, tumour burden, growth kinetics and undruggable targets. Moreover, transforming growth factor-beta (TGF-β), Notch, epidermal growth factor receptor (EGFR), integrin-extracellular matrix (ECM), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR), wingless-related integration site (Wnt/β-catenin), Janus kinase/signal transducers and activators of transcription (JAK/STAT) and RAS/RAF/mitogen-activated protein kinase (MAPK) signalling pathways are some of the key players that have a pivotal role in drug resistance mechanisms. To guide future cancer treatments and improve results, a deeper comprehension of drug resistance pathways is necessary. This review covers both intrinsic and acquired resistance and gives a comprehensive overview of recent research on mechanisms that enable cancer cells to bypass barriers put up by treatments, and, like "satellite navigation", find alternative routes by which to carry on their "journey" to cancer progression.
Collapse
Affiliation(s)
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Biomolecular Sciences Department, Kingston University London, Kingston-upon-Thames KT1 2EE, UK;
| |
Collapse
|
82
|
Schwab RD, Luger SM. Which Second-Line Tyrosine Kinase Inhibitor(s) for Chronic Myeloid Leukemia? Curr Treat Options Oncol 2023; 24:757-769. [PMID: 37119409 DOI: 10.1007/s11864-023-01088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2023] [Indexed: 05/01/2023]
Abstract
OPINION STATEMENT In patients with chronic myeloid leukemia who require second-line tyrosine kinase inhibitor therapy, many options exist. These treatments include alternate generation tyrosine kinase inhibitors and in some cases consideration of allogeneic transplant. Although efficacious, each tyrosine kinase inhibitor possesses distinct side effects and pharmacological profiles that prevent a generalizable treatment approach. Furthermore, there is limited head-to-head trial data that would suggest the superiority of one tyrosine kinase inhibitor over another to help guide treatment decisions in specific clinical settings. Therefore, we treat each patient independently. A patient's treatment plan must be personalized by a variety of clinical factors to optimize response and tolerability. Our general approach is to first examine the reason for treatment failure, which may be due to either intolerance or relapse. Second, we consider the age and patient's comorbidities such as lung disease, diabetes, or cardiovascular disease. In patients who have inadequate responses, we analyze the patient's BCR-ABL1 mutational profile, which is beneficial if that patient harbors a specific tyrosine kinase inhibitor responsive mutation, such as T315I. Using these steps, we can provide a generalizable approach to choosing the appropriate second-line tyrosine inhibitor for chronic myeloid leukemia.
Collapse
MESH Headings
- Humans
- Tyrosine Kinase Inhibitors
- Fusion Proteins, bcr-abl/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Protein Kinase Inhibitors/adverse effects
- Mutation
- Drug Resistance, Neoplasm
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Robert D Schwab
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Selina M Luger
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, Perelman Center for Advanced Medicine, 12th Floor South Extension, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
83
|
Varshavsky A, Lewis K, Chen SJ. Deletions of DNA in cancer and their possible uses for therapy. Bioessays 2023; 45:e2300051. [PMID: 37166062 PMCID: PMC11102808 DOI: 10.1002/bies.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
Despite advances in treatments over the last decades, a uniformly reliable and free of side effects therapy of human cancers remains to be achieved. During chromosome replication, a premature halt of two converging DNA replication forks would cause incomplete replication and a cytotoxic chromosome nondisjunction during mitosis. In contrast to normal cells, most cancer cells bear numerous DNA deletions. A homozygous deletion permanently marks a cell and its descendants. Here, we propose an approach to cancer therapy in which a pair of sequence-specific roadblocks is placed solely at two cancer-confined deletion sites that are located ahead of two converging replication forks. We describe this method, termed "replication blocks specific for deletions" (RBSD), and another deletions-based approach as well. RBSD can be expanded by placing pairs of replication roadblocks on several different chromosomes. The resulting simultaneous nondisjunctions of these chromosomes in cancer cells would further increase the cancer-specific toxicity of RBSD.
Collapse
Affiliation(s)
- Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Shun-Jia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
84
|
Guo J, Zhou Y, Lu X. Advances in protein kinase drug discovery through targeting gatekeeper mutations. Expert Opin Drug Discov 2023; 18:1349-1366. [PMID: 37811637 DOI: 10.1080/17460441.2023.2265303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Acquired resistance caused by gatekeeper mutations has become a major challenge for approved kinase inhibitors used in the clinic. Consequently, the development of new-generation inhibitors or degraders to overcome clinical resistance has become an important research focus for the field. AREAS COVERED This review summarizes the common gatekeeper mutations in druggable kinases and the constantly evolving inhibitors or degraders designed to overcome single or double mutations of gatekeeper residues. Furthermore, the authors provide their perspectives on the medicinal chemistry strategies for addressing clinical resistance with gatekeeper mutations. EXPERT OPINION The authors suggest optimizing kinase inhibitors to interact effectively with gatekeeper residues, altering the binding mode or binding pocket to avoid steric clashes, improving binding affinity with the target, utilizing protein degraders, and developing combination therapy. These approaches have the potential to be effective in overcoming resistance due to gatekeeper residues.
Collapse
Affiliation(s)
- Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
85
|
Xu K, Tang H, Xiong J, Ban X, Duan Y, Tu Y. Tyrosine kinase inhibitors and atherosclerosis: A close but complicated relationship. Eur J Pharmacol 2023:175869. [PMID: 37369295 DOI: 10.1016/j.ejphar.2023.175869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
Targeted cancer therapies have revolutionized the treatment of the disease in the past decade. The tyrosine kinase inhibitor (TKI) class of drugs is a widely used option for treating various cancers. Despite numerous advances, clinical and experimental studies have demonstrated the atherosclerosis-inducing properties of these drugs that can cause adverse cardiovascular events. TKIs also have an atherosclerosis-preventing role in patients with cancer through different mechanisms under various conditions, suggesting that specific drugs play different roles in atherosclerosis regulation. Given these contradictory properties, this review summarizes the outcomes of previously performed clinical and basic experiments and shows how the targeted effects of novel TKIs affect atherosclerosis. Future collaborative efforts are warranted to enhance our understanding of the association between TKIs and atherosclerosis.
Collapse
Affiliation(s)
- Ke Xu
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Hao Tang
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Jie Xiong
- Department of Cardiology, The Second Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Xiaofang Ban
- Department of Cardiology, The Second Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Yuchen Duan
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Yingfeng Tu
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
86
|
Iezza M, Cortesi S, Ottaviani E, Mancini M, Venturi C, Monaldi C, De Santis S, Testoni N, Soverini S, Rosti G, Cavo M, Castagnetti F. Prognosis in Chronic Myeloid Leukemia: Baseline Factors, Dynamic Risk Assessment and Novel Insights. Cells 2023; 12:1703. [PMID: 37443737 PMCID: PMC10341256 DOI: 10.3390/cells12131703] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The introduction of tyrosine kinase inhibitors (TKIs) has changed the treatment paradigm of chronic myeloid leukemia (CML), leading to a dramatic improvement of the outcome of CML patients, who now have a nearly normal life expectancy and, in some selected cases, the possibility of aiming for the more ambitious goal of treatment-free remission (TFR). However, the minority of patients who fail treatment and progress from chronic phase (CP) to accelerated phase (AP) and blast phase (BP) still have a relatively poor prognosis. The identification of predictive elements enabling a prompt recognition of patients at higher risk of progression still remains among the priorities in the field of CML management. Currently, the baseline risk is assessed using simple clinical and hematologic parameters, other than evaluating the presence of additional chromosomal abnormalities (ACAs), especially those at "high-risk". Beyond the onset, a re-evaluation of the risk status is mandatory, monitoring the response to TKI treatment. Moreover, novel critical insights are emerging into the role of genomic factors, present at diagnosis or evolving on therapy. This review presents the current knowledge regarding prognostic factors in CML and their potential role for an improved risk classification and a subsequent enhancement of therapeutic decisions and disease management.
Collapse
Affiliation(s)
- Miriam Iezza
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
| | - Sofia Cortesi
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
| | - Emanuela Ottaviani
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.O.); (M.M.); (C.V.)
| | - Manuela Mancini
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.O.); (M.M.); (C.V.)
| | - Claudia Venturi
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.O.); (M.M.); (C.V.)
| | - Cecilia Monaldi
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
| | - Sara De Santis
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
| | - Nicoletta Testoni
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.O.); (M.M.); (C.V.)
| | - Simona Soverini
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
| | - Gianantonio Rosti
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS “Dino Amadori”, 47014 Meldola, Italy;
| | - Michele Cavo
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.O.); (M.M.); (C.V.)
| | - Fausto Castagnetti
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy; (S.C.); (C.M.); (S.D.S.); (N.T.); (S.S.); (M.C.); (F.C.)
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.O.); (M.M.); (C.V.)
| |
Collapse
|
87
|
Kong Y, Jiang C, Wei G, Sun K, Wang R, Qiu T. Small Molecule Inhibitors as Therapeutic Agents Targeting Oncogenic Fusion Proteins: Current Status and Clinical. Molecules 2023; 28:4672. [PMID: 37375228 DOI: 10.3390/molecules28124672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Oncogenic fusion proteins, arising from chromosomal rearrangements, have emerged as prominent drivers of tumorigenesis and crucial therapeutic targets in cancer research. In recent years, the potential of small molecular inhibitors in selectively targeting fusion proteins has exhibited significant prospects, offering a novel approach to combat malignancies harboring these aberrant molecular entities. This review provides a comprehensive overview of the current state of small molecular inhibitors as therapeutic agents for oncogenic fusion proteins. We discuss the rationale for targeting fusion proteins, elucidate the mechanism of action of inhibitors, assess the challenges associated with their utilization, and provide a summary of the clinical progress achieved thus far. The objective is to provide the medicinal community with current and pertinent information and to expedite the drug discovery programs in this area.
Collapse
Affiliation(s)
- Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Caihong Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruijie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
88
|
Mu X, Chen C, Dong L, Kang Z, Sun Z, Chen X, Zheng J, Zhang Y. Immunotherapy in leukaemia. Acta Biochim Biophys Sin (Shanghai) 2023; 55:974-987. [PMID: 37272727 PMCID: PMC10326417 DOI: 10.3724/abbs.2023101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Leukaemia is the common name for a group of malignant diseases of the haematopoietic system with complex classifications and characteristics. Remarkable progress has been made in basic research and preclinical studies for acute leukaemia compared to that of the many other types/subtypes of leukaemia, especially the exploration of the biological basis and application of immunotherapy in acute myeloid leukaemia (AML) and B-cell acute lymphoblastic leukaemia (B-ALL). In this review, we summarize the basic approaches to immunotherapy for leukaemia and focus on the research progress made in immunotherapy development for AML and ALL. Importantly, despite the advances made to date, big challenges still exist in the effectiveness of leukaemia immunotherapy, especially in AML. Therefore, we use AML as an example and summarize the mechanisms of tumour cell immune evasion, describe recently reported data and known therapeutic targets, and discuss the obstacles in finding suitable treatment targets and the results obtained in recent clinical trials for several types of single and combination immunotherapies, such as bispecific antibodies, cell therapies (CAR-T-cell treatment), and checkpoint blockade. Finally, we summarize novel immunotherapy strategies for treating lymphocytic leukaemia and clinical trial results.
Collapse
Affiliation(s)
- Xingmei Mu
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chumao Chen
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Loujie Dong
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhaowei Kang
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhixian Sun
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Xijie Chen
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Junke Zheng
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yaping Zhang
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
89
|
Wang G, Zhou Y, Yi B, Long Y, Ma B, Zhang Y. Comprehensive analysis of the prognostic value and biological function of TDG in hepatocellular carcinoma. Cell Cycle 2023; 22:1478-1495. [PMID: 37224078 PMCID: PMC10281473 DOI: 10.1080/15384101.2023.2216501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 05/26/2023] Open
Abstract
Epigenetics plays an important role in the malignant progression of tumors, in which DNA methylation can alter genetic performance without altering the DNA sequence. As a key regulator demethylation, thymine-DNA glycosylase (TDG) has been reported to participate in malignant progression of multiple tumors. In this study, we demonstrate that TDG is highly expressed in hepatocellular carcinoma (HCC) and its high expression is closely related to the poor prognosis of patients. Decreasing TDG expression can significantly inhibit the malignant biological behavior of HCC cells. ABL proto-oncogene 1(ABL1) was identified as a downstream gene regulated by TDG demethylation. In addition, TDG can affect the Hippo signaling pathway through ABL1 to regulate HCC cell proliferation, apoptosis, invasion and migration. Overall, our study demonstrated that TDG reduces DNA methylation of ABL1, increases ABL1 protein expression, and affects the Hippo signaling pathway to regulate the malignant progression of HCC.
Collapse
Affiliation(s)
- Guoliang Wang
- Department of Hepatobiliary Surgery, Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yinwen Zhou
- Department of Surgery, Zunyi Medical University, Zunyi, Guizhou, China
| | - Bin Yi
- Department of Hepatobiliary Surgery, Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yanli Long
- Department of Pathology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Ma
- Department of Hepatobiliary Surgery, Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yi Zhang
- Department of Hepatobiliary Surgery, Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
90
|
Philipova I, Mihaylova R, Momekov G, Angelova R, Stavrakov G. Ferrocene modified analogues of imatinib and nilotinib as potent anti-cancer agents. RSC Med Chem 2023; 14:880-889. [PMID: 37252096 PMCID: PMC10211329 DOI: 10.1039/d3md00030c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2024] Open
Abstract
The unique features of ferrocene and the need for development of targeted anticancer drugs inspired the design, synthesis and biological evaluation of ferrocenyl modified tyrosine kinase inhibitors by replacing the pyridyl moiety in imatinib and nilotinib generalized structures with a ferrocenyl group. A series of seven new ferrocene analogues were synthesized and evaluated for their anticancer activity in a panel of bcr-abl positive human malignant cell lines using imatinib as a reference drug. The metallocenes exhibited a dose-dependent inhibition on malignant cell growth with varying antileukemic activity. The most potent analogues were compounds 9 and 15a showing comparable or even superior efficacy to the reference. Their cancer selectivity indices suggest a favorable selectivity profile, indicating a 250 times higher preferential activity of 15a towards malignantly transformed K-562 cells and an even twice greater one (500) of 9 in the LAMA-84 leukemic model as compared to the normal murine fibroblast cell line.
Collapse
Affiliation(s)
- Irena Philipova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Acad. G. Bontchev str. Bl. 9 1113 Sofia Bulgaria
| | - Rositsa Mihaylova
- Faculty of Pharmacy, Medical University - Sofia Dunav str. 2 Sofia 1000 Bulgaria
| | - Georgi Momekov
- Faculty of Pharmacy, Medical University - Sofia Dunav str. 2 Sofia 1000 Bulgaria
| | - Rostislava Angelova
- Faculty of Pharmacy, Medical University - Sofia Dunav str. 2 Sofia 1000 Bulgaria
| | - Georgi Stavrakov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Acad. G. Bontchev str. Bl. 9 1113 Sofia Bulgaria
- Faculty of Pharmacy, Medical University - Sofia Dunav str. 2 Sofia 1000 Bulgaria
| |
Collapse
|
91
|
Shi H, Gao L, Zhang W, Jiang M. Long non-coding RNAs regulate treatment outcome in leukemia: What have we learnt recently? Cancer Med 2023. [PMID: 37148556 DOI: 10.1002/cam4.6027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023] Open
Abstract
Leukemia is a group of highly heterogeneous and life-threatening blood cancers that originate from abnormal hematopoietic stem cells. Multiple treatments are approved for leukemia, including chemotherapy, targeted therapy, hematopoietic stem cell transplantation, radiation therapy, and immunotherapy. Unfortunately, therapeutic resistance occurs in a substantial proportion of patients and greatly compromises the treatment efficacy of leukemia, resulting in relapse and mortality. The abnormal activity of receptor tyrosine kinases, cell membrane transporters, intracellular signal transducers, transcription factors, and anti-apoptotic proteins have been shown to contribute to the emergence of therapeutic resistance. Despite these findings, the exact mechanisms of treatment resistance are still not fully understood, which limits the development of effective measures to overcome it. Long non-coding RNAs (lncRNA) are a class of regulatory molecules that are gaining increasing attention, and lncRNA-mediated regulation of therapeutic resistance against multiple drugs for leukemia is being revealed. These dysregulated lncRNAs not only serve as potential targets to reduce resistance but also might improve treatment response prediction and individualized treatment decision. Here, we summarize the recent findings on lncRNA-mediated regulation of therapeutic resistance in leukemia and discuss future perspectives on how to make use of the dysregulated lncRNAs in leukemia to improve treatment outcome.
Collapse
Affiliation(s)
- Huiping Shi
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Liang Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Weili Zhang
- Department of Gastroenterology, Xiangcheng People's Hospital, Suzhou, Jiangsu, People's Republic of China
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
92
|
Chatterjee S, Sanjeev BS. Community detection in Epstein-Barr virus associated carcinomas and role of tyrosine kinase in etiological mechanisms for oncogenesis. Microb Pathog 2023; 180:106115. [PMID: 37137346 DOI: 10.1016/j.micpath.2023.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Epstein-Barr virus (EBV) affects more than 90% of global population. The role of the virus in causing infectious mononucleosis (IM) affecting B-cells and epithelial cells and in the development of EBV associated cancers is well documented. Investigating the associated interactions can pave way for the discovery of novel therapeutic targets for EBV associated lymphoproliferative (Burkitt's Lymphoma and Hodgkin's Lymphoma) and non-lymphoproliferative diseases (Gastric cancer and Nasopharyngeal cancer). METHODS Based on the DisGeNET (v7.0) data set, we constructed a disease-gene network to identify genes that are involved in various carcinomas, viz. Gastric cancer (GC), Nasopharyngeal cancer (NPC), Hodgkin's lymphoma (HL) and Burkitt's lymphoma (BL). We identified communities in the disease-gene network and performed functional enrichment using over-representation analysis to detect significant biological processes/pathways and the interactions between them. RESULT We identified the modular communities to explore the relation of this common causative pathogen (EBV) with different carcinomas such as GC, NPC, HL and BL. Through network analysis we identified the top 10 genes linked with EBV associated carcinomas as CASP10, BRAF, NFKBIA, IFNA2, GSTP1, CSF3, GATA3, UBR5, AXIN2 and POLE. Further, the tyrosine-protein kinase (ABL1) gene was significantly over-represented in 3 out of 9 critical biological processes, viz. in regulatory pathways in cancer, the TP53 network and the Imatinib and chronic myeloid leukemia biological processes. Consequently, the EBV pathogen appears to target critical pathways involved in cellular growth arrest/apoptosis. We make our case for BCR-ABL1 tyrosine-kinase inhibitors (TKI) for further clinical investigations in the inhibition of BCR-mediated EBV activation in carcinomas for better prognostic and therapeutic outcomes.
Collapse
Affiliation(s)
- S Chatterjee
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India.
| | - B S Sanjeev
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India.
| |
Collapse
|
93
|
Senapati J, Sasaki K, Issa GC, Lipton JH, Radich JP, Jabbour E, Kantarjian HM. Management of chronic myeloid leukemia in 2023 - common ground and common sense. Blood Cancer J 2023; 13:58. [PMID: 37088793 PMCID: PMC10123066 DOI: 10.1038/s41408-023-00823-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
With the improving knowledge of CML and its management, the goals of therapy need to be revisited to ensure an optimal use of the BCR::ABL1 TKIs in the frontline and later-line therapy of CML. In the frontline therapy of CML in the chronic phase (CML-CP), imatinib and the three second-generation TKIs (bosutinib, dasatinib and nilotinib) are associated with comparable survival results. The second-generation TKIs may produce earlier deep molecular responses, hence reducing the time to reaching a treatment-free remission (TFR). The choice of the second-generation TKI versus imatinib in frontline therapy is based on the treatment aims (survival, TFR), the CML risk, the drug cost, and the toxicity profile with respect to the patient's comorbidities. The TKI dosing is more flexible than has been described in the registration trials, and dose adjustments can be considered both in the frontline and later-line settings (e.g., dasatinib 50 mg frontline therapy; dose adjusted schedules of bosutinib and ponatinib), as well as during an ongoing TKI therapy to manage toxicities, before considering changing the TKI. In patients who are not candidates for TFR, BCR::ABL1 (International Scale) transcripts levels <1% are acceptable, result in virtually similar survival as with deeper molecular remissions, and need not warrant a change of TKI. For patients with true resistance to second-generation TKIs or with the T315I gatekeeper mutation, the third-generation TKIs are preferred. Ponatinib should be considered first because of the cumulative experience and results in the CML subsets, including in T315I-mutated CML. A response-based dosing of ponatinib is safe and leads to high TKI compliance. Asciminib is a third-generation TKI with possibly a better toxicity profile, but lesser activity in T315I-mutated CML. Olverembatinib is another potent third-generation TKI with early promising results.
Collapse
Affiliation(s)
- Jayastu Senapati
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey H Lipton
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Jerald P Radich
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
94
|
Zhang X, Chen Y, Yang B, Shao X, Ying M. Driving the degradation of oncofusion proteins for targeted cancer therapy. Drug Discov Today 2023; 28:103584. [PMID: 37061213 DOI: 10.1016/j.drudis.2023.103584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/30/2022] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
Oncofusion proteins drive the development of about 16.5% of human cancers {AuQ: Edit OK?}, functioning as the unique pathogenic factor in some cancers. The targeting of oncofusion proteins is an attractive strategy to treat malignant tumors. Recently, triggering the degradation of oncofusion proteins has been shown to hold great promise as a therapeutic strategy. Here, we review the recent findings on the mechanisms that maintain the high stability of oncofusion proteins. Then, we summarize strategies to target the degradation of oncofusion proteins through the ubiquitin-proteasome pathway, the autophagy-lysosomal pathway, and the caspase-dependent pathway. By examining oncofusion protein degradation in cancer, we not only gain better insight into the carcinogenic mechanisms that involve oncofusion proteins, but also raise the possibility of treating oncofusion-driven cancer.
Collapse
Affiliation(s)
- Xingya Zhang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingqian Chen
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Xuejing Shao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Meidan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
95
|
Limsuwanachot N, Rerkamnuaychoke B, Niparuck P, Singdong R, Kongruang A, Hirunpatrawong P, Siriyakorn T, Yenchitsomanus PT, Siriboonpiputtana T. A customized mass array panel for BCR:: ABL1 tyrosine kinase domain mutation screening in chronic myeloid leukemia. J Mass Spectrom Adv Clin Lab 2023; 28:122-132. [PMID: 37128502 PMCID: PMC10148036 DOI: 10.1016/j.jmsacl.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/25/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
Introduction The therapeutic strategy and management of chronic myeloid leukemia (CML) have rapidly improved with the discovery of effective tyrosine kinase inhibitors (TKIs) to target BCR::ABL1 oncoprotein. However, nearly 30% of patients develop TKI resistance due to acquired mutations on the tyrosine kinase domain (TKD) of BCR::ABL1. Methods We customized a mass array panel initially intended to detect and monitor the mutational burden of hotspot BCR::ABL1 TKD mutations accumulated in our database, including key mutations recently recommended by European LeukemiaNet. Additionally, we extended the feasibility of using the assay panel for the molecular classification of myeloproliferative neoplasms (MPNs) by incorporating primer sets specific for analyzing JAK2 V617F, MPL 515 K/L, and CALR types 1 and 2. Results We found that the developed mass array panel was superior for detecting and monitoring clinically significant BCR::ABL1 TKD mutations, especially in cases with low mutational burden and harboring compound/polyclonal mutations, compared with direct sequencing. Moreover, our customized mass array panel detected common genetic alterations in MPNs, and the findings were consistent with those of other comparable assays available in our laboratory. Conclusions Our customized mass array panel was practicably used as a routine robust assay for screening and monitoring BCR::ABL1 TKD mutations in patients with CML undergoing TKI treatment and feasible for analyzing common genetic mutations in MPNs.
Collapse
Affiliation(s)
- Nittaya Limsuwanachot
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Budsaba Rerkamnuaychoke
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pimjai Niparuck
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Roongrudee Singdong
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Adcharee Kongruang
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | - Pa-thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Teerapong Siriboonpiputtana
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Corresponding author at: Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
| |
Collapse
|
96
|
Chirnomas D, Hornberger KR, Crews CM. Protein degraders enter the clinic - a new approach to cancer therapy. Nat Rev Clin Oncol 2023; 20:265-278. [PMID: 36781982 DOI: 10.1038/s41571-023-00736-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 165.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 02/15/2023]
Abstract
Heterobifunctional protein degraders, such as PROteolysis TArgeting Chimera (PROTAC) protein degraders, constitute a novel therapeutic modality that harnesses the cell's natural protein-degradation machinery - that is, the ubiquitin-proteasome system - to selectively target proteins involved in disease pathogenesis for elimination. Protein degraders have several potential advantages over small-molecule inhibitors that have traditionally been used for cancer treatment, including their event-driven (rather than occupancy-driven) pharmacology, which permits sub-stoichiometric drug concentrations for activity, their capacity to act iteratively and target multiple copies of a protein of interest, and their potential to target nonenzymatic proteins that were previously considered 'undruggable'. Following numerous innovations in protein degrader design and rigorous evaluation in preclinical models, protein degraders entered clinical testing in 2019. Currently, 18 protein degraders are in phase I or phase I/II clinical trials that involve patients with various tumour types, with a phase III trial of one initiated in 2022. The first safety, efficacy and pharmacokinetic data from these studies are now materializing and, although considerably more evidence is needed, protein degraders are showing promising activity as cancer therapies. Herein, we review advances in protein degrader development, the preclinical research that supported their entry into clinical studies, the available data for protein degraders in patients and future directions for this new class of drugs.
Collapse
Affiliation(s)
| | | | - Craig M Crews
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA.
- Department of Pharmacology, Yale University, New Haven, CT, USA.
- Department of Chemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
97
|
Zhan D, Zheng N, Zhao B, Cheng F, Tang Q, Liu X, Wang J, Wang Y, Liua H, Li X, Su J, Zhong X, Bu Q, Cheng Y, Wang Y, Qin J. Expanding individualized therapeutic options via genoproteomics. Cancer Lett 2023; 560:216123. [PMID: 36907503 DOI: 10.1016/j.canlet.2023.216123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Clinical next-generation sequencing (NGS)2 tests have enabled treatment recommendations for cancer patients with driver gene mutations. Targeted therapy options for patients without driver gene mutations are currently unavailable. Herein, we performed NGS and proteomics tests on 169 formalin-fixed paraffin-embedded (FFPE)3 samples of non-small cell lung cancers (NSCLC, 65),4 colorectal cancers (CRC, 61),5 thyroid carcinomas (THCA, 14),6 gastric cancers (GC, 2),7 gastrointestinal stromal tumors (GIST, 11),8 and malignant melanomas (MM, 6).9 Of the 169 samples, NGS detected 14 actionable mutated genes in 73 samples, providing treatment options for 43% of the patients. Proteomics identified 61 actionable clinical drug targets approved by the FDA or undergoing clinical trials in 122 samples, providing treatment options for 72% of the patients. In vivo experiments demonstrated that the Mitogen-Activated Protein Kinase (MEK)10 inhibitor induced the overexpression of MEK1 (Map2k1) to block lung tumor growth in mice. Therefore, protein overexpression is a potentially feasible indicator for guiding targeted therapies. Collectively, our analysis suggests that combining NGS and proteomics (genoproteomics) could expand the targeted treatment options to 85% of cancer patients.
Collapse
Affiliation(s)
- Dongdong Zhan
- KingMed-Pineal Joint Innovation Laboratory of Clinical Proteomics, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, 510009, China; Beijing Pineal Diagnostics Co., Ltd., Beijing, 102206, China
| | - Nairen Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Beibei Zhao
- KingMed-Pineal Joint Innovation Laboratory of Clinical Proteomics, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, 510009, China; KingMed College of Laboratory Medical of Guangzhou Medical University, Guangzhou, 510005, China
| | - Fang Cheng
- KingMed-Pineal Joint Innovation Laboratory of Clinical Proteomics, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, 510009, China; Beijing Pineal Diagnostics Co., Ltd., Beijing, 102206, China
| | - Qi Tang
- KingMed-Pineal Joint Innovation Laboratory of Clinical Proteomics, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, 510009, China; KingMed College of Laboratory Medical of Guangzhou Medical University, Guangzhou, 510005, China
| | - Xiangqian Liu
- KingMed-Pineal Joint Innovation Laboratory of Clinical Proteomics, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, 510009, China; KingMed College of Laboratory Medical of Guangzhou Medical University, Guangzhou, 510005, China
| | - Juanfei Wang
- KingMed-Pineal Joint Innovation Laboratory of Clinical Proteomics, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, 510009, China; KingMed College of Laboratory Medical of Guangzhou Medical University, Guangzhou, 510005, China
| | - Yushen Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Haibo Liua
- KingMed-Pineal Joint Innovation Laboratory of Clinical Proteomics, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, 510009, China; Beijing Pineal Diagnostics Co., Ltd., Beijing, 102206, China
| | - Xinliang Li
- KingMed-Pineal Joint Innovation Laboratory of Clinical Proteomics, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, 510009, China; Beijing Pineal Diagnostics Co., Ltd., Beijing, 102206, China
| | - Juming Su
- KingMed-Pineal Joint Innovation Laboratory of Clinical Proteomics, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, 510009, China; KingMed College of Laboratory Medical of Guangzhou Medical University, Guangzhou, 510005, China
| | - Xuejun Zhong
- KingMed-Pineal Joint Innovation Laboratory of Clinical Proteomics, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, 510009, China; KingMed College of Laboratory Medical of Guangzhou Medical University, Guangzhou, 510005, China
| | - Qing Bu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yating Cheng
- KingMed-Pineal Joint Innovation Laboratory of Clinical Proteomics, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, 510009, China; KingMed College of Laboratory Medical of Guangzhou Medical University, Guangzhou, 510005, China.
| | - Yi Wang
- KingMed-Pineal Joint Innovation Laboratory of Clinical Proteomics, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, 510009, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Jun Qin
- KingMed-Pineal Joint Innovation Laboratory of Clinical Proteomics, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, 510009, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China; State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
98
|
Chadarevian JP, Lombroso SI, Peet GC, Hasselmann J, Tu C, Marzan DE, Capocchi J, Purnell FS, Nemec KM, Lahian A, Escobar A, England W, Chaluvadi S, O'Brien CA, Yaqoob F, Aisenberg WH, Porras-Paniagua M, Bennett ML, Davtyan H, Spitale RC, Blurton-Jones M, Bennett FC. Engineering an inhibitor-resistant human CSF1R variant for microglia replacement. J Exp Med 2023; 220:e20220857. [PMID: 36584406 DOI: 10.1084/jem.20220857] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/11/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) can replace endogenous microglia with circulation-derived macrophages but has high mortality. To mitigate the risks of HSCT and expand the potential for microglia replacement, we engineered an inhibitor-resistant CSF1R that enables robust microglia replacement. A glycine to alanine substitution at position 795 of human CSF1R (G795A) confers resistance to multiple CSF1R inhibitors, including PLX3397 and PLX5622. Biochemical and cell-based assays show no discernable gain or loss of function. G795A- but not wildtype-CSF1R expressing macrophages efficiently engraft the brain of PLX3397-treated mice and persist after cessation of inhibitor treatment. To gauge translational potential, we CRISPR engineered human-induced pluripotent stem cell-derived microglia (iMG) to express G795A. Xenotransplantation studies demonstrate that G795A-iMG exhibit nearly identical gene expression to wildtype iMG, respond to inflammatory stimuli, and progressively expand in the presence of PLX3397, replacing endogenous microglia to fully occupy the brain. In sum, we engineered a human CSF1R variant that enables nontoxic, cell type, and tissue-specific replacement of microglia.
Collapse
Affiliation(s)
- Jean Paul Chadarevian
- Department of Neurobiology & Behavior, University of California, Irvine , Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Sonia I Lombroso
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Pharmacology Graduate Group, Biomedical Graduate Studies Program, University of Pennsylvania , Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania , Philadelphia, PA, USA
| | - Graham C Peet
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Neuroscience Graduate Program and Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus , Aurora, CO, USA
| | - Jonathan Hasselmann
- Department of Neurobiology & Behavior, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Christina Tu
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Dave E Marzan
- Department of Biology, The College of New Jersey , Ewing, NJ, USA
| | - Joia Capocchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
| | - Freddy S Purnell
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
| | - Kelsey M Nemec
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine , Philadelphia, PA, USA
| | - Alina Lahian
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Adrian Escobar
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Whitney England
- Department of Pharmaceutical Sciences, University of California, Irvine , Irvine, CA, USA
| | - Sai Chaluvadi
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine , Philadelphia, PA, USA
| | - Carleigh A O'Brien
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
| | - Fazeela Yaqoob
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
| | - William H Aisenberg
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mariko L Bennett
- Department of Neuroscience, Perelman School of Medicine , Philadelphia, PA, USA
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia, PA, USA
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine , Irvine, CA, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine , Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia, PA, USA
| |
Collapse
|
99
|
Xiang D, Zhao T, Wang J, Cao Y, Yu Q, Liu L, Yu H, Li X, Li N, Yi Y, Gong X. Determination of olverembatinib in human plasma and cerebrospinal fluid by an LC-MS/MS method: validation and clinical application. J Pharm Biomed Anal 2023; 230:115382. [PMID: 37060798 DOI: 10.1016/j.jpba.2023.115382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
A sensitive and robust LC-MS/MS method has been developed and validated for olverembatinib quantification in human plasma and cerebrospinal fluid (CSF). The method involved liquid-liquid extraction with methyl tertiary butyl ether for plasma pretreatment and precipitation enrichment with methanol for CSF pretreatment. Separation was achieved on the C18 column with gradient elutions of 10 mM ammonium formate in water and methanol-acetonitrile (50:50,v/v). Analyte detection was conducted by electrospray ionization (ESI) in a positive ion mode using multiple reaction monitoring (MRM). The m/z transitions were 533.4→433.2 for olverembatinib and m/z 502.4→394.2 for the internal standard (IS, Imatinib-d8). Calibration curves ranged from 0.500 to 50.0 ng/mL for plasma and from 0.0100 to 1.00 ng/mL for CSF. The intra- and inter-day precision and accuracy were < 15% for both plasma and CSF with four different quality control concentrations. The relative matrix effect was < 10% in plasma and artificial CSF. This method was successfully utilized for the measurement of olverembatinib concentrations in plasma and CSF from chronic myeloid leukemia patients.
Collapse
|
100
|
Nicholas BA, Purohit R, Woods AD, Kannan K, Srinivasa G, Bridge JA, Kim JA, Keller C. BCR-ABL is enriched in S- and G 2-cell cycle phases. Leuk Res 2023; 126:107036. [PMID: 36764024 DOI: 10.1016/j.leukres.2023.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Affiliation(s)
- Bradley A Nicholas
- Children's Cancer Therapy Development Institute, Beaverton, OR 97005 USA
| | - Reshma Purohit
- Children's Cancer Therapy Development Institute, Beaverton, OR 97005 USA
| | - Andrew D Woods
- Children's Cancer Therapy Development Institute, Beaverton, OR 97005 USA
| | | | | | | | - Jin-Ah Kim
- Children's Cancer Therapy Development Institute, Beaverton, OR 97005 USA
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, OR 97005 USA.
| |
Collapse
|