51
|
Wang C, Zhang M, Liu Y, Cui D, Gao L, Jiang Y. CircRNF10 triggers a positive feedback loop to facilitate progression of glioblastoma via redeploying the ferroptosis defense in GSCs. J Exp Clin Cancer Res 2023; 42:242. [PMID: 37723588 PMCID: PMC10507871 DOI: 10.1186/s13046-023-02816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Glioma exhibit heterogeneous susceptibility for targeted ferroptosis. How circRNAs alterations in glioma promote iron metabolism and ferroptosis defense remains unclarified. METHODS The highly enriched circRNAs in glioblastoma (GBM) were obtained through analysis of sequencing datasets. Quantitative real-time PCR (qRT-PCR) was used to determine the expression of circRNF10 in glioma and normal brain tissue. Both gain-of-function and loss-of-function studies were used to assess the effects of circRNF10 on ferroptosis using in vitro and in vivo assays. The hypothesis that ZBTB48 promotes ferroptosis defense was established using bioinformatics analysis and functional assays. RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to examine the interaction between circRNF10 and target proteins including ZBTB48, MKRN3 and IGF2BP3. The posttranslational modification mechanism of ZBTB48 was verified using coimmunoprecipitation (co-IP) and ubiquitination assays. The transcription activation of HSPB1 and IGF2BP3 by ZBTB48 was confirmed through luciferase reporter gene and chromatin immunoprecipitation (ChIP) assays. The stabilizing effect of IGF2BP3 on circRNF10 was explored by actinomycin D assay. Finally, a series of in vivo experiments were performed to explore the influences of circRNF10 on the glioma progression. RESULTS A novel circular RNA, hsa_circ_0028912 (named circRNF10), which is significantly upregulated in glioblastoma tissues and correlated with patients' poor prognosis. Through integrated analysis of the circRNA-proteins interaction datasets and sequencing results, we reveal ZBTB48 as a transcriptional factor binding with circRNF10, notably promoting upregulation of HSPB1 and IGF2BP3 expression to remodel iron metabolism and facilitates the launch of a circRNF10/ZBTB48/IGF2BP3 positive feedback loop in GSCs. Additionally, circRNF10 can competitively bind to MKRN3 and block E3 ubiquitin ligase activity to enhance ZBTB48 expression. Consequently, circRNF10-overexpressed glioma stem cells (GSCs) display lower Fe2+ accumulation, selectively priming tumors for ferroptosis evading. CONCLUSION Our research presents abnormal circRNAs expression causing a molecular and metabolic change of glioma, which we leverage to discover a therapeutically exploitable vulnerability to target ferroptosis.
Collapse
Affiliation(s)
- Chengbin Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Minjie Zhang
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yingliang Liu
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Daming Cui
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
52
|
de Ruiter Swain J, Michalopoulou E, Noch EK, Lukey MJ, Van Aelst L. Metabolic partitioning in the brain and its hijacking by glioblastoma. Genes Dev 2023; 37:681-702. [PMID: 37648371 PMCID: PMC10546978 DOI: 10.1101/gad.350693.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The different cell types in the brain have highly specialized roles with unique metabolic requirements. Normal brain function requires the coordinated partitioning of metabolic pathways between these cells, such as in the neuron-astrocyte glutamate-glutamine cycle. An emerging theme in glioblastoma (GBM) biology is that malignant cells integrate into or "hijack" brain metabolism, co-opting neurons and glia for the supply of nutrients and recycling of waste products. Moreover, GBM cells communicate via signaling metabolites in the tumor microenvironment to promote tumor growth and induce immune suppression. Recent findings in this field point toward new therapeutic strategies to target the metabolic exchange processes that fuel tumorigenesis and suppress the anticancer immune response in GBM. Here, we provide an overview of the intercellular division of metabolic labor that occurs in both the normal brain and the GBM tumor microenvironment and then discuss the implications of these interactions for GBM therapy.
Collapse
Affiliation(s)
- Jed de Ruiter Swain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | | | - Evan K Noch
- Department of Neurology, Division of Neuro-oncology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Michael J Lukey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| |
Collapse
|
53
|
Zhou H, Chen B, Zhang L, Li C. Machine learning-based identification of lower grade glioma stemness subtypes discriminates patient prognosis and drug response. Comput Struct Biotechnol J 2023; 21:3827-3840. [PMID: 37560125 PMCID: PMC10407594 DOI: 10.1016/j.csbj.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
Glioma stem cells (GSCs) remodel their tumor microenvironment to sustain a supportive niche. Identification and stratification of stemness related characteristics in patients with glioma might aid in the diagnosis and treatment of the disease. In this study, we calculated the mRNA stemness index in bulk and single-cell RNA-sequencing datasets using machine learning methods and investigated the correlation between stemness and clinicopathological characteristics. A glioma stemness-associated score (GSScore) was constructed using multivariate Cox regression analysis. We also generated a GSC cell line derived from a patient diagnosed with glioma and used glioma cell lines to validate the performance of the GSScore in predicting chemotherapeutic responses. Differentially expressed genes (DEGs) between GSCs with high and low GSScores were used to cluster lower-grade glioma (LGG) samples into three stemness subtypes. Differences in clinicopathological characteristics, including survival, copy number variations, mutations, tumor microenvironment, and immune and chemotherapeutic responses, among the three LGG stemness-associated subtypes were identified. Using machine learning methods, we further identified genes as subtype predictors and validated their performance using the CGGA datasets. In the current study, we identified a GSScore that correlated with LGG chemotherapeutic response. Through the score, we also identified a novel classification of the LGG subtype and associated subtype predictors, which might facilitate the development of precision therapy.
Collapse
Affiliation(s)
- Hongshu Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Clinical Diagnosis and Therapy Center for Glioma, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Chuntao Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Clinical Diagnosis and Therapy Center for Glioma, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
54
|
Wang X, Sun Y, Zhang DY, Ming GL, Song H. Glioblastoma modeling with 3D organoids: progress and challenges. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad008. [PMID: 38596241 PMCID: PMC10913843 DOI: 10.1093/oons/kvad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Glioblastoma (GBM) is the most aggressive adult primary brain tumor with nearly universal treatment resistance and recurrence. The mainstay of therapy remains maximal safe surgical resection followed by concurrent radiation therapy and temozolomide chemotherapy. Despite intensive investigation, alternative treatment options, such as immunotherapy or targeted molecular therapy, have yielded limited success to achieve long-term remission. This difficulty is partly due to the lack of pre-clinical models that fully recapitulate the intratumoral and intertumoral heterogeneity of GBM and the complex tumor microenvironment. Recently, GBM 3D organoids originating from resected patient tumors, genetic manipulation of induced pluripotent stem cell (iPSC)-derived brain organoids and bio-printing or fusion with non-malignant tissues have emerged as novel culture systems to portray the biology of GBM. Here, we highlight several methodologies for generating GBM organoids and discuss insights gained using such organoid models compared to classic modeling approaches using cell lines and xenografts. We also outline limitations of current GBM 3D organoids, most notably the difficulty retaining the tumor microenvironment, and discuss current efforts for improvements. Finally, we propose potential applications of organoid models for a deeper mechanistic understanding of GBM and therapeutic development.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yusha Sun
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Y Zhang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Philadelphia, PA 19104, USA
| |
Collapse
|
55
|
Cheng Y, Li S, Hou Y, Wang W, Wang K, Fu S, Yuan Y, Yang K, Ye X. Glioma-derived small extracellular vesicles induce pericyte-phenotype transition of glioma stem cells under hypoxic conditions. Cell Signal 2023:110754. [PMID: 37315748 DOI: 10.1016/j.cellsig.2023.110754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and lethal primary brain tumor characterized by extensive vascularization. Anti-angiogenic therapy for this cancer offers the possibility of universal efficacy. However, preclinical and clinical studies suggest that anti-VEGF drug such as Bevacizumab actively promotes tumor invasion, which ultimately leads to a therapy-resistant and recurrent phenotype of GBMs. Whether Bevacizumab can improve survival over chemotherapy alone remains debated. Herein, we emphasized the importance of small extracellular vesicles (sEVs) internalization by glioma stem cells (GSCs) in giving rise to the failure of anti-angiogenic therapy in the treatment of GBMs and discovered a specific therapeutic target for this damaging disease. METHODS To experimentally prove that hypoxia condition promotes the release of GBM cells-derived sEVs, which could be taken up by the surrounding GSCs, we used an ultracentrifugation strategy to isolate GBM-derived sEVs under hypoxic or normoxic conditions, performed bioinformatics analysis and multidimensional molecular biology experiments, and established a xenograft mouse model. RESULTS The internalization of sEVs by GSCs was proved to promote tumor growth and angiogenesis through the pericyte-phenotype transition. Hypoxia-derived sEVs could efficiently deliver TGF-β1 to GSCs, thus resulting in the activation of the TGF-β signaling pathway and the consequent pericyte-phenotype transition. Specifically targeting GSC-derived pericyte using Ibrutinib can reverse the effects of GBM-derived sEVs and enhance the tumor-eradicating effects when combined with Bevacizumab. CONCLUSION This present study provides a new interpretation of the failure of anti-angiogenic therapy in the non-operative treatment of GBMs and discovers a promising therapeutic target for this intractable disease.
Collapse
Affiliation(s)
- Yue Cheng
- Institute of Pathology Department, Basic Medical College, Chongqing Medical University, Chongqing 400038, PR China
| | - Shijie Li
- Institute of Pathology Department, Basic Medical College, Chongqing Medical University, Chongqing 400038, PR China
| | - Yongying Hou
- Institute of Pathology Department, Basic Medical College, Chongqing Medical University, Chongqing 400038, PR China
| | - Weijun Wang
- Institute of Pathology Department, Basic Medical College, Chongqing Medical University, Chongqing 400038, PR China
| | - Ke Wang
- Institute of Pathology Department, Basic Medical College, Chongqing Medical University, Chongqing 400038, PR China
| | - Shihui Fu
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China
| | - Ye Yuan
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, PR China.
| | - Kaidi Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China; Department of Oncology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China.
| | - Xiufeng Ye
- Institute of Pathology Department, Basic Medical College, Chongqing Medical University, Chongqing 400038, PR China.
| |
Collapse
|
56
|
Han YP, Lin HW, Li H. Cancer Stem Cells in Tumours of the Central Nervous System in Children: A Comprehensive Review. Cancers (Basel) 2023; 15:3154. [PMID: 37370764 DOI: 10.3390/cancers15123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer stem cells (CSCs) are a subgroup of cells found in various kinds of tumours with stem cell characteristics, such as self-renewal, induced differentiation, and tumourigenicity. The existence of CSCs is regarded as a major source of tumour recurrence, metastasis, and resistance to conventional chemotherapy and radiation treatment. Tumours of the central nervous system (CNS) are the most common solid tumours in children, which have many different types including highly malignant embryonal tumours and midline gliomas, and low-grade gliomas with favourable prognoses. Stem cells from the CNS tumours have been largely found and reported by researchers in the last decade and their roles in tumour biology have been deeply studied. However, the cross-talk of CSCs among different CNS tumour types and their clinical impacts have been rarely discussed. This article comprehensively reviews the achievements in research on CSCs in paediatric CNS tumours. Biological functions, diagnostic values, and therapeutic perspectives are reviewed in detail. Further investigations into CSCs are warranted to improve the clinical practice in treating children with CNS tumours.
Collapse
Affiliation(s)
- Yi-Peng Han
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Hou-Wei Lin
- Department of Paediatric Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Department of Paediatric Surgery, Jiaxing Women and Children Hospital Affiliated to Jiaxing University, Jiaxing 314001, China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| |
Collapse
|
57
|
Yu Y, Gao Y, He L, Fang B, Ge W, Yang P, Ju Y, Xie X, Lei L. Biomaterial-based gene therapy. MedComm (Beijing) 2023; 4:e259. [PMID: 37284583 PMCID: PMC10239531 DOI: 10.1002/mco2.259] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/08/2023] Open
Abstract
Gene therapy, a medical approach that involves the correction or replacement of defective and abnormal genes, plays an essential role in the treatment of complex and refractory diseases, such as hereditary diseases, cancer, and rheumatic immune diseases. Nucleic acids alone do not easily enter the target cells due to their easy degradation in vivo and the structure of the target cell membranes. The introduction of genes into biological cells is often dependent on gene delivery vectors, such as adenoviral vectors, which are commonly used in gene therapy. However, traditional viral vectors have strong immunogenicity while also presenting a potential infection risk. Recently, biomaterials have attracted attention for use as efficient gene delivery vehicles, because they can avoid the drawbacks associated with viral vectors. Biomaterials can improve the biological stability of nucleic acids and the efficiency of intracellular gene delivery. This review is focused on biomaterial-based delivery systems in gene therapy and disease treatment. Herein, we review the recent developments and modalities of gene therapy. Additionally, we discuss nucleic acid delivery strategies, with a focus on biomaterial-based gene delivery systems. Furthermore, the current applications of biomaterial-based gene therapy are summarized.
Collapse
Affiliation(s)
- Yi Yu
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yijun Gao
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Liming He
- Department of StomatologyChangsha Stomatological HospitalChangshaChina
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Wenhui Ge
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoyan Xie
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
58
|
Eisenbarth D, Wang YA. Glioblastoma heterogeneity at single cell resolution. Oncogene 2023; 42:2155-2165. [PMID: 37277603 PMCID: PMC10913075 DOI: 10.1038/s41388-023-02738-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Glioblastoma (GBM) is one of the deadliest types of cancer and highly refractory to chemoradiation and immunotherapy. One of the main reasons for this resistance to therapy lies within the heterogeneity of the tumor and its associated microenvironment. The vast diversity of cell states, composition of cells, and phenotypical characteristics makes it difficult to accurately classify GBM into distinct subtypes and find effective therapies. The advancement of sequencing technologies in recent years has further corroborated the heterogeneity of GBM at the single cell level. Recent studies have only begun to elucidate the different cell states present in GBM and how they correlate with sensitivity to therapy. Furthermore, it has become clear that GBM heterogeneity not only depends on intrinsic factors but also strongly differs between new and recurrent GBM, and treatment naïve and experienced patients. Understanding and connecting the complex cellular network that underlies GBM heterogeneity will be indispensable in finding new ways to tackle this deadly disease. Here, we present an overview of the multiple layers of GBM heterogeneity and discuss novel findings in the age of single cell technologies.
Collapse
Affiliation(s)
- David Eisenbarth
- The Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Y Alan Wang
- The Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
59
|
Liu Y, Cui L, Wang X, Miao W, Ju Y, Chen T, Xu H, Gu N, Yang F. In Situ Nitric Oxide Gas Nanogenerator Reprograms Glioma Immunosuppressive Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300679. [PMID: 37085663 PMCID: PMC10288280 DOI: 10.1002/advs.202300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Universal chemotherapy in glioblastoma patients causes chemoresistance and further limits immune cells by creating an immunosuppressive tumor microenvironment that are difficult to solve by single-drug therapeutic approaches. Here, this work designs hybrid drug-loaded nanoliposomes by co-loading the chemotherapeutic drug temozolomide (TMZ) and nitric oxide (NO) prodrug JS-K with sphingosine-1-phosphate molecules (S1P) on the surface. The S1P-S1P receptors axis endows nanoliposomes with rapid targeting and lysosomal escaping capability. Then, fine-tuned TMZ release and NO gas production following JS-K release in glioma microenvironment decrease chemoresistance and increase tumor immunogenicity through inhibiting the cellular autophagy as well as inducing mitochondrial dysfunction. RNA sequencing analysis demonstrates that the NO gas generation reprograms glioma microenvironment immune and inflammation-related pathways. The positive immune response in turn effectively activates the enhanced efficacy of chemotherapy. NO gas generated nanoliposomes thus have attractive paradigm-shifting applications in the treatment of "cold" tumors across a range of immunosuppressive indications.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of BioelectronicsJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Lin Cui
- State Key Laboratory of BioelectronicsJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Xiao Wang
- State Key Laboratory of BioelectronicsJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Weiling Miao
- State Key Laboratory of BioelectronicsJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Yongxu Ju
- State Key Laboratory of BioelectronicsJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Tiandong Chen
- State Key Laboratory of BioelectronicsJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Huiting Xu
- State Key Laboratory of BioelectronicsJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Ning Gu
- State Key Laboratory of BioelectronicsJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Fang Yang
- State Key Laboratory of BioelectronicsJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| |
Collapse
|
60
|
Higginbottom SL, Tomaskovic-Crook E, Crook JM. Considerations for modelling diffuse high-grade gliomas and developing clinically relevant therapies. Cancer Metastasis Rev 2023; 42:507-541. [PMID: 37004686 PMCID: PMC10348989 DOI: 10.1007/s10555-023-10100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/16/2023] [Indexed: 04/04/2023]
Abstract
Diffuse high-grade gliomas contain some of the most dangerous human cancers that lack curative treatment options. The recent molecular stratification of gliomas by the World Health Organisation in 2021 is expected to improve outcomes for patients in neuro-oncology through the development of treatments targeted to specific tumour types. Despite this promise, research is hindered by the lack of preclinical modelling platforms capable of recapitulating the heterogeneity and cellular phenotypes of tumours residing in their native human brain microenvironment. The microenvironment provides cues to subsets of glioma cells that influence proliferation, survival, and gene expression, thus altering susceptibility to therapeutic intervention. As such, conventional in vitro cellular models poorly reflect the varied responses to chemotherapy and radiotherapy seen in these diverse cellular states that differ in transcriptional profile and differentiation status. In an effort to improve the relevance of traditional modelling platforms, recent attention has focused on human pluripotent stem cell-based and tissue engineering techniques, such as three-dimensional (3D) bioprinting and microfluidic devices. The proper application of these exciting new technologies with consideration of tumour heterogeneity and microenvironmental interactions holds potential to develop more applicable models and clinically relevant therapies. In doing so, we will have a better chance of translating preclinical research findings to patient populations, thereby addressing the current derisory oncology clinical trial success rate.
Collapse
Affiliation(s)
- Sarah L Higginbottom
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, NSW, 2519, Australia
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia
| | - Eva Tomaskovic-Crook
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, NSW, 2519, Australia.
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Jeremy M Crook
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, NSW, 2519, Australia.
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
61
|
Kardani K, Sanchez Gil J, Rabkin SD. Oncolytic herpes simplex viruses for the treatment of glioma and targeting glioblastoma stem-like cells. Front Cell Infect Microbiol 2023; 13:1206111. [PMID: 37325516 PMCID: PMC10264819 DOI: 10.3389/fcimb.2023.1206111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Glioblastoma (GBM) is one of the most lethal cancers, having a poor prognosis and a median survival of only about 15 months with standard treatment (surgery, radiation, and chemotherapy), which has not been significantly extended in decades. GBM demonstrates remarkable cellular heterogeneity, with glioblastoma stem-like cells (GSCs) at the apex. GSCs are a subpopulation of GBM cells that possess the ability to self-renew, differentiate, initiate tumor formation, and manipulate the tumor microenvironment (TME). GSCs are no longer considered a static population of cells with specific markers but are quite flexible phenotypically and in driving tumor heterogeneity and therapeutic resistance. In light of these features, they are a critical target for successful GBM therapy. Oncolytic viruses, in particular oncolytic herpes simplex viruses (oHSVs), have many attributes for therapy and are promising agents to target GSCs. oHSVs are genetically-engineered to selectively replicate in and kill cancer cells, including GSCs, but not normal cells. Moreover, oHSV can induce anti-tumor immune responses and synergize with other therapies, such as chemotherapy, DNA repair inhibitors, and immune checkpoint inhibitors, to potentiate treatment effects and reduce GSC populations that are partly responsible for chemo- and radio-resistance. Herein, we present an overview of GSCs, activity of different oHSVs, clinical trial results, and combination strategies to enhance efficacy, including therapeutic arming of oHSV. Throughout, the therapeutic focus will be on GSCs and studies specifically targeting these cells. Recent clinical trials and approval of oHSV G47Δ in Japan for patients with recurrent glioma demonstrate the efficacy and promise of oHSV therapy.
Collapse
Affiliation(s)
| | | | - Samuel D. Rabkin
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
62
|
Yue J, Huang R, Lan Z, Xiao B, Luo Z. Abnormal glycosylation in glioma: related changes in biology, biomarkers and targeted therapy. Biomark Res 2023; 11:54. [PMID: 37231524 DOI: 10.1186/s40364-023-00491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Glioma is a rapidly growing and aggressive primary malignant tumor of the central nervous system that can diffusely invade the brain tissue around, and the prognosis of patients is not significantly improved by traditional treatments. One of the most general posttranslational modifications of proteins is glycosylation, and the abnormal distribution of this modification in gliomas may shed light on how it affects biological behaviors of glioma cells, including proliferation, migration, and invasion, which may be produced by regulating protein function, cell-matrix and cell‒cell interactions, and affecting receptor downstream pathways. In this paper, from the perspective of regulating protein glycosylation changes and abnormal expression of glycosylation-related proteins (such as glycosyltransferases in gliomas), we summarize how glycosylation may play a crucial role in the discovery of novel biomarkers and new targeted treatment options for gliomas. Overall, the mechanistic basis of abnormal glycosylation affecting glioma progression remains to be more widely and deeply explored, which not only helps to inspire researchers to further explore related diagnostic and prognostic markers but also provides ideas for discovering effective treatment strategies and improving glioma patient survival and prognosis.
Collapse
Affiliation(s)
- Juan Yue
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China
| | - Roujie Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, 100730, Beijing, China
| | - Zehao Lan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China
- Clinical Research Center for Epileptic disease of Hunan Province, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China.
- Clinical Research Center for Epileptic disease of Hunan Province, Central South University, 410008, Changsha, Hunan, P.R. China.
| |
Collapse
|
63
|
Wan S, Zhang G, Liu R, Abbas MN, Cui H. Pyroptosis, ferroptosis, and autophagy cross-talk in glioblastoma opens up new avenues for glioblastoma treatment. Cell Commun Signal 2023; 21:115. [PMID: 37208730 DOI: 10.1186/s12964-023-01108-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/22/2023] [Indexed: 05/21/2023] Open
Abstract
Glioma is a common primary tumor of the central nervous system (CNS), with glioblastoma multiforme (GBM) being the most malignant, aggressive, and drug resistant. Most drugs are designed to induce cancer cell death, either directly or indirectly, but malignant tumor cells can always evade death and continue to proliferate, resulting in a poor prognosis for patients. This reflects our limited understanding of the complex regulatory network that cancer cells utilize to avoid death. In addition to classical apoptosis, pyroptosis, ferroptosis, and autophagy are recognized as key cell death modalities that play significant roles in tumor progression. Various inducers or inhibitors have been discovered to target the related molecules in these pathways, and some of them have already been translated into clinical treatment. In this review, we summarized recent advances in the molecular mechanisms of inducing or inhibiting pyroptosis, ferroptosis, or autophagy in GBM, which are important for treatment or drug tolerance. We also discussed their links with apoptosis to better understand the mutual regulatory network among different cell death processes. Video Abstract.
Collapse
Affiliation(s)
- Sicheng Wan
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Guanghui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
64
|
Pang Y, Zhou S, Zumbo P, Betel D, Cisse B. TCF12 Deficiency Impairs the Proliferation of Glioblastoma Tumor Cells and Improves Survival. Cancers (Basel) 2023; 15:cancers15072033. [PMID: 37046694 PMCID: PMC10093168 DOI: 10.3390/cancers15072033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Isocitrate dehydrogenase (IDH)-wild-type glioblastoma (GBM) is the most common and aggressive primary brain tumor which carries a very poor overall prognosis and is universally fatal. Understanding the transcriptional regulation of the proliferation of GBM tumor cells is critical for developing novel and effective treatments. In this study, we investigate the role of the transcription factor TCF12 in the regulation of GBM proliferation using human and murine GBM cell lines and an in vivo GBM xenograft model. Our study shows that TCF12 deficiency severely impairs proliferation of tumor cells in vitro by disrupting/blocking the G1 to S phase transition. We also discover that TCF12 loss significantly improves animal survival and that TCF12-deficient tumors grow much slower in vivo. Overexpression of TCF12, on the other hand, leads to an increase in the proliferation of tumor cells in vitro and more aggressive tumor progression in vivo. Interestingly, loss of TCF12 leads to upregulation of signature genes of the oligodendrocytic lineage in GBM stem cells, suggesting a role for TCF12 in inhibiting differentiation along the oligodendrocytic lineage. Transcriptomic data also reveals that loss of TCF12 leads to dysregulation of the expression of key genes in the cell cycle. Our work demonstrates critical roles of TCF12 in GBM tumor progression.
Collapse
Affiliation(s)
- Yunong Pang
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sichang Zhou
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paul Zumbo
- Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Doron Betel
- Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Babacar Cisse
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
65
|
Wälchli T, Bisschop J, Carmeliet P, Zadeh G, Monnier PP, De Bock K, Radovanovic I. Shaping the brain vasculature in development and disease in the single-cell era. Nat Rev Neurosci 2023; 24:271-298. [PMID: 36941369 PMCID: PMC10026800 DOI: 10.1038/s41583-023-00684-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
The CNS critically relies on the formation and proper function of its vasculature during development, adult homeostasis and disease. Angiogenesis - the formation of new blood vessels - is highly active during brain development, enters almost complete quiescence in the healthy adult brain and is reactivated in vascular-dependent brain pathologies such as brain vascular malformations and brain tumours. Despite major advances in the understanding of the cellular and molecular mechanisms driving angiogenesis in peripheral tissues, developmental signalling pathways orchestrating angiogenic processes in the healthy and the diseased CNS remain incompletely understood. Molecular signalling pathways of the 'neurovascular link' defining common mechanisms of nerve and vessel wiring have emerged as crucial regulators of peripheral vascular growth, but their relevance for angiogenesis in brain development and disease remains largely unexplored. Here we review the current knowledge of general and CNS-specific mechanisms of angiogenesis during brain development and in brain vascular malformations and brain tumours, including how key molecular signalling pathways are reactivated in vascular-dependent diseases. We also discuss how these topics can be studied in the single-cell multi-omics era.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada.
| | - Jeroen Bisschop
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Donald K. Johnson Research Institute, Krembil Research Institute, Krembil Discovery Tower, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Science and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
66
|
Jia Y, Xu S, Han G, Wang B, Wang Z, Lan C, Zhao P, Gao M, Zhang Y, Jiang W, Qiu B, Liu R, Hsu YC, Sun Y, Liu C, Liu Y, Bai R. Transmembrane water-efflux rate measured by magnetic resonance imaging as a biomarker of the expression of aquaporin-4 in gliomas. Nat Biomed Eng 2023; 7:236-252. [PMID: 36376487 DOI: 10.1038/s41551-022-00960-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
The water-selective channel protein aquaporin-4 (AQP4) contributes to the migration and proliferation of gliomas, and to their resistance to therapy. Here we show, in glioma cell cultures, in subcutaneous and orthotopic gliomas in rats, and in glioma tumours in patients, that transmembrane water-efflux rate is a sensitive biomarker of AQP4 expression and can be measured via conventional dynamic-contrast-enhanced magnetic resonance imaging. Water-efflux rates correlated with stages of glioma proliferation as well as with changes in the heterogeneity of intra-tumoural and inter-tumoural AQP4 in rodent and human gliomas following treatment with temozolomide and with the AQP4 inhibitor TGN020. Regions with low water-efflux rates contained higher fractions of stem-like slow-cycling cells and therapy-resistant cells, suggesting that maps of water-efflux rates could be used to identify gliomas that are resistant to therapies.
Collapse
Affiliation(s)
- Yinhang Jia
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangchen Xu
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guangxu Han
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Bao Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zejun Wang
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Chuanjin Lan
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Zhao
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meng Gao
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi Zhang
- Department of Radiology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wenhong Jiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Biying Qiu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Liu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Yi Sun
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Chong Liu
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yingchao Liu
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Shandong National Center for Applied Mathematics, Shandong University, Jinan, China.
| | - Ruiliang Bai
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
67
|
Pang L, Dunterman M, Xuan W, Gonzalez A, Lin Y, Hsu WH, Khan F, Hagan RS, Muller WA, Heimberger AB, Chen P. Circadian regulator CLOCK promotes tumor angiogenesis in glioblastoma. Cell Rep 2023; 42:112127. [PMID: 36795563 PMCID: PMC10423747 DOI: 10.1016/j.celrep.2023.112127] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive tumors in the adult central nervous system. We previously revealed that circadian regulation of glioma stem cells (GSCs) affects GBM hallmarks of immunosuppression and GSC maintenance in a paracrine and autocrine manner. Here, we expand the mechanism involved in angiogenesis, another critical GBM hallmark, as a potential basis underlying CLOCK's pro-tumor effect in GBM. Mechanistically, CLOCK-directed olfactomedin like 3 (OLFML3) expression results in hypoxia-inducible factor 1-alpha (HIF1α)-mediated transcriptional upregulation of periostin (POSTN). As a result, secreted POSTN promotes tumor angiogenesis via activation of the TANK-binding kinase 1 (TBK1) signaling in endothelial cells. In GBM mouse and patient-derived xenograft models, blockade of the CLOCK-directed POSTN-TBK1 axis inhibits tumor progression and angiogenesis. Thus, the CLOCK-POSTN-TBK1 circuit coordinates a key tumor-endothelial cell interaction and represents an actionable therapeutic target for GBM.
Collapse
Affiliation(s)
- Lizhi Pang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Madeline Dunterman
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wenjing Xuan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Annette Gonzalez
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yiyun Lin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wen-Hao Hsu
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Robert S Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peiwen Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
68
|
Banu MA, Dovas A, Argenziano MG, Zhao W, Grajal HC, Higgins DM, Sperring CP, Pereira B, Ye LF, Mahajan A, Humala N, Furnari JL, Upadhyayula PS, Zandkarimi F, Nguyen TTT, Wu PB, Hai L, Karan C, Razavilar A, Siegelin MD, Kitajewski J, Bruce JN, Stockwell BR, Sims PA, Canoll PD. A cell state specific metabolic vulnerability to GPX4-dependent ferroptosis in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529581. [PMID: 36865302 PMCID: PMC9980114 DOI: 10.1101/2023.02.22.529581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Glioma cells hijack developmental transcriptional programs to control cell state. During neural development, lineage trajectories rely on specialized metabolic pathways. However, the link between tumor cell state and metabolic programs is poorly understood in glioma. Here we uncover a glioma cell state-specific metabolic liability that can be leveraged therapeutically. To model cell state diversity, we generated genetically engineered murine gliomas, induced by deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling cellular fate. N1IC tumors harbored quiescent astrocyte-like transformed cell states while p53 tumors were predominantly comprised of proliferating progenitor-like cell states. N1IC cells exhibit distinct metabolic alterations, with mitochondrial uncoupling and increased ROS production rendering them more sensitive to inhibition of the lipid hydroperoxidase GPX4 and induction of ferroptosis. Importantly, treating patient-derived organotypic slices with a GPX4 inhibitor induced selective depletion of quiescent astrocyte-like glioma cell populations with similar metabolic profiles.
Collapse
Affiliation(s)
- Matei A. Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael G. Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenting Zhao
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Dominique M.O. Higgins
- Department of Neurological Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Colin P. Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Brianna Pereira
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ling F. Ye
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Julia L. Furnari
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Pavan S. Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Fereshteh Zandkarimi
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Trang T. T. Nguyen
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter B. Wu
- Department of Neurological Surgery, UCLA Geffen School of Medicine, Los Angeles, CA, USA
| | - Li Hai
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | - Charles Karan
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | - Aida Razavilar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Markus D. Siegelin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jan Kitajewski
- University of Illinois Cancer Center, Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Brent R. Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Peter A. Sims
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter D. Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
69
|
Du N, Shu W, Li K, Deng Y, Xu X, Ye Y, Tang F, Mao R, Lin G, Li S, Fang X. An initial study on the predictive value using multiple MRI characteristics for Ki-67 labeling index in glioma. J Transl Med 2023; 21:119. [PMID: 36774480 PMCID: PMC9922464 DOI: 10.1186/s12967-023-03950-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/01/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Ki-67 labeling index (LI) is an important indicator of tumor cell proliferation in glioma, which can only be obtained by postoperative biopsy at present. This study aimed to explore the correlation between Ki-67 LI and apparent diffusion coefficient (ADC) parameters and to predict the level of Ki-67 LI noninvasively before surgery by multiple MRI characteristics. METHODS Preoperative MRI data of 166 patients with pathologically confirmed glioma in our hospital from 2016 to 2020 were retrospectively analyzed. The cut-off point of Ki-67 LI for glioma grading was defined. The differences in MRI characteristics were compared between the low and high Ki-67 LI groups. The receiver operating characteristic (ROC) curve was used to estimate the accuracy of each ADC parameter in predicting the Ki-67 level, and finally a multivariate logistic regression model was constructed based on the results of ROC analysis. RESULTS ADCmin, ADCmean, rADCmin, rADCmean and Ki-67 LI showed a negative correlation (r = - 0.478, r = - 0.369, r = - 0.488, r = - 0.388, all P < 0.001). The Ki-67 LI of low-grade gliomas (LGGs) was different from that of high-grade gliomas (HGGs), and the cut-off point of Ki-67 LI for distinguishing LGGs from HGGs was 9.5%, with an area under the ROC curve (AUROC) of 0.962 (95%CI 0.933-0.990). The ADC parameters in the high Ki-67 group were significantly lower than those in the low Ki-67 group (all P < 0.05). The peritumoral edema (PTE) of gliomas in the high Ki-67 LI group was higher than that in the low Ki-67 LI group (P < 0.05). The AUROC of Ki-67 LI level assessed by the multivariate logistic regression model was 0.800 (95%CI 0.721-0.879). CONCLUSIONS There was a negative correlation between ADC parameters and Ki-67 LI, and the multivariate logistic regression model combined with peritumoral edema and ADC parameters could improve the prediction ability of Ki-67 LI.
Collapse
Affiliation(s)
- Ningfang Du
- grid.8547.e0000 0001 0125 2443Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Weiquan Shu
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Kefeng Li
- grid.266100.30000 0001 2107 4242School of Medicine, University of California, San Diego, CA USA ,Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao SAR, China
| | - Yao Deng
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Xinxin Xu
- grid.8547.e0000 0001 0125 2443Clinical Research Center for Gerontology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yao Ye
- grid.8547.e0000 0001 0125 2443Department of Pathology, Huadong Hospital, Fudan University, Shanghai, China
| | - Feng Tang
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Renling Mao
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Guangwu Lin
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China.
| | - Shihong Li
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China.
| | - Xuhao Fang
- Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
70
|
Gaitsch H, Hersh AM, Alomari S, Tyler BM. Dendrimer Technology in Glioma: Functional Design and Potential Applications. Cancers (Basel) 2023; 15:1075. [PMID: 36831418 PMCID: PMC9954563 DOI: 10.3390/cancers15041075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Novel therapeutic and diagnostic methods are sorely needed for gliomas, which contribute yearly to hundreds of thousands of cancer deaths worldwide. Despite the outpouring of research efforts and funding aimed at improving clinical outcomes for patients with glioma, the prognosis for high-grade glioma, and especially glioblastoma, remains dire. One of the greatest obstacles to improving treatment efficacy and destroying cancer cells is the safe delivery of chemotherapeutic drugs and biologics to the tumor site at a high enough dose to be effective. Over the past few decades, a burst of research has leveraged nanotechnology to overcome this obstacle. There has been a renewed interest in adapting previously understudied dendrimer nanocarriers for this task. Dendrimers are small, highly modifiable, branched structures featuring binding sites for a variety of drugs and ligands. Recent studies have demonstrated the potential for dendrimers and dendrimer conjugates to effectively shuttle therapeutic cargo to the correct tumor location, permeate the tumor, and promote apoptosis of tumor cells while minimizing systemic toxicity and damage to surrounding healthy brain tissue. This review provides a primer on the properties of dendrimers; outlines the mechanisms by which they can target delivery of substances to the site of brain pathology; and delves into current trends in the application of dendrimers to drug and gene delivery, and diagnostic imaging, in glioma. Finally, future directions for translating these in vitro and in vivo findings to the clinic are discussed.
Collapse
Affiliation(s)
- Hallie Gaitsch
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- NIH Oxford-Cambridge Scholars Program, Wellcome—MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
71
|
EZH2 interacts with HP1BP3 to epigenetically activate WNT7B that promotes temozolomide resistance in glioblastoma. Oncogene 2023; 42:461-470. [PMID: 36517590 DOI: 10.1038/s41388-022-02570-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor in adults and harbors a subpopulation of glioma stem cells (GSCs). Enhancer of Zeste Homolog 2 (EZH2), a histone lysine methyltransferase, deeply involves in the stemness maintenance of GSC. However, the precise mechanism and therapeutic potential remain elusive. We postulated that the interactome of EZH2 in GSC is unique. Therefore, we performed proteomic and transcriptomic research to unveil the oncogenic mechanism of EZH2. Immunoprecipitation and mass spectrometry were used to identify proteins that co-precipitate with EZH2. We show that EZH2 binds to heterochromatin protein 1 binding protein 3 (HP1BP3) in GSCs and impairs the methylation of H3K9. Overexpression of HP1BP3 enhances the proliferation, self-renewal and temozolomide (TMZ) resistance of GBM cells. Furthermore, EZH2 and HP1BP3 co-activate WNT7B expression thereby increasing TMZ resistance and stemness of GBM cells. Importantly, inhibition of WNT7B autocrine via LGK974 effectively reverses the TMZ resistance. Our work clarifies a new oncogenic mechanism of EZH2 by which it interacts with HP1BP3 and epigenetically activates WNT7B thereby promoting TMZ resistance in GSCs. Our results provide a rationale for targeting WNT/β-catenin pathway as a promising strategy to overcome TMZ resistance in GSCs.
Collapse
|
72
|
Takami H, Mukasa A, Takayanagi S, Koike T, Matsuura R, Ikemura M, Ushiku T, Yoshikawa G, Shibahara J, Tanaka S, Saito N. Morphologically, genetically and spatially mixed astrocytoma and oligodendroglioma; chronological acquisition of 1p/19q codeletion and CDKN2A deletion: a case report. Brain Tumor Pathol 2023; 40:26-34. [PMID: 36572828 DOI: 10.1007/s10014-022-00448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022]
Abstract
"Oligoastrocytoma" disappeared as of the revised fourth edition of the World Health Organization Classification of Tumours of the Central Nervous System, except where appended with "not otherwise specified (NOS)". However, histopathological and genetic backgrounds of cases with dual features of astrocytoma/oligodendroglioma have been sparsely reported. We encountered a 54-year-old man with right frontal glioma comprising two distinct parts on imaging and histopathological examination: grade 4 astrocytoma with IDH1-R132H, ATRX loss, p53-positivity and intact 1p/19q; and oligodendroglioma with IDH1-R132H, intact ATRX, p53-negativity and partially deleted 1p/19q. At recurrence, histopathology showed low-grade mixed astrocytic and oligodendroglial features: the former with IDH1-R132H, ATRX loss, p53-positivity and intact 1p/19q and the latter showing IDH1-R132H, intact ATRX, p53-negativity and 1p/19q codeletion. At second recurrence, histopathology was astrocytoma grade 4 with IDH1-R132H, ATRX loss, p53-positivity and intact 1p/19q. Notably, 1p/19q codeletion was acquired at recurrence and CDKN2A was deleted at second recurrence. These findings suggest insights into tumorigenesis: (1) gliomas with two distinct lineages might mix to produce "oligoastrocytoma"; and (2) 1p/19q codeletion and CDKN2A deletion might be acquired during chemo-radiotherapy. Ultimately, astrocytic and oligodendroglial clones might co-exist developmentally or these two lineages might share a common cell-of-origin, with IDH1-R132H as the shared molecular feature.
Collapse
Affiliation(s)
- Hirokazu Takami
- Departments of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Akitake Mukasa
- Departments of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.,Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Shunsaku Takayanagi
- Departments of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Tsukasa Koike
- Departments of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Reiko Matsuura
- Departments of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Masako Ikemura
- Department of Pathology, The University of Tokyo Hospital, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, The University of Tokyo Hospital, Tokyo, Japan
| | | | - Junji Shibahara
- Department of Pathology, Kyorin University Hospital, Tokyo, Japan
| | - Shota Tanaka
- Departments of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Nobuhito Saito
- Departments of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| |
Collapse
|
73
|
Hasanau TN, Pisarev EP, Kisil OV, Zvereva ME. The TERT Promoter: A Key Player in the Fight for Cancer Cell Immortality. BIOCHEMISTRY (MOSCOW) 2023; 88:S21-S38. [PMID: 37069112 DOI: 10.1134/s000629792314002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The review describes the role of telomeres and telomerase in tumor progression, as well as various mechanisms of the activation of telomerase reverse transcriptase (TERT) expression in CNS tumors and other cancers. The main mechanism of TERT activation involves acquisition of somatic mutations by the TERT gene promoter (TERTp). The article presents information on the TERTp structure and transcription factors directly interacting with TERTp and regulating its transcription. The prospects of using the mutational status of TERTp as a prognostic marker of CNS malignancies and other tumors with a common profile of TERTp mutations are discussed.
Collapse
Affiliation(s)
- Tsimur N Hasanau
- Natural Compounds Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Eduard P Pisarev
- Natural Compounds Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Olga V Kisil
- Gause Institute of New Antibiotics, Moscow, 119021, Russia
| | - Maria E Zvereva
- Natural Compounds Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
74
|
Saha S, Pradhan N, B N, Mahadevappa R, Minocha S, Kumar S. Cancer plasticity: Investigating the causes for this agility. Semin Cancer Biol 2023; 88:138-156. [PMID: 36584960 DOI: 10.1016/j.semcancer.2022.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Cancer is not a hard-wired phenomenon but an evolutionary disease. From the onset of carcinogenesis, cancer cells continuously adapt and evolve to satiate their ever-growing proliferation demands. This results in the formation of multiple subtypes of cancer cells with different phenotypes, cellular compositions, and consequently displaying varying degrees of tumorigenic identity and function. This phenomenon is referred to as cancer plasticity, during which the cancer cells exist in a plethora of cellular states having distinct phenotypes. With the advent of modern technologies equipped with enhanced resolution and depth, for example, single-cell RNA-sequencing and advanced computational tools, unbiased cancer profiling at a single-cell resolution are leading the way in understanding cancer cell rewiring both spatially and temporally. In this review, the processes and mechanisms that give rise to cancer plasticity include both intrinsic genetic factors such as epigenetic changes, differential expression due to changes in DNA, RNA, or protein content within the cancer cell, as well as extrinsic environmental factors such as tissue perfusion, extracellular milieu are detailed and their influence on key cancer plasticity hallmarks such as epithelial-mesenchymal transition (EMT) and cancer cell stemness (CSCs) are discussed. Due to therapy evasion and drug resistance, tumor heterogeneity caused by cancer plasticity has major therapeutic ramifications. Hence, it is crucial to comprehend all the cellular and molecular mechanisms that control cellular plasticity. How this process evades therapy, and the therapeutic avenue of targeting cancer plasticity must be diligently investigated.
Collapse
Affiliation(s)
- Shubhraneel Saha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nikita Pradhan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neha B
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ravikiran Mahadevappa
- Department of Biotechnology, School of Science, Gandhi Institute of Technology and Management, Deemed to be University, Bengaluru, Karnataka 562163, India
| | - Shilpi Minocha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Saran Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
75
|
Sussman JH, Xu J, Amankulor N, Tan K. Dissecting the tumor microenvironment of epigenetically driven gliomas: Opportunities for single-cell and spatial multiomics. Neurooncol Adv 2023; 5:vdad101. [PMID: 37706202 PMCID: PMC10496944 DOI: 10.1093/noajnl/vdad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Malignant gliomas are incurable brain neoplasms with dismal prognoses and near-universal fatality, with minimal therapeutic progress despite billions of dollars invested in research and clinical trials over the last 2 decades. Many glioma studies have utilized disparate histologic and genomic platforms to characterize the stunning genomic, transcriptomic, and immunologic heterogeneity found in gliomas. Single-cell and spatial omics technologies enable unprecedented characterization of heterogeneity in solid malignancies and provide a granular annotation of transcriptional, epigenetic, and microenvironmental states with limited resected tissue. Heterogeneity in gliomas may be defined, at the broadest levels, by tumors ostensibly driven by epigenetic alterations (IDH- and histone-mutant) versus non-epigenetic tumors (IDH-wild type). Epigenetically driven tumors are defined by remarkable transcriptional programs, immunologically distinct microenvironments, and incompletely understood topography (unique cellular neighborhoods and cell-cell interactions). Thus, these tumors are the ideal substrate for single-cell multiomic technologies to disentangle the complex intra-tumoral features, including differentiation trajectories, tumor-immune cell interactions, and chromatin dysregulation. The current review summarizes the applications of single-cell multiomics to existing datasets of epigenetically driven glioma. More importantly, we discuss future capabilities and applications of novel multiomic strategies to answer outstanding questions, enable the development of potent therapeutic strategies, and improve personalized diagnostics and treatment via digital pathology.
Collapse
Affiliation(s)
- Jonathan H Sussman
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jason Xu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nduka Amankulor
- Department of Neurosurgery, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kai Tan
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
76
|
Pathogenesis Study of Glioma: From Glioma Stem Cells, Genomic Tags, to Rodent Models. Brain Sci 2022; 13:brainsci13010030. [PMID: 36672013 PMCID: PMC9856728 DOI: 10.3390/brainsci13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Glioma remains the toughest brain tumor among all primary central nervous system (CNS) tumors [...].
Collapse
|
77
|
Liu Z, Wu J, Ji H, Zhao H, Wang F, Dong J, Zhang J, Wang N, Yan X, Wang K, Hu S. Stromal protein CCN family contributes to the poor prognosis in lower-grade gioma by modulating immunity, matrix, stemness, and metabolism. Front Mol Biosci 2022; 9:1027236. [PMID: 36589241 PMCID: PMC9800986 DOI: 10.3389/fmolb.2022.1027236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background: The CCN family of stromal proteins is involved in the regulation of many important biological functions. However, the role of dysregulated CCN proteins in lower-grade glioma (LGG) remain less understand. Methods: The clinical significance of the CCN proteins was explored based on RNA-seq profiles from multiple cohorts. A CCNScore was constructed using LASSO regression analysis. The PanCanAtlas data and MEXPRESS database were employed to elucidate molecular underpinnings. Results: The expression of CCN4 was associated with poor prognosis in LGG. The CCNScore (CCN1 = 0.06, CCN4 = 0.86) showed implication in prognosis prediction, subtype assessment and therapy selection. The gene mutation pattern of the high-CCNScore group was similar with glioblastoma, including EGFR, PTEN, and NF1 mutation frequently. Besides, the high-CCNScore group was comprised of samples mainly classic-like and mesenchymal-like, had lower methylation levels, higher stemness, higher inflammation, higher levels of extracellular matrix remodel and dysfunction of metabolic pathways. On the other hand, the low-CCNScore group consisted mainly of IDH-mutation LGG, and was characterized by TP53, CIC, and ATRX gene mutations, hyper-methylation status, lower stemness, lower proliferation, immune quietness and low extracellular matrix stiffness. Conclusion: In summary, these results outlined the role of CCN family in LGG and provided a potential and promising therapeutic target.
Collapse
Affiliation(s)
- Zhihui Liu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiasheng Wu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hang Ji
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongtao Zhao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fang Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiawei Dong
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiheng Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiuwei Yan
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,*Correspondence: Xiuwei Yan, ; Kaikai Wang, ; Shaoshan Hu,
| | - Kaikai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China,Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China,*Correspondence: Xiuwei Yan, ; Kaikai Wang, ; Shaoshan Hu,
| | - Shaoshan Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,*Correspondence: Xiuwei Yan, ; Kaikai Wang, ; Shaoshan Hu,
| |
Collapse
|
78
|
Ramos SI, Mussa ZM, Falk EN, Pai B, Giotti B, Allette K, Cai P, Dekio F, Sebra R, Beaumont KG, Tsankov AM, Tsankova NM. An atlas of late prenatal human neurodevelopment resolved by single-nucleus transcriptomics. Nat Commun 2022; 13:7671. [PMID: 36509746 PMCID: PMC9744747 DOI: 10.1038/s41467-022-34975-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
Late prenatal development of the human neocortex encompasses a critical period of gliogenesis and cortical expansion. However, systematic single-cell analyses to resolve cellular diversity and gliogenic lineages of the third trimester are lacking. Here, we present a comprehensive single-nucleus RNA sequencing atlas of over 200,000 nuclei derived from the proliferative germinal matrix and laminating cortical plate of 15 prenatal, non-pathological postmortem samples from 17 to 41 gestational weeks, and 3 adult controls. This dataset captures prenatal gliogenesis with high temporal resolution and is provided as a resource for further interrogation. Our computational analysis resolves greater complexity of glial progenitors, including transient glial intermediate progenitor cell (gIPC) and nascent astrocyte populations in the third trimester of human gestation. We use lineage trajectory and RNA velocity inference to further characterize specific gIPC subpopulations preceding both oligodendrocyte (gIPC-O) and astrocyte (gIPC-A) lineage differentiation. We infer unique transcriptional drivers and biological pathways associated with each developmental state, validate gIPC-A and gIPC-O presence within the human germinal matrix and cortical plate in situ, and demonstrate gIPC states being recapitulated across adult and pediatric glioblastoma tumors.
Collapse
Affiliation(s)
- Susana I Ramos
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zarmeen M Mussa
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elisa N Falk
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Balagopal Pai
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kimaada Allette
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Peiwen Cai
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Fumiko Dekio
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Nadejda M Tsankova
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
79
|
Bulstrode H, Girdler GC, Gracia T, Aivazidis A, Moutsopoulos I, Young AMH, Hancock J, He X, Ridley K, Xu Z, Stockley JH, Finlay J, Hallou C, Fajardo T, Fountain DM, van Dongen S, Joannides A, Morris R, Mair R, Watts C, Santarius T, Price SJ, Hutchinson PJA, Hodson EJ, Pollard SM, Mohorianu I, Barker RA, Sweeney TR, Bayraktar O, Gergely F, Rowitch DH. Myeloid cell interferon secretion restricts Zika flavivirus infection of developing and malignant human neural progenitor cells. Neuron 2022; 110:3936-3951.e10. [PMID: 36174572 PMCID: PMC7615581 DOI: 10.1016/j.neuron.2022.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/10/2022] [Accepted: 09/01/2022] [Indexed: 02/02/2023]
Abstract
Zika virus (ZIKV) can infect human developing brain (HDB) progenitors resulting in epidemic microcephaly, whereas analogous cellular tropism offers treatment potential for the adult brain cancer, glioblastoma (GBM). We compared productive ZIKV infection in HDB and GBM primary tissue explants that both contain SOX2+ neural progenitors. Strikingly, although the HDB proved uniformly vulnerable to ZIKV infection, GBM was more refractory, and this correlated with an innate immune expression signature. Indeed, GBM-derived CD11b+ microglia/macrophages were necessary and sufficient to protect progenitors against ZIKV infection in a non-cell autonomous manner. Using SOX2+ GBM cell lines, we found that CD11b+-conditioned medium containing type 1 interferon beta (IFNβ) promoted progenitor resistance to ZIKV, whereas inhibition of JAK1/2 signaling restored productive infection. Additionally, CD11b+ conditioned medium, and IFNβ treatment rendered HDB progenitor lines and explants refractory to ZIKV. These findings provide insight into neuroprotection for HDB progenitors as well as enhanced GBM oncolytic therapies.
Collapse
Affiliation(s)
- Harry Bulstrode
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Gemma C Girdler
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Tannia Gracia
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Ilias Moutsopoulos
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Adam M H Young
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John Hancock
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Xiaoling He
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Katherine Ridley
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Zhaoyang Xu
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John H Stockley
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John Finlay
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Clement Hallou
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Teodoro Fajardo
- Department of Virology, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Virology, Royal London Hospital, Barts Health NHS Trust, London E1 2ES, UK
| | | | | | - Alexis Joannides
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Robert Morris
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Richard Mair
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Colin Watts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Thomas Santarius
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Stephen J Price
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peter J A Hutchinson
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Emma J Hodson
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Irina Mohorianu
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Roger A Barker
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Trevor R Sweeney
- Department of Virology, University of Cambridge, Cambridge CB2 0QQ, UK; The Pirbright Institute, Guildford, Surrey GU24 0NF, UK
| | | | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - David H Rowitch
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
80
|
Chien CH, Yang WB, Chuang JY, Lee JS, Liao WA, Huang CY, Chen PY, Wu AC, Yang ST, Lai CC, Chi PI, Chu JM, Cheng SM, Liu CC, Hwang DY, Chen SH, Chang KY. SH3GLB1-related autophagy mediates mitochondrial metabolism to acquire resistance against temozolomide in glioblastoma. J Exp Clin Cancer Res 2022; 41:220. [PMID: 35831908 PMCID: PMC9281043 DOI: 10.1186/s13046-022-02429-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/02/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The mechanism by which glioblastoma evades temozolomide (TMZ)-induced cytotoxicity is largely unknown. We hypothesized that mitochondria plays a role in this process.
Methods
RNA transcriptomes were obtained from tumor samples and online databases. Expression of different proteins was manipulated using RNA interference or gene amplification. Autophagic activity and mitochondrial metabolism was assessed in vitro using the respective cellular and molecular assays. In vivo analysis were also carried out in this study.
Results
High SH3GLB1 gene expression was found to be associated with higher disease grading and worse survival profiles. Single-cell transcriptome analysis of clinical samples suggested that SH3GLB1 and the altered gene levels of oxidative phosphorylation (OXPHOS) were related to subsets expressing a tumor-initiating cell signature. The SH3GLB1 protein was regulated by promoter binding with Sp1, a factor associated with TMZ resistance. Downregulation of SH3GLB1 resulted in retention of TMZ susceptibility, upregulated p62, and reduced LC3B-II. Autophagy inhibition by SH3GLB1 deficiency and chloroquine resulted in attenuated OXPHOS expression. Inhibition of SH3GLB1 in resistant cells resulted in alleviation of TMZ-enhanced mitochondrial metabolic function, such as mitochondrial membrane potential, mitochondrial respiration, and ATP production. SH3GLB1 modulation could determine tumor susceptibility to TMZ. Finally, in animal models, resistant tumor cells with SH3GLB1 knockdown became resensitized to the anti-tumor effect of TMZ, including the suppression of TMZ-induced autophagy and OXPHOS.
Conclusions
SH3GLB1 promotes TMZ resistance via autophagy to alter mitochondrial function. Characterizing SH3GLB1 in glioblastoma may help develop new therapeutic strategies against this disease in the future.
Collapse
|
81
|
Gisina A, Kholodenko I, Kim Y, Abakumov M, Lupatov A, Yarygin K. Glioma Stem Cells: Novel Data Obtained by Single-Cell Sequencing. Int J Mol Sci 2022; 23:14224. [PMID: 36430704 PMCID: PMC9694247 DOI: 10.3390/ijms232214224] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Glioma is the most common type of primary CNS tumor, composed of cells that resemble normal glial cells. Recent genetic studies have provided insight into the inter-tumoral heterogeneity of gliomas, resulting in the updated 2021 WHO classification of gliomas. Thorough understanding of inter-tumoral heterogeneity has already improved the prognosis and treatment outcomes of some types of gliomas. Currently, the challenge for researchers is to study the intratumoral cell heterogeneity of newly defined glioma subtypes. Cancer stem cells (CSCs) present in gliomas and many other tumors are an example of intratumoral heterogeneity of great importance. In this review, we discuss the modern concept of glioma stem cells and recent single-cell sequencing-driven progress in the research of intratumoral glioma cell heterogeneity. The particular emphasis was placed on the recently revealed variations of the cell composition of the subtypes of the adult-type diffuse gliomas, including astrocytoma, oligodendroglioma and glioblastoma. The novel data explain the inconsistencies in earlier glioma stem cell research and also provide insight into the development of more effective targeted therapy and the cell-based immunotherapy of gliomas. Separate sections are devoted to the description of single-cell sequencing approach and its role in the development of cell-based immunotherapies for glioma.
Collapse
Affiliation(s)
- Alisa Gisina
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Irina Kholodenko
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Yan Kim
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Maxim Abakumov
- Drug Delivery Systems Laboratory, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Alexey Lupatov
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Konstantin Yarygin
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
82
|
Du X, Chen C, Xiao Y, Cui Y, Yang L, Li X, Liu X, Wang R, Tan B. Research on application of tumor treating fields in glioblastoma: A bibliometric and visual analysis. Front Oncol 2022; 12:1055366. [DOI: 10.3389/fonc.2022.1055366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
BackgroundGlioblastoma, one of the common tumors of the central nervous system (CNS), is prone to recurrence even after standard treatment protocols. As an innovative physiotherapy method emerging in recent years, the tumor treating fields (TTFields) technique has been approved for the treatment of glioblastoma due to its non-invasive and portable features. The purpose of this study is to visualize and analyze the scientific results and research trends in TTFields therapy for glioblastoma.MethodsPublications related to TTFields therapy for glioblastoma were searched in the Web of Science Core Collection (WoSCC) database in September 2022. A bibliometric and visual analysis of publications in this field was performed mainly using CiteSpace and R software for country/region, author, journal, reference and keyword.ResultsA total of 618 publications in this field were retrieved, and 248 were finally obtained according to the search criteria, including 159 articles (64.11%) and 89 reviews (37.89%). The cumulative number of publications increased year by year, with an average growth rate (AGR) of 28.50%. The test results of Pearson correlation coefficient showed a high positive correlation between publications and citations (r=0.937, p<0.001). The USA had the largest number of publications (123, 49.60%), followed by Germany (32, 12.90%) and China (30, 12.10%). As for the country/region collaborations, the USA cooperated most closely with other countries/regions, followed by Germany and China. The degree of collaboration (DC) between countries/regions was 25.81%. The institutions with the largest number of publications were Tel Aviv Univ (10), Harvard Med Sch (10) and Novocure Ltd (10). Moreover, Wong E (18) possessed the greatest number of publications, followed by Weinberg U (11) and Kirson E (10). The DC between authors was 97.58%. STUPP R (236) was the most cited author followed by KIRSON ED (164) and GILADI M (104). JOURNAL OF NEURO-ONCOLOGY (22) was the journal with the largest number of published publications (75), followed by FRONTIERS IN ONCOLOGY (15) and CANCERS (13). The top 10 keywords that occurred frequently included glioblastoma (156), tumor treating field (152), temozolomide (134), randomized phase III (48), brain (46), survivor (46), cancer (44), trial (42), alternating electric field (42) and radiotherapy (36). Furthermore, cluster analysis was performed on the basis of keyword co-occurrence, and finally 15 clusters were formed to determine the current research status and future development trend of TTFields therapy for glioblastoma.ConclusionTTFields has been increasingly known as the fourth novel physical anti-tumor therapy in addition to surgery, radiotherapy and anti-tumor drugs. Cooperation and communication between countries/regions need to be enhanced in future research. Several studies have demonstrated the therapeutic potential of TTFields in glioma, and its application alone or in combination with other treatments has become a current research hotspot.
Collapse
|
83
|
Gulaia V, Shmelev M, Romanishin A, Shved N, Farniev V, Goncharov N, Biktimirov A, Vargas IL, Khodosevich K, Kagansky A, Kumeiko V. Single-nucleus transcriptomics of IDH1- and TP53-mutant glioma stem cells displays diversified commitment on invasive cancer progenitors. Sci Rep 2022; 12:18975. [PMID: 36348001 PMCID: PMC9643511 DOI: 10.1038/s41598-022-23646-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Glioma is a devastating brain tumor with a high mortality rate attributed to the glioma stem cells (GSCs) possessing high plasticity. Marker mutations in isocitrate dehydrogenase type 1 (IDH1) and tumor protein 53 (TP53) are frequent in gliomas and impact the cell fate decisions. Understanding the GSC heterogeneity within IDH1- and TP53- mutant tumors may elucidate possible treatment targets. Here, we performed single-nucleus transcriptomics of mutant and wild-type glioma samples sorted for Sox2 stem cell marker. For the first time the rare subpopulations of Sox2 + IDH1- and TP53-mutant GSCs were characterized. In general, GSCs contained the heterogeneity root subpopulation resembling active neural stem cells capable of asymmetric division to quiescent and transit amplifying cell branches. Specifically, double-mutant GSCs revealed the commitment on highly invasive oligodendrocyte- and astroglia-like progenitors. Additionally, double-mutant GSCs displayed upregulated markers of collagen synthesis, altered lipogenesis and high migration, while wild-type GSCs expressed genes related to ATP production. Wild-type GSC root population was highly heterogeneous and lacked the signature marker expression, thus glioblastoma treatment should emphasize on establishing differentiation protocol directed against residual GSCs. For the more differentiated IDH1- and TP53-mutant gliomas we suggest therapeutic targeting of migration molecules, such as CD44.
Collapse
Affiliation(s)
- Valeriia Gulaia
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Mikhail Shmelev
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Aleksander Romanishin
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia ,grid.410686.d0000 0001 1018 9204School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, 236041 Russia
| | - Nikita Shved
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia ,grid.417808.20000 0001 1393 1398A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, 690041 Russia
| | - Vladislav Farniev
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Nikolay Goncharov
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Arthur Biktimirov
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Irene Lisa Vargas
- grid.5254.60000 0001 0674 042XBiotech Research & Innovation Centre (BRIC), The Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Konstantin Khodosevich
- grid.5254.60000 0001 0674 042XBiotech Research & Innovation Centre (BRIC), The Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alexander Kagansky
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia
| | - Vadim Kumeiko
- grid.440624.00000 0004 0637 7917Institute of Life Sciences and Biomedicine, Medical Center, Far Eastern Federal University, Vladivostok, 690922 Russia ,grid.417808.20000 0001 1393 1398A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, 690041 Russia
| |
Collapse
|
84
|
Sun T, Li Y, Yang Y, Liu B, Cao Y, Yang W. Enhanced radiation-induced immunogenic cell death activates chimeric antigen receptor T cells by targeting CD39 against glioblastoma. Cell Death Dis 2022; 13:875. [PMID: 36245000 PMCID: PMC9573869 DOI: 10.1038/s41419-022-05319-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 01/23/2023]
Abstract
Chimeric antigen receptor (CAR)-T cells directed to solid tumors have been less effective, due in part to the low or lost expression of specific tumor antigens. Herein, we developed a different strategy to enhance CAR-T cell persistence and efficacy by producing a multispecific CAR-T or vaccine based on immunogenic cell death (ICD). We demonstrated that ionizing radiation activates STAT1-IRF1-CD39 axis to upregulate CD39 expression to form an immunosuppressive tumor microenvironment (TME) to enhance radioresistance. CD39 blockade accumulates extracellular ATP, which activates NLRP3 inflammasome in dendritic cells via P2X7 receptor, thereby promoting radiation-induced ICD. Multispecific CAR-T cells in vitro prepared by elevated ICD suppress the growth of xenografts in nude mice. Radiation and CD39 inhibition-induced ICD of glioma stem cells as a vaccine enhance CAR-T expansion in peripheral blood, multifunctionality in the TME, and antitumor effect in a glioma model. The multispecificity of CAR-T cells, targeting CAR and tumor antigens, vastly enhances the function of conventional CAR-T cells, stimulates a native immune response, and overcomes obstacles of specific antigen loss or low expression of target cells in antitumor therapy.
Collapse
Affiliation(s)
- Ting Sun
- grid.429222.d0000 0004 1798 0228Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006 China
| | - Yanyan Li
- grid.429222.d0000 0004 1798 0228Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006 China
| | - Ying Yang
- grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu China
| | - Bin Liu
- grid.429222.d0000 0004 1798 0228Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006 China
| | - Yufei Cao
- grid.429222.d0000 0004 1798 0228Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006 China
| | - Wei Yang
- grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu China
| |
Collapse
|
85
|
Gonzalez Castro LN, Liu I, Filbin M. Characterizing the biology of primary brain tumors and their microenvironment via single-cell profiling methods. Neuro Oncol 2022; 25:234-247. [PMID: 36197833 PMCID: PMC9925698 DOI: 10.1093/neuonc/noac211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genomic and transcriptional heterogeneity is prevalent among the most common and aggressive primary brain tumors in children and adults. Over the past 20 years, advances in bioengineering, biochemistry and bioinformatics have enabled the development of an array of techniques to study tumor biology at single-cell resolution. The application of these techniques to study primary brain tumors has helped advance our understanding of their intra-tumoral heterogeneity and uncover new insights regarding their co-option of developmental programs and signaling from their microenvironment to promote tumor proliferation and invasion. These insights are currently being harnessed to develop new therapeutic approaches. Here we provide an overview of current single-cell techniques and discuss relevant biology and therapeutic insights uncovered by their application to primary brain tumors in children and adults.
Collapse
Affiliation(s)
- L Nicolas Gonzalez Castro
- Corresponding Author: L. Nicolas Gonzalez Castro, MD, PhD, Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA ()
| | | | - Mariella Filbin
- Pediatric Neuro-Oncology Program, Dana-Farber/Boston Children’s and Blood Disorders Center, Boston, MA, USA
| |
Collapse
|
86
|
Song S, Wu H, Wang F, Jiao J, Xu L, Wang H, Tong X, Yan H. Global research trends and hotspots on glioma stem cells. Front Oncol 2022; 12:926025. [PMID: 36248966 PMCID: PMC9558893 DOI: 10.3389/fonc.2022.926025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGlioma stem cells (GSCs) are a sub-population of cancer stem cells with capacity of self-renewal and differentiation. Accumulated evidence has revealed that GSCs were shown to contribute to gliomagenesis, distant metastasis as well as the resistance to radiotherapy and chemotherapy. As a result, GSCs were regarded as a promising therapeutic target in human glioma. The purpose of our study is to identify current state and hotspots of GSCs research by analyzing scientific publications through bibliometric methods.MethodsAll relevant publications on GSCs during 2003-2021 were extracted from the Science Citation Index Expanded of Web of Science Core Collection (WoSCC), and related information was collected and analyzed using Microsoft Excel 2016, GraphPad Prism 8 and VOSviewer software.ResultsA total of 4990 papers were included. The United States accounted for the largest number of publications (1852), the second average citations per item (ACI) value (67.54) as well as the highest H-index (157). Cancer Research was the most influential journal in this field. The most contributive institution was League of European Research Universities. RICH JN was the author with the most publications (109) and the highest H-index (59). All studies were clustered into 3 groups: “glioma stem cell properties”, “cell biological properties” and “oncology therapy”. The keywords “identification”, “CD133” and “side population” appeared earlier with the smaller average appearing years (AAY), and the keywords”radiotherapy” and “chemotherapy” had the latest AAY. The analysis of top cited articles showed that “temozolomide”, “epithelial-mesenchymal transition”, and “immunotherapy” emerged as new focused issues.ConclusionThere has been a growing number of researches on GSCs. The United States has always been a leading player in this domain. In general, the research focus has gradually shifted from basic cellular biology to the solutions of clinical concerns. “Temozolomide resistance”, “epithelial-mesenchymal transition”, and “immunotherapy” should be given more attention in the future.
Collapse
Affiliation(s)
- Sirong Song
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Haiyang Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Fanchen Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Jiji Jiao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Lixia Xu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Hongguang Wang
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- *Correspondence: Hua Yan, ; Hongguang Wang, ; Xiaoguang Tong,
| | - Xiaoguang Tong
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- *Correspondence: Hua Yan, ; Hongguang Wang, ; Xiaoguang Tong,
| | - Hua Yan
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- *Correspondence: Hua Yan, ; Hongguang Wang, ; Xiaoguang Tong,
| |
Collapse
|
87
|
Johnson AL, Laterra J, Lopez-Bertoni H. Exploring glioblastoma stem cell heterogeneity: Immune microenvironment modulation and therapeutic opportunities. Front Oncol 2022; 12:995498. [PMID: 36212415 PMCID: PMC9532940 DOI: 10.3389/fonc.2022.995498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Despite its growing use in cancer treatment, immunotherapy has been virtually ineffective in clinical trials for gliomas. The inherently cold tumor immune microenvironment (TIME) in gliomas, characterized by a high ratio of pro-tumor to anti-tumor immune cell infiltrates, acts as a seemingly insurmountable barrier to immunotherapy. Glioma stem cells (GSCs) within these tumors are key contributors to this cold TIME, often functioning indirectly through activation and recruitment of pro-tumor immune cell types. Furthermore, drivers of GSC plasticity and heterogeneity (e.g., reprogramming transcription factors, epigenetic modifications) are associated with induction of immunosuppressive cell states. Recent studies have identified GSC-intrinsic mechanisms, including functional mimicry of immune suppressive cell types, as key determinants of anti-tumor immune escape. In this review, we cover recent advancements in our understanding of GSC-intrinsic mechanisms that modulate GSC-TIME interactions and discuss cutting-edge techniques and bioinformatics platforms available to study immune modulation at high cellular resolution with exploration of both malignant (i.e., GSC) and non-malignant (i.e., immune) cell fractions. Finally, we provide insight into the therapeutic opportunities for targeting immunomodulatory GSC-intrinsic mechanisms to potentiate immunotherapy response in gliomas.
Collapse
Affiliation(s)
- Amanda L. Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: John Laterra, ; Hernando Lopez-Bertoni,
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: John Laterra, ; Hernando Lopez-Bertoni,
| |
Collapse
|
88
|
Wang M, Shen S, Hou F, Yan Y. Pathophysiological roles of integrins in gliomas from the perspective of glioma stem cells. Front Cell Dev Biol 2022; 10:962481. [PMID: 36187469 PMCID: PMC9523240 DOI: 10.3389/fcell.2022.962481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma is the most common primary intracranial tumor and is also one of the most malignant central nervous system tumors. Its characteristics, such as high malignancy, abundant tumor vasculature, drug resistance, and recurrence-prone nature, cause great suffering to glioma patients. Furthermore, glioma stem cells are the primordial cells of the glioma and play a central role in the development of glioma. Integrins—heterodimers composed of noncovalently bound a and ß subunits—are highly expressed in glioma stem cells and play an essential role in the self-renewal, differentiation, high drug resistance, and chemo-radiotherapy resistance of glioma stem cells through cell adhesion and signaling. However, there are various types of integrins, and their mechanisms of function on glioma stem cells are complex. Therefore, this article reviews the feasibility of treating gliomas by targeting integrins on glioma stem cells.
Collapse
|
89
|
Chen B, Zhou X, Yang L, Zhou H, Meng M, Wu H, Liu Z, Zhang L, Li C. Glioma stem cell signature predicts the prognosis and the response to tumor treating fields treatment. CNS Neurosci Ther 2022; 28:2148-2162. [PMID: 36070228 PMCID: PMC9627385 DOI: 10.1111/cns.13956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Glioma stem cells (GSCs) play an important role in glioma recurrence and chemo-radiotherapy (CRT) resistance. Currently, there is a lack of efficient treatment approaches targeting GSCs. This study aimed to explore the potential personalized treatment of patients with GSC-enriched gliomas. METHODS Single-cell RNA sequencing (scRNA-seq) was used to identify the GSC-related genes. Then, machine learning methods were applied for clustering and validation. The least absolute shrinkage and selection operator (LASSO) and COX regression were used to construct the risk scores. Survival analysis was performed. Additionally, the incidence of chemo-radiotherapy resistance, immunotherapy status, and tumor treating field (TTF) therapy response were evaluated in high- and low-risk scores groups. RESULTS Two GSC clusters exhibited significantly different stemness indices, immune microenvironments, and genomic alterations. Based on GSC clusters, 11-gene GSC risk scores were constructed, which exhibited a high predictive value for prognosis. In terms of therapy, patients with high GSC risk scores had a higher risk of resistance to chemotherapy. TTF therapy can comprehensively inhibit the malignant biological characteristics of the high GSC-risk-score gliomas. CONCLUSION Our study constructed a GSC signature consisting of 11 GSC-specific genes and identified its prognostic value in gliomas. TTF is a promising therapeutic approach for patients with GSC-enriched glioma.
Collapse
Affiliation(s)
- Bo Chen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoxi Zhou
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Liting Yang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina,Hypothalamic‐Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaChina,Clinical Diagnosis and Therapy Center for Glioma, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hongshu Zhou
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Ming Meng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hao Wu
- Department of Neurosurgery, The Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina,Hypothalamic‐Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaChina,Clinical Diagnosis and Therapy Center for Glioma, Xiangya HospitalCentral South UniversityChangshaChina
| | - Chuntao Li
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina,Hypothalamic‐Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaChina,Clinical Diagnosis and Therapy Center for Glioma, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
90
|
Gimple RC, Yang K, Halbert ME, Agnihotri S, Rich JN. Brain cancer stem cells: resilience through adaptive plasticity and hierarchical heterogeneity. Nat Rev Cancer 2022; 22:497-514. [PMID: 35710946 DOI: 10.1038/s41568-022-00486-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
Malignant brain tumours are complex ecosystems containing neoplastic and stromal components that generate adaptive and evolutionarily driven aberrant tissues in the central nervous system. Brain cancers are cultivated by a dynamic population of stem-like cells that enforce intratumoural heterogeneity and respond to intrinsic microenvironment or therapeutically guided insults through proliferation, plasticity and restructuring of neoplastic and stromal components. Far from a rigid hierarchy, heterogeneous neoplastic populations transition between cellular states with differential self-renewal capacities, endowing them with powerful resilience. Here we review the biological machinery used by brain tumour stem cells to commandeer tissues in the intracranial space, evade immune responses and resist chemoradiotherapy. Through recent advances in single-cell sequencing, improved models to investigate the role of the tumour microenvironment and a deeper understanding of the fundamental role of the immune system in cancer biology, we are now better equipped to explore mechanisms by which these processes can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Ryan C Gimple
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Matthew E Halbert
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
91
|
Wang L, Yuan Y, Wang J, Luo Y, Lan Y, Ge J, Li L, Liu F, Deng Q, Yan Z, Liang M, Wei S, Liu X, Wang Y, Ping Y, Shi Y, Yu S, Zhang X, Cui Y, Yao X, Feng H, Luo T, Bian X. ASCL2 Maintains Stemness Phenotype through ATG9B and Sensitizes Gliomas to Autophagy Inhibitor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105938. [PMID: 35882624 PMCID: PMC9507388 DOI: 10.1002/advs.202105938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/21/2022] [Indexed: 05/21/2023]
Abstract
Autophagy is a highly conserved process that is vital for tumor progression and treatment response. Although autophagy is proposed to maintain the stemness phenotype in adult diffuse glioma, the molecular basis of the link between autophagy and stemness is poorly understood, which makes it impossible to effectively screen for the population that will benefit from autophagy-targeted treatment. Here, ATG9B as essential for self-renewal capacity and tumor-propagation potential is identified. Notably, ASCL2 transcriptionally regulates the expression of ATG9B to maintain stemness properties. The ASCL2-ATG9B axis is an independent prognostic biomarker and indicator of autophagic activity. Furthermore, the highly effective blood-brain barrier (BBB)-permeable autophagy inhibitor ROC-325, which can significantly inhibit the progression of ASCL2-ATG9B axisHigh gliomas as a single agent is investigated. These data demonstrate that a new ASCL2-ATG9B signaling axis is crucial for maintaining the stemness phenotype and tumor progression, revealing a potential autophagy inhibition strategy for adult diffuse gliomas.
Collapse
Affiliation(s)
- Li‐Hong Wang
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Ye Yuan
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Jiao Wang
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Ying Luo
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Yang Lan
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Jia Ge
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Lei Li
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Feng Liu
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Qing Deng
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Ze‐Xuan Yan
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Mei Liang
- Bio‐Bank of Southwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Sen Wei
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Xin‐Dong Liu
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Yi‐Fang Ping
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Shi‐Cang Yu
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - You‐Hong Cui
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Xiao‐Hong Yao
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Hua Feng
- Department of NeurosurgerySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Tao Luo
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
| | - Xiu‐Wu Bian
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical University (Army Medical University) and Key Laboratory of Tumor ImmunopathologyMinistry of Education of ChinaChongqing400038China
- Bio‐Bank of Southwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| |
Collapse
|
92
|
Ohno M, Kitanaka C, Miyakita Y, Tanaka S, Sonoda Y, Mishima K, Ishikawa E, Takahashi M, Yanagisawa S, Ohashi K, Nagane M, Narita Y. Metformin with Temozolomide for Newly Diagnosed Glioblastoma: Results of Phase I Study and a Brief Review of Relevant Studies. Cancers (Basel) 2022; 14:cancers14174222. [PMID: 36077758 PMCID: PMC9454846 DOI: 10.3390/cancers14174222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) inevitably recurs due to a resistance to current standard therapy. We showed that the antidiabetic drug metformin (MF) can induce the differentiation of stem-like glioma-initiating cells and suppress tumor formation through AMPK-FOXO3 activation. In this study, we design a phase I/II study to examine the clinical effect of MF. We aim to determine a recommended phase II MF dose with maintenance temozolomide (TMZ) in patients with newly diagnosed GBM who completed standard concomitant radiotherapy and TMZ. MF dose-escalation was planned using a 3 + 3 design. Dose-limiting toxicities (DLTs) were assessed during the first six weeks after MF initiation. Three patients were treated with 1500 mg/day MF and four patients were treated with 2250 mg/day MF between February 2021 and January 2022. No DLTs were observed. The most common adverse effects were appetite loss, nausea, and diarrhea, all of which were manageable. Two patients experienced tumor progression at 6.0 and 6.1 months, and one died 12.2 months after initial surgery. The other five patients remained stable at the last follow-up session. The MF dose of up to 2250 mg/day combined with maintenance TMZ appeared to be well tolerated, and we proceeded to a phase II study with 2250 mg/day MF.
Collapse
Affiliation(s)
- Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Yasuji Miyakita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Kazuhiko Mishima
- Department of Neuro-Oncology/Neurosurgery, International Medical Center, Saitama Medical University, Hidaka 350-1298, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba 350-8576, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Shunsuke Yanagisawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Ken Ohashi
- Department of General Internal Medicine, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Mitaka 181-8611, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
- Correspondence: ; Tel.: +81-3-3542-2511
| |
Collapse
|
93
|
Liang R, Zhang G, Xu W, Liu W, Tang Y. Tetramethylpyrazine Inhibits the Proliferation and Invasion of Glioma Cells by Regulating the UBL7-AS1/miR-144-3p Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5261285. [PMID: 36045665 PMCID: PMC9423964 DOI: 10.1155/2022/5261285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/09/2022]
Abstract
This work aims to investigate the effects of tetramethylpyrazine (TMP) on the proliferation, migration, and invasion of glioma cells and to analyze the regulation mechanism of TMP on the long noncoding RNA UBL7-AS1/miR-144-3p pathway. Glioma cell line and normal astrocytes were collected. The expression of UBL7-AS1 was detected by real-time PCR. The glioma cells were overexpressed with UBL7-AS1. CCK-8 and Transwell assays were used to detect cell proliferation and cell invasion ability, respectively. Bioinformatics was adopted to predict the possible regulatory mechanisms of UBL7-AS1. The dual luciferase reporter gene was applied to verify the regulatory effect of RNA UBL7-AS1 with miR-144-3p. TMP inhibited the proliferation and invasion of glioma cells. UBL7-AS1 was highly expressed in glioma tissues and cells. The overexpression of UBL7-AS1 promotes the cell proliferation and invasion of glioma. UBL7-AS1 can act as a sponge for miR-144-3p in glioma cells. The overexpression of UBL7-AS1 can reverse the inhibition of TMP on proliferation, migration, and invasion of glioma cells. TMP inhibits the proliferation, migration, and invasion of glioma cells by regulating the UBL7-AS1/miR-144-3p pathway.
Collapse
Affiliation(s)
- Rui Liang
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, Jiangxi 332000, China
| | - Guofeng Zhang
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, Jiangxi 332000, China
| | - Wenhua Xu
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, Jiangxi 332000, China
| | - Weibing Liu
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, Jiangxi 332000, China
| | - Youjia Tang
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, Jiangxi 332000, China
| |
Collapse
|
94
|
Zhang Q, Chen Z, Tang Q, Wang Z, Lu J, You Y, Wang H. USP21 promotes self-renewal and tumorigenicity of mesenchymal glioblastoma stem cells by deubiquitinating and stabilizing FOXD1. Cell Death Dis 2022; 13:712. [PMID: 35974001 PMCID: PMC9381540 DOI: 10.1038/s41419-022-05163-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/09/2022] [Accepted: 08/04/2022] [Indexed: 01/21/2023]
Abstract
Recent studies suggest that Forkhead box D1 (FOXD1) plays an indispensable role in maintaining the mesenchymal (MES) properties of glioblastoma (GBM) stem cells (GSCs). Thus, understanding the mechanisms that control FOXD1 protein expression is critical for guiding GBM treatment, particularly in patients with therapy-resistant MES subtypes. In this study, we identify the ubiquitin-specific peptidase 21 (USP21) as a critical FOXD1 deubiquitinase in MES GSCs. We find that USP21 directly interacts with and stabilizes FOXD1 by reverting its proteolytic ubiquitination. Silencing of USP21 enhances polyubiquitination of FOXD1, promotes its proteasomal degradation, and ultimately attenuates MES identity in GSCs, while these effects could be largely restored by reintroduction of FOXD1. Remarkably, we show that disulfiram, a repurposed drug that could block the enzymatic activities of USP21, suppresses GSC tumorigenicity in MES GSC-derived GBM xenograft model. Additionally, we demonstrate that USP21 is overexpressed and positively correlated with FOXD1 protein levels in GBM tissues, and its expression is inversely correlated with patient survival. Collectively, our work reveals that USP21 maintains MES identity by antagonizing FOXD1 ubiquitination and degradation, suggesting that USP21 is a potential therapeutic target for the MES subtype of GBM.
Collapse
Affiliation(s)
- Qixiang Zhang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhengxin Chen
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Qikai Tang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhangjie Wang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Jiacheng Lu
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Yongping You
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Huibo Wang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| |
Collapse
|
95
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
96
|
Chen C, Jing W, Chen Y, Wang G, Abdalla M, Gao L, Han M, Shi C, Li A, Sun P, Jiang X, Yang Z, Zhang S, Zhang J, Tang C, Liu Y, Zhang R, Xu F, Dong B, Li X, Liu M, Qiang B, Sun Y, Wei X, Li J, Hu Q, Jiang X. Intracavity generation of glioma stem cell-specific CAR macrophages primes locoregional immunity for postoperative glioblastoma therapy. Sci Transl Med 2022; 14:eabn1128. [PMID: 35921473 DOI: 10.1126/scitranslmed.abn1128] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Glioblastoma multiforme (GBM) remains incurable despite aggressive implementation of multimodal treatments after surgical debulking. Almost all patients with GBM relapse within a narrow margin around the initial resected lesion due to postsurgery residual glioma stem cells (GSCs). Tracking and eradicating postsurgery residual GSCs is critical for preventing postoperative relapse of this devastating disease, yet effective strategies remain elusive. Here, we report a cavity-injectable nanoporter-hydrogel superstructure that creates GSC-specific chimeric antigen receptor (CAR) macrophages/microglia (MΦs) surrounding the cavity to prevent GBM relapse. Specifically, we demonstrate that the CAR gene-laden nanoporter in the hydrogel can introduce GSC-targeted CAR genes into MΦ nuclei after intracavity delivery to generate CAR-MΦs in mouse models of GBM. These CAR-MΦs were able to seek and engulf GSCs and clear residual GSCs by stimulating an adaptive antitumor immune response in the tumor microenvironment and prevented postoperative glioma relapse by inducing long-term antitumor immunity in mice. In an orthotopic patient-derived glioblastoma humanized mouse model, the combined treatment with nanoporter-hydrogel superstructure and CD47 antibody increased the frequency of positive immune responding cells and suppressed the negative immune regulating cells, conferring a robust tumoricidal immunity surrounding the postsurgical cavity and inhibiting postoperative glioblastoma relapse. Therefore, our work establishes a locoregional treatment strategy for priming cancer stem cell-specific tumoricidal immunity with broad application in patients suffering from recurrent malignancies.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China.,NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Weiqiang Jing
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Yu Chen
- Pharmaceutical Sciences Division, Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison (UW-Madison), Madison, WI 53705, USA
| | - Ganyu Wang
- Department of Pediatric Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, China
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Lin Gao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Maosen Han
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Chongdeng Shi
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Anning Li
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Peng Sun
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250355, China
| | - Xin Jiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Zhenmei Yang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Shengchang Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Jing Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Chunwei Tang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Ying Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Rui Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Fengbo Xu
- Yinfeng Biological Group Co. Ltd., 1109 Gangxing San Lu, High-tech Zone, Jinan, Shandong Province 250102, China
| | - Baixiang Dong
- Yinfeng Biological Group Co. Ltd., 1109 Gangxing San Lu, High-tech Zone, Jinan, Shandong Province 250102, China
| | - Xueen Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Minglu Liu
- Bellastem Biotechnology Limited, High-Tech incubator, Intersection of Liquan Street and Gaoxin Er Road, Gaomi City, Shandong Province 261500, China
| | - Bangming Qiang
- Bellastem Biotechnology Limited, High-Tech incubator, Intersection of Liquan Street and Gaoxin Er Road, Gaomi City, Shandong Province 261500, China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co. Ltd., Jinan, Shandong Province 250100, China
| | - Xia Wei
- Department of Pharmacology and Toxicology, Shandong Institute for Food and Drug Control, Jinan, Shandong Province 250101, China
| | - Jun Li
- Department of Pharmacology and Toxicology, Shandong Institute for Food and Drug Control, Jinan, Shandong Province 250101, China
| | - Quanyin Hu
- Pharmaceutical Sciences Division, Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison (UW-Madison), Madison, WI 53705, USA
| | - Xinyi Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China.,NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| |
Collapse
|
97
|
Geng L, Xu J, Zhu Y, Hu X, Liu Y, Yang K, Xiao H, Zou Y, Liu H, Ji J, Liu N. Targeting miR-9 in Glioma Stem Cell-Derived Extracellular Vesicles: A Novel Diagnostic and Therapeutic Biomarker. Transl Oncol 2022; 22:101451. [PMID: 35598381 PMCID: PMC9126959 DOI: 10.1016/j.tranon.2022.101451] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
MiR-9 was upregulated in CSF EVs of glioblastoma patients. The expression of miR-9 was increased in GSCs and GSC-derived EVs. Inhibition of miR-9 in GSC-EVs suppressed the GBM malignant phenotypes via the regulation of DACT3.
Background Glioblastoma (GBM) is a lethal brain tumor with no effective strategies in early diagnosis and treatment. This study was aimed to assess the miRNA expression profiles in EVs from CSF and tissue of glioblastoma patients to identify significantly upregulated miRNAs and investigate the underlying neoplastic mechanisms. Methods EVs were measured by TEM and NTA assays. Differentially regulated miRNAs were measured using RNA sequencing in GBM CSF EVs and in GBM tissues compared with controls. RT-qPCR was employed to analyze miRNA and gene expression. Luciferase report assay was used to investigate gene target of miR-9. The proliferation ability was detected by EdU and CCK-8 experiment while cell migration was measured by transwell and wound healing assay. Results The expression level of miR-9 was significantly higher in GBM CSF EVs and tissues than controls (p = 0.038). The area under curve for CSF EV miR-9 was 0.800 (95% CI: 0.583–1.000, p = 0.033). The expression of miR-9 was significantly higher in Glioma stem cells (GSCs) and GSC-derived EVs than in glioblastoma cells. GSC-derives EVs could promote GBM growth and migration Moreover, inhibition of miR-9 in GSCs showed the reverse anti-tumor effects through secreted EVs. MiR-9 could bind to the 3’UTR region of DACT3 and suppress its expression. The miR-9/DACT3 axis might attribute to GBM malignant phenotype. Conclusion MiR-9 in CSF EVs may act as a novel diagnostic biomarker for GBM and targeting miR-9 by GSC-derived EVs may be a specific and efficient strategy for GBM biotherapy.
Collapse
Affiliation(s)
- Liangyuan Geng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, People's Republic of China
| | - Jinjin Xu
- Clinical Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210003, People's Republic of China
| | - Yihao Zhu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xinhua Hu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yong Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Kun Yang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yuanjie Zou
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, People's Republic of China.
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
98
|
Cancer Stem Cell-Associated Immune Microenvironment in Recurrent Glioblastomas. Cells 2022; 11:cells11132054. [PMID: 35805138 PMCID: PMC9265559 DOI: 10.3390/cells11132054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most incurable tumor (due to the difficulty in complete surgical resection and the resistance to conventional chemo/radiotherapies) that displays a high relapse frequency. Cancer stem cells (CSCs) have been considered as a promising target responsible for therapy resistance and cancer recurrence. CSCs are known to organize a self-advantageous microenvironment (niche) for their maintenance and expansion. Therefore, understanding how the microenvironment is reconstructed by the remaining CSCs after conventional treatments and how it eventually causes recurrence should be essential to inhibit cancer recurrence. However, the number of studies focusing on recurrence is limited, particularly those related to tumor immune microenvironment, while numerous data have been obtained from primary resected samples. Here, we summarize recent investigations on the immune microenvironment from the viewpoint of recurrent GBM (rGBM). Based on the recurrence-associated immune cell composition reported so far, we will discuss how CSCs manipulate host immunity and create the special microenvironment for themselves to regrow. An integrated understanding of the interactions between CSCs and host immune cells at the recurrent phase will lead us to develop innovative therapies and diagnoses to achieve GBM eradication.
Collapse
|
99
|
Yang Y, Xu X, Xie Y, Liu Y, Ning C, Ai Y, Lv C, Wei H, Ge X, Yi T, Piao Y, Wang X, Jin X. Identification of Neural Progenitor Cell-Associated Chemoradiotherapy Resistance Gene Set (ARL4C, MSN, TNFAIP6) for Prognosis of Glioma. Curr Pharm Des 2022; 28:2189-2202. [PMID: 35718975 DOI: 10.2174/1381612828666220617085508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glioma is the most common malignant intracranial tumor with high lethality. Despite surgery combined with chemoradiotherapy, the prognosis for patients with glioma remains poor. This is primarily due to acquired chemoradiotherapy resistance. Therefore, to improve the prognosis of glioma, further study into the mechanism of chemoradiotherapy resistance is needed. OBJECTIVE This study aimed to (1) evaluate the prognosis of patients with glioma by using a prognostic risk score model constructed by chemoradiotherapy resistance genes, (2) provide new targets and directions for precise treatment of glioma, and (3) discuss the tumor heterogeneity of tumor cells. METHODS According to therapy class and overall survival (OS), we identified 53 genes associated with glioma chemoradiotherapy resistance in The Cancer Genome Atlas Glioblastoma (TCGA GBM) database. Considering the improtant role of chemoradiotherapy resistance-related genes in the prognosis of glioma, we preliminarily screened and identified vital prognostic factors among these genes by using Cox regression model of absolute contraction and selection operators in the TCGA GBM lower-grade glioma (TCGA GBMLGG) dataset. Next, the heterogeneity of the chemoradiotherapy resistance-associated genes in different glioma cells was revealed by single-cell sequencing in the GSE117891 cohort. RESULTS A prognostic risk score model consisting of three genes (ARL4C, MSN, TNFAIP6) was constructed. The expression of this model was high in glioma neural progenitor cells (NPCs) and low in glioma oligodendrocytes. The OS rates were significantly lower in the high- vs low-risk group. CONCLUSION Our 3 gene risk score complements current glioma diagnosis and provides a novel insight into chemoradiotherapy resistance mechanisms for the prognosis of patients with glioma.
Collapse
Affiliation(s)
- Yongchang Yang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital. National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin. Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Tianjin Medical University, Tianjin 300060, China
| | - Xing Xu
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital. National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin. Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yang Xie
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital. National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin. Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Tianjin Medical University, Tianjin 300060, China
| | - Yancheng Liu
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital. National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin. Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Tianjin Medical University, Tianjin 300060, China
| | - Chunlan Ning
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital. National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin. Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Tianjin Medical University, Tianjin 300060, China
| | - Yiding Ai
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital. National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin. Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Tianjin Medical University, Tianjin 300060, China
| | - Chao Lv
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital. National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin. Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Tianjin Medical University, Tianjin 300060, China
| | - Haotian Wei
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital. National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin. Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Tianjin Medical University, Tianjin 300060, China
| | - Xianglian Ge
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital. National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin. Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Tailong Yi
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital. National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin. Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yongjun Piao
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaoguang Wang
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital. National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin. Tianjin\'s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xun Jin
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital. National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin. Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
100
|
Cai Y, Li K, Lin J, Liang X, Xu W, Zhan Z, Xue S, Zeng Y, Chai P, Mao Y, Song Z, Han L, Song Y, Zhang X, Wang H. Lighting a Fire: Gasdermin-Mediated Pyroptosis Remodels the Glioma Microenvironment and Promotes Immune Checkpoint Blockade Response. Front Immunol 2022; 13:910490. [PMID: 35784306 PMCID: PMC9249059 DOI: 10.3389/fimmu.2022.910490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Pyroptosis is a proinflammatory programmed cell death pathway mediated by gasdermins. Exploring the role of pyroptosis can provide new insights into tumor malignancy. The most recent studies on pyroptosis have focused on tumor cells. However, the effects of pyroptosis on the tumor microenvironment (TME), immunotherapeutic responses, and efficacy have been neglected, especially in case of glioma. In this study, four independent glioma cohorts comprising 1,339 samples and a pan-cancer cohort comprising 10,535 tumor samples were analyzed. The relationships among pyroptosis status, prognosis, microenvironment cellular components, and clinical and biological phenotypes were investigated through the identification of pyroptosis subtypes, construction of a gasdermin-related prognostic index (GPI), and evaluation of immunological characteristics in glioma. The Genomics of Drug Sensitivity in Cancer database and “pRRophetic” package in R were used to estimate temozolomide (TMZ) sensitivity. The “Submap” package and external immunotherapy cohorts were used to investigate and confirm the role of GPI in response to and efficacy of immunotherapy in glioma. Finally, potential small-molecule compounds related to GPI were identified using the connectivity map database and mode-of-action analysis. We identified three different pyroptosis subtypes: cluster 1 (C1) characterized by a higher GPI, while cluster 2 (C2) and cluster 3 (C3) characterized by a lower GPI. The high GPI of C1 was associated with glioma progression and worse prognoses, whereas the low GPI of subtype C2 and C3 was associated with better prognoses. However, patients with high GPIs were found to be more sensitive to TMZ and immune checkpoint blockade than those with low GPIs. Furthermore, gasdermin D may be a principal potential biomarker and play key roles in pyroptosis-inducible therapy combined with immunotherapy in glioma. This study provides a clinical, biological, and molecular landscape of pyroptosis and suggests that pyroptosis of glioma cells may perform the dual function of promoting both tumorigenesis and antitumor immunity.
Collapse
Affiliation(s)
- Yonghua Cai
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianqiu Liang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengming Zhan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuaishuai Xue
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zeng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Chai
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yangqi Mao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zibin Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Han
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Neurosurgery, Ganzhou People’s Hospital, Ganzhou, China
- *Correspondence: Hai Wang, ; Xian Zhang, ; Ye Song,
| | - Xian Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Hai Wang, ; Xian Zhang, ; Ye Song,
| | - Hai Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Hai Wang, ; Xian Zhang, ; Ye Song,
| |
Collapse
|