51
|
The roles of the diversity of amphipathic lipids in shaping membranes by membrane-shaping proteins. Biochem Soc Trans 2020; 48:837-851. [PMID: 32597479 DOI: 10.1042/bst20190376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022]
Abstract
Lipid compositions of cells differ according to cell types and intracellular organelles. Phospholipids are major cell membrane lipids and have hydrophilic head groups and hydrophobic fatty acid tails. The cellular lipid membrane without any protein adapts to spherical shapes, and protein binding to the membrane is thought to be required for shaping the membrane for various cellular events. Until recently, modulation of cellular lipid membranes was initially shown to be mediated by proteins recognizing lipid head groups, including the negatively charged ones of phosphatidylserine and phosphoinositides. Recent studies have shown that the abilities of membrane-deforming proteins are also regulated by the composition of fatty acid tails, which cause different degrees of packing defects. The binding of proteins to cellular lipid membranes is affected by the packing defects, presumably through modulation of their interactions with hydrophobic amino acid residues. Therefore, lipid composition can be characterized by both packing defects and charge density. The lipid composition regarding fatty acid tails affects membrane bending via the proteins with amphipathic helices, including those with the ArfGAP1 lipid packing sensor (ALPS) motif and via membrane-deforming proteins with structural folding, including those with the Bin-Amphiphysin-Rvs167 (BAR) domains. This review focuses on how the fatty acid tails, in combination with the head groups of phospholipids, affect protein-mediated membrane deformation.
Collapse
|
52
|
Liu Y, McDonald NA, Naegele SM, Gould KL, Wu JQ. The F-BAR Domain of Rga7 Relies on a Cooperative Mechanism of Membrane Binding with a Partner Protein during Fission Yeast Cytokinesis. Cell Rep 2020; 26:2540-2548.e4. [PMID: 30840879 PMCID: PMC6425953 DOI: 10.1016/j.celrep.2019.01.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
F-BAR proteins bind the plasma membrane (PM) to scaffold and organize the actin cytoskeleton. To understand how F-BAR proteins achieve their PM association, we studied the localization of a Schizosaccharomyces pombe F-BAR protein Rga7, which requires the coiled-coil protein Rng10 for targeting to the division site during cytokinesis. We find that the Rga7 F-BAR domain directly binds a motif in Rng10 simultaneously with the PM, and that an adjacent Rng10 motif independently binds the PM. Together, these multivalent interactions significantly enhance Rga7 F-BAR avidity for membranes at physiological protein concentrations, ensuring the division site localization of Rga7. Moreover, the requirement for the F-BAR domain in Rga7 localization and function in cytokinesis is bypassed by tethering an Rga7 construct lacking its F-BAR to Rng10, indicating that at least some F-BAR domains are necessary but not sufficient for PM targeting and are stably localized to specific cortical positions through adaptor proteins. Liu et al. show that the Rga7 F-BAR domain binds an adaptor protein Rng10, which contains a second membrane-binding module, to enhance Rga7 membrane avidity and stabilize its membrane association. The authors reveal a mechanism by which F-BAR domains can achieve high-avidity binding with the plasma membrane.
Collapse
Affiliation(s)
- Yajun Liu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Shelby M Naegele
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA.
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
53
|
Jones T, Liu A, Cui B. Light-Inducible Generation of Membrane Curvature in Live Cells with Engineered BAR Domain Proteins. ACS Synth Biol 2020; 9:893-901. [PMID: 32212723 DOI: 10.1021/acssynbio.9b00516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanoscale membrane curvature is now understood to play an active role in essential cellular processes such as endocytosis, exocytosis, and actin dynamics. Previous studies have shown that membrane curvature can directly affect protein function and intracellular signaling. However, few methods are able to precisely manipulate membrane curvature in live cells. Here, we report the development of a new method of generating nanoscale membrane curvature in live cells that is controllable, reversible, and capable of precise spatial and temporal manipulation. For this purpose, we make use of Bin/Amphiphysin/Rvs (BAR) domain proteins, a family of well-studied membrane-remodeling and membrane-sculpting proteins. Specifically, we engineered two optogenetic systems, opto-FBAR and opto-IBAR, that allow light-inducible formation of positive and negative membrane curvature, respectively. Using opto-FBAR, blue light activation results in the formation of tubular membrane invaginations (positive curvature), controllable down to the subcellular level. Using opto-IBAR, blue light illumination results in the formation of membrane protrusions or filopodia (negative curvature). These systems present a novel approach for light-inducible manipulation of nanoscale membrane curvature in live cells.
Collapse
Affiliation(s)
- Taylor Jones
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Aofei Liu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
54
|
Klein HU, Schäfer M, Bennett DA, Schwender H, De Jager PL. Bayesian integrative analysis of epigenomic and transcriptomic data identifies Alzheimer's disease candidate genes and networks. PLoS Comput Biol 2020; 16:e1007771. [PMID: 32255787 PMCID: PMC7138305 DOI: 10.1371/journal.pcbi.1007771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/03/2020] [Indexed: 12/28/2022] Open
Abstract
Biomedical research studies have generated large multi-omic datasets to study complex diseases like Alzheimer’s disease (AD). An important aim of these studies is the identification of candidate genes that demonstrate congruent disease-related alterations across the different data types measured by the study. We developed a new method to detect such candidate genes in large multi-omic case-control studies that measure multiple data types in the same set of samples. The method is based on a gene-centric integrative coefficient quantifying to what degree consistent differences are observed in the different data types. For statistical inference, a Bayesian hierarchical model is used to study the distribution of the integrative coefficient. The model employs a conditional autoregressive prior to integrate a functional gene network and to share information between genes known to be functionally related. We applied the method to an AD dataset consisting of histone acetylation, DNA methylation, and RNA transcription data from human cortical tissue samples of 233 subjects, and we detected 816 genes with consistent differences between persons with AD and controls. The findings were validated in protein data and in RNA transcription data from two independent AD studies. Finally, we found three subnetworks of jointly dysregulated genes within the functional gene network which capture three distinct biological processes: myeloid cell differentiation, protein phosphorylation and synaptic signaling. Further investigation of the myeloid network indicated an upregulation of this network in early stages of AD prior to accumulation of hyperphosphorylated tau and suggested that increased CSF1 transcription in astrocytes may contribute to microglial activation in AD. Thus, we developed a method that integrates multiple data types and external knowledge of gene function to detect candidate genes, applied the method to an AD dataset, and identified several disease-related genes and processes demonstrating the usefulness of the integrative approach. Recent technological advances have led to a new generation of studies that interrogate multiple molecular levels in the same target tissue of a set of subjects, generating complex multi-omic datasets with which to study disease mechanism. These datasets of genetic, epigenomic, transcriptomic, and other data have the potential to reveal novel biological insights; however, integrative analyses remain challenging and require new computational methods. We developed an integrative Bayesian approach to detect genes with consistent differences between case and control samples across multiple data types. The method further integrates prior knowledge about gene function in the form of a gene functional similarity network to improve statistical inference by sharing information between related genes. We applied our method to an Alzheimer’s disease dataset of epigenomic and transcriptomic data and detected and then validated several novel and known candidate genes as well as three major disease-related biological processes. One of these processes reflected microglial activation and included the cytokine CSF1. Single-nucleus data revealed that CSF1 was primarily upregulated in astrocytes, implicating the involvement of this cell type in microglial activation. Hence, we demonstrated that integrative analysis approaches to multi-omic datasets can improve candidate gene detection and thereby generate new insights into complex diseases.
Collapse
Affiliation(s)
- Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
- * E-mail:
| | - Martin Schäfer
- Mathematical Institute, Heinrich Heine University, Düsseldorf, Germany
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University, Düsseldorf, Germany
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
55
|
Nepal B, Sepehri A, Lazaridis T. Mechanisms of negative membrane curvature sensing and generation by ESCRT III subunit Snf7. Protein Sci 2020; 29:1473-1485. [PMID: 32142182 DOI: 10.1002/pro.3851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Certain proteins have the propensity to bind to negatively curved membranes and generate negative membrane curvature. The mechanism of action of these proteins is much less studied and understood than those that sense and generate positive curvature. In this work, we use implicit membrane modeling to explore the mechanism of an important negative curvature sensing and generating protein: the main ESCRT III subunit Snf7. We find that Snf7 monomers alone can sense negative curvature and that curvature sensitivity increases for dimers and trimers. We have observed spontaneous bending of Snf7 oligomers into circular structures with preferred radius of ~20 nm. The preferred curvature of Snf7 filaments is further confirmed by the simulations of preformed spirals on a cylindrical membrane surface. Snf7 filaments cannot bind with the same interface to flat and curved membranes. We find that even when a filament has the preferred radius, it is always less stable on the flat membrane surface than on the interior cylindrical membrane surface. This provides an additional energy for membrane bending which has not been considered in the spiral spring model. Furthermore, the rings on the cylindrical spirals are bridged together by helix 4 and hence are extra stabilized compared to the spirals on the flat membrane surface.
Collapse
Affiliation(s)
- Binod Nepal
- Department of Chemistry, City College of New York, New York, New York, USA
| | - Aliasghar Sepehri
- Department of Chemistry, City College of New York, New York, New York, USA
| | - Themis Lazaridis
- Department of Chemistry, City College of New York, New York, New York, USA.,Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
56
|
Biophysical Reviews' "Meet the Editors Series"-a profile of Kuniaki Nagayama: encounters and leaps in a transborder journey through biophysics. Biophys Rev 2020; 12:193-199. [PMID: 32133591 DOI: 10.1007/s12551-020-00657-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
In this second instalment of the Biophysical Reviews' Meet the Editors Series we hear the story of Prof. Kuniaki Nagayama, one of the five Executive Editors of Biophysical Reviews.
Collapse
|
57
|
Prigent M, Chaillot J, Tisserand H, Boy-Marcotte E, Cuif MH. Three members of the yeast N-BAR proteins family form heterogeneous lattices in vivo and interact differentially with two RabGAP proteins. Sci Rep 2020; 10:1698. [PMID: 32015451 PMCID: PMC6997364 DOI: 10.1038/s41598-020-58606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/08/2020] [Indexed: 11/26/2022] Open
Abstract
The yeast N-BAR (Bin/Amphiphysin/Rvs167) protein Rvs167 is recruited by the Rab GTPase Activating Proteins (RabGAP) Gyp5 and Gyl1 to the tip of small buds to act in exocytosis. Investigating other N-BAR proteins involved in Gyp5/Gyl1/Rvs167 complexes, we found that Rvs161, an Rvs167 paralog, is absent from the complexes formed at the tip of small buds. Immunoprecipitation and Bimolecular Fluorescence Complementation (BiFC) analysis show that both Rvs167 and Rvs161 interact in vivo with Gvp36, an N-BAR protein. Rvs167 molecules also interact independently of Rvs161 and Gvp36. Rvs167/Rvs167 and Rvs167/Gyp5 interactions predominate over other combinations at the tip of small buds, suggesting that N-BAR lattices enriched in Rvs167 molecules form at these sites. By combining BiFC with markers specific to each organelle, we analyzed systematically in living cells the locations of the BiFC signals generated by combinations of the three N-BAR proteins. We show that the BiFC signals differ according to organelle and cell site, strongly suggesting heterogeneity in the composition of N-BAR protein lattices in vivo. Our results reveal that the organization of N-BAR protein lattices in vivo is complex and are consistent with N-BAR proteins forming various types of dimers and lattices of variable composition.
Collapse
Affiliation(s)
- Magali Prigent
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Julien Chaillot
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, 2440 Boulevard Hochelaga, Québec, QC, G1V 0A6, Canada
| | - Hélène Tisserand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Emmanuelle Boy-Marcotte
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Marie-Hélène Cuif
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
58
|
Echarri A, Pavón DM, Sánchez S, García-García M, Calvo E, Huerta-López C, Velázquez-Carreras D, Viaris de Lesegno C, Ariotti N, Lázaro-Carrillo A, Strippoli R, De Sancho D, Alegre-Cebollada J, Lamaze C, Parton RG, Del Pozo MA. An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation. Nat Commun 2019; 10:5828. [PMID: 31862885 PMCID: PMC6925243 DOI: 10.1038/s41467-019-13782-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Cells remodel their structure in response to mechanical strain. However, how mechanical forces are translated into biochemical signals that coordinate the structural changes observed at the plasma membrane (PM) and the underlying cytoskeleton during mechanoadaptation is unclear. Here, we show that PM mechanoadaptation is controlled by a tension-sensing pathway composed of c-Abl tyrosine kinase and membrane curvature regulator FBP17. FBP17 is recruited to caveolae to induce the formation of caveolar rosettes. FBP17 deficient cells have reduced rosette density, lack PM tension buffering capacity under osmotic shock, and cannot adapt to mechanical strain. Mechanistically, tension is transduced to the FBP17 F-BAR domain by direct phosphorylation mediated by c-Abl, a mechanosensitive molecule. This modification inhibits FBP17 membrane bending activity and releases FBP17-controlled inhibition of mDia1-dependent stress fibers, favoring membrane adaptation to increased tension. This mechanoprotective mechanism adapts the cell to changes in mechanical tension by coupling PM and actin cytoskeleton remodeling. Mechanical forces are sensed by cells and can alter plasma membrane properties, but biochemical changes underlying this are not clear. Here the authors show tension is sensed by c-Abl and FBP17, which couples changes in mechanical tension to remodelling of the plasma membrane and actin cytoskeleton.
Collapse
Affiliation(s)
- Asier Echarri
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Dácil M Pavón
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Sara Sánchez
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - María García-García
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Enrique Calvo
- Proteomics Unit, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Carla Huerta-López
- Molecular Mechanics of the Cardiovascular System Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Diana Velázquez-Carreras
- Molecular Mechanics of the Cardiovascular System Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Christine Viaris de Lesegno
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie - Centre de Recherche, PSL Research University, CNRS UMR3666, INSERM U1143, 75248, Paris, France
| | - Nicholas Ariotti
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ana Lázaro-Carrillo
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | | | - David De Sancho
- Departamento de Ciencia y Tecnología de Polímeros, Euskal Herriko Unibertsitatea, 20018, Donostia-San Sebastián, Spain.,Donostia International Physics Center, Manuel Lardizabal Ibilbidea, 4, 20018, Donostia-San Sebastián, Spain
| | - Jorge Alegre-Cebollada
- Molecular Mechanics of the Cardiovascular System Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Christophe Lamaze
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie - Centre de Recherche, PSL Research University, CNRS UMR3666, INSERM U1143, 75248, Paris, France
| | - Robert G Parton
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
59
|
Hanawa-Suetsugu K, Itoh Y, Ab Fatah M, Nishimura T, Takemura K, Takeshita K, Kubota S, Miyazaki N, Wan Mohamad Noor WNI, Inaba T, Nguyen NTH, Hamada-Nakahara S, Oono-Yakura K, Tachikawa M, Iwasaki K, Kohda D, Yamamoto M, Kitao A, Shimada A, Suetsugu S. Phagocytosis is mediated by two-dimensional assemblies of the F-BAR protein GAS7. Nat Commun 2019; 10:4763. [PMID: 31628328 PMCID: PMC6802115 DOI: 10.1038/s41467-019-12738-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 09/26/2019] [Indexed: 01/07/2023] Open
Abstract
Phagocytosis is a cellular process for internalization of micron-sized large particles including pathogens. The Bin-Amphiphysin-Rvs167 (BAR) domain proteins, including the FCH-BAR (F-BAR) domain proteins, impose specific morphologies on lipid membranes. Most BAR domain proteins are thought to form membrane invaginations or protrusions by assembling into helical submicron-diameter filaments, such as on clathrin-coated pits, caveolae, and filopodia. However, the mechanism by which BAR domain proteins assemble into micron-scale phagocytic cups was unclear. Here, we show that the two-dimensional sheet-like assembly of Growth Arrest-Specific 7 (GAS7) plays a critical role in phagocytic cup formation in macrophages. GAS7 has the F-BAR domain that possesses unique hydrophilic loops for two-dimensional sheet formation on flat membranes. Super-resolution microscopy reveals the similar assemblies of GAS7 on phagocytic cups and liposomes. The mutations of the loops abolishes both the membrane localization of GAS7 and phagocytosis. Thus, the sheet-like assembly of GAS7 plays a significant role in phagocytosis.
Collapse
Affiliation(s)
- Kyoko Hanawa-Suetsugu
- 0000 0000 9227 2257grid.260493.aNara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Yuzuru Itoh
- 0000 0001 2151 536Xgrid.26999.3dUniversity of Tokyo, Tokyo, 113-0032 Japan ,0000 0004 1936 9377grid.10548.38Present Address: Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Maisarah Ab Fatah
- 0000 0000 9227 2257grid.260493.aNara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Tamako Nishimura
- 0000 0000 9227 2257grid.260493.aNara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Kazuhiro Takemura
- 0000 0001 2179 2105grid.32197.3eSchool of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550 Japan
| | | | - Satoru Kubota
- 0000 0000 9227 2257grid.260493.aNara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Naoyuki Miyazaki
- 0000 0004 0373 3971grid.136593.bInstitute for Protein Research, Osaka University, Suita, Osaka 565-0871 Japan
| | | | - Takehiko Inaba
- 0000 0000 9227 2257grid.260493.aNara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Nhung Thi Hong Nguyen
- 0000 0000 9227 2257grid.260493.aNara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | | | - Kayoko Oono-Yakura
- 0000 0000 9227 2257grid.260493.aNara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Masashi Tachikawa
- 0000000094465255grid.7597.cTheoretical Biology Laboratory, RIKEN, Wako, 351-0198 Japan
| | - Kenji Iwasaki
- 0000 0004 0373 3971grid.136593.bInstitute for Protein Research, Osaka University, Suita, Osaka 565-0871 Japan ,0000 0001 2369 4728grid.20515.33Present Address: Tsukuba Advanced Research Alliance, Life Science Center for Survival Dynamics, University of Tsukuba, Tsukuba, Japan
| | - Daisuke Kohda
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 Japan ,0000 0001 2242 4849grid.177174.3Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| | | | - Akio Kitao
- 0000 0001 2179 2105grid.32197.3eSchool of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550 Japan
| | - Atsushi Shimada
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 Japan ,0000 0001 2242 4849grid.177174.3Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| | - Shiro Suetsugu
- 0000 0000 9227 2257grid.260493.aNara Institute of Science and Technology, Ikoma, 630-0192 Japan
| |
Collapse
|
60
|
Cheung G, Cousin MA. Synaptic vesicle generation from activity-dependent bulk endosomes requires a dephosphorylation-dependent dynamin-syndapin interaction. J Neurochem 2019; 151:570-583. [PMID: 31479508 PMCID: PMC6899846 DOI: 10.1111/jnc.14862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/24/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Activity‐dependent bulk endocytosis generates synaptic vesicles (SVs) during intense neuronal activity via a two‐step process. First, bulk endosomes are formed direct from the plasma membrane from which SVs are then generated. SV generation from bulk endosomes requires the efflux of previously accumulated calcium and activation of the protein phosphatase calcineurin. However, it is still unknown how calcineurin mediates SV generation. We addressed this question using a series of acute interventions that decoupled the generation of SVs from bulk endosomes in rat primary neuronal culture. This was achieved by either disruption of protein–protein interactions via delivery of competitive peptides, or inhibition of enzyme activity by known inhibitors. SV generation was monitored using either a morphological horseradish peroxidase assay or an optical assay that monitors the replenishment of the reserve SV pool. We found that SV generation was inhibited by, (i) peptides that disrupt calcineurin interactions, (ii) an inhibitor of dynamin I GTPase activity and (iii) peptides that disrupt the phosphorylation‐dependent dynamin I–syndapin I interaction. Peptides that disrupted syndapin I interactions with eps15 homology domain‐containing proteins had no effect. This revealed that (i) calcineurin must be localized at bulk endosomes to mediate its effect, (ii) dynamin I GTPase activity is essential for SV fission and (iii) the calcineurin‐dependent interaction between dynamin I and syndapin I is essential for SV generation. We therefore propose that a calcineurin‐dependent dephosphorylation cascade that requires both dynamin I GTPase and syndapin I lipid‐deforming activity is essential for SV generation from bulk endosomes. ![]()
Collapse
Affiliation(s)
- Giselle Cheung
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
61
|
Tonucci FM, Almada E, Borini-Etichetti C, Pariani A, Hidalgo F, Rico MJ, Girardini J, Favre C, Goldenring JR, Menacho-Marquez M, Larocca MC. Identification of a CIP4 PKA phosphorylation site involved in the regulation of cancer cell invasiveness and metastasis. Cancer Lett 2019; 461:65-77. [DOI: 10.1016/j.canlet.2019.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 01/08/2023]
|
62
|
Ebrahimkutty MP, Galic M. Receptor‐Free Signaling at Curved Cellular Membranes. Bioessays 2019; 41:e1900068. [DOI: 10.1002/bies.201900068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/09/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Mirsana P. Ebrahimkutty
- DFG Cluster of Excellence “Cells in Motion”University of Muenster Muenster 48149 Germany
- Institute of Medical Physics and BiophysicsUniversity of Muenster Muenster 48149 Germany
- CIM‐IMRPS Graduate School Muenster 48149 Germany
| | - Milos Galic
- DFG Cluster of Excellence “Cells in Motion”University of Muenster Muenster 48149 Germany
- Institute of Medical Physics and BiophysicsUniversity of Muenster Muenster 48149 Germany
| |
Collapse
|
63
|
Ogi S, Matsuda A, Otsuka Y, Liu Z, Satoh T, Satoh AK. Syndapin constricts microvillar necks to form a united rhabdomere in Drosophila photoreceptors. Development 2019; 146:dev.169292. [PMID: 31371377 DOI: 10.1242/dev.169292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/22/2019] [Indexed: 01/24/2023]
Abstract
Drosophila photoreceptors develop from polarized epithelial cells that have apical and basolateral membranes. During morphogenesis, the apical membranes subdivide into a united bundle of photosensory microvilli (rhabdomeres) and a surrounding supporting membrane (stalk). By EMS-induced mutagenesis screening, we found that the F-Bin/Amphiphysin/Rvs (F-BAR) protein syndapin is essential for apical membrane segregation. The analysis of the super-resolution microscopy, STORM and the electron microscopy suggest that syndapin localizes to the neck of the microvilli at the base of the rhabdomere. Syndapin and moesin are required to constrict the neck of the microvilli to organize the membrane architecture at the base of the rhabdomere, to exclude the stalk membrane. Simultaneous loss of syndapin along with the microvilli adhesion molecule chaoptin significantly enhanced the disruption of stalk-rhabdomere segregation. However, loss of the factors involving endocytosis do not interfere. These results indicated syndapin is most likely functioning through its membrane curvature properties, and not through endocytic processes for stalk-rhabdomere segregation. Elucidation of the mechanism of this unconventional domain formation will provide novel insights into the field of cell biology.
Collapse
Affiliation(s)
- Sakiko Ogi
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Atsushi Matsuda
- National Institute of Information and Communications Technology, Advanced ICT Research Institute, 588-2, Iwaoka, Nishi-ku, Kobe 651-2492, Japan
| | - Yuna Otsuka
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Ziguang Liu
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan.,Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Xuefu Road No. 368, Nangang District, Harbin, Heilongjiang 150-086, China
| | - Takunori Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Akiko K Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
64
|
Chan C, Pang X, Zhang Y, Niu T, Yang S, Zhao D, Li J, Lu L, Hsu VW, Zhou J, Sun F, Fan J. ACAP1 assembles into an unusual protein lattice for membrane deformation through multiple stages. PLoS Comput Biol 2019; 15:e1007081. [PMID: 31291238 PMCID: PMC6663034 DOI: 10.1371/journal.pcbi.1007081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/29/2019] [Accepted: 05/06/2019] [Indexed: 11/19/2022] Open
Abstract
Studies on the Bin-Amphiphysin-Rvs (BAR) domain have advanced a fundamental understanding of how proteins deform membrane. We previously showed that a BAR domain in tandem with a Pleckstrin Homology (PH domain) underlies the assembly of ACAP1 (Arfgap with Coil-coil, Ankryin repeat, and PH domain I) into an unusual lattice structure that also uncovers a new paradigm for how a BAR protein deforms membrane. Here, we initially pursued computation-based refinement of the ACAP1 lattice to identify its critical protein contacts. Simulation studies then revealed how ACAP1, which dimerizes into a symmetrical structure in solution, is recruited asymmetrically to the membrane through dynamic behavior. We also pursued electron microscopy (EM)-based structural studies, which shed further insight into the dynamic nature of the ACAP1 lattice assembly. As ACAP1 is an unconventional BAR protein, our findings broaden the understanding of the mechanistic spectrum by which proteins assemble into higher-ordered structures to achieve membrane deformation.
Collapse
Affiliation(s)
- Chun Chan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaoyun Pang
- National Laboratory of Biomacromolecules, CAS Center for excellence in biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- National Laboratory of Biomacromolecules, CAS Center for excellence in biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tongxin Niu
- National Laboratory of Biomacromolecules, CAS Center for excellence in biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shengjiang Yang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Daohui Zhao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Jian Li
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Victor W. Hsu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
- * E-mail: (JZ); (FS); (JF)
| | - Fei Sun
- National Laboratory of Biomacromolecules, CAS Center for excellence in biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (JZ); (FS); (JF)
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China
- * E-mail: (JZ); (FS); (JF)
| |
Collapse
|
65
|
Taylor KL, Taylor RJ, Richters KE, Huynh B, Carrington J, McDermott ME, Wilson RL, Dent EW. Opposing functions of F-BAR proteins in neuronal membrane protrusion, tubule formation, and neurite outgrowth. Life Sci Alliance 2019; 2:2/3/e201800288. [PMID: 31160379 PMCID: PMC6549137 DOI: 10.26508/lsa.201800288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023] Open
Abstract
Neurite formation is a fundamental antecedent to axon and dendrite formation, but the mechanisms that underlie this important process are poorly characterized. Here, we demonstrate that two F-BAR proteins, CIP4 and FBP17, have opposing functions in early cortical neuron development. The F-BAR family of proteins play important roles in many cellular processes by regulating both membrane and actin dynamics. The CIP4 family of F-BAR proteins is widely recognized to function in endocytosis by elongating endocytosing vesicles. However, in primary cortical neurons, CIP4 concentrates at the tips of extending lamellipodia and filopodia and inhibits neurite outgrowth. Here, we report that the highly homologous CIP4 family member, FBP17, induces tubular structures in primary cortical neurons and results in precocious neurite formation. Through domain swapping and deletion experiments, we demonstrate that a novel polybasic region between the F-BAR and HR1 domains is required for membrane bending. Moreover, the presence of a poly-PxxP region in longer splice isoforms of CIP4 and FBP17 largely reverses the localization and function of these proteins. Thus, CIP4 and FBP17 function as an antagonistic pair to fine-tune membrane protrusion, endocytosis, and neurite formation during early neuronal development.
Collapse
Affiliation(s)
- Kendra L Taylor
- University of Wisconsin-Madison, Neuroscience Training Program, Madison, WI, USA
| | - Russell J Taylor
- University of Wisconsin-Madison, Neuroscience Training Program, Madison, WI, USA
| | - Karl E Richters
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Brandon Huynh
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Justin Carrington
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Maeve E McDermott
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Rebecca L Wilson
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Erik W Dent
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| |
Collapse
|
66
|
Viplav A, Saha T, Huertas J, Selenschik P, Ebrahimkutty MP, Grill D, Lehrich J, Hentschel A, Biasizzo M, Mengoni S, Ahrends R, Gerke V, Cojocaru V, Klingauf J, Galic M. ArhGEF37 assists dynamin 2 during clathrin-mediated endocytosis. J Cell Sci 2019; 132:jcs.226530. [PMID: 30926623 PMCID: PMC6526708 DOI: 10.1242/jcs.226530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) engages over 30 proteins to secure efficient cargo and membrane uptake. While the function of most core CME components is well established, auxiliary mechanisms crucial for fine-tuning and adaptation remain largely elusive. In this study, we identify ArhGEF37, a currently uncharacterized protein, as a constituent of CME. Structure prediction together with quantitative cellular and biochemical studies present a unique BAR domain and PI(4,5)P2-dependent protein–membrane interactions. Functional characterization yields accumulation of ArhGEF37 at dynamin 2-rich late endocytic sites and increased endocytosis rates in the presence of ArhGEF37. Together, these results introduce ArhGEF37 as a regulatory protein involved in endocytosis. Summary: Accumulation of ArhGEF37 at dynamin 2-rich late endocytic sites yields increased rates of endocytosis.
Collapse
Affiliation(s)
- Abhiyan Viplav
- DFG Cluster of Excellence 'Cells in Motion', University of Muenster, 48149 Muenster, Germany.,Institute of Medical Physics and Biophysics, University of Muenster, 48149 Muenster, Germany
| | - Tanumoy Saha
- DFG Cluster of Excellence 'Cells in Motion', University of Muenster, 48149 Muenster, Germany.,Institute of Medical Physics and Biophysics, University of Muenster, 48149 Muenster, Germany
| | - Jan Huertas
- DFG Cluster of Excellence 'Cells in Motion', University of Muenster, 48149 Muenster, Germany.,Computational Structural Biology Group, Dept. of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Muenster, 48149 Muenster, Germany
| | - Philipp Selenschik
- DFG Cluster of Excellence 'Cells in Motion', University of Muenster, 48149 Muenster, Germany.,Institute of Medical Physics and Biophysics, University of Muenster, 48149 Muenster, Germany
| | - Mirsana P Ebrahimkutty
- DFG Cluster of Excellence 'Cells in Motion', University of Muenster, 48149 Muenster, Germany.,Institute of Medical Physics and Biophysics, University of Muenster, 48149 Muenster, Germany
| | - David Grill
- DFG Cluster of Excellence 'Cells in Motion', University of Muenster, 48149 Muenster, Germany.,Institute for Medical Biochemistry, ZMBE, University of Muenster, 48149 Muenster, Germany
| | - Julia Lehrich
- Institute of Medical Physics and Biophysics, University of Muenster, 48149 Muenster, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften, ISAS, 44139 Dortmund, Germany
| | - Monika Biasizzo
- DFG Cluster of Excellence 'Cells in Motion', University of Muenster, 48149 Muenster, Germany.,Institute of Medical Physics and Biophysics, University of Muenster, 48149 Muenster, Germany
| | - Simone Mengoni
- DFG Cluster of Excellence 'Cells in Motion', University of Muenster, 48149 Muenster, Germany.,Institute of Medical Physics and Biophysics, University of Muenster, 48149 Muenster, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften, ISAS, 44139 Dortmund, Germany
| | - Volker Gerke
- DFG Cluster of Excellence 'Cells in Motion', University of Muenster, 48149 Muenster, Germany.,Institute for Medical Biochemistry, ZMBE, University of Muenster, 48149 Muenster, Germany
| | - Vlad Cojocaru
- DFG Cluster of Excellence 'Cells in Motion', University of Muenster, 48149 Muenster, Germany.,Computational Structural Biology Group, Dept. of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Muenster, 48149 Muenster, Germany
| | - Jürgen Klingauf
- DFG Cluster of Excellence 'Cells in Motion', University of Muenster, 48149 Muenster, Germany.,Institute of Medical Physics and Biophysics, University of Muenster, 48149 Muenster, Germany
| | - Milos Galic
- DFG Cluster of Excellence 'Cells in Motion', University of Muenster, 48149 Muenster, Germany .,Institute of Medical Physics and Biophysics, University of Muenster, 48149 Muenster, Germany
| |
Collapse
|
67
|
Stanishneva-Konovalova TB, Sokolova OS. Effects of PI(4,5)P 2 concentration on the F-BAR domain membrane binding as revealed by coarse-grained simulations. Proteins 2019; 87:561-568. [PMID: 30803020 DOI: 10.1002/prot.25678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/22/2019] [Accepted: 02/20/2019] [Indexed: 11/09/2022]
Abstract
Bin/Amphyphysin/Rvs (BAR) domain proteins form a key link between membrane remodeling and cytoskeleton dynamics. They are dimers that bind to membranes via electrostatic interactions with different preferences toward negatively charged lipids. In the present article, we examine the interactions of the F-BAR domain of nervous wreck (Nwk) with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 )-containing membranes using coarse-grained molecular dynamics. We demonstrated PI(4,5)P2 concentration effects, identified the sequence of events that underlies the protein binding and identified amino acids involved in protein-lipid interactions. Our simulations point out the primary role of the basic stretch at the tips of the dimer, which anchors the protein to the membrane and initiates the binding process. When the PI(4,5)P2 concentration is high, the protein stably associates with the membrane by its concave surface or by the opposite side. At low PI(4,5)P2 concentration, the former orientation becomes more favorable; also a state with only one tip bound is observed, due to the weaker attachment and more pronounced association/dissociation events. Our results provide a theoretical model that describes the lipid-binding behavior of Nwk observed in vitro.
Collapse
Affiliation(s)
| | - Olga S Sokolova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
68
|
Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1111:77-137. [PMID: 30483964 DOI: 10.1007/5584_2018_288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
69
|
BAR domain proteins-a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton. Biophys Rev 2018; 10:1587-1604. [PMID: 30456600 DOI: 10.1007/s12551-018-0467-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization, modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors, characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking, cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.
Collapse
|
70
|
Alimohamadi H, Rangamani P. Modeling Membrane Curvature Generation due to Membrane⁻Protein Interactions. Biomolecules 2018; 8:E120. [PMID: 30360496 PMCID: PMC6316661 DOI: 10.3390/biom8040120] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/03/2023] Open
Abstract
To alter and adjust the shape of the plasma membrane, cells harness various mechanisms of curvature generation. Many of these curvature generation mechanisms rely on the interactions between peripheral membrane proteins, integral membrane proteins, and lipids in the bilayer membrane. Mathematical and computational modeling of membrane curvature generation has provided great insights into the physics underlying these processes. However, one of the challenges in modeling these processes is identifying the suitable constitutive relationships that describe the membrane free energy including protein distribution and curvature generation capability. Here, we review some of the commonly used continuum elastic membrane models that have been developed for this purpose and discuss their applications. Finally, we address some fundamental challenges that future theoretical methods need to overcome to push the boundaries of current model applications.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
71
|
McCullough J, Frost A, Sundquist WI. Structures, Functions, and Dynamics of ESCRT-III/Vps4 Membrane Remodeling and Fission Complexes. Annu Rev Cell Dev Biol 2018; 34:85-109. [PMID: 30095293 PMCID: PMC6241870 DOI: 10.1146/annurev-cellbio-100616-060600] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endosomal sorting complexes required for transport (ESCRT) pathway mediates cellular membrane remodeling and fission reactions. The pathway comprises five core complexes: ALIX, ESCRT-I, ESCRT-II, ESCRT-III, and Vps4. These soluble complexes are typically recruited to target membranes by site-specific adaptors that bind one or both of the early-acting ESCRT factors: ALIX and ESCRT-I/ESCRT-II. These factors, in turn, nucleate assembly of ESCRT-III subunits into membrane-bound filaments that recruit the AAA ATPase Vps4. Together, ESCRT-III filaments and Vps4 remodel and sever membranes. Here, we review recent advances in our understanding of the structures, activities, and mechanisms of the ESCRT-III and Vps4 machinery, including the first high-resolution structures of ESCRT-III filaments, the assembled Vps4 enzyme in complex with an ESCRT-III substrate, the discovery that ESCRT-III/Vps4 complexes can promote both inside-out and outside-in membrane fission reactions, and emerging mechanistic models for ESCRT-mediated membrane fission.
Collapse
Affiliation(s)
- John McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA;
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA;
| |
Collapse
|
72
|
Tanaka M, Suwatthanarak T, Arakaki A, Johnson BRG, Evans SD, Okochi M, Staniland SS, Matsunaga T. Enhanced Tubulation of Liposome Containing Cardiolipin by MamY Protein from Magnetotactic Bacteria. Biotechnol J 2018; 13:e1800087. [DOI: 10.1002/biot.201800087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/18/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Masayoshi Tanaka
- Department of Chemical Science and EngineeringTokyo Institute of Technology2‐12‐1, O‐okayama, Meguro‐kuTokyo 152‐8552Japan
| | - Thanawat Suwatthanarak
- Department of Chemical Science and EngineeringTokyo Institute of Technology2‐12‐1, O‐okayama, Meguro‐kuTokyo 152‐8552Japan
| | - Atsushi Arakaki
- Division of Biotechnology and Life ScienceInstitute of EngineeringTokyo University of Agriculture and Technology2‐24‐16 Naka‐cho, KoganeiTokyo 184‐8588Japan
| | | | - Stephen D. Evans
- School of Physics and AstronomyUniversity of LeedsLeeds LS2 9JTUK
| | - Mina Okochi
- Department of Chemical Science and EngineeringTokyo Institute of Technology2‐12‐1, O‐okayama, Meguro‐kuTokyo 152‐8552Japan
| | | | - Tadashi Matsunaga
- Division of Biotechnology and Life ScienceInstitute of EngineeringTokyo University of Agriculture and Technology2‐24‐16 Naka‐cho, KoganeiTokyo 184‐8588Japan
- Faculty of Science and EngineeringWaseda University3‐4‐1, Okubo, Shinjuku‐kuTokyo 169‐8555Japan
| |
Collapse
|
73
|
Bowers DT, Brown JL. Nanofibers as Bioinstructive Scaffolds Capable of Modulating Differentiation through Mechanosensitive Pathways for Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 5:22-29. [PMID: 31179378 DOI: 10.1007/s40883-018-0076-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioinstructive scaffolds encode information in the physical shape and size of materials to direct cell responses. Electrospinning nanofibers is a process that offers control over scaffold architecture and fiber diameter, while providing extended linear length of fibers. This review summarizes tissue engineering literature that has utilized nanofiber scaffolds to direct stem cell differentiation for various tissues including musculoskeletal, vascular, immunological and nervous system tissues. Nanofibers are also considered for their extracellular matrix mimetic characteristics that can preserve stem cell differentiation capacity. These topics are considered in the context of focal adhesion and integrin signaling. Regenerative engineering will be enhanced by construction of scaffolds encoded with shape information to cause an attached cell to create the intended tissue at that region. Nanofibers are likely to be a bioinstructive scaffold in future regenerative engineering development as we pursue the Grand Challenges of engineering tissues.
Collapse
|
74
|
FBP17 and CIP4 recruit SHIP2 and lamellipodin to prime the plasma membrane for fast endophilin-mediated endocytosis. Nat Cell Biol 2018; 20:1023-1031. [PMID: 30061681 DOI: 10.1038/s41556-018-0146-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/20/2018] [Indexed: 12/29/2022]
Abstract
Endocytosis mediates the cellular uptake of micronutrients and the turnover of plasma membrane proteins. Clathrin-mediated endocytosis is the major uptake pathway in resting cells1, but several clathrin-independent endocytic routes exist in parallel2,3. One such pathway, fast endophilin-mediated endocytosis (FEME), is not constitutive but triggered upon activation of certain receptors, including the β1 adrenergic receptor4. FEME activates promptly following stimulation as endophilin is pre-enriched by the phosphatidylinositol-3,4-bisphosphate-binding protein lamellipodin4,5. However, in the absence of stimulation, endophilin foci abort and disassemble after a few seconds. Looking for additional proteins involved in FEME, we found that 20 out of 65 BAR domain-containing proteins tested colocalized with endophilin spots. Among them, FBP17 and CIP4 prime the membrane of resting cells for FEME by recruiting the 5'-lipid phosphatase SHIP2 and lamellipodin to mediate the local production of phosphatidylinositol-3,4-bisphosphate and endophilin pre-enrichment. Membrane-bound GTP-loaded Cdc42 recruits FBP17 and CIP4, before being locally deactivated by RICH1 and SH3BP1 GTPase-activating proteins. This generates the transient assembly and disassembly of endophilin spots, which lasts 5-10 seconds. This mechanism periodically primes patches of the membrane for prompt responses upon FEME activation.
Collapse
|
75
|
Malinova TS, Huveneers S. Sensing of Cytoskeletal Forces by Asymmetric Adherens Junctions. Trends Cell Biol 2018; 28:328-341. [DOI: 10.1016/j.tcb.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
|
76
|
Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors. Biochem Soc Trans 2018. [PMID: 29540508 DOI: 10.1042/bst20170322] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors.
Collapse
|
77
|
|
78
|
Wu Z, Su M, Tong C, Wu M, Liu J. Membrane shape-mediated wave propagation of cortical protein dynamics. Nat Commun 2018; 9:136. [PMID: 29321558 PMCID: PMC5762918 DOI: 10.1038/s41467-017-02469-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 12/01/2017] [Indexed: 11/15/2022] Open
Abstract
Immune cells exhibit stimulation-dependent traveling waves in the cortex, much faster than typical cortical actin waves. These waves reflect rhythmic assembly of both actin machinery and peripheral membrane proteins such as F-BAR domain-containing proteins. Combining theory and experiments, we develop a mechanochemical feedback model involving membrane shape changes and F-BAR proteins that render the cortex an interesting dynamical system. We show that such cortical dynamics manifests itself as ultrafast traveling waves of cortical proteins, in which the curvature sensitivity-driven feedback always constrains protein lateral diffusion in wave propagation. The resulting protein wave propagation mainly reflects the spatial gradient in the timing of local protein recruitment from cytoplasm. We provide evidence that membrane undulations accompany these protein waves and potentiate their propagation. Therefore, membrane shape change and protein curvature sensitivity may have underappreciated roles in setting high-speed cortical signal transduction rhythms. Traveling waves in the cell cortex can propagate much faster than actin waves, and the mechanism is unknown. Here the authors propose a mechanochemical feedback model for traveling waves that incorporates membrane shape changes and recruitment of F-BAR proteins that enables fast wave propagation.
Collapse
Affiliation(s)
- Zhanghan Wu
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maohan Su
- Department of Biological Sciences, Centre for Bioimaging Sciences, Mechanobiology Institute, National University of Singapore, Singapore, 117557, Singapore
| | - Cheesan Tong
- Department of Biological Sciences, Centre for Bioimaging Sciences, Mechanobiology Institute, National University of Singapore, Singapore, 117557, Singapore
| | - Min Wu
- Department of Biological Sciences, Centre for Bioimaging Sciences, Mechanobiology Institute, National University of Singapore, Singapore, 117557, Singapore.
| | - Jian Liu
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
79
|
Aspenström P. BAR Domain Proteins Regulate Rho GTPase Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:33-53. [PMID: 30151649 DOI: 10.1007/5584_2018_259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Bin-Amphiphysin-Rvs (BAR) domain is a membrane lipid binding domain present in a wide variety of proteins, often proteins with a role in Rho-regulated signaling pathways. BAR domains do not only confer binding to lipid bilayers, they also possess a membrane sculpturing ability and thereby directly control the topology of biomembranes. BAR domain-containing proteins participate in a plethora of physiological processes but the common denominator is their capacity to link membrane dynamics to actin dynamics and thereby integrate processes such as endocytosis, exocytosis, vesicle trafficking, cell morphogenesis and cell migration. The Rho family of small GTPases constitutes an important bridging theme for many BAR domain-containing proteins. This review article will focus predominantly on the role of BAR proteins as regulators or effectors of Rho GTPases and it will only briefly discuss the structural and biophysical function of the BAR domains.
Collapse
Affiliation(s)
- Pontus Aspenström
- Department of Microbiology, and Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
80
|
Alfadda AA, Sallam RM, Gul R, Hwang I, Ka S. Endophilin A2: A Potential Link to Adiposity and Beyond. Mol Cells 2017; 40:855-863. [PMID: 29113429 PMCID: PMC5712515 DOI: 10.14348/molcells.2017.0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/07/2017] [Accepted: 09/20/2017] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue plays a central role in regulating dynamic crosstalk between tissues and organs. A detailed description of molecules that are differentially expressed upon changes in adipose tissue mass is expected to increase our understanding of the molecular mechanisms that underlie obesity and related metabolic co-morbidities. Our previous studies suggest a possible link between endophilins (SH3Grb2 proteins) and changes in body weight. To explore this further, we sought to assess the distribution of endophilin A2 (EA2) in human adipose tissue and experimental animals. Human paired adipose tissue samples (subcutaneous and visceral) were collected from subjects undergoing elective abdominal surgery and abdominal liposuction. We observed elevated EA2 gene expression in the subcutaneous compared to that in the visceral human adipose tissue. EA2 gene expression negatively correlated with adiponectin and chemerin in visceral adipose tissue, and positively correlated with TNF-α in subcutaneous adipose tissue. EA2 gene expression was significantly downregulated during differentiation of preadipocytes in vitro. In conclusion, this study provides a description of EA2 distribution and emphasizes a need to study the roles of this protein during the progression of obesity.
Collapse
Affiliation(s)
- Assim A. Alfadda
- Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461,
Saudi Arabia
- Department of Medicine, College of Medicine, King Saud University, Riyadh 11461,
Saudi Arabia
| | - Reem M. Sallam
- Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461,
Saudi Arabia
- Clinical Chemistry Unit, Pathology Department, College of Medicine, King Saud University, Riyadh 11461,
Saudi Arabia
| | - Rukhsana Gul
- Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461,
Saudi Arabia
| | - Injae Hwang
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826,
Korea
| | - Sojeong Ka
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
81
|
Sporny M, Guez-Haddad J, Kreusch A, Shakartzi S, Neznansky A, Cross A, Isupov MN, Qualmann B, Kessels MM, Opatowsky Y. Structural History of Human SRGAP2 Proteins. Mol Biol Evol 2017; 34:1463-1478. [PMID: 28333212 PMCID: PMC5435084 DOI: 10.1093/molbev/msx094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the development of the human brain, human-specific genes are considered to play key roles, conferring its unique advantages and vulnerabilities. At the time of Homo lineage divergence from Australopithecus, SRGAP2C gradually emerged through a process of serial duplications and mutagenesis from ancestral SRGAP2A (3.4–2.4 Ma). Remarkably, ectopic expression of SRGAP2C endows cultured mouse brain cells, with human-like characteristics, specifically, increased dendritic spine length and density. To understand the molecular mechanisms underlying this change in neuronal morphology, we determined the structure of SRGAP2A and studied the interplay between SRGAP2A and SRGAP2C. We found that: 1) SRGAP2A homo-dimerizes through a large interface that includes an F-BAR domain, a newly identified F-BAR extension (Fx), and RhoGAP-SH3 domains. 2) SRGAP2A has an unusual inverse geometry, enabling associations with lamellipodia and dendritic spine heads in vivo, and scaffolding of membrane protrusions in cell culture. 3) As a result of the initial partial duplication event (∼3.4 Ma), SRGAP2C carries a defective Fx-domain that severely compromises its solubility and membrane-scaffolding ability. Consistently, SRGAP2A:SRAGP2C hetero-dimers form, but are insoluble, inhibiting SRGAP2A activity. 4) Inactivation of SRGAP2A is sensitive to the level of hetero-dimerization with SRGAP2C. 5) The primal form of SRGAP2C (P-SRGAP2C, existing between ∼3.4 and 2.4 Ma) is less effective in hetero-dimerizing with SRGAP2A than the modern SRGAP2C, which carries several substitutions (from ∼2.4 Ma). Thus, the genetic mutagenesis phase contributed to modulation of SRGAP2A’s inhibition of neuronal expansion, by introducing and improving the formation of inactive SRGAP2A:SRGAP2C hetero-dimers, indicating a stepwise involvement of SRGAP2C in human evolutionary history.
Collapse
Affiliation(s)
- Michael Sporny
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Julia Guez-Haddad
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Annett Kreusch
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Sivan Shakartzi
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Avi Neznansky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Alice Cross
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Michail N Isupov
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Britta Qualmann
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Michael M Kessels
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Yarden Opatowsky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
82
|
Oh Y, Schreiter JH, Okada H, Wloka C, Okada S, Yan D, Duan X, Bi E. Hof1 and Chs4 Interact via F-BAR Domain and Sel1-like Repeats to Control Extracellular Matrix Deposition during Cytokinesis. Curr Biol 2017; 27:2878-2886.e5. [PMID: 28918945 PMCID: PMC5658023 DOI: 10.1016/j.cub.2017.08.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/07/2017] [Accepted: 08/15/2017] [Indexed: 11/24/2022]
Abstract
Localized extracellular matrix (ECM) remodeling is thought to stabilize the cleavage furrow and maintain cell shape during cytokinesis [1-14]. This remodeling is spatiotemporally coordinated with a cytoskeletal structure pertaining to a kingdom of life, for example the FtsZ ring in bacteria [15], the phragmoplast in plants [16], and the actomyosin ring in fungi and animals [17, 18]. Although the cytoskeletal structures have been analyzed extensively, the mechanisms of ECM remodeling remain poorly understood. In the budding yeast Saccharomyces cerevisiae, ECM remodeling refers to sequential formations of the primary and secondary septa that are catalyzed by chitin synthase-II (Chs2) and chitin synthase-III (the catalytic subunit Chs3 and its activator Chs4), respectively [18, 19]. Surprisingly, both Chs2 and Chs3 are delivered to the division site at the onset of cytokinesis [6, 20]. What keeps Chs3 inactive until secondary septum formation remains unknown. Here, we show that Hof1 binds to the Sel1-like repeats (SLRs) of Chs4 via its F-BAR domain and inhibits Chs3-mediated chitin synthesis during cytokinesis. In addition, Hof1 is required for rapid accumulation as well as efficient removal of Chs4 at the division site. This study uncovers a mechanism by which Hof1 controls timely activation of Chs3 during cytokinesis and defines a novel interaction and function for the conserved F-BAR domain and SLR that are otherwise known for their abilities to bind membrane lipids [21, 22] and scaffold protein complex formation [23].
Collapse
Affiliation(s)
- Younghoon Oh
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Jennifer H Schreiter
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Carsten Wloka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AE Groningen, the Netherlands
| | - Satoshi Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Department of Medical Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Di Yan
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Xudong Duan
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
83
|
Pinar M, Peñalva MA. Aspergillus nidulansBapH is a RAB11 effector that connects membranes in the Spitzenkörper with basal autophagy. Mol Microbiol 2017; 106:452-468. [DOI: 10.1111/mmi.13777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Mario Pinar
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas del CSIC, Ramiro de Maeztu 9; Madrid 28040 Spain
| | - Miguel A. Peñalva
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas del CSIC, Ramiro de Maeztu 9; Madrid 28040 Spain
| |
Collapse
|
84
|
Cugno M, Borghi A, Marzano AV. PAPA, PASH and PAPASH Syndromes: Pathophysiology, Presentation and Treatment. Am J Clin Dermatol 2017; 18:555-562. [PMID: 28236224 DOI: 10.1007/s40257-017-0265-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pyoderma gangrenosum (PG) is a neutrophilic dermatosis usually manifesting as skin ulcers with undermined erythematous-violaceous borders. It may be isolated, associated with systemic conditions or occurring in the context of autoinflammatory syndromes such as PAPA (pyogenic arthritis, PG and acne), PASH (PG, acne and suppurative hidradenitis) or PAPASH (pyogenic arthritis, acne, PG and suppurative hidradenitis). From a physiopathological point of view, all these conditions share common mechanisms consisting of over-activation of the innate immune system leading to increased production of the interleukin (IL)-1 family and 'sterile' neutrophil-rich cutaneous inflammation. From a genetic point of view, a number of mutations affecting the proteins of the inflammasome complex (the molecular platform responsible for triggering autoinflammation) or the proteins that regulate inflammasome function have been described in these disorders. As these debilitating entities are all associated with the over-expression of IL-1 and tumour necrosis factor (TNF)-α, biological drugs specifically targeting these cytokines are currently the most effective treatments but, given the emerging role of IL-17 in the pathogenesis of these syndromes, IL-17 antagonists may represent the future management of these conditions.
Collapse
Affiliation(s)
- Massimo Cugno
- Medicina Interna, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Via Pace, 9, 20122, Milan, Italy.
| | - Alessandro Borghi
- Dipartimento di Scienze Mediche, Sezione di Dermatologia e Malattie Infettive, Università degli Studi di Ferrara, Ferrara, Italy
| | - Angelo V Marzano
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Unità Operativa di Dermatologia, IRCCS Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
85
|
Takemura K, Hanawa-Suetsugu K, Suetsugu S, Kitao A. Salt Bridge Formation between the I-BAR Domain and Lipids Increases Lipid Density and Membrane Curvature. Sci Rep 2017; 7:6808. [PMID: 28754893 PMCID: PMC5533756 DOI: 10.1038/s41598-017-06334-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/12/2017] [Indexed: 11/17/2022] Open
Abstract
The BAR domain superfamily proteins sense or induce curvature in membranes. The inverse-BAR domain (I-BAR) is a BAR domain that forms a straight “zeppelin-shaped” dimer. The mechanisms by which IRSp53 I-BAR binds to and deforms a lipid membrane are investigated here by all-atom molecular dynamics simulation (MD), binding energy analysis, and the effects of mutation experiments on filopodia on HeLa cells. I-BAR adopts a curved structure when crystallized, but adopts a flatter shape in MD. The binding of I-BAR to membrane was stabilized by ~30 salt bridges, consistent with experiments showing that point mutations of the interface residues have little effect on the binding affinity whereas multiple mutations have considerable effect. Salt bridge formation increases the local density of lipids and deforms the membrane into a concave shape. In addition, the point mutations that break key intra-molecular salt bridges within I-BAR reduce the binding affinity; this was confirmed by expressing these mutants in HeLa cells and observing their effects. The results indicate that the stiffness of I-BAR is important for membrane deformation, although I-BAR does not act as a completely rigid template.
Collapse
Affiliation(s)
- Kazuhiro Takemura
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-0032, Japan
| | - Kyoko Hanawa-Suetsugu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Shiro Suetsugu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Akio Kitao
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-0032, Japan.
| |
Collapse
|
86
|
Ikeda K, Horiuchi A, Egawa A, Tamaki H, Fujiwara T, Nakano M. Nanodisc-to-Nanofiber Transition of Noncovalent Peptide-Phospholipid Assemblies. ACS OMEGA 2017; 2:2935-2944. [PMID: 31457628 PMCID: PMC6641012 DOI: 10.1021/acsomega.7b00424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/09/2017] [Indexed: 06/10/2023]
Abstract
We report a novel molecular architecture of peptide-phospholipid coassemblies. The amphiphilic peptide Ac-18A-NH2 (18A), which was designed to mimic apolipoprotein α-helices, has been shown to form nanodisc structures with phospholipid bilayers. We show that an 18A peptide cysteine substitution at residue 11, 18A[A11C], forms fibrous assemblies with 1-palmitoyl-2-oleoyl-phosphatidylcholine at a lipid-to-peptide (L/P) molar ratio of 1, a fiber diameter of 10-20 nm, and a length of more than 1 μm. Furthermore, 18A[A11C] can form nanodiscs with these lipid bilayers at L/P ratios of 4-6. The peptide adopts α-helical structures in both the nanodisc and nanofiber assemblies, although the α-helical bundle structures were evident only in the nanofibers, and the phospholipids of the nanofibers were not lamellar. Fluorescence spectroscopic analysis revealed that the peptide and lipid molecules in the nanofibers exhibited different solvent accessibility and hydrophobicity from those of the nanodiscs. Furthermore, the cysteine substitution at residue 11 did not result in disulfide bond formation, although it was responsible for the nanofiber formation, suggesting that this free sulfhydryl group has an important functional role. Alternatively, the disulfide dimer of 18A[A11C] preferentially formed nanodiscs, even at an L/P ratio of 1. Interconversions of these discoidal and fibrous assemblies were induced by the stepwise addition of free 18A[A11C] or liposomes into the solution. Furthermore, these structural transitions could also be induced by the introduction of oxidative and reductive stresses to the assemblies. Our results demonstrate that heteromolecular lipid-peptide complexes represent a novel approach to the construction of controllable and functional nanoscale assemblies.
Collapse
Affiliation(s)
- Keisuke Ikeda
- Graduate
School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ayame Horiuchi
- Graduate
School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ayako Egawa
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Hajime Tamaki
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Toshimichi Fujiwara
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Minoru Nakano
- Graduate
School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
87
|
Salzer U, Kostan J, Djinović-Carugo K. Deciphering the BAR code of membrane modulators. Cell Mol Life Sci 2017; 74:2413-2438. [PMID: 28243699 PMCID: PMC5487894 DOI: 10.1007/s00018-017-2478-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 01/06/2023]
Abstract
The BAR domain is the eponymous domain of the “BAR-domain protein superfamily”, a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.
Collapse
Affiliation(s)
- Ulrich Salzer
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Julius Kostan
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Kristina Djinović-Carugo
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 119, 1000, Ljubljana, Slovenia.
| |
Collapse
|
88
|
Recursive Alterations of the Relationship between Simple Membrane Geometry and Insertion of Amphiphilic Motifs. MEMBRANES 2017; 7:membranes7010006. [PMID: 28208740 PMCID: PMC5371967 DOI: 10.3390/membranes7010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 11/30/2022]
Abstract
The shape and composition of a membrane directly regulate the localization, activity, and signaling properties of membrane associated proteins. Proteins that both sense and generate membrane curvature, e.g., through amphiphilic insertion motifs, potentially engage in recursive binding dynamics, where the recruitment of the protein itself changes the properties of the membrane substrate. Simple geometric models of membrane curvature interactions already provide prediction tools for experimental observations, however these models are treating curvature sensing and generation as separated phenomena. Here, we outline a model that applies both geometric and basic thermodynamic considerations. This model allows us to predict the consequences of recursive properties in such interaction schemes and thereby integrate the membrane as a dynamic substrate. We use this combined model to hypothesize the origin and properties of tubular carrier systems observed in cells. Furthermore, we pinpoint the coupling to a membrane reservoir as a factor that influences the membrane curvature sensing and generation properties of local curvatures in the cell in line with classic determinants such as lipid composition and membrane geometry.
Collapse
|
89
|
Katsounas A, Wilting KR, Lempicki RA, Schlaak JF, Gerken G. Microarrays-Enabled Hypothesis Generation: The Suspect Role of FNBP-1 in Neuropsychiatric Pathogenesis Associated with HIV and/or HCV Infection. JOURNAL OF AIDS & CLINICAL RESEARCH 2016; 7:641. [PMID: 28255515 PMCID: PMC5330367 DOI: 10.4172/2155-6113.1000641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The spectrum of neuropsychiatric illness (NI) associated with the Human Immunodeficiency Virus (HIV) and/or the Hepatitis C Virus (HCV) is far reaching and significantly impacts the clinical presentation and outcome of infected persons; however, the etiological and pathophysiological background remains partially understood. The present work was aimed to investigate the potential significance of formin binding protein 1 (FNBP-1)-dependent pathways in NI-pathogenesis by elaborating on previous microarray-based research in HIV and/or HCV-infected patients receiving interferon-α (IFN-α) immunotherapy via a rigorous data mining procedure. METHODS Using microarray data of peripheral whole blood (PB) samples obtained from HCV mono-infected persons (n=25, Affymetrix® HG-U133A_2) 12 h before and after the 1st dose of pegylated IFN-α (PegIFN-α), we re-applied the same analytical algorithm that we had developed and published in an earlier study with HIV/HCV co-infected subjects (N=28, Affymetrix® HG-U133A), in order to evaluate reproducibility of potential NI-related molecular findings in an independent cohort. RESULTS Among 28 gene expression profiles (HIV/HCV: N=9 vs. HCV: N=19) selected by applying different thresholds (a Mean Fold Difference value (MFD) in gene expression of ≥ 0.38 (log2) and/or P value from <0.05 to ≤ 0.1) FNBP-1 was identified as the only overlapping marker, which also exhibited a consistent upregulation in association with the development of NI in both cohorts. Previous functional annotation analysis had classified FNBP-1 as molecule with significant enrichment in various brain tissues (P<0.01). CONCLUSION Our current findings are strongly arguing for intensifying research into the FNBP-1-related mechanisms that may be conferring risk for or resistance to HIV- and/or HCV-related NI.
Collapse
Affiliation(s)
- A Katsounas
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - KR Wilting
- Department for Medical Microbiology and Infection Prevention, University Medical Center Groningen, Hanzeplein 1 (9713 GZ) Groningen, the Netherlands
| | - RA Lempicki
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - JF Schlaak
- Evangelisches Klinikum Niederrhein gGmbH, Duisburg, Germany
| | - G Gerken
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| |
Collapse
|
90
|
Sporny M, Guez-Haddad J, Waterman DG, Isupov MN, Opatowsky Y. Molecular symmetry-constrained systematic search approach to structure solution of the coiled-coil SRGAP2 F-BARx domain. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:1241-1253. [PMID: 27917825 DOI: 10.1107/s2059798316016697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 10/18/2016] [Indexed: 02/05/2023]
Abstract
SRGAP2 (Slit-Robo GTPase-activating protein 2) is a cytoplasmic protein found to be involved in neuronal branching, restriction of neuronal migration and restriction of the length and density of dendritic postsynaptic spines. The extended F-BAR (F-BARx) domain of SRGAP2 generates membrane protrusions when expressed in COS-7 cells, while most F-BARs induce the opposite effect: membrane invaginations. As a first step to understand this discrepancy, the F-BARx domain of SRGAP2 was isolated and crystallized after co-expression with the carboxy domains of the protein. Diffraction data were collected from two significantly non-isomorphous crystals in the same monoclinic C2 space group. A correct molecular-replacment solution was obtained by applying a molecular symmetry-constrained systematic search approach that took advantage of the conserved biological symmetry of the F-BAR domains. It is shown that similar approaches can solve other F-BAR structures that were previously determined by experimental phasing. Diffraction data were reprocessed with a high-resolution cutoff of 2.2 Å, chosen using less strict statistical criteria. This has improved the outcome of multi-crystal averaging and other density-modification procedures.
Collapse
Affiliation(s)
- Michael Sporny
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Julia Guez-Haddad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | - Yarden Opatowsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
91
|
Senju Y, Suetsugu S. Possible regulation of caveolar endocytosis and flattening by phosphorylation of F-BAR domain protein PACSIN2/Syndapin II. BIOARCHITECTURE 2016; 5:70-7. [PMID: 26745030 PMCID: PMC4832444 DOI: 10.1080/19490992.2015.1128604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ABSTRACT. Caveolae are flask-shaped invaginations of the plasma membrane. The BAR domain proteins form crescent-shaped dimers, and their oligomeric filaments are considered to form spirals at the necks of invaginations, such as clathrin-coated pits and caveolae. PACSIN2/Syndapin II is one of the BAR domain-containing proteins, and is localized at the necks of caveolae. PACSIN2 is thought to function in the scission and stabilization of caveolae, through binding to dynamin-2 and EHD2, respectively. These two functions are considered to be switched by PACSIN2 phosphorylation by protein kinase C (PKC) upon hypotonic stress and sheer stress. The phosphorylation decreases the membrane binding affinity of PACSIN2, leading to its removal from caveolae. The removal of the putative oligomeric spiral of PACSIN2 from caveolar membrane invaginations could lead to the deformation of caveolae. Indeed, PACSIN2 removal from caveolae is accompanied by the recruitment of dynamin-2, suggesting that the removal provides space for the function of dynamin-2. Otherwise, the removal of PACSIN2 decreases the stability of caveolae, which could result in the flattening of caveolae. In contrast, an increase in the amount of EHD2 restored caveolar stability. Therefore, PACSIN2 at caveolae stabilizes caveolae, but its removal by phosphorylation could induce both caveolar endocytosis and flattening.
Collapse
Affiliation(s)
- Yosuke Senju
- a Institute of Biotechnology; University of Helsinki ; Helsinki , Finland
| | - Shiro Suetsugu
- b Laboratory of Molecular Medicine and Cell Biology; Graduate School of Biosciences; Nara Institute of Science and Technology ; Ikoma , Japan
| |
Collapse
|
92
|
Myers MD, Ryazantsev S, Hicke L, Payne GS. Calmodulin Promotes N-BAR Domain-Mediated Membrane Constriction and Endocytosis. Dev Cell 2016; 37:162-73. [PMID: 27093085 DOI: 10.1016/j.devcel.2016.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 02/15/2016] [Accepted: 03/16/2016] [Indexed: 10/21/2022]
Abstract
Membrane remodeling by BAR (Bin, Amphiphysin, RVS) domain-containing proteins, such as endophilins and amphiphysins, is integral to the process of endocytosis. However, little is known about the regulation of endocytic BAR domain activity. We have identified an interaction between the yeast Rvs167 N-BAR domain and calmodulin. Calmodulin-binding mutants of Rvs167 exhibited defects in endocytic vesicle release. In vitro, calmodulin enhanced membrane tubulation and constriction by wild-type Rvs167 but not calmodulin-binding-defective mutants. A subset of mammalian N-BAR domains bound calmodulin, and co-expression of calmodulin with endophilin A2 potentiated tubulation in vivo. These studies reveal a conserved role for calmodulin in regulating the intrinsic membrane-sculpting activity of endocytic N-BAR domains.
Collapse
Affiliation(s)
- Margaret D Myers
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sergey Ryazantsev
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linda Hicke
- Molecular Genetics and Microbiology, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Gregory S Payne
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
93
|
Watson JR, Owen D, Mott HR. Cdc42 in actin dynamics: An ordered pathway governed by complex equilibria and directional effector handover. Small GTPases 2016; 8:237-244. [PMID: 27715449 DOI: 10.1080/21541248.2016.1215657] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The small GTPase, Cdc42, is a key regulator of actin dynamics, functioning to connect multiple signals to actin polymerization through effector proteins of the Wiskott-Aldrich syndrome protein (WASP) and Transducer of Cdc42-dependent actin assembly (TOCA) families. WASP family members serve to couple Cdc42 with the actin nucleator, the Arp2/3 complex, via direct interactions. The regulation of these proteins in the context of actin dynamics has been extensively studied. Studies on the TOCA family, however, are more limited and relatively little is known about their roles and regulation. In this commentary we highlight new structural and biophysical insight into the involvement of TOCA proteins in the pathway of Cdc42-dependent actin dynamics. We discuss the biological implications of the low affinity interactions between the TOCA family and Cdc42, as well as probing the sequential binding of TOCA1 and the WASP homolog, N-WASP, to Cdc42. We place our current research in the context of the wealth of biophysical, structural and functional data from earlier studies pertaining to the Cdc42/N-WASP/Arp2/3 pathway of actin polymerization. Finally, we describe the molecular basis for a sequential G protein-effector handover from TOCA1 to N-WASP.
Collapse
Affiliation(s)
- Joanna R Watson
- a Department of Biochemistry , University of Cambridge , Cambridge , UK
| | - Darerca Owen
- a Department of Biochemistry , University of Cambridge , Cambridge , UK
| | - Helen R Mott
- a Department of Biochemistry , University of Cambridge , Cambridge , UK
| |
Collapse
|
94
|
Abstract
As cells grow, move, and divide, they must reorganize and rearrange their membranes and cytoskeleton. The F-BAR protein family links cellular membranes with actin cytoskeletal rearrangements in processes including endocytosis, cytokinesis, and cell motility. Here we review emerging information on mechanisms of F-BAR domain oligomerization and membrane binding, and how these activities are coordinated with additional domains to accomplish scaffolding and signaling functions.
Collapse
Affiliation(s)
- Nathan A McDonald
- a Department of Cell and Developmental Biology , Vanderbilt University , Nashville , TN , USA
| | - Kathleen L Gould
- a Department of Cell and Developmental Biology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
95
|
Zhang Z, Zheng F, You Y, Ma Y, Lu T, Yue W, Zhang D. Growth arrest specific gene 7 is associated with schizophrenia and regulates neuronal migration and morphogenesis. Mol Brain 2016; 9:54. [PMID: 27189492 PMCID: PMC4870797 DOI: 10.1186/s13041-016-0238-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 05/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schizophrenia is a highly heritable chronic mental disorder with significant abnormalities in brain function. The neurodevelopmental hypothesis proposes that schizophrenia originates in the prenatal period due to impairments in neuronal developmental processes such as migration and arborization, leading to abnormal brain maturation. Previous studies have identified multiple promising candidate genes that drive functions in neurodevelopment and are associated with schizophrenia. However, the molecular mechanisms of how they exert effects on the pathophysiology of schizophrenia remain largely unknown. RESULTS In our research, we identified growth arrest specific gene 7 (GAS7) as a schizophrenia risk gene in two independent Han Chinese populations using a two-stage association study. Functional experiments were done to further explore the underlying mechanisms of the role of Gas7 in cortical development. In vitro, we discovered that Gas7 contributed to neurite outgrowth through the F-BAR domain. In vivo, overexpression of Gas7 arrested neuronal migration by increasing leading process branching, while suppression of Gas7 could inhibit neuronal migration by lengthening leading processes. Through a series of behavioral tests, we also found that Gas7-deficient mice showed sensorimotor gating deficits. CONCLUSIONS Our results demonstrate GAS7 as a susceptibility gene for schizophrenia. Gas7 might participate in the pathogenesis of schizophrenia by regulating neurite outgrowth and neuronal migration through its C-terminal F-BAR domain. The impaired pre-pulse inhibition (PPI) of Gas7-deficient mice might mirror the disease-related behavior in schizophrenia.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China
| | - Fanfan Zheng
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China. .,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China. .,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhong Guan Cun East Road, Hai Dian District, Beijing, 100190, China.
| | - Yang You
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China
| | - Yuanlin Ma
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Tianlan Lu
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China
| | - Weihua Yue
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China
| | - Dai Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, 51 Hua Yuan Bei Road, Hai Dian District, Beijing, 100191, China. .,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, 100191, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
96
|
Abstract
Polymeric spirals of crescent-shaped BAR-domain superfamily proteins are touted to girdle eukaryotic phospholipid bilayers into narrow tubules for trafficking and membrane remodeling events. But McDonald et al. (2015) in this issue of Developmental Cell question whether this broadly held view and conceptually appealing mechanism for membrane sculpting is really overhyped.
Collapse
Affiliation(s)
- Linton M Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
97
|
Oligomerization but Not Membrane Bending Underlies the Function of Certain F-BAR Proteins in Cell Motility and Cytokinesis. Dev Cell 2016; 35:725-36. [PMID: 26702831 DOI: 10.1016/j.devcel.2015.11.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/12/2015] [Accepted: 11/21/2015] [Indexed: 12/22/2022]
Abstract
F-BAR proteins function in diverse cellular processes by linking membranes to the actin cytoskeleton. Through oligomerization, multiple F-BAR domains can bend membranes into tubules, though the physiological importance of F-BAR-to-F-BAR assemblies is not yet known. Here, we investigate the F-BAR domain of the essential cytokinetic scaffold, Schizosaccharomyces pombe Cdc15, during cytokinesis. Challenging a widely held view that membrane deformation is a fundamental property of F-BARs, we report that the Cdc15 F-BAR binds, but does not deform, membranes in vivo or in vitro, and six human F-BAR domains-including those from Fer and RhoGAP4-share this property. Nevertheless, tip-to-tip interactions between F-BAR dimers are critical for Cdc15 oligomerization and high-avidity membrane binding, stabilization of contractile ring components at the medial cortex, and the fidelity of cytokinesis. F-BAR oligomerization is also critical for Fer and RhoGAP4 physiological function, demonstrating its broad importance to F-BAR proteins that function without membrane bending.
Collapse
|
98
|
Winkle CC, Taylor KL, Dent EW, Gallo G, Greif KF, Gupton SL. Beyond the cytoskeleton: The emerging role of organelles and membrane remodeling in the regulation of axon collateral branches. Dev Neurobiol 2016; 76:1293-1307. [PMID: 27112549 DOI: 10.1002/dneu.22398] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022]
Abstract
The generation of axon collateral branches is a fundamental aspect of the development of the nervous system and the response of axons to injury. Although much has been discovered about the signaling pathways and cytoskeletal dynamics underlying branching, additional aspects of the cell biology of axon branching have received less attention. This review summarizes recent advances in our understanding of key factors involved in axon branching. This article focuses on how cytoskeletal mechanisms, intracellular organelles, such as mitochondria and the endoplasmic reticulum, and membrane remodeling (exocytosis and endocytosis) contribute to branch initiation and formation. Together this growing literature provides valuable insight as well as a platform for continued investigation into how multiple aspects of axonal cell biology are spatially and temporally orchestrated to give rise to axon branches. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1293-1307, 2016.
Collapse
Affiliation(s)
- Cortney C Winkle
- Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Kendra L Taylor
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Erik W Dent
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Gianluca Gallo
- Lewis Katz School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, Pennsylvania, 19140
| | - Karen F Greif
- Department of Biology, Bryn Mawr College, Bryn Mawr, Pennsylvania, 19010
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, 27599
| |
Collapse
|
99
|
Zobel T, Brinkmann K, Koch N, Schneider K, Seemann E, Fleige A, Qualmann B, Kessels MM, Bogdan S. Cooperative functions of the two F-BAR proteins Cip4 and Nostrin in the regulation of E-cadherin in epithelial morphogenesis. J Cell Sci 2016; 128:499-515. [PMID: 25413347 DOI: 10.1242/jcs.155929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
F-BAR proteins are prime candidates to regulate membrane curvature and dynamics during different developmental processes. Here, we analyzed nostrin, a so-far-unknown Drosophila melanogaster F-BAR protein related to Cip4. Genetic analyses revealed a strong synergism between nostrin and cip4 functions.Whereas single mutant flies are viable and fertile, combined loss of nostrin and cip4 results in reduced viability and fertility. Double mutant escaper flies show enhanced wing polarization defects and females exhibit strong egg chamber encapsulation defects. Live imaging analysis suggests that the observed phenotypes are caused by an impaired turnover of E-cadherin at the membrane. Simultaneous knockdown of Cip4 and Nostrin strongly increases the formation of tubular E-cadherin vesicles at adherens junctions. Cip4 and Nostrin localize at distinct membrane subdomains. Both proteins prefer similar membrane curvatures but seem to form distinct membrane coats and do not heterooligomerize. Our data suggest an important synergistic function of both F-BAR proteins in membrane dynamics. We propose a cooperative recruitment model, in which Cip4 initially promotes membrane invagination and early-actin-based endosomal motility, and Nostrin makes contacts with microtubules through the kinesin Khc-73 for trafficking of recycling endosomes.
Collapse
|
100
|
Hutchison JB, Karunanayake Mudiyanselage APKK, Weis RM, Dinsmore AD. Osmotically-induced tension and the binding of N-BAR protein to lipid vesicles. SOFT MATTER 2016; 12:2465-2472. [PMID: 26822233 DOI: 10.1039/c5sm02496j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The binding affinity of a curvature-sensing protein domain (N-BAR) is measured as a function of applied osmotic stress while the membrane curvature is nearly constant. Varying the osmotic stress allows us to control membrane tension, which provides a probe of the mechanism of binding. We study the N-BAR domain of the Drosophila amphiphysin and monitor its binding on 50 nm-radius vesicles composed of 90 mol% DOPC and 10 mol% PIP. We find that the bound fraction of N-BAR is enhanced by a factor of approximately 6.5 when the tension increases from zero to 2.6 mN m(-1). This tension-induced response can be explained by the hydrophobic insertion mechanism. From the data we extract a hydrophobic domain area that is consistent with known structure. These results indicate that membrane stress and strain could play a major role in the previously reported curvature-affinity of N-BAR.
Collapse
Affiliation(s)
- Jaime B Hutchison
- Department of Physics, University of Massachusetts Amherst, Hasbrouck Lab 411, 666 North Pleasant Street, Amherst, MA 01003, USA.
| | | | - Robert M Weis
- Department of Chemistry, University of Massachusetts Amherst, USA
| | - Anthony D Dinsmore
- Department of Physics, University of Massachusetts Amherst, Hasbrouck Lab 411, 666 North Pleasant Street, Amherst, MA 01003, USA.
| |
Collapse
|