51
|
Mou K, Chan SMH, Vlahos R. Musculoskeletal crosstalk in chronic obstructive pulmonary disease and comorbidities: Emerging roles and therapeutic potentials. Pharmacol Ther 2024; 257:108635. [PMID: 38508342 DOI: 10.1016/j.pharmthera.2024.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a multifaceted respiratory disorder characterized by progressive airflow limitation and systemic implications. It has become increasingly apparent that COPD exerts its influence far beyond the respiratory system, extending its impact to various organ systems. Among these, the musculoskeletal system emerges as a central player in both the pathogenesis and management of COPD and its associated comorbidities. Muscle dysfunction and osteoporosis are prevalent musculoskeletal disorders in COPD patients, leading to a substantial decline in exercise capacity and overall health. These manifestations are influenced by systemic inflammation, oxidative stress, and hormonal imbalances, all hallmarks of COPD. Recent research has uncovered an intricate interplay between COPD and musculoskeletal comorbidities, suggesting that muscle and bone tissues may cross-communicate through the release of signalling molecules, known as "myokines" and "osteokines". We explored this dynamic relationship, with a particular focus on the role of the immune system in mediating the cross-communication between muscle and bone in COPD. Moreover, we delved into existing and emerging therapeutic strategies for managing musculoskeletal disorders in COPD. It underscores the development of personalized treatment approaches that target both the respiratory and musculoskeletal aspects of COPD, offering the promise of improved well-being and quality of life for individuals grappling with this complex condition. This comprehensive review underscores the significance of recognizing the profound impact of COPD on the musculoskeletal system and its comorbidities. By unravelling the intricate connections between these systems and exploring innovative treatment avenues, we can aspire to enhance the overall care and outcomes for COPD patients, ultimately offering hope for improved health and well-being.
Collapse
Affiliation(s)
- Kevin Mou
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stanley M H Chan
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
52
|
Greere D, Grigorescu F, Manda D, Voicu G, Lautier C, Nitu I, Poiana C. Relative Contribution of Metabolic Syndrome Components in Relation to Obesity and Insulin Resistance in Postmenopausal Osteoporosis. J Clin Med 2024; 13:2529. [PMID: 38731059 PMCID: PMC11084230 DOI: 10.3390/jcm13092529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Introduction. Osteoporosis (OP) affects 30% of postmenopausal women, often complicated by metabolic syndrome (MetS) with a still controversial role. We aimed to characterize MetS and its components in relation to bone mineral density (BMD), body mass index (BMI), and insulin resistance. Methods. Patients (n = 188) underwent DEXA scans, spine X-rays, and metabolic and hormonal investigations, including bone biomarkers, muscular strength, and physical performance tests, while insulin resistance was evaluated by the Homeostasis Model Assessment (HOMA-IR). Results. Patients with a normal BMD or osteopenia (n = 68) and with OP (n = 120) displayed 51.5% and 30.8% of MetS, but without differences in insulin resistance. When BMD was studied as a function of the cumulative MetS criteria and centiles of BMI, lower levels of BMD were observed beyond an inflection point of 27.2 kg/m2 for BMI, allowing for further stratification as lean and overweight/obese (OW/OB) subjects. In contrast with lean individuals (n = 74), in OW/OB patients (n = 46), MetS was associated with HbA1c (p < 0.0037, OR 9.6, 95% CI [1.64-55.6]) and insulin resistance (p < 0.0076, OR 6.7, 95% CI [1.49-30.8]) in the context where BMD values were lower than those predicted from BMI in non-OP subjects. In OP patients with fragility fractures (31% of MetS), glycemia also appeared to be the dominant factor for MetS (p < 0.0005, OR 4.1, 95% CI [1.63-10.39]). Conclusions. These data indicate a detrimental effect of insulin resistance in MetS on OP patients, while the prevalence of the syndrome depends on the proportion of obesity. These findings provide new insights into the pathogenic role of MetS and reveal the need to consider different strata of BMI and insulin resistance when studying postmenopausal OP.
Collapse
Affiliation(s)
- Daniela Greere
- Department of Endocrinology, Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Bd., 050474 Bucharest, Romania;
- Department of Clinical Endocrinology, C. I. Parhon Institute of Endocrinology, 34-38 Aviatorilor Bd., 011863 Bucharest, Romania
| | - Florin Grigorescu
- Institut Convergences Migrations, Collège de France, 1440 Ave des Orchidées, 34980 Saint Clément de Rivière, France;
| | - Dana Manda
- Molecular Cellular and Structural Endocrinology Laboratory, C. I. Parhon Institute of Endocrinology, 34-38 Aviatorilor Bd., 011863 Bucharest, Romania;
| | - Gabriela Voicu
- Nuclear Medicine Laboratory, C. I. Parhon Institute of Endocrinology, 34-38 Aviatorilor Bd., 011863 Bucharest, Romania;
| | - Corinne Lautier
- Qualisud, Univ Montpellier, Avignon Université, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Institut Agro, Institut de Recherche Pour le Développement, Université de La Réunion, 15 Ave Charles Flahault, 97400 Montpellier, France;
| | - Ileana Nitu
- Department of Cardiology, C. I. Parhon Institute of Endocrinology, 34-38 Aviatorilor Bd., 011863 Bucharest, Romania;
| | - Catalina Poiana
- Department of Endocrinology, Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Bd., 050474 Bucharest, Romania;
- Department of Clinical Endocrinology, C. I. Parhon Institute of Endocrinology, 34-38 Aviatorilor Bd., 011863 Bucharest, Romania
| |
Collapse
|
53
|
Pereira R, Maia P, Rios-Santos JV, Herrero-Climent M, Rios-Carrasco B, Aparicio C, Gil J. Influence of Titanium Surface Residual Stresses on Osteoblastic Response and Bacteria Colonization. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1626. [PMID: 38612139 PMCID: PMC11012676 DOI: 10.3390/ma17071626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Grit basting is the most common process applied to titanium dental implants to give them a roughness that favors bone colonization. There are numerous studies on the influence of roughness on osseointegration, but the influence of the compressive residual stress associated with this treatment on biological behavior has not been determined. For this purpose, four types of surfaces have been studied using 60 titanium discs: smooth, smooth with residual stress, rough without stress, and rough with residual stress. Roughness was studied by optic interferometry; wettability and surface energy (polar and dispersive components) by contact angle equipment using three solvents; and residual stresses by Bragg-Bentano X-ray diffraction. The adhesion and alkaline phosphatase (ALP) levels on the different surfaces were studied using Saos-2 osteoblastic cultures. The bacterial strains Streptococcus sanguinis and Lactobacillus salivarius were cultured on different surfaces, determining the adhesion. The results showed that residual stresses lead to increased hydrophilicity on the surfaces, as well as an increase in surface energy, especially on the polar component. From the culture results, higher adhesion and higher ALP levels were observed in the discs with residual stresses when compared between smooth and roughened discs. It was also found that roughness was the property that mostly influenced osteoblasts' response. Bacteria colonize rough surfaces better than smooth surfaces, but no changes are observed due to residual surface tension.
Collapse
Affiliation(s)
- Rita Pereira
- Facultad de Odontología, Universidad de Sevilla, Calle Avicena s/n, 41009 Sevilla, Spain; (R.P.); (J.V.R.-S.); (B.R.-C.)
| | - Paulo Maia
- Facultade Ciências da Saúde, Universidad Europeia de Lisboa,1500-210 Lisboa, Portugal;
| | - Jose Vicente Rios-Santos
- Facultad de Odontología, Universidad de Sevilla, Calle Avicena s/n, 41009 Sevilla, Spain; (R.P.); (J.V.R.-S.); (B.R.-C.)
| | | | - Blanca Rios-Carrasco
- Facultad de Odontología, Universidad de Sevilla, Calle Avicena s/n, 41009 Sevilla, Spain; (R.P.); (J.V.R.-S.); (B.R.-C.)
| | - Conrado Aparicio
- Facultad de Odontología, Universitat Internacional de Catalunya, c/ Josep Trueta s/n, 08195 Sant Cugat del Vallés, Spain;
| | - Javier Gil
- Bioengineering Institute of Technology, Universidad Internacional de Catalunya, c/ Josep Trueta s/n, 08195 Sant Cugat del Vallés, Spain
| |
Collapse
|
54
|
Mi Y, Wen O, Lei Z, Ge L, Xing L, Xi H. Insulin resistance and osteocalcin associate with the incidence and severity of postoperative delirium in elderly patients undergoing joint replacement. Geriatr Gerontol Int 2024; 24:421-429. [PMID: 38438300 DOI: 10.1111/ggi.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024]
Abstract
AIM While insulin sensitivity plays an important role in maintaining glucose metabolic homeostasis and cognitive function, its impact on postoperative delirium (POD) remains unclear. This study aimed to investigate the association between POD and indicators of insulin sensitivity, including insulin resistance and osteocalcin. METHODS A total of 120 elderly patients undergoing joint replacement were recruited and divided into delirium and non-delirium groups. Plasma and cerebrospinal fluid (CSF) samples were collected for the analysis of biomarkers, including insulin, uncarboxylated osteocalcin (ucOC), total osteocalcin (tOC), and glucose. Insulin resistance was assessed through the homeostatic model assessment of insulin resistance (HOMA-IR). MAIN RESULTS Out of the total, 28 patients (23.3%) experienced POD within 5 days after surgery. Patients with delirium exhibited higher levels of preoperative HOMA-IR and ucOC in CSF and plasma, and of tOC in CSF (P = 0.028, P < 0.001, P = 0.005, P = 0.019). After adjusting for variables, including age, Mini-Mental State Examination score, surgical site and preoperative fracture, only preoperative ucOC in CSF and HOMA-IR were significantly linked to the incidence of delirium (OR = 5.940, P = 0.008; OR = 1.208, P = 0.046, respectively), both of which also correlated with the severity of delirium (P = 0.007, P < 0.001). Receiver operating curve analysis indicated that preoperative HOMA-IR and ucOC in CSF might partly predict POD (area under the curve [AUC] = 0.697, 95% confidence interval [CI] = 0.501-0.775, AUC = 0.745, 95% CI = 0.659-0.860). CONCLUSIONS We observed that preoperative elevated HOMA-IR and ucOC in CSF were associated with the incidence and severity of POD. While these preliminary results need confirmation, they suggest a potential involvement of insulin resistance and osteocalcin in the pathological mechanism of POD. Geriatr Gerontol Int 2024; 24: 421-429.
Collapse
Affiliation(s)
- Yang Mi
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ouyang Wen
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhou Lei
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Long Ge
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Liu Xing
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - He Xi
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
55
|
Martiniakova M, Biro R, Kovacova V, Babikova M, Zemanova N, Mondockova V, Omelka R. Current knowledge of bone-derived factor osteocalcin: its role in the management and treatment of diabetes mellitus, osteoporosis, osteopetrosis and inflammatory joint diseases. J Mol Med (Berl) 2024; 102:435-452. [PMID: 38363329 PMCID: PMC10963459 DOI: 10.1007/s00109-024-02418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Osteocalcin (OC) is the most abundant non-collagenous and osteoblast-secreted protein in bone. It consists of two forms such as carboxylated OC (cOC) and undercarboxylated OC (ucOC). While cOC promotes bone mineralization and increases bone strength, ucOC is regarded an endocrinologically active form that may have several functions in multiple end organs and tissues. Total OC (tOC) includes both of these forms (cOC and ucOC) and is considered a marker of bone turnover in clinical settings. Most of the data on OC is limited to preclinical studies and therefore may not accurately reflect the situation in clinical conditions. For the stated reason, the aim of this review was not only to summarize current knowledge of all forms of OC and characterize its role in diabetes mellitus, osteoporosis, osteopetrosis, inflammatory joint diseases, but also to provide new interpretations of its involvement in the management and treatment of aforementioned diseases. In this context, special emphasis was placed on available clinical trials. Significantly lower levels of tOC and ucOC could be associated with the risk of type 2 diabetes mellitus. On the contrary, tOC level does not seem to be a good indicator of high bone turnover status in postmenopausal osteoporosis, osteoarthritis and rheumatoid arthritis. The associations between several pharmacological drugs used to treat all disorders mentioned above and OC levels have also been provided. From this perspective, OC may serve as a medium through which certain medications can influence glucose metabolism, body weight, adiponectin secretion, and synovial inflammation.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia.
| |
Collapse
|
56
|
Otani T, Mizokami A, Takeuchi H, Inai T, Hirata M. The role of adhesion molecules in osteocalcin-induced effects on glucose and lipid metabolism in adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119701. [PMID: 38417588 DOI: 10.1016/j.bbamcr.2024.119701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Recent findings suggest that uncarboxylated osteocalcin (GluOC) promotes glucose and lipid metabolism via its putative receptor GPRC6A; however, its direct effect on adipocytes remains elusive. In this study, we elucidated the effects of GluOC on adipocytes, with an emphasis on the role of cell adhesion molecules. We determined that GluOC promoted the expression of adipocyte adhesion molecule (ACAM) and its transcription factor Krüppel-like factor 4 and enhanced the cortical actin filament assembly, which ameliorated lipid droplet hypertrophy. Additionally, GluOC upregulated the expression of integrin αVβ3 and activation of focal adhesion kinase (FAK) and prevented insulin receptor substrate 1 (IRS1) degradation by inhibiting the ubiquitin-proteasome system via the FAK-PLC-PKC axis, which activated IRS1-Akt-mediated glucose transporter 4 (GLUT4) transport. Furthermore, we showed that GluOC elevated the expression of the insulin-independent glucose transporters GLUT1 and GLUT8, which facilitated insulin stimulation-independent glucose transport. The GluOC-induced activation of integrin αVβ3 signaling promoted microtubule assembly, which improved glucose and lipid metabolism via its involvement in intracellular vesicular transport. GluOC treatment also suppressed collagen type 1 formation, which might prevent adipose tissue fibrosis in obese individuals. Overall, our results imply that GluOC promotes glucose and lipid metabolism via ACAM, integrin αVβ3, and GLUT1 and 8 expression, directly affecting adipocytes.
Collapse
Affiliation(s)
- Takahito Otani
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan.
| | - Akiko Mizokami
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroshi Takeuchi
- Division of Applied Pharmacology, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Tetsuichiro Inai
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Masato Hirata
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 814-0193, Japan.
| |
Collapse
|
57
|
Yang K, Zhu Y, Shao Y, Jiang Y, Zhu L, Liu Y, Zhang P, Liu Y, Zhang X, Zhou Y. Apoptotic Vesicles Derived from Dental Pulp Stem Cells Promote Bone Formation through the ERK1/2 Signaling Pathway. Biomedicines 2024; 12:730. [PMID: 38672086 PMCID: PMC11048106 DOI: 10.3390/biomedicines12040730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Osteoporosis is a common degenerative bone disease. The treatment of osteoporosis remains a clinical challenge in light of the increasing aging population. Human dental pulp stem cells (DPSCs), a type of mesenchymal stem cells (MSCs), are easy to obtain and have a high proliferation ability, playing an important role in the treatment of osteoporosis. However, MSCs undergo apoptosis within a short time when used in vivo; therefore, apoptotic vesicles (apoVs) have attracted increasing attention. Currently, the osteogenic effect of DPSC-derived apoVs is unknown; therefore, this study aimed to determine the role of DPSC-derived apoVs and their potential mechanisms in bone regeneration. We found that MSCs could take up DPSC-derived apoVs, which then promoted MSC osteogenesis in vitro. Moreover, apoVs could increase the trabecular bone count and bone mineral density in the mouse osteoporosis model and could promote bone formation in rat cranial defects in vivo. Mechanistically, apoVs promoted MSC osteogenesis by activating the extracellular regulated kinase (ERK)1/2 signaling pathway. Consequently, we propose a novel therapy comprising DPSC-derived apoVs, representing a promising approach to treat bone loss and bone defects.
Collapse
Affiliation(s)
- Kunkun Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yuzi Shao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yuhe Jiang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Lei Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yaoshan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (K.Y.); (Y.Z.); (Y.S.); (Y.J.); (L.Z.); (Y.L.); (P.Z.); (Y.L.)
- National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| |
Collapse
|
58
|
Fernández-Rodríguez R, Garrido-Miguel M, Bizzozero-Peroni B, Díaz-Goñi V, Rodríguez-Gutiérrez E, Guzmán-Pavón MJ, Meseguer-Henarejos AB, Torres-Costoso A. Time-Restricted Eating and Bone Health: A Systematic Review with Meta-Analysis. Nutrients 2024; 16:876. [PMID: 38542787 PMCID: PMC10974430 DOI: 10.3390/nu16060876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
Time-restricted eating (TRE) has emerged as a dietary strategy that restricts food consumption to a specific time window and is commonly applied to facilitate weight loss. The benefits of TRE on adipose tissue have been evidenced in human trials and animal models; however, its impact on bone tissue remains unclear. To systematically synthesize and examine the evidence on the impact of TRE on bone health (bone mineral content (BMC), bone mineral density (BMD), and bone turnover factors), PubMed, Scopus, Cochrane CENTRAL, and Web of Science databases were systematically explored from inception to 1 October 2023 searching for randomized controlled trials (RCTs) aimed at determining the effects of TRE on bone health in adults (≥18 years). The Cochrane Handbook and the PRISMA recommendations were followed. A total of seven RCTs involving 313 participants (19 to 68 years) were included, with an average length of 10.5 weeks (range: 4 to 24 weeks). Despite the significant weight loss reported in five out of seven studies when compared to the control, our meta-analysis showed no significant difference in BMD (g/cm2) between groups (MD = -0.009, 95% CI: -0.026 to 0.009, p = 0.328; I2 = 0%). BMC and bone turnover markers between TRE interventions and control conditions were not meta-analyzed because of scarcity of studies (less than five). Despite its short-term benefits on cardiometabolic health, TRE did not show detrimental effects on bone health outcomes compared to those in the control group. Nevertheless, caution should be taken when interpreting our results due to the scarcity of RCTs adequately powered to assess changes in bone outcomes.
Collapse
Affiliation(s)
- Rubén Fernández-Rodríguez
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16002 Cuenca, Spain; (R.F.-R.); (M.G.-M.); (V.D.-G.); (E.R.-G.); (A.T.-C.)
| | - Miriam Garrido-Miguel
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16002 Cuenca, Spain; (R.F.-R.); (M.G.-M.); (V.D.-G.); (E.R.-G.); (A.T.-C.)
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), 16002 Cuenca, Spain
- Faculty of Nursing, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Bruno Bizzozero-Peroni
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16002 Cuenca, Spain; (R.F.-R.); (M.G.-M.); (V.D.-G.); (E.R.-G.); (A.T.-C.)
- Instituto Superior de Educación Física, Universidad de la República, Rivera 40000, Uruguay
| | - Valentina Díaz-Goñi
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16002 Cuenca, Spain; (R.F.-R.); (M.G.-M.); (V.D.-G.); (E.R.-G.); (A.T.-C.)
| | - Eva Rodríguez-Gutiérrez
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16002 Cuenca, Spain; (R.F.-R.); (M.G.-M.); (V.D.-G.); (E.R.-G.); (A.T.-C.)
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), 16002 Cuenca, Spain
| | - María José Guzmán-Pavón
- Faculty of Physiotherapy and Nursing, Universidad de Castilla-La Mancha, 45071 Toledo, Spain;
| | | | - Ana Torres-Costoso
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16002 Cuenca, Spain; (R.F.-R.); (M.G.-M.); (V.D.-G.); (E.R.-G.); (A.T.-C.)
- Faculty of Physiotherapy and Nursing, Universidad de Castilla-La Mancha, 45071 Toledo, Spain;
| |
Collapse
|
59
|
Gao F, Hu Q, Chen W, Li J, Qi C, Yan Y, Qian C, Wan M, Ficke J, Zheng J, Cao X. Brain regulates weight bearing bone through PGE2 skeletal interoception: implication of ankle osteoarthritis and pain. Bone Res 2024; 12:16. [PMID: 38443372 PMCID: PMC10914853 DOI: 10.1038/s41413-024-00316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 03/07/2024] Open
Abstract
Bone is a mechanosensitive tissue and undergoes constant remodeling to adapt to the mechanical loading environment. However, it is unclear whether the signals of bone cells in response to mechanical stress are processed and interpreted in the brain. In this study, we found that the hypothalamus of the brain regulates bone remodeling and structure by perceiving bone prostaglandin E2 (PGE2) concentration in response to mechanical loading. Bone PGE2 levels are in proportion to their weight bearing. When weight bearing changes in the tail-suspension mice, the PGE2 concentrations in bones change in line with their weight bearing changes. Deletion of cyclooxygenase-2 (COX2) in the osteoblast lineage cells or knockout of receptor 4 (EP4) in sensory nerve blunts bone formation in response to mechanical loading. Moreover, knockout of TrkA in sensory nerve also significantly reduces mechanical load-induced bone formation. Moreover, mechanical loading induces cAMP-response element binding protein (CREB) phosphorylation in the hypothalamic arcuate nucleus (ARC) to inhibit sympathetic tyrosine hydroxylase (TH) expression in the paraventricular nucleus (PVN) for osteogenesis. Finally, we show that elevated PGE2 is associated with ankle osteoarthritis (AOA) and pain. Together, our data demonstrate that in response to mechanical loading, skeletal interoception occurs in the form of hypothalamic processing of PGE2-driven peripheral signaling to maintain physiologic bone homeostasis, while chronically elevated PGE2 can be sensed as pain during AOA and implication of potential treatment.
Collapse
Affiliation(s)
- Feng Gao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Qimiao Hu
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Wenwei Chen
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Jilong Li
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Cheng Qi
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Yiwen Yan
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Cheng Qian
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Mei Wan
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - James Ficke
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Junying Zheng
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xu Cao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
| |
Collapse
|
60
|
Ruiz CR, Cenarruzabeitia NV, Villanueva MM, Hernández Martínez AM, Noguera Velasco JA. La osteocalcina se asocia con la densidad mineral ósea y los polimorfismos del gen VDR en la diabetes tipo 1 y 2. ADVANCES IN LABORATORY MEDICINE 2024; 5:56-65. [PMID: 38634084 PMCID: PMC11019893 DOI: 10.1515/almed-2023-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/26/2023] [Indexed: 04/19/2024]
Abstract
Resumen
Objetivos
El metabolismo óseo se encuentra alterado en la diabetes mellitus (DM). El objetivo de este estudio es evaluar la relación entre los marcadores de remodelado óseo (MRO), los polimorfismos en el gen receptor de la vitamina D (VDR) y la densidad mineral ósea (DMO) en la DM tipo 1 (T1D) y tipo 2 (T2D).
Métodos
Se incluyó a 165 pacientes (53 T1D y 112 T2D). La DMO se midió mediante absorciometría de rayos X de energía dual (DEXA). Se realizó un análisis de la osteocalcina (OC) en plasma, beta-CrossLaps (β-CTX), propéptido aminoterminal del procolágeno tipo 1 (P1NP) y los polimorfismos en el gen VDR.
Resultados
Se incluyó a 53 pacientes con T1D (41 años (31–48)) y 112 con T2D (60 años [51–66]). No se observaron diferencias estadísticamente significativas en relación a la DMO. Los pacientes con T1D presentaron niveles superiores de OC (p<0,001) y P1NP (p<0,001). Las áreas bajo la curva para la predicción de patología ósea para la OC fueron 0,732 (p=0,038) en T1D y 0,697 (p=0,007) en T2D. Se observó una relación estadísticamente significativa entre el alelo A de BsmI (p=0,03), el alelo A de ApaI (p=0,04) y el alelo C de Taql (p=0,046) y una menor DMO. Así mismo, se encontró una correlación significativa entre los niveles elevados de OC y el alelo G de BsmI (p=0,044), el alelo C de ApaI (p=0,011), el alelo T de Taql (p=0,006) y el alelo C de FokI (p=0,004).
Conclusiones
El elevado valor predictivo negativo del punto de corte de la OC indica que la OC podría ser útil a la hora de descartar el riesgo de pérdida ósea, lo que permitiría diseñar un tratamiento personalizado para prevenir dicha patología.
Collapse
Affiliation(s)
- Carla Ramírez Ruiz
- Departamento de Bioquímica Clínica, Clínica Universidad de Navarra, Madrid, España
| | | | - Miriam Martínez Villanueva
- Departamento de Bioquímica Clínica, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, España
| | - Antonio M Hernández Martínez
- Departamento de Nutrición y Endocrinología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, España
| | - José A Noguera Velasco
- Departamento de Bioquímica Clínica, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, España
| |
Collapse
|
61
|
Ramírez Ruiz C, Varo Cenarruzabeitia N, Martínez Villanueva M, Hernández Martínez AM, Noguera Velasco JA. Osteocalcin associates with bone mineral density and VDR gene polymorphisms in type 1 and type 2 diabetes. ADVANCES IN LABORATORY MEDICINE 2024; 5:46-55. [PMID: 38634086 PMCID: PMC11019880 DOI: 10.1515/almed-2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/26/2023] [Indexed: 04/19/2024]
Abstract
Objectives Bone metabolism is impaired in diabetes mellitus (DM). Our objective is to evaluate the association of bone turnover markers (BTM) and vitamin D receptor (VDR) gene polymorphisms with bone mineral density (BMD) in DM type 1 (T1D) and DM type 2 (T2D). Methods A total of 165 patients (53 T1D and 112 T2D) were enrolled. BMD was measured by dual-energy X-ray absorptiometry (DEXA). Plasma osteocalcin (OC), beta-CrossLaps (β-CTX) and N-amino terminal propeptide of type I collagen (P1NP) and VDR gene polymorphisms were evaluated. Results Participants were 53 T1D (41 years [31-48]) and 112 T2D (60 years [51-66]). BMD were not statistically different between the groups. OC (p<0.001) and P1NP levels (p<0.001) were higher in patients with T1D. The areas under the curve for the prediction of bone pathology were 0.732 (p=0.038) for OC in T1D and 0.697 (p=0.007) in T2D. A significant association was found between lower lumbar BMD and the A allele of BsmI (p=0.03), the A allele of ApaI (p=0.04) and the allele C of the Taql (p=0.046). Also, a significant correlation was found with higher OC levels and the G allele of BsmI (p=0.044), C allele of ApaI (p=0.011), T allele of Taql (p=0.006) and with C allele of FokI (p=0.004). Conclusions The high negative predictive value of the cut-off point for OC suggests that could be useful in excluding the risk suffering bone loss, allowing offering a personalized clinical approach to prevent this pathology.
Collapse
Affiliation(s)
- Carla Ramírez Ruiz
- Department of Clinical Biochemistry, Clínica Universidad de Navarra, Madrid, Spain
- Servicio de Bioquímica, Clínica Universidad de Navarra – Madrid, Madrid, Spain
| | | | - Miriam Martínez Villanueva
- Department of Clinical Biochemistry, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | | | | |
Collapse
|
62
|
González-Casaus ML. El diálogo oculto entre el hueso y los tejidos a través del remodelado óseo. ADVANCES IN LABORATORY MEDICINE 2024; 5:35-45. [PMID: 38634083 PMCID: PMC11019877 DOI: 10.1515/almed-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 04/19/2024]
Abstract
El hueso es mucho más que un reservorio de calcio y fósforo. Su disposición lacuno-canalicular ofrece una importante vía de intercambio con la circulación y actualmente, el esqueleto se considera un gran órgano endocrino, con acciones que van más allá del control del balance fosfocálcico mediado por el factor fibroblástico 23 (FGF23). Paralelamente al efecto modulador de las adipoquinas sobre el remodelado óseo, diversas proteínas óseas, como la osteocalcina y la esclerostina, ejercen cierta acción contra-reguladora sobre el metabolismo energético, posiblemente en un intento de asegurar los enormes requerimientos energéticos del remodelado. En esta interacción del hueso con otros tejidos, especialmente el adiposo, participa la señalización canónica Wnt/β-catenina y por ello la esclerostina, una proteína osteocítica que inhibe esta señalización, emerge como un potencial biomarcador. Es más, su participación en diversas patologías le posiciona como diana terapéutica, existiendo un anticuerpo anti-esclerostina, recientemente aprobado en nuestro país para el tratamiento de la osteoporosis. Esta revisión aborda el carácter endocrino del hueso, el papel de la osteocalcina y, especialmente, el papel regulador y modulador de la esclerostina sobre remodelado óseo y la homeóstasis energética a través de su interacción con la señalización canónica Wnt/β-catenina, así como su potencial utilidad como biomarcador.
Collapse
|
63
|
Yang Y, Liu J, Kousteni S. Lipocalin 2-A bone-derived anorexigenic and β-cell promoting signal: From mice to humans. J Diabetes 2024; 16:e13504. [PMID: 38035773 PMCID: PMC10940901 DOI: 10.1111/1753-0407.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
The skeleton is traditionally known for its structural support, organ protection, movement, and maintenance of mineral homeostasis. Over the last 10 years, bone has emerged as an endocrine organ with diverse physiological functions. The two key molecules in this context are fibroblast growth factor 23 (FGF23), secreted by osteocytes, and osteocalcin, a hormone produced by osteoblasts. FGF23 affects mineral homeostasis through its actions on the kidneys, and osteocalcin has beneficial effects in improving glucose homeostasis, muscle function, brain development, cognition, and male fertility. In addition, another osteoblast-derived hormone, lipocalin 2 (LCN2) has emerged into the researchers' field of vision. In this review, we mainly focus on LCN2's role in appetite regulation and glucose metabolism and also briefly introduce its effects in other pathophysiological conditions, such as nonalcoholic fatty liver disease, sarcopenic obesity, and cancer-induced cachexia.
Collapse
Affiliation(s)
- Yuying Yang
- Department of Endocrine and Metabolic Diseases, Rui‐jin Hospital, Shanghai Jiao Tong University School of MedicineShanghai Institute of Endocrine and Metabolic Diseases, and Shanghai Clinical Center for Endocrine and Metabolic DiseasesShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Rui‐jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianmin Liu
- Department of Endocrine and Metabolic Diseases, Rui‐jin Hospital, Shanghai Jiao Tong University School of MedicineShanghai Institute of Endocrine and Metabolic Diseases, and Shanghai Clinical Center for Endocrine and Metabolic DiseasesShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Rui‐jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Stavroula Kousteni
- Department of Physiology and Cellular BiophysicsColumbia University Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
64
|
González-Casaus ML. The hidden cross talk between bone and tissues through bone turnover. ADVANCES IN LABORATORY MEDICINE 2024; 5:24-34. [PMID: 38634076 PMCID: PMC11019897 DOI: 10.1515/almed-2023-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 04/19/2024]
Abstract
Bone is more than a reservoir of calcium and phosphorus. Its lacuno-canalicular arrangement provides an important pathway for exchange with circulation and currently, the skeleton is considered a large endocrine organ with actions that go beyond the control of calcium-phosphorus balance mediated by fibroblastic growth factor 23 (FGF23). Parallel to the modulating effect of adipokines on bone turnover, certain bone proteins, such as osteocalcin and sclerostin, play a counter-regulatory role on energy metabolism, probably in an attempt to ensure its high energy requirement for bone turnover. In this crosstalk between bone and other tissues, especially with adipose tissue, canonical Wnt/β-catenin signaling is involved and therefore, sclerostin, an osteocyte derived protein that inhibits this signalling, emerges as a potential biomarker. Furthermore, its involvement in diverse pathologic conditions supports sclerostin as a therapeutic target, with an anti-sclerostin antibody recently approved in our country for the treatment of osteoporosis. This review addresses the endocrine nature of bone, the role of osteocalcin, and specially, the regulatory and modulatory role of sclerostin on bone turnover and energy homeostasis through its inhibitory effect on canonical Wnt/β-catenin signaling, as well as its potential utility as a biomarker.
Collapse
|
65
|
Tian N, Chen S, Han H, Jin J, Li Z. Association between triglyceride glucose index and total bone mineral density: a cross-sectional study from NHANES 2011-2018. Sci Rep 2024; 14:4208. [PMID: 38378872 PMCID: PMC10879154 DOI: 10.1038/s41598-024-54192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
The Homeostatic Model Assessment for Triglyceride Glucose Index (TyG) and its related indices, including triglyceride glucose-waist circumference (TyG-WC), triglyceride glucose-waist-to-height ratio (TyG-WHtR) and triglyceride glucose-body mass index (TyG-BMI), has emerged as a practical tool for assessing insulin resistance in metabolic disorders. However, limited studies have explored the connection between TyG, TyG-related indices and osteoporosis. This population-based study, utilizing data from the National Health and Nutrition Examination Survey 2011-2018, involved 5456 participants. Through weighted multivariate linear regression and smoothed curve fitting, a significant positive correlation was found between TyG, TyG-related indices and total bone mineral density (BMD) after adjusting for covariates [β = 0.0124, 95% CI (0.0006, 0.0242), P = 0.0390; β = 0.0004, 95% CI (0.0003, 0.0004), P < 0.0001; β = 0.0116, 95% CI (0.0076, 0.0156), P < 0.0001; β = 0.0001, 95% CI (0.0001, 0.0001), P < 0.0001]. In subgroup analysis, race stratification significantly affected the relationship between TyG and total BMD. Additionally, gender and race were both significant for TyG-related indices. Non-linear relationships and threshold effects with inflection points at 9.106, 193.9265, 4.065, and 667.5304 (TyG, TyG-BMI, TyG-WHtR, TyG-WC) were identified. Saturation phenomena were observed between TyG-BMI, TyG-WC and total BMD with saturation thresholds at 314.177 and 1022.0428. These findings contributed to understanding the association between TyG, TyG-related indices and total BMD, offering insights for osteoporosis prevention and treatment.
Collapse
Affiliation(s)
- Ningsheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu Province, People's Republic of China
| | - Shuai Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu Province, People's Republic of China
| | - Huawei Han
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu Province, People's Republic of China
| | - Jie Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu Province, People's Republic of China
| | - Zhiwei Li
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu Province, People's Republic of China.
| |
Collapse
|
66
|
Correa Pinto Junior D, Canal Delgado I, Yang H, Clemenceau A, Corvelo A, Narzisi G, Musunuri R, Meyer Berger J, Hendricks LE, Tokumura K, Luo N, Li H, Oury F, Ducy P, Yadav VK, Li X, Karsenty G. Osteocalcin of maternal and embryonic origins synergize to establish homeostasis in offspring. EMBO Rep 2024; 25:593-615. [PMID: 38228788 PMCID: PMC10897216 DOI: 10.1038/s44319-023-00031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024] Open
Abstract
Many physiological osteocalcin-regulated functions are affected in adult offspring of mothers experiencing unhealthy pregnancy. Furthermore, osteocalcin signaling during gestation influences cognition and adrenal steroidogenesis in adult mice. Together these observations suggest that osteocalcin may broadly function during pregnancy to determine organismal homeostasis in adult mammals. To test this hypothesis, we analyzed in unchallenged wildtype and Osteocalcin-deficient, newborn and adult mice of various genotypes and origin maintained on different genetic backgrounds, the functions of osteocalcin in the pancreas, liver and testes and their molecular underpinnings. This analysis revealed that providing mothers are Osteocalcin-deficient, Osteocalcin haploinsufficiency in embryos hampers insulin secretion, liver gluconeogenesis, glucose homeostasis, testes steroidogenesis in adult offspring; inhibits cell proliferation in developing pancreatic islets and testes; and disrupts distinct programs of gene expression in these organs and in the brain. This study indicates that osteocalcin exerts dominant functions in most organs it influences. Furthermore, through their synergistic regulation of multiple physiological functions, osteocalcin of maternal and embryonic origins contributes to the establishment and maintenance of organismal homeostasis in newborn and adult offspring.
Collapse
Affiliation(s)
- Danilo Correa Pinto Junior
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Isabella Canal Delgado
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Haiyang Yang
- Guangdong Provincial Key Laboratory of Brain Connectome, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Alisson Clemenceau
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | | | | - Julian Meyer Berger
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lauren E Hendricks
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kazuya Tokumura
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Na Luo
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Hongchao Li
- Guangdong Provincial Key Laboratory of Brain Connectome, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Franck Oury
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Descartes-Sorbonne, Paris Cité, Paris, France.
| | - Patricia Ducy
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Vijay K Yadav
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Brain Connectome, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
| | - Gerard Karsenty
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
67
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
68
|
Munn AL, van Wettere WHEJ, Swinbourne AM, Lean IJ, Weaver AC. Effects of feeding a negative dietary cation and anion difference diet to twin-bearing Merino ewes in late gestation on parturition outcomes. J Anim Sci 2024; 102:skae266. [PMID: 39269334 PMCID: PMC11452654 DOI: 10.1093/jas/skae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024] Open
Abstract
In Australia, dystocia is responsible for 53% of lamb mortalities, and calcium deficiencies may be a contributing factor. A negative dietary cation-anion difference (DCAD) diet can increase calcium concentrations in sheep. Therefore, this study aimed to investigate the effects of a negative DCAD diet on metabolic state, mineral status, and parturition duration in ewes compared with those fed a positive DCAD diet. At approximately day 130 of gestation (dG), 71 twin-bearing ewes were placed in the following treatment groups; ewes receiving a positive DCAD TMR (total mixed ration; DCAD of total diet = 281.8 mEq/kg DM; n = 35) and twin-bearing ewes receiving a negative DCAD TMR (DCAD of total diet = -89.0 mEq/kg DM; n = 36). Urine and blood were sampled on dG 130, 140, and 145, and blood was also sampled at the onset of parturition and 4 h postpartum. Urine was analyzed for pH and blood was analyzed for metabolites, mineral concentration, and acid-base balance. Lambs' liveweight, rectal temperature, blood glucose and lactate, and body morphology were measured. Serum phosphate concentrations at dG 145 were significantly lower for negative DCAD ewes compared with positive DCAD ewes (1.9 ± 0.1 vs. 2.1 ± 0.1 mmol/L, P = 0.047). Ionized calcium (P = 0.09) and serum magnesium (P = 0.09) prepartum were marginally greater in the negative DCAD ewes (1.35 ± 0.06 and 1.06 ± 0.03 mmol/L, respectively) compared with the positive DCAD ewes (1.18 ± 0.08 and 0.98 ± 0.04 mmol/L, respectively). Urine pH was lower in the negative DCAD ewes compared with positive DCAD ewes at both dG 140 (7.38 ± 0.17 vs. and 8.10 ± 0.19. P = 0.01) and dG 145 (and 7.20 ± 0.19 vs. 8.25. P < 0.01). The birth interval between the first the second-born lamb was shorter in the negative DCAD ewes compared with the positive DCAD ewes (P = 0.02), but no differences in lamb survival or lamb viability (P > 0.05) were seen. The negative DCAD diet reduced parturition duration, most likely due to the marginally greater ionized calcium and magnesium concentrations. Despite this improvement, the negative DCAD ewes did not reach urinary acidification, indicating that the marginally significant greater ionized calcium and serum magnesium concentrations were due to the magnesium in the diets and not metabolic acidosis. Further research testing a negative DCAD diet that can achieve the target urine pH is required to determine whether this diet can decrease parturition duration and improve lamb viability.
Collapse
Affiliation(s)
- Amy L Munn
- Davies Livestock Research Centre, The University of Adelaide, Roseworthy, South Australia 5371, Australia
| | - William H E J van Wettere
- Davies Livestock Research Centre, The University of Adelaide, Roseworthy, South Australia 5371, Australia
| | - Alyce M Swinbourne
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia 5350, Australia
| | - Ian J Lean
- Scibus, Camden, New South Wales 2570, Australia
| | - Alice C Weaver
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia 5350, Australia
| |
Collapse
|
69
|
Zhao Z, Yan K, Guan Q, Guo Q, Zhao C. Mechanism and physical activities in bone-skeletal muscle crosstalk. Front Endocrinol (Lausanne) 2024; 14:1287972. [PMID: 38239981 PMCID: PMC10795164 DOI: 10.3389/fendo.2023.1287972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
Bone and skeletal muscle work in coordination to maintain the function of the musculoskeletal system, in which skeletal muscle contraction drives the movement of the bone lever system while bone provides insert sites for skeletal muscle through the bone-muscle junction. Existing evidence suggests that factors secreted by skeletal muscle and bone mediate the interaction between the two tissues. Herein, we focused on the relationship between skeletal muscle and bone and the underlying mechanism of the interaction. Exercise can promote bone strength and secrete osteocalcin and insulin-like growth factor I into the blood, thus improving muscle quality. In addition, exercise can also promote myostatin, interleukin-6, Irisin, and apelin in muscles to enter the blood so that they can act on bones to maintain the balance between bone absorption and bone formation. There is a special regulatory axis interleukin-6/osteocalcin between myokines and osteokines, which is mainly influenced by exercise. Therefore, we pay attention to the important factors in the bone-muscle intersection that are affected by exercise, which were found or their functions were expanded, which strengthened the connection between organs of the whole body, highlighting the importance of exercise and contributing to the diagnosis, prevention, and treatment of osteoporosis and sarcopenia in the clinic.
Collapse
Affiliation(s)
- Zhonghan Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qiao Guan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qiang Guo
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Zhao
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
70
|
Munn AL, van Wettere WHEJ, Swinbourne AM, Lean IJ, Weaver AC. Negative dietary cation and anion difference supplementation of twin-bearing Merino ewes grazing pasture in late gestation did not affect lamb growth or survival. J Anim Sci 2024; 102:skae205. [PMID: 39046439 PMCID: PMC11306788 DOI: 10.1093/jas/skae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
Each year in Australia, 53% of lamb mortalities are attributed to dystocia, with subclinical maternal calcium deficiencies likely contributing to dystocia rates. A negative dietary cation and anion difference (DCAD) diet has increased circulating calcium in sheep. Therefore, this study aimed to investigate the effects of supplementing twin-bearing, grazing ewes with a negative DCAD partial mixed ration (PMR) during late gestation on ewe calcium and magnesium concentrations and subsequent lamb growth and survival. On day 120 of gestation (dG), blood samples were collected from 115 twin-bearing Merino ewes and analyzed for glucose, ketone bodies, pH, ionized calcium, and serum calcium and magnesium. On dG 130, ewes were moved into lambing paddocks and placed in the following 2 treatment groups; ewes receiving a positive DCAD PMR (DCAD = 287 mEq/kg DM; n = 58) and ewes receiving a negative DCAD PMR (DCAD = -125 mEq/kg DM; n = 57) fed as a PMR. On dG 140, a blood and urine sample were collected. The urine was tested for pH. Pasture samples were taken on dG 133 and 149 and tested for DCAD and mineral content. When a lamb was 6 to 18 h old, survival, vigor score, liveweight (LW), rectal temperature, blood glucose, and body morphology were recorded. At 10 d of age, lamb LW and survival were recorded and a milk sample was collected from ewes. At 44 d of age, lamb LW and survival were recorded. The DCAD of the pastures across the 6 paddocks ranged from 598 to 893 mEq/kg DM. There were no differences in lamb survival, weight, or viability at any timepoint (P > 0.05). There were no differences in mineral status, metabolic state, or acid-base balance between the positive and negative DCAD-supplemented ewes (P > 0.05) during supplementation (dG 140). Supplementing a negative DCAD diet to ewes grazing pasture during late gestation did not improve lamb survival. The blood and urine pH of the negative DCAD-supplemented ewes indicated a mild metabolic acidosis was not reached due to the high DCAD of the pastures. Further research needs to take careful consideration of the DCAD of pasture when designing a negative DCAD supplement in order for it to be effective.
Collapse
Affiliation(s)
- Amy Laurel Munn
- Davies Livestock Research Centre, the University of Adelaide, Roseworthy, South Australia 5371, Australia
| | - William H E J van Wettere
- Davies Livestock Research Centre, the University of Adelaide, Roseworthy, South Australia 5371, Australia
| | - Alyce Marie Swinbourne
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia 5350, Australia
| | | | - Alice Caroline Weaver
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia 5350, Australia
| |
Collapse
|
71
|
Weaver AC, Braun TC, Braun JA, Golder HM, Block E, Lean IJ. Effects of negative dietary cation-anion difference and calcidiol supplementation in transition diets fed to sows on piglet survival, piglet weight, and sow metabolism. J Anim Sci 2024; 102:skae027. [PMID: 38285624 PMCID: PMC10889728 DOI: 10.1093/jas/skae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/27/2024] [Indexed: 01/31/2024] Open
Abstract
Diets that provide a negative dietary anion cation difference (DCAD) and supplement with a vitamin D metabolite 25-OH-D3 (calcidiol) may increase calcium availability at parturition, and enhance piglet survival and performance. This factorial study assessed the effects of DCAD, calcidiol (50 µg/kg), and parity (parity 1 or >1) and their interactions. Large White and Landrace sows (n = 328), parity 1 to 8 were randomly allocated in blocks to treatment diets from day 103 of gestation until day 3 postfarrow: 1) negative DCAD without calcidiol (negative DCAD + no CA), n = 84, 2) negative DCAD with calcidiol (negative DCAD + CA) n = 84, 3) positive DCAD without calcidiol (negative DCAD + no CA), n = 81, and 4) positive DCAD with calcidiol (positive DCAD + CA), n = 79. Negative DCAD diets were acidified with an anionic feed (2 kg/t) and magnesium sulfate (2 kg/t). All treatment diets contained cholecalciferol at 1,000 IU/kg. Dry sow diets contained 14.8% crude protein (CP), 5.4% crude fiber (CF), 0.8% Ca, and 83 mEq/kg DCAD. Treatment diets 1 and 2 contained 17.5% CP, 7.3% CF, 0.8% Ca, and -2 mEq/kg DCAD. Treatment diets 3 and 4 contained 17.4% CP, 7.4% CF, 0.8% Ca, and 68 mEq/kg DCAD. Before farrowing, all negative DCAD sows had lower urine pH than all sows fed a positive DCAD (5.66 ± 0.05 and 6.29 ± 0.05, respectively; P < 0.01); urinary pH was acidified for both DCAD treatments indicating metabolic acidification. The percentage of sows with stillborn piglets was not affected by DCAD, calcidiol, or parity alone but sows fed the negative DCAD + CA diet had a 28% reduction in odds of stillbirth compared to the negative DCAD + no CA diet and even lesser odds to the positive DCAD + CA diet. At day 1 after farrowing, blood gas, and mineral and metabolite concentrations were consistent with feeding a negative DCAD diet and that negative DCAD diets influence energy metabolism, as indicated by increased glucose, cholesterol, and osteocalcin concentrations and reduced nonesterified free fatty acids and 3-hydroxybutyrate concentrations. In the subsequent litter, total piglets born and born alive (14.7 ± 0.3 and 13.8 ± 0.3 piglets, respectively; P = 0.029) was greater for positive DCAD diets compared to negative DCAD diets; and there was an interaction between DCAD, calcidiol, and parity (P = 0.002). Feeding a negative DCAD diet influenced stillbirth, subsequent litter size, and metabolic responses at farrowing. More studies are needed to define optimal diets prefarrowing for sows.
Collapse
Affiliation(s)
| | | | | | | | - Elliot Block
- Arm & Hammer Animal Nutrition, Princeton, NJ 08543, USA
| | - Ian John Lean
- South Australian Research and Development Institute, Rosedale, SA 5350, Australia
- Scibus, Camden, NSW 2570, Australia
| |
Collapse
|
72
|
Smith C, Sim M, Dalla Via J, Levinger I, Duque G. The Interconnection Between Muscle and Bone: A Common Clinical Management Pathway. Calcif Tissue Int 2024; 114:24-37. [PMID: 37922021 DOI: 10.1007/s00223-023-01146-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/26/2023] [Indexed: 11/05/2023]
Abstract
Often observed with aging, the loss of skeletal muscle (sarcopenia) and bone (osteoporosis) mass, strength, and quality, is associated with reduced physical function contributing to falls and fractures. Such events can lead to a loss of independence and poorer quality of life. Physical inactivity (mechanical unloading), especially in older adults, has detrimental effects on the mass and quality of bone as well as muscle, while increases in activity (mechanical loading) have positive effects. Emerging evidence suggests that the relationship between bone and muscle is driven, at least in part, by bone-muscle crosstalk. Bone and muscle are closely linked anatomically, mechanically, and biochemically, and both have the capacity to function with paracrine and endocrine-like action. However, the exact mechanisms involved in this crosstalk remain only partially explored. Given older adults with lower bone mass are more likely to present with impaired muscle function, and vice versa, strategies capable of targeting both bone and muscle are critical. Exercise is the primary evidence-based prevention strategy capable of simultaneously improving muscle and bone health. Unfortunately, holistic treatment plans including exercise in conjunction with other allied health services to prevent or treat musculoskeletal disease remain underutilized. With a focus on sarcopenia and osteoporosis, the aim of this review is to (i) briefly describe the mechanical and biochemical interactions between bone and muscle; (ii) provide a summary of therapeutic strategies, specifically exercise, nutrition and pharmacological approaches; and (iii) highlight a holistic clinical pathway for the assessment and management of sarcopenia and osteoporosis.
Collapse
Affiliation(s)
- Cassandra Smith
- School of Medical and Health Sciences, Nutrition and Health Innovation Research Institute, Edith Cowan University, Joondalup, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Marc Sim
- School of Medical and Health Sciences, Nutrition and Health Innovation Research Institute, Edith Cowan University, Joondalup, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Jack Dalla Via
- School of Medical and Health Sciences, Nutrition and Health Innovation Research Institute, Edith Cowan University, Joondalup, WA, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Gustavo Duque
- Bone, Muscle & Geroscience Research Group, Research Institute of the MUHC, Montreal, QC, Canada.
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
73
|
Jawich K, Hadakie R, Jamal S, Habeeb R, Al Fahoum S, Ferlin A, De Toni L. Emerging Role of Non-collagenous Bone Proteins as Osteokines in Extraosseous Tissues. Curr Protein Pept Sci 2024; 25:215-225. [PMID: 37937553 DOI: 10.2174/0113892037268414231017074054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023]
Abstract
Bone is a unique tissue, composed of various types of cells embedded in a calcified extracellular matrix (ECM), whose dynamic structure consists of organic and inorganic compounds produced by bone cells. The main inorganic component is represented by hydroxyapatite, whilst the organic ECM is primarily made up of type I collagen and non-collagenous proteins. These proteins play an important role in bone homeostasis, calcium regulation, and maintenance of the hematopoietic niche. Recent advances in bone biology have highlighted the importance of specific bone proteins, named "osteokines", possessing endocrine functions and exerting effects on nonosseous tissues. Accordingly, osteokines have been found to act as growth factors, cell receptors, and adhesion molecules, thus modifying the view of bone from a static tissue fulfilling mobility to an endocrine organ itself. Since bone is involved in a paracrine and endocrine cross-talk with other tissues, a better understanding of bone secretome and the systemic roles of osteokines is expected to provide benefits in multiple topics: such as identification of novel biomarkers and the development of new therapeutic strategies. The present review discusses in detail the known osseous and extraosseous effects of these proteins and the possible respective clinical and therapeutic significance.
Collapse
Affiliation(s)
- Kenda Jawich
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
- Department of Biochemistry, Faculty of Pharmacy, International University of Science and Technology, Darrah, Syrian Arab Republic
| | - Rana Hadakie
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
| | - Souhaib Jamal
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
| | - Rana Habeeb
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
- Department of Biochemistry, Faculty of Pharmacy, International University of Science and Technology, Darrah, Syrian Arab Republic
| | - Sahar Al Fahoum
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
| | - Alberto Ferlin
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Luca De Toni
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| |
Collapse
|
74
|
Zheng WB, Hu J, Sun L, Liu JY, Zhang Q, Wang O, Jiang Y, Xia WB, Xing XP, Li M. Correlation of lipocalin 2 and glycolipid metabolism and body composition in a large cohort of children with osteogenesis imperfecta. J Endocrinol Invest 2024; 47:47-58. [PMID: 37326909 PMCID: PMC10776749 DOI: 10.1007/s40618-023-02121-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023]
Abstract
PURPOSE Lipocalin 2 (LCN2) is a newly recognized bone-derived factor that is important in regulation of energy metabolism. We investigated the correlation of serum LCN2 levels and glycolipid metabolism, and body composition in a large cohort of patients with osteogenesis imperfecta (OI). METHODS A total of 204 children with OI and 66 age- and gender-matched healthy children were included. Circulating levels of LCN2 and osteocalcin were measured by enzyme-linked immunosorbent assay. Serum levels of fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), and low- and high-density lipoprotein cholesterol (LDL-C, HDL-C) were measured by automated chemical analyzers. The body composition was measured by dual-energy X-ray absorptiometry. Grip strength and timed-up-and-go (TUG) were tested to evaluate the muscle function. RESULTS Serum LCN2 levels were 37.65 ± 23.48 ng/ml in OI children, which was significantly lower than those in healthy control (69.18 ± 35.43 ng/ml, P < 0.001). Body mass index (BMI) and serum FBG level were significantly higher and HDL-C levels were lower in OI children than healthy control (all P < 0.01). Grip strength was significantly lower (P < 0.05), and the TUG was significantly longer in OI patients than healthy control (P < 0.05). Serum LCN2 level was negatively correlated to BMI, FBG, HOMA-IR, HOMA-β, total body, and trunk fat mass percentage, and positively correlated to total body and appendicular lean mass percentage (all P < 0.05). CONCLUSIONS Insulin resistance, hyperglycemia, obesity, and muscle dysfunction are common in OI patients. As a novel osteogenic cytokine, LCN2 deficiency may be relevant to disorders of glucose and lipid metabolism, and dysfunction of muscle in OI patients.
Collapse
Affiliation(s)
- W-B Zheng
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
- Department of Endocrinology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - J Hu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - L Sun
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - J-Y Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Q Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - O Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Y Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - W-B Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - X-P Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - M Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
75
|
Li Z, Wang Q, Huang X, Wu Y, Shan D. Microbiome's role in musculoskeletal health through the gut-bone axis insights. Gut Microbes 2024; 16:2410478. [PMID: 39387683 PMCID: PMC11469435 DOI: 10.1080/19490976.2024.2410478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/06/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
The interplay between the human microbiome and the musculoskeletal system represents a burgeoning field of research with profound implications for understanding and treating musculoskeletal disorders. This review articulates the pivotal role of the microbiome in modulating bone health, highlighting the gut-bone axis as a critical nexus for potential therapeutic intervention. Through a meticulous analysis of recent clinical research, we underscore the microbiome's influence on osteoporosis, sarcopenia, osteoarthritis, and rheumatoid arthritis, delineating both the direct and indirect mechanisms by which microbiota could impact musculoskeletal integrity and function. Our investigation reveals novel insights into the microbiota's contribution to bone density regulation, hormone production, immune modulation, and nutrient absorption, laying the groundwork for innovative microbiome-based strategies in musculoskeletal disease management. Significantly, we identify the challenges hindering the translation of research into clinical practice, including the limitations of current microbial sequencing techniques and the need for standardized methodologies in microbiome studies. Furthermore, we highlight promising directions for future research, particularly in the realm of personalized medicine, where the microbiome's variability offers unique opportunities for tailored treatment approaches. This review sets a new agenda for leveraging gut microbiota in the diagnosis, prevention, and treatment of musculoskeletal conditions, marking a pivotal step toward integrating microbiome science into clinical musculoskeletal care.
Collapse
Affiliation(s)
- Zhengrui Li
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Wang
- Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Yinteng Wu
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Dan Shan
- Faculty of Health and Medicine, Lancaster University, Lancaster, UK
- Department of Biobehavioral Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
76
|
Qiu M, Tulufu N, Tang G, Ye W, Qi J, Deng L, Li C. Black Phosphorus Accelerates Bone Regeneration Based on Immunoregulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304824. [PMID: 37953457 PMCID: PMC10767454 DOI: 10.1002/advs.202304824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/25/2023] [Indexed: 11/14/2023]
Abstract
A fundamental understanding of inflammation and tissue healing suggests that the precise regulation of the inflammatory phase, both in terms of location and timing, is crucial for bone regeneration. However, achieving the activation of early inflammation without causing chronic inflammation while facilitating quick inflammation regression to promote bone regeneration continues to pose challenges. This study reveals that black phosphorus (BP) accelerates bone regeneration by building an osteogenic immunological microenvironment. BP amplifies the acute pro-inflammatory response and promotes the secretion of anti-inflammatory factors to accelerate inflammation regression and tissue regeneration. Mechanistically, BP creates an osteoimmune-friendly microenvironment by stimulating macrophages to express interleukin 33 (IL-33), amplifying the inflammatory response at an early stage, and promoting the regression of inflammation. In addition, BP-mediated IL-33 expression directly promotes osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), which further facilitates bone repair. To the knowledge, this is the first study to reveal the immunomodulatory potential of BP in bone regeneration through the regulation of both early-stage inflammatory responses and later-stage inflammation resolution, along with the associated molecular mechanisms. This discovery serves as a foundation for the clinical use of BP and is an efficient approach for managing the immune microenvironment during bone regeneration.
Collapse
Affiliation(s)
- Minglong Qiu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Nijiati Tulufu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Guoqing Tang
- Kunshan Hospital of Traditional Chinese MedicineAffiliated Hospital of Yangzhou University388 Zuchongzhi RoadKunshan CityJiangsu Province215300P. R. China
| | - Wenkai Ye
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Jin Qi
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lianfu Deng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Changwei Li
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
77
|
Fernandes CJDC, de Almeida GS, Wood PF, Gomes AM, Bezerra FJ, Vieira JCS, Padilha PM, Zambuzzi WF. Mechanosignaling-related angiocrine factors drive osteoblastic phenotype in response to zirconia. J Trace Elem Med Biol 2024; 81:127337. [PMID: 38000168 DOI: 10.1016/j.jtemb.2023.127337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND The growing use of zirconia as a ceramic material in dentistry is attributed to its biocompatibility, mechanical properties, esthetic appearance, and reduced bacterial adhesion. These favorable properties make ceramic materials a viable alternative to commonly used titanium alloys. Mimicking the physiological properties of blood flow, particularly the mechanosignaling in endothelial cells (ECs), is crucial for enhancing our understanding of their role in the response to zirconia exposure. METHODS In this study, EC cultures were subjected to shear stress while being exposed to zirconia for up to 3 days. The conditioned medium obtained from these cultures was then used to expose osteoblasts for a duration of 7 days. To investigate the effects of zirconia on osteoblasts, we examined the expression of genes associated with osteoblast differentiation, including Runx2, Osterix, bone sialoprotein, and osteocalcin genes. Additionally, we assessed the impact of mechanosignaling-related angiocrine factors on extracellular matrix (ECM) remodeling by measuring the activities of matrix metalloproteinases 2 and 9 (MMP2 and MMP9) during the acquisition of the osteogenic phenotype, which precedes mineralization. RESULTS Our data revealed that mechanosignaling-related angiocrine factors play a crucial role in promoting an osteoblastic phenotype in response to zirconia exposure. Specifically, exposed osteoblasts exhibited significantly higher expression levels of genes associated with osteoblast differentiation, such as Runx2, Osterix, bone sialoprotein, and osteocalcin genes. Furthermore, the activities of MMP2 and MMP9, which are involved in ECM remodeling, were modulated by mechanosignaling-related angiocrine factors. This modulation is likely an initial event preceding the mineralization phase. CONCLUSION Based on our findings, we propose that mechanosignaling drives the release of angiocrine factors capable of modulating the osteogenic phenotype at the biointerface with zirconia. This process creates a microenvironment that promotes wound healing and osseointegration. Moreover, these results highlight the importance of considering the mechanosignaling of endothelial cells in the modulation of bone healing and osseointegration in the context of blood vessel effects. Our data provide new insights and open avenues for further investigation into the influence of mechanosignaling on bone healing and the osseointegration of dental devices.
Collapse
Affiliation(s)
- Célio Junior da C Fernandes
- Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Gerson Santos de Almeida
- Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Patrícia Fretes Wood
- Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Anderson M Gomes
- Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Fábio J Bezerra
- Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, São Paulo, CEP 18618-970, Brazil
| | - José C S Vieira
- Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Pedro M Padilha
- Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Willian F Zambuzzi
- Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, São Paulo, CEP 18618-970, Brazil.
| |
Collapse
|
78
|
Vetter SD, Schurman CA, Alliston T, Slabaugh GG, Verbruggen SW. Deep learning models to map osteocyte networks can successfully distinguish between young and aged bone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572567. [PMID: 38187546 PMCID: PMC10769292 DOI: 10.1101/2023.12.20.572567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Osteocytes, the most abundant and mechanosensitive cells in bone tissue, play a pivotal role in bone homeostasis and mechano-responsiveness, orchestrating the intricate balance between bone formation and resorption under daily activity. Studying osteocyte connectivity and understanding their intricate arrangement within the lacunar canalicular network (LCN) is essential for unraveling bone physiology. This is particularly true as our bones age, which is associated with decreased integrity of the osteocyte network, disrupted mass transport, and lower sensitivity to the mechanical stimuli that allow the skeleton to adapt to changing demands. Much work has been carried out to investigate this relationship, often involving high resolution microscopy of discrete fragments of this network, alongside advanced computational modelling of individual cells. However, traditional methods of segmenting and measuring osteocyte connectomics are time-consuming and labour-intensive, often hindered by human subjectivity and limited throughput. In this study, we explore the application of deep learning and computer vision techniques to automate the segmentation and measurement of osteocyte connectomics, enabling more efficient and accurate analysis. We compare several state-of-the-art computer vision models (U-Nets and Vision Transformers) to successfully segment the LCN, finding that an Attention U-Net model can accurately segment and measure 81.8% of osteocytes and 42.1% of dendritic processes, when compared to manual labelling. While further development is required, we demonstrate that this degree of accuracy is already sufficient to distinguish between bones of young (2 month old) and aged (36 month old) mice, as well as capturing the degeneration induced by genetic modification of osteocytes. By harnessing the power of these advanced technologies, further developments can unravel the complexities of osteocyte networks in unprecedented detail, revolutionising our understanding of bone health and disease.
Collapse
Affiliation(s)
- Simon D. Vetter
- School of Electronic Engineering and Computer Science, Queen Mary University of London, UK
- Digital Environment Research Institute, Queen Mary University of London, UK
| | - Charles A. Schurman
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA 94143, USA
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Gregory G. Slabaugh
- School of Electronic Engineering and Computer Science, Queen Mary University of London, UK
- Digital Environment Research Institute, Queen Mary University of London, UK
- Alan Turing Institute, British Library, 96 Euston Rd, London NW1 2DB, UK
| | - Stefaan W. Verbruggen
- Digital Environment Research Institute, Queen Mary University of London, UK
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, UK
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, UK
| |
Collapse
|
79
|
Ma C, Tao C, Zhang Z, Zhou H, Fan C, Wang DA. Development of artificial bone graft via in vitro endochondral ossification (ECO) strategy for bone repair. Mater Today Bio 2023; 23:100893. [PMID: 38161510 PMCID: PMC10755541 DOI: 10.1016/j.mtbio.2023.100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Endochondral ossification (ECO) is a form of bone formation whereby the newly deposited bone replaces the cartilage template. A decellularized artificial cartilage graft (dLhCG), which is composed of hyaline cartilage matrixes, has been developed in our previous study. Herein, the osteogenesis of bone marrow-derived MSCs in the dLhCG through chondrogenic differentiation, chondrocyte hypertrophy, and subsequent transdifferentiation induction has been investigated by simulating the physiological processes of ECO for repairing critical-sized bone defects. The MSCs were recellularized into dLhCGs and subsequently allowed to undergo a 14-day proliferation period (mrLhCG). Following this, the mrLhCG constructs were subjected to two distinct differentiation induction protocols to achieve osteogenic differentiation: chondrogenic medium followed by chondrocytes culture medium with a high concentration of fetal bovine serum (CGCC group) and canonical osteogenesis inducing medium (OI group). The formation of a newly developed artificial bone graft, ossified dLhCG (OsLhCG), as well as its capability of aiding bone defect reconstruction were characterized by in vitro and in vivo trials, such as mRNA sequencing, quantitative real-time PCR (qPCR), immunohistochemistry, the greater omentum implantation in nude mice, and repair for the critical-sized femoral defects in rats. The results reveal that the differentiation induction of MSCs in the CGCC group can realize in vitro ECO through chondrogenic differentiation, hypertrophy, and transdifferentiation, while the MSCs in the OI group, as expected, realize ossification through direct osteogenic differentiation. The angiogenesis and osteogenesis of OsLhCG were proved by being implanted into the greater omentum of nude mice. Besides, the OsLhCG exhibits the capability to achieve the repair of critical-size femoral defects.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Hong Kong
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong
| | - Chao Tao
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong
| | - Zhen Zhang
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Hong Kong
| | - Huiqun Zhou
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Hong Kong
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong
| | - Changjiang Fan
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, Shandong, 266071, China
| | - Dong-an Wang
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Hong Kong
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong
| |
Collapse
|
80
|
Zhang X, Krishnamoorthy S, Tang CTL, Hsu WWQ, Li GHY, Sing CW, Tan KCB, Cheung BMY, Wong ICK, Kung AWC, Cheung CL. Association of Bone Mineral Density and Bone Turnover Markers with the Risk of Diabetes: Hong Kong Osteoporosis Study and Mendelian Randomization. J Bone Miner Res 2023; 38:1782-1790. [PMID: 37850799 DOI: 10.1002/jbmr.4924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Preclinical studies demonstrated that bone plays a central role in energy metabolism. However, how bone metabolism is related to the risk of diabetes in humans is unknown. We investigated the association of bone health (bone mineral density [BMD] and bone turnover markers) with incident type-2 diabetes mellitus (T2DM) based on the Hong Kong Osteoporosis Study (HKOS). A total of 993 and 7160 participants from the HKOS were studied for the cross-sectional and prospective analyses, respectively. The cross-sectional study evaluated the association of BMD and bone biomarkers with fasting glucose and glycated hemoglobin (HbA1c ) levels, whereas the prospective study examined the associations between BMD at study sites and the risk of T2DM by following subjects a median of 16.8 years. Body mass index (BMI) was adjusted in all full models. Mendelian randomization (MR) was conducted for causal inference. In the cross-sectional analysis, lower levels of circulating bone turnover markers and higher BMD were significantly associated with increased fasting glucose and HbA1c levels. In the prospective analysis, higher BMD (0.1 g/cm2 ) at the femoral neck and total hip was associated with increased risk of T2DM with hazard ratios (HRs) of 1.10 (95% confidence interval [CI], 1.03 to 1.18) and 1.14 (95% CI, 1.08 to 1.21), respectively. The presence of osteoporosis was associated with a 30% reduction in risk of T2DM compared to those with normal BMD (HR = 0.70; 95% CI, 0.55 to 0.90). The MR results indicate a robust genetic causal association of estimated BMD (eBMD) with 2-h glucose level after an oral glucose challenge test (estimate = 0.043; 95% CI, 0.007 to 0.079) and T2DM (odds ratio = 1.064; 95% CI, 1.036 to 1.093). Higher BMD and lower levels of circulating bone biomarkers were cross-sectionally associated with poor glycemic control. Moreover, higher BMD was associated with a higher risk of incident T2DM and the association is probably causal. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xiaowen Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Suhas Krishnamoorthy
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Casey Tze-Lam Tang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Warrington Wen-Qiang Hsu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Gloria Hoi-Yee Li
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chor-Wing Sing
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kathryn Choon-Beng Tan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bernard Man-Yung Cheung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ian Chi-Kei Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Pak Shek Kok, Hong Kong, China
| | - Annie Wai-Chee Kung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Pak Shek Kok, Hong Kong, China
| |
Collapse
|
81
|
Blair HC, Larrouture QC, Tourkova IL, Nelson DJ, Dobrowolski SF, Schlesinger PH. Epithelial-like transport of mineral distinguishes bone formation from other connective tissues. J Cell Biochem 2023; 124:1889-1899. [PMID: 37991446 PMCID: PMC10880123 DOI: 10.1002/jcb.30494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
We review unique properties of bone formation including current understanding of mechanisms of bone mineral transport. We focus on formation only; mechanism of bone degradation is a separate topic not considered. Bone matrix is compared to other connective tissues composed mainly of the same proteins, but without the specialized mechanism for continuous transport and deposition of mineral. Indeed other connective tissues add mechanisms to prevent mineral formation. We start with the epithelial-like surfaces that mediate transport of phosphate to be incorporated into hydroxyapatite in bone, or in its ancestral tissue, the tooth. These include several phosphate producing or phosphate transport-related proteins with special expression in large quantities in bone, particularly in the bone-surface osteoblasts. In all connective tissues including bone, the proteins that constitute the protein matrix are mainly type I collagen and γ-carboxylate-containing small proteins in similar molar quantities to collagen. Specialized proteins that regulate connective tissue structure and formation are surprisingly similar in mineralized and non-mineralized tissues. While serum calcium and phosphate are adequate to precipitate mineral, specialized mechanisms normally prevent mineral formation except in bone, where continuous transport and deposition of mineral occurs.
Collapse
Affiliation(s)
- Harry C Blair
- Veteran’s Affairs Medical Center, Pittsburgh PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | | | - Irina L. Tourkova
- Veteran’s Affairs Medical Center, Pittsburgh PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Deborah J Nelson
- Dept of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago IL
| | | | | |
Collapse
|
82
|
Kang Y, Yao J, Gao X, Zhong H, Song Y, Di X, Feng Z, Xie L, Zhang J. Exercise ameliorates anxious behavior and promotes neuroprotection through osteocalcin in VCD-induced menopausal mice. CNS Neurosci Ther 2023; 29:3980-3994. [PMID: 37402694 PMCID: PMC10651954 DOI: 10.1111/cns.14324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
AIMS As the ovaries age and women transition to menopause and postmenopause, reduced estradiol levels are associated with anxiety and depression. Exercise contributes to alleviate anxiety and depression and the bone-derived hormone osteocalcin has been reported to be necessary to prevent anxiety-like behaviors. The aim of this study was to investigate the effects of exercise on anxiety behaviors in climacteric mice and whether it was related to osteocalcin. METHODS Menopausal mouse model was induced by intraperitoneal injection of 4-vinylcyclohexene diepoxide (VCD). Open field, elevated plus maze, and light-dark tests were used to detect anxious behavior in mice. The content of serum osteocalcin was measured and its correlation with anxiety behavior was analyzed. BRDU and NEUN co-localization cells were detected with immunofluorescence. Western blot was applied to obtain apoptosis-related proteins. RESULTS The VCD mice showed obvious anxiety-like behaviors and 10 weeks of treadmill exercise significantly ameliorated the anxiety and increased circulating osteocalcin in VCD mice. Exercise increased the number of BRDU and NEUN co-localization cells in hippocampal dentate gyrus, reduced the number of impaired hippocampal neurons, inhibited the expression of BAX, cleaved Caspase3, and cleaved PARP, promoted the expression of BCL-2. Importantly, circulating osteocalcin levels were positively associated with the improvements of anxiety, the number of BRDU and NEUN co-localization cells in hippocampal dentate gyrus and negatively related to impaired hippocampal neurons. CONCLUSION Exercise ameliorates anxiety behavior, promotes hippocampal dentate gyrus neurogenesis, and inhibits hippocampal cell apoptosis in VCD-induced menopausal mice. They are related to circulating osteocalcin, which are increased by exercise.
Collapse
Affiliation(s)
- Yiting Kang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Jie Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- School of NursingShaanxi University of Chinese MedicineXianyangChina
| | - Xiaohang Gao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Hao Zhong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Yifei Song
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Xiaohui Di
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Zeguo Feng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Lin Xie
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Jianbao Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
83
|
Fuller KN, Bohne EM, Mey JT, Blackburn BK, Miranda VR, Varady KA, Danielson KK, Haus JM. Plasma undercarboxylated osteocalcin dynamics with glycemic stress reflects insulin sensitivity and beta-cell function in humans with and without T2DM. Metabol Open 2023; 20:100264. [PMID: 38115864 PMCID: PMC10728569 DOI: 10.1016/j.metop.2023.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
This study aimed to better understand the relationship between bone-related biomarkers and nutrient stress in the context of metabolic health. We investigated plasma osteocalcin (OC) during an oral glucose challenge and experimental hyperinsulinemia in Type 2 diabetes (T2DM) and lean healthy controls (LHC). Older individuals with obesity and T2DM (n = 9) and young LHCs (n = 9) underwent a 75g oral glucose tolerance test (OGTT) and a 40 mU/m2/min hyperinsulinemic-euglycemic clamp. Plasma undercarboxylated OC (ucOC) and total OC were measured at baseline, 60mins, and 120mins of the OGTT and clamp via ELISA. In addition, plasma alkaline phosphatase (ALP), leptin, adiponectin, Vitamin D and insulin were measured and indices of insulin sensitivity and β-cell function were derived. The T2DM group had lower (p<0.05) ucOC and ucOC:total OC ratio than LHC during both the OGTT and clamp. Further, baseline ucOC was positively correlated to indices of β-cell function and negatively correlated to indices of insulin resistance when both groups were combined (all p<0.05). Suppression of OC observed in T2DM may be related to glucose intolerance and insulin resistance. Similarly, our data suggest that the observed phenotypic differences between groups are likely a product of long-term glucose dysregulation rather than acute flux in glucose or insulin.
Collapse
Affiliation(s)
- Kelly N.Z. Fuller
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Erin M. Bohne
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, IL, USA
| | - Jacob T. Mey
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Brian K. Blackburn
- Applied Health Sciences and Kinesiology, Humboldt State University, Arcata, CA, USA
| | | | - Krista A. Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, IL, USA
| | - Kirstie K. Danielson
- Division of Endocrinology and Metabolism, University of Illinois at Chicago, IL, USA
| | - Jacob M. Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
84
|
Khalili A, Shokoohi F, Asgharian M, Lin S. Sparse estimation in semiparametric finite mixture of varying coefficient regression models. Biometrics 2023; 79:3445-3457. [PMID: 37066855 DOI: 10.1111/biom.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Finite mixture of regressions (FMR) are commonly used to model heterogeneous effects of covariates on a response variable in settings where there are unknown underlying subpopulations. FMRs, however, cannot accommodate situations where covariates' effects also vary according to an "index" variable-known as finite mixture of varying coefficient regression (FM-VCR). Although complex, this situation occurs in real data applications: the osteocalcin (OCN) data analyzed in this manuscript presents a heterogeneous relationship where the effect of a genetic variant on OCN in each hidden subpopulation varies over time. Oftentimes, the number of covariates with varying coefficients also presents a challenge: in the OCN study, genetic variants on the same chromosome are considered jointly. The relative proportions of hidden subpopulations may also change over time. Nevertheless, existing methods cannot provide suitable solutions for accommodating all these features in real data applications. To fill this gap, we develop statistical methodologies based on regularized local-kernel likelihood for simultaneous parameter estimation and variable selection in sparse FM-VCR models. We study large-sample properties of the proposed methods. We then carry out a simulation study to evaluate the performance of various penalties adopted for our regularized approach and ascertain the ability of a BIC-type criterion for estimating the number of subpopulations. Finally, we applied the FM-VCR model to analyze the OCN data and identified several covariates, including genetic variants, that have age-dependent effects on OCN.
Collapse
Affiliation(s)
- Abbas Khalili
- Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada
| | - Farhad Shokoohi
- Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Masoud Asgharian
- Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada
| | - Shili Lin
- Department of Statistics, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
85
|
Liu J, Qin L, Zheng J, Tong L, Lu W, Lu C, Sun J, Fan B, Wang F. Research Progress on the Relationship between Vitamins and Diabetes: Systematic Review. Int J Mol Sci 2023; 24:16371. [PMID: 38003557 PMCID: PMC10671335 DOI: 10.3390/ijms242216371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Diabetes is a serious chronic metabolic disease that causes complications over time, bringing serious public health challenges that affect different countries across the world. The current clinical drugs for diabetes may lead to adverse effects such as hypoglycemia and liver and abdominal distension and pain, which prompt people to explore new treatments for diabetes without side effects. The research objective of this review article is to systematically review studies on vitamins and diabetes and to explain their possible mechanism of action, as well as to assess the role of vitamins as drugs for the prevention and treatment of diabetes. To achieve our objective, we searched scientific databases in PubMed Central, Medline databases and Web of Science for articles, using "vitamin" and "diabetes" as key words. The results of numerous scientific investigations revealed that vitamin levels were decreased in humans and animals with diabetes, and vitamins show promise for the prevention and/or control of diabetes through anti-inflammation, antioxidation and the regulation of lipid metabolism. However, a few studies showed that vitamins had no positive effect on the development of diabetes. Currently, studies on vitamins in the treatment of diabetes are still very limited, and there are no clinical data to clarify the dose-effect relationship between vitamins and diabetes; therefore, vitamins are not recommended as routine drugs for the treatment of diabetes. However, we still emphasize the great potential of vitamins in the prevention and treatment of diabetes, and higher quality studies are needed in the future to reveal the role of vitamins in the development of diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
86
|
Viswanath A, Vidyasagar S, Amrutha Sukumar C. Osteocalcin and Metabolic Syndrome. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231206729. [PMID: 37954481 PMCID: PMC10634259 DOI: 10.1177/11795514231206729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/20/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Metabolic syndrome which is a syndrome complex that is associated with insulin resistance. Osteocalcin (OC), a bone derived protein has been found to decrease insulin resistance and stimulate production of insulin from the pancreas. Serum osteocalcin levels correlate with body mass index (BMI) and waist circumference. Thus, serum osteocalcin levels in metabolic syndrome could potentially be a new area to explore therapeutically. However, its role in clinical practice needs to be established. Methods We conducted a cross-sectional study on patients, who visited Kasturba Hospital, Manipal between September 2018 and September 2020, to study the relationship between Serum Osteocalcin and the parameters of metabolic syndrome. All patients above the age of 18 years who satisfied the NCEP-ATP III guidelines (Asian adaptation) for metabolic syndrome were considered for the study. Patients who had thyroid and parathyroid disorders, bone malignancies, osteoporosis, liver failure and renal dysfunction were excluded. Results A total of 115 subjects were analyzed. As serum osteoclacin increased, there was a significant decrease in fasting blood glucose levels (r = -.748, P < .05) and a significant increase in serum HDL levels (r = .617, P < .01). There was no correlation found between serum osteocalcin and BMI/waist circumference in this study. Finally, it was observed that individuals with fewer components of metabolic syndrome had a significantly higher serum osteocalcin when compared with individuals with a higher number of components of metabolic syndrome (P < .01). Conclusion This data further confirmed the association between serum OC and parameters of metabolic syndrome such as FBS and serum HDL. It also found that increased serum OC was associated with fewer components of the metabolic syndrome indicating that OC could have a positive metabolic impact and may prevent atherosclerotic risk.
Collapse
Affiliation(s)
- Aaditya Viswanath
- Department of Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sudha Vidyasagar
- Department of Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Cynthia Amrutha Sukumar
- Department of Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
87
|
Pajares-Chamorro N, Hernández-Escobar S, Wagley Y, Acevedo P, Cramer M, Badylak S, Hammer ND, Hardy J, Hankenson K, Chatzistavrou X. Silver-releasing bioactive glass nanoparticles for infected tissue regeneration. BIOMATERIALS ADVANCES 2023; 154:213656. [PMID: 37844416 DOI: 10.1016/j.bioadv.2023.213656] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Bacterial infections represent a formidable challenge, often leaving behind significant bone defects post-debridement and necessitating prolonged antibiotic treatments. The rise of antibiotic-resistant bacterial strains further complicates infection management. Bioactive glass nanoparticles have been presented as a promising substitute for bone defects and as carriers for therapeutic agents against microorganisms. Achieving consistent incorporation of ions into BGNs has proven challenging and restricted to a maximum ion concentration, especially when reducing the particle size. This study presents a notable achievement in the synthesis of 10 nm-sized Ag-doped bioactive glass nanoparticles (Ag-BGNs) using a modified yet straightforward Stöber method. The successful incorporation of essential elements, including P, Ca, Al, and Ag, into the glass structure at the intended concentrations (i.e., CaO wt% above 20 %) was confirmed by EDS, signifying a significant advancement in nanoscale biomaterial engineering. While exhibiting a spherical morphology and moderate dispersity, these nanoparticles tend to form submicron-sized aggregates outside of a solution state. The antibacterial effectiveness against MRSA was established across various experimental conditions, with Ag-BGNs effectively sterilizing planktonic bacteria without the need for antibiotics. Remarkably, when combined with oxacillin or fosfomycin, Ag-BGNs demonstrated a potent synergistic effect, restoring antibacterial capabilities against MRSA strains resistant to these antibiotics when used alone. Ag-BGNs exhibited potential in promoting human mesenchymal stromal cell proliferation, inducing the upregulation of osteoblast gene markers, and significantly contributing to bone regeneration in mice. This innovative synthesis protocol holds substantial promise for the development of biomaterials dedicated to the regeneration of infected tissue.
Collapse
Affiliation(s)
- Natalia Pajares-Chamorro
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sandra Hernández-Escobar
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yadav Wagley
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Parker Acevedo
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Madeline Cramer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Jonathan Hardy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA
| | - Kurt Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
88
|
Jeong HJ. Quenchbodies That Enable One-Pot Detection of Antigens: A Structural Perspective. Bioengineering (Basel) 2023; 10:1262. [PMID: 38002387 PMCID: PMC10669387 DOI: 10.3390/bioengineering10111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Quenchbody (Q-body) is a unique, reagentless, fluorescent antibody whose fluorescent intensity increases in an antigen-concentration-dependent manner. Q-body-based homogeneous immunoassay is superior to conventional immunoassays as it does not require multiple immobilization, reaction, and washing steps. In fact, simply mixing the Q-body and the sample containing the antigen enables the detection of the target antigen. To date, various Q-bodies have been developed to detect biomarkers of interest, including haptens, peptides, proteins, and cells. This review sought to describe the principle of Q-body-based immunoassay and the use of Q-body for various immunoassays. In particular, the Q-bodies were classified from a structural perspective to provide useful information for designing Q-bodies with an appropriate objective.
Collapse
Affiliation(s)
- Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong-si 30016, Republic of Korea
| |
Collapse
|
89
|
Lunde NN, Osoble NMM, Fernandez AD, Antobreh AS, Jafari A, Singh S, Nyman TA, Rustan AC, Solberg R, Thoresen GH. Interplay between Cultured Human Osteoblastic and Skeletal Muscle Cells: Effects of Conditioned Media on Glucose and Fatty Acid Metabolism. Biomedicines 2023; 11:2908. [PMID: 38001909 PMCID: PMC10669731 DOI: 10.3390/biomedicines11112908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The interplay between skeletal muscle and bone is primarily mechanical; however, biochemical crosstalk by secreted mediators has recently gained increased attention. The aim of this study was to investigate metabolic effects of conditioned medium from osteoblasts (OB-CM) on myotubes and vice versa. Human skeletal muscle cells incubated with OB-CM showed increased glucose uptake and oxidation, and mRNA expression of the glucose transporter (GLUT) 1, while fatty acid uptake and oxidation, and mRNA expression of the fatty acid transporter CD36 were decreased. This was supported by proteomic analysis, where expression of proteins involved in glucose uptake, glycolytic pathways, and the TCA cycle were enhanced, and expression of several proteins involved in fatty acid metabolism were reduced. Similar effects on energy metabolism were observed in human bone marrow stromal cells differentiated to osteoblastic cells incubated with conditioned medium from myotubes (SKM-CM), with increased glucose uptake and reduced oleic acid uptake. Proteomic analyses of the two conditioned media revealed many common proteins. Thus, our data may indicate a shift in fuel preference from fatty acid to glucose metabolism in both cell types, induced by conditioned media from the opposite cell type, possibly indicating a more general pattern in communication between these tissues.
Collapse
Affiliation(s)
- Ngoc Nguyen Lunde
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
| | - Nimo Mukhtar Mohamud Osoble
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
| | - Andrea Dalmao Fernandez
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
| | - Alfreda S. Antobreh
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Sachin Singh
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, 0372 Oslo, Norway; (S.S.); (T.A.N.)
| | - Tuula A. Nyman
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, 0372 Oslo, Norway; (S.S.); (T.A.N.)
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
| | - Rigmor Solberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
| | - G. Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (N.N.L.); (N.M.M.O.); (A.D.F.); (A.C.R.); (R.S.)
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
90
|
Qu B, Yan S, Ao Y, Chen X, Zheng X, Cui W. The relationship between vitamin K and T2DM: a systematic review and meta-analysis. Food Funct 2023; 14:8951-8963. [PMID: 37724446 DOI: 10.1039/d3fo02943c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Background: Previous studies have shown the potential role of vitamin K supplementation in the prevention and treatment of many diseases. However, the effect of vitamin K supplementation on blood glucose remains controversial. The purpose of this study was to assess the effects of vitamin K supplementation on glycemia-related indicators, including Fasting Blood Sugar (FBS), Fasting Insulin (FINS) and Homeostasis Model Assessment of Insulin Resistance (HOMA-IR). The potential association between vitamin K and type 2 diabetes mellitus (T2DM) risk was also evaluated. Methods: Up to April 2023, Cochrane, PubMed, Web of Science, Medline and EMBASE databases were searched to assess the effects of vitamin K on blood glucose and the risk of developing T2DM. Results: A meta-analysis of seven studies (813 participants) found vitamin K supplementation significantly reduced FBS (SMD = -0.150 mg dl-1, 95% CI = -0.290, -0.010 mg dl-1) and HOMA-IR (SMD = -0.200, 95% CI = -0.330, -0.060), but not FINS. Five studies with a total of 105 798 participants were included in the meta-analysis of the association between vitamin K and T2DM. The results showed that vitamin K was associated with the reduced risk of developing T2DM (HR = 0.79, 95% CI [0.71-0.88], P < 0.001). Conclusion: The meta-analysis demonstrated that vitamin K supplementation had a significant effect on the regulation of FBS and HOMA-IR in the population. Moreover, vitamin K was associated with the reduced risk of developing T2DM. Considering some limitations found in this study, additional data from large clinical trials are needed.
Collapse
Affiliation(s)
- Boyang Qu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China.
| | - Shoumeng Yan
- School of Nursing, Jilin University, Changchun, China
| | - Yanrong Ao
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China.
| | - Xingyang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China.
| | - Xiangyu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
91
|
Lin RA, Hsieh JT, Huang CC, Yang CY, Lin YP, Tarng DC. Circulating Osteocalcin Fractions are Associated with Vascular Calcification and Mortality in Chronic Hemodialysis Patients. Calcif Tissue Int 2023; 113:416-425. [PMID: 37665403 DOI: 10.1007/s00223-023-01122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Vascular calcification, a component of chronic kidney disease-mineral and bone disorder (CKD-MBD), is prevalent in patients with end-stage kidney disease (ESKD) and contributes to high mortality. However, the association between the blood level of total osteocalcin (OC) and vascular calcification and mortality remains inconclusive. We, therefore, investigated whether different OC fractions can serve as biomarkers of vascular calcification and mortality in the ESKD population. METHODS This observational cohort study enrolled patients on maintenance hemodialysis. Plasma carboxylated OC (cOC), uncarboxylated OC (ucOC), and intact parathyroid hormone (PTH) were measured. The percentage of carboxylated OC (%cOC) was calculated as dividing cOC by total OC. The vascular calcification severity was defined by an aortic calcification grade. The patients were followed for three years and one month. RESULTS A total of 184 patients were enrolled. In the multivariable logistic regression, plasma %cOC, but not cOC or ucOC, was independently associated with the severity of vascular calcification (OR 1.019, p = 0.036). A significant U-shaped correlation was found between plasma %cOC and PTH (p = 0.002). In the multivariable Cox regression, patients with higher plasma %cOC had a higher risk of mortality (quartiles Q4 versus Q1-Q3, HR 1.991 [95% CI: 1.036-3.824], p = 0.039). CONCLUSIONS In patients undergoing chronic hemodialysis, plasma %cOC positively correlated with vascular calcification and exhibited a U-shaped correlation with PTH. Furthermore, a higher plasma %cOC was associated with increased mortality. These findings suggest that plasma %cOC may serve as a biomarker for CKD-MBD and a predictor of clinical outcomes in chronic hemodialysis patients.
Collapse
Affiliation(s)
- Ruei-An Lin
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan
| | - Jyh-Tong Hsieh
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 201, Sec. 2, Shih-Pai Rd., Beitou Dist, Taipei, 11217, Taiwan
| | - Chin-Chou Huang
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Yu Yang
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yao-Ping Lin
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Der-Cherng Tarng
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
92
|
Abstract
PURPOSE OF REVIEW The role of wnt signalling in atherogenesis raises the possibility that the wnt inhibitor, sclerostin, provides a natural defence to this process, and that anti-sclerostin antibodies might increase the risk of atherosclerosis and associated conditions such as CVD. This article aims to triangulate evidence concerning possible adverse effects of sclerostin inhibition on CVD risk. RECENT FINDINGS Randomised controlled trials of treatment with the anti-sclerostin antibody, romosozumab, have yielded conflicting evidence with respect to possible adverse effects of sclerostin inhibition on CVD risk. To further examine the causal relationship between sclerostin inhibition and CVD risk, three Mendelian randomisation (MR) studies have examined effects of sclerostin lowering on CVD outcomes, using common genetic variants in the SOST gene which produces sclerostin, to mimic effects of a randomised trial. Concordant findings were seen in two studies, comprising an effect of sclerostin lowering on increased risk of MI and type II diabetes mellitus. One study also suggested that sclerostin lowering increases coronary artery calcification. Triangulation of evidence from different sources provides some suggestion that sclerostin lowering increases MI risk, supporting the need for CVD risk assessment when considering treatment with romosozumab.
Collapse
Affiliation(s)
- Jonathan H Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
93
|
Zheng J, Wheeler E, Pietzner M, Andlauer TFM, Yau MS, Hartley AE, Brumpton BM, Rasheed H, Kemp JP, Frysz M, Robinson J, Reppe S, Prijatelj V, Gautvik KM, Falk L, Maerz W, Gergei I, Peyser PA, Kavousi M, de Vries PS, Miller CL, Bos M, van der Laan SW, Malhotra R, Herrmann M, Scharnagl H, Kleber M, Dedoussis G, Zeggini E, Nethander M, Ohlsson C, Lorentzon M, Wareham N, Langenberg C, Holmes MV, Davey Smith G, Tobias JH. Lowering of Circulating Sclerostin May Increase Risk of Atherosclerosis and Its Risk Factors: Evidence From a Genome-Wide Association Meta-Analysis Followed by Mendelian Randomization. Arthritis Rheumatol 2023; 75:1781-1792. [PMID: 37096546 PMCID: PMC10586470 DOI: 10.1002/art.42538] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE In this study, we aimed to establish the causal effects of lowering sclerostin, target of the antiosteoporosis drug romosozumab, on atherosclerosis and its risk factors. METHODS A genome-wide association study meta-analysis was performed of circulating sclerostin levels in 33,961 European individuals. Mendelian randomization (MR) was used to predict the causal effects of sclerostin lowering on 15 atherosclerosis-related diseases and risk factors. RESULTS We found that 18 conditionally independent variants were associated with circulating sclerostin. Of these, 1 cis signal in SOST and 3 trans signals in B4GALNT3, RIN3, and SERPINA1 regions showed directionally opposite signals for sclerostin levels and estimated bone mineral density. Variants with these 4 regions were selected as genetic instruments. MR using 5 correlated cis-SNPs suggested that lower sclerostin increased the risk of type 2 diabetes mellitus (DM) (odds ratio [OR] 1.32 [95% confidence interval (95% CI) 1.03-1.69]) and myocardial infarction (MI) (OR 1.35 [95% CI 1.01-1.79]); sclerostin lowering was also suggested to increase the extent of coronary artery calcification (CAC) (β = 0.24 [95% CI 0.02-0.45]). MR using both cis and trans instruments suggested that lower sclerostin increased hypertension risk (OR 1.09 [95% CI 1.04-1.15]), but otherwise had attenuated effects. CONCLUSION This study provides genetic evidence to suggest that lower levels of sclerostin may increase the risk of hypertension, type 2 DM, MI, and the extent of CAC. Taken together, these findings underscore the requirement for strategies to mitigate potential adverse effects of romosozumab treatment on atherosclerosis and its related risk factors.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, and MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of BristolBristolUK
| | - Eleanor Wheeler
- MRC Epidemiology Unit, Institute of Metabolic ScienceUniversity of Cambridge School of Clinical MedicineCambridgeUK
| | - Maik Pietzner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK, and Computational Medicine, Berlin Institute of Health at Charité–Universitätsmedizin BerlinBerlinGermany
| | - Till F. M. Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of MedicineTechnical University of MunichMunichGermany
| | - Michelle S. Yau
- Marcus Institute for Aging Research, Hebrew SeniorLifeHarvard Medical SchoolBostonMassachusetts
| | | | - Ben Michael Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, and HUNT Research Centre, Department of Public Health and Nursing, NTNUNorwegian University of Science and TechnologyLevangerNorway
| | - Humaira Rasheed
- MRC IEU, Bristol Medical School, University of Bristol, Bristol, UK, and HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway, and Division of Medicine and Laboratory Sciences, Faculty of MedicineUniversity of OsloOsloNorway
| | - John P. Kemp
- MRC IEU, Bristol Medical School, University of Bristol, Bristol, UK, and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia, and The University of Queensland Diamantina InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Monika Frysz
- MRC IEU, Bristol Medical School, University of Bristol, and Musculoskeletal Research UnitUniversity of BristolBristolUK
| | - Jamie Robinson
- MRC IEU, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Sjur Reppe
- Unger‐Vetlesen Institute, Lovisenberg Diaconal Hospital and Department of Plastic and Reconstructive Surgery, Oslo University Hospital and Department of Medical BiochemistryOslo University HospitalOsloNorway
| | - Vid Prijatelj
- Department of Internal MedicineErasmus MC University Medical CenterRotterdamThe Netherlands
| | | | - Louise Falk
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK, and Computational Medicine, Berlin Institute of Health at Charité–Universitätsmedizin BerlinBerlinGermany
| | - Winfried Maerz
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria, and SYNLAB Academy, SYNLAB Holding Deutschland GmbH and Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
| | - Ingrid Gergei
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, and Therapeutic Area Cardiovascular MedicineBoehringer Ingelheim International GmbHIngelheimGermany
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn Arbor
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public HealthThe University of Texas Health Science Center at Houston
| | - Clint L. Miller
- Center for Public Health Genomics, Department of Public Health SciencesUniversity of VirginiaCharlottesville
| | - Maxime Bos
- Department of Epidemiology, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, Division of Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Rajeev Malhotra
- Cardiology Division, Department of MedicineMassachusetts General HospitalBoston
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University of GrazGrazAustria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University of GrazGrazAustria
| | - Marcus Kleber
- SYNLAB Academy, SYNLAB Holding Deutschland GmbHMannheimGermany
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and EducationHarokopio UniversityAthensGreece
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, and Technical University of Munich (TUM) and Klinikum Rechts der IsarTUM School of MedicineMunichGermany
| | - Maria Nethander
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg and Bioinformatics and Data Centre, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of MedicineUniversity of GothenburgGothenburgSweden
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and Region Västra Götaland, Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden, and Mary McKillop Institute for Health ResearchAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Nick Wareham
- MRC Epidemiology Unit, Institute of Metabolic ScienceUniversity of Cambridge School of Clinical MedicineCambridgeUK
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK, and Computational Medicine, Berlin Institute of Health at Charité–Universitätsmedizin BerlinBerlinGermany
| | - Michael V. Holmes
- MRC IEU, Bristol Medical School, University of Bristol, and Medical Research Council Population Health Research Unit, University of Oxford, and Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population HealthUniversity of Oxford, and National Institute for Health Research, Oxford Biomedical Research Centre, Oxford University HospitalOxfordUK
| | | | - Jonathan H. Tobias
- MRC IEU, Bristol Medical School, University of Bristol, and Musculoskeletal Research UnitUniversity of BristolBristolUK
| |
Collapse
|
94
|
Kim M, Jang HJ, Baek SY, Choi KJ, Han DH, Sung JS. Regulation of base excision repair during adipogenesis and osteogenesis of bone marrow-derived mesenchymal stem cells. Sci Rep 2023; 13:16384. [PMID: 37773206 PMCID: PMC10542337 DOI: 10.1038/s41598-023-43737-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023] Open
Abstract
Bone marrow-derived human mesenchymal stem cells (hMSCs) can differentiate into various lineages, such as chondrocytes, adipocytes, osteoblasts, and neuronal lineages. It has been shown that the high-efficiency DNA-repair capacity of hMSCs is decreased during their differentiation. However, the underlying its mechanism during adipogenesis and osteogenesis is unknown. Herein, we investigated how alkyl-damage repair is modulated during adipogenic and osteogenic differentiation, especially focusing on the base excision repair (BER) pathway. Response to an alkylation agent was assessed via quantification of the double-strand break (DSB) foci and activities of BER-related enzymes during differentiation in hMSCs. Adipocytes showed high resistance against methyl methanesulfonate (MMS)-induced alkyl damage, whereas osteoblasts were more sensitive than hMSCs. During the differentiation, activities, and protein levels of uracil-DNA glycosylase were found to be regulated. In addition, ligation-related proteins, such as X-ray repair cross-complementing protein 1 (XRCC1) and DNA polymerase β, were upregulated in adipocytes, whereas their levels and recruitment declined during osteogenesis. These modulations of BER enzyme activity during differentiation influenced DNA repair efficiency and the accumulation of DSBs as repair intermediates in the nucleus. Taken together, we suggest that BER enzymatic activity is regulated in adipogenic and osteogenic differentiation and these alterations in the BER pathway led to different responses to alkyl damage from those in hMSCs.
Collapse
Affiliation(s)
- Min Kim
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Hyun-Jin Jang
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Song-Yi Baek
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Kyung-Jin Choi
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Dong-Hee Han
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
95
|
Gao F, Hu Q, Qi C, Wan M, Ficke J, Zheng J, Cao X. Mechanical loading-induced change of bone homeostasis is mediated by PGE2-driven hypothalamic interoception. RESEARCH SQUARE 2023:rs.3.rs-3325498. [PMID: 37790467 PMCID: PMC10543368 DOI: 10.21203/rs.3.rs-3325498/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Bone is a mechanosensitive tissue and undergoes constant remodeling to adapt to the mechanical loading environment. However, it is unclear whether the signals of bone cells in response to mechanical stress are processed and interpreted in the brain. In this study, we found that the hypothalamus of the brain regulates bone remodeling and structure by perceiving bone PGE2 concentration in response to mechanical loading. Bone PGE2 levels are in proportion to their weight bearing. When weight bearing changes in the tail-suspension mice, the PGE2 concentrations in bones change in line with their weight bearing changes. Deletion of Cox2 or Pge2 in the osteoblast lineage cells or knockout Ep4 in sensory nerve blunts bone formation in response to mechanical loading. And sensory denervation also significantly reduces mechanical load-induced bone formation. Moreover, mechanical loading induces CREB phosphorylation in the hypothalamic ARC region to inhibit sympathetic TH expression in the PVN for osteogenesis. Finally, we show that elevated PGE2 is associated with ankle osteoarthritis (AOA) and pain. Together, our data demonstrate that in response to mechanical loading, skeletal interoception occurs in the form of hypothalamic processing of PGE2-driven peripheral signaling to maintain physiologic bone homeostasis, while chronically elevated PGE2 can be sensed as pain during AOA and implication of potential treatment.
Collapse
Affiliation(s)
- Feng Gao
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Qimiao Hu
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Cheng Qi
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Mei Wan
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - James Ficke
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Junying Zheng
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Xu Cao
- Department of Orthopedic Surgery and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
96
|
Hou B, Qiu J. Correlation analysis of bone metabolism indices and glycosylated hemoglobin in middle-aged and older adult patients with type 2 diabetes mellitus. Medicine (Baltimore) 2023; 102:e35115. [PMID: 37713851 PMCID: PMC10508373 DOI: 10.1097/md.0000000000035115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023] Open
Abstract
This study aimed to evaluate the association between bone metabolism indices and glycated hemoglobin (HbA1c) levels in middle-aged and older adult patients with type 2 diabetes mellitus (T2DM). We retrospectively analyzed 372 T2DM patients aged > 45 years who had attended the Endocrinology Department at our hospital (males, n = 192; postmenopausal females, n = 180). We collected data concerning patient characteristics, HbA1c levels, and bone metabolism indices (25-hydroxyvitamin D [25(OH)D], β-isomerized C-terminal telopeptides, N-terminal osteocalcin [N-MID], procollagen type 1 N-terminal propeptide [P1NP], bone-specific alkaline phosphatase [BAP], calcium [Ca], and phosphorus [P]). Study patients were divided into 3 groups according to their HbA1c levels: Group A, HbA1c < 7.5%; Group B, HbA1c 7.5 to 8.9%; and Group C, HbA1c ≥ 9.0%. Pearson correlation was used to determine the correlation between HbA1c levels and the bone metabolism indices. Multiple linear regression analysis was performed to identify factors influencing HbA1c in T2DM patients. Among the 3 groups, no differences were observed in 25(OH)D, β-CTx, Ca, or P indices among the 3 groups, whereas a statistically significant difference in N-MID was observed. Pearson correlation analysis showed an inverse correlation between HbA1c levels and N-MID and no correlation with other bone metabolism indices. Multiple linear regression analysis showed that N-MID was a factor influencing HbA1c levels after adjusting for age and body mass index (BMI). Serum N-MID levels negatively correlated with HbA1c levels in middle-aged and older adult men with T2DM. Therefore, high serum N-MID levels may contribute to blood glucose control in T2DM patients.
Collapse
Affiliation(s)
- Bo Hou
- Department of Endocrinology, Hubei Jianghan Oilfield General Hospital, Qianjiang, Hubei, China
| | - Jiang Qiu
- Department of Endocrinology, Hubei Jianghan Oilfield General Hospital, Qianjiang, Hubei, China
| |
Collapse
|
97
|
Arai M, Ochi H, Sunamura S, Ito N, Nangaku M, Takeda S, Sato S. A Novel Long Noncoding RNA in Osteocytes Regulates Bone Formation through the Wnt/β-Catenin Signaling Pathway. Int J Mol Sci 2023; 24:13633. [PMID: 37686441 PMCID: PMC10488071 DOI: 10.3390/ijms241713633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The vast majority of transcribed RNAs are noncoding RNAs. Among noncoding RNAs, long noncoding RNAs (lncRNAs), which contain hundreds to thousands of bases, have received attention in many fields. The vast majority of the constituent cells in bone tissue are osteocytes, but their regulatory mechanisms are incompletely understood. Considering the wide range of potential contributions of lncRNAs to physiological processes and pathological conditions, we hypothesized that lncRNAs in osteocytes, which have not been reported, could be involved in bone metabolism. Here, we first isolated osteocytes from femurs of mice with osteocyte-specific GFP expression. Then, through RNA-sequencing, we identified osteocyte-specific lncRNAs and focused on a novel lncRNA, 9530026P05Rik (lncRNA953Rik), which strongly suppressed osteogenic differentiation. In the IDG-SW3 osteocyte line with lncRNA953Rik overexpression, the expression of Osterix and its downstream genes was reduced. RNA pull-down and subsequent LC-MS/MS analysis revealed that lncRNA953Rik bound the nuclear protein CCAR2. We demonstrated that CCAR2 promoted Wnt/β-catenin signaling and that lncRNA953Rik inhibited this pathway. lncRNA953Rik sequestered CCAR2 from HDAC1, leading to deacetylation of H3K27 in the Osterix promoter and consequent transcriptional downregulation of Osterix. This research is the first to clarify the role of a lncRNA in osteocytes. Our findings can pave the way for novel therapeutic options targeting lncRNAs in osteocytes to treat bone metabolic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Makoto Arai
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hiroki Ochi
- Department of Rehabilitation for Motor Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa 359-8555, Japan
| | - Satoko Sunamura
- Department of Orthopaedic Surgery, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Nobuaki Ito
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Shu Takeda
- Division of Endocrinology, Toranomon Hospital Endocrine Center, Tokyo 105-8470, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| |
Collapse
|
98
|
Wells KV, Krackeler ML, Jathal MK, Parikh M, Ghosh PM, Leach JK, Genetos DC. Prostate cancer and bone: clinical presentation and molecular mechanisms. Endocr Relat Cancer 2023; 30:e220360. [PMID: 37226936 PMCID: PMC10696925 DOI: 10.1530/erc-22-0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
Prostate cancer (PCa) is an increasingly prevalent health problem in the developed world. Effective treatment options exist for localized PCa, but metastatic PCa has fewer treatment options and shorter patient survival. PCa and bone health are strongly entwined, as PCa commonly metastasizes to the skeleton. Since androgen receptor signaling drives PCa growth, androgen-deprivation therapy whose sequelae reduce bone strength constitutes the foundation of advanced PCa treatment. The homeostatic process of bone remodeling - produced by concerted actions of bone-building osteoblasts, bone-resorbing osteoclasts, and regulatory osteocytes - may also be subverted by PCa to promote metastatic growth. Mechanisms driving skeletal development and homeostasis, such as regional hypoxia or matrix-embedded growth factors, may be subjugated by bone metastatic PCa. In this way, the biology that sustains bone is integrated into adaptive mechanisms for the growth and survival of PCa in bone. Skeletally metastatic PCa is difficult to investigate due to the entwined nature of bone biology and cancer biology. Herein, we survey PCa from origin, presentation, and clinical treatment to bone composition and structure and molecular mediators of PCa metastasis to bone. Our intent is to quickly yet effectively reduce barriers to team science across multiple disciplines that focuses on PCa and metastatic bone disease. We also introduce concepts of tissue engineering as a novel perspective to model, capture, and study complex cancer-microenvironment interactions.
Collapse
Affiliation(s)
- Kristina V Wells
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Margaret L Krackeler
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, USA
| | - Maitreyee K Jathal
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, USA
- Veterans Affairs-Northern California Health System, Mather, California, USA
| | - Mamta Parikh
- Division of Hematology and Oncology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Paramita M Ghosh
- Veterans Affairs-Northern California Health System, Mather, California, USA
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, California, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, School of Medicine, University of California Davis, Sacramento, California, USA
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| |
Collapse
|
99
|
Lara-Castillo N, Masunaga J, Brotto L, Vallejo JA, Javid K, Wacker MJ, Brotto M, Bonewald LF, Johnson ML. Muscle secreted factors enhance activation of the PI3K/Akt and β-catenin pathways in murine osteocytes. Bone 2023; 174:116833. [PMID: 37385426 PMCID: PMC10926931 DOI: 10.1016/j.bone.2023.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Skeletal muscle and bone interact at the level of mechanical loading through the application of force by muscles to the skeleton and more recently focus has been placed on molecular/biochemical coupling of these two tissues. We sought to determine if muscle and muscle-derived factors were essential to the osteocyte response to loading. Botox® induced muscle paralysis was used to investigate the role of muscle contraction during in vivo tibia compression loading. 5-6 month-old female TOPGAL mice had their right hindlimb muscles surrounding the tibia injected with either BOTOX® or saline. At four days post injections when muscle paralysis peaked, the right tibia was subjected to a single session of in vivo compression loading at ∼2600 με. At 24 h post-load we observed a 2.5-fold increase in β-catenin signaling in osteocytes in the tibias of the saline injected mice, whereas loading of tibias from Botox® injected mice failed to active β-catenin signaling in osteocytes. This suggests that active muscle contraction produces a factor(s) that is necessary for or conditions the osteocyte's ability to respond to load. To further investigate the role of muscle derived factors, MLO-Y4 osteocyte-like cells and a luciferase based β-catenin reporter (TOPflash-MLO-Y4) cell line we developed were treated with conditioned media (CM) from C2C12 myoblasts (MB) and myotubes (MT) and ex vivo contracted Extensor Digitorum Longus (EDL) and Soleus (Sol) muscles under static or loading conditions using fluid flow shear stress (FFSS). 10 % C2C12 myotube CM, but not myoblast or NIH3T3 fibroblast cells CM, induced a rapid activation of the Akt signaling pathway, peaking at 15 min and returning to baseline by 1-2 h under static conditions. FFSS applied to MLO-Y4 cells for 2 h in the presence of 10 % MT-CM resulted in a 6-8 fold increase in pAkt compared to a 3-4 fold increase under control or when exposed to 10 % MB-CM. A similar response was observed in the presence of 10 % EDL-CM, but not in the presence of 10 % Sol-CM. TOPflash-MLO-Y4 cells were treated with 10 ng/ml Wnt3a in the presence or absence of MT-CM. While MT-CM resulted in a 2-fold activation and Wnt3a produced a 10-fold activation, the combination of MT-CM + Wnt3a resulted in a 25-fold activation of β-catenin signaling, implying a synergistic effect of factors in MT-CM with Wnt3a. These data provide clear evidence that specific muscles and myotubes produce factors that alter important signaling pathways involved in the response of osteocytes to mechanical load. These data strongly suggest that beyond mechanical loading there is a molecular coupling of muscle and bone.
Collapse
Affiliation(s)
- N Lara-Castillo
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, United States of America.
| | - J Masunaga
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, United States of America
| | - L Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, 411 S. Nedderman Dr, Arlington, TX 76019, United States of America
| | - J A Vallejo
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, United States of America; Department of Biomedical Sciences, UMKC School of Medicine, 2411 Holmes, Kansas City, MO 64108, United States of America
| | - K Javid
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, United States of America
| | - M J Wacker
- Department of Biomedical Sciences, UMKC School of Medicine, 2411 Holmes, Kansas City, MO 64108, United States of America
| | - M Brotto
- Department of Biomedical Sciences, UMKC School of Medicine, 2411 Holmes, Kansas City, MO 64108, United States of America
| | - L F Bonewald
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, United States of America; Indiana Center for Musculoskeletal Health, Barnhill Drive, Indianapolis, IN 46202, United States of America
| | - M L Johnson
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, United States of America
| |
Collapse
|
100
|
Ren Y, Zhao D, Bo Y, Cheng J. Non-linear relationship between serum osteocalcin and diabetic retinopathy in postmenopausal women with type 2 diabetes mellitus. Clin Chim Acta 2023; 549:117552. [PMID: 37709110 DOI: 10.1016/j.cca.2023.117552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is associated with diabetic retinopathy (DR), but effective interventions are lacking. The relationship between osteocalcin (OC) and DR in postmenopausal women with T2DM is understudied. METHODS This study examined 950 postmenopausal women with T2DM (T2DR group: n = 299; T2DM group: n = 651). RESULTS Significant differences (p < 0.05) were observed between the groups in disease duration, age, gender, body mass index (BMI), glycated haemoglobin (HbA1c), low-density lipoprotein (LDL-C), parathyroid hormone (PTH), total type I collagen amino acid-prolonging peptide (TPINP), OC, and 25 hydroxyvitamin D (25(OH)D3). Logistic regression revealed associations of LDL-C, PTH, and 25(OH)D3 with DR. A non-linear relationship (p < 0.05) between OC and DR was found. The lowest DR risk occurred at OC levels of 15.0-25.3 ng/ml (OR, 0.66; 95 % CI, 0.44, 0.98) compared to 11.1-15.0 ng/ml. Risk remained unchanged below 11.1 ng/ml or above 25.3 ng/ml. CONCLUSION In conclusion, among postmenopausal women with T2DM, OC levels showed a non-linear relationship with DR. Optimal OC levels (15.0-25.3 ng/ml) were associated with minimal DR occurrence, while risk was constant below 11.1 ng/ml or above 25.3 ng/ml. Maintaining optimal OC levels may reduce DR risk in this population.
Collapse
Affiliation(s)
- Yishu Ren
- Department of Endocrinology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Dan Zhao
- Department of Endocrinology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Yawen Bo
- Department of Endocrinology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Jinluo Cheng
- Department of Endocrinology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China.
| |
Collapse
|