51
|
Cechinel LR, Batabyal RA, Blume Corssac G, Goldberg M, Harmon B, Vallejos VMR, Bruch GE, Massensini AR, Belló-Klein A, Araujo ASDR, Freishtat RJ, Siqueira IR. Circulating Total Extracellular Vesicles Cargo Are Associated with Age-Related Oxidative Stress and Susceptibility to Cardiovascular Diseases: Exploratory Results from Microarray Data. Biomedicines 2023; 11:2920. [PMID: 38001921 PMCID: PMC10669226 DOI: 10.3390/biomedicines11112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Aging is a risk factor for many non-communicable diseases such as cardiovascular and neurodegenerative diseases. Extracellular vesicles and particles (EVP) carry microRNAs that may play a role in age-related diseases and may induce oxidative stress. We hypothesized that aging could impact EVP miRNA and impair redox homeostasis, contributing to chronic age-related diseases. Our aims were to investigate the microRNA profiles of circulating total EVPs from aged and young adult animals and to evaluate the pro- and antioxidant machinery in circulating total EVPs. Plasma from 3- and 21-month-old male Wistar rats were collected, and total EVPs were isolated. MicroRNA isolation and microarray expression analysis were performed on EVPs to determine the predicted regulation of targeted mRNAs. Thirty-one mature microRNAs in circulating EVPs were impacted by age and were predicted to target molecules in canonical pathways directly related to cardiovascular diseases and oxidative status. Circulating total EVPs from aged rats had significantly higher NADPH oxidase levels and myeloperoxidase activity, whereas catalase activity was significantly reduced in EVPs from aged animals. Our data shows that circulating total EVP cargo-specifically microRNAs and oxidative enzymes-are involved in redox imbalance in the aging process and can potentially drive cardiovascular aging and, consequently, cardiac disease.
Collapse
Affiliation(s)
- Laura Reck Cechinel
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (L.R.C.)
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC 20012, USA
| | - Rachael Ann Batabyal
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC 20012, USA
- Division of Emergency Medicine, Children’s National Hospital, Washington, DC 20010, USA
- School of Medicine and Health Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Giana Blume Corssac
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (L.R.C.)
- Laboratório de Fisiologia Cardiovascular e Espécies Reativas do Oxigênio, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Madeleine Goldberg
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC 20012, USA
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC 20012, USA
| | - Virgínia Mendes Russo Vallejos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Gisele E. Bruch
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - André Ricardo Massensini
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Adriane Belló-Klein
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (L.R.C.)
- Laboratório de Fisiologia Cardiovascular e Espécies Reativas do Oxigênio, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Alex Sander da Rosa Araujo
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (L.R.C.)
- Laboratório de Fisiologia Cardiovascular e Espécies Reativas do Oxigênio, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Robert J. Freishtat
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC 20012, USA
| | - Ionara Rodrigues Siqueira
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (L.R.C.)
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| |
Collapse
|
52
|
Newman AB, Patel S, Kizer JR, Lee SJ, Bhasin S, Cawthon P, LeBrasseur N, Tracy RP, Ganz P, Cummings SR. Evaluation of Associations of Growth Differentiation Factor-11, Growth Differentiation Factor-8, and Their Binding Proteins Follistatin and Follistatin-Like Protein-3 With Dementia and Cognition. J Gerontol A Biol Sci Med Sci 2023; 78:2039-2047. [PMID: 36660892 PMCID: PMC10613013 DOI: 10.1093/gerona/glad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Studies using heterochronic parabiosis discovered that circulating factors mediate brain aging in animal models. METHODS We assessed growth differentiation factors (GDF)-11 and GDF-8 using mass spectrometry and inhibitors follistatin and follistatin-like protein-3 (FSTL-3) with ELISA in the Cardiovascular Health Study (CHS; N = 1 506) and the Health, Aging and Body Composition (Health ABC) Study (N = 1 237). CLL-11 and beta-2 microglobulin (β2M) were measured with ELISA in a subset of 400 individuals in Health ABC. Associations were assessed with cognitive function, brain magnetic resonance imaging (MRI) findings (CHS only), and incident dementia using correlations, linear regression, and Cox proportional hazards models. RESULTS In CHS, levels of GDF-11, GDF-8, and follistatin were not correlated cross-sectionally with the 3MSE or DSST, brain MRI findings of white matter hyperintensity, atrophy, or small infarcts, nor were they associated with incident dementia. FSTL-3 was modestly correlated with poorer cognitive function, greater white matter hyperintensities, and atrophy on MRI, as well as with incident dementia with an adjusted hazard ratio (HR) of 1.72 (95% CI = 1.13, 2.61) per doubling of FSTL-3. FSTL-3 was not associated with cognition or dementia in Health ABC, but GDF-8 was associated with both. The adjusted HR for incident dementia was 1.50 (95% CI = 1.07, 2.10) per doubling of GDF-8. CONCLUSIONS Total GDF-11 level was not related to cognition or dementia in older adults. Associations of GDF-8 with cognitive outcomes in Health ABC were not expected, but consistent with animal models. Associations of FSTL-3 with cognition, brain abnormalities, and incident dementia in CHS implicate TGFβ superfamily inhibition in the pathogenesis of dementia.
Collapse
Affiliation(s)
- Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania,USA
| | - Sheena Patel
- Research Institute, California Pacific Medical Center, University of California, San Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
- Departments of Medicine, Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Se-Jin Lee
- Jackson Laboratory and University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Shalinder Bhasin
- Research Program in Men’s Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peggy Cawthon
- Research Institute, California Pacific Medical Center, University of California, San Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Nathan LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Russel P Tracy
- Department of Biochemistry, University of Vermont, Burlington, Vermont,USA
| | - Peter Ganz
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Steven R Cummings
- Research Institute, California Pacific Medical Center, University of California, San Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
53
|
Tian J, Li XJ, Ma Y, Mai Z, Yang Y, Luo M, Xu W, Chen K, Chen X, Tang J, Cheng B, Cui X. Correlation of bioactive components of platelet rich plasma derived from human female adult peripheral blood and umbilical cord blood with age. Sci Rep 2023; 13:18428. [PMID: 37891219 PMCID: PMC10611812 DOI: 10.1038/s41598-023-45747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
Platelet-rich plasma (PRP) has gained significant attention in the field of regenerative medicine due to its potential therapeutic applications. However, few studies have reported the components, especially anti-ageing-related components, of PRP derived from umbilical cord blood (UCB). It is essential to understand the influence of age on the composition and efficacy of PRP to optimize its clinical use. The present study compared the concentrations of bioactive components in PRP from healthy female adults and UCB-derived PRP. PRP was obtained from blood samples from females in four age groups (12 per group): neonates (UCB donors) and adults aged 18-25, 26-45, and 46-65 years, respectively. The concentrations of epidermal growth factor, basic fibroblast growth factor-2 (FGF-2), insulin-like growth factor-1, platelet-derived growth factor-AA (PDGF-AA), PDGF-AB/BB, vascular endothelial growth factor A, RANTES, TIMP-1, TIMP-2, GDF11, and clusterin and activity of superoxide dismutase, catalase, and glutathione peroxidase (GPx) in the PRP samples were determined and compared among groups. Pairwise comparisons between the groups showed statistically significant differences in the concentrations of some bioactive components of PRP, such as FGF-2, PDGF-AB/BB, and clusterin, and GPx activity. UCB-derived PRP contains various active ingredients such as VEGF-A, CAT activity, and TIMP-2. Contrary to expectations, UCB-derived PRP did not show higher concentrations of the anti-ageing protein GDF11. Because UCB is a rich source of bioactive components with low immunogenicity, its use in PRP preparation is an important research direction for future studies.
Collapse
Affiliation(s)
- Ju Tian
- Department of Plastic Surgery, People's Hospital of Zhongshan City, Zhongshan, 528421, Guangdong, China
| | - Xiong Jie Li
- Department of Plastic Surgery, People's Hospital of Zhongshan City, Zhongshan, 528421, Guangdong, China
| | - Yongshi Ma
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhiming Mai
- Obstetrics and Gynaecology Department, General Hospital of Southern Theatre Command, PLA, Guangzhou, 510010, China
| | - Yao Yang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Min Luo
- Obstetrics and Gynaecology Department, General Hospital of Southern Theatre Command, PLA, Guangzhou, 510010, China
| | - Wenping Xu
- Department of General Practice, General Hospital of Southern Theatre Command, PLA, Guangzhou, 510010, China
| | - Kui Chen
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, Guangdong, China
- Obstetrics and Gynaecology Department, General Hospital of Southern Theatre Command, PLA, Guangzhou, 510010, China
| | - Xuri Chen
- Department of General Practice, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jianbing Tang
- Department of Burn and Plastic Surgery, General Hospital of Southern Theatre Command, PLA, Guangzhou, 510010, China
| | - Biao Cheng
- Department of Burn and Plastic Surgery, General Hospital of Southern Theatre Command, PLA, Guangzhou, 510010, China.
- The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area of Chinese PLA, Guangzhou, 510010, China.
| | - Xiao Cui
- Department of Burn and Plastic Surgery, General Hospital of Southern Theatre Command, PLA, Guangzhou, 510010, China.
- Department of Physiotherapy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| |
Collapse
|
54
|
Moses E, Franek R, Harel I. A scalable and tunable platform for functional interrogation of peptide hormones in fish. eLife 2023; 12:e85960. [PMID: 37872843 PMCID: PMC10597582 DOI: 10.7554/elife.85960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/16/2023] [Indexed: 10/25/2023] Open
Abstract
Pituitary hormones play a central role in shaping vertebrate life history events, including growth, reproduction, metabolism, and aging. The regulation of these traits often requires precise control of hormone levels across diverse timescales. However, fine tuning circulating hormones in-vivo has traditionally been experimentally challenging. Here, using the naturally short-lived turquoise killifish (N. furzeri), we describe a high-throughput platform that combines loss- and gain-of-function of peptide hormones. Mutation of three primary pituitary hormones, growth hormone (gh1), follicle stimulating hormone (fshb), and thyroid stimulating hormone (tshb), alters somatic growth and reproduction. Thus, suggesting that while the killifish undergoes extremely rapid growth and maturity, it still relies on vertebrate-conserved genetic networks. As the next stage, we developed a gain-of-function vector system in which a hormone is tagged using a self-cleavable fluorescent reporter, and ectopically expressed in-vivo through intramuscular electroporation. Following a single electroporation, phenotypes, such as reproduction, are stably rescued for several months. Notably, we demonstrate the versatility of this approach by using multiplexing, dose-dependent, and doxycycline-inducible systems to achieve tunable and reversible expression. In summary, this method is relatively high-throughput, and facilitates large-scale interrogation of life-history strategies in fish. Ultimately, this approach could be adapted for modifying aquaculture species and exploring pro-longevity interventions.
Collapse
Affiliation(s)
- Eitan Moses
- Department of Genetics, the Silberman Institute, The Hebrew University of JerusalemJerusalemIsrael
| | - Roman Franek
- Department of Genetics, the Silberman Institute, The Hebrew University of JerusalemJerusalemIsrael
- University of South Bohemia in Ceske Budejovice, South Bohemian Research Center of Aquaculture and Biodiversity of HydrocenosesVodnanyCzech Republic
| | - Itamar Harel
- Department of Genetics, the Silberman Institute, The Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
55
|
Dubin RF, Deo R, Ren Y, Wang J, Zheng Z, Shou H, Go AS, Parsa A, Lash JP, Rahman M, Hsu CY, Weir MR, Chen J, Anderson A, Grams ME, Surapaneni A, Coresh J, Li H, Kimmel PL, Vasan RS, Feldman H, Segal MR, Ganz P. Proteomics of CKD progression in the chronic renal insufficiency cohort. Nat Commun 2023; 14:6340. [PMID: 37816758 PMCID: PMC10564759 DOI: 10.1038/s41467-023-41642-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Progression of chronic kidney disease (CKD) portends myriad complications, including kidney failure. In this study, we analyze associations of 4638 plasma proteins among 3235 participants of the Chronic Renal Insufficiency Cohort Study with the primary outcome of 50% decline in estimated glomerular filtration rate or kidney failure over 10 years. We validate key findings in the Atherosclerosis Risk in the Communities study. We identify 100 circulating proteins that are associated with the primary outcome after multivariable adjustment, using a Bonferroni statistical threshold of significance. Individual protein associations and biological pathway analyses highlight the roles of bone morphogenetic proteins, ephrin signaling, and prothrombin activation. A 65-protein risk model for the primary outcome has excellent discrimination (C-statistic[95%CI] 0.862 [0.835, 0.889]), and 14/65 proteins are druggable targets. Potentially causal associations for five proteins, to our knowledge not previously reported, are supported by Mendelian randomization: EGFL9, LRP-11, MXRA7, IL-1 sRII and ILT-2. Modifiable protein risk markers can guide therapeutic drug development aimed at slowing CKD progression.
Collapse
Affiliation(s)
- Ruth F Dubin
- Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Rajat Deo
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yue Ren
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jianqiao Wang
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zihe Zheng
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Haochang Shou
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alan S Go
- Division of Research, Kaiser Permanente Northern California, Oakland, the Department of Health Systems Science, Oakland, CA, USA
| | - Afshin Parsa
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James P Lash
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Mahboob Rahman
- Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Chi-Yuan Hsu
- Division of Research, Kaiser Permanente Northern California, Oakland, the Department of Health Systems Science, Oakland, CA, USA
- Division of Nephrology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew R Weir
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jing Chen
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
| | - Amanda Anderson
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
| | - Morgan E Grams
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Division of Precision Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Aditya Surapaneni
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Division of Precision Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Josef Coresh
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ramachandran S Vasan
- University of Texas School of Public Health San Antonio and the University of Texas Health Sciences Center in San Antonio. Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Harold Feldman
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark R Segal
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Peter Ganz
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
56
|
Sakuma K, Hamada K, Yamaguchi A, Aoi W. Current Nutritional and Pharmacological Approaches for Attenuating Sarcopenia. Cells 2023; 12:2422. [PMID: 37830636 PMCID: PMC10572610 DOI: 10.3390/cells12192422] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Sarcopenia is characterized by a gradual slowing of movement due to loss of muscle mass and quality, decreased power and strength, increased risk of injury from falls, and often weakness. This review will focus on recent research trends in nutritional and pharmacological approaches to controlling sarcopenia. Because nutritional studies in humans are fairly limited, this paper includes many results from nutritional studies in mammals. The combination of resistance training with supplements containing amino acids is the gold standard for preventing sarcopenia. Amino acid (HMB) supplementation alone has no significant effect on muscle strength or muscle mass in sarcopenia, but the combination of HMB and exercise (whole body vibration stimulation) is likely to be effective. Tea catechins, soy isoflavones, and ursolic acid are interesting candidates for reducing sarcopenia, but both more detailed basic research on this treatment and clinical studies in humans are needed. Vitamin D supplementation has been shown not to improve sarcopenia in elderly individuals who are not vitamin D-deficient. Myostatin inhibitory drugs have been tried in many neuromuscular diseases, but increases in muscle mass and strength are less likely to be expected. Validation of myostatin inhibitory antibodies in patients with sarcopenia has been positive, but excessive expectations are not warranted.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan;
| | - Kento Hamada
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan;
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Wataru Aoi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan;
| |
Collapse
|
57
|
Qi F, Zuo Z, Hu K, Wang R, Wu T, Liu H, Tang J, Wang Q, Xie Y, Tan L, Yang Y, Zhang X, Zheng J, Xu J, Yao Z, Wang S, Wu LJ, Guo K. VEGF-A in serum protects against memory impairment in APP/PS1 transgenic mice by blocking neutrophil infiltration. Mol Psychiatry 2023; 28:4374-4389. [PMID: 37280283 PMCID: PMC10827659 DOI: 10.1038/s41380-023-02097-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023]
Abstract
Activation of innate immunity in the brain is a prominent feature of Alzheimer's disease (AD). The present study investigated the regulation of innate immunity by wild-type serum injection in a transgenic AD mouse model. We found that treatment with wild-type mouse serum significantly reduced the number of neutrophils and microglial reactivity in the brains of APP/PS1 mice. Mimicking this effect, neutrophil depletion via Ly6G neutralizing antibodies resulted in improvements in AD brain functions. Serum proteomic analysis identified vascular endothelial growth factor-A (VEGF-A) and chemokine (C-X-C motif) ligand 1 (CXCL1) as factors enriched in serum samples, which are crucial for neutrophil migration and chemotaxis, leukocyte migration, and cell chemotaxis. Exogenous VEGF-A reversed amyloid β (Aβ)-induced decreases in cyclin-dependent kinase 5 (Cdk5) and increases in CXCL1 in vitro and blocked neutrophil infiltration into the AD brain. Endothelial Cdk5 overexpression conferred an inhibitory effect on CXCL1 and neutrophil infiltration, thereby restoring memory abilities in APP/PS1 mice. Our findings uncover a previously unknown link between blood-derived VEGF signaling and neutrophil infiltration and support targeting endothelial Cdk5 signaling as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Fangfang Qi
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Editorial Department of Journal of Sun Yat-sen University, Guangzhou, 510080, China
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zejie Zuo
- Department of Rehabilitation Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Rui Wang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tong Wu
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Liu
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiaoling Tang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qingbo Wang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yufeng Xie
- Five-year Programs of Clinical Medicine in the 2017 grade, School of Medicine, Sun Yat-sen University, Shenzhen, 528406, China
| | - Liren Tan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yunjie Yang
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jie Xu
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhibin Yao
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shengwen Wang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Kaihua Guo
- Department of Anatomy and Physiology, Guangdong Province Key Laboratory of Brain Function and Disease, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
58
|
Ansere VA, Bubak MP, Miller BF, Freeman WM. Heterochronic Plasma Transfer: Experimental Design, Considerations, and Technical Challenges. Rejuvenation Res 2023; 26:171-179. [PMID: 37551981 PMCID: PMC10611967 DOI: 10.1089/rej.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Experimental approaches such as Heterochronic Plasma Transfer (HPT) provide insights into the aging process and help identify the factors that impact aging, with the aim of developing anti-aging therapies. HPT involves the transfer of plasma from an animal of one age to an animal of a different age and highlights the effects of the systemic environment on aging. Despite its importance as an aging research tool, HPT is not without limitations and HPT experiments across various studies differ in key experimental designs considerations, presenting a challenge in obtaining comparable outcomes. In this review, we examine the caveats and experimental design considerations of HPT as a research tool. We provide insights into plasma preparation procedures, route of administration, dosing regimen, and appropriate controls to assist investigators in achieving their experimental goals.
Collapse
Affiliation(s)
- Victor A. Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Matthew P. Bubak
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Benjamin F. Miller
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Willard M. Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
59
|
Driss LB, Lian J, Walker RG, Howard JA, Thompson TB, Rubin LL, Wagers AJ, Lee RT. GDF11 and aging biology - controversies resolved and pending. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:42. [PMID: 38235060 PMCID: PMC10793994 DOI: 10.20517/jca.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Since the exogenous administration of GDF11, a TGF-ß superfamily member, was reported to have beneficial effects in some models of human disease, there have been many research studies in GDF11 biology. However, many studies have now confirmed that exogenous administration of GDF11 can improve physiology in disease models, including cardiac fibrosis, experimental stroke, and disordered metabolism. GDF11 is similar to GDF8 (also called Myostatin), differing only by 11 amino acids in their mature signaling domains. These two proteins are now known to be biochemically different both in vitro and in vivo. GDF11 is much more potent than GDF8 and induces more strongly SMAD2 phosphorylation in the myocardium compared to GDF8. GDF8 and GDF11 prodomain are only 52% identical and are cleaved by different Tolloid proteases to liberate the mature signaling domain from inhibition of the prodomain. Here, we review the state of GDF11 biology, highlighting both resolved and remaining controversies.
Collapse
Affiliation(s)
- Laura Ben Driss
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - John Lian
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Ryan G. Walker
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - James A. Howard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Thomas B. Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy J. Wagers
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Joslin Diabetes Center, Boston, MA 02115, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
60
|
Yamamoto KK, Savage-Dunn C. TGF-β pathways in aging and immunity: lessons from Caenorhabditis elegans. Front Genet 2023; 14:1220068. [PMID: 37732316 PMCID: PMC10507863 DOI: 10.3389/fgene.2023.1220068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
The Transforming Growth Factor-β (TGF-β) superfamily of signaling molecules plays critical roles in development, differentiation, homeostasis, and disease. Due to the conservation of these ligands and their signaling pathways, genetic studies in invertebrate systems including the nematode Caenorhabditis elegans have been instrumental in identifying signaling mechanisms. C. elegans is also a premier organism for research in longevity and healthy aging. Here we summarize current knowledge on the roles of TGF-β signaling in aging and immunity.
Collapse
Affiliation(s)
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, and PhD Program in Biology, The Graduate Center, City University of New York, New York City, NY, United States
| |
Collapse
|
61
|
Król W, Machelak W, Zielińska M. GDF11 as a friend or an enemy in the cancer biology? Biochim Biophys Acta Rev Cancer 2023; 1878:188944. [PMID: 37356738 DOI: 10.1016/j.bbcan.2023.188944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
The Growth and Differential Factor 11 (GDF11) is a recently discovered representative of Transforming Growth Factor β superfamily. The highest expression of GDF11 is detected in the nervous system, bladder, seminal vesicles and muscles whereas the lowest in the testis, liver or breast. GDF11 role in physiology is still not clear. GDF11 is a crucial factor in embryogenesis, cell cycle control and apoptosis, inasmuch it mainly targets cell retain stemness features, managing to the cell differentiation and the maturation. GDF11 is entangled in lipid metabolism, inflammatory processes and aging. GDF11 is strongly related to carcinogenesis and its expression in tumors is intruded. GDF11 can promote cancer growth in the colon or inhibit the cell proliferation in breast cancer. The aberrated expression is probably allied with the impaired maturation. In this article we summarized an impact of GDF11 on the tumor cells and review the all attitudes connecting GDF11 with carcinogenesis.
Collapse
Affiliation(s)
- Wojciech Król
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Weronika Machelak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
62
|
Ceylani T, Teker HT, Keskin S, Samgane G, Acikgoz E, Gurbanov R. The rejuvenating influence of young plasma on aged intestine. J Cell Mol Med 2023; 27:2804-2816. [PMID: 37610839 PMCID: PMC10494294 DOI: 10.1111/jcmm.17926] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023] Open
Abstract
This study aims to investigate the effects of plasma exchange on the biomolecular profiles and histology of ileum and colon tissues in young and aged Sprague-Dawley male rats. Fourier transform infrared (FTIR) spectroscopy, linear discriminant analysis and support vector machine (SVM) techniques were employed to analyse the lipid, protein, and nucleic acid indices in young and aged rats. Following the application of young plasma, aged rats demonstrated biomolecular profiles similar to those of their younger counterparts. Histopathological and immunohistochemical assessments showed that young plasma had a protective effect on the intestinal tissues of aged rats, increasing cell density and reducing inflammation. Additionally, the expression levels of key inflammatory mediators tumour necrosis factor-alpha and cyclooxygenase-2 significantly decreased after young plasma administration. These findings underscore the therapeutic potential of young plasma for mitigating age-related changes and inflammation in the intestinal tract. They highlight the critical role of plasma composition in the ageing process and suggest the need for further research to explore how different regions of the intestines respond to plasma exchange. Such understanding could facilitate the development of innovative therapies targeting the gastrointestinal system, enhancing overall health during ageing.
Collapse
Affiliation(s)
- Taha Ceylani
- Department of Molecular Biology and GeneticsMuş Alparslan University MuşMuşTurkey
- Department of Food Quality Control and AnalysisMuş Alparslan University MuşMuşTurkey
| | - Hikmet Taner Teker
- Department of Molecular BiologyAnkara Medipol University AnkaraAnkaraTurkey
| | - Seda Keskin
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Gizem Samgane
- Department BiotechnologyInstitute of Graduate Education, Bilecik Şeyh Edebali University BilecikBilecikTurkey
| | - Eda Acikgoz
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Rafig Gurbanov
- Department of BioengineeringBilecik Şeyh Edebali University BilecikBilecikTurkey
- Central Research Laboratory (BARUM)Bilecik Seyh Edebali University BilecikBilecikTurkey
| |
Collapse
|
63
|
Xu B, Chen K, Su W, Liu Y, Sheng Y, Ye T, Wu G, Zong G. Correlation Between GDF11 Serum Levels, Severity of Coronary Artery Lesions, and the Prognosis of Patients with ST-segment Elevation Myocardial Infarction. J Cardiovasc Transl Res 2023; 16:938-947. [PMID: 36749564 DOI: 10.1007/s12265-023-10358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023]
Abstract
We aimed to explore the correlation among serum GDF11, the severity of coronary artery lesions, and the prognosis of patients with ST-segment elevation myocardial infarction (STEMI). A total of 367 patients were enrolled and divided into control (n = 172) and STEMI (n = 195) groups. Serum GDF11 (P < 0.001) was an independent predictor of STEMI and was negatively correlated with SYNTAX score (P < 0.05). ROC curve analysis showed that serum GDF11 could screen patients for major adverse cardiovascular events (MACEs). KM curve analysis showed that patients with lower concentration of GDF11 had a higher incidence of MACEs, and Cox proportional hazards regression analysis showed that the serum GDF11 (P < 0.001) was an independent predictor of MACEs. Serum GDF11 was negatively correlated with the severity of coronary lesions and was also an independent prognostic indicator of MACEs in patients with STEMI.
Collapse
Affiliation(s)
- Baida Xu
- Department of Cardiology, The 904Th Hospital of Joint Logistic Support Force of PLA, Wuxi, 214044, China
- Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Ke Chen
- Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Wentao Su
- Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Yehong Liu
- Department of Cardiology, The 904Th Hospital of Joint Logistic Support Force of PLA, Wuxi, 214044, China
| | - Ying Sheng
- Department of Cardiology, The 904Th Hospital of Joint Logistic Support Force of PLA, Wuxi, 214044, China
| | - Ting Ye
- Department of Cardiology, The 904Th Hospital of Joint Logistic Support Force of PLA, Wuxi, 214044, China
| | - Gangyong Wu
- Department of Cardiology, The 904Th Hospital of Joint Logistic Support Force of PLA, Wuxi, 214044, China.
- Wuxi Clinical College of Anhui Medical University, Wuxi, China.
| | - Gangjun Zong
- Department of Cardiology, The 904Th Hospital of Joint Logistic Support Force of PLA, Wuxi, 214044, China.
- Wuxi Clinical College of Anhui Medical University, Wuxi, China.
| |
Collapse
|
64
|
Zheng XQ, Lin JL, Huang J, Wu T, Song CL. Targeting aging with the healthy skeletal system: The endocrine role of bone. Rev Endocr Metab Disord 2023; 24:695-711. [PMID: 37402956 DOI: 10.1007/s11154-023-09812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 07/06/2023]
Abstract
Aging is an inevitable biological process, and longevity may be related to bone health. Maintaining strong bone health can extend one's lifespan, but the exact mechanism is unclear. Bone and extraosseous organs, including the heart and brain, have complex and precise communication mechanisms. In addition to its load bearing capacity, the skeletal system secretes cytokines, which play a role in bone regulation of extraosseous organs. FGF23, OCN, and LCN2 are three representative bone-derived cytokines involved in energy metabolism, endocrine homeostasis and systemic chronic inflammation levels. Today, advanced research methods provide new understandings of bone as a crucial endocrine organ. For example, gene editing technology enables bone-specific conditional gene knockout models, which allows the study of bone-derived cytokines to be more precise. We systematically evaluated the various effects of bone-derived cytokines on extraosseous organs and their possible antiaging mechanism. Targeting aging with the current knowledge of the healthy skeletal system is a potential therapeutic strategy. Therefore, we present a comprehensive review that summarizes the current knowledge and provides insights for futures studies.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jia-Liang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jie Huang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Tong Wu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
| |
Collapse
|
65
|
Zhang B, Lee DE, Trapp A, Tyshkovskiy A, Lu AT, Bareja A, Kerepesi C, McKay LK, Shindyapina AV, Dmitriev SE, Baht GS, Horvath S, Gladyshev VN, White JP. Multi-omic rejuvenation and life span extension on exposure to youthful circulation. NATURE AGING 2023; 3:948-964. [PMID: 37500973 PMCID: PMC11095548 DOI: 10.1038/s43587-023-00451-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/06/2023] [Indexed: 07/29/2023]
Abstract
Heterochronic parabiosis (HPB) is known for its functional rejuvenation effects across several mouse tissues. However, its impact on biological age and long-term health is unknown. Here we performed extended (3-month) HPB, followed by a 2-month detachment period of anastomosed pairs. Old detached mice exhibited improved physiological parameters and lived longer than control isochronic mice. HPB drastically reduced the epigenetic age of blood and liver based on several clock models using two independent platforms. Remarkably, this rejuvenation effect persisted even after 2 months of detachment. Transcriptomic and epigenomic profiles of anastomosed mice showed an intermediate phenotype between old and young, suggesting a global multi-omic rejuvenation effect. In addition, old HPB mice showed gene expression changes opposite to aging but akin to several life span-extending interventions. Altogether, we reveal that long-term HPB results in lasting epigenetic and transcriptome remodeling, culminating in the extension of life span and health span.
Collapse
Affiliation(s)
- Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David E Lee
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Alexandre Trapp
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Retro Biosciences, Redwood City, CA, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Akshay Bareja
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Csaba Kerepesi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Computer Science and Control (SZTAKI), Eötvös Loránd Research Network, Budapest, Hungary
| | - Lauren K McKay
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anastasia V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Retro Biosciences, Redwood City, CA, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Gurpreet S Baht
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - James P White
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA.
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
66
|
Grigorian Shamagian L, Rogers RG, Luther K, Angert D, Echavez A, Liu W, Middleton R, Antes T, Valle J, Fourier M, Sanchez L, Jaghatspanyan E, Mariscal J, Zhang R, Marbán E. Rejuvenating effects of young extracellular vesicles in aged rats and in cellular models of human senescence. Sci Rep 2023; 13:12240. [PMID: 37507448 PMCID: PMC10382547 DOI: 10.1038/s41598-023-39370-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Rejuvenation of an old organism was achieved in heterochronic parabiosis experiments, implicating different soluble factors in this effect. Extracellular vesicles (EVs) are the secretory effectors of many cells, including cardiosphere-derived cells (CDCs) with demonstrated anti-senescent effect. 1. To determine the role of EVs (versus other blood fractions) on the rejuvenating effect of the young blood. 2. To evaluate the anti-aging properties of therapeutically administered EVs secreted by young-CDCs in an old organism. Neonatal blood fractioned in 4 components (whole blood, serum, EV-depleted serum and purified EVs) was used to treat old human cardiac stromal cells (CSPCs). CDCs were generated from neonatal rat hearts and the secreted CDC-EVs were purified. CDC-EVs were then tested in naturally-aged rats, using monthly injections over 4-months period. For validation in human samples, pediatric CDC-EVs were tested in aged human CSPCs and progeric fibroblasts. While the purified EVs reproduced the rejuvenating effects of the whole blood, CSPCs treated with EV-depleted serum exhibited the highest degree of senescence. Treatment with young CDC-EVs induce structural and functional improvements in the heart, lungs, skeletal muscle, and kidneys of old rats, while favorably modulating glucose metabolism and anti-senescence pathways. Lifespan was prolonged. EVs secreted by young CDCs exert broad-ranging anti-aging effects in aged rodents and in cellular models of human senescence. Our work not only identifies CDC-EVs as possible therapeutic candidates for a wide range of age-related pathologies, but also raises the question of whether EVs function as endogenous modulators of senescence.
Collapse
Affiliation(s)
- Lilian Grigorian Shamagian
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA.
- Servicio de Cardiología, Hospital Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, c/O'Donnell 48-50 (planta -1), 28009, Madrid, Spain.
- CIBERCV, ISCIII, Madrid, Spain.
| | - Russell G Rogers
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Kristin Luther
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - David Angert
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Antonio Echavez
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Weixin Liu
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Ryan Middleton
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Travis Antes
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Jackelyn Valle
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Mario Fourier
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Liz Sanchez
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Eva Jaghatspanyan
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Javier Mariscal
- Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Rui Zhang
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Eduardo Marbán
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| |
Collapse
|
67
|
Wu Z, Zhang L, Jia Y, Bi B, Fang L, Cheng JC. GDF-11 downregulates placental human chorionic gonadotropin expression by activating SMAD2/3 signaling. Cell Commun Signal 2023; 21:179. [PMID: 37480123 PMCID: PMC10362589 DOI: 10.1186/s12964-023-01201-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/17/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The production of human chorionic gonadotropin (hCG) by the placental trophoblast cells is essential for maintaining a normal pregnancy. Aberrant hCG levels are associated with reproductive disorders. The protein of hCG is a dimer consisting of an α subunit and a β subunit. The β subunit is encoded by the CGB gene and is unique to hCG. Growth differentiation factor-11 (GDF-11), a member of the transforming growth factor-β (TGF-β) superfamily, is expressed in the human placenta and can stimulate trophoblast cell invasion. However, whether the expression of CGB and the production of hCG are regulated by GDF-11 remains undetermined. METHODS Two human choriocarcinoma cell lines, BeWo and JEG-3, and primary cultures of human cytotrophoblast (CTB) cells were used as experimental models. The effects of GDF-11 on CGB expression and hCG production, as well as the underlying mechanisms, were explored by a series of in vitro experiments. RESULTS Our results show that treatment of GDF-11 downregulates the expression of CGB and the production of hCG in both BeWo and JEG-3 cells as well as in primary CTB cells. Using a pharmacological inhibitor and siRNA-mediated approach, we reveal that both ALK4 and ALK5 are required for the GDF-11-induced downregulation of CGB expression. In addition, treatment of GDF-11 activates SMAD2/3 but not SMAD1/5/8 signaling pathways. Moreover, both SMAD2 and SMAD3 are involved in the GDF-11-downregulated CGB expression. ELISA results show that the GDF-11-suppressed hCG production requires the ALK4/5-mediated activation of SMAD2/3 signaling pathways. CONCLUSIONS This study not only discovers the biological function of GDF-11 in the human placenta but also provides important insights into the regulation of the expression of hCG. Video Abstract.
Collapse
Affiliation(s)
- Ze Wu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Lingling Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Yuanyuan Jia
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Beibei Bi
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
68
|
Li Y, Tam WW, Yu Y, Zhuo Z, Xue Z, Tsang C, Qiao X, Wang X, Wang W, Li Y, Tu Y, Gao Y. The application of Aptamer in biomarker discovery. Biomark Res 2023; 11:70. [PMID: 37468977 DOI: 10.1186/s40364-023-00510-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
Biomarkers are detectable molecules that can reflect specific physiological states of cells, organs, and organisms and therefore be regarded as indicators for specific diseases. And the discovery of biomarkers plays an essential role in cancer management from the initial diagnosis to the final treatment regime. Practically, reliable clinical biomarkers are still limited, restricted by the suboptimal methods in biomarker discovery. Nucleic acid aptamers nowadays could be used as a powerful tool in the discovery of protein biomarkers. Nucleic acid aptamers are single-strand oligonucleotides that can specifically bind to various targets with high affinity. As artificial ssDNA or RNA, aptamers possess unique advantages compared to conventional antibodies. They can be flexible in design, low immunogenicity, relative chemical/thermos stability, as well as modifying convenience. Several SELEX (Systematic Evolution of Ligands by Exponential Enrichment) based methods have been generated recently to construct aptamers for discovering new biomarkers in different cell locations. Secretome SELEX-based aptamers selection can facilitate the identification of secreted protein biomarkers. The aptamers developed by cell-SELEX can be used to unveil those biomarkers presented on the cell surface. The aptamers from tissue-SELEX could target intracellular biomarkers. And as a multiplexed protein biomarker detection technology, aptamer-based SOMAScan can analyze thousands of proteins in a single run. In this review, we will introduce the principle and workflow of variations of SELEX-based methods, including secretome SELEX, ADAPT, Cell-SELEX and tissue SELEX. Another powerful proteome analyzing tool, SOMAScan, will also be covered. In the second half of this review, how these methods accelerate biomarker discovery in various diseases, including cardiovascular diseases, cancer and neurodegenerative diseases, will be discussed.
Collapse
Affiliation(s)
- Yongshu Li
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China.
| | - Winnie Wailing Tam
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomic, Peking University Shenzhen Graduate School, Shenzhen, China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhichao Xue
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Chiman Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoting Qiao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Weijing Wang
- Shantou University Medical College, Shantou, China
| | - Yongyi Li
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou City, China.
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China.
| |
Collapse
|
69
|
Spaleniak W, Cuendet M. Resveratrol as a circadian clock modulator: mechanisms of action and therapeutic applications. Mol Biol Rep 2023; 50:6159-6170. [PMID: 37231216 PMCID: PMC10289927 DOI: 10.1007/s11033-023-08513-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
In the past decades, resveratrol has gained increasing attention due to its versatile and beneficial properties. This natural polyphenol, commonly present in the human diet, has been shown to induce SIRT1 and to modulate the circadian rhythm at the cellular and organismal levels. The circadian clock is a system regulating behavior and function of the human body, thus playing a crucial role in health maintenance. It is primarily entrained by light-dark cycles; however, other factors such as feeding-fasting, oxygen and temperature cycles play a significant role in its regulation. Chronic circadian misalignment can lead to numerous pathologies, including metabolic disorders, age-related diseases or cancer. Therefore, the use of resveratrol may be a valuable preventive and/or therapeutic strategy for these pathologies. This review summarizes studies that evaluated the modulatory effect of resveratrol on circadian oscillators by focusing on the potential and limitations of resveratrol in biological clock-related disorders.
Collapse
Affiliation(s)
- Weronika Spaleniak
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
70
|
Ruden DM, Singh A, Rappolee DA. Pathological epigenetic events and reversibility review: the intersection between hallmarks of aging and developmental origin of health and disease. Epigenomics 2023; 15:741-754. [PMID: 37667910 PMCID: PMC10503466 DOI: 10.2217/epi-2023-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/07/2023] [Indexed: 09/06/2023] Open
Abstract
We discuss pathological epigenetic events that are reversible (PEERs). A recent study by Poganik and colleagues showed that severe stress in mice and humans transiently elevates biological age of several tissues, and this transient age increase is reversible when the stress is removed. These studies suggest new strategies for reversing normal aging. However, it is important to note that developmental origin of health and disease studies have shown that developmental exposure to toxic chemicals such as lead causes permanent changes in neuron shape, connectivity and cellular hyperplasia of organs such as the heart and liver. In this review, the PEER hypothesis speculates that the hallmarks of aging and the hallmarks of developmental origin of health and disease intersect at PEERs.
Collapse
Affiliation(s)
- Douglas M Ruden
- CS Mott Center for Human Health and Development, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Aditi Singh
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Daniel A Rappolee
- CS Mott Center for Human Health and Development, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
- Reproductive Stress, Grosse Pointe Farms, MI 48236, USA
| |
Collapse
|
71
|
Shao Y, Wang Y, Xu J, Yuan Y, Xing D. Growth differentiation factor 11: A new hope for the treatment of cardiovascular diseases. Cytokine Growth Factor Rev 2023; 71-72:82-93. [PMID: 37414617 DOI: 10.1016/j.cytogfr.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β superfamily that has garnered significant attention due to its anti-cardiac aging properties. Many studies have revealed that GDF11 plays an indispensable role in the onset of cardiovascular diseases (CVDs). Consequently, it has emerged as a potential target and novel therapeutic agent for CVD treatment. However, currently, no literature reviews comprehensively summarize the research on GDF11 in the context of CVDs. Therefore, herein, we comprehensively described GDF11's structure, function, and signaling in various tissues. Furthermore, we focused on the latest findings concerning its involvement in CVD development and its potential for clinical translation as a CVD treatment. We aim to provide a theoretical basis for the prospects and future research directions of the GDF11 application regarding CVDs.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yang Yuan
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
72
|
Kato T, Lee RT. GDF-11 as a Potential Cardiac Pro-Angiogenic Factor. JACC Basic Transl Sci 2023; 8:636-637. [PMID: 37426538 PMCID: PMC10322875 DOI: 10.1016/j.jacbts.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Affiliation(s)
- Tomohiro Kato
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
73
|
Cai A, Schneider P, Zheng ZM, Beier JP, Himmler M, Schubert DW, Weisbach V, Horch RE, Arkudas A. Myogenic differentiation of human myoblasts and Mesenchymal stromal cells under GDF11 on NPoly-ɛ-caprolactone-collagen I-Polyethylene-nanofibers. BMC Mol Cell Biol 2023; 24:18. [PMID: 37189080 PMCID: PMC10184409 DOI: 10.1186/s12860-023-00478-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND For the purpose of skeletal muscle engineering, primary myoblasts (Mb) and adipogenic mesenchymal stem cells (ADSC) can be co-cultured and myogenically differentiated. Electrospun composite nanofiber scaffolds represent suitable matrices for tissue engineering of skeletal muscle, combining both biocompatibility and stability Although growth differentiation factor 11 (GDF11) has been proposed as a rejuvenating circulating factor, restoring skeletal muscle function in aging mice, some studies have also described a harming effect of GDF11. Therefore, the aim of the study was to analyze the effect of GDF11 on co-cultures of Mb and ADSC on poly-ε-caprolactone (PCL)-collagen I-polyethylene oxide (PEO)-nanofibers. RESULTS Human Mb were co-cultured with ADSC two-dimensionally (2D) as monolayers or three-dimensionally (3D) on aligned PCL-collagen I-PEO-nanofibers. Differentiation media were either serum-free with or without GDF11, or serum containing as in a conventional differentiation medium. Cell viability was higher after conventional myogenic differentiation compared to serum-free and serum-free + GDF11 differentiation as was creatine kinase activity. Immunofluorescence staining showed myosine heavy chain expression in all groups after 28 days of differentiation without any clear evidence of more or less pronounced expression in either group. Gene expression of myosine heavy chain (MYH2) increased after serum-free + GDF11 stimulation compared to serum-free stimulation alone. CONCLUSIONS This is the first study analyzing the effect of GDF11 on myogenic differentiation of Mb and ADSC co-cultures under serum-free conditions. The results of this study show that PCL-collagen I-PEO-nanofibers represent a suitable matrix for 3D myogenic differentiation of Mb and ADSC. In this context, GDF11 seems to promote myogenic differentiation of Mb and ADSC co-cultures compared to serum-free differentiation without any evidence of a harming effect.
Collapse
Affiliation(s)
- Aijia Cai
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany.
| | - Paul Schneider
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Zeng-Ming Zheng
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery - Burn Center, University Hospital RWTH Aachen, 52074, Aachen, Germany
| | - Marcus Himmler
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine, University Hospital of Erlangen, Friedrich-Alexander- University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| |
Collapse
|
74
|
Lv J, Hu Y, Li L, He Y, Wang J, Guo N, Fang Y, Chen Q, Cai C, Tong J, Tang L, Wang Z. Targeting FABP4 in elderly mice rejuvenates liver metabolism and ameliorates aging-associated metabolic disorders. Metabolism 2023; 142:155528. [PMID: 36842611 DOI: 10.1016/j.metabol.2023.155528] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
INTRODUCTION Aging is characterized by progressive metabolic dyshomeostasis that increases morbidity and mortality. Solutions for optimizing healthy aging are challenged by lacking appropriate biomarkers. Moreover, druggable targets to rejuvenate the aging-associated metabolic phenotypes remain unavailable. METHODS Proteomics analysis was performed in a cohort of young and elderly adults. Circulating levels of insulin-like growth factor 1 (IGF-1) and fatty acid binding protein 4 (FABP4) were evaluated by ELISA. FABP4 was silenced in elderly mice by adeno-associated virus. Metabolic activities were measured by metabolic cages. Cognitive function was evaluated by Morris water maze. Glucose and lipid metabolism were evaluated by biochemistry assays with blood samples. RNA-seq in mouse liver was performed for transcriptome analysis. RESULTS Among 9 aging-sensitive proteins shared by both male and female, FABP4 was identified as a reliable aging biomarker in both human and mouse. Silencing FABP4 in elderly mice significantly rejuvenated the aging-associated decline in metabolic activities. FABP4 knockdown reversed the aging-associated metabolic disorders by promoting degradation of cholesterol and fatty acids, while suppressing gluconeogenesis. Transcriptome analysis revealed a restoration of the pro-aging gene reprogramming towards inflammation and metabolic disorders in the liver after FABP4 knockdown. FABP4 overexpression promoted human LO2 cell senescence. Moreover, administration of an FABP4 inhibitor BMS309403 delivered metabolic benefits in elderly mice. CONCLUSION Our findings demonstrate FABP4 as a reliable aging biomarker as well as a practicable target to improve healthy aging in the elderly.
Collapse
Affiliation(s)
- Jian Lv
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yimeng Hu
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China; Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan He
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingjing Wang
- School of Martial Arts, Wuhan Sports University, Wuhan 430079, China
| | - Ningning Guo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Fang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qin Chen
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Cheguo Cai
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Lixu Tang
- School of Martial Arts, Wuhan Sports University, Wuhan 430079, China.
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
75
|
Zhang Y, Zhang YY, Pan ZW, Li QQ, Sun LH, Li X, Gong MY, Yang XW, Wang YY, Li HD, Xuan LN, Shao YC, Li MM, Zhang MY, Yu Q, Li Z, Zhang XF, Liu DH, Zhu YM, Tan ZY, Zhang YY, Liu YQ, Zhang Y, Jiao L, Yang BF. GDF11 promotes wound healing in diabetic mice via stimulating HIF-1ɑ-VEGF/SDF-1ɑ-mediated endothelial progenitor cell mobilization and neovascularization. Acta Pharmacol Sin 2023; 44:999-1013. [PMID: 36347996 PMCID: PMC10104842 DOI: 10.1038/s41401-022-01013-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
Non-healing diabetic wounds (DW) are a serious clinical problem that remained poorly understood. We recently found that topical application of growth differentiation factor 11 (GDF11) accelerated skin wound healing in both Type 1 DM (T1DM) and genetically engineered Type 2 diabetic db/db (T2DM) mice. In the present study, we elucidated the cellular and molecular mechanisms underlying the action of GDF11 on healing of small skin wound. Single round-shape full-thickness wound of 5-mm diameter with muscle and bone exposed was made on mouse dorsum using a sterile punch biopsy 7 days following the onset of DM. Recombinant human GDF11 (rGDF11, 50 ng/mL, 10 μL) was topically applied onto the wound area twice a day until epidermal closure (maximum 14 days). Digital images of wound were obtained once a day from D0 to D14 post-wounding. We showed that topical application of GDF11 accelerated the healing of full-thickness skin wounds in both type 1 and type 2 diabetic mice, even after GDF8 (a muscle growth factor) had been silenced. At the cellular level, GDF11 significantly facilitated neovascularization to enhance regeneration of skin tissues by stimulating mobilization, migration and homing of endothelial progenitor cells (EPCs) to the wounded area. At the molecular level, GDF11 greatly increased HIF-1ɑ expression to enhance the activities of VEGF and SDF-1ɑ, thereby neovascularization. We found that endogenous GDF11 level was robustly decreased in skin tissue of diabetic wounds. The specific antibody against GDF11 or silence of GDF11 by siRNA in healthy mice mimicked the non-healing property of diabetic wound. Thus, we demonstrate that GDF11 promotes diabetic wound healing via stimulating endothelial progenitor cells mobilization and neovascularization mediated by HIF-1ɑ-VEGF/SDF-1ɑ pathway. Our results support the potential of GDF11 as a therapeutic agent for non-healing DW.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yi-Yuan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhen-Wei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Qing-Qi Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Li-Hua Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xin Li
- Department of Cardiovascular Sciences, School of Engineering, University of Leicester, Leicester, UK
| | - Man-Yu Gong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue-Wen Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yan-Ying Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hao-Dong Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Li-Na Xuan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying-Chun Shao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Meng-Meng Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ming-Yu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Qi Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhange Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiao-Fang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Dong-Hua Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yan-Meng Zhu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhong-Yue Tan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuan-Yuan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yun-Qi Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lei Jiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Bao-Feng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
76
|
Jin M, Cao R, Niu X, Shan P. The correlation between circulating growth differentiation factor 11 and the risk of osteopenia/osteoporosis in men. Arch Osteoporos 2023; 18:55. [PMID: 37118347 DOI: 10.1007/s11657-023-01237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/20/2023] [Indexed: 04/30/2023]
Abstract
Our results suggest that the serum GDF11 concentration is significantly associated with the risk of bone metabolism dysfunction in men and may be a useful target for prediction of osteopenia/osteoporosis to enable prompt intervention for this common but invariably under- or misdiagnosed condition in men. PURPOSE Male osteopenia/osteoporosis remains a neglected subject or is under- or misdiagnosed. Many studies have confirmed the role of growth differentiation factor 11 (GDF11) in bone metabolism, although its role in bone metabolism remains controversial. In this study, we aimed to investigate the association between serum GDF11 levels and the prevalence of osteopenia/osteoporosis (OP) in a male cohort and explore the possibility of GDF11 to be a useful target for prediction of osteopenia/osteoporosis to enable prompt intervention for this disease. METHODS This cross-sectional study included 121 native Chinese men randomly aged 20-87 years, excluded the subjects who had the conditions of bone metabolism-related disease and administration of hormonal drugs, and grouped the subjects to OP and non-OP, based on the WHO definition and latest guidelines of OP. The serum GDF11 concentration was determined using a GDF11-specific immunoassay. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. Tartrate-resistant acid phosphatase 5b (TRAP-5b) were measured in serum samples with ELISA method. RESULTS We observed a negative correlation between serum GDF11 levels and age, a positive correlation between serum GDF11 levels and the femoral neck BMD, and a negative correlation between serum GDF11 levels and TRAP-5b in men. The prevalence and risk of OP were significantly higher in men with low serum GDF11 levels. CONCLUSIONS The serum GDF11 concentration is significantly associated with the risk of bone metabolism dysfunction and may be a useful target for prediction of OP in male cohort.
Collapse
Affiliation(s)
- Miaomiao Jin
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310000, Zhejiang, China
- Department of Endocrinology, The Heji Affiliated Hospital of Changzhi Medical College, 271# East Taihang Street, Changzhi, 046000, Shanxi, China
| | - Renjun Cao
- Department of Endocrinology, The Heji Affiliated Hospital of Changzhi Medical College, 271# East Taihang Street, Changzhi, 046000, Shanxi, China
| | - Xiaohong Niu
- Department of Endocrinology, The Heji Affiliated Hospital of Changzhi Medical College, 271# East Taihang Street, Changzhi, 046000, Shanxi, China.
| | - Pengfei Shan
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
77
|
Teker HT, Ceylani T, Keskin S, Samgane G, Mansuroglu S, Baba B, Allahverdi H, Acıkgoz E, Gurbanov R. Age-related differences in response to plasma exchange in male rat liver tissues: insights from histopathological and machine-learning assisted spectrochemical analyses. Biogerontology 2023:10.1007/s10522-023-10032-3. [PMID: 37017896 DOI: 10.1007/s10522-023-10032-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023]
Abstract
This study aimed to examine the biological effects of blood plasma exchange in liver tissues of aged and young rats using machine learning methods and spectrochemical and histopathological approaches. Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) were the machine learning algorithms employed. Young plasma was given to old male rats (24 months), while old plasma was given to young male rats (5 weeks) for thirty days. LDA (95.83-100%) and SVM (87.5-91.67%) detected significant qualitative changes in liver biomolecules. In old rats, young plasma infusion increased the length of fatty acids, triglyceride, lipid carbonyl, and glycogen levels. Nucleic acid concentration, phosphorylation, and carbonylation rates of proteins were also increased, whereas a decrease in protein concentration was measured. Aged plasma decreased protein carbonylation, triglyceride, and lipid carbonyl levels. Young plasma infusion improved hepatic fibrosis and cellular degeneration and reduced hepatic microvesicular steatosis in aged rats. Otherwise, old plasma infusion in young rats caused disrupted cellular organization, steatosis, and increased fibrosis. Young plasma administration increased liver glycogen accumulation and serum albumin levels. Aged plasma infusion raised serum ALT levels while diminished ALP concentrations in young rats, suggesting possible liver dysfunction. Young plasma increased serum albumin levels in old rats. The study concluded that young plasma infusion might be associated with declined liver damage and fibrosis in aged rats, while aged plasma infusion negatively impacted liver health in young rats. These results imply that young blood plasma holds potential as a rejuvenation therapy for liver health and function.
Collapse
Affiliation(s)
- Hikmet Taner Teker
- Department of Medical Biology and Genetics, Ankara Medipol University, Ankara, Turkey
| | - Taha Ceylani
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey
- Department of Food Quality Control and Analysis, Muş Alparslan University, Muş, Turkey
| | - Seda Keskin
- Department of Histology and Embryology, Van Yuzuncu Yil University, Van, Turkey
| | - Gizem Samgane
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Sina Mansuroglu
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Burcu Baba
- Department of Medical Biochemistry, Yüksek İhtisas University, Ankara, Turkey
| | - Huseyin Allahverdi
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey
| | - Eda Acıkgoz
- Department of Histology and Embryology, Van Yuzuncu Yil University, Van, Turkey
| | - Rafig Gurbanov
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey.
- Central Research Laboratory, Bilecik Şeyh Edebali University, Bilecik, Turkey.
| |
Collapse
|
78
|
Wang RS, Maron BA, Loscalzo J. Multiomics Network Medicine Approaches to Precision Medicine and Therapeutics in Cardiovascular Diseases. Arterioscler Thromb Vasc Biol 2023; 43:493-503. [PMID: 36794589 PMCID: PMC10038904 DOI: 10.1161/atvbaha.122.318731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide and display complex phenotypic heterogeneity caused by many convergent processes, including interactions between genetic variation and environmental factors. Despite the identification of a large number of associated genes and genetic loci, the precise mechanisms by which these genes systematically influence the phenotypic heterogeneity of CVD are not well understood. In addition to DNA sequence, understanding the molecular mechanisms of CVD requires data from other omics levels, including the epigenome, the transcriptome, the proteome, as well as the metabolome. Recent advances in multiomics technologies have opened new precision medicine opportunities beyond genomics that can guide precise diagnosis and personalized treatment. At the same time, network medicine has emerged as an interdisciplinary field that integrates systems biology and network science to focus on the interactions among biological components in health and disease, providing an unbiased framework through which to integrate systematically these multiomics data. In this review, we briefly present such multiomics technologies, including bulk omics and single-cell omics technologies, and discuss how they can contribute to precision medicine. We then highlight network medicine-based integration of multiomics data for precision medicine and therapeutics in CVD. We also include a discussion of current challenges, potential limitations, and future directions in the study of CVD using multiomics network medicine approaches.
Collapse
Affiliation(s)
- Rui-Sheng Wang
- Division of Cardiovascular Medicine
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Joseph Loscalzo
- Division of Cardiovascular Medicine
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
79
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
80
|
Lin Z, Garbern JC, Liu R, Li Q, Mancheño Juncosa E, Elwell HL, Sokol M, Aoyama J, Deumer US, Hsiao E, Sheng H, Lee RT, Liu J. Tissue-embedded stretchable nanoelectronics reveal endothelial cell-mediated electrical maturation of human 3D cardiac microtissues. SCIENCE ADVANCES 2023; 9:eade8513. [PMID: 36888704 PMCID: PMC9995081 DOI: 10.1126/sciadv.ade8513] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Clinical translation of stem cell therapies for heart disease requires electrical integration of transplanted cardiomyocytes. Generation of electrically matured human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is critical for electrical integration. Here, we found that hiPSC-derived endothelial cells (hiPSC-ECs) promoted the expression of selected maturation markers in hiPSC-CMs. Using tissue-embedded stretchable mesh nanoelectronics, we achieved a long-term stable map of human three-dimensional (3D) cardiac microtissue electrical activity. The results revealed that hiPSC-ECs accelerated the electrical maturation of hiPSC-CMs in 3D cardiac microtissues. Machine learning-based pseudotime trajectory inference of cardiomyocyte electrical signals further revealed the electrical phenotypic transition path during development. Guided by the electrical recording data, single-cell RNA sequencing identified that hiPSC-ECs promoted cardiomyocyte subpopulations with a more mature phenotype, and multiple ligand-receptor interactions were up-regulated between hiPSC-ECs and hiPSC-CMs, revealing a coordinated multifactorial mechanism of hiPSC-CM electrical maturation. Collectively, these findings show that hiPSC-ECs drive hiPSC-CM electrical maturation via multiple intercellular pathways.
Collapse
Affiliation(s)
- Zuwan Lin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jessica C. Garbern
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
| | - Ren Liu
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Qiang Li
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | | | - Hannah L.T. Elwell
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Morgan Sokol
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Junya Aoyama
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Undine-Sophie Deumer
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Emma Hsiao
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Hao Sheng
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Corresponding author. (J.L.), (R.T.L.)
| | - Jia Liu
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
- Corresponding author. (J.L.), (R.T.L.)
| |
Collapse
|
81
|
Blood-to-brain communication in aging and rejuvenation. Nat Neurosci 2023; 26:379-393. [PMID: 36646876 DOI: 10.1038/s41593-022-01238-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/21/2022] [Indexed: 01/18/2023]
Abstract
Aging induces molecular, cellular and functional changes in the adult brain that drive cognitive decline and increase vulnerability to dementia-related neurodegenerative diseases. Leveraging systemic and lifestyle interventions, such as heterochronic parabiosis, administration of 'young blood', exercise and caloric restriction, has challenged prevalent views of brain aging as a rigid process and has demonstrated that aging-associated cognitive and cellular impairments can be restored to more youthful levels. Technological advances in proteomic and transcriptomic analyses have further facilitated investigations into the functional impact of intertissue communication on brain aging and have led to the identification of a growing number of pro-aging and pro-youthful factors in blood. In this review, we discuss blood-to-brain communication from a systems physiology perspective with an emphasis on blood-derived signals as potent drivers of both age-related brain dysfunction and brain rejuvenation.
Collapse
|
82
|
Ximerakis M, Holton KM, Giadone RM, Ozek C, Saxena M, Santiago S, Adiconis X, Dionne D, Nguyen L, Shah KM, Goldstein JM, Gasperini C, Gampierakis IA, Lipnick SL, Simmons SK, Buchanan SM, Wagers AJ, Regev A, Levin JZ, Rubin LL. Heterochronic parabiosis reprograms the mouse brain transcriptome by shifting aging signatures in multiple cell types. NATURE AGING 2023; 3:327-345. [PMID: 37118429 PMCID: PMC10154248 DOI: 10.1038/s43587-023-00373-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/30/2023] [Indexed: 04/30/2023]
Abstract
Aging is a complex process involving transcriptomic changes associated with deterioration across multiple tissues and organs, including the brain. Recent studies using heterochronic parabiosis have shown that various aspects of aging-associated decline are modifiable or even reversible. To better understand how this occurs, we performed single-cell transcriptomic profiling of young and old mouse brains after parabiosis. For each cell type, we cataloged alterations in gene expression, molecular pathways, transcriptional networks, ligand-receptor interactions and senescence status. Our analyses identified gene signatures, demonstrating that heterochronic parabiosis regulates several hallmarks of aging in a cell-type-specific manner. Brain endothelial cells were found to be especially malleable to this intervention, exhibiting dynamic transcriptional changes that affect vascular structure and function. These findings suggest new strategies for slowing deterioration and driving regeneration in the aging brain through approaches that do not rely on disease-specific mechanisms or actions of individual circulating factors.
Collapse
Affiliation(s)
- Methodios Ximerakis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Kristina M Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard M Giadone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ceren Ozek
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Monika Saxena
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Samara Santiago
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Xian Adiconis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lan Nguyen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kavya M Shah
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Jill M Goldstein
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Caterina Gasperini
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ioannis A Gampierakis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Scott L Lipnick
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean K Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean M Buchanan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Joslin Diabetes Center, Boston, MA, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
83
|
Lian J, Walker RG, D'Amico A, Vujic A, Mills MJ, Messemer KA, Mendello KR, Goldstein JM, Leacock KA, Epp S, Stimpfl EV, Thompson TB, Wagers AJ, Lee RT. Functional substitutions of amino acids that differ between GDF11 and GDF8 impact skeletal development and skeletal muscle. Life Sci Alliance 2023; 6:e202201662. [PMID: 36631218 PMCID: PMC9834663 DOI: 10.26508/lsa.202201662] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
Growth differentiation factor 11 (GDF11) and GDF8 (MSTN) are closely related TGF-β family proteins that interact with nearly identical signaling receptors and antagonists. However, GDF11 appears to activate SMAD2/3 more potently than GDF8 in vitro and in vivo. The ligands possess divergent structural properties, whereby substituting unique GDF11 amino acids into GDF8 enhanced the activity of the resulting chimeric GDF8. We investigated potentially distinct endogenous activities of GDF11 and GDF8 in vivo by genetically modifying their mature signaling domains. Full recoding of GDF8 to that of GDF11 yielded mice lacking GDF8, with GDF11 levels ∼50-fold higher than normal, and exhibiting modestly decreased muscle mass, with no apparent negative impacts on health or survival. Substitution of two specific amino acids in the fingertip region of GDF11 with the corresponding GDF8 residues resulted in prenatal axial skeletal transformations, consistent with Gdf11-deficient mice, without apparent perturbation of skeletal or cardiac muscle development or homeostasis. These experiments uncover distinctive features between the GDF11 and GDF8 mature domains in vivo and identify a specific requirement for GDF11 in early-stage skeletal development.
Collapse
Affiliation(s)
- John Lian
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ryan G Walker
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Andrea D'Amico
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ana Vujic
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Melanie J Mills
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kathleen A Messemer
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kourtney R Mendello
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jill M Goldstein
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Krystynne A Leacock
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Soraya Epp
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Emma V Stimpfl
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Joslin Diabetes Center, Boston, MA, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
84
|
Bajikar SS, Anderson AG, Zhou J, Durham MA, Trostle AJ, Wan YW, Liu Z, Zoghbi HY. MeCP2 regulates Gdf11, a dosage-sensitive gene critical for neurological function. eLife 2023; 12:e83806. [PMID: 36848184 PMCID: PMC9977283 DOI: 10.7554/elife.83806] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
Loss- and gain-of-function of MeCP2 causes Rett syndrome (RTT) and MECP2 duplication syndrome (MDS), respectively. MeCP2 binds methyl-cytosines to finely tune gene expression in the brain, but identifying genes robustly regulated by MeCP2 has been difficult. By integrating multiple transcriptomics datasets, we revealed that MeCP2 finely regulates growth differentiation factor 11 (Gdf11). Gdf11 is down-regulated in RTT mouse models and, conversely, up-regulated in MDS mouse models. Strikingly, genetically normalizing Gdf11 dosage levels improved several behavioral deficits in a mouse model of MDS. Next, we discovered that losing one copy of Gdf11 alone was sufficient to cause multiple neurobehavioral deficits in mice, most notably hyperactivity and decreased learning and memory. This decrease in learning and memory was not due to changes in proliferation or numbers of progenitor cells in the hippocampus. Lastly, loss of one copy of Gdf11 decreased survival in mice, corroborating its putative role in aging. Our data demonstrate that Gdf11 dosage is important for brain function.
Collapse
Affiliation(s)
- Sameer S Bajikar
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Ashley G Anderson
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Jian Zhou
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Mark A Durham
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
| | - Alexander J Trostle
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
85
|
Coenen L, Lehallier B, de Vries HE, Middeldorp J. Markers of aging: Unsupervised integrated analyses of the human plasma proteome. FRONTIERS IN AGING 2023; 4:1112109. [PMID: 36911498 PMCID: PMC9992741 DOI: 10.3389/fragi.2023.1112109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Aging associates with an increased susceptibility for disease and decreased quality of life. To date, processes underlying aging are still not well understood, leading to limited interventions with unknown mechanisms to promote healthy aging. Previous research suggests that changes in the blood proteome are reflective of age-associated phenotypes such as frailty. Moreover, experimentally induced changes in the blood proteome composition can accelerate or decelerate underlying aging processes. The aim of this study is to identify a set of proteins in the human plasma associated with aging by integration of the data of four independent, large-scaled datasets using the aptamer-based SomaScan platform on the human aging plasma proteome. Using this approach, we identified a set of 273 plasma proteins significantly associated with aging (aging proteins, APs) across these cohorts consisting of healthy individuals and individuals with comorbidities and highlight their biological functions. We validated the age-associated effects in an independent study using a centenarian population, showing highly concordant effects. Our results suggest that APs are more associated to diseases than other plasma proteins. Plasma levels of APs can predict chronological age, and a reduced selection of 15 APs can still predict individuals' age accurately, highlighting their potential as biomarkers of aging processes. Furthermore, we show that individuals presenting accelerated or decelerated aging based on their plasma proteome, respectively have a more aged or younger systemic environment. These results provide novel insights in the understanding of the aging process and its underlying mechanisms and highlight potential modulators contributing to healthy aging.
Collapse
Affiliation(s)
- L. Coenen
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - H. E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - J. Middeldorp
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, Netherlands
| |
Collapse
|
86
|
Liu WH, Feng L, Wang X, Wei L, Zou HQ. GDF11 Improves Ischemia-Reperfusion-Induced Acute Kidney Injury via Regulating Macrophage M1/M2 Polarization. Kidney Blood Press Res 2023; 48:209-219. [PMID: 36780878 PMCID: PMC10124752 DOI: 10.1159/000529444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is a clinical emergency caused by the rapid decline of renal function caused by various etiologies. Growth differentiation factor 11 (GDF11) can promote renal tubular regeneration and improve kidney function in AKI, but the specific mechanism remains unclear. Herein, we investigated the effect and mechanisms of GDF11 in ameliorating AKI induced by ischemia-reperfusion (I/R). METHODS An animal model of AKI was established by I/R method, and the changes of serum urea nitrogen and creatinine were measured to evaluate the AKI. Enzyme-linked immunosorbent assay (ELISA) was used to measure cytokines, malondialdehyde, superoxide dismutase, nitric oxide synthase, and arginase 1 levels. Flow cytometry was used to count the M1/M2 macrophages. IHC, WB, and q-PCR experiments were used to evaluate the expression of GDF11. RESULTS The changes in serum levels of urea nitrogen and creatinine after I/R suggest that an animal model of AKI induced by I/R was successfully established. AKI caused by I/R significantly changed the M1/M2 macrophage polarization balance, with an increase in M2 being significantly higher than M1 as well as increased oxidative stress. Treatment with GDF11 after I/R significantly increased the differentiation of M2 cells and inhibited the differentiation of M1 macrophages, as well as decreased oxidative stress. CONCLUSION GDF11 can promote the repair of AKI caused by I/R by regulating the balance of M1/M2 polarization in macrophages and oxidative stress.
Collapse
Affiliation(s)
- Wei-hua Liu
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Ling Feng
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xuan Wang
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lixin Wei
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, China
| | - He-qun Zou
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
87
|
Deficiency of GDF-11 Accelerates TAC-Induced Heart Failure by Impairing Cardiac Angiogenesis. JACC Basic Transl Sci 2023. [DOI: 10.1016/j.jacbts.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
88
|
Piantadosi PT, Holmes A. GDF11 reverses mood and memory declines in aging. NATURE AGING 2023; 3:148-150. [PMID: 37118123 PMCID: PMC10372845 DOI: 10.1038/s43587-023-00362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Aging is known to be associated with a decline in memory and mood, but the molecular mechanisms that underlie these changes remain unclear. Moigneu, Abdellaoui and colleagues show that growth differentiation factor 11 reverses deficits in these functions in aged mice, pointing the way towards a novel pro-mnemonic and antidepressant therapeutic target.
Collapse
Affiliation(s)
- Patrick T Piantadosi
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| |
Collapse
|
89
|
Ribeiro ASF, Zerolo BE, López-Espuela F, Sánchez R, Fernandes VS. Cardiac System during the Aging Process. Aging Dis 2023:AD.2023.0115. [PMID: 37163425 PMCID: PMC10389818 DOI: 10.14336/ad.2023.0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/15/2023] [Indexed: 05/12/2023] Open
Abstract
The aging process is accompanied by a continuous decline of the cardiac system, disrupting the homeostatic regulation of cells, organs, and systems. Aging increases the prevalence of cardiovascular diseases, thus heart failure and mortality. Understanding the cardiac aging process is of pivotal importance once it allows us to design strategies to prevent age-related cardiac events and increasing the quality of live in the elderly. In this review we provide an overview of the cardiac aging process focus on the following topics: cardiac structural and functional modifications; cellular mechanisms of cardiac dysfunction in the aging; genetics and epigenetics in the development of cardiac diseases; and aging heart and response to the exercise.
Collapse
Affiliation(s)
| | - Blanca Egea Zerolo
- Escuela de Enfermería y Fisioterapia San Juan de Dios. Universidad Pontificia Comillas, Madrid, Spain
| | - Fidel López-Espuela
- Metabolic Bone Diseases Research Group, Nursing and Occupational Therapy College, University of Extremadura, Caceres, Spain
| | - Raúl Sánchez
- Unidad de Cardiopatías Congénitas, Hospital Universitario La Paz, Madrid, Spain
| | - Vítor S Fernandes
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
90
|
Teo YV, Hinthorn SJ, Webb AE, Neretti N. Single-cell transcriptomics of peripheral blood in the aging mouse. Aging (Albany NY) 2023; 15:6-20. [PMID: 36622281 PMCID: PMC9876630 DOI: 10.18632/aging.204471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023]
Abstract
Compositional and transcriptional changes in the hematopoietic system have been used as biomarkers of immunosenescence and aging. Here, we use single-cell RNA-sequencing to study the aging peripheral blood in mice and characterize the changes in cell-type composition and transcriptional profiles associated with age. We identified 17 clusters from a total of 14,588 single cells. We detected a general upregulation of antigen processing and presentation and chemokine signaling pathways and a downregulation of genes involved in ribosome pathways with age. In old peripheral blood, we also observed an increased percentage of cells expressing senescence markers (Cdkn1a, and Cdkn2a). In addition, we detected a cluster of activated T cells exclusively found in old blood, with lower expression of Cd28 and higher expression of Bcl2 and Cdkn2a, suggesting that the cells are senescent and resistant to apoptosis.
Collapse
Affiliation(s)
- Yee Voan Teo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Samuel J. Hinthorn
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
| | - Ashley E. Webb
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
- Center on the Biology of Aging, Brown University, Providence, RI 02903, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Center on the Biology of Aging, Brown University, Providence, RI 02903, USA
| |
Collapse
|
91
|
Cai Z, He B. Adipose tissue aging: An update on mechanisms and therapeutic strategies. Metabolism 2023; 138:155328. [PMID: 36202221 DOI: 10.1016/j.metabol.2022.155328] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Aging is a complex biological process characterized by a progressive loss of physiological integrity and increased vulnerability to age-related diseases. Adipose tissue plays central roles in the maintenance of whole-body metabolism homeostasis and has recently attracted significant attention as a biological driver of aging and age-related diseases. Here, we review the most recent advances in our understanding of the molecular and cellular mechanisms underlying age-related decline in adipose tissue function. In particular, we focus on the complex inter-relationship between metabolism, immune, and sympathetic nervous system within adipose tissue during aging. Moreover, we discuss the rejuvenation strategies to delay aging and extend lifespan, including senescent cell ablation (senolytics), dietary intervention, physical exercise, and heterochronic parabiosis. Understanding the pathological mechanisms that underlie adipose tissue aging will be critical for the development of new intervention strategies to slow or reverse aging and age-related diseases.
Collapse
Affiliation(s)
- Zhaohua Cai
- Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Ben He
- Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China.
| |
Collapse
|
92
|
Schaible P. Modifying enzyme replacement therapy - A perspective. J Cell Mol Med 2023; 27:165-173. [PMID: 36566487 PMCID: PMC9843529 DOI: 10.1111/jcmm.17653] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/26/2022] Open
Abstract
Several diseases are caused by the lack of functional proteins, including lysosomal storage diseases or haemophilia A and B. Patients suffering from one of these diseases are treated via enzyme replacement therapies to restore the missing protein. Although this treatment strategy prevents some disease symptoms, enzyme replacement therapies are very expensive and require very frequent infusions, which can cause infusion adverse reactions and massively impair the quality of life of the patients. This review proposes a technology to sustainably produce proteins within the patient to potentially make frequent protein-infusions redundant. This technology is based on blood circulating immune cells as producers of the needed therapeutic protein. To ensure a stable protein concentration over time the cells are equipped with a system, which induces cell proliferation when low therapeutic protein levels are detected and a system inhibiting cell proliferation when high therapeutic protein levels are detected.
Collapse
|
93
|
Mei Z, Huang L, Rao W. CircNUFIP2 overexpression induces GDF11 to ameliorate oxygen-glucose deprivation-induced hippocampal neuron cell apoptosis and oxidative stress after cerebral ischemia. Neurol Res 2023; 45:70-80. [PMID: 36328251 DOI: 10.1080/01616412.2022.2123172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Previous data have indicated the regulation of circular RNA (circRNA) toward cerebral ischemia. This study aims to reveal the effects of circNUFIP2 on cerebral ischemia and the underlying mechanism. Methods Oxygen-glucose deprivation (OGD) hippocampal neuron (HT22) cell model and middle cerebral artery occlusion (MCAO) mouse model were used for this study. The expression of circRNA nuclear FMR1 interacting protein 2 (circNUFIP2), microRNA-1224-5p (miR-1224-5p) and growth differentiation factor 11 (GDF11) was detected by quantitative real-time polymerase-chain reaction. Protein expression was checked by Western blotting. The binding relationships among circNUFIP2, miR-1224-5p and GDF11 were identified by dual-luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation assay. Cell proliferation and apoptosis were investigated by 5-Ethynyl-29-deoxyuridine and flow cytometry analysis, respectively. Results CircNUFIP2 and GDF11 expression were decreased, but miR-1224-5p was increased in OGD-treated HT22 cells when compared with their expression in control groups. OGD treatment inhibited HT22 cell proliferation but induced cell apoptosis and oxidative stress; however, these effects were attenuated after circNUFIP2 overexpression. Also, circNUFIP2 upregulation assuaged the cerebral infarction of MCAO mice. Besides, circNUFIP2 bound to miR-1224-5p and mediated OGD-induced HT22 cell damage through miR-1224-5p. Meanwhile, knockdown of GDF11, a target gene of miR-1224-5p, relieved miR-1224-5p depletion-caused effects in OGD-treated HT22 cells. Furthermore, circNUFIP2 regulated GDF11 expression by interacting with miR-1224-5p. Conclusion CircNUFIP2 overexpression protected neuron cells against cerebral ischemia-induced damage, at least in part, by the miR-1224-5p/GDF11 pathway, providing a possible target for the therapy of cerebral ischemic stroke.
Collapse
Affiliation(s)
- Zhujun Mei
- Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang City, Jiangxi Province, China
| | - LinLing Huang
- Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang City, Jiangxi Province, China
| | - Wei Rao
- Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang City, Jiangxi Province, China
| |
Collapse
|
94
|
Ye D, Liu Y, Pan H, Feng Y, Lu X, Gan L, Wan J, Ye J. Insights into bone morphogenetic proteins in cardiovascular diseases. Front Pharmacol 2023; 14:1125642. [PMID: 36909186 PMCID: PMC9996008 DOI: 10.3389/fphar.2023.1125642] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are secretory proteins belonging to the transforming growth factor-β (TGF-β) superfamily. These proteins play important roles in embryogenesis, bone morphogenesis, blood vessel remodeling and the development of various organs. In recent years, as research has progressed, BMPs have been found to be closely related to cardiovascular diseases, especially atherosclerosis, vascular calcification, cardiac remodeling, pulmonary arterial hypertension (PAH) and hereditary hemorrhagic telangiectasia (HHT). In this review, we summarized the potential roles and related mechanisms of the BMP family in the cardiovascular system and focused on atherosclerosis and PAH.
Collapse
Affiliation(s)
- Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yinghui Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liren Gan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
95
|
Schön M, Marček Malenovská K, Nemec M, Alchus Laiferová N, Straka I, Košutzká Z, Matejička P, Valkovič P, Ukropec J, Ukropcová B. Acute endurance exercise modulates growth differentiation factor 11 in cerebrospinal fluid of healthy young adults. Front Endocrinol (Lausanne) 2023; 14:1137048. [PMID: 37033257 PMCID: PMC10073538 DOI: 10.3389/fendo.2023.1137048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
OBJECTIVE Strong evidence supports the benefits of exercise for healthy ageing, including reduced risk of neurodegenerative diseases. Recent studies suggested interorgan crosstalk as a key element of systemic adaptive response, however, the role of specific molecules in mediating exercise effects on the human brain are not fully understood. In the present study, we explored the exercise-related regulation of Growth Differentiation Factor 11 (GDF11) in cerebrospinal fluid (CSF) and blood. METHODS The samples of serum, plasma and CSF were obtained before and 60min after acute exercise (90min run) from twenty healthy young individuals. Additional serum and plasma samples were collected immediately after run. GDF11 protein content (immunoblotting), body composition (bioelectrical impedance), physical fitness (VO2max, cycle spiroergometry) and cognitive functions (standardized computerized tests, Cogstate) were evaluated. RESULTS Running decreased GDF11 protein content in CSF (-20.6%. p=0.046), while GDF11 in plasma and serum were not regulated. Two GDF11-specific antibodies of different origin were used to corroborate this result. Individuals with higher physical fitness displayed greater exercise-induced decrease of GDF11 in CSF than those with lower physical fitness (p=0.025). VO2max correlated positively with GDF11 in serum (r=0.63, p=0.020) as well as with the exercise-induced change in GDF11 levels in CSF (r=0.59, p=0.042). Indirect measure of blood-brain barrier permeability (i.e. CSF/serum albumin ratio) tended to positively correlate with CSF/serum GDF11 ratio (p=0.060). CSF levels of GDF11 correlated positively with cognitive functions, including working memory, both before and after run (p<0.05). CONCLUSION Running-induced down-regulation of the GDF11 protein in the cerebrospinal fluid of healthy young individuals indicates the potential role of GDF11 in the exercise-induced cross-talk between periphery and the brain.
Collapse
Affiliation(s)
- Martin Schön
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Karin Marček Malenovská
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Nemec
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Nikoleta Alchus Laiferová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Igor Straka
- 2 Department of Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovakia
| | - Zuzana Košutzká
- 2 Department of Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovakia
| | - Peter Matejička
- 2 Department of Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovakia
| | - Peter Valkovič
- 2 Department of Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovakia
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbara Ukropcová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- *Correspondence: Barbara Ukropcová,
| |
Collapse
|
96
|
Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y, Vergely C. Growth differentiation factor 11: A proangiogenic drug as a potential antiaging regulating molecule. Arch Cardiovasc Dis 2023; 116:41-46. [PMID: 36572608 DOI: 10.1016/j.acvd.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 12/23/2022]
Abstract
Organs and tissues are subjected to numerous alterations during aging, as a result of complex biochemical changes. Aging is certainly associated with the accumulation of "antiaging" and "proaging" factors in the systemic circulation. The effects of young blood on rejuvenation of regenerative capacity suggest the existence of multiple "proyouthful" factors, such as growth differentiation factor 11 (GDF11), in the young blood of animals. GDF11 is a member of the transforming growth factor beta (TGFβ) superfamily of cytokines, and appears to be a critical rejuvenation factor in aging organs. In the context of aging, GDF11 promotes vascular and neural plasticity of the central nervous system. Parabiosis, the surgical linking of circulations between old and young mice, was employed to identify GDF11 as an antihypertrophic factor that appears to rejuvenate the aging murine heart. Current theories suggest that GDF11 in young blood has beneficial effects on cognitive and cardiovascular functions and wound healing. The cellular mechanisms of GDF11 in cardiovascular, neurological, skin and skeletal muscle diseases are not clearly defined, but evidence indicates that it may function as a proneurogenic and proangiogenic drug. GDF11 binds and activates specific receptor complexes, which transmit signals by two procedures: the TGFβ-Smad pathway and the bone morphogenic protein (BMP)-Smad pathway. GDF11 is perhaps only the first in a series of circulating molecules that will be found to influence the aging of different tissues, and it may be a potential candidate for therapeutic intervention against angiogenesis-related disorders.
Collapse
Affiliation(s)
- Luc Rochette
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université Bourgogne-Franche-Comté, 21000 Dijon, France.
| | - Geoffrey Dogon
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université Bourgogne-Franche-Comté, 21000 Dijon, France
| | - Eve Rigal
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université Bourgogne-Franche-Comté, 21000 Dijon, France
| | - Marianne Zeller
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université Bourgogne-Franche-Comté, 21000 Dijon, France
| | - Yves Cottin
- Service de Cardiologie, CHU de Dijon, 21000 Dijon, France
| | - Catherine Vergely
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université Bourgogne-Franche-Comté, 21000 Dijon, France
| |
Collapse
|
97
|
Buckley MT, Sun ED, George BM, Liu L, Schaum N, Xu L, Reyes JM, Goodell MA, Weissman IL, Wyss-Coray T, Rando TA, Brunet A. Cell-type-specific aging clocks to quantify aging and rejuvenation in neurogenic regions of the brain. NATURE AGING 2023; 3:121-137. [PMID: 37118510 PMCID: PMC10154228 DOI: 10.1038/s43587-022-00335-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
The diversity of cell types is a challenge for quantifying aging and its reversal. Here we develop 'aging clocks' based on single-cell transcriptomics to characterize cell-type-specific aging and rejuvenation. We generated single-cell transcriptomes from the subventricular zone neurogenic region of 28 mice, tiling ages from young to old. We trained single-cell-based regression models to predict chronological age and biological age (neural stem cell proliferation capacity). These aging clocks are generalizable to independent cohorts of mice, other regions of the brains, and other species. To determine if these aging clocks could quantify transcriptomic rejuvenation, we generated single-cell transcriptomic datasets of neurogenic regions for two interventions-heterochronic parabiosis and exercise. Aging clocks revealed that heterochronic parabiosis and exercise reverse transcriptomic aging in neurogenic regions, but in different ways. This study represents the first development of high-resolution aging clocks from single-cell transcriptomic data and demonstrates their application to quantify transcriptomic rejuvenation.
Collapse
Affiliation(s)
- Matthew T Buckley
- Department of Genetics, Stanford University, Stanford, CA, USA
- Genetics Graduate Program, Stanford University, Stanford, CA, USA
| | - Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | - Benson M George
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Ling Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Nicholas Schaum
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Lucy Xu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jaime M Reyes
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
- Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
| |
Collapse
|
98
|
Gerardo-Ramírez M, German-Ramirez N, Escobedo-Calvario A, Chávez-Rodríguez L, Bucio-Ortiz L, Souza-Arroyo V, Miranda-Labra RU, Gutiérrez-Ruiz MC, Gomez-Quiroz LE. The hepatic effects of GDF11 on health and disease. Biochimie 2022; 208:129-140. [PMID: 36584866 DOI: 10.1016/j.biochi.2022.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
The growth differentiation factor 11 (GDF11), a member of the superfamily of the transforming growth factor β, has gained relevance in the last few years due to its remarkable effects in cellular biology, particularly in the nervous system, skeletal muscle, the heart, and many epithelial tissues. Some controversies have been raised about this growth factor. Many of them have been related to technical factors but also the nature of the cellular target. In liver biology and pathobiology, the GDF11 has shown to be related in many molecular aspects, with a significant impact on the physiology and the initiation and progression of the natural history of liver diseases. GDF11 has been involved as a critical regulator in lipid homeostasis, which, as it is well known, is the first step in the progression of liver disease. However, also it has been reported that the GDF11 is involved in fibrosis, senescence, and cancer. Although there are some controversies, much of the literature indicates that GDF11 displays effects tending to solve or mitigate pathological states of the liver, with reasonable evidence of correlation with other organs or systems. To a large extent, the controversy, as mentioned, is due to technical problems, such as the specificity of GDF11 antibodies, confusion with its closer family member, myostatin, and the state of differentiation in the tissues. In the present work, we reviewed the specific effects of GDF11 in the biology and pathobiology of the liver as a potential and promising factor for therapeutic intervention shortly.
Collapse
Affiliation(s)
- Monserrat Gerardo-Ramírez
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; First Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Natanael German-Ramirez
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Alejandro Escobedo-Calvario
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Lisette Chávez-Rodríguez
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Leticia Bucio-Ortiz
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Verónica Souza-Arroyo
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Roxana U Miranda-Labra
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Luis E Gomez-Quiroz
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
99
|
Tsai MJ, Fay LY, Liou DY, Chen Y, Chen YT, Lee MJ, Tu TH, Huang WC, Cheng H. Multifaceted Benefits of GDF11 Treatment in Spinal Cord Injury: In Vitro and In Vivo Studies. Int J Mol Sci 2022; 24:ijms24010421. [PMID: 36613862 PMCID: PMC9820576 DOI: 10.3390/ijms24010421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Traumatic spinal cord injury (SCI) initiates a series of cellular and molecular events that include both primary and secondary injury cascades. This secondary cascade provides opportunities for the delivery of therapeutic intervention. Growth differentiation factor 11 (GDF11), a member of the transforming growth factor-β (TGF-β) superfamily, regulates various biological processes in mammals. The effects of GDF11 in the nervous system were not fully elucidated. Here, we perform extensive in vitro and in vivo studies to unravel the effects of GDF11 on spinal cord after injury. In vitro culture studies showed that GDF11 increased the survival of both neuronal and oligodendroglial cells but decreased microglial cells. In stressed cultures, GDF11 effectively inhibited LPS stimulation and also protected neurons from ischemic damage. Intravenous GDF11 administration to rat after eliciting SCI significantly improved hindlimb functional restoration of SCI rats. Reduced neuronal connectivity was evident at 6 weeks post-injury and these deficits were markedly attenuated by GDF11 treatment. Furthermore, SCI-associated oligodendroglial alteration were more preserved by GDF11 treatment. Taken together, GDF11 infusion via intravenous route to SCI rats is beneficial, facilitating its therapeutic application in the future.
Collapse
Affiliation(s)
- May-Jywan Tsai
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Li-Yu Fay
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Division of Neural Regeneration and Repair, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Dann-Ying Liou
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi Chen
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ya-Tzu Chen
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Meng-Jen Lee
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 41349, Taiwan
| | - Tsung-Hsi Tu
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Division of Neural Regeneration and Repair, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Wen-Cheng Huang
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Division of Neural Regeneration and Repair, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Henrich Cheng
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Division of Neural Regeneration and Repair, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: ; Tel.: +886-2-28757718
| |
Collapse
|
100
|
Liu K, Li H, Zeng N, Lu W, Wu X, Xu H, Yan C, Wu L. Decline of stress resilience in aging rats: Focus on choroid plexus-cerebrospinal fluid-hippocampus. World J Biol Psychiatry 2022:1-15. [PMID: 36416065 DOI: 10.1080/15622975.2022.2151044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Objectives: This study was designed to examine the mechanisms underlying decline of stress resilience in aged rats from the perspective of CP-CSF-hippocampus.Methods: Male Wistar rats (7-8 weeks old or 20 months old) were subjected to chronic unpredictable mild stress (CUMS) for 6 weeks. The behavioral tests were conducted to assess anxiety, depression and cognitive function. Hippocampal neurogenesis, apoptosis and synaptic plasticity were detected by western blot (WB) and/or immunofluorescence (IF) assay. Differential expression of growth factors (GFs) and axon guidance proteins (AGPs) in CSF was analyzed using the quantitative proteomics approach. IF and WB were performed to detect expression of occludin-1, Ki-67/Transthyretin, and folate transporters in choroid plexus (CP).Results: Decreased proliferation, impaired structure and transport function of CP were correlated with CSF composition alterations in stressed aging rats, including reduced 5-Methyltetrahydrofolate, growth factors and axon growth factors. Nutritional support of CSF upon hippocampus was attenuated, therefore affecting hippocampal plasticity. It has led to depression-like behaviors and cognitive deficits in stressful aged rats.Conclusions: Keeping normal structure and function of CP-CSF system may be a practical strategy for neuropsychological disorders in the elderly. This work provides evidential basis for CP transplant and CSF replacement therapy in future studies.
Collapse
Affiliation(s)
- Kaige Liu
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huizhen Li
- Key Laboratory of Depression Animal Model Based on TCM Syndrome, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ningxi Zeng
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjun Lu
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaofeng Wu
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanfang Xu
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Can Yan
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lili Wu
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|