51
|
Lee CS, Jung SY, Yee RSZ, Agha NH, Hong J, Chang T, Babcock LW, Fleischman JD, Clayton B, Hanna AD, Ward CS, Lanza D, Hurley AE, Zhang P, Wehrens XHT, Lagor WR, Rodney GG, Hamilton SL. Speg interactions that regulate the stability of excitation-contraction coupling protein complexes in triads and dyads. Commun Biol 2023; 6:942. [PMID: 37709832 PMCID: PMC10502019 DOI: 10.1038/s42003-023-05330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
Here we show that striated muscle preferentially expressed protein kinase α (Spegα) maintains cardiac function in hearts with Spegβ deficiency. Speg is required for stability of excitation-contraction coupling (ECC) complexes and interacts with esterase D (Esd), Cardiomyopathy-Associated Protein 5 (Cmya5), and Fibronectin Type III and SPRY Domain Containing 2 (Fsd2) in cardiac and skeletal muscle. Mice with a sequence encoding a V5/HA tag inserted into the first exon of the Speg gene (HA-Speg mice) display a >90% decrease in Spegβ but Spegα is expressed at ~50% of normal levels. Mice deficient in both Spegα and Speg β (Speg KO mice) develop a severe dilated cardiomyopathy and muscle weakness and atrophy, but HA-Speg mice display mild muscle weakness with no cardiac involvement. Spegα in HA-Speg mice suppresses Ca2+ leak, proteolytic cleavage of Jph2, and disruption of transverse tubules. Despite it's low levels, HA-Spegβ immunoprecipitation identified Esd, Cmya5 and Fsd2 as Spegβ binding partners that localize to triads and dyads to stabilize ECC complexes. This study suggests that Spegα and Spegβ display functional redundancy, identifies Esd, Cmya5 and Fsd2 as components of both cardiac dyads and skeletal muscle triads and lays the groundwork for the identification of new therapeutic targets for centronuclear myopathy.
Collapse
Affiliation(s)
- Chang Seok Lee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Sung Yun Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Rachel Sue Zhen Yee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Nadia H Agha
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Jin Hong
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Ting Chang
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Lyle W Babcock
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Jorie D Fleischman
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Benjamin Clayton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Amy D Hanna
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Christopher S Ward
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Denise Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Ayrea E Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Pumin Zhang
- The First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Xander H T Wehrens
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - William R Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - George G Rodney
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Susan L Hamilton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA.
| |
Collapse
|
52
|
Magyar ZÉ, Hevesi J, Groom L, Dirksen RT, Almássy J. Function of a mutant ryanodine receptor (T4709M) linked to congenital myopathy. Sci Rep 2023; 13:14659. [PMID: 37670077 PMCID: PMC10480487 DOI: 10.1038/s41598-023-41801-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
Physiological muscle contraction requires an intact ligand gating mechanism of the ryanodine receptor 1 (RyR1), the Ca2+-release channel of the sarcoplasmic reticulum. Some mutations impair the gating and thus cause muscle disease. The RyR1 mutation T4706M is linked to a myopathy characterized by muscle weakness. Although, low expression of the T4706M RyR1 protein can explain in part the symptoms, little is known about the function RyR1 channels with this mutation. In order to learn whether this mutation alters channel function in a manner that can account for the observed symptoms, we examined RyR1 channels isolated from mice homozygous for the T4709M (TM) mutation at the single channel level. Ligands, including Ca2+, ATP, Mg2+ and the RyR inhibitor dantrolene were tested. The full conductance of the TM channel was the same as that of wild type (wt) channels and a population of partial open (subconductive) states were not observed. However, two unique sub-populations of TM RyRs were identified. One half of the TM channels exhibited high open probability at low (100 nM) and high (50 μM) cytoplasmic [Ca2+], resulting in Ca2+-insensitive, constitutively high Po channels. The rest of the TM channels exhibited significantly lower activity within the physiologically relevant range of cytoplasmic [Ca2+], compared to wt. TM channels retained normal Mg2+ block, modulation by ATP, and inhibition by dantrolene. Together, these results suggest that the TM mutation results in a combination of primary and secondary RyR1 dysfunctions that contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Zsuzsanna É Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Hevesi
- Department of Orthodontics, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - János Almássy
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
53
|
Magyar ZÉ, Bauer J, Bauerová-Hlinková V, Jóna I, Gaburjakova J, Gaburjakova M, Almássy J. Eu 3+ detects two functionally distinct luminal Ca 2+ binding sites in ryanodine receptors. Biophys J 2023; 122:3516-3531. [PMID: 37533257 PMCID: PMC10502479 DOI: 10.1016/j.bpj.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Ryanodine receptors (RyRs) are Ca2+ release channels, gated by Ca2+ in the cytosol and the sarcoplasmic reticulum lumen. Their regulation is impaired in certain cardiac and muscle diseases. Although a lot of data is available on the luminal Ca2+ regulation of RyR, its interpretation is complicated by the possibility that the divalent ions used to probe the luminal binding sites may contaminate the cytoplasmic sites by crossing the channel pore. In this study, we used Eu3+, an impermeable agonist of Ca2+ binding sites, as a probe to avoid this complication and to gain more specific information about the function of the luminal Ca2+ sensor. Single-channel currents were measured from skeletal muscle and cardiac RyRs (RyR1 and RyR2) using the lipid bilayer technique. We show that RyR2 is activated by the luminal addition of Ca2+, whereas RyR1 is inhibited. These results were qualitatively reproducible using Eu3+. The luminal regulation of RyR1 carrying a mutation associated with malignant hyperthermia was not different from that of the wild-type. RyR1 inhibition by Eu3+ was extremely voltage dependent, whereas RyR2 activation did not depend on the membrane potential. These results suggest that the RyR1 inhibition site is in the membrane's electric field (channel pore), whereas the RyR2 activation site is outside. Using in silico analysis and previous results, we predicted putative Ca2+ binding site sequences. We propose that RyR2 bears an activation site, which is missing in RyR1, but both isoforms share the same inhibitory Ca2+ binding site near the channel gate.
Collapse
Affiliation(s)
- Zsuzsanna É Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jacob Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - István Jóna
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jana Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - János Almássy
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
54
|
Cholak S, Saville JW, Zhu X, Berezuk AM, Tuttle KS, Haji-Ghassemi O, Alvarado FJ, Van Petegem F, Subramaniam S. Allosteric modulation of ryanodine receptor RyR1 by nucleotide derivatives. Structure 2023; 31:790-800.e4. [PMID: 37192614 PMCID: PMC10569317 DOI: 10.1016/j.str.2023.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/22/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023]
Abstract
The coordinated release of Ca2+ from the sarcoplasmic reticulum (SR) is critical for excitation-contraction coupling. This release is facilitated by ryanodine receptors (RyRs) that are embedded in the SR membrane. In skeletal muscle, activity of RyR1 is regulated by metabolites such as ATP, which upon binding increase channel open probability (Po). To obtain structural insights into the mechanism of RyR1 priming by ATP, we determined several cryo-EM structures of RyR1 bound individually to ATP-γ-S, ADP, AMP, adenosine, adenine, and cAMP. We demonstrate that adenine and adenosine bind RyR1, but AMP is the smallest ATP derivative capable of inducing long-range (>170 Å) structural rearrangements associated with channel activation, establishing a structural basis for key binding site interactions that are the threshold for triggering quaternary structural changes. Our finding that cAMP also induces these structural changes and results in increased channel opening suggests its potential role as an endogenous modulator of RyR1 conductance.
Collapse
Affiliation(s)
- Spencer Cholak
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - James W Saville
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xing Zhu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Alison M Berezuk
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Katharine S Tuttle
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Omid Haji-Ghassemi
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Francisco J Alvarado
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
55
|
Smith HA, Thillaiappan NB, Rossi AM. IP 3 receptors: An "elementary" journey from structure to signals. Cell Calcium 2023; 113:102761. [PMID: 37271052 DOI: 10.1016/j.ceca.2023.102761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are large tetrameric channels which sit mostly in the membrane of the endoplasmic reticulum (ER) and mediate Ca2+ release from intracellular stores in response to extracellular stimuli in almost all cells. Dual regulation of IP3Rs by IP3 and Ca2+ itself, upstream "licensing", and the arrangement of IP3Rs into small clusters in the ER membrane, allow IP3Rs to generate spatially and temporally diverse Ca2+ signals. The characteristic biphasic regulation of IP3Rs by cytosolic Ca2+ concentration underpins regenerative Ca2+ signals by Ca2+-induced Ca2+-release, while also preventing uncontrolled explosive Ca2+ release. In this way, cells can harness a simple ion such as Ca2+ as a near-universal intracellular messenger to regulate diverse cellular functions, including those with conflicting outcomes such as cell survival and cell death. High-resolution structures of the IP3R bound to IP3 and Ca2+ in different combinations have together started to unravel the workings of this giant channel. Here we discuss, in the context of recently published structures, how the tight regulation of IP3Rs and their cellular geography lead to generation of "elementary" local Ca2+ signals known as Ca2+ "puffs", which form the fundamental bottleneck through which all IP3-mediated cytosolic Ca2+ signals must first pass.
Collapse
Affiliation(s)
- Holly A Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | - Ana M Rossi
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
| |
Collapse
|
56
|
Wu M, Wu C, Song T, Pan K, Wang Y, Liu Z. Structure and transport mechanism of the human calcium pump SPCA1. Cell Res 2023; 33:533-545. [PMID: 37258749 PMCID: PMC10313705 DOI: 10.1038/s41422-023-00827-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
Secretory-pathway Ca2+-ATPases (SPCAs) play critical roles in maintaining Ca2+ homeostasis, but the exact mechanism of SPCAs-mediated Ca2+ transport remains unclear. Here, we determined six cryo-electron microscopy (cryo-EM) structures of human SPCA1 (hSPCA1) in a series of intermediate states, revealing a near-complete conformational cycle. With the aid of molecular dynamics simulations, these structures offer a clear structural basis for Ca2+ entry and release in hSPCA1. We found that hSPCA1 undergoes unique conformational changes during ATP binding and phosphorylation compared to other well-studied P-type II ATPases. In addition, we observed a conformational distortion of the Ca2+-binding site induced by the separation of transmembrane helices 4L and 6, unveiling a distinct Ca2+ release mechanism. Particularly, we determined a structure of the long-sought CaE2P state of P-type IIA ATPases, providing valuable insights into the Ca2+ transport cycle. Together, these findings enhance our understanding of Ca2+ transport by hSPCA1 and broaden our knowledge of P-type ATPases.
Collapse
Affiliation(s)
- Mengqi Wu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Cang Wu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Tiefeng Song
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kewu Pan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, China.
| | - Zhongmin Liu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
57
|
Thomas NL, Dart C, Helassa N. Editorial: The role of calcium and calcium binding proteins in cell physiology and disease. Front Physiol 2023; 14:1228885. [PMID: 37362430 PMCID: PMC10289193 DOI: 10.3389/fphys.2023.1228885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Affiliation(s)
- N. Lowri Thomas
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - C. Dart
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, North West England, United Kingdom
| | - N. Helassa
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, North West England, United Kingdom
| |
Collapse
|
58
|
Du J, Fu Y. Diamide insecticides targeting insect ryanodine receptors: Mechanism and application prospect. Biochem Biophys Res Commun 2023; 670:19-26. [PMID: 37271036 DOI: 10.1016/j.bbrc.2023.05.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
As a Lepidoptera pest, Spodoptera frugiperda has become one of the major migratory pests causing significant damage to crops. It should prevent and control Spodoptera frugiperda with strong reproductive ability, adaptability, and migration ability, and reduce economic losses as much as possible. Chemical insecticides are mainly used in the emergency control of Spodoptera frugiperda. Diamide insecticide is a kind of pesticide that specifically targets the ryanodine receptor of Lepidopteran pests, which makes it safe, effective, targeted, and low toxicity to mammals. So, it is one of the most concerned and fastest-growing pesticide products after neonicotinoid pesticides. Intracellular Ca2+ concentration can be regulated by ryanodine receptors, and the continuous release of Ca2+ eventually leads to the death of pests and achieve the insecticidal effect. This review introduces in detail diamide insecticides that mainly play roles in stomach toxicity, as well as its specific target-ryanodine receptor, and analyzes how the diamide insecticide acts on the ryanodine receptor and how its mechanism of action can provide a theoretical basis for the rational use of highly effective insecticides and solve the resistance problem. Moreover, we also propose several recommendations for reducing resistance to diamide insecticides, and provide a reference for chemical control and resistance studies of Spodoptera frugiperda, which has broad development prospects in today's increasingly concerned about the ecological environment and advocating green environmental protection.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
59
|
Haji-Ghassemi O, Chen YS, Woll K, Gurrola GB, Valdivia CR, Cai W, Li S, Valdivia HH, Van Petegem F. Cryo-EM analysis of scorpion toxin binding to Ryanodine Receptors reveals subconductance that is abolished by PKA phosphorylation. SCIENCE ADVANCES 2023; 9:eadf4936. [PMID: 37224245 PMCID: PMC10208580 DOI: 10.1126/sciadv.adf4936] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Calcins are peptides from scorpion venom with the unique ability to cross cell membranes, gaining access to intracellular targets. Ryanodine Receptors (RyR) are intracellular ion channels that control release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. Calcins target RyRs and induce long-lived subconductance states, whereby single-channel currents are decreased. We used cryo-electron microscopy to reveal the binding and structural effects of imperacalcin, showing that it opens the channel pore and causes large asymmetry throughout the cytosolic assembly of the tetrameric RyR. This also creates multiple extended ion conduction pathways beyond the transmembrane region, resulting in subconductance. Phosphorylation of imperacalcin by protein kinase A prevents its binding to RyR through direct steric hindrance, showing how posttranslational modifications made by the host organism can determine the fate of a natural toxin. The structure provides a direct template for developing calcin analogs that result in full channel block, with potential to treat RyR-related disorders.
Collapse
Affiliation(s)
- Omid Haji-Ghassemi
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Yu Seby Chen
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Kellie Woll
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Georgina B. Gurrola
- Universidad Nacional Autónoma de México, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotechnología, Cuaernavaca, Morelos 62271, Mexico
| | - Carmen R. Valdivia
- Department of Medicine and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Wenxuan Cai
- Department of Medicine and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Songhua Li
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hector H. Valdivia
- Department of Medicine and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
60
|
Wang W, Lu D, Xu Q, Jin Y, Pang G, Liu Y. Remodeling of the ryanodine receptor isoform 1 channel regulates the sweet and umami taste perception of Rattus norvegicus. FUNDAMENTAL RESEARCH 2023; 3:459-468. [PMID: 38933774 PMCID: PMC11197482 DOI: 10.1016/j.fmre.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022] Open
Abstract
Sweet and umami tastes are elicited by sweet and umami receptors on the tongue and palate epithelium, respectively. However, the molecular machinery allowing the taste reaction remains incompletely understood. Through a phosphoproteomic approach, we identified the key proteins that trigger taste mechanisms based on phosphorylation cascades. Ryanodine receptor isoform 1 (RYR1) was further verified by sensory and behavioral assays. We propose a model of RYR1-mediated sweet/umami signaling in which the RYR1 channel, which mediates Ca2+ release from the endoplasmic reticulum, is closed by dephosphorylation in bud tissue after sweet/umami treatment. The alteration in Ca2+ content in the cytosol induces transient membrane depolarization and generates a cell current for taste signal transduction. We demonstrate that RYR1 is a new channel involved in the regulation of sweet/umami signal transduction and propose a "metabolic clock" notion based on sweet/umami sensing. Our study provides a valuable foundation for a system-level understanding of the taste perception mechanism.
Collapse
Affiliation(s)
- Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dingqiang Lu
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Qiuda Xu
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yulian Jin
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Guangchang Pang
- College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
61
|
Chen M, Toader B, Lederman R. Integrating Molecular Models Into CryoEM Heterogeneity Analysis Using Scalable High-resolution Deep Gaussian Mixture Models. J Mol Biol 2023; 435:168014. [PMID: 36806476 PMCID: PMC10164680 DOI: 10.1016/j.jmb.2023.168014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Resolving the structural variability of proteins is often key to understanding the structure-function relationship of those macromolecular machines. Single particle analysis using Cryogenic electron microscopy (CryoEM), combined with machine learning algorithms, provides a way to reveal the dynamics within the protein system from noisy micrographs. Here, we introduce an improved computational method that uses Gaussian mixture models for protein structure representation and deep neural networks for conformation space embedding. By integrating information from molecular models into the heterogeneity analysis, we can analyze continuous protein conformational changes using structural information at the frequency of 1/3 Å-1, and present the results in a more interpretable form.
Collapse
Affiliation(s)
- Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Bogdan Toader
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
| | - Roy Lederman
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
| |
Collapse
|
62
|
MATSUKAWA HIROYUKI, MURAYAMA TAKASHI. Development of Ryanodine Receptor (RyR) Inhibitors for Skeletal Muscle and Heart Diseases. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2023; 69:180-187. [PMID: 38855953 PMCID: PMC11153067 DOI: 10.14789/jmj.jmj22-0045-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 06/11/2024]
Abstract
Ryanodine receptors (RyR) are intracellular calcium (Ca2+) release channels on the sarcoplasmic reticulum of skeletal and cardiac muscles that play a central role in excitation-contraction coupling. Genetic mutations or posttranslational modifications of RyR causes hyperactivation of the channel, leading to various skeletal muscle and heart diseases. Currently, no specific treatments exist for most RyR-associated diseases. Recently, high-throughput screening (HTS) assays have been developed to identify potential candidates for treating RyR-related muscle diseases. These assays have successfully identified several compounds as novel RyR inhibitors, which are effective in animal models. In this review, we will focus on recent progress in HTS assays and discuss future perspectives of these promising approaches.
Collapse
Affiliation(s)
| | - TAKASHI MURAYAMA
- Corresponding author: Takashi Murayama, Department of Pharmacology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan, TEL: +81-3-5802-1035 E-mail: Research of the 4th Alumni Scientific Award for Medical Student, Juntendo University School of Medicine
| |
Collapse
|
63
|
Murayama T, Kurebayashi N, Ishida R, Kagechika H. Drug development for the treatment of RyR1-related skeletal muscle diseases. Curr Opin Pharmacol 2023; 69:102356. [PMID: 36842386 DOI: 10.1016/j.coph.2023.102356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 02/27/2023]
Abstract
Type 1 ryanodine receptor (RyR1) is an intracellular Ca2+ release channel on the sarcoplasmic reticulum of skeletal muscle, and it plays a central role in excitation-contraction (E-C) coupling. Mutations in RyR1 are implicated in various muscle diseases including malignant hyperthermia, central core disease, and myopathies. Currently, no specific treatment exists for most of these diseases. Recently, high-throughput screening (HTS) assays have been developed for identifying potential candidates for treating RyR-related muscle diseases. Currently, two different methods, namely a FRET-based assay and an endoplasmic reticulum Ca2+-based assay, are available. These assays identified several compounds as novel RyR1 inhibitors. In addition, the development of a reconstituted platform permitted HTS assays for E-C coupling modulators. In this review, we will focus on recent progress in HTS assays and discuss future perspectives of these promising approaches.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryosuke Ishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
64
|
Schackert F, Biedermann J, Abdolvand S, Minniberger S, Song C, Plested AJR, Carloni P, Sun H. Mechanism of Calcium Permeation in a Glutamate Receptor Ion Channel. J Chem Inf Model 2023; 63:1293-1300. [PMID: 36758214 PMCID: PMC9976283 DOI: 10.1021/acs.jcim.2c01494] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 02/11/2023]
Abstract
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are neurotransmitter-activated cation channels ubiquitously expressed in vertebrate brains. The regulation of calcium flux through the channel pore by RNA-editing is linked to synaptic plasticity while excessive calcium influx poses a risk for neurodegeneration. Unfortunately, the molecular mechanisms underlying this key process are mostly unknown. Here, we investigated calcium conduction in calcium-permeable AMPAR using Molecular Dynamics (MD) simulations with recently introduced multisite force-field parameters for Ca2+. Our calculations are consistent with experiment and explain the distinct calcium permeability in different RNA-edited forms of GluA2. For one of the identified metal binding sites, multiscale Quantum Mechanics/Molecular Mechanics (QM/MM) simulations further validated the results from MD and revealed small but reproducible charge transfer between the metal ion and its first solvation shell. In addition, the ion occupancy derived from MD simulations independently reproduced the Ca2+ binding profile in an X-ray structure of an NaK channel mimicking the AMPAR selectivity filter. This integrated study comprising X-ray crystallography, multisite MD, and multiscale QM/MM simulations provides unprecedented insights into Ca2+ permeation mechanisms in AMPARs, and paves the way for studying other biological processes in which Ca2+ plays a pivotal role.
Collapse
Affiliation(s)
- Florian
Karl Schackert
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, 52428 Jülich, Germany
- Department
of Physics, RWTH Aachen University, 52062 Aachen, Germany
| | - Johann Biedermann
- Institute
of Biology, Cellular Biophysics, Humboldt
Universität zu Berlin, 10115 Berlin, Germany
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Saeid Abdolvand
- Institute
of Biology, Cellular Biophysics, Humboldt
Universität zu Berlin, 10115 Berlin, Germany
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Sonja Minniberger
- Institute
of Biology, Cellular Biophysics, Humboldt
Universität zu Berlin, 10115 Berlin, Germany
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Chen Song
- Center
for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Peking-Tsinghua
Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Andrew J. R. Plested
- Institute
of Biology, Cellular Biophysics, Humboldt
Universität zu Berlin, 10115 Berlin, Germany
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Paolo Carloni
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, 52428 Jülich, Germany
- Department
of Physics, RWTH Aachen University, 52062 Aachen, Germany
| | - Han Sun
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
- Institute
of Chemistry, TU Berlin, Straße des 17 Juni 135, 10623 Berlin, Germany
| |
Collapse
|
65
|
Ruiz-Fernández I, Valadés D, Dominguez R, Ferragut C, Pérez-López A. Load and muscle group size influence the ergogenic effect of acute caffeine intake in muscular strength, power and endurance. Eur J Nutr 2023; 62:1783-1794. [PMID: 36840816 DOI: 10.1007/s00394-023-03109-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
INTRODUCTION Although acute caffeine intake seems to improve muscular strength-power-endurance performance, there is scarce evidence evaluating upper vs lower-body exercises at different loads. Thus, this study aimed to examine the effects of acute caffeine intake on upper and lower-body muscular strength, power and endurance performance at different loads. METHODS Twenty resistance-trained athletes (male/female: 10/10; age: 23 ± 4 years; body mass: 70.6 ± 15.1) participated in a double-blind, placebo-controlled, cross-over and randomized study. Participants were provided with either 3 mg/kg of body mass of caffeine or maltodextrin (placebo). Sixty minutes after ingestion, they performed muscular strength and power assessment for bench press and back squat exercise at 25%, 50%, 75% and 90% 1-repetition-maximum (1RM), performing 3, 2, 1 and 1 repetitions respectively, followed by muscular endurance assessment for both exercises at 65% and 85% 1RM performing until task failure. Isometric handgrip, isometric mid-thigh pull and vertical jump tests were also performed. RESULTS In muscular strength and power, compared to placebo, caffeine improved mean velocity (P = 0.045; pη2 = 0.101), mean power (P = 0.049; pη2 = 0.189) and rate of force development (RFD, P = 0.032; pη2 = 0.216), particularly in back squat exercise at 75% and 90% 1RM where mean velocity increased by 5-7% (P = 0.48-0.038; g = 0.348-1.413), mean power by 6-8% (P = 0.050-0.032; g = 0.547-0.818) and RFD by 17-97% (P = 0.042-0.046; g = 1.436-1.196). No differences were found in bench press exercise. In muscular endurance, caffeine improved the number of repetitions in all exercises and loads (P = 0.003; pη2 = 0.206), but only in back squat exercise at 85% 1RM, caffeine increased mean and peak velocity (8-9%, P = 0.006-0.004; g = 2.029-2.075), mean and peak power (10-13%, P = 0.006-0.003; g = 0.888-1.151) and force peak (3%, P = 0.009; g = 0.247). CONCLUSIONS Acute caffeine intake (3 mg/kg) improved muscular strength, power and endurance performance, revealing a more pronounced effect at high-loads (≥ 75% 1RM) and in lower-body (back squat) than in upper-body exercise (bench press) according to muscle group size.
Collapse
Affiliation(s)
- Iván Ruiz-Fernández
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Ctra. Madrid-Barcelona km 33,600, 28871, Alcalá de Henares, Spain
| | - David Valadés
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Ctra. Madrid-Barcelona km 33,600, 28871, Alcalá de Henares, Spain
| | - Raúl Dominguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, Seville, Spain
| | - Carmen Ferragut
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Ctra. Madrid-Barcelona km 33,600, 28871, Alcalá de Henares, Spain.
| | - Alberto Pérez-López
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Ctra. Madrid-Barcelona km 33,600, 28871, Alcalá de Henares, Spain
| |
Collapse
|
66
|
Mueller BD, Merrill SA, Watanabe S, Liu P, Niu L, Singh A, Maldonado-Catala P, Cherry A, Rich MS, Silva M, Maricq AV, Wang ZW, Jorgensen EM. CaV1 and CaV2 calcium channels mediate the release of distinct pools of synaptic vesicles. eLife 2023; 12:e81407. [PMID: 36820519 PMCID: PMC10023163 DOI: 10.7554/elife.81407] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 02/22/2023] [Indexed: 02/24/2023] Open
Abstract
Activation of voltage-gated calcium channels at presynaptic terminals leads to local increases in calcium and the fusion of synaptic vesicles containing neurotransmitter. Presynaptic output is a function of the density of calcium channels, the dynamic properties of the channel, the distance to docked vesicles, and the release probability at the docking site. We demonstrate that at Caenorhabditis elegans neuromuscular junctions two different classes of voltage-gated calcium channels, CaV2 and CaV1, mediate the release of distinct pools of synaptic vesicles. CaV2 channels are concentrated in densely packed clusters ~250 nm in diameter with the active zone proteins Neurexin, α-Liprin, SYDE, ELKS/CAST, RIM-BP, α-Catulin, and MAGI1. CaV2 channels are colocalized with the priming protein UNC-13L and mediate the fusion of vesicles docked within 33 nm of the dense projection. CaV2 activity is amplified by ryanodine receptor release of calcium from internal stores, triggering fusion up to 165 nm from the dense projection. By contrast, CaV1 channels are dispersed in the synaptic varicosity, and are colocalized with UNC-13S. CaV1 and ryanodine receptors are separated by just 40 nm, and vesicle fusion mediated by CaV1 is completely dependent on the ryanodine receptor. Distinct synaptic vesicle pools, released by different calcium channels, could be used to tune the speed, voltage-dependence, and quantal content of neurotransmitter release.
Collapse
Affiliation(s)
- Brian D Mueller
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Sean A Merrill
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Shigeki Watanabe
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Ping Liu
- Department of Neuroscience, University of Connecticut Medical SchoolFarmingtonUnited States
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut Medical SchoolFarmingtonUnited States
| | - Anish Singh
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | | | - Alex Cherry
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Matthew S Rich
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Malan Silva
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | | | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Medical SchoolFarmingtonUnited States
| | - Erik M Jorgensen
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| |
Collapse
|
67
|
Iyer KA, Barnakov V, Samsó M. Three-dimensional perspective on ryanodine receptor mutations causing skeletal and cardiac muscle-related diseases. Curr Opin Pharmacol 2023; 68:102327. [PMID: 36516687 PMCID: PMC9908851 DOI: 10.1016/j.coph.2022.102327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/18/2022] [Accepted: 11/12/2022] [Indexed: 12/14/2022]
Abstract
Mutations in RyR alter the cell's Ca2+ homeostasis and can cause serious health problems for which few effective therapies are available. Until recently, there was little structural context for the hundreds of mutations linked to muscular disorders reported for this large channel. Growing knowledge of the three-dimensional structure of RyR starts to illustrate the fine control of Ca2+ release. Current efforts directed towards understanding how disease mutations impinge in such processes will be crucial for future design of novel therapies. In this review article we discuss the up-to-date information about mutations according to their role in the 3D structure, and classified them to provide context from a structural perspective.
Collapse
Affiliation(s)
- Kavita A Iyer
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Vadim Barnakov
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Montserrat Samsó
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
68
|
Abstract
This Review provides an update on ryanodine receptors (RyRs) and their role in human diseases of heart, muscle, and brain. Calcium (Ca2+) is a requisite second messenger in all living organisms. From C. elegans to mammals, Ca2+ is necessary for locomotion, bodily functions, and neural activity. However, too much of a good thing can be bad. Intracellular Ca2+ overload can result in loss of function and death. Intracellular Ca2+ release channels evolved to safely provide large, rapid Ca2+ signals without exposure to toxic extracellular Ca2+. RyRs are intracellular Ca2+ release channels present throughout the zoosphere. Over the past 35 years, our knowledge of RyRs has advanced to the level of atomic-resolution structures revealing their role in the mechanisms underlying the pathogenesis of human disorders of heart, muscle, and brain. Stress-induced RyR-mediated intracellular Ca2+ leak in the heart can promote heart failure and cardiac arrhythmias. In skeletal muscle, RyR1 leak contributes to muscle weakness in inherited myopathies, to age-related loss of muscle function and cancer-associated muscle weakness, and to impaired muscle function in muscular dystrophies, including Duchenne. In the brain, leaky RyR channels contribute to cognitive dysfunction in Alzheimer's disease, posttraumatic stress disorder, and Huntington's disease. Novel therapeutics targeting dysfunctional RyRs are showing promise.
Collapse
|
69
|
Greene D, Luchko T, Shiferaw Y. The role of subunit cooperativity on ryanodine receptor 2 calcium signaling. Biophys J 2023; 122:215-229. [PMID: 36348625 PMCID: PMC9822801 DOI: 10.1016/j.bpj.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The ryanodine receptor type 2 (RyR2) is composed of four subunits that control calcium (Ca) release in cardiac cells. RyR2 serves primarily as a Ca sensor and can respond to rapid sub-millisecond pulses of Ca while remaining shut at resting concentrations. However, it is not known how the four subunits interact for the RyR2 to function as an effective Ca sensor. To address this question, and to understand the role of subunit cooperativity in Ca-mediated signal transduction, we have developed a computational model of the RyR2 composed of four interacting subunits. We first analyze the statistical properties of a single RyR2 tetramer, where each subunit can exist in a closed or open conformation. Our findings indicate that the number of subunits in the open state is a crucial parameter that dictates RyR2 kinetics. We find that three or four open subunits are required for the RyR2 to harness cooperative interactions to respond to sub-millisecond changes in Ca, while at the same time remaining shut at the resting Ca levels in the cardiac cell. If the required number of open subunits is lowered to one or two, the RyR2 cannot serve as a robust Ca sensor, as the large cooperativity required to stabilize the closed state prevents channel activation. Using this four-subunit model, we analyze the kinetics of Ca release from a RyR2 cluster. We show that the closure of a cluster of RyR2 channels is highly sensitive to the balance of cooperative interactions between closed and open subunits. Based on this result, we analyze how specific interactions between RyR2 subunits can induce persistent Ca leak from the sarcoplasmic reticulum (SR), which is believed to be arrhythmogenic. Thus, these results provide a framework to analyze how a pharmacologic or genetic modification of RyR2 subunit cooperativity can induce abnormal Ca cycling that can potentially lead to life-threatening arrhythmias.
Collapse
Affiliation(s)
- D'Artagnan Greene
- Department of Physics & Astronomy, California State University, Northridge
| | - Tyler Luchko
- Department of Physics & Astronomy, California State University, Northridge
| | - Yohannes Shiferaw
- Department of Physics & Astronomy, California State University, Northridge.
| |
Collapse
|
70
|
Campiglio M, Dyrda A, Tuinte WE, Török E. Ca V1.1 Calcium Channel Signaling Complexes in Excitation-Contraction Coupling: Insights from Channelopathies. Handb Exp Pharmacol 2023; 279:3-39. [PMID: 36592225 DOI: 10.1007/164_2022_627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In skeletal muscle, excitation-contraction (EC) coupling relies on the mechanical coupling between two ion channels: the L-type voltage-gated calcium channel (CaV1.1), located in the sarcolemma and functioning as the voltage sensor of EC coupling, and the ryanodine receptor 1 (RyR1), located on the sarcoplasmic reticulum serving as the calcium release channel. To this day, the molecular mechanism by which these two ion channels are linked remains elusive. However, recently, skeletal muscle EC coupling could be reconstituted in heterologous cells, revealing that only four proteins are essential for this process: CaV1.1, RyR1, and the cytosolic proteins CaVβ1a and STAC3. Due to the crucial role of these proteins in skeletal muscle EC coupling, any mutation that affects any one of these proteins can have devastating consequences, resulting in congenital myopathies and other pathologies.Here, we summarize the current knowledge concerning these four essential proteins and discuss the pathophysiology of the CaV1.1, RyR1, and STAC3-related skeletal muscle diseases with an emphasis on the molecular mechanisms. Being part of the same signalosome, mutations in different proteins often result in congenital myopathies with similar symptoms or even in the same disease.
Collapse
Affiliation(s)
- Marta Campiglio
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria.
| | - Agnieszka Dyrda
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Wietske E Tuinte
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Enikő Török
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
71
|
Neumann J, Van Nieuwenhove E, Terry LE, Staels F, Knebel TR, Welkenhuyzen K, Ahmadzadeh K, Baker MR, Gerbaux M, Willemsen M, Barber JS, Serysheva II, De Waele L, Vermeulen F, Schlenner S, Meyts I, Yule DI, Bultynck G, Schrijvers R, Humblet-Baron S, Liston A. Disrupted Ca 2+ homeostasis and immunodeficiency in patients with functional IP 3 receptor subtype 3 defects. Cell Mol Immunol 2023; 20:11-25. [PMID: 36302985 PMCID: PMC9794825 DOI: 10.1038/s41423-022-00928-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Calcium signaling is essential for lymphocyte activation, with genetic disruptions of store-operated calcium (Ca2+) entry resulting in severe immunodeficiency. The inositol 1,4,5-trisphosphate receptor (IP3R), a homo- or heterotetramer of the IP3R1-3 isoforms, amplifies lymphocyte signaling by releasing Ca2+ from endoplasmic reticulum stores following antigen stimulation. Although knockout of all IP3R isoforms in mice causes immunodeficiency, the seeming redundancy of the isoforms is thought to explain the absence of variants in human immunodeficiency. In this study, we identified compound heterozygous variants of ITPR3 (a gene encoding IP3R subtype 3) in two unrelated Caucasian patients presenting with immunodeficiency. To determine whether ITPR3 variants act in a nonredundant manner and disrupt human immune responses, we characterized the Ca2+ signaling capacity, the lymphocyte response, and the clinical phenotype of these patients. We observed disrupted Ca2+ signaling in patient-derived fibroblasts and immune cells, with abnormal proliferation and activation responses following T-cell receptor stimulation. Reconstitution of IP3R3 in IP3R knockout cell lines led to the identification of variants as functional hypomorphs that showed reduced ability to discriminate between homeostatic and induced states, validating a genotype-phenotype link. These results demonstrate a functional link between defective endoplasmic reticulum Ca2+ channels and immunodeficiency and identify IP3Rs as diagnostic targets for patients with specific inborn errors of immunity. These results also extend the known cause of Ca2+-associated immunodeficiency from store-operated entry to impaired Ca2+ mobilization from the endoplasmic reticulum, revealing a broad sensitivity of lymphocytes to genetic defects in Ca2+ signaling.
Collapse
Affiliation(s)
- Julika Neumann
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Erika Van Nieuwenhove
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- UZ Leuven, Leuven, Belgium
| | - Lara E Terry
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14526, USA
| | - Frederik Staels
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- UZ Leuven, Leuven, Belgium
| | - Taylor R Knebel
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14526, USA
| | - Kirsten Welkenhuyzen
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Mariah R Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Margaux Gerbaux
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Pediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathijs Willemsen
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - John S Barber
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Liesbeth De Waele
- Department of Pediatric Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | - Susan Schlenner
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- UZ Leuven, Leuven, Belgium.
- Laboratory for Inborn Errors of Immunity, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium.
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14526, USA
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- UZ Leuven, Leuven, Belgium.
- Laboratory for Allergy and Clinical Immunology and Immunogenetics Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| | | | - Adrian Liston
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
72
|
O’Connor TN, van den Bersselaar LR, Chen YS, Nicolau S, Simon B, Huseth A, Todd JJ, Van Petegem F, Sarkozy A, Goldberg MF, Voermans NC, Dirksena RT, on behalf of the RYR1 Myopathy Consortium. RYR-1-Related Diseases International Research Workshop: From Mechanisms to Treatments Pittsburgh, PA, U.S.A., 21-22 July 2022. J Neuromuscul Dis 2023; 10:135-154. [PMID: 36404556 PMCID: PMC10023165 DOI: 10.3233/jnd-221609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Thomas N. O’Connor
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Luuk R. van den Bersselaar
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Malignant Hyperthermia Investigation Unit, Department of Anaesthesia, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Yu Seby Chen
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Stefan Nicolau
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | | | | | - Joshua J. Todd
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Anna Sarkozy
- The Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | | | - Nicol C. Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Robert T. Dirksena
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | |
Collapse
|
73
|
Abstract
Calcium ions (Ca2+) play a critical role in triggering neurotransmitter release. The rate of release is directly related to the concentration of Ca2+ at the presynaptic site, with a supralinear relationship. There are two main sources of Ca2+ that trigger synaptic vesicle fusion: influx through voltage-gated Ca2+ channels in the plasma membrane and release from the endoplasmic reticulum via ryanodine receptors. This chapter will cover the sources of Ca2+ at the presynaptic nerve terminal, the relationship between neurotransmitter release rate and Ca2+ concentration, and the mechanisms that achieve the necessary Ca2+ concentrations for triggering synaptic exocytosis at the presynaptic site.
Collapse
Affiliation(s)
- Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Sadaf Riaz
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
74
|
Chen YS, Van Petegem F. Structural and functional conservation of the activating Ca 2+ binding site in inositol 1,4.5-trisphosphate and ryanodine receptors. Cell Calcium 2022; 108:102671. [PMID: 36370621 DOI: 10.1016/j.ceca.2022.102671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) and Ryanodine Receptors (RyRs) dictate the release of Ca2+ from the Endoplasmic (ER) and Sarcoplasmic Reticulum (SR). Arige et al [1] investigated the functional importance of specific Ca2+-coordinating residues, unambiguously confirming the activating Ca2+ binding site in the IP3R.
Collapse
Affiliation(s)
- Yu Seby Chen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, V6T 1Z3 Vancouver, BC Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, V6T 1Z3 Vancouver, BC Canada.
| |
Collapse
|
75
|
Hadiatullah H, Zhang Y, Samurkas A, Xie Y, Sundarraj R, Zuilhof H, Qiao J, Yuchi Z. Recent progress in the structural study of ion channels as insecticide targets. INSECT SCIENCE 2022; 29:1522-1551. [PMID: 35575601 DOI: 10.1111/1744-7917.13032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 06/15/2023]
Abstract
Ion channels, many expressed in insect neural and muscular systems, have drawn huge attention as primary targets of insecticides. With the recent technical breakthroughs in structural biology, especially in cryo-electron microscopy (cryo-EM), many new high-resolution structures of ion channel targets, apo or in complex with insecticides, have been solved, shedding light on the molecular mechanism of action of the insecticides and resistance mutations. These structures also provide accurate templates for structure-based insecticide screening and rational design. This review summarizes the recent progress in the structural studies of 5 ion channel families: the ryanodine receptor (RyR), the nicotinic acetylcholine receptor (nAChR), the voltage-gated sodium channel (VGSC), the transient receptor potential (TRP) channel, and the ligand-gated chloride channel (LGCC). We address the selectivity of the channel-targeting insecticides by examining the conservation of key coordinating residues revealed by the structures. The possible resistance mechanisms are proposed based on the locations of the identified resistance mutations on the 3D structures of the target channels and their impacts on the binding of insecticides. Finally, we discuss how to develop "green" insecticides with a novel mode of action based on these high-resolution structures to overcome the resistance.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yongliang Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Arthur Samurkas
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Yunxuan Xie
- Department of Environmental Science, Tianjin University, Tianjin, China
| | - Rajamanikandan Sundarraj
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Han Zuilhof
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
76
|
Greene D, Barton M, Luchko T, Shiferaw Y. Molecular Dynamics Simulations of the Cardiac Ryanodine Receptor Type 2 (RyR2) Gating Mechanism. J Phys Chem B 2022; 126:9790-9809. [PMID: 36384028 PMCID: PMC9720719 DOI: 10.1021/acs.jpcb.2c03031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the cardiac ryanodine receptor type 2 (RyR2) have been linked to fatal cardiac arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT). While many CPVT mutations are associated with an increase in Ca2+ leak from the sarcoplasmic reticulum, the mechanistic details of RyR2 channel gating are not well understood, and this poses a barrier in the development of new pharmacological treatments. To address this, we explore the gating mechanism of the RyR2 using molecular dynamics (MD) simulations. We test the effect of changing the conformation of certain structural elements by constructing chimera RyR2 structures that are derived from the currently available closed and open cryo-electron microscopy (cryo-EM) structures, and we then use MD simulations to relax the system. Our key finding is that the position of the S4-S5 linker (S4S5L) on a single subunit can determine whether the channel as a whole is open or closed. Our analysis reveals that the position of the S4S5L is regulated by interactions with the U-motif on the same subunit and with the S6 helix on an adjacent subunit. We find that, in general, channel gating is crucially dependent on high percent occupancy interactions between adjacent subunits. We compare our interaction analysis to 49 CPVT1 mutations in the literature and find that 73% appear near a high percent occupancy interaction between adjacent subunits. This suggests that disruption of cooperative, high percent occupancy interactions between adjacent subunits is a primary cause of channel leak and CPVT in mutant RyR2 channels.
Collapse
|
77
|
Tsuboi Y, Oyama K, Kobirumaki-Shimozawa F, Murayama T, Kurebayashi N, Tachibana T, Manome Y, Kikuchi E, Noguchi S, Inoue T, Inoue YU, Nishino I, Mori S, Ishida R, Kagechika H, Suzuki M, Fukuda N, Yamazawa T. Mice with R2509C-RYR1 mutation exhibit dysfunctional Ca2+ dynamics in primary skeletal myocytes. J Gen Physiol 2022; 154:213526. [PMID: 36200983 PMCID: PMC9546722 DOI: 10.1085/jgp.202213136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum (SR) of the skeletal muscle and plays a critical role in excitation-contraction coupling. Mutations in RYR1 cause severe muscle diseases, such as malignant hyperthermia, a disorder of Ca2+-induced Ca2+ release (CICR) through RYR1 from the SR. We recently reported that volatile anesthetics induce malignant hyperthermia (MH)-like episodes through enhanced CICR in heterozygous R2509C-RYR1 mice. However, the characterization of Ca2+ dynamics has yet to be investigated in skeletal muscle cells from homozygous mice because these animals die in utero. In the present study, we generated primary cultured skeletal myocytes from R2509C-RYR1 mice. No differences in cellular morphology were detected between wild type (WT) and mutant myocytes. Spontaneous Ca2+ transients and cellular contractions occurred in WT and heterozygous myocytes, but not in homozygous myocytes. Electron microscopic observation revealed that the sarcomere length was shortened to ∼1.7 µm in homozygous myocytes, as compared to ∼2.2 and ∼2.3 µm in WT and heterozygous myocytes, respectively. Consistently, the resting intracellular Ca2+ concentration was higher in homozygous myocytes than in WT or heterozygous myocytes, which may be coupled with a reduced Ca2+ concentration in the SR. Finally, using infrared laser-based microheating, we found that heterozygous myocytes showed larger heat-induced Ca2+ transients than WT myocytes. Our findings suggest that the R2509C mutation in RYR1 causes dysfunctional Ca2+ dynamics in a mutant-gene dose-dependent manner in the skeletal muscles, in turn provoking MH-like episodes and embryonic lethality in heterozygous and homozygous mice, respectively.
Collapse
Affiliation(s)
- Yoshitaka Tsuboi
- Core Research Facilities, The Jikei University School of Medicine, Tokyo, Japan.,Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kotaro Oyama
- Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, Gunma, Japan.,Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Tachibana
- Core Research Facilities, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshinobu Manome
- Core Research Facilities, The Jikei University School of Medicine, Tokyo, Japan
| | - Emi Kikuchi
- Core Research Facilities, The Jikei University School of Medicine, Tokyo, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shuichi Mori
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryosuke Ishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Madoka Suzuki
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshiko Yamazawa
- Core Research Facilities, The Jikei University School of Medicine, Tokyo, Japan.,Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
78
|
Turcotte MG, Thakur H, Kapiloff MS, Dodge-Kafka KL. A perinuclear calcium compartment regulates cardiac myocyte hypertrophy. J Mol Cell Cardiol 2022; 172:26-40. [PMID: 35952391 PMCID: PMC9727780 DOI: 10.1016/j.yjmcc.2022.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
The pleiotropic Ca2+/calmodulin-dependent phosphatase calcineurin is a key regulator of pathological cardiac myocyte hypertrophy. The selective activation of hypertrophic calcineurin signaling under stress conditions has been attributed to compartmentation of Ca2+ signaling in cardiac myocytes. Here, perinuclear signalosomes organized by the scaffold protein muscle A-Kinase Anchoring Protein β (mAKAPβ/AKAP6β) are shown to orchestrate local Ca2+ transients, inducing calcineurin-dependent NFATc nuclear localization and myocyte hypertrophy in response to β-adrenergic receptor activation. Fluorescent biosensors for Ca2+ and calcineurin and protein kinase A (PKA) activity, both diffusely expressed and localized by nesprin-1α to the nuclear envelope, are used to define an autonomous mAKAPβ signaling compartment in adult and neonatal rat ventricular myocytes. Notably, β-adrenergic-stimulated perinuclear Ca2+ and PKA and CaN activity transients depended upon mAKAPβ expression, while Ca2+ elevation and PKA and CaN activity in the cytosol were mAKAPβ independent. Buffering perinuclear cAMP and Ca2+ prevented calcineurin-dependent NFATc nuclear translocation and myocyte hypertrophy, without affecting cardiac myocyte contractility. Additional findings suggest that the perinuclear Ca2+ transients were mediated by signalosome-associated ryanodine receptors regulated by local PKA phosphorylation. These results demonstrate the existence of a functionally independent Ca2+ signaling compartment in the cardiac myocyte regulating hypertrophy and provide a premise for targeting mAKAPβ signalosomes to prevent selectively cardiac hypertrophy in disease.
Collapse
Affiliation(s)
- Moriah Gildart Turcotte
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Hrishikesh Thakur
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Michael S Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Kimberly L Dodge-Kafka
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
79
|
Zhang Y, Rabesahala de Meritens C, Beckmann A, Lai FA, Zissimopoulos S. Defective ryanodine receptor N-terminus inter-subunit interaction is a common mechanism in neuromuscular and cardiac disorders. Front Physiol 2022; 13:1032132. [PMID: 36311249 PMCID: PMC9597452 DOI: 10.3389/fphys.2022.1032132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/28/2022] [Indexed: 07/28/2023] Open
Abstract
The ryanodine receptor (RyR) is a homotetrameric channel mediating sarcoplasmic reticulum Ca2+ release required for skeletal and cardiac muscle contraction. Mutations in RyR1 and RyR2 lead to life-threatening malignant hyperthermia episodes and ventricular tachycardia, respectively. In this brief report, we use chemical cross-linking to demonstrate that pathogenic RyR1 R163C and RyR2 R169Q mutations reduce N-terminus domain (NTD) tetramerization. Introduction of positively-charged residues (Q168R, M399R) in the NTD-NTD inter-subunit interface normalizes RyR2-R169Q NTD tetramerization. These results indicate that perturbation of NTD-NTD inter-subunit interactions is an underlying molecular mechanism in both RyR1 and RyR2 pathophysiology. Importantly, our data provide proof of concept that stabilization of this critical RyR1/2 structure-function parameter offers clear therapeutic potential.
Collapse
Affiliation(s)
- Yadan Zhang
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | | | - Astrid Beckmann
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - F. Anthony Lai
- College of Medicine and Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Spyros Zissimopoulos
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| |
Collapse
|
80
|
Arige V, Terry LE, Wagner LE, Malik S, Baker MR, Fan G, Joseph SK, Serysheva II, Yule DI. Functional determination of calcium-binding sites required for the activation of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci U S A 2022; 119:e2209267119. [PMID: 36122240 PMCID: PMC9522344 DOI: 10.1073/pnas.2209267119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/23/2022] [Indexed: 01/25/2023] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) initiate a diverse array of physiological responses by carefully orchestrating intracellular calcium (Ca2+) signals in response to various external cues. Notably, IP3R channel activity is determined by several obligatory factors, including IP3, Ca2+, and ATP. The critical basic amino acid residues in the N-terminal IP3-binding core (IBC) region that facilitate IP3 binding are well characterized. In contrast, the residues conferring regulation by Ca2+ have yet to be ascertained. Using comparative structural analysis of Ca2+-binding sites identified in two main families of intracellular Ca2+-release channels, ryanodine receptors (RyRs) and IP3Rs, we identified putative acidic residues coordinating Ca2+ in the cytosolic calcium sensor region in IP3Rs. We determined the consequences of substituting putative Ca2+ binding, acidic residues in IP3R family members. We show that the agonist-induced Ca2+ release, single-channel open probability (P0), and Ca2+ sensitivities are markedly altered when the negative charge on the conserved acidic side chain residues is neutralized. Remarkably, neutralizing the negatively charged side chain on two of the residues individually in the putative Ca2+-binding pocket shifted the Ca2+ required to activate IP3R to higher concentrations, indicating that these residues likely are a component of the Ca2+ activation site in IP3R. Taken together, our findings indicate that Ca2+ binding to a well-conserved activation site is a common underlying mechanism resulting in increased channel activity shared by IP3Rs and RyRs.
Collapse
Affiliation(s)
- Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Lara E. Terry
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Larry E. Wagner
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Mariah R. Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Suresh K. Joseph
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Irina I. Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| |
Collapse
|
81
|
Zhao Q, Li X, Liu L, Zhang X, Pan X, Yao H, Ma Y, Tan B. Prenatal diagnosis identifies compound heterozygous variants in RYR1 that causes ultrasound abnormalities in a fetus. BMC Med Genomics 2022; 15:202. [PMID: 36131268 PMCID: PMC9490926 DOI: 10.1186/s12920-022-01358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Objective We presented a non-consanguineous healthy Chinese couple with five pregnancies, three early miscarriages, the fetus II-2 and II-5 with similar abnormal phenotypes of fetal hydrops, scoliosis, fetal akinesia and polyhydramnios. This study aimed to uncover the molecular etiology of this family with a history of multiple adverse pregnancies. Materials and methods DNA extracted from the fifth fetal umbilical cord and parents’ peripheral blood were subjected to SNP-array and whole exome sequencing. The result was verified by Sanger sequencing. Functional characterization of the c.2682G > C (p.Ile860_Pro894del) variant was completed by minigene splicing assay. Results Trio whole-exome sequencing has identified compound heterozygous variants in RYR1 (c.2682G > C; p.Ile860_Pro894del and c.12572G > A; p.Arg4191His) in fetus II-5. The variant c.2682G > C (p.Ile860_Pro894del) comes from the father and the c.12572G > A (p.Arg4191His) comes from the mother. The c.2682G > C (p.Ile860_Pro894del) affects the splice site resulting in exon 21 skipping, therefore is classified as likely pathogenic. The c.12572G > A (p.Arg4191His) locates in the C-terminal hot spots region of the RYR1, classified as of uncertain significance. Conclusions We report the first prenatal case of RYR1-related disorders in Chinese population, expanding the variant spectrum of RYR1 in fetuses. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01358-x.
Collapse
Affiliation(s)
- Qiuling Zhao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoduo Li
- Qijiang Maternal and Child Health Hospital, Chongqing, China
| | - Li Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Pan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Yao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongyi Ma
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Bo Tan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
82
|
Rossi D, Catallo MR, Pierantozzi E, Sorrentino V. Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. J Gen Physiol 2022; 154:e202213115. [PMID: 35980353 PMCID: PMC9391951 DOI: 10.1085/jgp.202213115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
In skeletal muscle, Ca2+ necessary for muscle contraction is stored and released from the sarcoplasmic reticulum (SR), a specialized form of endoplasmic reticulum through the mechanism known as excitation-contraction (E-C) coupling. Following activation of skeletal muscle contraction by the E-C coupling mechanism, replenishment of intracellular stores requires reuptake of cytosolic Ca2+ into the SR by the activity of SR Ca2+-ATPases, but also Ca2+ entry from the extracellular space, through a mechanism called store-operated calcium entry (SOCE). The fine orchestration of these processes requires several proteins, including Ca2+ channels, Ca2+ sensors, and Ca2+ buffers, as well as the active involvement of mitochondria. Mutations in genes coding for proteins participating in E-C coupling and SOCE are causative of several myopathies characterized by a wide spectrum of clinical phenotypes, a variety of histological features, and alterations in intracellular Ca2+ balance. This review summarizes current knowledge on these myopathies and discusses available knowledge on the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maria Rosaria Catallo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
83
|
Bolaños P, Calderón JC. Excitation-contraction coupling in mammalian skeletal muscle: Blending old and last-decade research. Front Physiol 2022; 13:989796. [PMID: 36117698 PMCID: PMC9478590 DOI: 10.3389/fphys.2022.989796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The excitation–contraction coupling (ECC) in skeletal muscle refers to the Ca2+-mediated link between the membrane excitation and the mechanical contraction. The initiation and propagation of an action potential through the membranous system of the sarcolemma and the tubular network lead to the activation of the Ca2+-release units (CRU): tightly coupled dihydropyridine and ryanodine (RyR) receptors. The RyR gating allows a rapid, massive, and highly regulated release of Ca2+ from the sarcoplasmic reticulum (SR). The release from triadic places generates a sarcomeric gradient of Ca2+ concentrations ([Ca2+]) depending on the distance of a subcellular region from the CRU. Upon release, the diffusing Ca2+ has multiple fates: binds to troponin C thus activating the contractile machinery, binds to classical sarcoplasmic Ca2+ buffers such as parvalbumin, adenosine triphosphate and, experimentally, fluorescent dyes, enters the mitochondria and the SR, or is recycled through the Na+/Ca2+ exchanger and store-operated Ca2+ entry (SOCE) mechanisms. To commemorate the 7th decade after being coined, we comprehensively and critically reviewed “old”, historical landmarks and well-established concepts, and blended them with recent advances to have a complete, quantitative-focused landscape of the ECC. We discuss the: 1) elucidation of the CRU structures at near-atomic resolution and its implications for functional coupling; 2) reliable quantification of peak sarcoplasmic [Ca2+] using fast, low affinity Ca2+ dyes and the relative contributions of the Ca2+-binding mechanisms to the whole concert of Ca2+ fluxes inside the fibre; 3) articulation of this novel quantitative information with the unveiled structural details of the molecular machinery involved in mitochondrial Ca2+ handing to understand how and how much Ca2+ enters the mitochondria; 4) presence of the SOCE machinery and its different modes of activation, which awaits understanding of its magnitude and relevance in situ; 5) pharmacology of the ECC, and 6) emerging topics such as the use and potential applications of super-resolution and induced pluripotent stem cells (iPSC) in ECC. Blending the old with the new works better!
Collapse
Affiliation(s)
- Pura Bolaños
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Juan C. Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
- *Correspondence: Juan C. Calderón,
| |
Collapse
|
84
|
Molecular mechanism of the severe MH/CCD mutation Y522S in skeletal ryanodine receptor (RyR1) by cryo-EM. Proc Natl Acad Sci U S A 2022; 119:e2122140119. [PMID: 35867837 PMCID: PMC9335238 DOI: 10.1073/pnas.2122140119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ryanodine receptors (RyRs) are main regulators of intracellular Ca2+ release and muscle contraction. The Y522S mutation of RyR1 causes central core disease, a weakening myopathy, and malignant hyperthermia, a sudden and potentially fatal response to anesthetics or heat. Y522 is in the core of the N-terminal subdomain C of RyR1 and the mechanism of how this mutation orchestrates malfunction is unpredictable for this 2-MDa ion channel, which has four identical subunits composed of 15 distinct cytoplasmic domains each. We expressed and purified the RyR1 rabbit homolog, Y523S, from HEK293 cells and reconstituted it in nanodiscs under closed and open states. The high-resolution cryogenic electron microscopic (cryo-EM) three-dimensional (3D) structures show that the phenyl ring of Tyr functions in a manner analogous to a "spacer" within an α-helical bundle. Mutation to the much smaller Ser alters the hydrophobic network within the bundle, triggering rearrangement of its α-helices with repercussions in the orientation of most cytoplasmic domains. Examining the mutation-induced readjustments exposed a series of connected α-helices acting as an ∼100 Å-long lever: One end protrudes toward the dihydropyridine receptor, its molecular activator (akin to an antenna), while the other end reaches the Ca2+ activation site. The Y523S mutation elicits channel preactivation in the absence of any activator and full opening at 1.5 µM free Ca2+, increasing by ∼20-fold the potency of Ca2+ to activate the channel compared with RyR1 wild type (WT). This study identified a preactivated pathological state of RyR1 and a long-range lever that may work as a molecular switch to open the channel.
Collapse
|
85
|
Molecular, Subcellular, and Arrhythmogenic Mechanisms in Genetic RyR2 Disease. Biomolecules 2022; 12:biom12081030. [PMID: 35892340 PMCID: PMC9394283 DOI: 10.3390/biom12081030] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
The ryanodine receptor (RyR2) has a critical role in controlling Ca2+ release from the sarcoplasmic reticulum (SR) throughout the cardiac cycle. RyR2 protein has multiple functional domains with specific roles, and four of these RyR2 protomers are required to form the quaternary structure that comprises the functional channel. Numerous mutations in the gene encoding RyR2 protein have been identified and many are linked to a wide spectrum of arrhythmic heart disease. Gain of function mutations (GoF) result in a hyperactive channel that causes excessive spontaneous SR Ca2+ release. This is the predominant cause of the inherited syndrome catecholaminergic polymorphic ventricular tachycardia (CPVT). Recently, rare hypoactive loss of function (LoF) mutations have been identified that produce atypical effects on cardiac Ca2+ handling that has been termed calcium release deficiency syndrome (CRDS). Aberrant Ca2+ release resulting from both GoF and LoF mutations can result in arrhythmias through the Na+/Ca2+ exchange mechanism. This mini-review discusses recent findings regarding the role of RyR2 domains and endogenous regulators that influence RyR2 gating normally and with GoF/LoF mutations. The arrhythmogenic consequences of GoF/LoF mutations will then be discussed at the macromolecular and cellular level.
Collapse
|
86
|
Miotto MC, Weninger G, Dridi H, Yuan Q, Liu Y, Wronska A, Melville Z, Sittenfeld L, Reiken S, Marks AR. Structural analyses of human ryanodine receptor type 2 channels reveal the mechanisms for sudden cardiac death and treatment. SCIENCE ADVANCES 2022; 8:eabo1272. [PMID: 35857850 PMCID: PMC9299551 DOI: 10.1126/sciadv.abo1272] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/03/2022] [Indexed: 05/29/2023]
Abstract
Ryanodine receptor type 2 (RyR2) mutations have been linked to an inherited form of exercise-induced sudden cardiac death called catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT results from stress-induced sarcoplasmic reticular Ca2+ leak via the mutant RyR2 channels during diastole. We present atomic models of human wild-type (WT) RyR2 and the CPVT mutant RyR2-R2474S determined by cryo-electron microscopy with overall resolutions in the range of 2.6 to 3.6 Å, and reaching local resolutions of 2.25 Å, unprecedented for RyR2 channels. Under nonactivating conditions, the RyR2-R2474S channel is in a "primed" state between the closed and open states of WT RyR2, rendering it more sensitive to activation that results in stress-induced Ca2+ leak. The Rycal drug ARM210 binds to RyR2-R2474S, reverting the primed state toward the closed state. Together, these studies provide a mechanism for CPVT and for the therapeutic actions of ARM210.
Collapse
Affiliation(s)
- Marco C. Miotto
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Zephan Melville
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Leah Sittenfeld
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| |
Collapse
|
87
|
Melville Z, Dridi H, Yuan Q, Reiken S, Wronska A, Liu Y, Clarke OB, Marks AR. A drug and ATP binding site in type 1 ryanodine receptor. Structure 2022; 30:1025-1034.e4. [PMID: 35580609 DOI: 10.1016/j.str.2022.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022]
Abstract
The ryanodine receptor (RyR)/calcium release channel on the sarcoplasmic reticulum (SR) is required for excitation-contraction coupling in skeletal and cardiac muscle. Inherited mutations and stress-induced post-translational modifications result in an SR Ca2+ leak that causes skeletal myopathies, heart failure, and exercise-induced sudden death. A class of therapeutics known as Rycals prevent the RyR-mediated leak, are effective in preventing disease progression and restoring function in animal models, and are in clinical trials for patients with muscle and heart disorders. Using cryogenic-electron microscopy, we present a model of RyR1 with a 2.45-Å resolution before local refinement, revealing a binding site in the RY1&2 domain (3.10 Å local resolution), where the Rycal ARM210 binds cooperatively with ATP and stabilizes the closed state of RyR1.
Collapse
Affiliation(s)
- Zephan Melville
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA; Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA; Clyde & Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA.
| |
Collapse
|
88
|
It takes two to tango: Rycals and ATP snuggle up to bind ryanodine receptors. Structure 2022; 30:919-921. [PMID: 35803239 DOI: 10.1016/j.str.2022.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this issue of Structure, Melville and colleagues used cryo-EM to study the binding of ryanodine receptors to Rycals, compounds with the potential to treat skeletal and cardiac muscle disorders. Unexpectedly, they found that Rycal packs against an ATP in a peripheral pocket, which stabilizes the closed channel state.
Collapse
|
89
|
Vattemi GNA, Rossi D, Galli L, Catallo MR, Pancheri E, Marchetto G, Cisterna B, Malatesta M, Pierantozzi E, Tonin P, Sorrentino V. Ryanodine receptor 1 (RYR1) mutations in two patients with tubular aggregate myopathy. Eur J Neurosci 2022; 56:4214-4223. [PMID: 35666680 PMCID: PMC9539902 DOI: 10.1111/ejn.15728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Two likely causative mutations in the RYR1 gene were identified in two patients with myopathy with tubular aggregates, but no evidence of cores or core‐like pathology on muscle biopsy. These patients were clinically evaluated and underwent routine laboratory investigations, electrophysiologic tests, muscle biopsy and muscle magnetic resonance imaging (MRI). They reported stiffness of the muscles following sustained activity or cold exposure and had serum creatine kinase elevation. The identified RYR1 mutations (p.Thr2206Met or p.Gly2434Arg, in patient 1 and patient 2, respectively) were previously identified in individuals with malignant hyperthermia susceptibility and are reported as causative according to the European Malignant Hyperthermia Group rules. To our knowledge, these data represent the first identification of causative mutations in the RYR1 gene in patients with tubular aggregate myopathy and extend the spectrum of histological alterations caused by mutation in the RYR1 gene.
Collapse
Affiliation(s)
- Gaetano Nicola Alfio Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, Siena, Italy.,Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Lucia Galli
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maria Rosaria Catallo
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, Siena, Italy
| | - Elia Pancheri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | - Giulia Marchetto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, Verona, Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, Verona, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, Siena, Italy
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, Verona, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, Siena, Italy.,Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
90
|
Miotto MC, Marks AR. Catching the next wave of recombinant RyR2 cryo-EM structures. Commentary on “Molecular basis for gating of cardiac ryanodine receptor explains the mechanisms for gain- and loss-of function mutations”. Cell Calcium 2022; 105:102614. [DOI: 10.1016/j.ceca.2022.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022]
|
91
|
Chang X, Wei R, Wei C, Liu J, Qin L, Yan H, Ma Y, Wang Z, Xiong H. Correlation of Phenotype–Genotype and Protein Structure in RYR1-Related Myopathy. Front Neurol 2022; 13:870285. [PMID: 35693006 PMCID: PMC9178086 DOI: 10.3389/fneur.2022.870285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Next generation sequencing results in an explosive identification of rare variants of RYR1, making the correlation between phenotype and genotype complicated. We analyzed the data of 33 patients with RYR1-related myopathy, attempting to elucidate correlations between phenotype, genotype, and protein structure of RyR1. Methods Clinical, histopathologic, and genetic data were evaluated, and variants were mapped to the cryo-EM RyR1 structure. The three-dimensional structure of the variant on RyR1 was analyzed. Results The clinical spectrum was highly variable regardless of the mode of inheritance. Recessive variations were associated with more severe feeding problems and respiratory insufficiency in infancy (p < 0.05). Forty pathogenic and likely pathogenic variations were identified, and 14 of them were novel. Missense was the most common variation type regardless of inheritance mode. Arginine (15/45) was the most frequently involved residue. All but one dominant variation clustered in Pore forming and pVSD domains, while recessive variations enriched in Bsol (7/25) and SPRYs (6/25) domains. Analysis of the spatial structure of variants showed that dominant variants may impact RyR1 mainly by breaking down hydrogen or electrovalent bonds (10/21); recessive variants located in different domains may impact the function of RyR1 through different pathways. Variants located in RyR1 coupling sites (PY1&2 and the outermost of Bsol) may cause the most severe clinical manifestation. Conclusion Clinical diversity of RYR1-related myopathy was impacted by the inheritance mode, variation type, and variant location. Dominant and recessive variants have different sensitive domains impacting the function of RyR1 through different pathways.
Collapse
Affiliation(s)
- Xingzhi Chang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- *Correspondence: Xingzhi Chang
| | - Risheng Wei
- Department of Biochemistry and Biophysics, Peking University Health Science Center, Peking University, Beijing, China
| | - Cuijie Wei
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jieyu Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lun Qin
- Department of Rehabilitation Medicine, Peking University First Hospital, Beijing, China
| | - Hui Yan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yinan Ma
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
92
|
Yamaguchi N. Do CPVT-linked mutations alter RYR2 regulation by cytosolic Ca2+ in cardiomyocytes? J Gen Physiol 2022; 154:213243. [PMID: 35612555 PMCID: PMC9136487 DOI: 10.1085/jgp.202213078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is controversial whether the cardiac type-2 ryanodine receptor harboring a catecholaminergic polymorphic ventricular tachycardia-associated point mutation is regulated by luminal or cytosolic Ca2+. This commentary discusses new findings supporting the cytosolic Ca2+-dependent regulation.
Collapse
Affiliation(s)
- Naohiro Yamaguchi
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC,Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC,Correspondence to Naohiro Yamaguchi:
| |
Collapse
|
93
|
Hadiatullah H, He Z, Yuchi Z. Structural Insight Into Ryanodine Receptor Channelopathies. Front Pharmacol 2022; 13:897494. [PMID: 35677449 PMCID: PMC9168041 DOI: 10.3389/fphar.2022.897494] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
The ryanodine receptors (RyRs) are large cation-selective ligand-gated channels that are expressed in the sarcoplasmic reticulum (SR) membrane. They mediate the controlled release of Ca2+ from SR and play an important role in many cellular processes. The mutations in RyRs are associated with several skeletal muscle and cardiac conditions, including malignant hyperthermia (MH), central core disease (CCD), catecholaminergic polymorphic ventricular tachycardia (CPVT), and arrhythmogenic right ventricular dysplasia (ARVD). Recent breakthroughs in structural biology including cryo-electron microscopy (EM) and X-ray crystallography allowed the determination of a number of near-atomic structures of RyRs, including wildtype and mutant structures as well as the structures in complex with different modulating molecules. This allows us to comprehend the physiological gating and regulatory mechanisms of RyRs and the underlying pathological mechanisms of the disease-causing mutations. In this review, based on the insights gained from the available high-resolution structures of RyRs, we address several questions: 1) what are the gating mechanisms of different RyR isoforms; 2) how RyRs are regulated by multiple channel modulators, including ions, small molecules, and regulatory proteins; 3) how do disease-causing mutations affect the structure and function of RyRs; 4) how can these structural information aid in the diagnosis of the related diseases and the development of pharmacological therapies.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhao He
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Zhiguang Yuchi,
| |
Collapse
|
94
|
Kobayashi T, Tsutsumi A, Kurebayashi N, Saito K, Kodama M, Sakurai T, Kikkawa M, Murayama T, Ogawa H. Molecular basis for gating of cardiac ryanodine receptor explains the mechanisms for gain- and loss-of function mutations. Nat Commun 2022; 13:2821. [PMID: 35595836 PMCID: PMC9123176 DOI: 10.1038/s41467-022-30429-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiac ryanodine receptor (RyR2) is a large Ca2+ release channel in the sarcoplasmic reticulum and indispensable for excitation-contraction coupling in the heart. RyR2 is activated by Ca2+ and RyR2 mutations are implicated in severe arrhythmogenic diseases. Yet, the structural basis underlying channel opening and how mutations affect the channel remains unknown. Here, we address the gating mechanism of RyR2 by combining high-resolution structures determined by cryo-electron microscopy with quantitative functional analysis of channels carrying various mutations in specific residues. We demonstrated two fundamental mechanisms for channel gating: interactions close to the channel pore stabilize the channel to prevent hyperactivity and a series of interactions in the surrounding regions is necessary for channel opening upon Ca2+ binding. Mutations at the residues involved in the former and the latter mechanisms cause gain-of-function and loss-of-function, respectively. Our results reveal gating mechanisms of the RyR2 channel and alterations by pathogenic mutations at the atomic level. Ryanodine receptor 2 (RyR2) is a Ca2+ release channel essential for cardiac excitation-contraction coupling. Here, the authors use structural and functional analysis to reveal RyR2 gating mechanism and its alterations by pathogenic mutations.
Collapse
Affiliation(s)
- Takuya Kobayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihisa Tsutsumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kei Saito
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Masami Kodama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Haruo Ogawa
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
95
|
Influence of caffeine on the maximal isometric and concentric force produced by skinned fibers. Sci Rep 2022; 12:7980. [PMID: 35562590 PMCID: PMC9106758 DOI: 10.1038/s41598-022-12222-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/06/2022] [Indexed: 11/08/2022] Open
Abstract
Caffeine is one of the most famous and widely used ergogenic drugs, especially by athletes to improve sports performance. Caffeine is known to enhance muscle contraction by facilitating Ca2+ release from the sarcoplasmic reticulum. While the effect of caffeine on the cross-bridge dynamics has also investigated, the results is controversial. Therefore, the purpose of this study was to examine the influence of caffeine on cross-bridge dynamics using skinned fiber preparations from rabbit soleus (N = 19 in total). We performed isometric contractions at an average sarcomere length of 2.4 μm; thereafter, skinned fibers were shortened by 20% of the fiber length at a velocity of 0.1 mm/s (slow shortening) or 0.5 mm/s (fast shortening). The contractions were performed under both normal and caffeine-containing activating solution conditions to compare the isometric, slow concentric, and fast concentric forces between conditions. The isometric force did not differ between normal and caffeine-containing activating solution conditions. Similarly, the concentric forces obtained during the slow and fast shortening trials did not differ between conditions. We also measured the stiffness and the rate of force redevelopment (kTR) during the isometric contraction phase and found that these values were not different between normal and caffeine conditions. Based on these results, we conclude that the influence of caffeine on cross-bridge dynamics is negligible, and the ergogenic effect of caffeine, from the view of muscle contractility, is by facilitating Ca2+ release, as suggested in previous studies, and not by modulating the cross-bridge dynamics.
Collapse
|
96
|
Dridi H, Forrester F, Umanskaya A, Xie W, Reiken S, Lacampagne A, Marks A. Role of oxidation of excitation-contraction coupling machinery in age-dependent loss of muscle function in C. elegans. eLife 2022; 11:75529. [PMID: 35506650 PMCID: PMC9113742 DOI: 10.7554/elife.75529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Age-dependent loss of body wall muscle function and impaired locomotion occur within 2 weeks in C. elegans; however, the underlying mechanism has not been fully elucidated. In humans, age-dependent loss of muscle function occurs at about 80 years of age and has been linked to dysfunction of ryanodine receptor (RyR)/intracellular calcium (Ca2+) release channels on the sarcoplasmic reticulum (SR). Mammalian skeletal muscle RyR1 channels undergo age-related remodeling due to oxidative overload, leading to loss of the stabilizing subunit calstabin1 (FKBP12) from the channel macromolecular complex. This destabilizes the closed state of the channel resulting in intracellular Ca2+ leak, reduced muscle function, and impaired exercise capacity. We now show that the C. elegans RyR homolog, UNC-68, exhibits a remarkable degree of evolutionary conservation with mammalian RyR channels and similar age-dependent dysfunction. Like RyR1 in mammals UNC-68 encodes a protein that comprises a macromolecular complex which includes the calstabin1 homolog FKB-2 and is immunoreactive with antibodies raised against the RyR1 complex. Further, as in aged mammals, UNC-68 is oxidized and depleted of FKB-2 in an age-dependent manner, resulting in 'leaky' channels, depleted SR Ca2+ stores, reduced body wall muscle Ca2+ transients, and age-dependent muscle weakness. FKB-2 (ok3007)-deficient worms exhibit reduced exercise capacity. Pharmacologically induced oxidization of UNC-68 and depletion of FKB-2 from the channel independently caused reduced body wall muscle Ca2+ transients. Preventing FKB-2 depletion from the UNC-68 macromolecular complex using the Rycal drug S107 improved muscle Ca2+ transients and function. Taken together, these data suggest that UNC-68 oxidation plays a role in age-dependent loss of muscle function. Remarkably, this age-dependent loss of muscle function induced by oxidative overload, which takes ~2 years in mice and ~80 years in humans, occurs in less than 2-3 weeks in C. elegans, suggesting that reduced antioxidant capacity may contribute to the differences in life span amongst species.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Frances Forrester
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Alisa Umanskaya
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Wenjun Xie
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Alain Lacampagne
- U1046, Montpellier University, INSERM, CNRS, Montpellier, France
| | - Andrew Marks
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| |
Collapse
|
97
|
Mazzanti A, Kukavica D, Trancuccio A, Memmi M, Bloise R, Gambelli P, Marino M, Ortíz-Genga M, Morini M, Monteforte N, Giordano U, Keegan R, Tomasi L, Anastasakis A, Davis AM, Shimizu W, Blom NA, Santiago DJ, Napolitano C, Monserrat L, Priori SG. Outcomes of Patients With Catecholaminergic Polymorphic Ventricular Tachycardia Treated With β-Blockers. JAMA Cardiol 2022; 7:504-512. [PMID: 35353122 PMCID: PMC8968697 DOI: 10.1001/jamacardio.2022.0219] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022]
Abstract
Importance Patients with catecholaminergic polymorphic ventricular tachycardia (CPVT) may experience life-threatening arrhythmic events (LTAEs) despite β-blocker treatment. Further complicating management, the role of implantable cardioverter defibrillator (ICD) in CPVT is debated. Objective To investigate the long-term outcomes of patients with RYR2 CPVT treated with β-blockers only and the cost to benefit ratio of ICD. Design, Settings, and Participants This prospective cohort study conducted from January 1988 to October 2020 with a mean (SD) follow-up of 9.4 (7.5) years included patients who were referred to the Molecular Cardiology Clinics of ICS Maugeri Hospital, Pavia, Italy. Participants included consecutive patients with CPVT who were carriers of a pathogenic or likely pathogenic RYR2 variant with long-term clinical follow-up. Exposures Treatment with selective and nonselective β-blocker only and ICD implant when indicated. Main Outcome and Measures The main outcome was the occurrence of the first LTAE while taking a β-blocker. LTAE was defined as a composite of 3 hard end points: sudden cardiac death, aborted cardiac arrest, and hemodynamically nontolerated ventricular tachycardia. Results The cohort included 216 patients with RYR2 CPVT (121 of 216 female [55%], median [IQR] age 14, [9-30] years). During a mean (SD) follow-up of 9.4 (7.5) years taking β-blockers only, 28 of 216 patients (13%) experienced an LTAE (annual rate, 1.9%; 95% CI, 1.3-2.7). In multivariable analysis, experiencing either an LTAE (hazard ratio [HR], 3.3; 95% CI, 1.2-8.9; P = .02) or syncope before diagnosis (HR, 4.5; 95% CI, 1.8-11.1; P = .001) and carrying a C-terminal domain variant (HR, 18.1; 95% CI, 4.1-80.8; P < .001) were associated with an increased LTAE risk during β-blocker therapy only. The risk of LTAE among those taking selective β-blockers vs nadolol was increased 6-fold (HR, 5.8; 95% CI, 2.1-16.3; P = .001). Conversely, no significant difference was present between propranolol and nadolol (HR, 1.8; 95% CI, 0.4-7.3; P = .44). An ICD was implanted in 79 of 216 patients (37%) who were followed up for a mean (SD) of 8.6 (6.3) years. At the occurrence of LTAE, ICD carriers were more likely to survive (18 of 18 [100%]) than non-ICD carriers (6 of 10 [60%]; P = .01). Conclusions and Relevance In this cohort study, selective β-blockers were associated with a higher risk of LTAE as compared with nadolol. Independently from treatment, LTAE and syncope before diagnosis and C-terminal domain variants identified patients at higher risk of β-blocker failure, and the ICD was associated with reduced mortality in high-risk patients with CPVT.
Collapse
Affiliation(s)
- Andrea Mazzanti
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- ERN Guard-Heart European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart
- Department of Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Deni Kukavica
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alessandro Trancuccio
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Mirella Memmi
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Raffaella Bloise
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Patrick Gambelli
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Maira Marino
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | | | - Massimo Morini
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Nicola Monteforte
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Umberto Giordano
- Department of Cardiology, ARNAS Civico Cristina Di Benefratelli, Palermo, Italy
| | - Roberto Keegan
- Department of Electrophysiology, Hospital Privado Del Sur, Buenos Aires, Argentina
| | - Luca Tomasi
- Department of Cardiology, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Aristides Anastasakis
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Athens, Greece
| | - Andrew M. Davis
- Department of Cardiology, The Royal Children’s Hospital, Melbourne, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, Australia
- Murdoch Children’s Research Institute, Melbourne, Australia
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Nico A. Blom
- Department of Pediatric Cardiology, University of Leiden, Leiden, the Netherlands
| | - Demetrio Julián Santiago
- Department of Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Carlo Napolitano
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- ERN Guard-Heart European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart
| | | | - Silvia G. Priori
- Department of Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- ERN Guard-Heart European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart
- Department of Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
98
|
Fusto A, Cassandrini D, Fiorillo C, Codemo V, Astrea G, D’Amico A, Maggi L, Magri F, Pane M, Tasca G, Sabbatini D, Bello L, Battini R, Bernasconi P, Fattori F, Bertini ES, Comi G, Messina S, Mongini T, Moroni I, Panicucci C, Berardinelli A, Donati A, Nigro V, Pini A, Giannotta M, Dosi C, Ricci E, Mercuri E, Minervini G, Tosatto S, Santorelli F, Bruno C, Pegoraro E. Expanding the clinical-pathological and genetic spectrum of RYR1-related congenital myopathies with cores and minicores: an Italian population study. Acta Neuropathol Commun 2022; 10:54. [PMID: 35428369 PMCID: PMC9013059 DOI: 10.1186/s40478-022-01357-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
Mutations in the RYR1 gene, encoding ryanodine receptor 1 (RyR1), are a well-known cause of Central Core Disease (CCD) and Multi-minicore Disease (MmD). We screened a cohort of 153 patients carrying an histopathological diagnosis of core myopathy (cores and minicores) for RYR1 mutation. At least one RYR1 mutation was identified in 69 of them and these patients were further studied. Clinical and histopathological features were collected. Clinical phenotype was highly heterogeneous ranging from asymptomatic or paucisymptomatic hyperCKemia to severe muscle weakness and skeletal deformity with loss of ambulation. Sixty-eight RYR1 mutations, generally missense, were identified, of which 16 were novel. The combined analysis of the clinical presentation, disease progression and the structural bioinformatic analyses of RYR1 allowed to associate some phenotypes to mutations in specific domains. In addition, this study highlighted the structural bioinformatics potential in the prediction of the pathogenicity of RYR1 mutations. Further improvement in the comprehension of genotype-phenotype relationship of core myopathies can be expected in the next future: the actual lack of the human RyR1 crystal structure paired with the presence of large intrinsically disordered regions in RyR1, and the frequent presence of more than one RYR1 mutation in core myopathy patients, require designing novel investigation strategies to completely address RyR1 mutation effect.
Collapse
|
99
|
Molza AE, Westermaier Y, Moutte M, Ducrot P, Danilowicz C, Godoy-Carter V, Prentiss M, Robert CH, Baaden M, Prévost C. Building Biological Relevance Into Integrative Modelling of Macromolecular Assemblies. Front Mol Biosci 2022; 9:826136. [PMID: 35480882 PMCID: PMC9035671 DOI: 10.3389/fmolb.2022.826136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 01/25/2023] Open
Abstract
Recent advances in structural biophysics and integrative modelling methods now allow us to decipher the structures of large macromolecular assemblies. Understanding the dynamics and mechanisms involved in their biological function requires rigorous integration of all available data. We have developed a complete modelling pipeline that includes analyses to extract biologically significant information by consistently combining automated and interactive human-guided steps. We illustrate this idea with two examples. First, we describe the ryanodine receptor, an ion channel that controls ion flux across the cell membrane through transitions between open and closed states. The conformational changes associated with the transitions are small compared to the considerable system size of the receptor; it is challenging to consistently track these states with the available cryo-EM structures. The second example involves homologous recombination, in which long filaments of a recombinase protein and DNA catalyse the exchange of homologous DNA strands to reliably repair DNA double-strand breaks. The nucleoprotein filament reaction intermediates in this process are short-lived and heterogeneous, making their structures particularly elusive. The pipeline we describe, which incorporates experimental and theoretical knowledge combined with state-of-the-art interactive and immersive modelling tools, can help overcome these challenges. In both examples, we point to new insights into biological processes that arise from such interdisciplinary approaches.
Collapse
Affiliation(s)
- Anne-Elisabeth Molza
- CNRS, Université Paris-Cité, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Yvonne Westermaier
- Biophysics and Modelling Department/In Vitro Pharmacology Unit–IDRS (Servier Research Institute), Croissy-sur-Seine, France
| | | | - Pierre Ducrot
- Biophysics and Modelling Department/In Vitro Pharmacology Unit–IDRS (Servier Research Institute), Croissy-sur-Seine, France
| | | | | | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA, United States
| | - Charles H. Robert
- CNRS, Université Paris-Cité, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Marc Baaden
- CNRS, Université Paris-Cité, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Chantal Prévost
- CNRS, Université Paris-Cité, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
- *Correspondence: Chantal Prévost ,
| |
Collapse
|
100
|
Kohl P, Greiner J, Rog-Zielinska EA. Electron microscopy of cardiac 3D nanodynamics: form, function, future. Nat Rev Cardiol 2022; 19:607-619. [PMID: 35396547 DOI: 10.1038/s41569-022-00677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/09/2022]
Abstract
The 3D nanostructure of the heart, its dynamic deformation during cycles of contraction and relaxation, and the effects of this deformation on cell function remain largely uncharted territory. Over the past decade, the first inroads have been made towards 3D reconstruction of heart cells, with a native resolution of around 1 nm3, and of individual molecules relevant to heart function at a near-atomic scale. These advances have provided access to a new generation of data and have driven the development of increasingly smart, artificial intelligence-based, deep-learning image-analysis algorithms. By high-pressure freezing of cardiomyocytes with millisecond accuracy after initiation of an action potential, pseudodynamic snapshots of contraction-induced deformation of intracellular organelles can now be captured. In combination with functional studies, such as fluorescence imaging, exciting insights into cardiac autoregulatory processes at nano-to-micro scales are starting to emerge. In this Review, we discuss the progress in this fascinating new field to highlight the fundamental scientific insight that has emerged, based on technological breakthroughs in biological sample preparation, 3D imaging and data analysis; to illustrate the potential clinical relevance of understanding 3D cardiac nanodynamics; and to predict further progress that we can reasonably expect to see over the next 10 years.
Collapse
Affiliation(s)
- Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Engineering, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Joachim Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|