51
|
Ying B, Darling TL, Desai P, Liang CY, Dmitriev IP, Soudani N, Bricker T, Kashentseva EA, Harastani H, Raju S, Liu M, Schmidt AG, Curiel DT, Boon ACM, Diamond MS. Mucosal vaccine-induced cross-reactive CD8 + T cells protect against SARS-CoV-2 XBB.1.5 respiratory tract infection. Nat Immunol 2024; 25:537-551. [PMID: 38337035 PMCID: PMC10907304 DOI: 10.1038/s41590-024-01743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
A nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. Whereas serum neutralizing antibody responses induced by monovalent or bivalent adenoviral vaccines were poor against the antigenically distant XBB.1.5 strain and insufficient to protect in passive transfer experiments, mucosal antibody and cross-reactive memory T cell responses were robust, and protection was evident against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in mice and hamsters. However, depletion of memory CD8+ T cells before XBB.1.5 challenge resulted in loss of protection against upper and lower respiratory tract infection. Thus, nasally delivered vaccines stimulate mucosal immunity against emerging SARS-CoV-2 strains, and cross-reactive memory CD8+ T cells mediate protection against lung infection by antigenically distant strains in the setting of low serum levels of cross-reactive neutralizing antibodies.
Collapse
Affiliation(s)
- Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamarand L Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Traci Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Elena A Kashentseva
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Houda Harastani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Saravanan Raju
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meizi Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aaron G Schmidt
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
52
|
Liu Y, Li M, Cui T, Chen Z, Xu L, Li W, Peng Q, Li X, Zhao D, Valencia CA, Dong B, Wang Z, Chow HY, Li Y. A superior heterologous prime-boost vaccination strategy against COVID-19: A bivalent vaccine based on yeast-derived RBD proteins followed by a heterologous vaccine. J Med Virol 2024; 96:e29454. [PMID: 38445768 DOI: 10.1002/jmv.29454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 03/07/2024]
Abstract
Various vaccines have been challenged by SARS-CoV-2 variants. Here, we reported a yeast-derived recombinant bivalent vaccine (Bivalent wild-type [Wt]+De) based on the wt and Delta receptor-binding domain (RBD). Yeast derived RBD proteins based on the wt and Delta mutant were used as the prime vaccine. It was found that, in the presence of aluminium hydroxide (Alum) and unmethylated CpG-oligodeoxynucleotides (CpG) adjuvants, more cross-protective immunity against SARS-CoV-2 prototype and variants were elicited by bivalent vaccine than monovalent wtRBD or Delta RBD. Furthermore, a heterologous boosting strategy consisting of two doses of bivalent vaccines followed by one dose adenovirus vectored vaccine exhibited cross-neutralization capacity and specific T cell responses against Delta and Omicron (BA.1 and BA.4/5) variants in mice, superior to a homologous vaccination strategy. This study suggested that heterologous prime-boost vaccination with yeast-derived bivalent protein vaccine could be a potential approach to address the challenge of emerging variants.
Collapse
Affiliation(s)
- Yu Liu
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Tingting Cui
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Zhian Chen
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Liangting Xu
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjuan Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Qinhua Peng
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Xingxing Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Danhua Zhao
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - C Alexander Valencia
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Real & Best Biotech Co., Ltd, Chengdu, China
| | - Zhongfang Wang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Hoi Yee Chow
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhua Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
53
|
Sinha D, Yaugel-Novoa M, Waeckel L, Paul S, Longet S. Unmasking the potential of secretory IgA and its pivotal role in protection from respiratory viruses. Antiviral Res 2024; 223:105823. [PMID: 38331200 DOI: 10.1016/j.antiviral.2024.105823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Mucosal immunity has regained its spotlight amidst the ongoing Coronavirus disease 19 (COVID-19) pandemic, with numerous studies highlighting the crucial role of mucosal secretory IgA (SIgA) in protection against Severe acute respiratory syndrome coronavirus-2 or SARS-CoV-2 infections. The observed limitations in the efficacy of currently authorized COVID-19 vaccines in inducing effective mucosal immune responses remind us of the limitations of systemic vaccination in promoting protective mucosal immunity. This resurgence of interest has motivated the development of vaccine platforms capable of enhancing mucosal responses, specifically the SIgA response, and the development of IgA-based therapeutics. Recognizing viral respiratory infections as a global threat, we would like to comprehensively review the existing knowledge on mucosal immunity, with a particular emphasis on SIgA, in the context of SARS-CoV-2, influenza, and Respiratory Syncytial Virus (RSV) infections. This review aims to describe the structural and functional specificities of SIgA, along with its nuanced role in combating influenza, RSV, and SARS-CoV-2 infections. Subsequent sections further elaborate promising vaccine strategies, including mucosal vaccines against Influenza, RSV, and SARS-CoV-2 respiratory viruses, currently undergoing preclinical and clinical development. Additionally, we address the challenges associated with mucosal vaccine development, concluding with a discussion on IgA-based therapeutics as a promising platform for the treatment of viral respiratory infections. This comprehensive review not only synthesizes current insights into mucosal immunity but also identifies critical knowledge gaps, strengthening the way for further advancements in our current understanding and approaches to combat respiratory viral threats.
Collapse
Affiliation(s)
- Divya Sinha
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Melyssa Yaugel-Novoa
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Louis Waeckel
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France; Immunology Department, University Hospital of Saint-Etienne, F42055, Saint-Etienne, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France; Immunology Department, University Hospital of Saint-Etienne, F42055, Saint-Etienne, France; CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, F42055, Saint-Etienne, France.
| | - Stéphanie Longet
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France.
| |
Collapse
|
54
|
Minute L, Bergón-Gutiérrez M, Mata-Martínez P, Fernández-Pascual J, Terrón V, Bravo-Robles L, Bıçakcıoğlu G, Zapata-Fernández G, Aguiló N, López-Collazo E, del Fresno C. Heat-killed Mycobacterium tuberculosis induces trained immunity in vitro and in vivo administered systemically or intranasally. iScience 2024; 27:108869. [PMID: 38318361 PMCID: PMC10838711 DOI: 10.1016/j.isci.2024.108869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/03/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Trained immunity (TI) represents a memory-like process of innate immune cells. TI can be initiated with various compounds such as fungal β-glucan or the tuberculosis vaccine, Bacillus Calmette-Guérin. Nevertheless, considering the clinical applications of harnessing TI against infections and cancer, there is a growing need for new, simple, and easy-to-use TI inducers. Here, we demonstrate that heat-killed Mycobacterium tuberculosis (HKMtb) induces TI both in vitro and in vivo. In human monocytes, this effect represents a truly trained process, as HKMtb confers boosted inflammatory responses against various heterologous challenges, such as lipopolysaccharide (Toll-like receptor [TLR] 4 ligand) and R848 (TLR7/8 ligand). Mechanistically, HKMtb-induced TI relies on epigenetic mechanisms in a Syk/HIF-1α-dependent manner. In vivo, HKMtb induced TI when administered both systemically and intranasally, with the latter generating a more robust TI response. Summarizing, our research has demonstrated that HKMtb has the potential to act as a mucosal immunotherapy that can successfully induce trained responses.
Collapse
Affiliation(s)
- Luna Minute
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Marta Bergón-Gutiérrez
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Pablo Mata-Martínez
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Jaime Fernández-Pascual
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Verónica Terrón
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Laura Bravo-Robles
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Gülce Bıçakcıoğlu
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Gabriela Zapata-Fernández
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Nacho Aguiló
- Department of Microbiology, Pediatrics, Radiology, and Public Health, University of Zaragoza/IIS Aragon, Zaragoza, Spain
- CIBERES, CIBERINFEC, Carlos III Health Institute, Madrid, Spain
| | - Eduardo López-Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
- CIBERES, CIBERINFEC, Carlos III Health Institute, Madrid, Spain
| | - Carlos del Fresno
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
55
|
Macedo BG, Masuda MY, Borges da Silva H. Location versus ID: what matters to lung-resident memory T cells? Front Immunol 2024; 15:1355910. [PMID: 38375476 PMCID: PMC10875077 DOI: 10.3389/fimmu.2024.1355910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Tissue-resident memory T cells (TRM cells) are vital for the promotion of barrier immunity. The lung, a tissue constantly exposed to foreign pathogenic or non-pathogenic antigens, is not devoid of these cells. Lung TRM cells have been considered major players in either the protection against respiratory viral infections or the pathogenesis of lung allergies. Establishment of lung TRM cells rely on intrinsic and extrinsic factors. Among the extrinsic regulators of lung TRM cells, the magnitude of the impact of factors such as the route of antigen entry or the antigen natural tropism for the lung is not entirely clear. In this perspective, we provide a summary of the literature covering this subject and present some preliminary results on this potential dichotomy between antigen location versus antigen type. Finally, we propose a hypothesis to synthesize the potential contributions of these two variables for lung TRM cell development.
Collapse
|
56
|
Nie J, Zhou Y, Ding F, Liu X, Yao X, Xu L, Chang Y, Li Z, Wang Q, Zhan L, Zhu L, Xie K, Li C, Shi Y, Zhao Q, Shan Y. Self-adjuvant multiepitope nanovaccine based on ferritin induced long-lasting and effective mucosal immunity against H3N2 and H1N1 viruses in mice. Int J Biol Macromol 2024; 259:129259. [PMID: 38191112 DOI: 10.1016/j.ijbiomac.2024.129259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
The influenza A virus (IAV) is a ubiquitous and continuously evolving respiratory pathogen. The intranasal vaccination mimicking natural infections is an attractive strategy for controlling IAVs. Multiepitope vaccines accurately targeting multiple conserved domains have the potential to broaden the protective scope of current seasonal influenza vaccines and reduce the risk of generating escape mutants. Here, multiple linear epitopes from the matrix protein 2 ectodomain (M2e) and the hemagglutinin stem domain (HA2) are fused with the Helicobacter pylori ferritin, a self-assembled nanocarrier and mucosal adjuvant, to develop a multiepitope nanovaccine. Through intranasal delivery, the prokaryotically expressed multiepitope nanovaccine elicits long-lasting mucosal immunity, broad humoral immunity, and robust cellular immunity without any adjuvants, and confers complete protection against H3N2 and H1N1 subtypes of IAV in mice. Importantly, this intranasal multiepitope nanovaccine triggers memory B-cell responses, resulting in secretory immunoglobulin A (sIgA) and serum immunoglobulin G (IgG) levels persisting for more than five months post-immunization. Therefore, this intranasal ferritin-based multiepitope nanovaccine represents a promising approach to combating respiratory pathogens.
Collapse
Affiliation(s)
- Jiaojiao Nie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China; Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Yongfei Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Fan Ding
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Xiaoxi Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Xin Yao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Lipeng Xu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yaotian Chang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Zeyu Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Qingyu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Li Zhan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Lvzhou Zhu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Kunpeng Xie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Chenxi Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Qi Zhao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| |
Collapse
|
57
|
Wellford SA, Moseman EA. Olfactory immune response to SARS-CoV-2. Cell Mol Immunol 2024; 21:134-143. [PMID: 38143247 PMCID: PMC10806031 DOI: 10.1038/s41423-023-01119-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023] Open
Abstract
Numerous pathogens can infect the olfactory tract, yet the pandemic caused by SARS-CoV-2 has strongly emphasized the importance of the olfactory mucosa as an immune barrier. Situated in the nasal passages, the olfactory mucosa is directly exposed to the environment to sense airborne odorants; however, this also means it can serve as a direct route of entry from the outside world into the brain. As a result, olfactotropic infections can have serious consequences, including dysfunction of the olfactory system, CNS invasion, dissemination to the lower respiratory tract, and transmission between individuals. Recent research has shown that a distinctive immune response is needed to protect this neuronal and mucosal tissue. A better understanding of innate, adaptive, and structural immune barriers in the olfactory mucosa is needed to develop effective therapeutics and vaccines against olfactotropic microbes such as SARS-CoV-2. Here, we summarize the ramifications of SARS-CoV-2 infection of the olfactory mucosa, review the subsequent immune response, and discuss important areas of future research for olfactory immunity to infectious disease.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
58
|
Noh HE, Rha MS. Mucosal Immunity against SARS-CoV-2 in the Respiratory Tract. Pathogens 2024; 13:113. [PMID: 38392851 PMCID: PMC10892713 DOI: 10.3390/pathogens13020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The respiratory tract, the first-line defense, is constantly exposed to inhaled allergens, pollutants, and pathogens such as respiratory viruses. Emerging evidence has demonstrated that the coordination of innate and adaptive immune responses in the respiratory tract plays a crucial role in the protection against invading respiratory pathogens. Therefore, a better understanding of mucosal immunity in the airways is critical for the development of novel therapeutics and next-generation vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses. Since the coronavirus disease 2019 pandemic, our knowledge of mucosal immune responses in the airways has expanded. In this review, we describe the latest knowledge regarding the key components of the mucosal immune system in the respiratory tract. In addition, we summarize the host immune responses in the upper and lower airways following SARS-CoV-2 infection and vaccination, and discuss the impact of allergic airway inflammation on mucosal immune responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Hae-Eun Noh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
59
|
Girma A, Mebratie G, Alamnie G, Bekele T. Advances With Selected Nanostructured Materials in Health Care. REFERENCE MODULE IN MATERIALS SCIENCE AND MATERIALS ENGINEERING 2024. [DOI: 10.1016/b978-0-323-95486-0.00090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
60
|
Hou C, Ni R, Zhao L, Tian M, Long X, Lei C, Wang H, Yang X. Recombinant chimpanzee adenovirus expressing spike protein protects chickens against infectious bronchitis virus. Int J Biol Macromol 2024; 255:128105. [PMID: 37981286 DOI: 10.1016/j.ijbiomac.2023.128105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Infectious bronchitis (IB) is an acute and highly contagious disease caused by avian infectious bronchitis virus (IBV), resulting in significant economic losses in the global poultry industry. In this study, we utilized a replication-incompetent adenovirus vector derived from chimpanzees for the first time to express the S gene of IBV. The adenovirus was successfully rescued and demonstrated convenient production, good growth performance, and stability on HEK293 A cells. Morphologically, the recombinant adenovirus (named PAD-S) appeared normal under transmission electron microscopy, and efficient expression of the exogenous gene was confirmed through immunofluorescence analysis and immunoblotting. Administration of PAD-S via ocular and nasal routes induced a strong immune response in the chicken population, as evidenced by specific antibody and cytokine measurements. PAD-S was unable to replicate within chickens and showed low pre-existing immunity, demonstrating high safety and environmental friendliness. The robust immune response triggered by PAD-S immunization effectively suppressed viral replication in various tissues, alleviating clinical symptoms and tissue damage, thus providing complete protection against viral challenges in the chicken population. In conclusion, this study successfully developed an IBV candidate vaccine strain that possesses biosafety, high protective efficacy, and ease of production.
Collapse
Affiliation(s)
- Chengyao Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ruiqi Ni
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lijun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Mingyue Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xuelin Long
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Changwei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xin Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
61
|
O'Neill A, Mantri CK, Tan CW, Saron WAA, Nagaraj SK, Kala MP, Joy CM, Rathore APS, Tripathi S, Wang LF, St John AL. Mucosal SARS-CoV-2 vaccination of rodents elicits superior systemic T central memory function and cross-neutralising antibodies against variants of concern. EBioMedicine 2024; 99:104924. [PMID: 38113758 PMCID: PMC10772395 DOI: 10.1016/j.ebiom.2023.104924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND COVID-19 vaccines used in humans are highly effective in limiting disease and death caused by the SARS-CoV-2 virus, yet improved vaccines that provide greater protection at mucosal surfaces, which could reduce break-through infections and subsequent transmission, are still needed. METHODS Here we tested an intranasal (I.N.) vaccination with the receptor binding domain of Spike antigen of SARS-CoV-2 (S-RBD) in combination with the mucosal adjuvant mastoparan-7 compared with the sub-cutaneous (S.C.) route, adjuvanted by either M7 or the gold-standard adjuvant, alum, in mice, for immunological read-outs. The same formulation delivered I.N. or S.C. was tested in hamsters to assess efficacy. FINDINGS I.N. vaccination improved systemic T cell responses compared to an equivalent dose of antigen delivered S.C. and T cell phenotypes induced by I.N. vaccine administration included enhanced polyfunctionality (combined IFN-γ and TNF expression) and greater numbers of T central memory (TCM) cells. These phenotypes were T cell-intrinsic and could be recalled in the lungs and/or brachial LNs upon antigen challenge after adoptive T cell transfer to naïve recipients. Furthermore, mucosal vaccination induced antibody responses that were similarly effective in neutralising the binding of the parental strain of S-RBD to its ACE2 receptor, but showed greater cross-neutralising capacity against multiple variants of concern (VOC), compared to S.C. vaccination. I.N. vaccination provided significant protection from lung pathology compared to unvaccinated animals upon challenge with homologous and heterologous SARS-CoV-2 strains in a hamster model. INTERPRETATION These results highlight the role of nasal vaccine administration in imprinting an immune profile associated with long-term T cell retention and diversified neutralising antibody responses, which could be applied to improve vaccines for COVID-19 and other infectious diseases. FUNDING This study was funded by Duke-NUS Medical School, the Singapore Ministry of Education, the National Medical Research Council of Singapore and a DBT-BIRAC Grant.
Collapse
Affiliation(s)
- Aled O'Neill
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857, Singapore
| | - Chinmay Kumar Mantri
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857, Singapore
| | - Chee Wah Tan
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857, Singapore; Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Wilfried A A Saron
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857, Singapore
| | - Santhosh Kambaiah Nagaraj
- Centre for Infectious Disease Research, Microbiology and Cell Biology Department, Indian Institute of Science, Bengaluru, 560012, India
| | - Monica Palanichamy Kala
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857, Singapore
| | - Christy Margarat Joy
- Centre for Infectious Disease Research, Microbiology and Cell Biology Department, Indian Institute of Science, Bengaluru, 560012, India
| | - Abhay P S Rathore
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857, Singapore; Department of Pathology, Duke University Medical Centre, Durham, North Carolina, 27705, USA
| | - Shashank Tripathi
- Centre for Infectious Disease Research, Microbiology and Cell Biology Department, Indian Institute of Science, Bengaluru, 560012, India
| | - Lin-Fa Wang
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857, Singapore; SingHealth Duke-NUS Global Health Institute, Singapore
| | - Ashley L St John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857, Singapore; Department of Pathology, Duke University Medical Centre, Durham, North Carolina, 27705, USA; SingHealth Duke-NUS Global Health Institute, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
62
|
Zeng W, Jia X, Chi X, Zhang X, Li E, Wu Y, Liu Y, Han J, Ni K, Ye X, Hu X, Ma H, Yu C, Chiu S, Jin T. An engineered bispecific nanobody in tetrameric secretory IgA format confers broad neutralization against SARS-CoV-1&2 and most variants. Int J Biol Macromol 2023; 253:126817. [PMID: 37690653 DOI: 10.1016/j.ijbiomac.2023.126817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
SARS-CoV-2, a type of respiratory virus, has exerted a great impact on global health and economy over the past three years. Antibody-based therapy was initially successful but later failed due to the accumulation of mutations in the spike protein of the virus. Strategies that enable antibodies to resist virus escape are therefore of great significance. Here, we engineer a bispecific SARS-CoV-2 neutralizing nanobody in secretory Immunoglobulin A (SIgA) format, named S2-3-IgA2m2, which shows broad and potent neutralization against SARS-CoV-1, SARS-CoV-2 and its variants of concern (VOCs) including XBB and BQ.1.1. S2-3-IgA2m2 is ∼1800-fold more potent than its parental IgG counterpart in neutralizing XBB. S2-3-IgA2m2 is stable in mouse lungs at least for three days when administrated by nasal delivery. In hamsters infected with BA.5, three intranasal doses of S2-3-IgA2m2 at 1 mg/kg significantly reduce viral RNA loads and completely eliminate infectious particles in the trachea and lungs. Notably, even at single dose of 1 mg/kg, S2-3-IgA2m2 prophylactically administered through the intranasal route drastically reduces airway viral RNA loads and infectious particles. This study provides an effective weapon combating SARS-CoV-2, proposes a new strategy overcoming the virus escape, and lays strategic reserves for rapid response to potential future outbreaks of "SARS-CoV-3".
Collapse
Affiliation(s)
- Weihong Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Xiangyang Chi
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Jin Han
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kang Ni
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaodong Ye
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaowen Hu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Huan Ma
- Institute of Clinical Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| | - Changming Yu
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Tengchuan Jin
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
| |
Collapse
|
63
|
Mosqueda J, Hernández-Silva DJ, Vega-López MA, Vega-Rojas LJ, Beltrán R, Velasco-Elizondo A, Ramírez-Estudillo MDC, Fragoso-Saavedra M, Pérez-Almeida C, Hernández J, Melgoza-González EA, Hinojosa-Trujillo D, Mercado-Uriostegui MÁ, Mejía-López AS, Rivera-Ballesteros C, García-Gasca T. Evaluation of the humoral and mucosal immune response of a multiepitope vaccine against COVID-19 in pigs. Front Immunol 2023; 14:1276950. [PMID: 38179057 PMCID: PMC10765521 DOI: 10.3389/fimmu.2023.1276950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction This study evaluated the immune response to a multiepitope recombinant chimeric protein (CHIVAX) containing B- and T-cell epitopes of the SARS-CoV-2 spike's receptor binding domain (RBD) in a translational porcine model for pre-clinical studies. Methods We generated a multiepitope recombinant protein engineered to include six coding conserved epitopes from the RBD domain of the SARS-CoV-2 S protein. Pigs were divided into groups and immunized with different doses of the protein, with serum samples collected over time to determine antibody responses by indirect ELISA and antibody titration. Peptide recognition was also analyzed by Western blotting. A surrogate neutralization assay with recombinant ACE2 and RBDs was performed. Intranasal doses of the immunogen were also prepared and tested on Vietnamese minipigs. Results When the immunogen was administered subcutaneously, it induced specific IgG antibodies in pigs, and higher doses correlated with higher antibody levels. Antibodies from immunized pigs recognized individual peptides in the multiepitope vaccine and inhibited RBD-ACE2 binding for five variants of concern (VOC). Comparative antigen delivery methods showed that both, subcutaneous and combined subcutaneous/intranasal approaches, induced specific IgG and IgA antibodies, with the subcutaneous approach having superior neutralizing activity. CHIVAX elicited systemic immunity, evidenced by specific IgG antibodies in the serum, and local mucosal immunity, indicated by IgA antibodies in saliva, nasal, and bronchoalveolar lavage secretions. Importantly, these antibodies demonstrated neutralizing activity against SARS-CoV-2 in vitro. Discussion The elicited antibodies recognized individual epitopes on the chimeric protein and demonstrated the capacity to block RBD-ACE2 binding of the ancestral SARS-CoV-2 strain and four VOCs. The findings provide proof of concept for using multiepitope recombinant antigens and a combined immunization protocol to induce a neutralizing immune response against SARS-CoV-2 in the pig translational model for preclinical studies.
Collapse
Affiliation(s)
- Juan Mosqueda
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Diego Josimar Hernández-Silva
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Marco Antonio Vega-López
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Ciudad de México, Mexico
| | - Lineth J. Vega-Rojas
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Rolando Beltrán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Andrés Velasco-Elizondo
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - María del Carmen Ramírez-Estudillo
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Ciudad de México, Mexico
| | - Mario Fragoso-Saavedra
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Ciudad de México, Mexico
| | - Chyntia Pérez-Almeida
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Edgar A. Melgoza-González
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Diana Hinojosa-Trujillo
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Miguel Ángel Mercado-Uriostegui
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Alma Susana Mejía-López
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Carlos Rivera-Ballesteros
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| |
Collapse
|
64
|
Zhou J, Uddback I, Kohlmeier JE, Christensen JP, Thomsen AR. Vaccine induced memory CD8 + T cells efficiently prevent viral transmission from the respiratory tract. Front Immunol 2023; 14:1322536. [PMID: 38164135 PMCID: PMC10757911 DOI: 10.3389/fimmu.2023.1322536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Mucosal immunization eliciting local T-cell memory has been suggested for improved protection against respiratory infections caused by viral variants evading pre-existing antibodies. However, it remains unclear whether T-cell targeted vaccines suffice for prevention of viral transmission and to which extent local immunity is important in this context. Methods To study the impact of T-cell vaccination on the course of viral respiratory infection and in particular the capacity to inhibit viral transmission, we used a mouse model involving natural murine parainfluenza infection with a luciferase encoding virus and an adenovirus based nucleoprotein targeting vaccine. Results and discussion Prior intranasal immunization inducing strong mucosal CD8+ T cell immunity provided an almost immediate shut-down of the incipient infection and completely inhibited contact based viral spreading. If this first line of defense did not operate, as in parentally immunized mice, recirculating T cells participated in accelerated viral control that reduced the intensity of inter-individual transmission. These observations underscore the importance of pursuing the development of mucosal T-cell inducing vaccines for optimal protection of the individual and inhibition of inter-individual transmission (herd immunity), while at the same time explain why induction of a strong systemic T-cell response may still impact viral transmission.
Collapse
Affiliation(s)
- Jinglin Zhou
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Uddback
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob E. Kohlmeier
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | | | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
65
|
Xu H, Zhou R, Chen Z. Tissue-Resident Memory T Cell: Ontogenetic Cellular Mechanism and Clinical Translation. Clin Exp Immunol 2023; 214:249-259. [PMID: 37586053 PMCID: PMC10719502 DOI: 10.1093/cei/uxad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/22/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023] Open
Abstract
Mounting evidence has indicated the essential role of tissue-resident memory T (TRM) cells for frontline protection against viral infection and for cancer immune surveillance (Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defense. Nat Rev Immunol 2016, 16, 79-89. doi:10.1038/nri.2015.3.). TRM cells are transcriptionally, phenotypically, and functionally distinct from circulating memory T (Tcirm) cells. It is necessary to understand the unique ontogenetic mechanism, migratory regulation, and biological function of TRM cells. In this review, we discuss recent insights into cellular mechanisms and discrete responsiveness in different tissue microenvironments underlying TRM cell development. We also emphasize the translational potential of TRM cells by focusing on their establishment in association with improved protection in mucosal tissues against various types of diseases and effective strategies for eliciting TRM cells in both pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Haoran Xu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- State Key Laboratory for Emerging Infectious Diseases, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|
66
|
Zhang P, Luo S, Zou P, Deng Q, Wang C, Li J, Cai P, Zhang L, Li C, Li T. A novel simian adenovirus-vectored COVID-19 vaccine elicits effective mucosal and systemic immunity in mice by intranasal and intramuscular vaccination regimens. Microbiol Spectr 2023; 11:e0179423. [PMID: 37877750 PMCID: PMC10715068 DOI: 10.1128/spectrum.01794-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE The essential goal of vaccination is to generate potent and long-term protection against diseases. Several factors including vaccine vector, delivery route, and boosting regimen influence the outcome of prime-boost immunization approaches. The immunization regimens by constructing a novel simian adenovirus-vectored COVID-19 vaccine and employing combination of intranasal and intramuscular inoculations could elicit mucosal neutralizing antibodies against five mutant strains in the respiratory tract and strong systemic immunity. Immune protection could last for more than 32 weeks. Vectored vaccine construction and immunization regimens have positively impacted respiratory disease prevention.
Collapse
Affiliation(s)
- Panli Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou , China
| | - Shengxue Luo
- Department of Pediatrics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Peng Zou
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou , China
| | - Qitao Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou , China
| | - Cong Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou , China
| | - Jinfeng Li
- Shenzhen Bao'an District Central Blood Station, Shenzhen, China
| | - Peiqiao Cai
- Department of Bioengineering, School of Medicine and College of Engineering, University of Washington, Seattle, Washington, USA
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
67
|
Ávila-Nieto C, Vergara-Alert J, Amengual-Rigo P, Ainsua-Enrich E, Brustolin M, Rodríguez de la Concepción ML, Pedreño-Lopez N, Rodon J, Urrea V, Pradenas E, Marfil S, Ballana E, Riveira-Muñoz E, Pérez M, Roca N, Tarrés-Freixas F, Carabelli J, Cantero G, Pons-Grífols A, Rovirosa C, Aguilar-Gurrieri C, Ortiz R, Barajas A, Trinité B, Lepore R, Muñoz-Basagoiti J, Perez-Zsolt D, Izquierdo-Useros N, Valencia A, Blanco J, Clotet B, Guallar V, Segalés J, Carrillo J. Novel Spike-stabilized trimers with improved production protect K18-hACE2 mice and golden Syrian hamsters from the highly pathogenic SARS-CoV-2 Beta variant. Front Immunol 2023; 14:1291972. [PMID: 38124756 PMCID: PMC10731958 DOI: 10.3389/fimmu.2023.1291972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Most COVID-19 vaccines are based on the SARS-CoV-2 Spike glycoprotein (S) or their subunits. However, S shows some structural instability that limits its immunogenicity and production, hampering the development of recombinant S-based vaccines. The introduction of the K986P and V987P (S-2P) mutations increases the production and immunogenicity of the recombinant S trimer, suggesting that these two parameters are related. Nevertheless, S-2P still shows some molecular instability and it is produced with low yield. Here we described a novel set of mutations identified by molecular modeling and located in the S2 region of the S-2P that increase its production up to five-fold. Besides their immunogenicity, the efficacy of two representative S-2P-based mutants, S-29 and S-21, protecting from a heterologous SARS-CoV-2 Beta variant challenge was assayed in K18-hACE2 mice (an animal model of severe SARS-CoV-2 disease) and golden Syrian hamsters (GSH) (a moderate disease model). S-21 induced higher level of WH1 and Delta variants neutralizing antibodies than S-2P in K18-hACE2 mice three days after challenge. Viral load in nasal turbinate and oropharyngeal samples were reduced in S-21 and S-29 vaccinated mice. Despite that, only the S-29 protein protected 100% of K18-hACE2 mice from severe disease. When GSH were analyzed, all immunized animals were protected from disease development irrespectively of the immunogen they received. Therefore, the higher yield of S-29, as well as its improved immunogenicity and efficacy protecting from the highly pathogenic SARS-CoV-2 Beta variant, pinpoint the S-29 mutant as an alternative to the S-2P protein for future SARS-CoV-2 vaccine development.
Collapse
Affiliation(s)
| | - Júlia Vergara-Alert
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Pep Amengual-Rigo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | - Marco Brustolin
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | | | - Jordi Rodon
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Victor Urrea
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | | | | | - Ester Ballana
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Mònica Pérez
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Núria Roca
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | | | - Guillermo Cantero
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | | | | | - Raquel Ortiz
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Ana Barajas
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | | | - Rosalba Lepore
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | | | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Alfonso Valencia
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Spain
- Fundació Lluita contra les Infeccions, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Victor Guallar
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Joaquim Segalés
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Cerdanyola del Vallès, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
68
|
Puhach O, Bellon M, Adea K, Bekliz M, Hosszu-Fellous K, Sattonnet P, Hulo N, Kaiser L, Eckerle I, Meyer B. SARS-CoV-2 convalescence and hybrid immunity elicits mucosal immune responses. EBioMedicine 2023; 98:104893. [PMID: 38035462 PMCID: PMC10755109 DOI: 10.1016/j.ebiom.2023.104893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Mucosal antibodies play a key role in the protection against SARS-CoV-2 infection in the upper respiratory tract, and potentially in limiting virus replication and therefore onward transmission. While systemic immunity to SARS-CoV-2 is well understood, we have a limited understanding about the antibodies present on the nasal mucosal surfaces. METHODS In this study, we evaluated SARS-CoV-2 mucosal antibodies following previous infection, vaccination, or a combination of both. Paired nasal fluid and serum samples were collected from 143 individuals, which include convalescent, vaccinated, or breakthrough infections. FINDINGS We detected a high correlation between IgG responses in serum and nasal fluids, which were higher in both compartments in vaccinated compared to convalescent participants. Contrary, nasal and systemic SARS-CoV-2 IgA responses were weakly correlated, indicating a compartmentalization between the local and systemic IgA responses. SARS-CoV-2 secretory component IgA (s-IgA) antibodies, present exclusively on mucosal surfaces, were detected in the nasal fluid only in a minority of vaccinated subjects and were significantly higher in previously infected individuals. Depletion of IgA antibodies in nasal fluids resulted in a tremendous reduction of neutralization activity against SARS-CoV-2, indicating that IgA is the crucial contributor to neutralization in the nasal mucosa. Neutralization against SARS-CoV-2 was higher in the mucosa of subjects with previous SARS-CoV-2 infections compared to vaccinated participants. INTERPRETATION In summary, we demonstrate that currently available vaccines elicit strong systemic antibody responses, but SARS-CoV-2 infection generates higher titers of binding and neutralizing mucosal antibodies. Our results support the importance to develop SARS-CoV-2 vaccines that elicit mucosal antibodies. FUNDING The work was funded by the COVID-19 National Research Program 78 (grant number 198412) of the Swiss National Science Foundation.
Collapse
Affiliation(s)
- Olha Puhach
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Mathilde Bellon
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Kenneth Adea
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Meriem Bekliz
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Krisztina Hosszu-Fellous
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Pascale Sattonnet
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Hulo
- Service for Biomathematical and Biostatistical Analyses, Institute of Genetics and Genomics, University of Geneva, Geneva, Switzerland
| | - Laurent Kaiser
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Isabella Eckerle
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Benjamin Meyer
- Department of Pathology and Immunology, Centre of Vaccinology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
69
|
Zhang QY, Zhang HQ, Zhang YN, Zhang ZR, Li XD, Hao MC, Zhang Y, Li JQ, Hu YY, Chen XL, Wang J, Shi YJ, Deng CL, Chen JJ, Ye HQ, Zhang B. Newcastle Disease Virus (NDV)-based vaccine candidate against SARS-CoV-2 Omicron by intranasal immunization. Antiviral Res 2023; 220:105757. [PMID: 37984567 DOI: 10.1016/j.antiviral.2023.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Despite global vaccination efforts, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread globally. Currently, the development of affordable vaccine against Omicron variant of concern (VOC) is necessary. Here, we assessed the safety and immunogenicity of a SARS-CoV-2 vaccine consisting of a live Newcastle disease virus vector expressing the spike (S) protein of Omicron BA.1 administrated intranasally (IN) or intramuscularly (IM) in Golden Syrian hamster model. Immunogenicity studies showed that the prime-boost regimen elicited high antibody titers and the modified S antigen (Sm-F) could induce robust antibody response in low dosage immunization through IN route. Sera of the immunized hamsters provided effective cross-neutralizing activity against different Omicron variants, the prototype and delta strains of SARS-CoV-2. Moreover, the vaccine could provide complete immunoprotection in hamsters against the Omicron BA.1 challenge by either intranasal or intramuscular immunization. Overall, our study provides an alternative nasal vaccine against the SARS-CoV-2 Omicron variants.
Collapse
Affiliation(s)
- Qiu-Yan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hong-Qing Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zhe-Rui Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Dan Li
- Hunan Normal University, School of Medicine, Changsha, 410081, China
| | - Meng-Chan Hao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Zhang
- University of Science and Technology of China, Department of Life Sciences and Medicine, Hefei, 230026, China
| | - Jia-Qi Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Yan Hu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ling Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Jia Shi
- Hunan Normal University, School of Medicine, Changsha, 410081, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Jian-Jun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han-Qing Ye
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
70
|
Ye T, Jiao Z, Li X, He Z, Li Y, Yang F, Zhao X, Wang Y, Huang W, Qin M, Feng Y, Qiu Y, Yang W, Hu L, Hu Y, Zhai Y, Wang E, Yu D, Wang S, Yue H, Wang Y, Wang H, Zhu L, Ma G, Wei W. Inhaled SARS-CoV-2 vaccine for single-dose dry powder aerosol immunization. Nature 2023; 624:630-638. [PMID: 38093012 DOI: 10.1038/s41586-023-06809-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/31/2023] [Indexed: 12/20/2023]
Abstract
The COVID-19 pandemic has fostered major advances in vaccination technologies1-4; however, there are urgent needs for vaccines that induce mucosal immune responses and for single-dose, non-invasive administration4-6. Here we develop an inhalable, single-dose, dry powder aerosol SARS-CoV-2 vaccine that induces potent systemic and mucosal immune responses. The vaccine encapsulates assembled nanoparticles comprising proteinaceous cholera toxin B subunits displaying the SARS-CoV-2 RBD antigen within microcapsules of optimal aerodynamic size, and this unique nano-micro coupled structure supports efficient alveoli delivery, sustained antigen release and antigen-presenting cell uptake, which are favourable features for the induction of immune responses. Moreover, this vaccine induces strong production of IgG and IgA, as well as a local T cell response, collectively conferring effective protection against SARS-CoV-2 in mice, hamsters and nonhuman primates. Finally, we also demonstrate a mosaic iteration of the vaccine that co-displays ancestral and Omicron antigens, extending the breadth of antibody response against co-circulating strains and transmission of the Omicron variant. These findings support the use of this inhaled vaccine as a promising multivalent platform for fighting COVID-19 and other respiratory infectious diseases.
Collapse
Affiliation(s)
- Tong Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Zhouguang Jiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Zhanlong He
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Yanyan Li
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Fengmei Yang
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Xin Zhao
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yingmei Feng
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yefeng Qiu
- Laboratory Animal Center, Academy of Military Medical Science, Beijing, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yaling Hu
- Sinovac Life Sciences Co., Ltd., Beijing, China
| | - Yu Zhai
- Sinovac Life Sciences Co., Ltd., Beijing, China
| | | | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yishu Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China.
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
71
|
Wang S, Cui H, Zhang C, Li W, Wang W, He W, Feng N, Zhao Y, Wang T, Tang X, Yan F, Xia X. Oral delivery of a chitosan adjuvanted COVID-19 vaccine provides long-lasting and broad-spectrum protection against SARS-CoV-2 variants of concern in golden hamsters. Antiviral Res 2023; 220:105765. [PMID: 38036065 DOI: 10.1016/j.antiviral.2023.105765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Coronavirus disease 2019 (COVID-19) seriously threatens public health safety and the global economy, which warrant effective prophylactic and therapeutic approaches. Currently, vaccination and establishment of immunity have significantly reduced the severity and mortality of COVID-19. However, in regard to COVID-19 vaccines, the broad-spectrum protective efficacy against SARS-CoV-2 variants and the blocking of virus transmission need to be further improved. In this study, an optimum oral COVID-19 vaccine candidate, rVSVΔG-Sdelta, was selected from a panel of vesicular stomatitis virus (VSV)-based constructs bearing spike proteins from different SARS-CoV-2 strains. After chitosan modification, rVSVΔG-Sdelta induced both local and peripheral antibody response, particularly, broad-spectrum and long-lasting neutralizing antibodies against SARS-CoV-2 persisted for 1 year. Cross-protection against SARS-CoV-2 WT, Beta, Delta, BA.1, and BA.2 strains was achieved in golden hamsters, which presented as significantly reduced viral replication in the respiratory tract and alleviated pulmonary pathology post SARS-CoV-2 challenge. Overall, this study provides a convenient, oral-delivered, and effective oral mucosal vaccine against COVID-19, which would supplement pools and facilitate the distribution of COVID-19 vaccines.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Huan Cui
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, China
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China; College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China; College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Wenwen He
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 42100, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Xiaoqing Tang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 42100, China.
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| |
Collapse
|
72
|
Moliva JI, Andrew SF, Flynn BJ, Wagner DA, Foulds KE, Gagne M, Flebbe DR, Lamb E, Provost S, Marquez J, Mychalowych A, Lorag CG, Honeycutt CC, Burnett MR, McCormick L, Henry AR, Godbole S, Davis-Gardner ME, Minai M, Bock KW, Nagata BM, Todd JPM, McCarthy E, Dodson A, Kouneski K, Cook A, Pessaint L, Ry AV, Valentin D, Young S, Littman Y, Boon ACM, Suthar MS, Lewis MG, Andersen H, Alves DA, Woodward R, Leuzzi A, Vitelli A, Colloca S, Folgori A, Raggiolli A, Capone S, Nason MC, Douek DC, Roederer M, Seder RA, Sullivan NJ. Durable immunity to SARS-CoV-2 in both lower and upper airways achieved with a gorilla adenovirus (GRAd) S-2P vaccine in non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.567930. [PMID: 38076895 PMCID: PMC10705562 DOI: 10.1101/2023.11.22.567930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
SARS-CoV-2 continues to pose a global threat, and current vaccines, while effective against severe illness, fall short in preventing transmission. To address this challenge, there's a need for vaccines that induce mucosal immunity and can rapidly control the virus. In this study, we demonstrate that a single immunization with a novel gorilla adenovirus-based vaccine (GRAd) carrying the pre-fusion stabilized Spike protein (S-2P) in non-human primates provided protective immunity for over one year against the BA.5 variant of SARS-CoV-2. A prime-boost regimen using GRAd followed by adjuvanted S-2P (GRAd+S-2P) accelerated viral clearance in both the lower and upper airways. GRAd delivered via aerosol (GRAd(AE)+S-2P) modestly improved protection compared to its matched intramuscular regimen, but showed dramatically superior boosting by mRNA and, importantly, total virus clearance in the upper airway by day 4 post infection. GrAd vaccination regimens elicited robust and durable systemic and mucosal antibody responses to multiple SARS-CoV-2 variants, but only GRAd(AE)+S-2P generated long-lasting T cell responses in the lung. This research underscores the flexibility of the GRAd vaccine platform to provide durable immunity against SARS-CoV-2 in both the lower and upper airways.
Collapse
Affiliation(s)
- Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Danielle A Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Dillon R Flebbe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Evan Lamb
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Samantha Provost
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Josue Marquez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Anna Mychalowych
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Cynthia G Lorag
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Christopher Cole Honeycutt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Matthew R Burnett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Lauren McCormick
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, 30322, United States of America
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20892, United States of America
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20892, United States of America
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20892, United States of America
| | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Alan Dodson
- Bioqual, Inc., Rockville, Maryland, 20850, United States of America
| | - Katelyn Kouneski
- Bioqual, Inc., Rockville, Maryland, 20850, United States of America
| | - Anthony Cook
- Bioqual, Inc., Rockville, Maryland, 20850, United States of America
| | - Laurent Pessaint
- Bioqual, Inc., Rockville, Maryland, 20850, United States of America
| | - Alex Van Ry
- Bioqual, Inc., Rockville, Maryland, 20850, United States of America
| | - Daniel Valentin
- Bioqual, Inc., Rockville, Maryland, 20850, United States of America
| | - Steve Young
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Yoav Littman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, 63110, United States of America
| | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, 30322, United States of America
| | - Mark G Lewis
- Bioqual, Inc., Rockville, Maryland, 20850, United States of America
| | - Hanne Andersen
- Bioqual, Inc., Rockville, Maryland, 20850, United States of America
| | - Derron A Alves
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20892, United States of America
| | - Ruth Woodward
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | | | | | | | | | | | | | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
- Correspondence: and
| | - Nancy J Sullivan
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
- Correspondence: and
- Lead contact
| |
Collapse
|
73
|
Geng K, Rice-Boucher PJ, Kashentseva EA, Dmitriev IP, Lu ZH, Goedegebuure SP, Gillanders WE, Curiel DT. Engineering a Novel Modular Adenoviral mRNA Delivery Platform Based on Tag/Catcher Bioconjugation. Viruses 2023; 15:2277. [PMID: 38005953 PMCID: PMC10674448 DOI: 10.3390/v15112277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
mRNA vaccines have attracted widespread research attention with clear advantages in terms of molecular flexibility, rapid development, and potential for personalization. However, current mRNA vaccine platforms have not been optimized for induction of CD4/CD8 T cell responses. In addition, the mucosal administration of mRNA based on lipid nanoparticle technology faces challenges in clinical translation. In contrast, adenovirus-based vaccines induce strong T cell responses and have been approved for intranasal delivery. To leverage the inherent strengths of both the mRNA and adenovirus platforms, we developed a novel modular adenoviral mRNA delivery platform based on Tag/Catcher bioconjugation. Specifically, we engineered adenoviral vectors integrating Tag/Catcher proteins at specific locales on the Ad capsid proteins, allowing us to anchor mRNA to the surface of engineered Ad viruses. In proof-of-concept studies, the Ad-mRNA platform successfully mediated mRNA delivery and could be optimized via the highly flexible modular design of both the Ad-mRNA and protein bioconjugation systems.
Collapse
Affiliation(s)
- Kexin Geng
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO 63110, USA; (K.G.); (P.J.R.-B.); (E.A.K.); (I.P.D.); (Z.H.L.)
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130-4899, USA
| | - Paul J. Rice-Boucher
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO 63110, USA; (K.G.); (P.J.R.-B.); (E.A.K.); (I.P.D.); (Z.H.L.)
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130-4899, USA
| | - Elena A. Kashentseva
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO 63110, USA; (K.G.); (P.J.R.-B.); (E.A.K.); (I.P.D.); (Z.H.L.)
| | - Igor P. Dmitriev
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO 63110, USA; (K.G.); (P.J.R.-B.); (E.A.K.); (I.P.D.); (Z.H.L.)
| | - Zhi Hong Lu
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO 63110, USA; (K.G.); (P.J.R.-B.); (E.A.K.); (I.P.D.); (Z.H.L.)
| | - S. Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.P.G.); (W.E.G.)
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110, USA
| | - William E. Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.P.G.); (W.E.G.)
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David T. Curiel
- Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, St. Louis, MO 63110, USA; (K.G.); (P.J.R.-B.); (E.A.K.); (I.P.D.); (Z.H.L.)
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130-4899, USA
| |
Collapse
|
74
|
Gagne M, Flynn BJ, Andrew SF, Flebbe DR, Mychalowych A, Lamb E, Davis-Gardner ME, Burnett MR, Serebryannyy LA, Lin BC, Pessaint L, Todd JPM, Ziff ZE, Maule E, Carroll R, Naisan M, Jethmalani Y, Case JB, Dmitriev IP, Kashentseva EA, Ying B, Dodson A, Kouneski K, Doria-Rose NA, O'Dell S, Godbole S, Laboune F, Henry AR, Marquez J, Teng IT, Wang L, Zhou Q, Wali B, Ellis M, Zouantchangadou S, Ry AV, Lewis MG, Andersen H, Kwong PD, Curiel DT, Foulds KE, Nason MC, Suthar MS, Roederer M, Diamond MS, Douek DC, Seder RA. Mucosal Adenoviral-vectored Vaccine Boosting Durably Prevents XBB.1.16 Infection in Nonhuman Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565765. [PMID: 37986823 PMCID: PMC10659340 DOI: 10.1101/2023.11.06.565765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens. Graphical abstract
Collapse
|
75
|
Castro VT, Chardin H, Amorim dos Santos J, Barra GB, Castilho GR, Souza PM, Magalhães PDO, Acevedo AC, Guerra ENS. Detection of anti-SARS-CoV-2 salivary antibodies in vaccinated adults. Front Immunol 2023; 14:1296603. [PMID: 38022522 PMCID: PMC10661372 DOI: 10.3389/fimmu.2023.1296603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Since the introduction of efficient anti-SARS-CoV-2 vaccines, the detection of antibodies becomes useful for immunological monitoring and COVID-19 control. Therefore, this longitudinal study aimed to evaluate the detection of SARS-CoV-2 antibodies in the serum and saliva of COVID-19-vaccinated adults. The study included 13 not vaccinated and 35 vaccinated participants with two doses of CoronaVac (Sinovac/Butantan) vaccine who subsequently received BNT162b2 (Pfizer-BioNTech) vaccine as a booster dose. Vaccinated participants donated saliva and serum in three different time points. Enzyme-linked immunosorbent assay was used for antibody detection. In our results, the serum neutralizing antibodies (NAb) were detected in 34/35 samples after second dose and in 35/35 samples one and five months after the booster dose. In saliva, NAb were detected in 30/35 samples after second dose and in 35/35 of samples one and five months after the booster dose. IgA was detected in 19/34 saliva samples after second dose, in 18/35 one month after the booster and in 30/35 five months after. IgG in saliva was detected in 1/34 samples after second dose, 33/35 samples one month after the booster dose and in 20/35 five months after. A strong correlation was found between IgG and neutralizing activity in saliva, and salivary IgA would be a sign of recent exposure to the virus. In conclusion, saliva can be suitable for monitoring antibodies anti-SARS-CoV-2 after vaccination. Heterologous vaccination contributed to increase anti-SARS-CoV-2 antibodies in the Brazilian health context. Complementary studies with large groups are mandatory to conclude the interest in following mucosal immunity.
Collapse
Affiliation(s)
- Vitória Tavares Castro
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Hélène Chardin
- Department of Analytical, Bioanalytical Sciences and Miniaturization, École Supérieure de Physique et de Chimie Industrielles (ESPCI) de la Ville de Paris, Paris, France
- Unité de Formation et de Recherche d’Odontologie, Université Paris Cité, Paris, France
| | - Juliana Amorim dos Santos
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | | | | | - Paula Monteiro Souza
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | | | - Ana Carolina Acevedo
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| |
Collapse
|
76
|
Li W, Wang T, Rajendrakumar AM, Acharya G, Miao Z, Varghese BP, Yu H, Dhakal B, LeRoith T, Karunakaran A, Tuo W, Zhu X. An FcRn-targeted mucosal vaccine against SARS-CoV-2 infection and transmission. Nat Commun 2023; 14:7114. [PMID: 37932271 PMCID: PMC10628175 DOI: 10.1038/s41467-023-42796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023] Open
Abstract
SARS-CoV-2 is primarily transmitted through droplets and airborne aerosols, and in order to prevent infection and reduce viral spread vaccines should elicit protective immunity in the airways. The neonatal Fc receptor (FcRn) transfers IgG across epithelial barriers and can enhance mucosal delivery of antigens. Here we explore FcRn-mediated respiratory delivery of SARS-CoV-2 spike (S). A monomeric IgG Fc was fused to a stabilized spike; the resulting S-Fc bound to S-specific antibodies and FcRn. Intranasal immunization of mice with S-Fc and CpG significantly induced antibody responses compared to the vaccination with S alone or PBS. Furthermore, we intranasally immunized mice or hamsters with S-Fc. A significant reduction of virus replication in nasal turbinate, lung, and brain was observed following nasal challenges with SARS-CoV-2 and its variants. Intranasal immunization also significantly reduced viral airborne transmission in hamsters. Nasal IgA, neutralizing antibodies, lung-resident memory T cells, and bone-marrow S-specific plasma cells mediated protection. Hence, FcRn delivers an S-Fc antigen effectively into the airway and induces protection against SARS-CoV-2 infection and transmission.
Collapse
Affiliation(s)
- Weizhong Li
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Tao Wang
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Arunraj M Rajendrakumar
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
- Animal Parasitic Diseases Laboratory, ARS, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Gyanada Acharya
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Zizhen Miao
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Berin P Varghese
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Hailiang Yu
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Bibek Dhakal
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech University, Blacksburg, VA, USA
| | - Athira Karunakaran
- Animal Parasitic Diseases Laboratory, ARS, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, ARS, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Xiaoping Zhu
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
77
|
da Silva Antunes R, Weiskopf D, Sidney J, Rubiro P, Peters B, Arlehamn CSL, Grifoni A, Sette A. The MegaPool Approach to Characterize Adaptive CD4+ and CD8+ T Cell Responses. Curr Protoc 2023; 3:e934. [PMID: 37966108 PMCID: PMC10662678 DOI: 10.1002/cpz1.934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Epitopes recognized by T cells are a collection of short peptide fragments derived from specific antigens or proteins. Immunological research to study T cell responses is hindered by the extreme degree of heterogeneity of epitope targets, which are usually derived from multiple antigens; within a given antigen, hundreds of different T cell epitopes can be recognized, differing from one individual to the next because T cell epitope recognition is restricted by the epitopes' ability to bind to MHC molecules, which are extremely polymorphic in different individuals. Testing large pools encompassing hundreds of peptides is technically challenging because of logistical considerations regarding solvent-induced toxicity. To address this issue, we developed the MegaPool (MP) approach based on sequential lyophilization of large numbers of peptides that can be used in a variety of assays to measure T cell responses, including ELISPOT, intracellular cytokine staining, and activation-induced marker assays, and that has been validated in the study of infectious diseases, allergies, and autoimmunity. Here, we describe the procedures for generating and testing MPs, starting with peptide synthesis and lyophilization, as well as a step-by-step guide and recommendations for their handling and experimental usage. Overall, the MP approach is a powerful strategy for studying T cell responses and understanding the immune system's role in health and disease. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Generation of peptide pools ("MegaPools") Basic Protocol 2: MegaPool testing and quantitation of antigen-specific T cell responses.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | | | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| |
Collapse
|
78
|
Shen Z, Dong J, Milton-McGurk L, Cai X, Gholizadeh H, Chan HK, Lee A, Kourmatzis A, Cheng S. Numerical analysis of airflow and particle deposition in multi-fidelity designs of nasal replicas following nasal administration. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 241:107778. [PMID: 37651818 DOI: 10.1016/j.cmpb.2023.107778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND AND OBJECTIVE An improved understanding of flow behaviour and particle deposition in the human nasal airway is useful for optimising drug delivery and assessing the implications of pollutants and toxin inhalation. The geometry of the human nasal cavity is inherently complex and presents challenges and manufacturing constraints in creating a geometrically realistic replica. Understanding how anatomical structures of the nasal airway affect flow will shed light on the mechanics underpinning flow regulation in the nasal pharynx and provide a means to interpret flow and particle deposition data conducted in a nasal replica or model that has reduced complexity in terms of their geometries. This study aims to elucidate the effects of sinus and reduced turbinate length on nasal flow and particle deposition efficiencies. METHODS A complete nasal airway with maxillary sinus was first reconstructed using magnetic resonance imaging (MRI) scans obtained from a healthy human volunteer. The basic model was then modified to produce a model without the sinus, and another with reduced turbinate length. Computational fluid dynamics (CFD) was used to simulate flow in the nasal cavity using transient flow profiles with peak flow rates of 15 L/min, 35 L/min and 55 L/min. Particle deposition was investigated using discrete phase modelling (DPM). RESULTS Results from this study show that simplifying the nasal cavity by removing the maxillary sinus and curved sections of the meatus only has a minor effect on airflow. By mapping the spatial distribution of monodisperse particles (10 μm) in the three models using a grid map that consists of 30 grids, this work highlights the specific nasal airway locations where deposition efficiencies are highest, as observed within a single grid. It also shows that lower peak flow rates result in higher deposition differences in terms of location and deposition quantity, among the models. The highest difference in particle deposition among the three nasal models is ∼10%, and this is observed at the beginning of the middle meatus and the end of the pharynx, but is only limited to the 15 L/min peak flow rate case. Further work demonstrating how the outcome may be affected by a wider range of particle sizes, less specific to the pharmaceutical industries, is warranted. CONCLUSION A physical replica manufactured without sections of the middle meatus could still be adequate in producing useful data on the deposition efficiencies associated with an intranasal drug formulation and its delivery device.
Collapse
Affiliation(s)
- Zhiwei Shen
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Jingliang Dong
- Institute for Sustainable Industries & Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 3011, Australia; First Year College, Victoria University, Footscray Park Campus, Footscray, VIC 3011, Australia.
| | - Liam Milton-McGurk
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 20061, Australia
| | - Xinyu Cai
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Hanieh Gholizadeh
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ann Lee
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Agisilaos Kourmatzis
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 20061, Australia
| | - Shaokoon Cheng
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
79
|
Heida R, Frijlink HW, Hinrichs WLJ. Inhalation of vaccines and antiviral drugs to fight respiratory virus infections: reasons to prioritize the pulmonary route of administration. mBio 2023; 14:e0129523. [PMID: 37768057 PMCID: PMC10653782 DOI: 10.1128/mbio.01295-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Many of the current pandemic threats are caused by viruses that infect the respiratory tract. Remarkably though, the majority of vaccines and antiviral drugs are administered via alternative routes. In this perspective, we argue that the pulmonary route of administration deserves more attention in the search for novel therapeutic strategies against respiratory virus infections. Firstly, vaccines administered at the viral portal of entry can induce a broader immune response, employing the mucosal arm of the immune system; secondly, direct administration of antiviral drugs at the target site leads to superior bioavailability, enabling lower dosing and reducing the chance of side effects. We further elaborate on why the pulmonary route may induce a superior effect compared to the intranasal route of administration and provide reasons why dry powder formulations for inhalation have significant advantages over standard liquid formulations.
Collapse
Affiliation(s)
- Rick Heida
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Wouter L. J. Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
80
|
Miao X, Zhang L, Zhou P, Yu R, Zhang Z, Wang C, Guo H, Wang Y, Pan L, Liu X. Adenovirus-vectored PDCoV vaccines induce potent humoral and cellular immune responses in mice. Vaccine 2023; 41:6661-6671. [PMID: 37777448 DOI: 10.1016/j.vaccine.2023.09.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that causes severe watery diarrhea, vomiting, dehydration and high mortality in piglets, resulting in significant economic losses by the global pig industry. Recently, PDCoV has also shown the potential for cross-species transmission. However, there are currently few vaccine studies and no commercially available vaccines for PDCoV. Hence, here, two novel human adenovirus 5 (Ad5)-vectored vaccines expressing codon-optimized forms of the PDCoV spike (S) glycoprotein (Ad-PD-tPA-Sopt) and S1 glycoprotein (Ad-PD-oriSIP-S1opt) were constructed, and their effects were evaluated via intramuscular (IM) injection in BALB/c mice with different doses and times. Both vaccines elicited robust humoral and cellular immune responses; moreover, Ad-PD-tPA-Sopt-vaccinated mice after two IM injections with 108 infectious units (IFU)/mouse had significantly higher anti-PDCoV-specific neutralizing antibody titers. In contrast, the mice immunized with Ad-PD-tPA-Sopt via oral gavage (OG) did not generate robust systemic and mucosal immunity. Thus, IM Ad-PD-tPA-Sopt administration is a promising strategy against PDCoV and provides useful information for future animal vaccine development.
Collapse
Affiliation(s)
- Xin Miao
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Peng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Ruiming Yu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Cancan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China.
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China; National Center of Technology Innovation for Pigs, China.
| |
Collapse
|
81
|
Mitsi E, Diniz MO, Reiné J, Collins AM, Robinson RE, Hyder-Wright A, Farrar M, Liatsikos K, Hamilton J, Onyema O, Urban BC, Solórzano C, Belij-Rammerstorfer S, Sheehan E, Lambe T, Draper SJ, Weiskopf D, Sette A, Maini MK, Ferreira DM. Respiratory mucosal immune memory to SARS-CoV-2 after infection and vaccination. Nat Commun 2023; 14:6815. [PMID: 37884506 PMCID: PMC10603102 DOI: 10.1038/s41467-023-42433-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Respiratory mucosal immunity induced by vaccination is vital for protection from coronavirus infection in animal models. In humans, the capacity of peripheral vaccination to generate sustained immunity in the lung mucosa, and how this is influenced by prior SARS-CoV-2 infection, is unknown. Here we show using bronchoalveolar lavage samples that donors with history of both infection and vaccination have more airway mucosal SARS-CoV-2 antibodies and memory B cells than those only vaccinated. Infection also induces populations of airway spike-specific memory CD4+ and CD8+ T cells that are not expanded by vaccination alone. Airway mucosal T cells induced by infection have a distinct hierarchy of antigen specificity compared to the periphery. Spike-specific T cells persist in the lung mucosa for 7 months after the last immunising event. Thus, peripheral vaccination alone does not appear to induce durable lung mucosal immunity against SARS-CoV-2, supporting an argument for the need for vaccines targeting the airways.
Collapse
Affiliation(s)
- Elena Mitsi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Mariana O Diniz
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Jesús Reiné
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Andrea M Collins
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ryan E Robinson
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Angela Hyder-Wright
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Madlen Farrar
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Josh Hamilton
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Onyia Onyema
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Britta C Urban
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Carla Solórzano
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Emma Sheehan
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, USA
| | - Mala K Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Daniela M Ferreira
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
82
|
Guan X, Verma AK, Wang G, Shi J, Perlman S, Du L. Glycosylated Delta-receptor-binding domain mucosal vaccine elicits broadly neutralizing antibodies with protection against SARS-CoV-2 challenge. iScience 2023; 26:108033. [PMID: 37822493 PMCID: PMC10563057 DOI: 10.1016/j.isci.2023.108033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/15/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Mucosal COVID-19 vaccines are needed to block SARS-CoV-2 infection at the mucosal site. Intranasal delivery of a glycosylated Delta variant receptor-binding domain (Delta-RBD) mucosal vaccine elicited potent and balanced systemic antibody titers comparable to those induced by the intramuscular injection of the same vaccine or Omicron-S subunit vaccine, as well as high mucosal IgA antibody responses. It elicited broadly neutralizing antibodies against the original SARS-CoV-2 strain, Delta and Omicron BA1/BA2 variants, completely protecting transgenic mice from lethal challenge with a Delta variant, including complete absence of weight loss. Of note, intramuscular priming with the Omicron-S protein followed by intranasal boosting with the Delta-RBD protein improved the vaccine's ability to generate broad-spectrum neutralizing antibodies against recent BA5 and XBB Omicron variants. Overall, this vaccine has the potential to prevent the SARS-CoV-2 infection of the respiratory mucosa, while the i.m. priming and i.n. boosting vaccination strategy may offer protection against known and emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Xiaoqing Guan
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Abhishek K. Verma
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Gang Wang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Juan Shi
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
83
|
Dotiwala F, Upadhyay AK. Next Generation Mucosal Vaccine Strategy for Respiratory Pathogens. Vaccines (Basel) 2023; 11:1585. [PMID: 37896988 PMCID: PMC10611113 DOI: 10.3390/vaccines11101585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Inducing humoral and cytotoxic mucosal immunity at the sites of pathogen entry has the potential to prevent the infection from getting established. This is different from systemic vaccination, which protects against the development of systemic symptoms. The field of mucosal vaccination has seen fewer technological advances compared to nucleic acid and subunit vaccine advances for injectable vaccine platforms. The advent of the next-generation adenoviral vectors has given a boost to mucosal vaccine research. Basic research into the mechanisms regulating innate and adaptive mucosal immunity and the discovery of effective and safe mucosal vaccine adjuvants will continue to improve mucosal vaccine design. The results from clinical trials of inhaled COVID-19 vaccines demonstrate their ability to induce the proliferation of cytotoxic T cells and the production of secreted IgA and IgG antibodies locally, unlike intramuscular vaccinations. However, these mucosal vaccines induce systemic immune responses at par with systemic vaccinations. This review summarizes the function of the respiratory mucosa-associated lymphoid tissue and the advantages that the adenoviral vectors provide as inhaled vaccine platforms.
Collapse
Affiliation(s)
- Farokh Dotiwala
- Ocugen Inc., 11 Great Valley Parkway, Malvern, PA 19355, USA
| | | |
Collapse
|
84
|
Yu L, Guo S, Ji W, Sun H, Lee S, Zhang D. Intervention Effects of Physical Activity on Type 2 Diabetic Patients Potentially Infected with COVID-19. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1772. [PMID: 37893490 PMCID: PMC10608032 DOI: 10.3390/medicina59101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has clearly had a great influence on the lifestyles of the population, especially on patients with type 2 diabetes mellitus. During the COVID-19 outbreak, many countries/regions implemented social-isolation measures, leading to an increase in negative behaviors and impairing the capability of diabetic patients to resist COVID-19, ultimately causing severe prognoses. Moreover, as the epidemic progressed, multiple studies emphasized the significance of physical exercise in the management of type 2 diabetic patients infected with COVID-19. In this study, we selected research from 1 December 2019 to 9 August 2023 that focused on COVID-19-infected diabetic patients to investigate the impact of type 2 diabetes on the immune functions, inflammation factor levels, lung injuries, and mental disorders of such patients, as well as to assess the risk of novel coronavirus pneumonia in these patients. Additionally, the effects of high-intensity, moderate-intensity, and low-intensity exercises on novel coronavirus pneumonia infection in type 2 diabetic patients and the mechanisms of the effects of such exercise were considered. We concluded that elderly diabetic patients with COVID-19 should perform low-intensity exercises to facilitate their recoveries. This study offers guidance for a proper understanding of the dangers of diabetes and the use of appropriate measures to reduce the risk of novel coronavirus pneumonia infections in type 2 diabetic patients.
Collapse
Affiliation(s)
- Lihua Yu
- College of Arts and Sports, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (L.Y.)
- Institute of Public Foundations, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Sainyu Guo
- College of Arts and Sports, Myongji University, Seoul 04763, Republic of Korea
| | - Wen Ji
- College of Arts and Sports, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (L.Y.)
| | - Hailian Sun
- College of Arts and Sports, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (L.Y.)
| | - Seongno Lee
- College of Arts and Sports, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (L.Y.)
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, 0000, Hong Kong
| |
Collapse
|
85
|
Rotrosen E, Kupper TS. Assessing the generation of tissue resident memory T cells by vaccines. Nat Rev Immunol 2023; 23:655-665. [PMID: 37002288 PMCID: PMC10064963 DOI: 10.1038/s41577-023-00853-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/03/2023]
Abstract
Vaccines have been a hugely successful public health intervention, virtually eliminating many once common diseases of childhood. However, they have had less success in controlling endemic pathogens including Mycobacterium tuberculosis, herpesviruses and HIV. A focus on vaccine-mediated generation of neutralizing antibodies, which has been a successful approach for some pathogens, has been complicated by the emergence of escape variants, which has been seen for pathogens such as influenza viruses and SARS-CoV-2, as well as for HIV-1. We discuss how vaccination strategies aimed at generating a broad and robust T cell response may offer superior protection against pathogens, particularly those that have been observed to mutate rapidly. In particular, we consider here how a focus on generating resident memory T cells may be uniquely effective for providing immunity to pathogens that typically infect (or become reactivated in) the skin, respiratory mucosa or other barrier tissues.
Collapse
Affiliation(s)
- Elizabeth Rotrosen
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
86
|
Yeung J, Wang T, Shi PY. Improvement of mucosal immunity by a live-attenuated SARS-CoV-2 nasal vaccine. Curr Opin Virol 2023; 62:101347. [PMID: 37604085 DOI: 10.1016/j.coviro.2023.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023]
Abstract
The effectiveness of early COVID-19 vaccines in reducing the severity of the disease has led to a focus on developing next-generation vaccines that can prevent infection and transmission of the virus. One promising approach involves the induction of mucosal immunity through nasal administration and a variety of mucosal vaccine candidates using different platforms are currently in development. Live-attenuated viruses, less pathogenic versions of SARS-CoV-2, have promising features as a mucosal vaccine platform and have the potential to induce hybrid immunity in individuals who have already received mRNA vaccines. This review discusses the potential benefits and considerations for the use of live-attenuated SARS-CoV-2 intranasal vaccines and highlights the authors' work in developing such a vaccine platform.
Collapse
Affiliation(s)
- Jason Yeung
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
87
|
Kim Y, Park IH, Shin J, Choi J, Jeon C, Jeon S, Shin JS, Jung H. Sublingual Dissolving Microneedle (SLDMN)-Based Vaccine for Inducing Mucosal Immunity against SARS-CoV-2. Adv Healthc Mater 2023; 12:e2300889. [PMID: 37337388 DOI: 10.1002/adhm.202300889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Indexed: 06/21/2023]
Abstract
The coronavirus pandemic has accelerated the development of next-generation vaccination technology to combat future pandemic outbreaks. Mucosal vaccination effectively protects the mucosal surfaces, the primary sites of viral entry, by inducing the secretion of immunoglobulin A (IgA) and humoral IgG. Here, a dissolving microneedle (DMN) is adopted as a mucosal vaccine delivery platform to directly penetrate the sublingual site, which is rich in antigen-presenting cells (APCs) and lymphoid tissues. The sublingual dissolving microneedle (SLDMN) vaccination platform comprised a micropillar-based compartment and a 3D-printed SLDMN applicator as a substitute for the DMN patch. The penetration efficacy of SLDMNs is assessed using in vitro optical coherence tomography (OCT) and in vivo histological analysis. The efficacy of SLDMN is also evaluated in a vaccine form using the recombinant spike (S1) protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furthermore, SLDMN is used to challenge transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) receptors. Its effects are evaluated on antibody production, survival rate, and inflammation attenuation after infection compared to the intramuscular (IM) injections. Overall, SLDMN effectively induced mucosal immunity via IgA secretion, attenuated lung inflammation, and lowered the levels of cytokines and chemokines, which may prevent the "cytokine storm" after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Youseong Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - In Ho Park
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jiwoo Shin
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jaibyung Choi
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chansol Jeon
- JUVIC, 208Ho, 272, Digital-ro, Guro-gu, Seoul, 08389, Republic of Korea
| | - Seonghun Jeon
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- JUVIC, 208Ho, 272, Digital-ro, Guro-gu, Seoul, 08389, Republic of Korea
| |
Collapse
|
88
|
Baldeon Vaca G, Meyer M, Cadete A, Hsiao CJ, Golding A, Jeon A, Jacquinet E, Azcue E, Guan CM, Sanchez-Felix X, Pietzsch CA, Mire CE, Hyde MA, Comeaux ME, Williams JM, Sung JC, Carfi A, Edwards DK, Bukreyev A, Bahl K. Intranasal mRNA-LNP vaccination protects hamsters from SARS-CoV-2 infection. SCIENCE ADVANCES 2023; 9:eadh1655. [PMID: 37738334 PMCID: PMC10516494 DOI: 10.1126/sciadv.adh1655] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
Intranasal vaccination represents a promising approach for preventing disease caused by respiratory pathogens by eliciting a mucosal immune response in the respiratory tract that may act as an early barrier to infection and transmission. This study investigated immunogenicity and protective efficacy of intranasally administered messenger RNA (mRNA)-lipid nanoparticle (LNP) encapsulated vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Syrian golden hamsters. Intranasal mRNA-LNP vaccination systemically induced spike-specific binding [immunoglobulin G (IgG) and IgA] and neutralizing antibodies. Intranasally vaccinated hamsters also had decreased viral loads in the respiratory tract, reduced lung pathology, and prevented weight loss after SARS-CoV-2 challenge. Together, this study demonstrates successful immunogenicity and protection against respiratory viral infection by an intranasally administered mRNA-LNP vaccine.
Collapse
Affiliation(s)
| | - Michelle Meyer
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | | | | | | | | | | | | | | | | | - Colette A. Pietzsch
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Chad E. Mire
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Matthew A. Hyde
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Margaret E. Comeaux
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Julie M. Williams
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | | | | | | | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | |
Collapse
|
89
|
Vanderheiden A, Hill J, Jiang X, Deppen B, Bamunuarachchi G, Soudani N, Joshi A, Cain MD, Boon ACM, Klein RS. Vaccination prevents IL-1β-mediated cognitive deficits after COVID-19. RESEARCH SQUARE 2023:rs.3.rs-3353171. [PMID: 37790551 PMCID: PMC10543322 DOI: 10.21203/rs.3.rs-3353171/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Up to 25% of SARS-CoV-2 patients exhibit post-acute cognitive sequelae. Although millions of cases of COVID-19-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1, a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of COVID-19 patients. Here we show that intranasal infection of C57BL/6J mice with SARS-CoV-2 beta variant, leads to CNS infiltration of Ly6Chi monocytes and microglial activation. Accordingly, SARS-CoV-2, but not H1N1 influenza virus, increases levels of brain IL-1β and induces persistent IL-1R1-mediated loss of hippocampal neurogenesis, which promotes post-acute cognitive deficits. Breakthrough infection after vaccination with a low dose of adenoviral vectored Spike protein prevents hippocampal production of IL-1β during breakthrough SARS-CoV-2 infection, loss of neurogenesis, and subsequent memory deficits. Our study identifies IL-1β as one potential mechanism driving SARS-CoV-2-induced cognitive impairment in a new murine model that is prevented by vaccination.
Collapse
Affiliation(s)
- Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeremy Hill
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoping Jiang
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ben Deppen
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gayan Bamunuarachchi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew D Cain
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robyn S Klein
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
90
|
Perera DJ, Domenech P, Babuadze GG, Naghibosadat M, Alvarez F, Koger-Pease C, Labrie L, Stuible M, Durocher Y, Piccirillo CA, Lametti A, Fiset PO, Elahi SM, Kobinger GP, Gilbert R, Olivier M, Kozak R, Reed MB, Ndao M. BCG administration promotes the long-term protection afforded by a single-dose intranasal adenovirus-based SARS-CoV-2 vaccine. iScience 2023; 26:107612. [PMID: 37670783 PMCID: PMC10475483 DOI: 10.1016/j.isci.2023.107612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
Recent publications have explored intranasal (i.n.) adenovirus-based (Ad) vaccines as an effective strategy for SARS-CoV-2 in pre-clinical models. However, the effects of prior immunizations and infections have yet to be considered. Here, we investigate the immunomodulatory effects of Mycobacterium bovis BCG pre-immunization followed by vaccination with an S-protein-expressing i.n. Ad, termed Ad(Spike). While i.n. Ad(Spike) retains some protective effect after 6 months, a single administration of BCG-Danish prior to Ad(Spike) potentiates its ability to control viral replication of the B.1.351 SARS-CoV-2 variant within the respiratory tract. Though BCG-Danish did not affect Ad(Spike)-generated humoral immunity, it promoted the generation of cytotoxic/Th1 responses over suppressive FoxP3+ TREG cells in the lungs of infected mice. Thus, this vaccination strategy may prove useful in limiting future pandemics by potentiating the long-term efficacy of mucosal vaccines within the context of the widely distributed BCG vaccine.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Pilar Domenech
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- McGill International TB Centre, McGill University, Montréal, QC, Canada
| | - George Giorgi Babuadze
- Department of Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maedeh Naghibosadat
- Department of Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Fernando Alvarez
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Cal Koger-Pease
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Lydia Labrie
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Matthew Stuible
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Yves Durocher
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - André Lametti
- Department of Pathology, McGill University, Montréal, QC, Canada
| | | | - Seyyed Mehdy Elahi
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Gary P. Kobinger
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Rénald Gilbert
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Martin Olivier
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Robert Kozak
- Department of Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Molecular Diagnostics, Division of Microbiology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Michael B. Reed
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- McGill International TB Centre, McGill University, Montréal, QC, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- National Reference Centre for Parasitology, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
91
|
Longet S, Paul S. Pivotal role of tissue-resident memory lymphocytes in the control of mucosal infections: can mucosal vaccination induce protective tissue-resident memory T and B cells? Front Immunol 2023; 14:1216402. [PMID: 37753095 PMCID: PMC10518612 DOI: 10.3389/fimmu.2023.1216402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Affiliation(s)
- Stephanie Longet
- Centre International de Recherche en Infectiologie, Team Groupe sur l'immunité des muqueuses et agents pathogènes (GIMAP), Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
| | - Stephane Paul
- Centre International de Recherche en Infectiologie, Team Groupe sur l'immunité des muqueuses et agents pathogènes (GIMAP), Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
- Centre d'investigation clinique (CIC) 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
92
|
Li Y, Molleston JM, Kim AH, Ingle H, Aggarwal S, Nolan LS, Hassan AO, Foster L, Diamond MS, Baldridge MT. Sequential early-life viral infections modulate the microbiota and adaptive immune responses to systemic and mucosal vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555772. [PMID: 37693434 PMCID: PMC10491206 DOI: 10.1101/2023.08.31.555772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Increasing evidence points to the microbial exposome as a critical factor in maturing and shaping the host immune system, thereby influencing responses to immune challenges such as infections or vaccines. To investigate the effect of early-life viral exposures on immune development and vaccine responses, we inoculated mice with six distinct viral pathogens in sequence beginning in the neonatal period, and then evaluated their immune signatures before and after intramuscular or intranasal vaccination against SARS-CoV-2. Sequential viral infection drove profound changes in all aspects of the immune system, including increasing circulating leukocytes, altering innate and adaptive immune cell lineages in tissues, and markedly influencing serum cytokine and total antibody levels. Beyond these immune responses changes, these exposures also modulated the composition of the endogenous intestinal microbiota. Although sequentially-infected mice exhibited increased systemic immune activation and T cell responses after intramuscular and intranasal SARS-CoV-2 immunization, we observed decreased vaccine-induced antibody responses in these animals. These results suggest that early-life viral exposures are sufficient to diminish antibody responses to vaccination in mice, and highlight their potential importance of considering prior microbial exposures when investigating vaccine responses.
Collapse
|
93
|
Wang S, Qin M, Xu L, Mu T, Zhao P, Sun B, Wu Y, Song L, Wu H, Wang W, Liu X, Li Y, Yang F, Xu K, He Z, Klein M, Wu K. Aerosol Inhalation of Chimpanzee Adenovirus Vectors (ChAd68) Expressing Ancestral or Omicron BA.1 Stabilized Pre-Fusion Spike Glycoproteins Protects Non-Human Primates against SARS-CoV-2 Infection. Vaccines (Basel) 2023; 11:1427. [PMID: 37766104 PMCID: PMC10535855 DOI: 10.3390/vaccines11091427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Current COVID-19 vaccines are effective countermeasures to control the SARS-CoV-2 virus pandemic by inducing systemic immune responses through intramuscular injection. However, respiratory mucosal immunization will be needed to elicit local sterilizing immunity to prevent virus replication in the nasopharynx, shedding, and transmission. In this study, we first compared the immunoprotective ability of a chimpanzee replication-deficient adenovirus-vectored COVID-19 vaccine expressing a stabilized pre-fusion spike glycoprotein from the ancestral SARS-CoV-2 strain Wuhan-Hu-1 (BV-AdCoV-1) administered through either aerosol inhalation, intranasal spray, or intramuscular injection in cynomolgus monkeys and rhesus macaques. Compared with intranasal administration, aerosol inhalation of BV-AdCoV-1 elicited stronger humoral and mucosal immunity that conferred excellent protection against SARS-CoV-2 infection in rhesus macaques. Importantly, aerosol inhalation induced immunity comparable to that obtained by intramuscular injection, although at a significantly lower dose. Furthermore, to address the problem of immune escape variants, we evaluated the merits of heterologous boosting with an adenovirus-based Omicron BA.1 vaccine (C68-COA04). Boosting rhesus macaques vaccinated with two doses of BV-AdCoV-1 with either the homologous or the heterologous C68-COA04 vector resulted in cross-neutralizing immunity against WT, Delta, and Omicron subvariants, including BA.4/5 stronger than that obtained by administering a bivalent BV-AdCoV-1/C68-COA04 vaccine. These results demonstrate that the administration of BV-AdCoV-1 or C68-COA04 via aerosol inhalation is a promising approach to prevent SARS-CoV-2 infection and transmission and curtail the pandemic spread.
Collapse
Affiliation(s)
- Shen Wang
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.)
| | - Mian Qin
- Project Management Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (M.Q.); (L.X.)
| | - Long Xu
- Project Management Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (M.Q.); (L.X.)
| | - Ting Mu
- Innovative Discovery Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (T.M.); (B.S.)
| | - Ping Zhao
- Test Development Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (P.Z.); (Y.W.)
| | - Bing Sun
- Innovative Discovery Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (T.M.); (B.S.)
| | - Yue Wu
- Test Development Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (P.Z.); (Y.W.)
| | - Lingli Song
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.)
| | - Han Wu
- Quality Control Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
| | - Weicheng Wang
- Pilot Production Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
| | - Xingwen Liu
- Quality Assurance Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650000, China; (Y.L.); (Z.H.)
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650000, China; (Y.L.); (Z.H.)
| | - Ke Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650000, China; (Y.L.); (Z.H.)
| | - Michel Klein
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- Executive Office, Shanghai BravoBio Co., Ltd., Shanghai 200000, China
| | - Ke Wu
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- Executive Office, Shanghai BravoBio Co., Ltd., Shanghai 200000, China
| |
Collapse
|
94
|
Singh C, Verma S, Reddy P, Diamond MS, Curiel DT, Patel C, Jain MK, Redkar SV, Bhate AS, Gundappa V, Konatham R, Toppo L, Joshi AC, Kushwaha JS, Singh AP, Bawankule S, Ella R, Prasad S, Ganneru B, Chiteti SR, Kataram S, Vadrevu KM. Phase III Pivotal comparative clinical trial of intranasal (iNCOVACC) and intramuscular COVID 19 vaccine (Covaxin ®). NPJ Vaccines 2023; 8:125. [PMID: 37596281 PMCID: PMC10439197 DOI: 10.1038/s41541-023-00717-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
One of the most preferable characteristics for a COVID-19 vaccine candidate is the ability to reduce transmission and infection of SARS-CoV-2, in addition to disease prevention. Unlike intramuscular vaccines, intranasal COVID-19 vaccines may offer this by generating mucosal immunity. In this open-label, randomised, multicentre, phase 3 clinical trial (CTRI/2022/02/40065; ClinicalTrials.gov: NCT05522335), healthy adults were randomised to receive two doses, 28 days apart, of either intranasal adenoviral vectored SARS-CoV-2 vaccine (BBV154) or licensed intramuscular vaccine, Covaxin®. Between April 16 and June 4, 2022, we enrolled 3160 subjects of whom, 2971 received 2 doses of BBV154 and 161 received Covaxin. On Day 42, 14 days after the second dose, BBV154 induced significant serum neutralization antibody titers against the ancestral (Wuhan) virus, which met the pre-defined superiority criterion for BBV154 over Covaxin®. Further, both vaccines showed cross protection against Omicron BA.5 variant. Salivary IgA titers were found to be higher in BBV154. In addition, extensive evaluation of T cell immunity revealed comparable responses in both cohorts due to prior infection. However, BBV154 showed significantly more ancestral specific IgA-secreting plasmablasts, post vaccination, whereas Covaxin recipients showed significant Omicron specific IgA-secreting plasmablasts only at day 42. Both vaccines were well tolerated. Overall reported solicited reactions were 6.9% and 25.5% and unsolicited reactions were 1.2% and 3.1% in BBV154 and Covaxin® participants respectively.
Collapse
Affiliation(s)
| | - Savita Verma
- Pt. BD Sharma Postgraduate Institute of Medical Sciences (PGIMS), Rohtak, Haryana, India
| | - Prabhakar Reddy
- Nizams Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Michael S Diamond
- Department of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Manish Kumar Jain
- Maharaja Agrasen Super Speciality Hospital, Jaipur, Rajasthan, India
| | | | | | - Vivek Gundappa
- Rajarajeswari Medical College and Hospital, Bangalore, Karnataka, India
| | - Rambabu Konatham
- Visakha Institute of Medical Science, Visakhapatnam, Andhra Pradesh, India
| | - Leelabati Toppo
- Malla Reddy Narayana Multispeciality Hospital, Hyderabad, Telangana, India
| | | | | | | | - Shilpa Bawankule
- Acharya Vinobha Bhave Rural Hospital, Wardha, Maharashtra, India
| | - Raches Ella
- Bharat Biotech International Limited, Hyderabad, India
| | - Sai Prasad
- Bharat Biotech International Limited, Hyderabad, India
| | | | | | | | | |
Collapse
|
95
|
Dickson A, Geerling E, Stone ET, Hassert M, Steffen TL, Makkena T, Smither M, Schwetye KE, Zhang J, Georges B, Roberts MS, Suschak JJ, Pinto AK, Brien JD. The role of vaccination route with an adenovirus-vectored vaccine in protection, viral control, and transmission in the SARS-CoV-2/K18-hACE2 mouse infection model. Front Immunol 2023; 14:1188392. [PMID: 37662899 PMCID: PMC10469340 DOI: 10.3389/fimmu.2023.1188392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/22/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Vaccination is the most effective mechanism to prevent severe COVID-19. However, breakthrough infections and subsequent transmission of SARS-CoV-2 remain a significant problem. Intranasal vaccination has the potential to be more effective in preventing disease and limiting transmission between individuals as it induces potent responses at mucosal sites. Methods Utilizing a replication-deficient adenovirus serotype 5-vectored vaccine expressing the SARS-CoV-2 RBD (AdCOVID) in homozygous and heterozygous transgenic K18-hACE2, we investigated the impact of the route of administration on vaccine immunogenicity, SARS-CoV-2 transmission, and survival. Results Mice vaccinated with AdCOVID via the intramuscular or intranasal route and subsequently challenged with SARS-CoV-2 showed that animals vaccinated intranasally had improved cellular and mucosal antibody responses. Additionally, intranasally vaccinated animals had significantly better viremic control, and protection from lethal infection compared to intramuscularly vaccinated animals. Notably, in a novel transmission model, intranasal vaccination reduced viral transmission to naïve co-housed mice compared to intramuscular vaccination. Discussion Our data provide convincing evidence for the use of intranasal vaccination in protecting against SARS-CoV-2 infection and transmission.
Collapse
Affiliation(s)
- Alexandria Dickson
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - E. Taylor Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Mariah Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Tara L. Steffen
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Taneesh Makkena
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Madeleine Smither
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Katherine E. Schwetye
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | | | | | | | | | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - James D. Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| |
Collapse
|
96
|
Suberi A, Grun MK, Mao T, Israelow B, Reschke M, Grundler J, Akhtar L, Lee T, Shin K, Piotrowski-Daspit AS, Homer RJ, Iwasaki A, Suh HW, Saltzman WM. Polymer nanoparticles deliver mRNA to the lung for mucosal vaccination. Sci Transl Med 2023; 15:eabq0603. [PMID: 37585505 PMCID: PMC11137749 DOI: 10.1126/scitranslmed.abq0603] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/26/2023] [Indexed: 08/18/2023]
Abstract
An inhalable platform for messenger RNA (mRNA) therapeutics would enable minimally invasive and lung-targeted delivery for a host of pulmonary diseases. Development of lung-targeted mRNA therapeutics has been limited by poor transfection efficiency and risk of vehicle-induced pathology. Here, we report an inhalable polymer-based vehicle for delivery of therapeutic mRNAs to the lung. We optimized biodegradable poly(amine-co-ester) (PACE) polyplexes for mRNA delivery using end-group modifications and polyethylene glycol. These polyplexes achieved high transfection of mRNA throughout the lung, particularly in epithelial and antigen-presenting cells. We applied this technology to develop a mucosal vaccine for severe acute respiratory syndrome coronavirus 2 and found that intranasal vaccination with spike protein-encoding mRNA polyplexes induced potent cellular and humoral adaptive immunity and protected susceptible mice from lethal viral challenge. Together, these results demonstrate the translational potential of PACE polyplexes for therapeutic delivery of mRNA to the lungs.
Collapse
Affiliation(s)
- Alexandra Suberi
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Molly K Grun
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Melanie Reschke
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Julian Grundler
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Laiba Akhtar
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Teresa Lee
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Kwangsoo Shin
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Robert J Homer
- Department of Pathology, Yale University School of Medicine, CT 06510, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Hee-Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
97
|
Afkhami S, Kang A, Jeyanathan V, Xing Z, Jeyanathan M. Adenoviral-vectored next-generation respiratory mucosal vaccines against COVID-19. Curr Opin Virol 2023; 61:101334. [PMID: 37276833 PMCID: PMC10172971 DOI: 10.1016/j.coviro.2023.101334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
The world is in need of next-generation COVID-19 vaccines. Although first-generation injectable COVID-19 vaccines continue to be critical tools in controlling the current global health crisis, continuous emergence of SARS-CoV-2 variants of concern has eroded the efficacy of these vaccines, leading to staggering breakthrough infections and posing threats to poor vaccine responders. This is partly because the humoral and T-cell responses generated following intramuscular injection of spike-centric monovalent vaccines are mostly confined to the periphery, failing to either access or be maintained at the portal of infection, the respiratory mucosa (RM). In contrast, respiratory mucosal-delivered vaccine can induce immunity encompassing humoral, cellular, and trained innate immunity positioned at the respiratory mucosa that may act quickly to prevent the establishment of an infection. Viral vectors, especially adenoviruses, represent the most promising platform for RM delivery that can be designed to express both structural and nonstructural antigens of SARS-CoV-2. Boosting RM immunity via the respiratory route using multivalent adenoviral-vectored vaccines would be a viable next-generation vaccine strategy.
Collapse
Affiliation(s)
- Sam Afkhami
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research & Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alisha Kang
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research & Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Vidthiya Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research & Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research & Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research & Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
98
|
Ding Z, Tarlinton D. The case for BALT in human respiratory immunity. Nat Immunol 2023; 24:1220-1221. [PMID: 37488430 DOI: 10.1038/s41590-023-01566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Affiliation(s)
- Zhoujie Ding
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
| | - David Tarlinton
- Department of Immunology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
99
|
Lee KS, Rader NA, Miller-Stump OA, Cooper M, Wong TY, Shahrier Amin M, Barbier M, Bevere JR, Ernst RK, Heath Damron F. Intranasal VLP-RBD vaccine adjuvanted with BECC470 confers immunity against Delta SARS-CoV-2 challenge in K18-hACE2-mice. Vaccine 2023; 41:5003-5017. [PMID: 37407405 PMCID: PMC10300285 DOI: 10.1016/j.vaccine.2023.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
As the COVID-19 pandemic transitions into endemicity, seasonal boosters are a plausible reality across the globe. We hypothesize that intranasal vaccines can provide better protection against asymptomatic infections and more transmissible variants of SARS-CoV-2. To formulate a protective intranasal vaccine, we utilized a VLP-based platform. Hepatitis B surface antigen-based virus like particles (VLP) linked with receptor binding domain (RBD) antigen were paired with the TLR4-based agonist adjuvant, BECC 470. K18-hACE2 mice were primed and boosted at four-week intervals with either VLP-RBD-BECC or mRNA-1273. Both VLP-RBD-BECC and mRNA-1273 vaccination resulted in production of RBD-specific IgA antibodies in serum. RBD-specific IgA was also detected in the nasal wash and lung supernatants and were highest in VLP-RBD-BECC vaccinated mice. Interestingly, VLP-RBD-BECC vaccinated mice showed slightly lower levels of pre-challenge IgG responses, decreased RBD-ACE2 binding inhibition, and lower neutralizing activity in vitro than mRNA-1273 vaccinated mice. Both VLP-RBD-BECC and mRNA-1273 vaccinated mice were protected against challenge with a lethal dose of Delta variant SARS-CoV-2. Both vaccines limited viral replication and viral RNA burden in the lungs of mice. CXCL10 is a biomarker of severe SARS-CoV-2 infection and we observed both vaccines limited expression of serum and lung CXCL10. Strikingly, VLP-RBD-BECC when administered intranasally, limited lung inflammation at early timepoints that mRNA-1273 vaccination did not. VLP-RBD-BECC immunization elicited antibodies that do recognize SARS-CoV-2 Omicron variant. However, VLP-RBD-BECC immunized mice were protected from Omicron challenge with low viral burden. Conversely, mRNA-1273 immunized mice had low to no detectable virus in the lungs at day 2. Together, these data suggest that VLP-based vaccines paired with BECC adjuvant can be used to induce protective mucosal and systemic responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Katherine S Lee
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Nathaniel A Rader
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Olivia A Miller-Stump
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Melissa Cooper
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Md Shahrier Amin
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Justin R Bevere
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA.
| |
Collapse
|
100
|
Zhang L, Jiang Y, He J, Chen J, Qi R, Yuan L, Shao T, Zhao H, Chen C, Chen Y, Wang X, Lei X, Gao Q, Zhuang C, Zhou M, Ma J, Liu W, Yang M, Fu R, Wu Y, Chen F, Xiong H, Nie M, Chen Y, Wu K, Fang M, Wang Y, Zheng Z, Huang S, Ge S, Cheng SC, Zhu H, Cheng T, Yuan Q, Wu T, Zhang J, Chen Y, Zhang T, Li C, Qi H, Guan Y, Xia N. Intranasal influenza-vectored COVID-19 vaccine restrains the SARS-CoV-2 inflammatory response in hamsters. Nat Commun 2023; 14:4117. [PMID: 37433761 DOI: 10.1038/s41467-023-39560-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants and "anatomical escape" characteristics threaten the effectiveness of current coronavirus disease 2019 (COVID-19) vaccines. There is an urgent need to understand the immunological mechanism of broad-spectrum respiratory tract protection to guide broader vaccines development. Here we investigate immune responses induced by an NS1-deleted influenza virus vectored intranasal COVID-19 vaccine (dNS1-RBD) which provides broad-spectrum protection against SARS-CoV-2 variants in hamsters. Intranasal delivery of dNS1-RBD induces innate immunity, trained immunity and tissue-resident memory T cells covering the upper and lower respiratory tract. It restrains the inflammatory response by suppressing early phase viral load post SARS-CoV-2 challenge and attenuating pro-inflammatory cytokine (Il6, Il1b, and Ifng) levels, thereby reducing excess immune-induced tissue injury compared with the control group. By inducing local cellular immunity and trained immunity, intranasal delivery of NS1-deleted influenza virus vectored vaccine represents a broad-spectrum COVID-19 vaccine strategy to reduce disease burden.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jinhang He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Junyu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Ruoyao Qi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Tiange Shao
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Hui Zhao
- National Institute for Food and Drug Control, 102629, Beijing, China
| | - Congjie Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yaode Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xijing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xing Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Qingxiang Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Chunlan Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Ming Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jian Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Wei Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Man Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Rao Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yangtao Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Feng Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Hualong Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Meifeng Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yiyi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Kun Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Mujin Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China
| | - Shoujie Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China
| | - Shih Chin Cheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Huachen Zhu
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, 515063, Shantou, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China.
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China.
| | - Yixin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China.
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China.
| | - Changgui Li
- National Institute for Food and Drug Control, 102629, Beijing, China.
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, 100084, Beijing, China.
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China.
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, 515063, Shantou, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China.
| |
Collapse
|