51
|
Mruthyunjaya P, Ahmed S, Botabekova A, Baimukhamedov C, Zimba O. Late-onset Systemic Lupus Erythematosus. Rheumatol Int 2025; 45:29. [PMID: 39812833 DOI: 10.1007/s00296-024-05784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune rheumatic disease (ARD) that results from the dysregulation of multiple innate and adaptive immune pathways. Late-onset SLE (Lo-SLE) is the term used when the disease is first diagnosed after 50-65 years, though the standard age cut-off remains undefined. Defining "late-onset" as lupus with onset after 50 years is more biologically plausible as this roughly corresponds to the age of menopause. Lo-SLE comprises nearly 20% of all cases of lupus. With advancing age, the female predominance of lupus declines to nearly 4:1 to even 1.1:1. The natural history of the disease varies, with lesser major organ involvement like nephritis but higher damage accrual. The latter is possibly owed to the atypical presentation and hesitation among physicians to diagnose SLE at this age, a diagnostic delay with late treatment initiation may accelerate the damage accrual. Multimorbidity is a central issue in these patients, which includes osteoporosis, sarcopenia, accelerated atherosclerosis in the background of existing dyslipidemia, diabetes mellitus, major depression, hypertension, coronary artery disease and other thrombotic events.With the rising ages of populations worldwide, awareness about late-onset lupus is paramount, especially due to the associated diagnostic delays and higher overlap with Sjogren's disease. Also, pharmacotherapeutics must be optimized considering factors associated with ageing like declining glomerular filtration rate (GFR), sarcopenia, osteoporosis, and the associated comorbidities. Measures to minimize the exposure to long-term exposure to high-dose steroids are crucial. Beyond this, it is of essence to adopt non-pharmacological interventions as an adjunct to traditional immunosuppression to improve pain, fatigue, depression, and anxiety, improve cardiovascular health and overall better quality of life with favourable long-term outcomes.
Collapse
Affiliation(s)
- Prakashini Mruthyunjaya
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, 751024, India.
| | - Sakir Ahmed
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, 751024, India
| | - Aliya Botabekova
- Department of General Practice N2, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
- Shymkent Medical Centre of Joint Diseases, Shymkent, Kazakhstan
| | - Chokan Baimukhamedov
- Department of General Practice N2, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
- Shymkent Medical Centre of Joint Diseases, Shymkent, Kazakhstan
| | - Olena Zimba
- Department of Rheumatology, Immunology and Internal Medicine, University Hospital in Kraków, Kraków, Poland
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Department of Internal Medicine N2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
52
|
dos Santos Brito WR, de Brito WB, dos Santos Ferreira F, Santana EGM, da Costa Lopes J, da Silva Graça Amoras E, Lima SS, dos Santos EF, da Costa FP, de Sarges KML, Cantanhede MHD, de Brito MTFM, da Silva ALS, de Meira Leite M, de Nazaré do Socorro de Almeida Viana M, Rodrigues FBB, da Silva R, Viana GMR, do Socorro Souza Chaves T, de Oliveira Lameira Veríssimo A, da Silva Carvalho M, Henriques DF, da Silva CP, Nunes JAL, Costa IB, Brasil-Costa I, Quaresma JAS, Cayres-Vallinoto IMV, Reis LO, Falcão LFM, dos Santos EJM, Vallinoto ACR, Queiroz MAF. Polymorphisms Influence the Expression of the Fas and FasL Genes in COVID-19. Int J Mol Sci 2025; 26:666. [PMID: 39859379 PMCID: PMC11765610 DOI: 10.3390/ijms26020666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
The apoptotic molecule Fas and its ligand FasL are involved in the process of T-lymphocyte death, which may lead to lymphopenia, a characteristic of severe coronavirus disease 2019 (COVID-19). In this study, we investigated the influence of polymorphisms in the FAS and FASL genes, FAS and FASL gene expression, and plasma cytokine levels on COVID-19 severity and long COVID occurrence. A total of 116 individuals with severe COVID-19 and 254 with the non-severe form of the disease were evaluated. In the post-COVID-19 period, samples from 196 individuals with long COVID and 67 from people who did not have long COVID were included. Genotyping and quantification of gene expression were performed via real-time PCR, and cytokine measurement was performed via flow cytometry. The AA genotype for FAS rs1800682 (A/G) and the TT genotype for FASL rs763110 (C/T) were associated with increased FAS and FASL gene expression, respectively (p < 0.005). Higher plasma IFN-γ levels were associated with higher FAS and FASL gene expression (p < 0.05). Among individuals with non-severe COVID-19, carriers of the AA genotype for FAS rs1800682 (A/G) had higher levels of FAS expression, more symptoms, and higher IFN-γ levels (p < 0.05). No association of the evaluated markers with long COVID were observed. The AA genotype of FAS rs1800682 (A/G) and the TT genotype of FASL rs763110 (C/T) influence the levels of FAS and FASL gene expression. Higher gene expression of FAS and FASL may lead to greater inflammation in COVID-19 patients, with higher levels of IFN-γ and T lymphocyte death.
Collapse
Affiliation(s)
- Wandrey Roberto dos Santos Brito
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
| | - William Botelho de Brito
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
| | - Fabiane dos Santos Ferreira
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
| | - Emmanuelle Giuliana Mendes Santana
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
| | - Jeferson da Costa Lopes
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
| | - Ednelza da Silva Graça Amoras
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
| | - Sandra Souza Lima
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
| | - Erika Ferreira dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Flávia Póvoa da Costa
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Kevin Matheus Lima de Sarges
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Marcos Henrique Damasceno Cantanhede
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Mioni Thieli Figueiredo Magalhães de Brito
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Andréa Luciana Soares da Silva
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Mauro de Meira Leite
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Maria de Nazaré do Socorro de Almeida Viana
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Fabíola Brasil Barbosa Rodrigues
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Rosilene da Silva
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Giselle Maria Rachid Viana
- Laboratory of Basic Research on Malaria, Parasitology Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 66093-020, Brazil; (G.M.R.V.); (T.d.S.S.C.)
| | - Tânia do Socorro Souza Chaves
- Laboratory of Basic Research on Malaria, Parasitology Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 66093-020, Brazil; (G.M.R.V.); (T.d.S.S.C.)
- School of Medicine, Institute of Medical Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | | | | | - Daniele Freitas Henriques
- Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 66093-020, Brazil; (D.F.H.); (C.P.d.S.)
| | - Carla Pinheiro da Silva
- Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 66093-020, Brazil; (D.F.H.); (C.P.d.S.)
| | - Juliana Abreu Lima Nunes
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 66093-020, Brazil; (J.A.L.N.); (I.B.C.); (I.B.-C.)
| | - Iran Barros Costa
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 66093-020, Brazil; (J.A.L.N.); (I.B.C.); (I.B.-C.)
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua 66093-020, Brazil;
| | - Igor Brasil-Costa
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua 66093-020, Brazil; (J.A.L.N.); (I.B.C.); (I.B.-C.)
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua 66093-020, Brazil;
| | - Juarez Antônio Simões Quaresma
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua 66093-020, Brazil;
- Center of Biological and Health Sciences, University of the State of Pará, Belém 66087-670, Brazil;
| | - Izaura Maria Vieira Cayres-Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
| | - Leonardo Oliveira Reis
- UroScience, Faculty of Medical Sciences, State University of Campinas, Campinas 13083-590, Brazil;
- ImmunOncology, Pontifical Catholic University of Campinas, Campinas 13060-904, Brazil
| | - Luiz Fábio Magno Falcão
- Center of Biological and Health Sciences, University of the State of Pará, Belém 66087-670, Brazil;
| | - Eduardo José Melo dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.T.F.M.d.B.); (A.L.S.d.S.); (M.d.M.L.)
| | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua 66093-020, Brazil;
| | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (W.R.d.S.B.); (W.B.d.B.); (F.d.S.F.); (E.G.M.S.); (J.d.C.L.); (E.d.S.G.A.); (S.S.L.); (I.M.V.C.-V.); (A.C.R.V.)
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.F.d.S.); (F.P.d.C.); (K.M.L.d.S.); (M.H.D.C.); (M.d.N.d.S.d.A.V.); (F.B.B.R.); (R.d.S.); (E.J.M.d.S.)
| |
Collapse
|
53
|
Masuda K, Iketani S, Liu L, Huang J, Qiao Y, Shah J, McNairy ML, Groso C, Ricupero C, Loffredo LF, Wang Q, Purpura L, Coelho-dos-Reis JGA, Sheng Z, Yin MT, Tsuji M. Distinct CD8 + T-cell types Associated with COVID-19 Severity in Unvaccinated HLA-A2 + Patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632164. [PMID: 39868279 PMCID: PMC11761488 DOI: 10.1101/2025.01.12.632164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Although emerging data have revealed the critical role of memory CD8+ T cells in preventing and controlling SARS-CoV-2 infection, virus-specific CD8+ T-cell responses against SARS-CoV-2 and its memory and innate-like subsets in unvaccinated COVID-19 patients with various disease manifestations in an HLA-restricted fashion remain to be understood. Here, we show the strong association of protective cellular immunity with mild COVID-19 and unique cell types against SARS-CoV-2 virus in an HLA-A2 restricted manner. ELISpot assays reveal that SARS-CoV-2-specific CD8+ T-cell responses in mild COVID-19 patients are significantly higher than in severe patients, whereas neutralizing antibody responses against SARS-CoV-2 virus significantly correlate with disease severity. Single-cell analyses of HLA-A2-restricted CD8+ T cells, which recognize highly conserved immunodominant SARS-CoV-2-specific epitopes, demonstrate divergent profiles in unvaccinated patients with mild versus severe disease. CD8+ T-cell types including cytotoxic KLRB1 + CD8αα cells with innate-like T-cell signatures, IFNG hi ID3 hi memory cells and IL7R + proliferative stem cell-like memory cells are preferentially observed in mild COVID-19, whereas distinct terminally-differentiated T-cell subsets are predominantly detected in severe COVID-19: highly activated FASL hi T-cell subsets and early-terminated or dysfunctional IL4R + GATA3 + stem cell-like memory T-cell subset. In conclusion, our findings suggest that unique and contrasting SARS-CoV-2-specific CD8+ T-cell profiles may dictate COVID-19 severity.
Collapse
Affiliation(s)
- Kazuya Masuda
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jing Huang
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yujie Qiao
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jayesh Shah
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Meredith L. McNairy
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Christine Groso
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Christopher Ricupero
- Center for Dental & Craniofacial Regeneration, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lucas F. Loffredo
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Qian Wang
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lawrence Purpura
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael T Yin
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Lead contact
| |
Collapse
|
54
|
Shurygina AP, Shuklina M, Ozhereleva O, Romanovskaya-Romanko E, Kovaleva S, Egorov A, Lioznov D, Stukova M. Truncated NS1 Influenza A Virus Induces a Robust Antigen-Specific Tissue-Resident T-Cell Response and Promotes Inducible Bronchus-Associated Lymphoid Tissue Formation in Mice. Vaccines (Basel) 2025; 13:58. [PMID: 39852837 PMCID: PMC11769193 DOI: 10.3390/vaccines13010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Influenza viruses with truncated NS1 proteins show promise as viral vectors and candidates for mucosal universal influenza vaccines. These mutant NS1 viruses, which lack the N-terminal half of the NS1 protein (124 a.a.), are unable to antagonise the innate immune response. This creates a self-adjuvant effect enhancing heterologous protection by inducing a robust CD8+ T-cell response together with immunoregulatory mechanisms. However, the effects of NS1 modifications on T-follicular helper (Tfh) and B-cell responses remain less understood. METHODS C57bl/6 mice were immunised intranasally with 10 μL of either an influenza virus containing a truncated NS1 protein (PR8/NS124), a cold-adapted influenza virus with a full-length NS1 (caPR8/NSfull), or a wild-type virus (PR8/NSfull). Immune responses were assessed on days 8 and 28 post-immunisation by flow cytometry, ELISA, and HAI assay. RESULTS In this study, we demonstrate that intranasal immunisation with PR8/NS124 significantly increases tissue-resident CD4+ and CD8+ T cells in the lungs and activates Tfh cells in regional lymph nodes as early as day 8 post-immunisation. These effects are not observed in mice immunised with caPR8/NSfull or PR8/NSfull. Notably, PR8/NS124 immunisation also leads to the development of inducible bronchus-associated lymphoid tissue (iBALT) in the lungs by day 28, characterised by the presence of antigen-specific Tfh cells and GL7+Fas+ germinal centre B cells. CONCLUSIONS Our findings further underscore the potential of NS1-truncated influenza viruses to drive robust mucosal immune responses and enhance vaccine efficacy.
Collapse
Affiliation(s)
- Anna-Polina Shurygina
- Smorodintsev Research Institute of Influenza, The Ministry of Health of the Russian Federation, Saint-Petersburg 197022, Russia; (M.S.); (O.O.); (E.R.-R.); (S.K.); (A.E.); (D.L.); (M.S.)
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Tu TH, Bennani FE, Masroori N, Liu C, Nemati A, Rozza N, Grunbaum AM, Kremer R, Milhalcioiu C, Roy DC, Rudd CE. The identification of a SARs-CoV2 S2 protein derived peptide with super-antigen-like stimulatory properties on T-cells. Commun Biol 2025; 8:14. [PMID: 39762551 PMCID: PMC11704208 DOI: 10.1038/s42003-024-07350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Severe COVID-19 can trigger a cytokine storm, leading to acute respiratory distress syndrome (ARDS) with similarities to superantigen-induced toxic shock syndrome. An outstanding question is whether SARS-CoV-2 protein sequences can directly induce inflammatory responses. In this study, we identify a region in the SARS-CoV-2 S2 spike protein with sequence homology to bacterial super-antigens (termed P3). Computational modeling predicts P3 binding to sites on MHC class I/II and the TCR that partially overlap with sites for the binding of staphylococcal enterotoxins B and H. Like SEB and SEH derived peptides, P3 stimulated 25-40% of human CD4+ and CD8 + T-cells, increasing IFN-γ and granzyme B production. viSNE and SPADE profiling identified overlapping and distinct IFN-γ+ and GZMB+ subsets. The super-antigenic properties of P3 were further evident by its selective expansion of T-cells expressing specific TCR Vα and Vβ chain repertoires. In vivo experiments in mice revealed that the administration of P3 led to a significant upregulation of proinflammatory cytokines IL-1β, IL-6, and TNF-α. While the clinical significance of P3 in COVID-19 remains unclear, its homology to other mammalian proteins suggests a potential role for this peptide family in human inflammation and autoimmunity.
Collapse
Affiliation(s)
- Thai Hien Tu
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
- Centre de Researche-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC, Canada
| | - Fatima Ezzahra Bennani
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC, Canada
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Nasser Masroori
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
- Centre de Researche-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Institut Universitaire d'Hématologie-Oncologie & Thérapie Cellulaire de Montréal, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Chen Liu
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
- Centre de Researche-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC, Canada
| | - Atena Nemati
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
- Centre de Researche-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC, Canada
| | - Nicholas Rozza
- Division of Experimental Medicine, Department of Medicine & Health Sciences, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Amichai Meir Grunbaum
- Division of Experimental Medicine, Department of Medicine & Health Sciences, McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Richard Kremer
- Division of Experimental Medicine, Department of Medicine & Health Sciences, McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Catalin Milhalcioiu
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
- Department of Medical Oncology, McGill University Health Center, Montreal, QC, Canada
| | - Denis-Claude Roy
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
- Centre de Researche-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Institut Universitaire d'Hématologie-Oncologie & Thérapie Cellulaire de Montréal, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Christopher E Rudd
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada.
- Centre de Researche-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada.
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC, Canada.
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco.
- Institut Universitaire d'Hématologie-Oncologie & Thérapie Cellulaire de Montréal, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.
- Division of Experimental Medicine, Department of Medicine & Health Sciences, McGill University Health Centre, McGill University, Montreal, QC, Canada.
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
56
|
Zhang Y, Han S, Sun Q, Liu T, Wen Z, Yao M, Zhang S, Duan Q, Zhang X, Pang B, Kou Z, Jiang X. Single-cell transcriptome atlas of peripheral immune features to Omicron breakthrough infection under booster vaccination strategies. Front Immunol 2025; 15:1460442. [PMID: 39835127 PMCID: PMC11743671 DOI: 10.3389/fimmu.2024.1460442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction The high percentage of Omicron breakthrough infection in vaccinees is an emerging problem, of which we have a limited understanding of the phenomenon. Methods We performed single-cell transcriptome coupled with T-cell/B-cell receptor (TCR/BCR) sequencing in 15 peripheral blood mononuclear cell (PBMC) samples from Omicron infection and naïve with booster vaccination. Results We found that after breakthrough infection, multiple cell clusters showed activation of the type I IFN pathway and widespread expression of Interferon-stimulated genes (ISGs); T and B lymphocytes exhibited antiviral and proinflammatory-related differentiation features with pseudo-time trajectories; and large TCR clonal expansions were concentrated in effector CD8 T cells, and clonal expansions of BCRs showed a preference for IGHV3. In addition, myeloid cells in the BA.5.2 breakthrough infection with the fourth dose of aerosolized Ad5-nCoV were characterized by enhanced proliferation, chemotactic migration, and antigen presentation. Discussion Collectively, our study informs the comprehensive understandings of immune characterization for Omicron breakthrough infection, revealing the positive antiviral potential induced by booster doses of vaccine and the possible "trained immunity" phenomenon in the fourth dose of aerosolized Ad5-nCoV, providing a basis for the selection of vaccination strategies.
Collapse
MESH Headings
- Humans
- Immunization, Secondary
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/genetics
- Single-Cell Analysis
- Transcriptome
- SARS-CoV-2/immunology
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Leukocytes, Mononuclear/immunology
- Vaccination
- B-Lymphocytes/immunology
- Breakthrough Infections
Collapse
Affiliation(s)
- Yuwei Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Shanshan Han
- School of Public Health and Health Management, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qingshuai Sun
- School of Public Health and Health Management, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tao Liu
- Department of Infectious Disease Control, Yantai Center for Disease Control and Prevention, Yantai, Shandong, China
| | - Zixuan Wen
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Mingxiao Yao
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Shu Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Qing Duan
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Xiaomei Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Bo Pang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Zengqiang Kou
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Xiaolin Jiang
- School of Public Health and Health Management, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| |
Collapse
|
57
|
Blanco J, Trinité B, Puig‐Barberà J. Rethinking Optimal Immunogens to Face SARS-CoV-2 Evolution Through Vaccination. Influenza Other Respir Viruses 2025; 19:e70076. [PMID: 39871737 PMCID: PMC11773156 DOI: 10.1111/irv.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/23/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
SARS-CoV-2, which originated in China in late 2019, quickly fueled the global COVID-19 pandemic, profoundly impacting health and the economy worldwide. A series of vaccines, mostly based on the full SARS-CoV-2 Spike protein, were rapidly developed, showing excellent humoral and cellular responses and high efficacy against both symptomatic infection and severe disease. However, viral evolution and the waning humoral neutralizing responses strongly challenged vaccine long term effectiveness, mainly against symptomatic infection, making necessary a strategy of repeated and updated booster shots. In this repeated vaccination context, antibody repertoire diversification was evidenced, although immune imprinting after booster doses or reinfection was also demonstrated and identified as a major determinant of immunological responses to repeated antigen exposures. Considering that a small domain of the SARS-CoV-2 Spike protein, the receptor binding domain (RBD), is the major target of neutralizing antibodies and concentrates most viral mutations, the following text aims to provide insights into the ongoing debate over the best strategies for vaccine boosters. We address the relevance of developing new booster vaccines that target the evolving RBD, thus focusing on the relevant antigenic sites of the SARS-CoV-2 new variants. A combination of this strategy with immunofusing and computerized approaches could minimize immune imprinting, therefore optimizing neutralizing immune responses and booster vaccine efficacy.
Collapse
Affiliation(s)
- Julià Blanco
- IrsiCaixaBadalonaCataloniaSpain
- Germans Trias i Pujol Research Institute (IGTP)BadalonaCataloniaSpain
- CIBER de Enfermedades InfecciosasMadridSpain
- Chair in Infectious Diseases and Immunity, Faculty of MedicineUniversity of Vic‐Central University of Catalonia (UVic‐UCC)VicCataloniaSpain
| | | | - Joan Puig‐Barberà
- Área de Investigación en VacunasFundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat ValencianaValenciaSpain
| |
Collapse
|
58
|
Tsanakas AT, Mueller YM, van de Werken HJG, Pujol Borrell R, Ouzounis CA, Katsikis PD. An explainable machine learning model for COVID-19 severity prognosis at hospital admission. INFORMATICS IN MEDICINE UNLOCKED 2025; 52:101602. [DOI: 10.1016/j.imu.2024.101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
|
59
|
Mok CKP, Tang YS, Tan CW, Chong KC, Chen C, Sun Y, Yiu K, Ling KC, Chan KK, Hui DS. Comparison of safety and immunogenicity in the elderly after receiving either Comirnaty or Spikevax monovalent XBB1.5 COVID-19 vaccine. J Infect 2025; 90:106374. [PMID: 39657850 DOI: 10.1016/j.jinf.2024.106374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/13/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND The emergence of SARS-CoV-2 variants necessitates ongoing evaluation of vaccine performance. This study evaluates and compares the safety and immunogenicity of the Comirnaty and Spikevax monovalent XBB.1.5 COVID-19 vaccines in an elderly population. METHODS Altogether, 129 elderly individuals were recruited between 2 January and 3 February 2024, and received a booster dose of either Comirnaty (n=59) or Spikevax (n=70) monovalent XBB.1.5 COVID-19 vaccine. Blood samples were collected at before and one month after vaccination. Immunogenicity was assessed by measuring the percentage of IFNγ+CD4+ and IFNγ+CD8+ T cells, and neutralizing antibody titers (NT50) using a surrogate virus neutralization test (sVNT). Adverse reactions were recorded and analyzed. FINDINGS Both vaccines significantly increased the percentage of IFNγ+CD8+ T cells against XBB.1.5 and wild-type (WT) SARS-CoV-2 at one-month post-vaccination. Spikevax induced a significantly higher percentages of IFNγ+CD8+ and CD4+ T cells against XBB.1.5 than Comirnaty (p<0.001). The proportion of participants showing a positive T cell response to XBB1.5 after vaccination was higher in the Spikevax group (64.3% CD8, 71.4% CD4) than in the Comirnaty group (42.4% CD8, 57.6% CD4). Spikevax also elicited higher NT50 levels against XBB1.5, JN.1 and the latest variant KP.2 than Comirnaty (XBB1.5: p<0.01; KP.2: p<0.05). Fever was more common in the Spikevax group (fever: p=0.006). However, all side effects were short-term and resolved on their own. INTERPRETATION Both vaccines induce neutralizing antibody to XBB1.5, JN.1 and KP.2. Specifically, Spikevax induces higher cellular and humoral immune responses than Comirnaty in the elderly, but it is also associated with a higher incidence of fever. These findings can guide public health strategies for vaccinating the elderly population.
Collapse
Affiliation(s)
- Chris Ka Pun Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; SH Ho Research Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Yun Sang Tang
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Chee Wah Tan
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore; Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ka Chun Chong
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Centre for Health Systems and Policy Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chunke Chen
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Yuanxin Sun
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Karen Yiu
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Kwun Cheung Ling
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Ken Kp Chan
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - David S Hui
- SH Ho Research Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
60
|
Mazzotti L, Borges de Souza P, Azzali I, Angeli D, Nanni O, Sambri V, Semprini S, Bravaccini S, Cerchione C, Gaimari A, Nicolini F, Ancarani V, Martinelli G, Pasetto A, Calderon H, Juan M, Mazza M. Exploring the Relationship Between Humoral and Cellular T Cell Responses Against SARS-CoV-2 in Exposed Individuals From Emilia Romagna Region and COVID-19 Severity. HLA 2025; 105:e70011. [PMID: 39807702 PMCID: PMC11731316 DOI: 10.1111/tan.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
COVID-19 remains a significant global health problem with uncertain long-term consequences for convalescents. We investigated the relationships between anti-N protein antibody levels, severe acute respiratory syndrome (SARS)-CoV-2-associated TCR repertoire parameters, HLA type and epidemiological information from three cohorts of 524 SARS-CoV-2-infected subjects subgrouped in acute phase, seronegative and seropositive convalescents from the Emilia Romagna region. Epidemiological information and anti-N antibody index were associated with TCR repertoire data. HLA type was inferred from TCR repertoire using the HLA3 tool and its association with clonal breadth (CB) and clonal depth (CD) was assessed. Age above 58 years, male and COVID-19 hospitalisation were significantly and independently associated with seropositivity (p = 0.004; p = 0.004; p = 0.04), suggesting an association between high antibody titres and symptoms' severity. As for the TCR repertoire analysis, we found no difference in CB among the cohorts, while CD was higher in seronegative than acute (p = 0.04). However, clustering analysis supported that seronegative patients are endowed with broader CB and deeper CD indicating a compensatory mechanism without effective seroconversion. The CD calculated on the TCRs associated with the single SARS-CoV-2 ORFs in convalescents is higher when compared to the acute. Lastly, we identified and reported on novel HLAs significantly associated with increased risk of hospitalisation such as HLA-C*07:02 carriers (OR = 3.9, CI = 1.1-13.4, p = 0.03) and on HLAs that associate significantly with lower or higher TCR repertoire parameters in a population exposed for the first time to SARS-CoV-2.
Collapse
Affiliation(s)
- Lucia Mazzotti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | | | - Irene Azzali
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Davide Angeli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Oriana Nanni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Vittorio Sambri
- Microbiology UnitThe Great Romagna Area Hub LaboratoryPievesestinaItaly
- DIMECBologna UniversityBolognaItaly
| | - Simona Semprini
- Microbiology UnitThe Great Romagna Area Hub LaboratoryPievesestinaItaly
| | - Sara Bravaccini
- Department of Medicine and SurgeryUniversity of Enna “Kore”EnnaItaly
| | - Claudio Cerchione
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Anna Gaimari
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Fabio Nicolini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Valentina Ancarani
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Giovanni Martinelli
- Department of Hematology and Sciences OncologyInstitute of Haematology “L. and A. Seràgnoli” S. Orsola, University Hospital in BolognaBolognaItaly
| | - Anna Pasetto
- Section for Cell TherapyRadiumhospitalet, Oslo University HospitalOsloNorway
- Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Hugo Calderon
- Department of ImmunologyCentre de Diagnòstic Biomèdic, Hospital Clínic of BarcelonaBarcelonaSpain
| | - Manel Juan
- Department of ImmunologyCentre de Diagnòstic Biomèdic, Hospital Clínic of BarcelonaBarcelonaSpain
| | - Massimiliano Mazza
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| |
Collapse
|
61
|
Nguema L, Picard F, El Hajj M, Dupaty L, Fenwick C, Cardinaud S, Wiedemann A, Pantaleo G, Zurawski S, Centlivre M, Zurawski G, Lévy Y, Godot V. Subunit protein CD40.SARS.CoV2 vaccine induces SARS-CoV-2-specific stem cell-like memory CD8 + T cells. EBioMedicine 2025; 111:105479. [PMID: 39667270 PMCID: PMC11697708 DOI: 10.1016/j.ebiom.2024.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Ideally, vaccination should induce protective long-lived humoral and cellular immunity. Current licensed COVID-19 mRNA vaccines focused on the spike (S) region induce neutralizing antibodies that rapidly wane. METHODS Herein, we show that a subunit vaccine (CD40.CoV2) targeting spike and nucleocapsid antigens to CD40-expressing cells elicits broad specific human (hu)Th1 CD4+ and CD8+ T cells in humanized mice. FINDINGS CD40.CoV2 vaccination selectively enriched long-lived spike- and nucleocapsid-specific CD8+ progenitors with stem-cell-like memory (Tscm) properties, whereas mRNA BNT162b2 induced effector memory CD8+ T cells. CD8+ Tscm cells produced IFNγ and TNF upon antigenic restimulation and showed a high proliferation rate. We demonstrate that CD40 activation is specifically required for the generation of huCD8+ Tscm cells. INTERPRETATION These results support the development of a CD40-vaccine platform capable of eliciting long-lasting T-cell immunity. FUNDING This work was supported by Inserm, Université Paris-Est Créteil, and the Investissements d'Avenir program, Vaccine Research Institute (VRI), managed by the ANR.
Collapse
Affiliation(s)
- Laury Nguema
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Florence Picard
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Marwa El Hajj
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Léa Dupaty
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Craig Fenwick
- Service of Immunology and Allergy Lausanne University Hospital, Swiss Vaccine Research Institute, University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sylvain Cardinaud
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Aurélie Wiedemann
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Giuseppe Pantaleo
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Service of Immunology and Allergy Lausanne University Hospital, Swiss Vaccine Research Institute, University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sandra Zurawski
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Mireille Centlivre
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Gerard Zurawski
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Yves Lévy
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France.
| | - Véronique Godot
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France.
| |
Collapse
|
62
|
Ayuk HS, Arnold S, Pierzchalski A, Bauer M, Stojanovska V, Zenclussen AC. SARS-CoV-2 Activated Peripheral Blood Mononuclear Cells (PBMCs) Do Not Provoke Adverse Effects in Trophoblast Spheroids. Am J Reprod Immunol 2025; 93:e70039. [PMID: 39776066 PMCID: PMC11706221 DOI: 10.1111/aji.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/29/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
PROBLEM Although it is still uncertain whether Severe Acute Respiratory Coronavirus (SARS-CoV-2) placental infection and vertical transmission occur, inflammation during early pregnancy can have devastating consequences for gestation itself and the growing fetus. If and how SARS-CoV-2-specific immune cells negatively affect placenta functionality is still unknown. METHOD OF STUDY We stimulated peripheral blood mononuclear cells (PBMCs) from women of reproductive age with SARS-CoV-2 peptides and cocultured them with trophoblast spheroids (HTR-8/SVneo and JEG-3) to dissect if SARS-CoV-2-activated immune cells can interfere with trophoblast functionality. The activation and cytokine profile of the PBMCs were determined using multicolor flow cytometry. The functionality of trophoblast spheroids was assessed using microscopy, enzyme-linked immunosorbent assay (ELISA), and RT-qPCR. RESULTS SARS-CoV-2 S and M peptides significantly activated PBMCs (monocytes, NK cells, and T cells with memory subsets) and induced the upregulation of proinflammatory cytokines, such as IFNγ. The activated PBMCs did not impact the viability, growth rate, and invasion capabilities of trophoblast spheroids. Furthermore, the hormonal production of hCG by JEG-3 spheroids was not compromised upon coculture with the activated PBMCs. mRNA transcript levels of genes involved in trophoblast spheroid functional pathways were also not dysregulated after coculture. CONCLUSIONS Together, the findings of our in vitro coculture model, although not fully representative of in vivo conditions, strongly support the claim that the interaction of SARS-CoV-2-activated peripheral blood immune cells with trophoblast cells at the fetal-maternal interface does not negatively affect trophoblast functionality. This goes in hand with the recommendation of vaccinating pregnant women in their first trimester.
Collapse
Affiliation(s)
| | - Susanne Arnold
- Department of Environmental ImmunologyHelmholtz Centre for Environmental ResearchLeipzigSaxonyGermany
| | - Arkadiusz Pierzchalski
- Department of Environmental ImmunologyHelmholtz Centre for Environmental ResearchLeipzigSaxonyGermany
| | - Mario Bauer
- Department of Environmental ImmunologyHelmholtz Centre for Environmental ResearchLeipzigSaxonyGermany
| | - Violeta Stojanovska
- Department of Environmental ImmunologyHelmholtz Centre for Environmental ResearchLeipzigSaxonyGermany
| | - Ana Claudia Zenclussen
- Department of Environmental ImmunologyHelmholtz Centre for Environmental ResearchLeipzigSaxonyGermany
- Saxon Incubator for Translational ResearchUniversity of LeipzigLeipzigSaxonyGermany
- German Center for Child and Adolescent Health (DZKJ)Partner Site Leipzig/DresdenLeipzig/DresdenGermany
| |
Collapse
|
63
|
Mahrokhian SH, Tostanoski LH, Vidal SJ, Barouch DH. COVID-19 vaccines: Immune correlates and clinical outcomes. Hum Vaccin Immunother 2024; 20:2324549. [PMID: 38517241 PMCID: PMC10962618 DOI: 10.1080/21645515.2024.2324549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/24/2024] [Indexed: 03/23/2024] Open
Abstract
Severe disease due to COVID-19 has declined dramatically as a result of widespread vaccination and natural immunity in the population. With the emergence of SARS-CoV-2 variants that largely escape vaccine-elicited neutralizing antibody responses, the efficacy of the original vaccines has waned and has required vaccine updating and boosting. Nevertheless, hospitalizations and deaths due to COVID-19 have remained low. In this review, we summarize current knowledge of immune responses that contribute to population immunity and the mechanisms how vaccines attenuate COVID-19 disease severity.
Collapse
Affiliation(s)
- Shant H. Mahrokhian
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Lisa H. Tostanoski
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Samuel J. Vidal
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
64
|
Abounouh K, Tajudeen R, Majidi H, Redwane S, Laazaazia O, Aqillouch S, Ouma AEO, Abdulaziz M, Aragaw M, Fallah MP, Sembuche S, Batcho S, Kabwe P, Gonese E, Ainahi A, Sarih M, Kaseya J, Maaroufi A, Ezzikouri S. Immunologic assessment of the impact of SARS-CoV-2 vaccine booster doses on humoral immunity: a cross-sectional study in morocco. BMC Infect Dis 2024; 24:1470. [PMID: 39732651 DOI: 10.1186/s12879-024-10345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024] Open
Abstract
To assess the impact of the SARS-CoV-2 booster dose on the immune response against COVID-19, we conducted a cross-sectional study in the Casablanca-Settat region of Morocco. The study included 2,802 participants from 16 provinces, all of whom had received three doses of a SARS-CoV-2 vaccine. IgG antibodies targeting the S1 RBD subunit of the SARS-CoV-2 spike protein were quantified using the SARS-CoV-2 IgG II Quant assay and measured on the Abbott Architect i2000SR instrument. Adjusted seroprevalence of anti-RBD antibodies showed that participants who received two doses of ChAdOx1-S followed by a BBIBP-CorV booster had a seroprevalence rate of 99.68% (95% CI: 99.39-99.83%), while those who received a BNT162b2 booster had a rate of 99.67% (95% CI: 99.38-99.82%). Both rates were higher than those observed with other vaccination regimens. The evaluation of booster dose effects revealed significant differences in anti-RBD antibody levels across various vaccination regimens: two doses of BBIBP-CorV compared to three doses of BBIBP-CorV (P < 0.0001), two doses of BNT162b2 versus three doses of BNT162b2 (P = 0.023), two doses of ChAdOx1-S versus two doses of ChAdOx1-S with a BNT162b2 booster (P = 0.023), and two doses of BBIBP-CorV versus two doses of BBIBP-CorV with a BNT162b2 booster (P < 0.0001). However, no significant difference was found between two doses of ChAdOx1-S and three doses of ChAdOx1-S (P = 0.23). Participants with prior SARS-CoV-2 exposure who received two doses of ChAdOx1-S followed by either a BBIBP-CorV or BNT162b2 booster showed higher levels of anti-RBD IgG antibodies (P = 0.042 and P = 0.001, respectively). Interestingly, individuals with comorbidities who received the BNT162b2 booster dose exhibited a significantly stronger humoral response (P < 0.05). In conclusion, our findings highlight the effectiveness of the BNT162b2 booster dose in eliciting a strong immune response. The high seroprevalence rates achieved with both BNT162b2 and BBIBP-CorV boosters reflect the country's robust vaccination strategy.
Collapse
Affiliation(s)
- Karima Abounouh
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco
| | - Raji Tajudeen
- Africa Centres for Disease Control and Prevention (Africa CDC), African Union, Addis Ababa, Ethiopia
| | - Hind Majidi
- Ministry of Health and Social Protection, Rabat, Morocco
| | - Soad Redwane
- Direction Régionale de la santé Casablanca-Settat, Observatoire régional de santé, Casablanca, Morocco
| | - Oumaima Laazaazia
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco
| | - Safaa Aqillouch
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco
| | - Ahmed E Ogwell Ouma
- Africa Centres for Disease Control and Prevention (Africa CDC), African Union, Addis Ababa, Ethiopia
| | - Mohammed Abdulaziz
- Africa Centres for Disease Control and Prevention (Africa CDC), African Union, Addis Ababa, Ethiopia
| | - Merawi Aragaw
- Africa Centres for Disease Control and Prevention (Africa CDC), African Union, Addis Ababa, Ethiopia
| | - Mosoka Papa Fallah
- Africa Centres for Disease Control and Prevention (Africa CDC), African Union, Addis Ababa, Ethiopia
| | - Senga Sembuche
- Africa Centres for Disease Control and Prevention (Africa CDC), African Union, Addis Ababa, Ethiopia
| | - Serge Batcho
- Africa Centres for Disease Control and Prevention (Africa CDC), African Union, Addis Ababa, Ethiopia
| | - Patrick Kabwe
- Africa Centres for Disease Control and Prevention (Africa CDC), African Union, Addis Ababa, Ethiopia
| | - Elizabeth Gonese
- Africa Centres for Disease Control and Prevention (Africa CDC), African Union, Addis Ababa, Ethiopia
| | - Abdelhakim Ainahi
- Hormonology and Tumor Markers Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - M'hammed Sarih
- Service de Parasitologie et des Maladies Vectorielles, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Jean Kaseya
- Africa Centres for Disease Control and Prevention (Africa CDC), African Union, Addis Ababa, Ethiopia
| | - Abderrahmane Maaroufi
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, Casablanca, 20360, Morocco.
| |
Collapse
|
65
|
Cavaillon JM, Chaudry IH. Facing stress and inflammation: From the cell to the planet. World J Exp Med 2024; 14:96422. [PMID: 39713080 PMCID: PMC11551703 DOI: 10.5493/wjem.v14.i4.96422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/31/2024] Open
Abstract
As identified in 1936 by Hans Selye, stress is shaping diseases through the induction of inflammation. But inflammation display some yin yang properties. On one hand inflammation is merging with the innate immune response aimed to fight infectious or sterile insults, on the other hand inflammation favors chronic physical or psychological disorders. Nature has equipped the cells, the organs, and the individuals with mediators and mechanisms that allow them to deal with stress, and even a good stress (eustress) has been associated with homeostasis. Likewise, societies and the planet are exposed to stressful settings, but wars and global warming suggest that the regulatory mechanisms are poorly efficient. In this review we list some inducers of the physiological stress, psychologic stress, societal stress, and planetary stress, and mention some of the great number of parameters which affect and modulate the response to stress and render it different from an individual to another, from the cellular level to the societal one. The cell, the organ, the individual, the society, and the planet share many stressors of which the consequences are extremely interconnected ending in the domino effect and the butterfly effect.
Collapse
Affiliation(s)
| | - Irshad H Chaudry
- Department of Surgery, University of Alabama Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
66
|
Yip JQ, Oo A, Ng YL, Chin KL, Tan KK, Chu JJH, AbuBakar S, Zainal N. The role of inflammatory gene polymorphisms in severe COVID-19: a review. Virol J 2024; 21:327. [PMID: 39707400 PMCID: PMC11662554 DOI: 10.1186/s12985-024-02597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has profoundly impacted global healthcare systems and spurred extensive research efforts over the past three years. One critical aspect of the disease is the intricate interplay between the virus and the host immune response, particularly the role of inflammatory gene expression in severe COVID-19. While numerous previous studies have explored the role of genetic polymorphisms in COVID-19, research specifically focusing on inflammatory genes and their associations with disease severity remains limited. This review explores the relationship between severe COVID-19 outcomes and genetic polymorphisms within key inflammatory genes. By investigating the impact of genetic variations on immune responses, which include cytokine production and downstream signalling pathways, we aim to provide a comprehensive overview of how genetic polymorphisms contribute to the variability in disease presentation. Through an in-depth analysis of existing literature, we shed light on potential therapeutic targets and personalized approaches that may enhance our understanding of disease pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Jia Qi Yip
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Institute for Advanced Studies, Advanced Studies Complex, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adrian Oo
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Infectious Disease Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yan Ling Ng
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Infectious Disease Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Kim Ling Chin
- Institute for Advanced Studies, Advanced Studies Complex, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Infectious Disease Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Nurhafiza Zainal
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
67
|
Ramirez SI, Lopez PG, Faraji F, Parikh UM, Heaps A, Ritz J, Moser C, Eron JJ, Wohl D, Currier J, Daar ES, Greninger A, Klekotka P, Grifoni A, Weiskopf D, Sette A, Peters B, Hughes MD, Chew KW, Smith DM, Crotty S. Early antiviral CD4+ and CD8+ T cells are associated with upper airway clearance of SARS-CoV-2. JCI Insight 2024; 9:e186078. [PMID: 39704169 DOI: 10.1172/jci.insight.186078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/25/2024] [Indexed: 12/21/2024] Open
Abstract
T cells are involved in protective immunity against numerous viral infections. Data regarding functional roles of human T cells in SARS-CoV-2 (SARS2) viral clearance in primary COVID-19 are limited. To address this knowledge gap, we assessed samples for associations between SARS2 upper respiratory tract viral RNA levels and early virus-specific adaptive immune responses for 95 unvaccinated clinical trial participants with acute primary COVID-19 aged 18-86 years old, approximately half of whom were considered at high risk for progression to severe COVID-19. Functionality and magnitude of acute SARS2-specific CD4+ and CD8+ T cell responses were evaluated, in addition to antibody responses. Most individuals with acute COVID-19 developed SARS2-specific T cell responses within 6 days of COVID-19 symptom onset. Early CD4+ T cell and CD8+ T cell responses were polyfunctional, and both strongly associated with reduced upper respiratory tract SARS2 viral RNA, independent of neutralizing antibody titers. Overall, these findings provide evidence for protective roles for circulating SARS2-specific CD4+ and CD8+ T cells during acute COVID-19.
Collapse
Affiliation(s)
- Sydney I Ramirez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, and
| | - Paul G Lopez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Farhoud Faraji
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Otolaryngology-Head and Neck Surgery, UCSD, La Jolla, California, USA
| | - Urvi M Parikh
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy Heaps
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Justin Ritz
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Carlee Moser
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - David Wohl
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Judith Currier
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Eric S Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Alex Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | | | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Daniela Weiskopf
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, and
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, and
| | - Bjoern Peters
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, and
| | - Michael D Hughes
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kara W Chew
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Davey M Smith
- Division of Infectious Diseases and Global Public Health, Department of Medicine, and
| | - Shane Crotty
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, and
| |
Collapse
|
68
|
Pinto PBA, Timis J, Chuensirikulchai K, Li QH, Lu HH, Maule E, Nguyen M, Alves RPDS, Verma SK, Ana-Sosa-Batiz F, Valentine K, Landeras-Bueno S, Kim K, Hastie K, Saphire EO, Alves A, Elong Ngono A, Shresta S. Co-immunization with spike and nucleocapsid based DNA vaccines for long-term protective immunity against SARS-CoV-2 Omicron. NPJ Vaccines 2024; 9:252. [PMID: 39702529 PMCID: PMC11659323 DOI: 10.1038/s41541-024-01043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024] Open
Abstract
The continuing evolution of SARS-CoV-2 variants challenges the durability of existing spike (S)-based COVID-19 vaccines. We hypothesized that vaccines composed of both S and nucleocapsid (N) antigens would increase the durability of protection by strengthening and broadening cellular immunity compared with S-based vaccines. To test this, we examined the immunogenicity and efficacy of wild-type SARS-CoV-2 S- and N-based DNA vaccines administered individually or together to K18-hACE2 mice. S, N, and S + N vaccines all elicited polyfunctional CD4+ and CD8+ T cell responses and provided short-term cross-protection against Beta and Omicron BA.2 variants, but only co-immunization with S + N vaccines provided long-term protection against Omicron BA.2. Depletion of CD4+ and CD8+ T cells reduced the long-term efficacy, demonstrating a crucial role for T cells in the durability of protection. These findings underscore the potential to enhance long-lived protection against SARS-CoV-2 variants by combining S and N antigens in next-generation COVID-19 vaccines.
Collapse
Affiliation(s)
- Paolla Beatriz Almeida Pinto
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, 21040-900, Brazil
| | - Julia Timis
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Kantinan Chuensirikulchai
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Qin Hui Li
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Hsueh Han Lu
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Erin Maule
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Michael Nguyen
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | | | | | | | - Kristen Valentine
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Sara Landeras-Bueno
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- University Cardenal Herrera-CEU, CEU Universities, Valencia, 46113, Spain
| | - Kenneth Kim
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Kathryn Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, 92093, USA
| | - Ada Alves
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, 21040-900, Brazil
| | - Annie Elong Ngono
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA.
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA.
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, 92093, USA.
| |
Collapse
|
69
|
Rosendahl S, Trudzinski FC, Polke M, Herth FJF, Kreuter M, Giese T. SARS-CoV-2 Vaccination in Primary Humoral Immunodeficiency: Experience from a German Lung Clinic. Respiration 2024; 104:349-359. [PMID: 39701048 DOI: 10.1159/000543146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION During the COVID-19 pandemic, the effectiveness of vaccines against SARS-CoV-2 in immunodeficient patients not only did affect the individual risk of these vulnerable patients but endangered the selection of new variants of concern due to prolonged virus shedding by these patients. METHODS In a tertiary center for pulmonary diseases, we investigated the immune response of 11 patients with primary humoral immunodeficiency and 13 healthy controls on the humoral and cellular level after full vaccination with an mRNA or vector vaccine against SARS-CoV-2. RESULTS In the majority of patients (73%), we found antibodies against the spike protein above the threshold of positivity. Likewise, patients showed a promising cellular response: the upregulated production of INFγ, TNFα, and CXCL10 by T cells did not differ from the response of healthy controls. CONCLUSION These results stress the importance to further discern an adequate immunological correlate of protection and the need to follow the effect of booster immunizations in this population at risk.
Collapse
Affiliation(s)
- Sophie Rosendahl
- Department of Pneumology and Critical Care Medicine, Thoraxklinik University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Franziska C Trudzinski
- Department of Pneumology and Critical Care Medicine, Thoraxklinik University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Markus Polke
- Department of Pneumology and Critical Care Medicine, Thoraxklinik University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Felix J F Herth
- Department of Pneumology and Critical Care Medicine, Thoraxklinik University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michael Kreuter
- Mainz Center for Pulmonary Medicine, Department of Pneumology, Mainz University Medical Center and Department of Pulmonary, Critical Care and Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| | - Thomas Giese
- Institute of Immunology and German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
70
|
Lee Y, Tarke A, Grifoni A. In-depth characterization of T cell responses with a combined Activation-Induced Marker (AIM) and Intracellular Cytokine Staining (ICS) assay. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae014. [PMID: 39713046 PMCID: PMC11661976 DOI: 10.1093/oxfimm/iqae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Since T cells are key mediators in the adaptive immune system, evaluating antigen-specific T cell immune responses is pivotal to understanding immune function. Commonly used methods for measuring T cell responses include Activation-Induced Marker (AIM) assays and Intracellular Cytokine Staining (ICS). However, combining these approaches has rarely been reported. This study describes a combined AIM + ICS assay and the effect of collecting the supernatant. Peripheral blood mononuclear cells (PBMCs) from seven healthy donors were stimulated with DMSO (negative control), Epstein-Barr virus (EBV) peptide pools, and PHA (positive control). The AIM markers OX40 + CD137+ were used for CD4+ T cells and CD69 + CD137+ and CD107a + CD137+ for CD8+ T cells. Cytokine-secreting cells were identified as CD40L+ cytokine+ for CD4+ and CD69+ or CD107 + cytokine+ for CD8+ T cells. Half of the supernatant was collected before adding the BFA/Monensin/CD137 antibody solution to assess the impact on T cell responses. The CD107a + CD137+ AIM markers combination had a lower background than CD69 + CD137+, making CD107a+ a more sensitive marker for CD8+ AIM markers. Collecting half of the supernatant did not significantly affect the immune responses. Our AIM + ICS combined protocol enables the simultaneous assessment of activation and cytokine release reducing the sample volume for testing T cell responses. We also show that collecting half of the supernatant does not significantly interfere with immune responses detection.
Collapse
Affiliation(s)
- Yeji Lee
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, United States
| | - Alison Tarke
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, United States
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, United States
| |
Collapse
|
71
|
Zhou D, Luo Y, Ma Q, Xu Y, Yao X. The characteristics of TCR CDR3 repertoire in COVID-19 patients and SARS-CoV-2 vaccine recipients. Virulence 2024; 15:2421987. [PMID: 39468707 PMCID: PMC11540089 DOI: 10.1080/21505594.2024.2421987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/28/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
The COVID-19 pandemic and large-scale administration of multiple SARS-CoV-2 vaccines have attracted global attention to the short-term and long-term effects on the human immune system. An analysis of the "traces" left by the body's T-cell immune response is needed, especially for the prevention and treatment of breakthrough infections and long COVID-19 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant infections. T-cell receptor complementarity determining region 3 (TCR CDR3) repertoire serves as a target molecule for monitoring the effects, mechanisms, and memory of the T-cell response. Furthermore, it has been extensively applied in the elucidation of the infectious mechanism and vaccine refinement of hepatitis B virus (HBV), influenza virus, human immunodeficiency virus (HIV), and SARS-CoV. Laboratories worldwide have utilized high-throughput sequencing (HTS) and scTCR-seq to characterize, share, and apply the TCR CDR3 repertoire in COVID-19 patients and SARS-CoV-2 vaccine recipients. This article focuses on the comparative analysis of the diversity, clonality, V&J gene usage and pairing, CDR3 length, shared CDR3 sequences or motifs, and other characteristics of TCR CDR3 repertoire. These findings provide molecular targets for evaluating T-cell response effects and short-term and long-term impacts on the adaptive immune system following SARS-CoV-2 infection or vaccination and establish a comparative archive of T-cell response "traces."
Collapse
Affiliation(s)
- Dewei Zhou
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- Department of Clinical Laboratory, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, China
| | - Yan Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Qingqing Ma
- Department of Central Laboratory, Guizhou Aerospace Hospital, Zunyi, China
| | - Yuanyuan Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
72
|
Tang YS, Tan CW, Chong KC, Chen C, Sun Y, Yiu K, Ling KC, Chan KKP, Peiris M, Mok CKP, Hui DS. Determination of T cell response against XBB variants in adults who received either monovalent wild-type inactivated whole virus or mRNA vaccine or bivalent WT/BA.4-5 COVID-19 mRNA vaccine as the additional booster. Int J Infect Dis 2024; 149:107271. [PMID: 39426493 DOI: 10.1016/j.ijid.2024.107271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/20/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
OBJECTIVES As the SARS-CoV-2 virus evolves more rapidly than vaccines are updated, T cell immunity potentially confers protection against disease progression and death from new variants. In this study, we aimed to assess whether the current boosting vaccination schemes offer sufficient T cell protection against new SARS-CoV-2 variants. METHODS A total of 292 adults who had received the second booster of either monovalent wild-type (WT) vaccines (inactivated virus or mRNA) (Cohort 1) or the second/third booster of bivalent WT/BA.4-5 mRNA vaccine (Cohort 2) were recruited in Hong Kong. All participants showed no serological evidence of recent infection of SARS-CoV-2. Blood samples of each participant were collected before and 1 month after receiving the booster. T cell and antibody responses were determined by flow cytometry and neutralization test, respectively. RESULTS Among all vaccination strategies, only the adults who had received the bivalent vaccine as the third booster dose significantly elicited T cell responses to the XBB variant. Either monovalent or bivalent mRNA but not inactivated virus vaccine as the second/third booster induced antibody against different XBB variants. CONCLUSION Receiving bivalent mRNA vaccine as the third booster is preferable to induce both T cell and antibody responses against XBB.
Collapse
Affiliation(s)
- Yun Sang Tang
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Chee Wah Tan
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore; Department of Microbiology and Immunology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ka Chun Chong
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Centre for Health Systems and Policy Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Chunke Chen
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yuanxin Sun
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Karen Yiu
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Kwun Cheung Ling
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Ken K P Chan
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China; Centre for Immunology and Infection, Hong Kong SAR, PR China
| | - Chris Ka Pun Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; SH Ho Research Centre for Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China.
| | - David S Hui
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; SH Ho Research Centre for Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
73
|
Yang Y, Miller H, Byazrova MG, Cndotti F, Benlagha K, Camara NOS, Shi J, Forsman H, Lee P, Yang L, Filatov A, Zhai Z, Liu C. The characterization of CD8 + T-cell responses in COVID-19. Emerg Microbes Infect 2024; 13:2287118. [PMID: 37990907 PMCID: PMC10786432 DOI: 10.1080/22221751.2023.2287118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023]
Abstract
This review gives an overview of the protective role of CD8+ T cells in SARS-CoV-2 infection. The cross-reactive responses intermediated by CD8+ T cells in unexposed cohorts are described. Additionally, the relevance of resident CD8+ T cells in the upper and lower airway during infection and CD8+ T-cell responses following vaccination are discussed, including recent worrisome breakthrough infections and variants of concerns (VOCs). Lastly, we explain the correlation between CD8+ T cells and COVID-19 severity. This review aids in a deeper comprehension of the association between CD8+ T cells and SARS-CoV-2 and broadens a vision for future exploration.
Collapse
Affiliation(s)
- Yuanting Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, USA
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Fabio Cndotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kamel Benlagha
- Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Niels Olsen Saraiva Camara
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Junming Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Zhimin Zhai
- Department of Hematology, The Second Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
74
|
Tian Z, Chen Y, Yao Y, Chen L, Zhu X, Shen Z, Yang S, Jin H. Immunogenicity and risk factors for poor humoral immune response to SARS-CoV-2 vaccine in patients with autoimmune hepatitis: a systematic review and meta-analysis. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2024; 116:671-679. [PMID: 38235657 DOI: 10.17235/reed.2024.10053/2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
BACKGROUND research on the immunogenicity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in patients with autoimmune hepatitis (AIH) has produced varied results, and the determinants of the immunological response remain largely elusive. METHODS a comprehensive search of three primary databases (PubMed, Embase, and Web of Science) yielded pertinent studies on the topic. The data extraction was a collaborative effort among three independent researchers, who subsequently reconvened to validate the key data that were collated. The primary outcomes were the magnitudes of humoral and cellular immune responses to the vaccines. The secondary outcomes were related to factors affecting the humoral immune response post-vaccination. RESULTS this systematic review incorporated eight studies, and the meta-analysis involved three studies. The average antibody response rates after one, two, and three doses of the SARS-CoV-2 vaccine were 86 %, 82 %, and 91 %, respectively. Unexpectedly, the antibody concentrations of seropositive patients were markedly lower than those of their healthy counterparts. The cellular immune response rates after two and three vaccine doses were 74 % and 56 %, respectively. Treatment with mycophenolate mofetil and corticosteroids was associated with a notable decrease in seropositivity (pooled odds ratio [95 % confidence interval]: 2.62 [2.12-3.25] and 2.4 [1.51-3.82], respectively). In contrast, azathioprine had no discernable impact on the humoral response. CONCLUSION in patients with AIH, the immune response to COVID-19 vaccination is attenuated. Specific immunosuppressive agents, such as steroids and MMF, have been found to reduce antibody responses. Recognizing these determinants is crucial to formulating individualized vaccination strategies for patients with AIH. Further research with an emphasis on post-vaccination cellular immunity will be essential to refine the vaccination approaches for this demographic.
Collapse
Affiliation(s)
- Zhaoxu Tian
- Critical Care Medicine, Pingyao Campus of The First People's Hospital of Hangzhou,
| | - Yonghua Chen
- Critical Care Medicine, Pingyao Campus of The First People's Hospital of Hangzhou
| | - Yingxin Yao
- Critical Care Medicine, Pingyao Campus of The First People's Hospital of Hangzhou
| | - Lihua Chen
- Critical Care Medicine , Pingyao Campus of The First People's Hospital of Hangzhou
| | - Xiakai Zhu
- Critical Care Medicine, Pingyao Campus of The First People's Hospital of Hangzhou
| | - Zhaocong Shen
- Critical Care Medicine, Pingyao Campus of The First People's Hospital of Hangzhou
| | - Shanwei Yang
- Critical Care Medicine, Pingyao Campus of The First People's Hospital of Hangzhou
| | - Hangbin Jin
- Critical Care Medicine, Pingyao Campus of The First People's Hospital of Hangzhou
| |
Collapse
|
75
|
Rodríguez-Ubreva J, Calafell-Segura J, Calvillo CL, Keller B, Ciudad L, Handfield LF, de la Calle-Fabregat C, Godoy-Tena G, Andrés-León E, Hoo R, Porter T, Prigmore E, Hofmann M, Decker A, Martín J, Vento-Tormo R, Warnatz K, Ballestar E. COVID-19 progression and convalescence in common variable immunodeficiency patients show dysregulated adaptive immune responses and persistent type I interferon and inflammasome activation. Nat Commun 2024; 15:10344. [PMID: 39609471 PMCID: PMC11605083 DOI: 10.1038/s41467-024-54732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Common variable immunodeficiency (CVID) is the most prevalent primary immunodeficiency, marked by hypogammaglobulinemia, poor antibody responses, and increased infection susceptibility. The COVID-19 pandemic provided a unique opportunity to study the effects of prolonged viral infections on the immune responses of CVID patients. Here we use single-cell RNA-seq and spectral flow cytometry of peripheral blood samples before, during, and after SARS-CoV-2 infection showing that COVID-19 CVID patients display a persistent type I interferon signature at convalescence across immune compartments. Alterations in adaptive immunity include sustained activation of naïve B cells, increased CD21low B cells, impaired Th1 polarization, CD4+ T central memory exhaustion, and increased CD8+ T cell cytotoxicity. NK cell differentiation is defective, although cytotoxicity remains intact. Monocytes show persistent activation of inflammasome-related genes. These findings suggest the involvement of intact humoral immunity in regulating these processes and might indicate the need for early intervention to manage viral infections in CVID patients.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain.
| | - Josep Calafell-Segura
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Celia L Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | | | - Carlos de la Calle-Fabregat
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Eduardo Andrés-León
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Regina Hoo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Tarryn Porter
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Maike Hofmann
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annegrit Decker
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Javier Martín
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | | | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain.
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
76
|
Wang X, Li Y, Jin J, Chai X, Ma Z, Duan J, Zhang G, Huang T, Zhang X, Zhang T, Wu H, Cao Y, Su B. Severe acute respiratory syndrome coronavirus 2-specific T-cell responses are induced in people living with human immunodeficiency virus after booster vaccination. Chin Med J (Engl) 2024; 137:2734-2744. [PMID: 39028115 PMCID: PMC11611240 DOI: 10.1097/cm9.0000000000003176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND T-cell-mediated immunity is crucial for the effective clearance of viral infection, but the T-cell-mediated immune responses that are induced by booster doses of inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in people living with human immunodeficiency virus (PLWH) remain unclear. METHODS Forty-five PLWH who had received antiretroviral therapy (ART) for more than two years and 29 healthy controls (HCs) at Beijing Youan Hospital were enrolled to assess the dynamic changes in T-cell responses between the day before the third vaccine dose (week 0) and 4 or 12 weeks (week 4 or week 12) after receiving the third dose of inactivated SARS-CoV-2 vaccine. Flow cytometry, enzyme-linked immunospot (ELISpot), and multiplex cytokines profiling were used to assess T-cell responses at the three timepoints in this study. RESULTS The results of the ELISpot and activation-induced marker (AIM) assays showed that SARS-CoV-2-specific T-cell responses were increased in both PLWH and HCs after the third dose of the inactivated SARS-CoV-2 vaccine, and a similar magnitude of immune response was induced against the Omicron (B.1.1.529) variant compared to the wild-type strain. In detail, spike-specific T-cell responses (measured by the ELISpot assay for interferon γ [IFN-γ] release) in both PLWH and HCs significantly increased in week 4, and the spike-specific T-cell responses in HCs were significantly stronger than those in PLWH 4 weeks after the third vaccination. In the AIM assay, spike-specific CD4 + T-cell responses peaked in both PLWH and HCs in week 12. Additionally, significantly higher spike-specific CD8 + T-cell responses were induced in PLWH than in HCs in week 12. In PLWH, the release of the cytokines interleukin-2 (IL-2), tumour necrosis factor-alpha (TNF-α), and IL-22 by peripheral blood mononuclear cells (PBMCs) that were stimulated with spike peptides increased in week 12. In addition, the levels of IL-4 and IL-5 were higher in PLWH than in HCs in week 12. Interestingly, the magnitude of SARS-CoV-2-specific T-cell responses in PLWH was negatively associated with the extent of CD8 + T-cell activation and exhaustion. In addition, positive correlations were observed between the magnitude of spike-specific T-cell responses (determined by measuring IFN-γ release by ELISpot) and the amounts of IL-4, IL-5, IL-2 and IL-17F. CONCLUSIONS Our findings suggested that SARS-CoV-2-specific T-cell responses could be enhanced by the booster dose of inactivated COVID-19 vaccines and further illustrate the importance of additional vaccination for PLWH.
Collapse
Affiliation(s)
- Xiuwen Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yongzheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100069, China
| | - Junyan Jin
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaoran Chai
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100069, China
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Zhenglai Ma
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Junyi Duan
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Guanghui Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tao Huang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yunlong Cao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100069, China
- Changping Laboratory, Beijing 102299, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
77
|
Brook B, Checkervarty AK, Barman S, Sweitzer C, Bosco AN, Sherman AC, Baden LR, Morrocchi E, Sanchez-Schmitz G, Palma P, Nanishi E, O'Meara TR, McGrath ME, Frieman MB, Soni D, van Haren SD, Ozonoff A, Diray-Arce J, Steen H, Dowling DJ, Levy O. The BNT162b2 mRNA vaccine demonstrates reduced age-associated T H1 support in vitro and in vivo. iScience 2024; 27:111055. [PMID: 39569372 PMCID: PMC11576392 DOI: 10.1016/j.isci.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 07/05/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024] Open
Abstract
mRNA vaccines demonstrate impaired immunogenicity and durability in vulnerable older populations. We hypothesized that human in vitro modeling and proteomics could elucidate age-specific mRNA vaccine actions. BNT162b2-stimulation changed the plasma proteome of blood samples from young (18-50Y) and older adult (≥60Y) participants, assessed by mass spectrometry, proximity extension assay, and multiplex. Young adult up-regulation (e.g., PSMC6, CPN1) contrasted reduced induction in older adults (e.g., TPM4, APOF, APOC2, CPN1, PI16). 30-85% lower TH1-polarizing cytokines and chemokines were induced in elderly blood (e.g., IFNγ, CXCL10). Analytes lower in older adult samples included human in vivo mRNA immunogenicity biomarkers (e.g., IFNγ, CXCL10, CCL4, IL-1RA). BNT162b2 also demonstrated reduced CD4+ TH1 responses in aged vs. young adult mice. Our study demonstrates the utility of human in vitro platforms modeling age-specific mRNA vaccine immunogenicity, highlights impaired support of TH1 polarization in older adults, and provides a rationale for precision mRNA vaccine adjuvantation to induce greater immunogenicity.
Collapse
Affiliation(s)
- Byron Brook
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Abhinav Kumar Checkervarty
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Prevention of Organ Failure (PROOF) Centre of Excellence, St Paul's Hospital, University of British Columbia, Vancouver, BC V6Z 2K5, Canada
- UBC Centre for Heart Lung Innovation, Providence Research, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Soumik Barman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Cali Sweitzer
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Anna-Nicole Bosco
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amy C Sherman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lindsey R Baden
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elena Morrocchi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine- Chair of Pediatrics, University of Rome, 00133 Tor Vergata, Italy
| | - Etsuro Nanishi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy R O'Meara
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Marisa E McGrath
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Matthew B Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dheeraj Soni
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, MA 02142, USA
| | - Simon D van Haren
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Al Ozonoff
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hanno Steen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David J Dowling
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
78
|
Carpp LN, Hyrien O, Fong Y, Benkeser D, Roels S, Stieh DJ, Van Dromme I, Van Roey GA, Kenny A, Huang Y, Carone M, McDermott AB, Houchens CR, Martins K, Jayashankar L, Castellino F, Amoa-Awua O, Basappa M, Flach B, Lin BC, Moore C, Naisan M, Naqvi M, Narpala S, O'Connell S, Mueller A, Serebryannyy L, Castro M, Wang J, Petropoulos CJ, Luedtke A, Lu Y, Yu C, Juraska M, Hejazi NS, Wolfe DN, Sadoff J, Gray GE, Grinsztejn B, Goepfert PA, Bekker LG, Gaur AH, Veloso VG, Randhawa AK, Andrasik MP, Hendriks J, Truyers C, Vandebosch A, Struyf F, Schuitemaker H, Douoguih M, Kublin JG, Corey L, Neuzil KM, Follmann D, Koup RA, Donis RO, Gilbert PB. Neutralizing antibody correlate of protection against severe-critical COVID-19 in the ENSEMBLE single-dose Ad26.COV2.S vaccine efficacy trial. Nat Commun 2024; 15:9785. [PMID: 39532861 PMCID: PMC11557889 DOI: 10.1038/s41467-024-53727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Assessment of immune correlates of severe COVID-19 has been hampered by the low numbers of severe cases in COVID-19 vaccine efficacy (VE) trials. We assess neutralizing and binding antibody levels at 4 weeks post-Ad26.COV2.S vaccination as correlates of risk and of protection against severe-critical COVID-19 through 220 days post-vaccination in the ENSEMBLE trial (NCT04505722), constituting ~4.5 months longer follow-up than our previous correlates analysis and enabling inclusion of 42 severe-critical vaccine-breakthrough cases. Neutralizing antibody titer is a strong inverse correlate of severe-critical COVID-19, with estimated hazard ratio (HR) per 10-fold increase 0.35 (95% CI: 0.13, 0.90). In a multivariable model, HRs are 0.31 (0.11, 0.89) for neutralizing antibody titer and 1.22 (0.49, 3.02) for anti-Spike binding antibody concentration. VE against severe-critical COVID-19 rises with neutralizing antibody titer: 63.1% (95% CI: 40.0%, 77.3%) at unquantifiable [<4.8975 International Units (IU)50/ml], 85.2% (47.2%, 95.3%) at just-quantifiable (5.2 IU50/ml), and 95.1% (81.1%, 96.9%) at 90th percentile (30.2 IU50/ml). At the same titers, VE against moderate COVID-19 is 32.5% (11.8%, 48.4%), 33.9% (19.1%, 59.3%), and 60.7% (40.4%, 76.4%). Protection against moderate vs. severe disease may require higher antibody levels, and very low antibody levels and/or other immune responses may associate with protection against severe disease.
Collapse
Affiliation(s)
- Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David Benkeser
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Sanne Roels
- Johnson & Johnson Innovative Medicine, Beerse, Belgium
| | - Daniel J Stieh
- Janssen Vaccines and Prevention, Leiden, the Netherlands
- Vaccine Company Inc., South San Francisco, CA, USA
| | | | | | - Avi Kenny
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| | - Marco Carone
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Sanofi Vaccines R&D, Marcy l'étoile, France
| | | | - Karen Martins
- Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | | | - Flora Castellino
- Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Obrimpong Amoa-Awua
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Manjula Basappa
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Britta Flach
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Moore
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mursal Naisan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Muhammed Naqvi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah O'Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Allen Mueller
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leo Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mike Castro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Alex Luedtke
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Yiwen Lu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Chenchen Yu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michal Juraska
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nima S Hejazi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Daniel N Wolfe
- Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Jerald Sadoff
- Janssen Vaccines and Prevention, Leiden, the Netherlands
- Centivax, South San Francisco, CA, USA
| | - Glenda E Gray
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Medical Research Council, Cape Town, South Africa
| | - Beatriz Grinsztejn
- Evandro Chagas National Institute of Infectious Diseases-Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paul A Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Linda-Gail Bekker
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, Cape Town, South Africa
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Aditya H Gaur
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Valdilea G Veloso
- Evandro Chagas National Institute of Infectious Diseases-Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - April K Randhawa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michele P Andrasik
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jenny Hendriks
- Janssen Vaccines and Prevention, Leiden, the Netherlands
| | - Carla Truyers
- Johnson & Johnson Innovative Medicine, Beerse, Belgium
| | - An Vandebosch
- Johnson & Johnson Innovative Medicine, Beerse, Belgium
- argenx BV, Ghent, Belgium
| | - Frank Struyf
- Johnson & Johnson Innovative Medicine, Beerse, Belgium
- GSK, Wavre, Belgium
| | - Hanneke Schuitemaker
- Janssen Vaccines and Prevention, Leiden, the Netherlands
- Valneva, Saint-Herblain, France
| | - Macaya Douoguih
- Janssen Vaccines and Prevention, Leiden, the Netherlands
- Merck, Rahway, NJ, USA
| | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Fogarty International Center, Bethesda, MD, USA
| | - Dean Follmann
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ruben O Donis
- Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA.
| |
Collapse
|
79
|
Yang M, Li Q, Huang M, Liu X, Wang B. T Lymphocyte Mitochondrial Markers as Independent Risk Factors for Poor Prognosis of COVID-19. Infect Drug Resist 2024; 17:4887-4898. [PMID: 39524978 PMCID: PMC11550917 DOI: 10.2147/idr.s470530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background Severe Acute Respiratory Syndrome Virus 2 (SARS-CoV-2) primarily targets mitochondria. However, the description of mitochondrial signaling in immune cells remains limited in COVID-19. This study aimed to elucidate the pivotal roles played by immune cells and mitochondria in the pathogenesis of COVID-19 and the resulting clinical outcomes. Methods We obtained epidemiological characteristics, laboratory parameters and T cell mitochondrial damage indicators in 296 COVID-19 patients. And we further evaluated the predictive value of novel T lymphocyte mitochondrial markers and conventional immune inflammatory markers as clinical outcomes in COVID-19 patients. Finally, Binary logistic regression analysis was conducted to identify the independent risk factors associated with the prognosis of patients with COVID-19. Results The severe group exhibited lower counts of Mito+CD3+, Mito+CD4+, and Mito+CD8+ cells compared to the non-severe group. Significantly higher positive rates of CD3+, CD3+CD4+, and CD3+CD8+T cell mitochondrial damage were observed in the severe group compared to the non-severe group. The CD3+CD8+T cells MMP-low% had the highest AUC value of 0.864 (95% CI =0.794-0.934) to evaluate COVID-19 outcome. Binary logistic regression analysis showed that CD3+T cells MMP-low%, CD3+CD4+T cells MMP-low% and CD3+CD8+T cells MMP-low% were independent risk factors for adverse outcomes in COVID-19 patients. Conclusion Our research suggests that a substantial proportion of COVID-19 patients exhibited mitochondrial impairment with T-lymphocyte. T cells mitochondrial markers can serve as predictive factors and independent risk factors for predicting adverse outcomes in COVID-19 patients.
Collapse
Affiliation(s)
- Mengying Yang
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Qianqian Li
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Mengxin Huang
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Xiaoman Liu
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| | - Baogui Wang
- Department of Infectious Disease, Fuyang People’s Hospital, Fuyang, Anhui, People’s Republic of China
| |
Collapse
|
80
|
Pellman J, Goldstein A, Słabicki M. Human E3 ubiquitin ligases: accelerators and brakes for SARS-CoV-2 infection. Biochem Soc Trans 2024; 52:2009-2021. [PMID: 39222407 PMCID: PMC11555711 DOI: 10.1042/bst20230324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
E3 ubiquitin ligases regulate the composition of the proteome. These enzymes mono- or poly-ubiquitinate their substrates, directly altering protein function or targeting proteins for degradation by the proteasome. In this review, we discuss the opposing roles of human E3 ligases as effectors and targets in the evolutionary battle between host and pathogen, specifically in the context of SARS-CoV-2 infection. Through complex effects on transcription, translation, and protein trafficking, human E3 ligases can either attenuate SARS-CoV-2 infection or become vulnerabilities that are exploited by the virus to suppress the host's antiviral defenses. For example, the human E3 ligase RNF185 regulates the stability of SARS-CoV-2 envelope protein through the ubiquitin-proteasome pathway, and depletion of RNF185 significantly increases SARS-CoV-2 viral titer (iScience (2023) 26, 106601). We highlight recent advances that identify functions for numerous human E3 ligases in the SARS-CoV-2 life cycle and we assess their potential as novel antiviral agents.
Collapse
Affiliation(s)
- Jesse Pellman
- Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
| | - Anna Goldstein
- Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
| | - Mikołaj Słabicki
- Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, U.S.A
| |
Collapse
|
81
|
Chang ST, Chuang YF, Li AH, Fan YT, Liao MR, Chen IY, Hung RW, Yang TO, Chiu YL. Age-dependent immune profile in healthy individuals: an original study, systematic review and meta-analysis. Immun Ageing 2024; 21:75. [PMID: 39472926 PMCID: PMC11520839 DOI: 10.1186/s12979-024-00480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND The circulatory peripheral immune system is the most convenient approach for determining an individual's immune status. Due to various reasons, while previous studies have addressed the critical impact of age, most individual studies did not analyze immunosenescence in a systemic manner, which complicates the possibility of building a reference range for age-dependent immune profiles for effective immune monitoring. To address this gap, this study analyzed a group of healthy individuals to establish age-specific reference ranges of the healthy circulatory immune profile, and a systematic review and meta-analysis were conducted to validate the findings and create generalizable immune cell reference ranges. RESULTS Our study recruited a total of 363 healthy Taiwanese adults (median age 42 years [IQR 30, 62], age range 21 to 87 years, 43.3% male), including 158 under 40 years old, 127 between 40-64 years old, and 78 over 64 years old. Significant age-related alterations were observed in both adaptive and innate immune cell subsets. CD8 + T cells decreased and CD4/CD8 ratio increased, with notable increases in NK cells. CD4 + T cells were less impacted by aging, while CD8 + T cells significantly lost CD28 and increased CD31 expression with age. A clear reverse trend in naïve and memory subsets of CD4 + and CD8 + T cells was observed. Detailed reference ranges for immune cell subsets in healthy Taiwanese adults were established. A systematic review included 7,425 adults and a meta-analysis of 12 eligible studies confirmed our findings in Taiwan, enhancing generalizability. CONCLUSIONS Combined with previous studies and original data through a systematic review and meta-analysis, we highlighted and quantified significant immune profile differences between older and younger individuals. The sex and age-specific reference ranges for peripheral immune cell subsets can serve as a basis for effective immune monitoring of various aging-related illnesses.
Collapse
Affiliation(s)
- Syuan-Ting Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Fang Chuang
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Ai-Hsien Li
- Graduate Program in Biomedical Informatics and Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
- Health Management Center, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Yang-Teng Fan
- Graduate Program in Biomedical Informatics and Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
| | - Man-Ru Liao
- Graduate Program in Biomedical Informatics and Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
- Health Management Center, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - I-Yu Chen
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Ruo-Wei Hung
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Tienyu Owen Yang
- Science Officer, Cancer Epidemiology Unit, Nuffield, Department of Population Health , University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Yen-Ling Chiu
- Graduate Program in Biomedical Informatics and Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan.
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei, Taiwan.
| |
Collapse
|
82
|
Perdiguero B, Álvarez E, Marcos-Villar L, Sin L, López-Bravo M, Valverde JR, Sorzano CÓS, Falqui M, Coloma R, Esteban M, Guerra S, Gómez CE. B and T Cell Bi-Cistronic Multiepitopic Vaccine Induces Broad Immunogenicity and Provides Protection Against SARS-CoV-2. Vaccines (Basel) 2024; 12:1213. [PMID: 39591118 PMCID: PMC11598604 DOI: 10.3390/vaccines12111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic, caused by SARS-CoV-2, has highlighted the need for vaccines targeting both neutralizing antibodies (NAbs) and long-lasting cross-reactive T cells covering multiple viral proteins to provide broad and durable protection against emerging variants. METHODS To address this, here we developed two vaccine candidates, namely (i) DNA-CoV2-TMEP, expressing the multiepitopic CoV2-TMEP protein containing immunodominant and conserved T cell regions from SARS-CoV-2 structural proteins, and (ii) MVA-CoV2-B2AT, encoding a bi-cistronic multiepitopic construct that combines conserved B and T cell overlapping regions from SARS-CoV-2 structural proteins. RESULTS Both candidates were assessed in vitro and in vivo demonstrating their ability to induce robust immune responses. In C57BL/6 mice, DNA-CoV2-TMEP enhanced the recruitment of innate immune cells and stimulated SARS-CoV-2-specific polyfunctional T cells targeting multiple viral proteins. MVA-CoV2-B2AT elicited NAbs against various SARS-CoV-2 variants of concern (VoCs) and reduced viral replication and viral yields against the Beta variant in susceptible K18-hACE2 mice. The combination of MVA-CoV2-B2AT with a mutated ISG15 form as an adjuvant further increased the magnitude, breadth and polyfunctional profile of the response. CONCLUSION These findings underscore the potential of these multiepitopic proteins when expressed from DNA or MVA vectors to provide protection against SARS-CoV-2 and its variants, supporting their further development as next-generation COVID-19 vaccines.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (E.Á.); (L.M.-V.); (M.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| | - Enrique Álvarez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (E.Á.); (L.M.-V.); (M.E.)
| | - Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (E.Á.); (L.M.-V.); (M.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| | - Laura Sin
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| | - María López-Bravo
- Department of Microbial Biotechnology, CNB-CSIC, 28049 Madrid, Spain;
| | | | | | - Michela Falqui
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.F.); (R.C.); (S.G.)
| | - Rocío Coloma
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.F.); (R.C.); (S.G.)
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (E.Á.); (L.M.-V.); (M.E.)
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.F.); (R.C.); (S.G.)
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (E.Á.); (L.M.-V.); (M.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| |
Collapse
|
83
|
Bozkus CC, Brown M, Velazquez L, Thomas M, Wilson EA, O’Donnell T, Ruchnewitz D, Geertz D, Bykov Y, Kodysh J, Oguntuyo KY, Roudko V, Hoyos D, Srivastava KD, Kleiner G, Alshammary H, Karekar N, McClain C, Gopal R, Nie K, Del Valle D, Delbeau-Zagelbaum D, Rodriguez D, Setal J, The Mount Sinai COVID-19 Biobank Team, Carroll E, Wiesendanger M, Gulko PS, Charney A, Merad M, Kim-Schulze S, Lee B, Wajnberg A, Simon V, Greenbaum BD, Chowell D, Vabret N, Luksza M, Bhardwaj N. T cell epitope mapping reveals immunodominance of evolutionarily conserved regions within SARS-CoV-2 proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619918. [PMID: 39484455 PMCID: PMC11527131 DOI: 10.1101/2024.10.23.619918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
As SARS-CoV-2 variants continue to emerge capable of evading neutralizing antibodies, it has become increasingly important to fully understand the breadth and functional profile of T cell responses to determine their impact on the immune surveillance of variant strains. Here, sampling healthy individuals, we profiled the kinetics and polyfunctionality of T cell immunity elicited by mRNA vaccination. Modeling of anti-spike T cell responses against ancestral and variant strains of SARS-CoV-2 suggested that epitope immunodominance and cross-reactivity are major predictive determinants of T cell immunity. To identify immunodominant epitopes across the viral proteome, we generated a comprehensive map of CD4+ and CD8+ T cell epitopes within non-spike proteins that induced polyfunctional T cell responses in convalescent patients. We found that immunodominant epitopes mainly resided within regions that were minimally disrupted by mutations in emerging variants. Conservation analysis across historical human coronaviruses combined with in silico alanine scanning mutagenesis of non-spike proteins underscored the functional importance of mutationally-constrained immunodominant regions. Collectively, these findings identify immunodominant T cell epitopes across the mutationally-constrained SARS-CoV-2 proteome, potentially providing immune surveillance against emerging variants, and inform the design of next-generation vaccines targeting antigens throughout SARS-CoV-2 proteome for broader and more durable protection.
Collapse
Affiliation(s)
- Cansu Cimen Bozkus
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
| | - Matthew Brown
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leandra Velazquez
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcus Thomas
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric A. Wilson
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy O’Donnell
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denis Ruchnewitz
- Institute for Biological Physics, University of Cologne, 50937 Cologne, Germany
| | - Douglas Geertz
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yonina Bykov
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia Kodysh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kasopefoluwa Y. Oguntuyo
- The Department of Medicine, The Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vladimir Roudko
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Hoyos
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Komal D. Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giulio Kleiner
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hala Alshammary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neha Karekar
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher McClain
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramya Gopal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kai Nie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diane Del Valle
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Denise Rodriguez
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Setal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Emily Carroll
- The Department of Medicine, The Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margrit Wiesendanger
- The Department of Medicine, The Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Percio S. Gulko
- The Department of Medicine, The Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Charney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ania Wajnberg
- The Department of Medicine, The Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Diego Chowell
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicolas Vabret
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marta Luksza
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
84
|
Shen CJ, Hu SY, Hou CP, Shen CF, Cheng CM. T Cell Responses to SARS-CoV-2 in Vaccinated Pregnant Women: A Comparative Study of Pre-Pregnancy and During-Pregnancy Infections. Vaccines (Basel) 2024; 12:1208. [PMID: 39591111 PMCID: PMC11598868 DOI: 10.3390/vaccines12111208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
The COVID-19 pandemic has posed unprecedented challenges to global public health, particularly for vulnerable populations like pregnant women. This study delves into the T cell immune responses in pregnant women with confirmed SARS-CoV-2 infection, all of whom received three doses of a COVID-19 vaccine. Using the ELISpot assay, we measured T cell responses against SARS-CoV-2 spike S1 and nucleocapsid peptides in two groups: those infected before and during pregnancy. Our results showed weak to moderate correlations between T cell responses and neutralizing antibody levels, with no statistically significant differences between the two groups. T cell reactivity appeared to decrease over time post-diagnosis, regardless of infection timing. Intriguingly, over half of the participants maintained detectable T cell memory responses beyond one year post-infection, suggesting the long-term persistence of cellular immunity. These insights contribute to the understanding of COVID-19 immunology in pregnant women, highlighting the importance of considering both humoral and cellular immune responses in this high-risk population.
Collapse
Affiliation(s)
- Ching-Ju Shen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shu-Yu Hu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan;
| | | | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan;
| |
Collapse
|
85
|
Eisa M, Flores N, Khedr O, Gomez-Escobar E, Bédard N, Abdeltawab NF, Bruneau J, Grakoui A, Shoukry NH. Activation-Induced Marker Assay to Identify and Isolate HCV-Specific T Cells for Single-Cell RNA-Seq Analysis. Viruses 2024; 16:1623. [PMID: 39459954 PMCID: PMC11512294 DOI: 10.3390/v16101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Identification and isolation of antigen-specific T cells for downstream transcriptomic analysis is key for various immunological studies. Traditional methods using major histocompatibility complex (MHC) multimers are limited by the number of predefined immunodominant epitopes and MHC matching of the study subjects. Activation-induced markers (AIM) enable highly sensitive detection of rare antigen-specific T cells irrespective of the availability of MHC multimers. Herein, we have developed an AIM assay for the detection, sorting and subsequent single-cell RNA sequencing (scRNA-seq) analysis of hepatitis C virus (HCV)-specific T cells. We examined different combinations of the activation markers CD69, CD40L, OX40, and 4-1BB at 6, 9, 18 and 24 h post stimulation with HCV peptide pools. AIM+ CD4 T cells exhibited upregulation of CD69 and CD40L as early as 6 h post-stimulation, while OX40 and 4-1BB expression was delayed until 18 h. AIM+ CD8 T cells were characterized by the coexpression of CD69 and 4-1BB at 18 h, while the expression of CD40L and OX40 remained low throughout the stimulation period. AIM+ CD4 and CD8 T cells were successfully sorted and processed for scRNA-seq analysis examining gene expression and T cell receptor (TCR) usage. scRNA-seq analysis from this one subject revealed that AIM+ CD4 T (CD69+ CD40L+) cells predominantly represented Tfh, Th1, and Th17 profiles, whereas AIM+ CD8 T (CD69+ 4-1BB+) cells primarily exhibited effector and effector memory profiles. TCR analysis identified 1023 and 160 unique clonotypes within AIM+ CD4 and CD8 T cells, respectively. In conclusion, this approach offers highly sensitive detection of HCV-specific T cells that can be applied for cohort studies, thus facilitating the identification of specific gene signatures associated with infection outcome and vaccination.
Collapse
Affiliation(s)
- Mohamed Eisa
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
| | - Nicol Flores
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Omar Khedr
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
| | - Elsa Gomez-Escobar
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
| | - Nourtan F. Abdeltawab
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 3296121, Egypt
- School of Pharmacy, Newgiza University, Giza 3296121, Egypt
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
- Département de Médecine Familiale et Département d’Urgence, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Arash Grakoui
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, Canada (N.F.A.)
- Département de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
86
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
87
|
Majumdar S, Weaver JD, Pontejo SM, Minai M, Lu X, Gao JL, Holmes G, Johnson R, Zhang H, Kelsall BL, Farber JM, Alves DA, Murphy PM. Cxcl10 is required for survival during SARS-CoV-2 infection in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.30.613319. [PMID: 39803542 PMCID: PMC11722219 DOI: 10.1101/2024.09.30.613319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the coronavirus disease 2019 (COVID-19) pandemic, remains endemic worldwide ~5 years since the first documented case. Severe COVID-19 is widely considered to be caused by a dysregulated immune response to SARS-CoV-2 within the respiratory tract. Circulating levels of the chemokine CXCL10 are strongly positively associated with poor outcome; however, its precise role in pathogenesis and its suitability as a therapeutic target have remained undefined. Here, we challenged 4-6 month old C57BL/6 mice genetically deficient in Cxcl10 with a mouse-adapted strain of SARS-CoV-2. Infected male, but not female, Cxcl10 -/- mice displayed increased mortality compared to wild type controls. Histopathological damage, inflammatory gene induction and virus load in the lungs of male mice 4 days post infection and before death were not broadly influenced by Cxcl10 deficiency. However, accumulation of B cells and both CD4+ and CD8+ T cells in the lung parenchyma of infected mice was reduced in the absence of Cxcl10. Thus, during acute SARS-CoV-2 infection, Cxcl10 regulates lymphocyte infiltration in the lung and confers protection against mortality. Our preclinical model results do not support targeting CXCL10 therapeutically in severe COVID-19.
Collapse
Affiliation(s)
- Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joseph D. Weaver
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sergio M. Pontejo
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xinping Lu
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gibran Holmes
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reed Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hongwei Zhang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian L. Kelsall
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua M. Farber
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Derron A. Alves
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Philip M. Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
88
|
Gagne M, Flynn BJ, Andrew SF, Marquez J, Flebbe DR, Mychalowych A, Lamb E, Davis-Gardner ME, Burnett MR, Serebryannyy LA, Lin BC, Ziff ZE, Maule E, Carroll R, Naisan M, Jethmalani Y, Pessaint L, Todd JPM, Doria-Rose NA, Case JB, Dmitriev IP, Kashentseva EA, Ying B, Dodson A, Kouneski K, O'Dell S, Wali B, Ellis M, Godbole S, Laboune F, Henry AR, Teng IT, Wang D, Wang L, Zhou Q, Zouantchangadou S, Van Ry A, Lewis MG, Andersen H, Kwong PD, Curiel DT, Roederer M, Nason MC, Foulds KE, Suthar MS, Diamond MS, Douek DC, Seder RA. Mucosal adenovirus vaccine boosting elicits IgA and durably prevents XBB.1.16 infection in nonhuman primates. Nat Immunol 2024; 25:1913-1927. [PMID: 39227514 PMCID: PMC11436372 DOI: 10.1038/s41590-024-01951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
A mucosal route of vaccination could prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication at the site of infection and limit transmission. We compared protection against heterologous XBB.1.16 challenge in nonhuman primates (NHPs) ~5 months following intramuscular boosting with bivalent mRNA encoding WA1 and BA.5 spike proteins or mucosal boosting with a WA1-BA.5 bivalent chimpanzee adenoviral-vectored vaccine delivered by intranasal or aerosol device. NHPs boosted by either mucosal route had minimal virus replication in the nose and lungs, respectively. By contrast, protection by intramuscular mRNA was limited to the lower airways. The mucosally delivered vaccine elicited durable airway IgG and IgA responses and, unlike the intramuscular mRNA vaccine, induced spike-specific B cells in the lungs. IgG, IgA and T cell responses correlated with protection in the lungs, whereas mucosal IgA alone correlated with upper airway protection. This study highlights differential mucosal and serum correlates of protection and how mucosal vaccines can durably prevent infection against SARS-CoV-2.
Collapse
Affiliation(s)
- Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Josue Marquez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dillon R Flebbe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Mychalowych
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Evan Lamb
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Matthew R Burnett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leonid A Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zohar E Ziff
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Erin Maule
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robin Carroll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mursal Naisan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yogita Jethmalani
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elena A Kashentseva
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bushra Wali
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Madison Ellis
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danyi Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qiong Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mehul S Suthar
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
- Center for Vaccines & Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
89
|
Verma SK, Ana-Sosa-Batiz F, Timis J, Shafee N, Maule E, Pinto PBA, Conner C, Valentine KM, Cowley DO, Miller R, Elong Ngono A, Tran L, Varghese K, Dos Santos Alves RP, Hastie KM, Saphire EO, Webb DR, Jarnagin K, Kim K, Shresta S. Influence of Th1 versus Th2 immune bias on viral, pathological, and immunological dynamics in SARS-CoV-2 variant-infected human ACE2 knock-in mice. EBioMedicine 2024; 108:105361. [PMID: 39353281 PMCID: PMC11472634 DOI: 10.1016/j.ebiom.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Mouse models that recapitulate key features of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection are important tools for understanding complex interactions between host genetics, immune responses, and SARS-CoV-2 pathogenesis. Little is known about how predominantly cellular (Th1 type) versus humoral (Th2 type) immune responses influence SARS-CoV-2 dynamics, including infectivity and disease course. METHODS We generated knock-in (KI) mice expressing human ACE2 (hACE2) and/or human TMPRSS2 (hTMPRSS2) on Th1-biased (C57BL/6; B6) and Th2-biased (BALB/c) genetic backgrounds. Mice were infected intranasally with SARS-CoV-2 Delta (B.1.617.2) or Omicron BA.1 (B.1.1.529) variants, followed by assessment of disease course, respiratory tract infection, lung histopathology, and humoral and cellular immune responses. FINDINGS In both B6 and BALB/c mice, hACE2 expression was required for infection of the lungs with Delta, but not Omicron BA.1. Disease severity was greater in Omicron BA.1-infected hTMPRSS2-KI and double-KI BALB/c mice compared with B6 mice, and in Delta-infected double-KI B6 and BALB/c mice compared with hACE2-KI mice. hACE2-KI B6 mice developed more severe lung pathology and more robust SARS-CoV-2-specific splenic CD8 T cell responses compared with hACE2-KI BALB/c mice. There were no notable differences between the two genetic backgrounds in plasma cell, germinal center B cell, or antibody responses to SARS-CoV-2. INTERPRETATION SARS-CoV-2 Delta and Omicron BA.1 infection, disease course, and CD8 T cell response are influenced by the host genetic background. These humanized mice hold promise as important tools for investigating the mechanisms underlying the heterogeneity of SARS-CoV-2-induced pathogenesis and immune response. FUNDING This work was funded by NIH U19 AI142790-02S1, the GHR Foundation, the Arvin Gottleib Foundation, and the Overton family (to SS and EOS); Prebys Foundation (to SS); NIH R44 AI157900 (to KJ); and by an American Association of Immunologists Career Reentry Fellowship (FASB).
Collapse
Affiliation(s)
- Shailendra Kumar Verma
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Julia Timis
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Erin Maule
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Chris Conner
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kristen M Valentine
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Dale O Cowley
- TransViragen Inc., 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Robyn Miller
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Annie Elong Ngono
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Linda Tran
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Krithik Varghese
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - David R Webb
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kurt Jarnagin
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
90
|
Nguyen THO, Rowntree LC, Chua BY, Thwaites RS, Kedzierska K. Defining the balance between optimal immunity and immunopathology in influenza virus infection. Nat Rev Immunol 2024; 24:720-735. [PMID: 38698083 DOI: 10.1038/s41577-024-01029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
Influenza A viruses remain a global threat to human health, with continued pandemic potential. In this Review, we discuss our current understanding of the optimal immune responses that drive recovery from influenza virus infection, highlighting the fine balance between protective immune mechanisms and detrimental immunopathology. We describe the contribution of innate and adaptive immune cells, inflammatory modulators and antibodies to influenza virus-specific immunity, inflammation and immunopathology. We highlight recent human influenza virus challenge studies that advance our understanding of susceptibility to influenza and determinants of symptomatic disease. We also describe studies of influenza virus-specific immunity in high-risk groups following infection and vaccination that inform the design of future vaccines to promote optimal antiviral immunity, particularly in vulnerable populations. Finally, we draw on lessons from the COVID-19 pandemic to refocus our attention to the ever-changing, highly mutable influenza A virus, predicted to cause future global pandemics.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
91
|
Notarbartolo S. T-Cell Immune Responses to SARS-CoV-2 Infection and Vaccination. Vaccines (Basel) 2024; 12:1126. [PMID: 39460293 PMCID: PMC11511197 DOI: 10.3390/vaccines12101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The innate and adaptive immune systems collaborate to detect SARS-CoV-2 infection, minimize the viral spread, and kill infected cells, ultimately leading to the resolution of the infection. The adaptive immune system develops a memory of previous encounters with the virus, providing enhanced responses when rechallenged by the same pathogen. Such immunological memory is the basis of vaccine function. Here, we review the current knowledge on the immune response to SARS-CoV-2 infection and vaccination, focusing on the pivotal role of T cells in establishing protective immunity against the virus. After providing an overview of the immune response to SARS-CoV-2 infection, we describe the main features of SARS-CoV-2-specific CD4+ and CD8+ T cells, including cross-reactive T cells, generated in patients with different degrees of COVID-19 severity, and of Spike-specific CD4+ and CD8+ T cells induced by vaccines. Finally, we discuss T-cell responses to SARS-CoV-2 variants and hybrid immunity and conclude by highlighting possible strategies to improve the efficacy of COVID-19 vaccination.
Collapse
Affiliation(s)
- Samuele Notarbartolo
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
92
|
Im KI, Kim N, Lee J, Oh UH, Lee HW, Lee DG, Min GJ, Lee R, Lee J, Kim S, Cho SG. SARS-CoV-2-Specific T-Cell as a Potent Therapeutic Strategy against Immune Evasion of Emerging COVID-19 Variants. Int J Mol Sci 2024; 25:10512. [PMID: 39408840 PMCID: PMC11477143 DOI: 10.3390/ijms251910512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Despite advances in vaccination and therapies for coronavirus disease, challenges remain due to reduced antibody longevity and the emergence of virulent variants like Omicron (BA.1) and its subvariants (BA.1.1, BA.2, BA.3, and BA.5). This study explored the potential of adoptive immunotherapy and harnessing the protective abilities using virus-specific T cells (VSTs). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) VSTs were generated by stimulating donor-derived peripheral blood mononuclear cells with spike, nucleocapsid, and membrane protein peptide mixtures. Phenotypic characterization, including T-cell receptor (TCR) vβ and pentamer analyses, was performed on the ex vivo-expanded cells. We infected human leukocyte antigen (HLA)-partially matched human Calu-3 cells with various authentic SARS-CoV-2 strains in a Biosafety Level 3 facility and co-cultured them with VSTs. VSTs exhibited a diverse TCR vβ repertoire, confirming their ability to target a broad range of SARS-CoV-2 antigens from both the ancestral and mutant strains, including Omicron BA.1 and BA.5. These ex vivo-expanded cells exhibited robust cytotoxicity and low alloreactivity against HLA-partially matched SARS-CoV-2-infected cells. Their cytotoxic effects were consistent across variants, targeting conserved spike and nucleocapsid epitopes. Our findings suggest that third-party partial HLA-matching VSTs could counter immune-escape mechanisms posed by emerging variants of concern.
Collapse
Affiliation(s)
- Keon-Il Im
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.-I.I.); (N.K.); (J.L.); (G.-J.M.)
- Research and Development Division, LucasBio Co., Ltd., Seoul 06591, Republic of Korea; (U.-H.O.); (H.-W.L.)
| | - Nayoun Kim
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.-I.I.); (N.K.); (J.L.); (G.-J.M.)
- Research and Development Division, LucasBio Co., Ltd., Seoul 06591, Republic of Korea; (U.-H.O.); (H.-W.L.)
| | - Junseok Lee
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.-I.I.); (N.K.); (J.L.); (G.-J.M.)
| | - Ui-Hyeon Oh
- Research and Development Division, LucasBio Co., Ltd., Seoul 06591, Republic of Korea; (U.-H.O.); (H.-W.L.)
| | - Hye-Won Lee
- Research and Development Division, LucasBio Co., Ltd., Seoul 06591, Republic of Korea; (U.-H.O.); (H.-W.L.)
| | - Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.-G.L.); (R.L.)
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Gi-June Min
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.-I.I.); (N.K.); (J.L.); (G.-J.M.)
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Raeseok Lee
- Division of Infectious Diseases, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.-G.L.); (R.L.)
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jinah Lee
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Republic of Korea; (J.L.); (S.K.)
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Republic of Korea; (J.L.); (S.K.)
| | - Seok-Goo Cho
- Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.-I.I.); (N.K.); (J.L.); (G.-J.M.)
- Research and Development Division, LucasBio Co., Ltd., Seoul 06591, Republic of Korea; (U.-H.O.); (H.-W.L.)
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
93
|
Rha MS, Kim G, Lee S, Kim J, Jeong Y, Jung CM, Noh HE, Noh JY, Kim YM, Cho HJ, Kim CH, Shin EC. SARS-CoV-2 spike-specific nasal-resident CD49a +CD8 + memory T cells exert immediate effector functions with enhanced IFN-γ production. Nat Commun 2024; 15:8355. [PMID: 39333516 PMCID: PMC11436836 DOI: 10.1038/s41467-024-52689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Virus-specific nasal resident T cells are important for protection against subsequent infection with a similar virus. Here we examine the phenotypes and functions of SARS-CoV-2-specific T cells in the nasal mucosa of vaccinated individuals with breakthrough infection (BTI) or without infection. Nasal tissues are obtained from participants during sinus surgery. Analysis of activation-induced markers implicates that a considerable proportion of spike (S)-reactive nasal CD8+ T cells express CD103, a tissue-resident marker. MHC-I multimer staining is performed to analyze the ex vivo phenotype and function of SARS-CoV-2 S-specific CD8+ T cells. We detect multimer+CD8+ T cells with tissue-resident phenotypes in nasal tissue samples from vaccinees without infection as well as vaccinees with BTI. Multimer+CD8+ T cells remain present in nasal tissues over one year after the last exposure to S antigen, although the frequency decreases. Upon direct ex vivo stimulation with epitope peptides, nasal multimer+CD8+ T cells-particularly the CD49a+ subset-exhibit immediate effector functions, including IFN-γ production. CITE-seq analysis of S-reactive AIM+CD8+ T cells confirms the enhanced effector function of the CD49a+ subset. These findings indicate that among individuals previously exposed to S antigen by vaccination or BTI, S-specific nasal-resident CD49a+CD8+ memory T cells can rapidly respond to SARS-CoV-2 during infection or reinfection.
Collapse
Affiliation(s)
- Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Gyeongyeob Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sol Lee
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihye Kim
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science, Daejeon, Republic of Korea
| | - Yeonsu Jeong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chan Min Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hae Eun Noh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong Min Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea.
- The Airway Mucus Institute, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea.
| | - Eui-Cheol Shin
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science, Daejeon, Republic of Korea.
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
94
|
Orosa Vázquez I, Díaz M, Zúñiga Rosales Y, Amada K, Chang J, Relova Hernández E, Tundidor Y, Roblejo Balbuena H, Monzón G, Torres Rives B, Noa Romero E, Carrillo Valdés D, Valdivia Álvarez I, Delahanty Fernández A, Díaz C, Solozabal J, Gil M, Sánchez B, Rojas G, Marcheco B, Carmenate T. Studying the Humoral Response against SARS-CoV-2 in Cuban COVID-19 Recovered Patients. J Immunol Res 2024; 2024:7112940. [PMID: 39359695 PMCID: PMC11446615 DOI: 10.1155/2024/7112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/30/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Understanding the immune response generated by SARS-CoV-2 is critical for assessing efficient therapeutic protocols and gaining insights into the durability of protective immunity. The current work was aimed at studying the specific humoral responses against SARS-CoV-2 in Cuban COVID-19 convalescents. We developed suitable tools and methods based on ELISA methodology, for supporting this evaluation. Here, we describe the development of an ELISA for the quantification of anti-RBD IgG titers in a large number of samples and a similar test in the presence of NH4SCN as chaotropic agent for estimating the RBD specific antibody avidity. Additionally, a simple and rapid ELISA based on antibody-mediated blockage of the binding RBD-ACE2 was implemented for detecting, as a surrogate of conventional test, the levels of anti-RBD inhibitory antibodies in convalescent sera. In a cohort of 273 unvaccinated convalescents, we identified higher anti-RBD IgG titer (1 : 1,330, p < 0.0001) and higher levels of inhibitory antibodies blocking RBD-ACE2 binding (1 : 216, p < 0.05) among those who had recovered from severe illness. Our results suggest that disease severity, and not demographic features such as age, sex, and skin color, is the main determinant of the magnitude and neutralizing ability of the anti-RBD antibody response. An additional paired longitudinal assessment in 14 symptomatic convalescents revealed a decline in the antiviral antibody response and the persistence of neutralizing antibodies for at least 4 months after the onset of symptoms. Overall, SARS-CoV-2 infection elicits different levels of antibody response according to disease severity that declines over time and can be monitored using our homemade serological assays.
Collapse
Affiliation(s)
- Ivette Orosa Vázquez
- Center of Molecular Immunology, 15th Avenue and 216 Street, Siboney, Playa, Havana, Cuba
| | - Marianniz Díaz
- Center of Molecular Immunology, 15th Avenue and 216 Street, Siboney, Playa, Havana, Cuba
| | - Yaima Zúñiga Rosales
- National Center of Medical Genetics, 31st Avenue, N°3102 and 146 Street, Cubanacán, Playa, Havana, Cuba
| | - Klayris Amada
- Julio Trigo Hospital, km 7½ Calzada de Bejucal, Diez de Octubre, Havana, Cuba
| | - Janoi Chang
- Center of Molecular Immunology, 15th Avenue and 216 Street, Siboney, Playa, Havana, Cuba
| | | | - Yaima Tundidor
- Center of Molecular Immunology, 15th Avenue and 216 Street, Siboney, Playa, Havana, Cuba
| | - Hilda Roblejo Balbuena
- National Center of Medical Genetics, 31st Avenue, N°3102 and 146 Street, Cubanacán, Playa, Havana, Cuba
| | - Giselle Monzón
- National Center of Medical Genetics, 31st Avenue, N°3102 and 146 Street, Cubanacán, Playa, Havana, Cuba
| | - Bárbara Torres Rives
- National Center of Medical Genetics, 31st Avenue, N°3102 and 146 Street, Cubanacán, Playa, Havana, Cuba
| | - Enrique Noa Romero
- Research Center of Civil Defense, José de las Lajas, San, Mayabeque, Cuba
| | | | | | | | - Claudia Díaz
- Center of Molecular Immunology, 15th Avenue and 216 Street, Siboney, Playa, Havana, Cuba
| | - Joaquín Solozabal
- Center of Molecular Immunology, 15th Avenue and 216 Street, Siboney, Playa, Havana, Cuba
| | - Mileidys Gil
- Julio Trigo Hospital, km 7½ Calzada de Bejucal, Diez de Octubre, Havana, Cuba
| | - Belinda Sánchez
- Center of Molecular Immunology, 15th Avenue and 216 Street, Siboney, Playa, Havana, Cuba
| | - Gertrudis Rojas
- Center of Molecular Immunology, 15th Avenue and 216 Street, Siboney, Playa, Havana, Cuba
| | - Beatriz Marcheco
- National Center of Medical Genetics, 31st Avenue, N°3102 and 146 Street, Cubanacán, Playa, Havana, Cuba
| | - Tania Carmenate
- Center of Molecular Immunology, 15th Avenue and 216 Street, Siboney, Playa, Havana, Cuba
| |
Collapse
|
95
|
Juhl AK, Dietz LL, Søgaard OS, Reekie J, Nielsen H, Johansen IS, Benfield T, Wiese L, Stærke NB, Jensen TØ, Olesen R, Iversen K, Fogh K, Bodilsen J, Madsen LW, Lindvig SO, Raben D, Andersen SD, Hvidt AK, Andreasen SR, Baerends EAM, Lundgren J, Østergaard L, Tolstrup M. Longitudinal Evaluation of Severe Acute Respiratory Syndrome Coronavirus 2 T-Cell Immunity Over 2 Years Following Vaccination and Infection. J Infect Dis 2024; 230:e605-e615. [PMID: 38687181 PMCID: PMC11420770 DOI: 10.1093/infdis/jiae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Within a year of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, vaccines inducing a robust humoral and cellular immune response were implemented worldwide. However, emergence of novel variants and waning vaccine-induced immunity led to implementation of additional vaccine boosters. METHODS This prospective study evaluated the temporal profile of cellular and serological responses in a cohort of 639 SARS-CoV-2-vaccinated participants, of whom a large proportion experienced a SARS-CoV-2 infection. All participants were infection naïve at the time of their first vaccine dose. Proportions of SARS-CoV-2 spike-specific T cells were determined after each vaccine dose using the activation-induced marker assay, while levels of circulating SARS-CoV-2 antibodies were determined by the Meso Scale serology assay. RESULTS We found a significant increase in SARS-CoV-2 spike-specific CD4+ and CD8+ T-cell responses following the third dose of a SARS-CoV-2 messenger RNA vaccine as well as enhanced CD8+ T-cell responses after the fourth dose. Furthermore, increased age was associated with a poorer response. Finally, we observed that SARS-CoV-2 infection boosts both the cellular and humoral immune response, relative to vaccine-induced immunity alone. CONCLUSIONS Our findings highlight the boosting effect on T-cell immunity of repeated vaccine administration. The combination of multiple vaccine doses and SARS-CoV-2 infections maintains population T-cell immunity, although with reduced levels in the elderly.
Collapse
Affiliation(s)
- Anna Karina Juhl
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus
| | - Lisa Loksø Dietz
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus
| | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus
| | - Joanne Reekie
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg
| | - Isik Somuncu Johansen
- Department of Infectious Diseases, Odense University Hospital
- Department of Clinical Research, University of Southern Denmark, Odense
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital–Amager and Hvidovre, Hvidovre
- Department of Clinical Medicine, University of Copenhagen, Copenhagen
| | - Lothar Wiese
- Department of Medicine, Zealand University Hospital, Roskilde
| | - Nina Breinholt Stærke
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus
| | - Tomas Østergaard Jensen
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus
| | - Kasper Iversen
- Departments of Cardiology and Emergency Medicine, Herlev Hospital, Herlev
| | - Kamille Fogh
- Departments of Cardiology and Emergency Medicine, Herlev Hospital, Herlev
| | - Jacob Bodilsen
- Department of Infectious Diseases, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg
| | - Lone Wulff Madsen
- Department of Infectious Diseases, Odense University Hospital
- Department of Regional Health Research, University of Southern Denmark, Odense
| | | | - Dorthe Raben
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen
| | | | | | | | | | - Jens Lundgren
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen
- Department of Infectious Diseases, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus
| |
Collapse
|
96
|
Smith CL, Didion E, Aung H, Tamilselvan B, Bej T, Oyebanji OA, Shive CL, Wilson BM, Cameron M, Cameron C, Gravenstein S, Canaday DH. Longitudinal Analysis of Nursing Home Residents' T-Cell Responses After SARS-CoV-2 mRNA Vaccinations Shows Influence of Biological Sex and Infection History. J Infect Dis 2024; 230:635-644. [PMID: 38743816 PMCID: PMC11420774 DOI: 10.1093/infdis/jiae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Vaccines and vaccine boosting have blunted excess morbidity and mortality from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in older nursing home residents (NHR). However, the impact of repeated vaccination on the T-cell response based on biological sex and prior infection of NHR remain understudied. METHODS We examined T-cell responses to SARS-CoV-2 mRNA vaccines in a cohort of NHR and healthcare workers (HCW) over 2 years. We used interferon-γ ELIspot and flow cytometry to assess T-cell response before, 2 weeks, and 6 months after the initial series and each of 2 booster vaccines. We analyzed these data longitudinally with mixed-effect modeling and also examined subsets of our cohorts for additional changes in T-cell effector function. RESULTS Prior SARS-CoV-2 infection and female sex contributed to higher T-cell response in NHR but not HCW. When looking across time points, NHR but not HCW with prior infection had significantly higher T-cell responses than infection-naive subjects. These patterns of response were maintained across multiple booster vaccinations. CONCLUSIONS These results suggest that the age, multimorbidity, and/or frailty of the NHR cohort may accentuate sex and infection status differences in T-cell response to mRNA vaccination.
Collapse
Affiliation(s)
- Carson L Smith
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Elise Didion
- Division of Infectious Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Htin Aung
- Division of Infectious Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Taissa Bej
- Geriatric Research, Education, and Clinical Center, Louis Stokes Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Oladayo A Oyebanji
- Division of Infectious Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Carey L Shive
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Geriatric Research, Education, and Clinical Center, Louis Stokes Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Brigid M Wilson
- Geriatric Research, Education, and Clinical Center, Louis Stokes Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - Mark Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Cheryl Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
| | - Stefan Gravenstein
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Center on Innovation in Long-Term Services and Supports, Providence Veterans Administration Medical Center, Providence, Rhode Island, USA
| | - David H Canaday
- Division of Infectious Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Geriatric Research, Education, and Clinical Center, Louis Stokes Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| |
Collapse
|
97
|
Muraoka D, Moi ML, Muto O, Nakatsukasa T, Deng S, Takashima C, Yamaguchi R, Sawada SI, Hayakawa H, Nguyen TTN, Haseda Y, Soga T, Matsushita H, Ikeda H, Akiyoshi K, Harada N. Low-frequency CD8 + T cells induced by SIGN-R1 + macrophage-targeted vaccine confer SARS-CoV-2 clearance in mice. NPJ Vaccines 2024; 9:173. [PMID: 39294173 PMCID: PMC11411095 DOI: 10.1038/s41541-024-00961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/01/2024] [Indexed: 09/20/2024] Open
Abstract
Vaccine-induced T cells and neutralizing antibodies are essential for protection against SARS-CoV-2. Previously, we demonstrated that an antigen delivery system, pullulan nanogel (PNG), delivers vaccine antigen to lymph node medullary macrophages and thereby enhances the induction of specific CD8+ T cells. In this study, we revealed that medullary macrophage-selective delivery by PNG depends on its binding to a C-type lectin SIGN-R1. In a K18-hACE2 mouse model of SARS-CoV-2 infection, vaccination with a PNG-encapsulated receptor-binding domain of spike protein decreased the viral load and prolonged the survival in the CD8+ T cell- and B cell-dependent manners. T cell receptor repertoire analysis revealed that although the vaccine induced T cells at various frequencies, low-frequency specific T cells mainly promoted virus clearance. Thus, the induction of specific CD8+ T cells that respond quickly to viral infection, even at low frequencies, is important for vaccine efficacy and can be achieved by SIGN-R1+ medullary macrophage-targeted antigen delivery.
Collapse
Affiliation(s)
- Daisuke Muraoka
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan.
| | - Meng Ling Moi
- School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | - Osamu Muto
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaaki Nakatsukasa
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Situo Deng
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Chieko Takashima
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shin-Ichi Sawada
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
| | - Haruka Hayakawa
- School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | | | | | | | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazunari Akiyoshi
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
98
|
Manfroi B, Cuc BT, Sokal A, Vandenberghe A, Temmam S, Attia M, El Behi M, Camaglia F, Nguyen NT, Pohar J, Salem-Wehbe L, Pottez-Jouatte V, Borzakian S, Elenga N, Galeotti C, Morelle G, de Truchis de Lays C, Semeraro M, Romain AS, Aubart M, Ouldali N, Mahuteau-Betzer F, Beauvineau C, Amouyal E, Berthaud R, Crétolle C, Arnould MD, Faye A, Lorrot M, Benoist G, Briand N, Courbebaisse M, Martin R, Van Endert P, Hulot JS, Blanchard A, Tartour E, Leite-de-Moraes M, Lezmi G, Ménager M, Luka M, Reynaud CA, Weill JC, Languille L, Michel M, Chappert P, Mora T, Walczak AM, Eloit M, Bacher P, Scheffold A, Mahévas M, Sermet-Gaudelus I, Fillatreau S. Preschool-age children maintain a distinct memory CD4 + T cell and memory B cell response after SARS-CoV-2 infection. Sci Transl Med 2024; 16:eadl1997. [PMID: 39292802 DOI: 10.1126/scitranslmed.adl1997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/19/2024] [Indexed: 09/20/2024]
Abstract
The development of the human immune system lasts for several years after birth. The impact of this maturation phase on the quality of adaptive immunity and the acquisition of immunological memory after infection at a young age remains incompletely defined. Here, using an antigen-reactive T cell (ARTE) assay and multidimensional flow cytometry, we profiled circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-reactive CD3+CD4+CD154+ T cells in children and adults before infection, during infection, and 11 months after infection, stratifying children into separate age groups and adults according to disease severity. During SARS-CoV-2 infection, children younger than 5 years old displayed a lower antiviral CD4+ T cell response, whereas children older than 5 years and adults with mild disease had, quantitatively and phenotypically, comparable virus-reactive CD4+ T cell responses. Adults with severe disease mounted a response characterized by higher frequencies of virus-reactive proinflammatory and cytotoxic T cells. After SARS-CoV-2 infection, preschool-age children not only maintained neutralizing SARS-CoV-2-reactive antibodies postinfection comparable to adults but also had phenotypically distinct memory T cells displaying high inflammatory features and properties associated with migration toward inflamed sites. Moreover, preschool-age children had markedly fewer circulating virus-reactive memory B cells compared with the other cohorts. Collectively, our results reveal unique facets of antiviral immunity in humans at a young age and indicate that the maturation of adaptive responses against SARS-CoV-2 toward an adult-like profile occurs in a progressive manner.
Collapse
Affiliation(s)
- Benoît Manfroi
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Bui Thi Cuc
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Aurélien Sokal
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- Service de Médecine interne, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP), 92110 Clichy, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Alexis Vandenberghe
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
- INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Sarah Temmam
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, and Institut Pasteur, the WOAH Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
| | - Mikaël Attia
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Université Paris-Cité, CNRS UMR 3569, 75015 Paris, France
| | - Mohamed El Behi
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Francesco Camaglia
- Laboratoire de physique de l'École normale supérieure, CNRS, Paris Sciences et Lettres (PSL) University, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Ngan Thu Nguyen
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Jelka Pohar
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Immunology and Cellular Immunotherapy (ICI) Group, Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Layale Salem-Wehbe
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Valentine Pottez-Jouatte
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Sibyline Borzakian
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- CNRS UMR 9187, INSERM U1196, Chemistry and Modeling for the Biological of Cancer, Institut Curie, PSL Research University, 91405 Orsay, France
- Université Paris-Saclay, 91405 Orsay, France
| | - Narcisse Elenga
- Service de Pédiatrie, Centre Hospitalier de Cayenne, 97300 French Guiana
| | - Caroline Galeotti
- Department of Pediatric Rheumatology, Bicêtre Hospital, AP-HP, Paris-Saclay University, 94275 Le Kremlin-Bicêtre, France
| | - Guillaume Morelle
- Department of General Paediatrics, Hôpital Bicêtre, AP-HP, University of Paris Saclay, 94275 Le Kremlin-Bicêtre, France
| | - Camille de Truchis de Lays
- Service de Pédiatrie. Hôpital Jean-Verdier, AP-HP, Hôpitaux Universitaires Paris Seine-Saint-Denis, 93140 Bondy, France
| | - Michaela Semeraro
- University of Paris Cité, and Clinical Investigation Center, Clinical Research Unit, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Anne-Sophie Romain
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Trousseau Hospital, General Paediatrics Department, 75012 Paris, France
| | - Mélodie Aubart
- INSERM U1163, Genetic Predisposition to Infectious Diseases, Imagine Institute, Université Paris Cité, Paris F-75015, France
- Pediatric Neurology Department, Necker-Enfants Malades Universitary Hospital, AP-HP, Paris-Cité University, 75015 Paris, France
| | - Naim Ouldali
- Department of General Pediatrics, Pediatric Infectious Disease and Internal Medicine, Robert Debré University Hospital, Assistance Publique-Hôpitaux de Paris, 75019 Paris, France
- Paris Cité University, INSERM UMR 1137, Infection, Antimicrobials, Modelling, Evolution (IAME), 75018 Paris, France
| | - Florence Mahuteau-Betzer
- CNRS UMR 9187, INSERM U1196, Chemistry and Modeling for the Biological of Cancer, Institut Curie, PSL Research University, 91405 Orsay, France
- Université Paris-Saclay, 91405 Orsay, France
| | - Claire Beauvineau
- CNRS UMR 9187, INSERM U1196, Chemistry and Modeling for the Biological of Cancer, Institut Curie, PSL Research University, 91405 Orsay, France
- Université Paris-Saclay, 91405 Orsay, France
| | - Elsa Amouyal
- SIREDO Pediatric Oncology Center, Institut Curie, Paris-Science Lettres University, 75005 Paris, France
| | - Romain Berthaud
- Pediatric Nephrology, Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA) Reference Center, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
- Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Célia Crétolle
- Département de Pédiatrie, Service de Chirurgie viscérale pédiatrique, Hôpital Universitaire Necker-Enfants Malades, GH Paris Centre, 75015 Paris, France
| | - Marc Duval Arnould
- Department of General Paediatrics, Hôpital Bicêtre, AP-HP, University of Paris Saclay, 94275 Le Kremlin-Bicêtre, France
| | - Albert Faye
- Pediatric Neurology Department, Necker-Enfants Malades Universitary Hospital, AP-HP, Paris-Cité University, 75015 Paris, France
| | - Mathie Lorrot
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Trousseau Hospital, General Paediatrics Department, 75012 Paris, France
| | - Grégoire Benoist
- Service de pédiatrie générale et hôpital de jour allergologie, CHU Ambroise-Paré, AP-HP, 92100 Boulogne-Billancourt, France
| | - Nelly Briand
- University of Paris Cité, and Clinical Investigation Center, Clinical Research Unit, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Marie Courbebaisse
- Faculté de Médecine, Université Paris Cité, 75015 Paris, France
- Explorations fonctionnelles rénales, Physiologie, Hôpital européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, 75908 Paris Cedex 15, France
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Peter Van Endert
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| | - Jean-Sébastien Hulot
- PARCC, INSERM, Université Paris Cité, 75015 Paris, France
- Centre d'Investigation Clinique, AP-HP, INSERM CIC-1418, Européen Georges Pompidou Hospital, 75015 Paris, France
| | - Anne Blanchard
- Centre d'Investigation Clinique, AP-HP, INSERM CIC-1418, Européen Georges Pompidou Hospital, 75015 Paris, France
- Sorbonne Paris Cité, Paris Descartes University, 75015 Paris, France
| | - Eric Tartour
- Pediatric Nephrology, Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA) Reference Center, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
- PARCC, INSERM, Université Paris Cité, 75015 Paris, France
- Department of Immunology, Hôpital Européen Georges-Pompidou, AP-HP, CEDEX 15, 75908 Paris, France
| | - Maria Leite-de-Moraes
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Guillaume Lezmi
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et Allergologie Pédiatriques, 75015 Paris, France
| | - Mickael Ménager
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, Université Paris Cité, Imagine Institute, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, 75015 Paris, France
| | - Marine Luka
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, Université Paris Cité, Imagine Institute, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, 75015 Paris, France
| | - Claude-Agnès Reynaud
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
| | - Jean-Claude Weill
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
| | - Laetitia Languille
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Marc Michel
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Pascal Chappert
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Thierry Mora
- Laboratoire de physique de l'École normale supérieure, CNRS, Paris Sciences et Lettres (PSL) University, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de l'École normale supérieure, CNRS, Paris Sciences et Lettres (PSL) University, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, and Institut Pasteur, the WOAH Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
- Ecole Nationale Vétérinaire d'Alfort, University of Paris-Est, 94700 Maisons-Alfort, France
| | - Petra Bacher
- Institute of Immunology, Christian-Albrecht Universität zu Kiel and UKSH Schleswig-Holstein, 24105 Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, 24105 Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrecht Universität zu Kiel and UKSH Schleswig-Holstein, 24105 Kiel, Germany
| | - Matthieu Mahévas
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
- INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Isabelle Sermet-Gaudelus
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Reference Center for Rare Diseases: Cystic Fibrosis and Other Epithelial Respiratory Protein Misfolding Diseases, Hôpital Necker-Enfants Malades, AP-HP Centre Université Paris Cité, 75015 Paris, France
| | - Simon Fillatreau
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75015 Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| |
Collapse
|
99
|
Zhao D, Sun Y, Li J, Li X, Ma Y, Cao Z, Zhang J, Ma J, Li J, Wang Q, Suo L, Zhang D, Yang P. Effectiveness of inactivated COVID-19 vaccines in preventing COVID-19-related hospitalization during the Omicron BF.7-predominant epidemic wave in Beijing, China: a cohort study. BMC Infect Dis 2024; 24:991. [PMID: 39289630 PMCID: PMC11406771 DOI: 10.1186/s12879-024-09889-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND To estimate vaccine effectiveness(VE) against COVID-19-related hospitalization for inactivated vaccines during the Omicron BF.7-predominant epidemic wave in Beijing, China. METHODS We recruited a cohort in Beijing on 17 and 18 December 2022, collected status of vaccination and COVID-19-related hospitalization since 1 November 2022 and prospectively followed until 9 January 2023. A Poisson regression model was used to estimate the VE. RESULTS 16(1.15%) COVID-19-related hospitalizations were reported in 1391 unvaccinated participants; 7(0.25%) in 2765 participants with two doses, resulting in a VE of 70.89%(95% confidence interval[CI] 26.25 to 87.73); 32(0.27%) in 11,846 participants with three doses, with a VE of 65.25%(95% CI 32.24 to 81.83). The VE of three doses remained above 64% at 1 year or more since the last dose. Elderly people aged ≥ 60 years had the highest hospitalization incidence(0.66%), VE for two doses was 74.11%(95%CI: - 18.42 to 94.34) and VE for three doses was 80.98%(95%CI:52.83 to 92.33). We estimated that vaccination had averted 65,007(95%CI: 12,817 to 97,757) COVID-19-related hospitalizations among people aged ≥ 60 years during the BF.7-predominant period in Beijing. CONCLUSION Inactivated COVID-19 vaccines were effective against COVID-19-related hospitalization, especially for the elderly population who have increased risk of severe disease owing to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Dan Zhao
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Dongcheng District, Beijing, 100013, China
| | - Ying Sun
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Dongcheng District, Beijing, 100013, China
| | - Juan Li
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Dongcheng District, Beijing, 100013, China
| | - Xiaomei Li
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Dongcheng District, Beijing, 100013, China
| | - Ying Ma
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Dongcheng District, Beijing, 100013, China
| | - Zhiqiang Cao
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Dongcheng District, Beijing, 100013, China
| | - Jiaojiao Zhang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Dongcheng District, Beijing, 100013, China
| | - Jiaxin Ma
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Dongcheng District, Beijing, 100013, China
| | - Jia Li
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Dongcheng District, Beijing, 100013, China
| | - Quanyi Wang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Dongcheng District, Beijing, 100013, China
| | - Luodan Suo
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Dongcheng District, Beijing, 100013, China.
| | - Daitao Zhang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Dongcheng District, Beijing, 100013, China.
| | - Peng Yang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Dongcheng District, Beijing, 100013, China.
| |
Collapse
|
100
|
Tsagkli P, Geropeppa M, Papadatou I, Spoulou V. Hybrid Immunity against SARS-CoV-2 Variants: A Narrative Review of the Literature. Vaccines (Basel) 2024; 12:1051. [PMID: 39340081 PMCID: PMC11436074 DOI: 10.3390/vaccines12091051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of SARS-CoV-2 led to a global health crisis and the burden of the disease continues to persist. The rapid development and emergency authorization of various vaccines, including mRNA-based vaccines, played a pivotal role in mitigating severe illness and mortality. However, rapid viral mutations, leading to several variants of concern, challenged vaccine effectiveness, particularly concerning immune evasion. Research on immunity, both from natural infection and vaccination, revealed that while neutralizing antibodies provide protection against infection, their effect is short-lived. The primary defense against severe COVID-19 is derived from the cellular immune response. Hybrid immunity, developed from a combination of natural infection and vaccination, offers enhanced protection, with convalescent vaccinated individuals showing significantly higher levels of neutralizing antibodies. As SARS-CoV-2 continues to evolve, understanding the durability and breadth of hybrid immunity becomes crucial. This narrative review examines the latest data on humoral and cellular immunity from both natural infection and vaccination, discussing how hybrid immunity could inform and optimize future vaccination strategies in the ongoing battle against COVID-19 and in fear of a new pandemic.
Collapse
Affiliation(s)
- Panagiota Tsagkli
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| | - Maria Geropeppa
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| | - Ioanna Papadatou
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| |
Collapse
|